TW201526203A - Semiconductor device and method of fabricating the same - Google Patents

Semiconductor device and method of fabricating the same Download PDF

Info

Publication number
TW201526203A
TW201526203A TW102146340A TW102146340A TW201526203A TW 201526203 A TW201526203 A TW 201526203A TW 102146340 A TW102146340 A TW 102146340A TW 102146340 A TW102146340 A TW 102146340A TW 201526203 A TW201526203 A TW 201526203A
Authority
TW
Taiwan
Prior art keywords
region
conductivity type
doped region
doped
well
Prior art date
Application number
TW102146340A
Other languages
Chinese (zh)
Other versions
TWI557878B (en
Inventor
Ying-Chieh Tsai
Wing-Chor Chan
Jeng Gong
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW102146340A priority Critical patent/TWI557878B/en
Publication of TW201526203A publication Critical patent/TW201526203A/en
Application granted granted Critical
Publication of TWI557878B publication Critical patent/TWI557878B/en

Links

Abstract

Provided is a semiconductor device including a deep doped region of a first conductivity type, a well region of a second conductivity type, a base region of the first conductivity type, an insulated gate bipolar transistor (IGBT) and a metal oxide semiconductor (MOS). The well region is disposed in the deep doped region. The base region is disposed in the well region and is not connected to the deep doped region. The IGBT is disposed on the well region at the first side of the base region, and includes a first doped region of the second conductivity type disposed in the base region. The MOS is disposed on the well region and the deep well region at the second side of the base region, and includes a second doped region of the second conductivity type disposed in the base region.

Description

半導體元件及其製造方法Semiconductor component and method of manufacturing same

本發明是有關於一種半導體元件及其製造方法。The present invention relates to a semiconductor device and a method of fabricating the same.

目前最新科技發展的焦點在於高壓功率積體電路。此種高壓功率積體電路可應用於像是開關式電源供應(switching mode power supply, SMPS)、照明、馬達控制或電漿顯示器驅動器等領域,以增加產品的效率、可靠度與可撓性以及最終降低系統成本。The focus of the latest technological developments is the high-voltage power integrated circuit. Such a high voltage power integrated circuit can be applied to fields such as switching mode power supply (SMPS), lighting, motor control or plasma display drivers to increase product efficiency, reliability and flexibility, and Ultimately reduce system costs.

一般而言,高壓功率積體電路主要是應用在功率切換(power switch)元件,如各項電源管理裝置中提供電源開關切換之用。目前有兩種參數左右著功率切換的市場:崩潰電壓(breakdown voltage)與導通狀態電阻(on-state resistance),可隨著不同需求而定。高壓功率積體電路的設計目標為降低導通狀態電阻,且同時保持高崩潰電壓。事實上,若產品要達成崩潰電壓的規格要求,通常會犧牲導通狀態電阻。換言之,崩潰電壓與導通狀態電阻處於一種權衡關係。In general, high-voltage power integrated circuits are mainly used in power switching components, such as power switching devices to provide power switching. There are currently two parameters that influence the market for power switching: the breakdown voltage and the on-state resistance, which can vary with different needs. The high voltage power integrated circuit is designed to reduce the on-state resistance while maintaining a high breakdown voltage. In fact, if the product is to meet the specifications for the breakdown voltage, the on-state resistance is usually sacrificed. In other words, the breakdown voltage is in a trade-off relationship with the on-state resistance.

本發明提供一種半導體元件及半導體元件的製造方法,其可以降低導通狀態電阻,提升元件的崩潰電壓。The present invention provides a method of manufacturing a semiconductor element and a semiconductor element, which can reduce the on-state resistance and increase the breakdown voltage of the element.

本發明提供一種半導體元件,包括具有第一導電型的深摻雜區、具有第二導電型的第一井區、具有第一導電型的基體區、絕緣閘雙極電晶體及金氧半電晶體。深摻雜區包括一第一埋入層與二高壓摻雜區,且位於基底中。第一井區位於深摻雜區中。具基體區位於第一井區中,未與深摻雜區相連。絕緣閘雙極電晶體位於基體區的第一側的第一井區上,且包括位於基體區中的具有第二導電型的第一摻雜區。金氧半電晶體位於基體區的第二側的第一井區與深摻雜區上,且包括位於基體區中的具有第二導電型的第二摻雜區。The present invention provides a semiconductor device including a deep doped region having a first conductivity type, a first well region having a second conductivity type, a base region having a first conductivity type, an insulating gate bipolar transistor, and a MOS transistor Crystal. The deep doped region includes a first buried layer and two high-doped regions, and is located in the substrate. The first well zone is located in the deep doped zone. The base region is located in the first well region and is not connected to the deep doped region. An insulating gate bipolar transistor is located on the first well region on the first side of the base region and includes a first doped region having a second conductivity type in the base region. The gold oxide semiconductor is located on the first well region and the deep doped region on the second side of the base region, and includes a second doped region having a second conductivity type in the base region.

在本發明的一實施例中,上述半導體元件更包括具有第二導電型的第二埋入層,位於第一埋入層與基底之間。In an embodiment of the invention, the semiconductor device further includes a second buried layer having a second conductivity type between the first buried layer and the substrate.

在本發明的一實施例中,上述半導體元件更包括具有第二導電型的第二井區,位於第一井區中,其中基體區位於第二井區中。In an embodiment of the invention, the semiconductor component further includes a second well region having a second conductivity type, located in the first well region, wherein the substrate region is located in the second well region.

在本發明的一實施例中,上述絕緣閘雙極電晶體更包括:隔離結構,位於第一井區中;閘極結構,位於隔離結構的第一側的第一井區上,覆蓋部分隔離結構與部分基體區,且與第一摻雜區相鄰;具有第一導電型的第三摻雜區,位於隔離結構的第二側的第一井區中;具有第二導電型的第四摻雜區,位於第三摻雜區與隔離結構之間的第一井區中,且與第三摻雜區接觸;以及具有第一導電型的頂摻雜區,位於隔離結構的下方。In an embodiment of the invention, the insulated gate bipolar transistor further includes: an isolation structure located in the first well region; and a gate structure located on the first well region on the first side of the isolation structure, covering part of the isolation a structure and a portion of the base region adjacent to the first doped region; a third doped region having a first conductivity type, located in the first well region on the second side of the isolation structure; and a fourth conductivity type having a second conductivity type a doped region, located in the first well region between the third doped region and the isolation structure, and in contact with the third doped region; and a top doped region having the first conductivity type, located under the isolation structure.

在本發明的一實施例中,上述頂摻雜區自隔離結構下方延伸至第四摻雜區下方並與第四摻雜區相接觸。In an embodiment of the invention, the top doped region extends from below the isolation structure to below the fourth doped region and is in contact with the fourth doped region.

在本發明的一實施例中,上述頂摻雜區自隔離結構下方延伸至第三摻雜區下方並與第三摻雜區以及第四摻雜區相接觸。In an embodiment of the invention, the top doped region extends from below the isolation structure to below the third doped region and is in contact with the third doped region and the fourth doped region.

