TW201505174A - Semiconductor device and operating method for the same - Google Patents
Semiconductor device and operating method for the same Download PDFInfo
- Publication number
- TW201505174A TW201505174A TW102126381A TW102126381A TW201505174A TW 201505174 A TW201505174 A TW 201505174A TW 102126381 A TW102126381 A TW 102126381A TW 102126381 A TW102126381 A TW 102126381A TW 201505174 A TW201505174 A TW 201505174A
- Authority
- TW
- Taiwan
- Prior art keywords
- doped
- contact
- doping
- region
- conductivity type
- Prior art date
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
本發明是有關於一種半導體裝置及其操作方法,且特別是有關於一種絕緣閘雙極電晶體(IGBT)裝置及其操作方法。
The present invention relates to a semiconductor device and method of operating the same, and more particularly to an insulated gate bipolar transistor (IGBT) device and method of operation thereof.
在近幾十年間,半導體業界持續縮小半導體裝置的尺寸,並同時改善速率、效能、密度及積體電路的單位成本。In recent decades, the semiconductor industry has continued to shrink the size of semiconductor devices while improving the unit cost of speed, performance, density, and integrated circuits.
縮小裝置面積通常會嚴重犧牲半導體裝置的電性效能。為了維持半導體裝置的電性效能,在操作上,必須避免高壓裝置區的高電壓、漏電流影響到低壓裝置,而降低裝置的操作效能。Reducing the device area often severely compromises the electrical performance of the semiconductor device. In order to maintain the electrical performance of the semiconductor device, in operation, it is necessary to avoid the high voltage and leakage current of the high voltage device region from affecting the low voltage device, and reduce the operational efficiency of the device.
提供一種半導體裝置,其包括一第一摻雜區、一第二摻雜區、一第一摻雜接觸、一第二摻雜接觸、一第一摻雜層、一第三摻雜接觸與一第一閘結構。第一摻雜區具有一第一導電型。第二摻雜區鄰接於第一摻雜區,並具有相反於第一導電型的一第二導電型。第一摻雜接觸與第二摻雜接觸位於第一摻雜區上。第一摻雜接觸與第二摻雜接觸之間具有一第一PN接面。第一摻雜層位於第一摻雜接觸或第二摻雜接觸的下方。第一摻雜層與第一摻雜接觸或第二摻雜接觸之間具有一第二PN接面,鄰接於第一PN接面。第三摻雜接觸具有第一導電型,並配置於第二摻雜區中。第一閘結構配置於第一摻雜區與第三摻雜接觸之間的第二摻雜區上。A semiconductor device includes a first doped region, a second doped region, a first doped contact, a second doped contact, a first doped layer, a third doped contact, and a The first gate structure. The first doped region has a first conductivity type. The second doped region is adjacent to the first doped region and has a second conductivity type opposite to the first conductivity type. The first doped contact and the second doped contact are on the first doped region. There is a first PN junction between the first doped contact and the second doped contact. The first doped layer is located below the first doped contact or the second doped contact. The first doped layer has a second PN junction between the first doped contact or the second doped contact, adjacent to the first PN junction. The third doped contact has a first conductivity type and is disposed in the second doped region. The first gate structure is disposed on the second doping region between the first doping region and the third doping contact.
提供一種半導體裝置的操作方法。半導體裝置包括一第一摻雜區、一第二摻雜區、一第一摻雜接觸、一第二摻雜接觸、一第一摻雜層、一第三摻雜接觸與一第一閘結構。第一摻雜區具有一第一導電型。第二摻雜區鄰接於第一摻雜區,並具有相反於第一導電型的一第二導電型。第一摻雜接觸與第二摻雜接觸位於第一摻雜區上。第一摻雜接觸與第二摻雜接觸之間具有一第一PN接面。第一摻雜層位於第一摻雜接觸或第二摻雜接觸的下方。第一摻雜層與第一摻雜接觸或第二摻雜接觸之間具有一第二PN接面,鄰接於第一PN接面。第三摻雜接觸具有第一導電型,並配置於第二摻雜區中。第一閘結構配置於第一摻雜區與第三摻雜接觸之間的第二摻雜區上。操作方法包括以下步驟。施加一第一偏壓至第一閘結構。將第一摻雜接觸、第二摻雜接觸耦接至一第一電極。第一電極是一陽極與一陰極其中之一。將第三摻雜接觸耦接至一第二電極。第二電極是陽極與陰極其中之另一。A method of operating a semiconductor device is provided. The semiconductor device includes a first doped region, a second doped region, a first doped contact, a second doped contact, a first doped layer, a third doped contact, and a first gate structure . The first doped region has a first conductivity type. The second doped region is adjacent to the first doped region and has a second conductivity type opposite to the first conductivity type. The first doped contact and the second doped contact are on the first doped region. There is a first PN junction between the first doped contact and the second doped contact. The first doped layer is located below the first doped contact or the second doped contact. The first doped layer has a second PN junction between the first doped contact or the second doped contact, adjacent to the first PN junction. The third doped contact has a first conductivity type and is disposed in the second doped region. The first gate structure is disposed on the second doping region between the first doping region and the third doping contact. The method of operation includes the following steps. A first bias is applied to the first gate structure. The first doped contact and the second doped contact are coupled to a first electrode. The first electrode is one of an anode and a cathode. The third doped contact is coupled to a second electrode. The second electrode is the other of the anode and the cathode.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:
102‧‧‧第一摻雜區
104‧‧‧第二摻雜區
106、106A、106B‧‧‧第一摻雜層
108‧‧‧第一摻雜層
110‧‧‧第二摻雜接觸
112‧‧‧第三摻雜接觸
114‧‧‧第一閘結構
116、118、120、124、140、142、146、154、580‧‧‧摻雜井
122、144、152‧‧‧埋摻雜層
126‧‧‧第二摻雜層
128、138、158、160、162‧‧‧接觸區域
130‧‧‧第一PN接面
132‧‧‧第二PN接面
134‧‧‧隔離層
136‧‧‧第三摻雜區
148‧‧‧第四摻雜區
150‧‧‧基底
156‧‧‧第三摻雜層
164‧‧‧第二閘結構
166‧‧‧導電層
168、170、172、174、176、378‧‧‧電極
682‧‧‧降低表面電場層102‧‧‧First doped area
104‧‧‧Second doped area
106, 106A, 106B‧‧‧ first doped layer
108‧‧‧First doped layer
110‧‧‧Second doping contact
112‧‧‧ Third doping contact
114‧‧‧First gate structure
116, 118, 120, 124, 140, 142, 146, 154, 580‧‧‧ doping wells
122, 144, 152‧‧‧ buried doped layer
126‧‧‧Second doped layer
128, 138, 158, 160, 162‧‧‧ contact areas
130‧‧‧First PN junction
132‧‧‧Second PN junction
134‧‧‧Isolation
136‧‧‧ Third doped area
148‧‧‧fourth doping zone
150‧‧‧Base
156‧‧‧ third doped layer
164‧‧‧Second gate structure
166‧‧‧ Conductive layer
168, 170, 172, 174, 176, 378‧‧ ‧ electrodes
682‧‧‧Reducing the surface electric field layer
第1圖繪示根據一實施例之半導體裝置的剖面圖。
第2圖繪示根據一實施例之半導體裝置的剖面圖
第3圖繪示根據一實施例之半導體裝置的剖面圖
第4圖繪示根據一實施例之半導體裝置的剖面圖
第5圖繪示根據一實施例之半導體裝置的剖面圖
第6圖繪示根據一實施例之半導體裝置的剖面圖
第7圖與第8圖顯示IBGT半導體裝置的電性。
第9圖繪示應用實施例之半導體裝置的電路圖。1 is a cross-sectional view of a semiconductor device in accordance with an embodiment.
2 is a cross-sectional view of a semiconductor device according to an embodiment. FIG. 3 is a cross-sectional view of a semiconductor device according to an embodiment. FIG. 4 is a cross-sectional view of a semiconductor device according to an embodiment. FIG. Sectional view of a semiconductor device according to an embodiment FIG. 6 is a cross-sectional view of a semiconductor device according to an embodiment. FIGS. 7 and 8 show electrical properties of an IBGT semiconductor device.
Fig. 9 is a circuit diagram showing a semiconductor device to which an embodiment is applied.
請參照第1圖,其繪示根據一實施例之半導體裝置的剖面圖。半導體裝置包括第一摻雜區102、第二摻雜區104、第一摻雜層106、第一摻雜接觸108、第二摻雜接觸110、第三摻雜接觸112與第一閘結構114。Please refer to FIG. 1 , which illustrates a cross-sectional view of a semiconductor device in accordance with an embodiment. The semiconductor device includes a first doped region 102 , a second doped region 104 , a first doped layer 106 , a first doped contact 108 , a second doped contact 110 , a third doped contact 112 , and a first gate structure 114 . .
第一摻雜區102可包括鄰接的摻雜井116與摻雜井118。於一實施例中,摻雜井116與摻雜井118具有第一導電型例如N導電型。舉例來說,摻雜井116是高壓N型井(HVNW)。The first doped region 102 can include adjacent doping wells 116 and doping wells 118. In one embodiment, the doping well 116 and the doping well 118 have a first conductivity type, such as an N conductivity type. For example, the doping well 116 is a high pressure N-type well (HVNW).
第二摻雜區104可包括鄰接的摻雜井120、埋摻雜層122、摻雜井124、第二摻雜層126與接觸區域128,皆具有相反於第一導電型的第二導電型例如P導電型。舉例來說,摻雜井120與摻雜井124是高壓P型摻雜區(HVPD)。接觸區域128是重摻雜的(P+)。於一實施例中,第二摻雜區104的摻雜井120、埋摻雜層122、摻雜井124、第二摻雜層126與接觸區域128是圍住第一摻雜區102的摻雜井116與摻雜井118。The second doping region 104 can include adjacent doping wells 120, buried doping layer 122, doping wells 124, second doping layer 126, and contact regions 128, all having a second conductivity type opposite to the first conductivity type. For example, the P conductivity type. For example, doping well 120 and doping well 124 are high voltage P-type doped regions (HVPD). Contact region 128 is heavily doped (P+). In one embodiment, the doping well 120, the buried doping layer 122, the doping well 124, the second doping layer 126, and the contact region 128 of the second doping region 104 are doped to surround the first doping region 102. The well 116 is doped with the doping well 118.