本發明另提供一種半導體元件的製造方法。於基底中形成具有第一導電型的深摻雜區深摻雜區包括一第一埋入層與二高壓摻雜區。於深摻雜區中形成具有第二導電型的第一井區。於第一井區中形成具有第一導電型的基體區,基體區未與深摻雜區相連。於基體區的第一側的第一井區上形成絕緣閘雙極電晶體,形成絕緣閘雙極電晶體包括於基體區中形成具有第二導電型的第一摻雜區。於基體區的第二側的第一井區與深摻雜區上形成金氧半電晶體,形成金氧半電晶體包括於基體區中形成具有第二導電型的第二摻雜區。The present invention further provides a method of fabricating a semiconductor device. Forming a deep doped region deep doped region having a first conductivity type in the substrate includes a first buried layer and a second high voltage doped region. A first well region having a second conductivity type is formed in the deep doped region. A base region having a first conductivity type is formed in the first well region, and the base region is not connected to the deep doped region. An insulating gate bipolar transistor is formed on the first well region on the first side of the base region, and forming the insulating gate bipolar transistor includes forming a first doped region having a second conductivity type in the base region. A gold oxide semi-transistor is formed on the first well region and the deep doped region on the second side of the base region, and forming the metal oxide semi-electrode includes forming a second doped region having the second conductivity type in the base region.

在本發明的一實施例中,上述方法更包括於第一埋入層與基底之間形成具有第二導電型的第二埋入層。In an embodiment of the invention, the method further includes forming a second buried layer having a second conductivity type between the first buried layer and the substrate.

在本發明的一實施例中,上述方法更包括於第一井區中形成具有第二導電型的一第二井區,其中基體區位於第二井區中。In an embodiment of the invention, the method further includes forming a second well region having a second conductivity type in the first well region, wherein the base region is located in the second well region.

在本發明的一實施例中,形成上述絕緣閘雙極電晶體更包括:於第一井區中形成隔離結構;於隔離結構的第一側的第一井區上形成閘極結構,以覆蓋部分隔離結構與部分基體區,且與第一摻雜區相鄰;於隔離結構的第二側的第一井區中形成具有第一導電型的第三摻雜區;於第三摻雜區與隔離結構之間的第一井區中形成具有第二導電型的第四摻雜區,第四摻雜區與第三摻雜區接觸;以及於隔離結構的下方形成具有第一導電型的頂摻雜區。In an embodiment of the invention, forming the insulating gate bipolar transistor further comprises: forming an isolation structure in the first well region; forming a gate structure on the first well region on the first side of the isolation structure to cover a portion of the isolation structure and a portion of the substrate region adjacent to the first doped region; forming a third doped region having a first conductivity type in the first well region on the second side of the isolation structure; Forming a fourth doped region having a second conductivity type in the first well region with the isolation structure, the fourth doped region is in contact with the third doped region; and forming a first conductivity type under the isolation structure Top doped region.

基於上述,本發明之半導體元件是利用基體區的形成且未與深摻雜區相連的結構,使得金氧半電晶體具有一通道,讓金氧半電晶體可產生更多電子流來降低導通狀態電阻,並利用井區、埋入層以及頂摻雜區產生多重減少表面電場(Multi-RESURF)結構來提升崩潰電壓。Based on the above, the semiconductor device of the present invention utilizes a structure in which a base region is formed and is not connected to a deep doped region, so that the MOS transistor has a channel, allowing the MOS transistor to generate more electron current to reduce conduction. State resistance, and the use of well, buried layer and top doped regions to generate multiple reduction surface electric field (Multi-RESURF) structure to enhance the breakdown voltage.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

在以下的實施例中,當第一導電型為N型,第二導電型為P型;當第一導電型為P型,第二導電型為N型。在本實施例中,是以第一導電型為P型,第二導電型為N型為例來實施,但本發明並不以此為限。P型摻雜例如是硼;N型摻雜例如是磷或是砷。In the following embodiments, when the first conductivity type is N type, the second conductivity type is P type; when the first conductivity type is P type, and the second conductivity type is N type. In the present embodiment, the first conductivity type is a P type, and the second conductivity type is an N type. However, the present invention is not limited thereto. The P-type doping is, for example, boron; the N-type doping is, for example, phosphorus or arsenic.

圖1為本發明第一實施例之半導體元件的剖面示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a semiconductor device according to a first embodiment of the present invention.

請參照圖1,本發明之第一實施例之半導體元件包括基底100、絕緣閘雙極電晶體200、金氧半電晶體300、具有第一導電型的深摻雜區120、具有第二導電型的第一井區110、以及具有第一導電型的基體區130。絕緣閘雙極電晶體200位於基體區130的第一側的第一井區110上。金氧半電晶體300位於基體區130的第二側的第一井區110上。基體區130位於第一井區110中,與下方的深摻雜區120不連接,使得金氧半電晶體300所產生的電子流可以直接經由基體區130與深摻雜區120之間所形成的第二導電型的通道,因此,可以降低導通電阻,增加導通的電子流。Referring to FIG. 1, a semiconductor device according to a first embodiment of the present invention includes a substrate 100, an insulating gate bipolar transistor 200, a MOS transistor 300, a deep doped region 120 having a first conductivity type, and a second conductive layer. A first well region 110 of the type, and a base region 130 having a first conductivity type. The insulated gate bipolar transistor 200 is located on the first well region 110 on the first side of the base region 130. The gold oxide semi-crystal 300 is located on the first well region 110 on the second side of the base region 130. The base region 130 is located in the first well region 110 and is not connected to the deep doped region 120 below, so that the electron flow generated by the MOS transistor 300 can be directly formed between the base region 130 and the deep doped region 120. The second conductivity type of channel, therefore, can reduce the on-resistance and increase the conduction of electron flow.

基底100的材料例如是具有第一導電型的半導體基底,例如P型基底。半導體基底的材料例如是選自於由Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs與InP所組成的群組中的至少一種材料。基底100也可以是覆矽絕緣(SOI)基底。The material of the substrate 100 is, for example, a semiconductor substrate having a first conductivity type, such as a P-type substrate. The material of the semiconductor substrate is, for example, at least one material selected from the group consisting of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP. Substrate 100 can also be a blanket insulating (SOI) substrate.

具有第一導電型的深摻雜區120包括第一埋入層122(例如P型埋入層,PBL)與二個高壓摻雜區124、126(例如高壓P型漂移區),且位於基底100中。The deep doped region 120 having the first conductivity type includes a first buried layer 122 (eg, a P-type buried layer, PBL) and two high-voltage doped regions 124, 126 (eg, a high-voltage P-type drift region), and is located on the substrate 100.

具有第二導電型的第一井區110(例如高壓N型井區)位於基底100中。第一井區110可以藉由微影製程以及離子植入製程來形成。在一實施例中,第一井區110所植入的摻雜例如是磷或是砷,摻雜的劑量例如是1´1012 /cm2 至2´1012 /cm2 ,植入的能量例如是140 eV至160 eV。A first well region 110 having a second conductivity type (eg, a high pressure N-type well region) is located in the substrate 100. The first well region 110 can be formed by a lithography process and an ion implantation process. In an embodiment, the doping implanted in the first well region 110 is, for example, phosphorus or arsenic, and the doping dose is, for example, 1 ́10 12 /cm 2 to 2 ́10 12 /cm 2 , the implanted energy. For example, 140 eV to 160 eV.

第一井區110位於深摻雜區120中。更具體地說,第一埋入層122位於第一井區110的下方並與第一井區110相鄰;而二個高壓摻雜區124、126在第一井區110的兩側並與第一井區110相鄰。The first well region 110 is located in the deep doped region 120. More specifically, the first buried layer 122 is located below the first well region 110 and adjacent to the first well region 110; and the two high voltage doped regions 124, 126 are on both sides of the first well region 110 and The first well zone 110 is adjacent.