第一摻雜接觸108與第二摻雜接觸110位於第一摻雜區102的摻雜井118上。第一摻雜接觸108與第二摻雜接觸110具有不同的導電型,且之間具有一第一PN接面130。於一實施例中,第一摻雜接觸108與第二摻雜接觸110構成短路陽極(shorted anode)。The first doped contact 108 and the second doped contact 110 are located on the doping well 118 of the first doped region 102. The first doped contact 108 and the second doped contact 110 have different conductivity types with a first PN junction 130 therebetween. In one embodiment, the first doped contact 108 and the second doped contact 110 form a shorted anode.
第一摻雜層106位於第一摻雜接觸108的下方,並位於第一摻雜區102的摻雜井116與摻雜井118上。第一摻雜層106與第一摻雜接觸108之間具有一第二PN接面132,鄰接於第一PN接面130。互相鄰接的第一PN接面130與第二PN接面132構成一L形狀。於一實施例中,第一摻雜層106具有第二導電型例如P導電型。The first doped layer 106 is located below the first doped contact 108 and is located on the doping well 116 and the doping well 118 of the first doped region 102. A first PN junction 132 is formed between the first doped layer 106 and the first doped contact 108 adjacent to the first PN junction 130. The first PN junction 130 and the second PN junction 132 adjacent to each other form an L shape. In an embodiment, the first doped layer 106 has a second conductivity type such as a P conductivity type.
於此實施例中,第一摻雜接觸108具有第一導電型例如N導電型,第二摻雜接觸110具有第二導電型例如P導電型。於一實施例中,第一摻雜接觸108、第二摻雜接觸110是重摻雜的(P+)接觸區。In this embodiment, the first doped contact 108 has a first conductivity type, such as an N conductivity type, and the second doped contact 110 has a second conductivity type, such as a P conductivity type. In one embodiment, the first doped contact 108 and the second doped contact 110 are heavily doped (P+) contact regions.
第三摻雜接觸112位在第二摻雜區104的摻雜井124、第二摻雜層126與接觸區域128之間。於一實施例中,第三摻雜接觸112具有第一導電型例如N導電型。舉例來說,第三摻雜接觸112是重摻雜的(N+)接觸區。The third doped contact 112 is between the doping well 124 of the second doped region 104, the second doped layer 126, and the contact region 128. In one embodiment, the third doped contact 112 has a first conductivity type, such as an N conductivity type. For example, the third doped contact 112 is a heavily doped (N+) contact region.
第一閘結構114位在摻雜井116與第三摻雜接觸112之間的摻雜井124上。隔離層134可配置在第一摻雜層106與第一摻雜區102的摻雜井116上。隔離層134並不限於第1圖所示的場氧化物(FOX),也可使用其他合適的絕緣結構,例如淺溝槽隔離等。The first gate structure 114 is on the doping well 124 between the doping well 116 and the third doping contact 112. The isolation layer 134 can be disposed on the first doped layer 106 and the doping well 116 of the first doped region 102. The spacer layer 134 is not limited to the field oxide (FOX) shown in FIG. 1, and other suitable insulating structures such as shallow trench isolation or the like may be used.
半導體裝置可包括第三摻雜區136,其可包括鄰接的接觸區域138、摻雜井140、摻雜井142、埋摻雜層144與摻雜井146,其皆具有第一導電型例如N導電型。舉例來說,接觸區域138是重摻雜的(N+)。摻雜井146是高壓N型井(HVNW)。於一實施例中,第三摻雜區136的接觸區域138、摻雜井140、摻雜井142、埋摻雜層144與摻雜井146是圍住第二摻雜區104,如第1圖所示。The semiconductor device can include a third doped region 136 that can include contiguous contact regions 138, doping wells 140, doping wells 142, buried doped layers 144, and doping wells 146, all having a first conductivity type such as N Conductive type. For example, contact region 138 is heavily doped (N+). The doping well 146 is a high pressure N-type well (HVNW). In one embodiment, the contact region 138 of the third doping region 136, the doping well 140, the doping well 142, the buried doping layer 144, and the doping well 146 surround the second doping region 104, such as the first The figure shows.
半導體裝置可包括第四摻雜區148,其可包括鄰接的基底150、埋摻雜層152、摻雜井154、第三摻雜層156與接觸區域158,其皆具有第二導電型例如P導電型。舉例來說,摻雜井154是高壓摻雜井(HVPD)。接觸區域158是重摻雜的(P+)。The semiconductor device can include a fourth doped region 148 that can include an adjacent substrate 150, a buried doped layer 152, a doping well 154, a third doped layer 156, and a contact region 158, each having a second conductivity type, such as P Conductive type. For example, the doping well 154 is a high pressure doped well (HVPD). Contact region 158 is heavily doped (P+).
接觸區域160配置在第二摻雜區104的摻雜井124、第二摻雜層126與接觸區域128之間。於一實施例中,接觸區域160具有第一導電型例如N導電型。舉例來說,接觸區域160是重摻雜的(N+)。Contact region 160 is disposed between doping well 124 of second doped region 104, second doped layer 126, and contact region 128. In one embodiment, the contact region 160 has a first conductivity type, such as an N conductivity type. For example, contact region 160 is heavily doped (N+).
接觸區域162配置在第四摻雜區148的摻雜井154、第三摻雜層156與接觸區域158之間。於一實施例中,接觸區域162具有第一導電型例如N導電型。舉例來說,接觸區域162是重摻雜的(N+)。The contact region 162 is disposed between the doping well 154 of the fourth doping region 148, the third doping layer 156, and the contact region 158. In one embodiment, the contact region 162 has a first conductivity type, such as an N conductivity type. For example, contact region 162 is heavily doped (N+).
第二閘結構164配置在接觸區域160與接觸區域162之間的摻雜井124、摻雜井146與摻雜井154上。導電層166可配置在隔離層134上。導電層166可包括多晶矽或其他合適的材料。The second gate structure 164 is disposed on the doping well 124, the doping well 146, and the doping well 154 between the contact region 160 and the contact region 162. Conductive layer 166 can be disposed on isolation layer 134. Conductive layer 166 can include polysilicon or other suitable material.
於實施例中,第一摻雜接觸108、第二摻雜接觸110、導電層166與第三摻雜區136的接觸區域138可耦接至電極168。第三摻雜接觸112、接觸區域160與第二摻雜區104的接觸區域128可耦接電極170。第一閘結構114可耦接至電極172。第二閘結構164可耦接至電極174。接觸區域162與第四摻雜區148的接觸區域158可耦接至電極176。In an embodiment, the first doping contact 108 , the second doping contact 110 , the contact region 138 of the conductive layer 166 and the third doping region 136 may be coupled to the electrode 168 . The third doping contact 112 , the contact region 160 and the contact region 128 of the second doping region 104 may be coupled to the electrode 170 . The first gate structure 114 can be coupled to the electrode 172. The second gate structure 164 can be coupled to the electrode 174. Contact region 158 of contact region 162 and fourth doped region 148 may be coupled to electrode 176.
於實施例中,半導體裝置是用作絕緣閘雙極電晶體(IGBT)裝置。第一閘結構114是用作IGBT的閘極。舉例來說,在操作過程中,電極168為陽極,電壓可介於0V~700V。電極170為陰極,電壓可為0V例如接地。電極172可提供的0V~15V偏壓。電極174可提供0V~15V的偏壓。電極172與電極174可為一共同電極(common electrode)。電極176為基底電極,電壓可為0V例如接地。In an embodiment, the semiconductor device is used as an insulated gate bipolar transistor (IGBT) device. The first gate structure 114 is a gate used as an IGBT. For example, during operation, electrode 168 is an anode and the voltage can range from 0V to 700V. Electrode 170 is a cathode and the voltage can be 0V, such as ground. The electrode 172 can provide a bias voltage of 0V~15V. Electrode 174 can provide a bias voltage of 0V~15V. Electrode 172 and electrode 174 can be a common electrode. Electrode 176 is the base electrode and the voltage can be 0V, such as ground.
高壓操作IGBT裝置過程中,電極168(陽極)抬壓形成反轉層,反轉層造成電洞流從電極168注入而放大電子流。第一摻雜接觸108、第二摻雜接觸110、第一摻雜層106與第一摻雜區102的摻雜井118構成的NPN雙極結構能提高電洞流而進一步提高裝置電子流的放大率。此NPN雙極結構能避免IGBT裝置所不期望的電壓驟回(voltage snapback)或負微分電阻(negative differential resistance; NDR)效應。延伸在隔離層134下方並靠近第一閘結構114的(P導電型)第一摻雜層106能提供電洞流靠近電極170(陰極)的流動通道,避免電洞流通過基底150而影響附近的其他裝置例如低壓(LV)裝置。During high voltage operation of the IGBT device, the electrode 168 (anode) is lifted to form an inversion layer, and the inversion layer causes a hole flow to be injected from the electrode 168 to amplify the electron flow. The NPN bipolar structure formed by the first doping contact 108, the second doping contact 110, the first doping layer 106 and the doping well 118 of the first doping region 102 can improve the hole flow and further increase the device electron flow. magnification. This NPN bipolar structure can avoid unwanted voltage snapback or negative differential resistance (NDR) effects of IGBT devices. The (P-conductive) first doped layer 106 extending under the isolation layer 134 and adjacent to the first gate structure 114 can provide a flow path for the hole flow near the electrode 170 (cathode), preventing the hole flow from passing through the substrate 150 and affecting the vicinity Other devices such as low voltage (LV) devices.
第二閘結構164可用作雙重擴散金氧半場效電晶體(DMOS)的閘極,用以控制通道形成在鄰近於接觸區域162的摻雜井154中,與鄰近於接觸區域160的摻雜井124中。於實施例中,IGBT裝置可藉由第二閘結構164形成通道而導通的接觸區域162、接觸區域160、摻雜井146、埋摻雜層144、摻雜井142、摻雜井140、接觸區域138來提供額外的電流通道,亦即IGBT裝置具有多個電流通道(multi-channel),以提升IGBT裝置的陽極電流。The second gate structure 164 can be used as a gate of a double diffused gold oxide half field effect transistor (DMOS) for controlling the formation of a channel in the doping well 154 adjacent to the contact region 162 and doping adjacent to the contact region 160. Well 124. In an embodiment, the IGBT device can be formed by the second gate structure 164 to form a via, the contact region 162, the contact region 160, the doping well 146, the buried doped layer 144, the doping well 142, the doping well 140, the contact Region 138 provides an additional current path, i.e., the IGBT device has multiple multi-channels to boost the anode current of the IGBT device.