在一實施例中,在第一埋入層122與二個高壓摻雜區124、126的摻雜濃度相同。第一埋入層122與二個高壓摻雜區124、126可以藉由形成相同的微影製程以及相同的離子植入製程來形成。離子植入製程所植入的摻雜例如是硼,摻雜的劑量例如是1´1013 /cm2 至2´1013 /cm2 ,植入的能量例如是50 eV至70 eV。In one embodiment, the doping concentration of the first buried layer 122 and the two high voltage doped regions 124, 126 are the same. The first buried layer 122 and the two high voltage doped regions 124, 126 can be formed by forming the same lithography process and the same ion implantation process. The doping implanted by the ion implantation process is, for example, boron, and the doping dose is, for example, 1 ́10 13 /cm 2 to 2 ́10 13 /cm 2 , and the implanted energy is, for example, 50 eV to 70 eV.

在另一實施例中,第一埋入層122與二個高壓摻雜區124、126的摻雜濃度相異。第一埋入層122與二個高壓摻雜區124、126可以分別透過不同的微影以及不同的離子植入製程來形成。二個高壓摻雜區124、126的摻雜濃度可以低於第一埋入層122的摻雜濃度。在一實施例中,第一埋入層122所植入的摻雜例如是硼,摻雜的劑量例如是2´1013 /cm2 至3´1013 /cm2 ,植入的能量例如是60 eV至80 eV。二個高壓摻雜區124、126所植入的摻雜例如是硼,摻雜的劑量例如是1´1013 /cm2 至2´1013 /cm2 ,植入的能量例如是50 eV至60 eV。In another embodiment, the doping concentration of the first buried layer 122 and the two high voltage doped regions 124, 126 are different. The first buried layer 122 and the two high voltage doped regions 124, 126 can be formed by different lithography and different ion implantation processes, respectively. The doping concentration of the two high voltage doping regions 124, 126 may be lower than the doping concentration of the first buried layer 122. In an embodiment, the doping implanted in the first buried layer 122 is, for example, boron, and the doping dose is, for example, 2 ́10 13 /cm 2 to 3 ́10 13 /cm 2 , and the implanted energy is, for example, 60 eV to 80 eV. The doping of the two high-voltage doping regions 124, 126 is, for example, boron, and the doping dose is, for example, 1 ́10 13 /cm 2 to 2 ́10 13 /cm 2 , and the implanted energy is, for example, 50 eV to 60 eV.

具有第一導電型的基體區130(例如P型基體區)位於第一井區110中,基體區130的底部未與深摻雜區120相連。基體區130可以藉由微影製程以及離子植入製程來形成。離子植入製程所植入的摻雜例如是硼,摻雜的劑量例如是2´1012 /cm2 至3´1012 /cm2 ,植入的能量例如是100 eV至120 eV。A base region 130 having a first conductivity type (e.g., a P-type base region) is located in the first well region 110, and a bottom portion of the base region 130 is not connected to the deep doped region 120. The base region 130 can be formed by a lithography process and an ion implantation process. The doping implanted by the ion implantation process is, for example, boron, and the doping dose is, for example, 2 ́10 12 /cm 2 to 3 ́10 12 /cm 2 , and the implanted energy is, for example, 100 eV to 120 eV.

上述半導體元件可以更包括具有第二導電型的第二埋入層128(例如N型埋入層,NBL)。第二埋入層128位於第一埋入層122與基底100之間。第二埋入層128可以藉由微影製程以及離子植入製程來形成。在一實施例中,第二埋入層128所植入的摻雜例如是磷或是砷,摻雜的劑量例如是1´1012 /cm2 至3´1012 /cm2 ,植入的能量例如是240 eV至260 eV。The above semiconductor element may further include a second buried layer 128 having a second conductivity type (for example, an N-type buried layer, NBL). The second buried layer 128 is located between the first buried layer 122 and the substrate 100. The second buried layer 128 can be formed by a lithography process and an ion implantation process. In one embodiment, the second buried layer 128 doped with implanted arsenic or phosphorus, for example, doping dose is, for example, 1'10 12 / cm 2 to 3'10 12 / cm 2, the implanted The energy is, for example, 240 eV to 260 eV.

絕緣閘雙極電晶體200位於基體區130的第一側的第一井區110上。絕緣閘雙極電晶體200包括閘極結構20、具有第二導電型的第一摻雜區140、具有第二導電型的第五摻雜區142、具有第一導電型的第三摻雜區170以及具有第一導電型的頂摻雜區190以及隔離結構10。The insulated gate bipolar transistor 200 is located on the first well region 110 on the first side of the base region 130. The insulating gate bipolar transistor 200 includes a gate structure 20, a first doping region 140 having a second conductivity type, a fifth doping region 142 having a second conductivity type, and a third doping region having a first conductivity type 170 and a top doped region 190 having a first conductivity type and an isolation structure 10.

隔離結構10位於基底100中。隔離結構10的材料例如是摻雜或未摻雜的氧化矽、低應力氮化矽、氮氧化矽或其組合,其形成的方法可以利用場氧化隔離法、淺溝渠隔離法或深溝渠隔離法(deep trench isolation process)。隔離結構10的厚度例如是600 nm至700 nm。The isolation structure 10 is located in the substrate 100. The material of the isolation structure 10 is, for example, doped or undoped cerium oxide, low-stress cerium nitride, cerium oxynitride or a combination thereof, and the method of forming the method can be performed by field oxidation isolation method, shallow trench isolation method or deep trench isolation method. (deep trench isolation process). The thickness of the isolation structure 10 is, for example, 600 nm to 700 nm.

閘極結構20位於隔離結構10的第一側的第一井區110上且延伸覆蓋部分隔離結構10與部分基體區130。閘極結構20包括閘介電層21以及閘極22。閘介電層21的材料例如是氧化矽、氮化矽或是介電常數大於4的高介電常數材料。形成方法例如是熱氧化法或是化學氣相沉積法。閘極22包括多晶矽、金屬、金屬矽化物或其組合。形成的方法例如是化學氣相沈積法。The gate structure 20 is located on the first well region 110 on the first side of the isolation structure 10 and extends over a portion of the isolation structure 10 and a portion of the substrate region 130. The gate structure 20 includes a gate dielectric layer 21 and a gate electrode 22. The material of the gate dielectric layer 21 is, for example, hafnium oxide, tantalum nitride or a high dielectric constant material having a dielectric constant of more than 4. The formation method is, for example, a thermal oxidation method or a chemical vapor deposition method. Gate 22 includes polysilicon, a metal, a metal halide, or a combination thereof. The method of formation is, for example, a chemical vapor deposition method.

具有第二導電型的第一摻雜區140(例如N型濃摻雜區,n+)位於基體區130中,與閘極結構20相鄰。具有第二導電型的第五摻雜區142(例如N型濃摻雜區,n+)位於高壓摻雜區126之一側的基底100中。第一摻雜區140與第五摻雜區142可以藉由微影製程以及離子植入製程來形成。離子植入製程所植入的摻雜例如是磷或是砷,摻雜的劑量例如是3´1015 /cm2 至4´1015 /cm2 ,植入的能量例如是70 eV至90 eV。A first doped region 140 having a second conductivity type (eg, an N-type heavily doped region, n+) is located in the body region 130 adjacent to the gate structure 20. A fifth doped region 142 having a second conductivity type (eg, an N-type heavily doped region, n+) is located in the substrate 100 on one side of the high voltage doped region 126. The first doping region 140 and the fifth doping region 142 may be formed by a lithography process and an ion implantation process. The doping implanted in the ion implantation process is, for example, phosphorus or arsenic, and the doping dose is, for example, 3 ́10 15 /cm 2 to 4 ́10 15 /cm 2 , and the implanted energy is, for example, 70 eV to 90 eV. .