靠近電極168(陽極)的(P導電型)埋摻雜層122與摻雜井120也能幫助侷限電洞流,避免電洞流通過基底150而影響附近的其他裝置。此外,第一導電型例如N導電型的摻雜井146、埋摻雜層144、摻雜井142、摻雜井140、接觸區域138與第二導電型例如P導電型的摻雜井124、埋摻雜層122、摻雜井120之間的PN接面能進一步將高壓操作IGBT裝置過程中,反轉層造成的電洞流能侷限在埋摻雜層122與摻雜井120中,避免電洞流通過基底150而影響附近的其他裝置。The (P-conducting) buried doping layer 122 and the doping well 120 near the electrode 168 (anode) can also help to confine the hole flow, avoiding the hole flow through the substrate 150 and affecting other devices in the vicinity. In addition, a first conductivity type such as an N conductivity type doping well 146, a buried doped layer 144, a doping well 142, a doping well 140, a contact region 138, and a second conductivity type, such as a P conductivity type doping well 124, The PN junction between the buried doping layer 122 and the doping well 120 can further limit the hole flow energy caused by the inversion layer in the buried doped layer 122 and the doping well 120 during high voltage operation of the IGBT device, thereby avoiding The hole flow passes through the substrate 150 to affect other devices in the vicinity.
於實施例中,IGBT裝置具有低的開啟電壓(turn on voltage),並具有低的開啟電阻(turn on resistance; Rdson-sp)。In an embodiment, the IGBT device has a low turn on voltage and a low turn on resistance ( Rdson-sp).
位在接觸區域128、第三摻雜接觸112、接觸區域160與摻雜井124之間的第二摻雜層126,以及位在接觸區域158、接觸區域162與摻雜井154之間的第三摻雜層156能避免操作裝置過程中發生穿隧效應(punch through)。a second doped layer 126 between the contact region 128, the third doped contact 112, the contact region 160 and the doping well 124, and a portion between the contact region 158, the contact region 162, and the doping well 154 The three doped layer 156 can avoid punch through during operation of the device.
第2圖繪示根據一實施例之半導體裝置的剖面圖,其與第1圖所示之半導體裝置的差異說明如下。請參照第2圖,第一摻雜層106A是鄰接於第一摻雜接觸108與第二摻雜接觸110的下方。於一實施例中,第二摻雜接觸110具有第一導電型例如N導電型,第一摻雜接觸108與第一摻雜層106A具有第二導電型例如P導電型。於另一實施例中,第一摻雜接觸108具有第一導電型例如N導電型,第二摻雜接觸110與第一摻雜層106A具有第二導電型例如P導電型。在操作IGBT裝置過程中,第一摻雜接觸108、第二摻雜接觸110、第一摻雜層106A與第一摻雜區102的摻雜井118構成的NPN雙極結構能提高從電極168注入的電洞流而提高裝置電子流的放大率。此NPN雙極結構能避免IGBT裝置所不期望的電壓驟回或負微分電阻效應。延伸在隔離層134下方並靠近第一閘結構114的(P導電型)第一摻雜層106A能提供電洞流靠近電極170(陰極)的流動通道,避免電洞流通過基底150而影響附近的其他裝置。2 is a cross-sectional view showing a semiconductor device according to an embodiment, and the difference from the semiconductor device shown in FIG. 1 is explained as follows. Referring to FIG. 2, the first doped layer 106A is adjacent to the first doped contact 108 and the second doped contact 110. In one embodiment, the second doped contact 110 has a first conductivity type, such as an N conductivity type, and the first doped contact 108 and the first doped layer 106A have a second conductivity type, such as a P conductivity type. In another embodiment, the first doped contact 108 has a first conductivity type, such as an N conductivity type, and the second doped contact 110 and the first doped layer 106A have a second conductivity type, such as a P conductivity type. The NPN bipolar structure formed by the first doping contact 108, the second doping contact 110, the doping well 118 of the first doping region 102 and the doping well 118 of the first doping region 102 can improve the slave electrode 168 during operation of the IGBT device. The injected hole flow increases the amplification of the device's electron flow. This NPN bipolar structure can avoid undesired voltage snaps or negative differential resistance effects of IGBT devices. The (P-conductivity) first doped layer 106A extending under the isolation layer 134 and adjacent to the first gate structure 114 can provide a flow path for the hole flow near the electrode 170 (cathode), preventing the hole flow from passing through the substrate 150 and affecting the vicinity Other devices.
第3圖繪示根據一實施例之半導體裝置的剖面圖,其與第1圖所示之半導體裝置的差異說明如下。第3圖的半導體裝置是省略了第1圖中的第二閘結構164、接觸區域160、接觸區域162與第三摻雜層156。第三摻雜區136的摻雜井146是耦接至電極378。Fig. 3 is a cross-sectional view showing a semiconductor device according to an embodiment, and the difference from the semiconductor device shown in Fig. 1 is explained as follows. The semiconductor device of FIG. 3 omits the second gate structure 164, the contact region 160, the contact region 162, and the third doping layer 156 in FIG. The doping well 146 of the third doped region 136 is coupled to the electrode 378.