具有第一導電型的第三摻雜區170(例如P型濃摻雜區,p+)位於隔離結構10的第二側以及高壓摻雜區126之另一側之間的第一井區110中。第三摻雜區170可以藉由微影製程以及離子植入製程來形成。離子植入製程所植入的摻雜例如是硼,摻雜的劑量例如是1´1015 /cm2 至3´1015 /cm2 ,植入的能量例如是50 eV至70 eV。A third doped region 170 having a first conductivity type (eg, a P-type heavily doped region, p+) is located in the first well region 110 between the second side of the isolation structure 10 and the other side of the high voltage doped region 126 . The third doping region 170 can be formed by a lithography process and an ion implantation process. The doping implanted by the ion implantation process is, for example, boron, and the doping dose is, for example, 1 ́10 15 /cm 2 to 3 ́10 15 /cm 2 , and the implanted energy is, for example, 50 eV to 70 eV.

具有第一導電型的頂摻雜區190(例如P型頂摻雜區,p-top)位於隔離結構10的下方。頂摻雜區190可以藉由微影製程以及離子植入製程來形成。離子植入製程所植入的摻雜例如是硼,摻雜的劑量例如是5´1012 /cm2 至6´1012 /cm2 ,植入的能量例如是160 eV至180 eV。A top doped region 190 having a first conductivity type (eg, a P-type top doped region, p-top) is located below the isolation structure 10. The top doping region 190 can be formed by a lithography process and an ion implantation process. The doping implanted by the ion implantation process is, for example, boron, and the doping dose is, for example, 5 ́10 12 /cm 2 to 6 ́10 12 /cm 2 , and the implanted energy is, for example, 160 eV to 180 eV.

絕緣閘雙極電晶體200可以更包括具有第二導電型的井區172、具有第二導電型的井區168以及具有第二導電型的井區174。井區172位於第一井區110中,且第三摻雜區170位於井區172中。井區168在深摻雜區120之外圍。井區174在井區168之中,第五摻雜區142位於井區174之中。井區168可以與第一井區110同時形成。井區172與井區174可以藉由微影製程以及離子植入製程來形成。離子植入製程所植入的摻雜例如是磷或砷,摻雜的劑量例如是1´1013 /cm2 至2´1013 /cm2 ,植入的能量例如是100 eV至120 eV。井區172與井區174具有抬壓作用,有助於電洞流可以經由第一埋入層122流向陰極,抑制基底電流的產生。The insulated gate bipolar transistor 200 may further include a well region 172 having a second conductivity type, a well region 168 having a second conductivity type, and a well region 174 having a second conductivity type. Well zone 172 is located in first well zone 110 and third doped zone 170 is located in well zone 172. The well region 168 is peripheral to the deep doped region 120. Well zone 174 is in well zone 168 and fifth doped zone 142 is located in well zone 174. Well zone 168 may be formed simultaneously with first well zone 110. The well region 172 and the well region 174 can be formed by a lithography process and an ion implantation process. The doping implanted by the ion implantation process is, for example, phosphorus or arsenic, and the doping dose is, for example, 1 ́10 13 /cm 2 to 2 ́10 13 /cm 2 , and the implanted energy is, for example, 100 eV to 120 eV. The well region 172 and the well region 174 have a pressure-raising effect, which helps the flow of the hole to flow to the cathode via the first buried layer 122, thereby suppressing the generation of the substrate current.

此外,絕緣閘雙極電晶體200還可以更包括隔離結構11。隔離結構11可以位於高壓摻雜區126上方,分隔第三摻雜區170以及第五摻雜區142。In addition, the insulated gate bipolar transistor 200 may further include an isolation structure 11. The isolation structure 11 may be located above the high voltage doping region 126, separating the third doping region 170 and the fifth doping region 142.

金氧半電晶體300位於基體區130的第二側的第一井區110與深摻雜區120上。更具體地說,金氧半電晶體300包括閘極結構30、具有第二導電型的第二摻雜區150(例如N型濃摻雜區,n+)以及具有第二導電型的第六摻雜區152(例如N型濃摻雜區,n+)。The gold oxide semi-crystal 300 is located on the first well region 110 and the deep doped region 120 on the second side of the base region 130. More specifically, the MOS semiconductor 300 includes a gate structure 30, a second doping region 150 having a second conductivity type (eg, an N-type heavily doped region, n+), and a sixth doping having a second conductivity type. Miscellaneous region 152 (eg, N-type heavily doped region, n+).

閘極結構30位於第一井區110上且延伸覆蓋另一部分的基體區130以及高壓摻雜區124。閘極結構30包括閘介電層31以及閘極32。閘介電層31的材料例如是氧化矽、氮化矽或是介電常數大於4的高介電常數材料。形成方法例如是熱氧化法或是化學氣相沉積法。閘極32包括多晶矽、金屬、金屬矽化物或其組合。形成的方法例如是化學氣相沈積法。The gate structure 30 is located on the first well region 110 and extends over the other portion of the base region 130 and the high voltage doped region 124. The gate structure 30 includes a gate dielectric layer 31 and a gate 32. The material of the gate dielectric layer 31 is, for example, hafnium oxide, tantalum nitride or a high dielectric constant material having a dielectric constant of more than 4. The formation method is, for example, a thermal oxidation method or a chemical vapor deposition method. Gate 32 includes polysilicon, metal, metal telluride or a combination thereof. The method of formation is, for example, a chemical vapor deposition method.

第二摻雜區150位於閘極結構30的第一側的基體區130中。第六摻雜區152位於閘極結構30的第二側的高壓摻雜區124中。第二摻雜區150與第六摻雜區152可以藉由微影製程以及離子植入製程來形成。離子植入製程所植入的摻雜例如是磷或砷,摻雜的劑量例如是3´1015 /cm2 至4´1015 /cm2 ,植入的能量例如是70 eV至90 eV。The second doped region 150 is located in the body region 130 on the first side of the gate structure 30. The sixth doped region 152 is located in the high voltage doped region 124 on the second side of the gate structure 30. The second doping region 150 and the sixth doping region 152 can be formed by a lithography process and an ion implantation process. The doping implanted by the ion implantation process is, for example, phosphorus or arsenic, and the doping dose is, for example, 3 ́10 15 /cm 2 to 4 ́10 15 /cm 2 , and the implanted energy is, for example, 70 eV to 90 eV.

金氧半電晶體300還可包括具有第一導電型的摻雜區154。摻雜區154位於高壓摻雜區124中,且第六摻雜區152位於摻雜區154中。摻雜區154可以藉由微影製程以及離子植入製程來形成。離子植入製程所植入的摻雜例如是硼,摻雜的劑量例如是2´1012 /cm2 至4´1012 /cm2 ,植入的能量例如是100 eV至140 eV。The gold oxide semiconductor 300 may further include a doping region 154 having a first conductivity type. The doped region 154 is located in the high voltage doped region 124 and the sixth doped region 152 is located in the doped region 154. The doping region 154 can be formed by a lithography process and an ion implantation process. The doping implanted by the ion implantation process is, for example, boron, and the doping dose is, for example, 2 ́10 12 /cm 2 to 4 ́10 12 /cm 2 , and the implanted energy is, for example, 100 eV to 140 eV.

此外,半導體元件還可以包括具有第一導電型的摻雜區132以及具有第一導電型的摻雜區156。摻雜區132位於第二摻雜區150與第一摻雜區140之間的基體區130中。摻雜區156位於摻雜區154之中,與第六摻雜區152相鄰。摻雜區132以及摻雜區156可以藉由微影製程以及離子植入製程來形成。離子植入製程所植入的摻雜例如是硼,摻雜的劑量例如是1´1012 /cm2 至2´1012 /cm2 ,植入的能量例如是50 eV至70 eV。Further, the semiconductor element may further include a doping region 132 having a first conductivity type and a doping region 156 having a first conductivity type. The doped region 132 is located in the base region 130 between the second doped region 150 and the first doped region 140. Doped region 156 is located in doped region 154 adjacent to sixth doped region 152. The doped region 132 and the doped region 156 can be formed by a lithography process and an ion implantation process. The doping implanted by the ion implantation process is, for example, boron, and the doping dose is, for example, 1 ́10 12 /cm 2 to 2 ́10 12 /cm 2 , and the implanted energy is, for example, 50 eV to 70 eV.

摻雜區156與第六摻雜區152藉由金屬內連線52電性連,做為基極。第二摻雜區150、摻雜區132、第一摻雜區140藉由金屬內連線54電性連接,做為陰極。第三摻雜區170與第五摻雜區142藉由金屬內連線56電性連接,做為陽極。The doped region 156 and the sixth doped region 152 are electrically connected by a metal interconnect 52 as a base. The second doping region 150, the doping region 132, and the first doping region 140 are electrically connected by a metal interconnect 54 as a cathode. The third doping region 170 and the fifth doping region 142 are electrically connected by a metal interconnect 56 as an anode.

本發明實施例之半導體元件的形狀可以依照實際的需求來設計。其形狀可以是圓形、橢圓型、六邊形、八邊形、多邊形、跑道形或其組合。The shape of the semiconductor element of the embodiment of the present invention can be designed according to actual needs. The shape may be a circle, an ellipse, a hexagon, an octagon, a polygon, a racetrack, or a combination thereof.

在本發明實施例中,在第一井區110下方設置第一埋入層122與第二埋入層128。因此,在半導體元件關閉時,第二埋入層128可以做為隔離。在半導體元件導通時,可以使電洞流經由此第一埋入層122流向陰極,抑制基底電流的產生;而電子流則可以經由第二埋入層128流向陽極。In the embodiment of the present invention, the first buried layer 122 and the second buried layer 128 are disposed under the first well region 110. Therefore, the second buried layer 128 can be used as isolation when the semiconductor element is turned off. When the semiconductor element is turned on, the hole current can flow to the cathode through the first buried layer 122 to suppress the generation of the substrate current; and the electron flow can flow to the anode via the second buried layer 128.

再者,在本發明實施例中,藉由在半導體元件中提供金氧半電晶體300,則可以在半導體元件導通時,在閘極結構30下方形成DMOS通道,增加陰極(導通)電流,以減少或消除基底電流。Furthermore, in the embodiment of the present invention, by providing the MOS transistor 300 in the semiconductor device, the DMOS channel can be formed under the gate structure 30 when the semiconductor device is turned on, and the cathode (on) current is increased to Reduce or eliminate substrate current.

此外,由於本發明之半導體元件的基體區130未與深摻雜區120相連,因此,當半導體元件導通時,可以在陰極下方的基體區130與深摻雜區120之間的第一井區110中形成第二導電型的通道,使得金氧半電晶體300所產生的電子流在流經底下的第二埋入層128之前,可直接由上述通道導通,因此可以減少電子流的路徑,降低金氧半電晶體300的導通電阻,增加導通的電流量。換言之,本發明之半導體元件可以增加基體區130與深摻雜區120之間的第二導電型的通道。因此,本發明是一種高電子注入之高壓多通道之半導體元件。In addition, since the base region 130 of the semiconductor device of the present invention is not connected to the deep doped region 120, when the semiconductor device is turned on, the first well region between the base region 130 and the deep doped region 120 under the cathode can be A channel of the second conductivity type is formed in the 110, so that the electron flow generated by the MOS transistor 300 can be directly conducted by the channel before flowing through the second buried layer 128 under the bottom, thereby reducing the path of the electron flow. The on-resistance of the MOS transistor 300 is lowered to increase the amount of current that is turned on. In other words, the semiconductor device of the present invention can increase the channel of the second conductivity type between the base region 130 and the deep doped region 120. Accordingly, the present invention is a high electron injection high voltage multi-channel semiconductor device.

另外,當本發明實施例之半導體元件為關閉狀態時,可利用第一埋入層122、第二埋入層128、第一井區110以及頂摻雜區190產生多重減少表面電場(Multi-RESURF)結構來提升崩潰電壓。In addition, when the semiconductor device of the embodiment of the present invention is in a closed state, the first buried layer 122, the second buried layer 128, the first well region 110, and the top doped region 190 can be utilized to generate multiple reduced surface electric fields (Multi- RESURF) structure to increase the breakdown voltage.

圖2為本發明第二實施例之半導體元件的剖面示意圖。2 is a cross-sectional view showing a semiconductor device according to a second embodiment of the present invention.

請參照圖2,第二實施例與第一實施例相似,不同之處在於:第二實施例之半導體元件更包括具有第二導電型的第二井區160(例如N型井區),位於第一井區110中,其中基體區130位於第二井區160中。第二井區160可以藉由微影製程以及離子植入製程來形成。離子植入製程所植入的摻雜例如是磷或是砷,摻雜的劑量例如是1´1013 /cm2 至2´1013 /cm2 ,植入的能量例如是100 eV至120 eV。第二井區160的摻雜濃度高於第一井區110的摻雜濃度,故能有效降低此區域的電阻值,以增加導通的電流量。Referring to FIG. 2, the second embodiment is similar to the first embodiment except that the semiconductor component of the second embodiment further includes a second well region 160 (eg, an N-type well region) having a second conductivity type. In the first well region 110, the base region 130 is located in the second well region 160. The second well region 160 can be formed by a lithography process and an ion implantation process. The doping implanted by the ion implantation process is, for example, phosphorus or arsenic, and the doping dose is, for example, 1 ́10 13 /cm 2 to 2 ́10 13 /cm 2 , and the implanted energy is, for example, 100 eV to 120 eV. . The doping concentration of the second well region 160 is higher than the doping concentration of the first well region 110, so the resistance value of the region can be effectively reduced to increase the amount of conduction current.

圖3為本發明第三實施例之半導體元件的剖面示意圖。Figure 3 is a cross-sectional view showing a semiconductor device in accordance with a third embodiment of the present invention.