第4圖繪示根據一實施例之半導體裝置的剖面圖,其與第3圖所示之半導體裝置的差異說明如下。請參照第4圖,第一摻雜層106A是鄰接於第一摻雜接觸108與第二摻雜接觸110的下方。於一實施例中,第二摻雜接觸110具有第一導電型例如N導電型,第一摻雜接觸108與第一摻雜層106A具有第二導電型例如P導電型。於另一實施例中,第一摻雜接觸108具有第一導電型例如N導電型,第二摻雜接觸110與第一摻雜層106A具有第二導電型例如P導電型。在操作IGBT裝置過程中,第一摻雜接觸108、第二摻雜接觸110、第一摻雜層106A與第一摻雜區102的摻雜井118構成的NPN雙極結構能提高從電極168注入的電洞流而提高裝置電子流的放大率。此NPN雙極結構能避免IGBT裝置所不期望的電壓驟回或負微分電阻效應。延伸在隔離層134下方並靠近第一閘結構114的(P導電型)第一摻雜層106A能提供電洞流靠近電極170(陰極)的流動通道,避免電洞流通過基底150而影響附近的其他裝置。4 is a cross-sectional view showing a semiconductor device according to an embodiment, and the difference from the semiconductor device shown in FIG. 3 is explained as follows. Referring to FIG. 4, the first doped layer 106A is adjacent to the first doped contact 108 and the second doped contact 110. In one embodiment, the second doped contact 110 has a first conductivity type, such as an N conductivity type, and the first doped contact 108 and the first doped layer 106A have a second conductivity type, such as a P conductivity type. In another embodiment, the first doped contact 108 has a first conductivity type, such as an N conductivity type, and the second doped contact 110 and the first doped layer 106A have a second conductivity type, such as a P conductivity type. The NPN bipolar structure formed by the first doping contact 108, the second doping contact 110, the doping well 118 of the first doping region 102 and the doping well 118 of the first doping region 102 can improve the slave electrode 168 during operation of the IGBT device. The injected hole flow increases the amplification of the device's electron flow. This NPN bipolar structure can avoid undesired voltage snaps or negative differential resistance effects of IGBT devices. The (P-conductivity) first doped layer 106A extending under the isolation layer 134 and adjacent to the first gate structure 114 can provide a flow path for the hole flow near the electrode 170 (cathode), preventing the hole flow from passing through the substrate 150 and affecting the vicinity Other devices.
第5圖繪示根據一實施例之半導體裝置的剖面圖,其與第3圖所示之半導體裝置的差異說明如下。第5圖所示的半導體裝置是省略了第3圖中第一導電型例如N導電型的埋摻雜層144。再者,第3圖中的埋摻雜層122是以第二導電型例如P導電型的摻雜井580取代。Fig. 5 is a cross-sectional view showing a semiconductor device according to an embodiment, and the difference from the semiconductor device shown in Fig. 3 is explained as follows. The semiconductor device shown in Fig. 5 is a buried doped layer 144 of the first conductivity type, for example, N conductivity type, which is omitted in Fig. 3. Furthermore, the buried doped layer 122 in FIG. 3 is replaced by a doping well 580 of a second conductivity type such as a P conductivity type.
第6圖繪示根據一實施例之半導體裝置的剖面圖,其與第1圖所示之半導體裝置的差異說明如下。第一摻雜層106B位於第一摻雜接觸108的下方,並位於第一摻雜區102的摻雜井118上。第一摻雜層106B並沒有延伸在隔離層134的下方。於一實施例中,第一摻雜接觸108具有第一導電型例如N導電型,第二摻雜接觸110與第一摻雜層106B具有第二導電型例如P導電型。第一摻雜接觸108、第二摻雜接觸110、第一摻雜層106B與第一摻雜區102的摻雜井118構成NPN結構,其能提高從電極168注入的電洞流而提高裝置電子流的放大率,並避免IGBT裝置所不期望的電壓驟回或負微分電阻效應。第一摻雜層106B是分開自位在隔離層134下方的降低表面電場(RESURF)層682,其中RESURF層682具有第二導電型例如P導電型。Fig. 6 is a cross-sectional view showing a semiconductor device according to an embodiment, and the difference from the semiconductor device shown in Fig. 1 is explained as follows. The first doped layer 106B is located below the first doped contact 108 and is located on the doping well 118 of the first doped region 102. The first doped layer 106B does not extend below the isolation layer 134. In one embodiment, the first doped contact 108 has a first conductivity type, such as an N conductivity type, and the second doped contact 110 and the first doped layer 106B have a second conductivity type, such as a P conductivity type. The doping well 118 of the first doping contact 108, the second doping contact 110, the first doping layer 106B and the first doping region 102 constitutes an NPN structure, which can improve the hole flow injected from the electrode 168 and improve the device The amplification of the electron flow and avoiding unwanted voltage snaps or negative differential resistance effects of the IGBT device. The first doped layer 106B is a reduced surface electric field (RESURF) layer 682 that is separated from the isolation layer 134, wherein the RESURF layer 682 has a second conductivity type, such as a P conductivity type.