請參照圖3,第三實施例與第一實施例相似,不同之處在於:第三實施例之半導體元件的絕緣閘雙極電晶體200更包括具有第二導電型的第四摻雜區180(例如N型濃摻雜區,n+),位於第三摻雜區170與隔離結構10之間的井區172中,且與第三摻雜區170相鄰。並且,第四摻雜區180與第三摻雜區170以及第五摻雜區142藉由金屬內連線56a電性連接,做為陽極。此外,頂摻雜區190a自隔離結構10的下方延伸至第四摻雜區180下方並與第四摻雜區180相接觸。第四摻雜區180可以藉由微影製程以及離子植入製程來形成。離子植入製程所植入的摻雜例如是磷或是砷,摻雜的劑量例如是3´1015 /cm2 至4´1015 /cm2 ,植入的能量例如是70 eV至90 eV。Referring to FIG. 3, the third embodiment is similar to the first embodiment except that the insulating gate bipolar transistor 200 of the semiconductor device of the third embodiment further includes a fourth doping region 180 having a second conductivity type. (eg, N-type heavily doped region, n+), located in well region 172 between third doped region 170 and isolation structure 10, and adjacent to third doped region 170. Moreover, the fourth doping region 180 is electrically connected to the third doping region 170 and the fifth doping region 142 by a metal interconnect 56a as an anode. In addition, the top doping region 190a extends from below the isolation structure 10 to below the fourth doping region 180 and is in contact with the fourth doping region 180. The fourth doping region 180 can be formed by a lithography process and an ion implantation process. An ion implantation process, for example, implanted dopant is phosphorus or arsenic, for example, doping dose 3'10 15 / cm 2 to 4'10 15 / cm 2, for example, implantation energy is 70 eV to 90 eV .

在本發明第三實施例中,頂摻雜區190a自隔離結構10的下方延伸至第四摻雜區180下方並與第四摻雜區180相接觸。因此,當半導體元件為導通狀態時,電洞流可流經第一埋入層122(例如P型埋入層,PBL)及/或頂摻雜區190a,以增加導通的電流量。此外,第四摻雜區180(例如N型濃摻雜區,n+)與井區172也有抬壓作用,可產生多重減少表面電場(Multi-RESURF)結構,因此可避免發生擊穿(punch through)而產生嚴重漏電流的問題。In the third embodiment of the present invention, the top doping region 190a extends from below the isolation structure 10 to below the fourth doping region 180 and is in contact with the fourth doping region 180. Therefore, when the semiconductor device is in an on state, the hole current may flow through the first buried layer 122 (eg, P-type buried layer, PBL) and/or the top doped region 190a to increase the amount of current conducted. In addition, the fourth doping region 180 (for example, the N-type heavily doped region, n+) and the well region 172 also have a pressure-raising effect, which can generate a multiple-reducing surface electric field (Multi-RESURF) structure, thereby avoiding breakdown. ) and the problem of serious leakage current.

圖4為本發明所屬第四實施例之半導體元件的剖面示意圖。Figure 4 is a cross-sectional view showing a semiconductor device according to a fourth embodiment of the present invention.

請參照圖4,第四實施例與第三實施例相似,不同之處在於:第四實施例之半導體元件的頂摻雜區190b自隔離結構10的下方延伸至第三摻雜區170下方並與第三摻雜區170以及第四摻雜區180相接觸。在本發明第四實施例中,藉由頂摻雜區190b的此種配置,當半導體元件為導通狀態時,電洞流可流經第一埋入層122(例如P型埋入層,PBL)及/或頂摻雜區190b,以增加導通的電流量。Referring to FIG. 4, the fourth embodiment is similar to the third embodiment except that the top doping region 190b of the semiconductor device of the fourth embodiment extends from below the isolation structure 10 to below the third doping region 170. Contact with the third doping region 170 and the fourth doping region 180. In the fourth embodiment of the present invention, by such a configuration of the top doping region 190b, when the semiconductor device is in an on state, the hole current can flow through the first buried layer 122 (for example, a P-type buried layer, PBL). And/or top doped region 190b to increase the amount of current that is turned on.

圖5為本發明所屬第五實施例的剖面示意圖。Figure 5 is a cross-sectional view showing a fifth embodiment of the present invention.

參照圖5,第五實施例與第一實施例相似,不同之處在於:第五實施例之半導體元件更包括至少一場板40,位於隔離結構10的上方。場板40材料包括多晶矽、金屬、金屬矽化物或其組合。場板40的形成方法可以是化學氣相沉積或物理氣相沉積來沉積場板材料層,之後再以微影與蝕刻的方式來圖案化。化學氣相沉積例如是電漿輔助化學氣相沉積或低壓力化學氣相沉積等;物理氣相沉積例如是蒸鍍、濺鍍或離子束沉積等。加入場板40後,可使得上述半導體元件內的電場均勻分佈以提升崩潰電壓。換言之,在維持相同的崩潰電壓下,可以縮減隔離結構10的尺寸,達到元件小型化之需求。Referring to FIG. 5, the fifth embodiment is similar to the first embodiment except that the semiconductor component of the fifth embodiment further includes at least one field plate 40 above the isolation structure 10. The field plate 40 material includes polycrystalline germanium, metal, metal halide or a combination thereof. The field plate 40 may be formed by chemical vapor deposition or physical vapor deposition to deposit a field plate material layer, which is then patterned by lithography and etching. The chemical vapor deposition is, for example, plasma-assisted chemical vapor deposition or low-pressure chemical vapor deposition, etc.; physical vapor deposition is, for example, evaporation, sputtering, or ion beam deposition. After the field plate 40 is added, the electric field in the above semiconductor element can be evenly distributed to increase the breakdown voltage. In other words, while maintaining the same breakdown voltage, the size of the isolation structure 10 can be reduced to meet the demand for component miniaturization.

圖6為本發明之半導體元件在關閉時的陽極電流電壓曲線圖。圖7為本發明之半導體元件以及習之IGBT在導通時的陽極電流電壓曲線圖。Fig. 6 is a graph showing an anode current voltage of the semiconductor device of the present invention when it is turned off. Fig. 7 is a graph showing anode current voltages of the semiconductor device of the present invention and the conventional IGBT when turned on.

請參照圖6與圖7,在相同陽極電壓下,本發明的半導體元件所產生的陽極電流比習知絕緣閘雙極電晶體多,且本發明所屬實施例的半導體元件可耐高壓至700伏特。Referring to FIG. 6 and FIG. 7, at the same anode voltage, the semiconductor device of the present invention generates more anode current than conventional insulated gate bipolar transistors, and the semiconductor device of the embodiment of the present invention can withstand high voltage up to 700 volts. .

綜上所述,本發明之半導體元件不僅可降低導通狀態電阻,提升導通電流,同時亦可提供穩定的高崩潰電壓,以降低半導體元件的功耗而有較好的產品可靠度,兼具金氧半電晶體與絕緣閘雙極電晶體的優點。此外,本發明實施例之半導體元件可以用現有的700伏特的互補式金氧半導體製程來製造。而且,可以應用在現今的智慧節能的產品上,例如是可以應用於馬達的驅動裝置(motor diver)、發光二極體的驅動器(LED driver)或是電流驅動器(current driver)。In summary, the semiconductor device of the present invention not only reduces the on-state resistance, but also improves the on-current, and also provides a stable high breakdown voltage, which reduces the power consumption of the semiconductor component and has better product reliability, and has both gold and gold. Advantages of oxygen semi-transistors and insulated gate bipolar transistors. Furthermore, the semiconductor device of the embodiment of the present invention can be fabricated using an existing 700 volt complementary MOS process. Moreover, it can be applied to today's smart energy-saving products, such as a motor diver that can be applied to a motor, a driver of a light-emitting diode (LED driver), or a current driver.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10、11‧‧‧隔離結構10, 11‧‧ ‧ isolation structure

20、30‧‧‧閘極結構
21、31‧‧‧閘介電層
22、32‧‧‧閘極
40‧‧‧場板
52、54、56、56a‧‧‧金屬內連線
100‧‧‧基底
110‧‧‧第一井區
120‧‧‧深摻雜區
122‧‧‧第一埋入層
124、126‧‧‧高壓摻雜區
128‧‧‧第二埋入層
130‧‧‧基體區
132‧‧‧摻雜區
140‧‧‧第一摻雜區
142‧‧‧第五摻雜區
150‧‧‧第二摻雜區
152‧‧‧第六摻雜區
154、156‧‧‧摻雜區
160‧‧‧第二井區
168、172、174‧‧‧井區
170‧‧‧第三摻雜區
180‧‧‧第四摻雜區
190、190a、190b‧‧‧頂摻雜區
200‧‧‧絕緣閘雙極電晶體
300‧‧‧金氧半電晶體
20, 30‧‧ ‧ gate structure
21, 31‧‧‧ gate dielectric layer
22, 32‧‧‧ gate
40‧‧‧ field board
52, 54, 56, 56a‧‧‧Metal interconnection
100‧‧‧Base
110‧‧‧First Well Area
120‧‧‧Deeply doped area
122‧‧‧First buried layer
124, 126‧‧‧High-pressure doped area
128‧‧‧Second buried layer
130‧‧‧Base area
132‧‧‧Doped area
140‧‧‧First doped area
142‧‧‧ fifth doping area
150‧‧‧Second doped area
152‧‧‧ sixth doping area
154, 156‧‧‧Doped area
160‧‧‧Second well area
168, 172, 174‧‧ ‧ well area
170‧‧‧ Third doped area
180‧‧‧fourth doping zone
190, 190a, 190b‧‧‧ top doped area
200‧‧‧Insulated gate bipolar transistor
300‧‧‧Gold oxygen semi-transistor

圖1為本發明第一實施例之半導體元件的剖面示意圖。 圖2為本發明第二實施例之半導體元件的剖面示意圖。 圖3為本發明第三實施例之半導體元件的剖面示意圖。 圖4為本發明第四實施例之半導體元件的剖面示意圖。 圖5為本發明第五實施例之半導體元件的剖面示意圖。 圖6為本發明之半導體元件在關閉時的陽極電流電壓曲線圖。 圖7為本發明之半導體元件以及習知IGBT在導通時的陽極電流電壓曲線圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a semiconductor device according to a first embodiment of the present invention. 2 is a cross-sectional view showing a semiconductor device according to a second embodiment of the present invention. Figure 3 is a cross-sectional view showing a semiconductor device in accordance with a third embodiment of the present invention. 4 is a cross-sectional view showing a semiconductor device according to a fourth embodiment of the present invention. Fig. 5 is a cross-sectional view showing a semiconductor device according to a fifth embodiment of the present invention. Fig. 6 is a graph showing an anode current voltage of the semiconductor device of the present invention when it is turned off. Fig. 7 is a graph showing anode current voltages of the semiconductor device of the present invention and a conventional IGBT when turned on.

10、11‧‧‧隔離結構 10, 11‧‧ ‧ isolation structure

20、30‧‧‧閘極結構 20, 30‧‧ ‧ gate structure

21、31‧‧‧閘介電層 21, 31‧‧‧ gate dielectric layer

22、32‧‧‧閘極 22, 32‧‧‧ gate

52、54、56‧‧‧金屬內連線 52, 54, 56‧‧‧Metal interconnection

100‧‧‧基底 100‧‧‧Base

110‧‧‧第一井區 110‧‧‧First Well Area

120‧‧‧深摻雜區 120‧‧‧Deeply doped area

122‧‧‧第一埋入層 122‧‧‧First buried layer

124、126‧‧‧高壓摻雜區 124, 126‧‧‧High-pressure doped area

128‧‧‧第二埋入層 128‧‧‧Second buried layer

130‧‧‧基體區 130‧‧‧Base area

132‧‧‧摻雜區 132‧‧‧Doped area

140‧‧‧第一摻雜區 140‧‧‧First doped area

142‧‧‧第五摻雜區 142‧‧‧ fifth doping area

150‧‧‧第二摻雜區 150‧‧‧Second doped area

152‧‧‧第六摻雜區 152‧‧‧ sixth doping area

154、156‧‧‧摻雜區 154, 156‧‧‧Doped area

168、172、174‧‧‧井區 168, 172, 174‧‧ ‧ well area

170‧‧‧第三摻雜區 170‧‧‧ Third doped area

190‧‧‧頂摻雜區 190‧‧‧Top doped area

200‧‧‧絕緣閘雙極電晶體 200‧‧‧Insulated gate bipolar transistor

300‧‧‧金氧半電晶體 300‧‧‧Gold oxygen semi-transistor

Claims (10)