第7圖與第8圖顯示IBGT半導體裝置的電性。其中實施例1的IBGT半導體裝置使用延伸至隔離層下方的第一摻雜層,實施例2的IBGT半導體裝置使用沒有延伸至隔離層下方的第一摻雜層,比較例3的IBGT半導體裝置沒有使用第一摻雜層。從第7圖與第8圖顯示的曲線發現,實施例之IBGT半導體裝置具有省電、提升輸出電流的優勢,並能避免比較例所發生電壓驟回效應。實施例之IGBT半導體裝置可應用至(例如半橋式(half bridge)、全橋式(full bridge))馬達驅動器,如第9圖所示。Figures 7 and 8 show the electrical properties of the IBGT semiconductor device. Wherein the IBGT semiconductor device of Embodiment 1 uses a first doped layer extending below the isolation layer, and the IBGT semiconductor device of Embodiment 2 uses a first doped layer that does not extend below the isolation layer, and the IBGT semiconductor device of Comparative Example 3 does not have A first doped layer is used. From the curves shown in Figs. 7 and 8, it is found that the IBGT semiconductor device of the embodiment has the advantages of saving power and increasing the output current, and can avoid the voltage snapback effect of the comparative example. The IGBT semiconductor device of the embodiment can be applied to (for example, a half bridge, full bridge) motor driver as shown in FIG.
於實施例中,舉例來說,半導體裝置之閘結構的閘電極可包括多晶矽、金屬、金屬矽化物等合適的材料。基底可包括絕緣層上覆矽(SOI)。半導體裝置可利用場氧化矽(local oxidation of silicon; SOI)製程、淺溝槽隔離(shallow trench isolation; SOI)製程、深溝槽隔離(deep trench isolation; DTI)製程、絕緣層上覆矽製程、磊晶製程、非磊晶製程、或其他合適的製程來形成。半導體裝置可設計成六角形(hexagonal)、八角形(octagonal)、圓形(circle)、跑道形(runway),或其他合適形狀的結構。In an embodiment, for example, the gate electrode of the gate structure of the semiconductor device may include a suitable material such as polysilicon, metal, metal halide, or the like. The substrate may include an insulating layer overlying germanium (SOI). The semiconductor device can utilize a local oxidation of silicon (SOI) process, a shallow trench isolation (SOI) process, a deep trench isolation (DTI) process, an overlying insulating process, and a trench. Formed by a crystal process, a non-epitaxial process, or other suitable process. The semiconductor device can be designed as a hexagonal, octagonal, circular, runway, or other suitable shaped structure.
實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The embodiments are disclosed above, but are not intended to limit the present invention. Any one skilled in the art can make some modifications and retouchings without departing from the spirit and scope of the present invention. The scope of the patent application is subject to change.
102‧‧‧第一摻雜區 102‧‧‧First doped area
104‧‧‧第二摻雜區 104‧‧‧Second doped area
106‧‧‧第一摻雜層 106‧‧‧First doped layer
108‧‧‧第一摻雜層 108‧‧‧First doped layer
110‧‧‧第二摻雜接觸 110‧‧‧Second doping contact
112‧‧‧第三摻雜接觸 112‧‧‧ Third doping contact
114‧‧‧第一閘結構 114‧‧‧First gate structure
116、118、120、124、140、142、146、154‧‧‧摻雜井 116, 118, 120, 124, 140, 142, 146, 154‧‧‧ doping wells
122、144、152‧‧‧埋摻雜層 122, 144, 152‧‧‧ buried doped layer
126‧‧‧第二摻雜層 126‧‧‧Second doped layer
128、138、158、160、162‧‧‧接觸區域 128, 138, 158, 160, 162‧‧‧ contact areas
130‧‧‧第一PN接面 130‧‧‧First PN junction
132‧‧‧第二PN接面 132‧‧‧Second PN junction
134‧‧‧隔離層 134‧‧‧Isolation
136‧‧‧第三摻雜區 136‧‧‧ Third doped area
148‧‧‧第四摻雜區 148‧‧‧fourth doping zone
150‧‧‧基底 150‧‧‧Base
156‧‧‧第三摻雜層 156‧‧‧ third doped layer
164‧‧‧第二閘結構 164‧‧‧Second gate structure
166‧‧‧導電層 166‧‧‧ Conductive layer
168、170、172、174、176‧‧‧電極 168, 170, 172, 174, 176‧‧ ‧ electrodes
Claims (10)
一第一摻雜區,具有一第一導電型;
一第二摻雜區,鄰接該第一摻雜區並具有相反於該第一導電型的一第二導電型;
一第一摻雜接觸;
一第二摻雜接觸,其中該第一摻雜接觸與該第二摻雜接觸位於該第一摻雜區上,該第一摻雜接觸與該第二摻雜接觸之間具有一第一PN接面;
一第一摻雜層,位於該第一摻雜接觸或該第二摻雜接觸的下方,其中該第一摻雜層與該第一摻雜接觸或該第二摻雜接觸之間具有一第二PN接面,鄰接於該第一PN接面;
一第三摻雜接觸,具有該第一導電型,並配置於該第二摻雜區中;以及
一第一閘結構,配置於該第一摻雜區與該第三摻雜接觸之間的該第二摻雜區上。A semiconductor device comprising:
a first doped region having a first conductivity type;
a second doping region adjacent to the first doping region and having a second conductivity type opposite to the first conductivity type;
a first doped contact;
a second doping contact, wherein the first doping contact and the second doping contact are located on the first doping region, and the first doping contact and the second doping contact have a first PN Junction
a first doped layer under the first doped contact or the second doped contact, wherein the first doped layer has a first contact between the first doped contact or the second doped contact a second PN junction adjacent to the first PN junction;
a third doped contact having the first conductivity type and disposed in the second doped region; and a first gate structure disposed between the first doped region and the third doped contact On the second doped region.
一第一摻雜區,具有一第一導電型;
一第二摻雜區,鄰接該第一摻雜區並具有相反於該第一導電型的一第二導電型;
一第一摻雜接觸;
一第二摻雜接觸,其中該第一摻雜接觸與該第二摻雜接觸位於該第一摻雜區上,該第一摻雜接觸與該第二摻雜接觸之間具有一第一PN接面;
一第一摻雜層,位於該第一摻雜接觸或該第二摻雜接觸的下方,其中該第一摻雜層與該第一摻雜接觸或該第二摻雜接觸之間具有一第二PN接面,鄰接於該第一PN接面;
一第三摻雜接觸,具有該第一導電型,並配置於該第二摻雜區中;以及
一第一閘結構,配置於該第一摻雜區與該第三摻雜接觸之間的該第二摻雜區上,
該操作方法包括:
施加一第一偏壓至該第一閘結構;
將該第一摻雜接觸、第二摻雜接觸耦接至一第一電極,該第一電極是一陽極與一陰極其中之一;以及
將該第三摻雜接觸耦接至一第二電極,該第二電極是該陽極與該陰極其中之另一。A method of operating a semiconductor device, wherein the semiconductor device comprises:
a first doped region having a first conductivity type;
a second doping region adjacent to the first doping region and having a second conductivity type opposite to the first conductivity type;
a first doped contact;
a second doping contact, wherein the first doping contact and the second doping contact are located on the first doping region, and the first doping contact and the second doping contact have a first PN Junction
a first doped layer under the first doped contact or the second doped contact, wherein the first doped layer has a first contact between the first doped contact or the second doped contact a second PN junction adjacent to the first PN junction;
a third doped contact having the first conductivity type and disposed in the second doped region; and a first gate structure disposed between the first doped region and the third doped contact On the second doped region,
The method of operation includes:
Applying a first bias voltage to the first gate structure;
The first doped contact and the second doped contact are coupled to a first electrode, the first electrode is one of an anode and a cathode; and the third doped contact is coupled to a second electrode The second electrode is the other of the anode and the cathode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102126381A TWI509792B (en) | 2013-07-24 | 2013-07-24 | Semiconductor device and operating method for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102126381A TWI509792B (en) | 2013-07-24 | 2013-07-24 | Semiconductor device and operating method for the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201505174A true TW201505174A (en) | 2015-02-01 |
TWI509792B TWI509792B (en) | 2015-11-21 |
Family
ID=53019006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102126381A TWI509792B (en) | 2013-07-24 | 2013-07-24 | Semiconductor device and operating method for the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI509792B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI587505B (en) * | 2015-11-27 | 2017-06-11 | 世界先進積體電路股份有限公司 | High voltage semiconductor structure |
US9768283B1 (en) | 2016-03-21 | 2017-09-19 | Vanguard International Semiconductor Corporation | High-voltage semiconductor structure |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19906384A1 (en) * | 1999-02-16 | 2000-08-24 | Siemens Ag | Insulated gate bipolar transistor with electric pn-junction insulation of adjacent components |
-
2013
- 2013-07-24 TW TW102126381A patent/TWI509792B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI587505B (en) * | 2015-11-27 | 2017-06-11 | 世界先進積體電路股份有限公司 | High voltage semiconductor structure |
US9768283B1 (en) | 2016-03-21 | 2017-09-19 | Vanguard International Semiconductor Corporation | High-voltage semiconductor structure |
Also Published As
Publication number | Publication date |
---|---|
TWI509792B (en) | 2015-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6894348B2 (en) | Semiconductor device | |
EP2860762B1 (en) | High voltage junction field effect transistor | |
TWI548029B (en) | Semiconductor device and method of operating the same and structure for supressing current leakage | |
TWI721140B (en) | Semiconductor device and semiconductor device manufacturing method | |
CN111725071A (en) | Silicon-based junction accumulation layer and buffer layer lateral double-diffusion field effect transistor and manufacturing method thereof | |
TWI447912B (en) | Semiconductor device and manufacturing method for the same | |
TWI509792B (en) | Semiconductor device and operating method for the same | |
US8716763B2 (en) | Semiconductor structure and method for forming the same | |
US8952744B1 (en) | Semiconductor device and operating method for the same | |
TWI478343B (en) | Semiconductor structure and manufacturing process thereof | |
US9041142B2 (en) | Semiconductor device and operating method for the same | |
TW201709505A (en) | Lateral double diffused metal oxide semiconductor device and manufacturing method thereof | |
TWI747235B (en) | High-voltage semiconductor device | |
TWI469342B (en) | Semiconductor device and operating method for the same | |
TWI429073B (en) | Semiconductor structure and method for forming the same | |
US9780171B2 (en) | Fabricating method of lateral-diffused metal oxide semiconductor device | |
JP2012049428A (en) | Semiconductor device | |
JP2017073410A (en) | Semiconductor device and semiconductor device manufacturing method | |
TWI641131B (en) | Lateral double-diffused metal oxide semiconductor device | |
CN104347691B (en) | Semiconductor device and operation method thereof | |
TW201705473A (en) | Semiconductor device | |
CN104078495A (en) | Bipolar junction transistor, and operating method and manufacturing method of bipolar junction transistor | |
TWI559547B (en) | Junction field effect transistor | |
TW201526203A (en) | Semiconductor device and method of fabricating the same | |
TWI434410B (en) | Novel structure of npn-bjt for improving punch through between collector and emitter |