一種半導體元件,包括: 具有一第一導電型的一深摻雜區,包括一第一埋入層與二高壓摻雜區,且位於一基底中; 具有一第二導電型的一第一井區,位於該深摻雜區中; 具有該第一導電型的一基體區,位於該第一井區中,未與該深摻雜區相連; 一絕緣閘雙極電晶體,位於該基體區的一第一側的該第一井區上,且包括位於該基體區中的具有該第二導電型的一第一摻雜區;以及 一金氧半電晶體,位於該基體區的一第二側的該第一井區與該深摻雜區上,且包括位於該基體區中的具有該第二導電型的一第二摻雜區。A semiconductor device comprising: a deep doped region having a first conductivity type, comprising a first buried layer and a second high voltage doped region, and located in a substrate; a first well having a second conductivity type a region, located in the deep doped region; a substrate region having the first conductivity type, located in the first well region, not connected to the deep doped region; an insulating gate bipolar transistor located in the substrate region On the first well region of a first side, and including a first doped region having the second conductivity type in the base region; and a MOS transistor, located in the base region The first well region and the deep doped region on the two sides, and a second doped region having the second conductivity type located in the base region. 如申請專利範圍第1項所述的半導體元件,更包括具有該第二導電型的一第二埋入層,位於該第一埋入層與該基底之間。The semiconductor device according to claim 1, further comprising a second buried layer having the second conductivity type between the first buried layer and the substrate. 如申請專利範圍第1項所述的半導體元件,更包括具有該第二導電型的一第二井區,位於該第一井區中,其中該基體區位於該第二井區中。The semiconductor device of claim 1, further comprising a second well region having the second conductivity type, located in the first well region, wherein the base region is located in the second well region. 如申請專利範圍第1項所述的半導體元件,其中該絕緣閘雙極電晶體,更包括: 一隔離結構,位於該第一井區中; 一閘極結構,位於該隔離結構的一第一側的該第一井區上,覆蓋部分該隔離結構與部分該基體區,且與該第一摻雜區相鄰; 具有該第一導電型的一第三摻雜區,位於該隔離結構的一第二側的該第一井區中; 具有該第二導電型的一第四摻雜區,位於該第三摻雜區與該隔離結構之間的該第一井區中,且與該第三摻雜區接觸;以及 具有該第一導電型的一頂摻雜區,位於該隔離結構的下方。The semiconductor device of claim 1, wherein the insulating gate bipolar transistor further comprises: an isolation structure located in the first well region; and a gate structure located at a first portion of the isolation structure The first well region on the side covers a portion of the isolation structure and a portion of the substrate region adjacent to the first doped region; a third doped region having the first conductivity type is located in the isolation structure a first doping region having a second conductivity type; a fourth doping region having the second conductivity type, located in the first well region between the third doping region and the isolation structure, and a third doped region is in contact; and a top doped region having the first conductivity type is located below the isolation structure. 如申請專利範圍第4項所述的半導體元件,其中該頂摻雜區自該隔離結構下方延伸至該第四摻雜區下方並與該第四摻雜區相接觸。The semiconductor device of claim 4, wherein the top doped region extends from below the isolation structure to below the fourth doped region and is in contact with the fourth doped region. 如申請專利範圍第4項所述的半導體元件,其中該頂摻雜區自該隔離結構下方延伸至該第三摻雜區下方並與該第三摻雜區以及該第四摻雜區相接觸。The semiconductor device of claim 4, wherein the top doped region extends from below the isolation structure to below the third doped region and is in contact with the third doped region and the fourth doped region. . 一種半導體元件的製造方法,包括: 於一基底中形成具有一第一導電型的一深摻雜區,該深摻雜區包括一第一埋入層與二高壓摻雜區; 於該深摻雜區中形成具有一第二導電型的一第一井區; 於該第一井區中形成具有該第一導電型的一基體區,該基體區未與該深摻雜區相連; 於該基體區的一第一側的該第一井區上形成一絕緣閘雙極電晶體,形成該絕緣閘雙極電晶體包括於該基體區中形成具有該第二導電型的一第一摻雜區;以及 於該基體區的一第二側的該第一井區與該深摻雜區上形成一金氧半電晶體,形成該金氧半電晶體包括於該基體區中形成具有該第二導電型的一第二摻雜區。A method of fabricating a semiconductor device, comprising: forming a deep doped region having a first conductivity type in a substrate, the deep doped region comprising a first buried layer and a second high voltage doped region; Forming a first well region having a second conductivity type in the impurity region; forming a base region having the first conductivity type in the first well region, the substrate region not being connected to the deep doped region; Forming an insulating gate bipolar transistor on the first well region on a first side of the base region, and forming the insulating gate bipolar transistor includes forming a first doping having the second conductivity type in the base region And forming a MOS semi-transistor on the first well region and the deep doped region on a second side of the base region, and forming the MOS semi-transistor comprises forming the same in the matrix region A second doped region of the second conductivity type. 如申請專利範圍第7項所述的半導體元件的製造方法,更包括於該第一埋入層與該基底之間形成具有該第二導電型的一第二埋入層。The method of manufacturing a semiconductor device according to claim 7, further comprising forming a second buried layer having the second conductivity type between the first buried layer and the substrate. 如申請專利範圍第7項所述的半導體元件的製造方法,更包括於該第一井區中形成具有該第二導電型的一第二井區,其中該基體區位於該第二井區中。The method for manufacturing a semiconductor device according to claim 7, further comprising forming a second well region having the second conductivity type in the first well region, wherein the base region is located in the second well region . 如申請專利範圍第7項所述的半導體元件的製造方法,其中形成該絕緣閘雙極電晶體更包括: 於該第一井區中形成一隔離結構; 於該隔離結構的一第一側的該第一井區上形成一閘極結構,以覆蓋部分該隔離結構與部分該基體區,且與該第一摻雜區相鄰; 於該隔離結構的一第二側的該第一井區中形成具有該第一導電型的一第三摻雜區; 於該第三摻雜區與該隔離結構之間的該第一井區中形成具有該第二導電型的一第四摻雜區,該第四摻雜區與該第三摻雜區接觸;以及 於該隔離結構的下方形成具有該第一導電型的一頂摻雜區。The method of manufacturing the semiconductor device of claim 7, wherein the forming the insulating gate bipolar transistor further comprises: forming an isolation structure in the first well region; on a first side of the isolation structure Forming a gate structure on the first well region to cover a portion of the isolation structure and a portion of the substrate region adjacent to the first doped region; the first well region on a second side of the isolation structure Forming a third doped region having the first conductivity type; forming a fourth doped region having the second conductivity type in the first well region between the third doped region and the isolation structure The fourth doped region is in contact with the third doped region; and a top doped region having the first conductivity type is formed under the isolation structure.
TW102146340A 2013-12-16 2013-12-16 Semiconductor device and method of fabricating the same TWI557878B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102146340A TWI557878B (en) 2013-12-16 2013-12-16 Semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102146340A TWI557878B (en) 2013-12-16 2013-12-16 Semiconductor device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201526203A true TW201526203A (en) 2015-07-01
TWI557878B TWI557878B (en) 2016-11-11

Family

ID=54197785

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102146340A TWI557878B (en) 2013-12-16 2013-12-16 Semiconductor device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI557878B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658501B (en) * 2018-03-23 2019-05-01 世界先進積體電路股份有限公司 High-voltage semiconductor devices and methods for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19906384A1 (en) * 1999-02-16 2000-08-24 Siemens Ag Insulated gate bipolar transistor with electric pn-junction insulation of adjacent components
GB9921071D0 (en) * 1999-09-08 1999-11-10 Univ Montfort Insulated base transistor
CN100592532C (en) * 2007-08-28 2010-02-24 电子科技大学 Semiconductor element with U shaped drift region
CN102760759B (en) * 2011-04-29 2016-02-03 比亚迪股份有限公司 A kind of semiconductor power device
TWI532166B (en) * 2011-05-12 2016-05-01 聯華電子股份有限公司 Lateral-diffused metal oxide semiconductor device (ldmos) and fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658501B (en) * 2018-03-23 2019-05-01 世界先進積體電路股份有限公司 High-voltage semiconductor devices and methods for manufacturing the same

Also Published As

Publication number Publication date
TWI557878B (en) 2016-11-11

Similar Documents

Publication Publication Date Title
US9117841B2 (en) Mergeable semiconductor device with improved reliability
US9450056B2 (en) Lateral DMOS device with dummy gate
KR101572476B1 (en) semiconductor and method of manufacturing the same
US8431990B2 (en) Semiconductor device
TWI388011B (en) Semiconductor device and method of forming a semiconductor device
TW201401521A (en) Lateral transistor and method for manufacturing the same
TWI548029B (en) Semiconductor device and method of operating the same and structure for supressing current leakage
US8482066B2 (en) Semiconductor device
US10700193B2 (en) Power device
US7989921B2 (en) Soi vertical bipolar power component
CN104733457B (en) Semiconductor element and its manufacture method
US10170542B2 (en) Semiconductor device
US9153574B2 (en) Semiconductor device and method of fabricating the same
US10256340B2 (en) High-voltage semiconductor device and method for manufacturing the same
TWI447912B (en) Semiconductor device and manufacturing method for the same
US10217828B1 (en) Transistors with field plates on fully depleted silicon-on-insulator platform and method of making the same
CN107342325B (en) Transverse double-diffusion metal oxide semiconductor device
CN108885999B (en) Semiconductor device and method for manufacturing the same
US8716763B2 (en) Semiconductor structure and method for forming the same
KR20170114703A (en) Gate electrode structure and high voltage semiconductor device having the same
TWI557878B (en) Semiconductor device and method of fabricating the same
US8823098B2 (en) Structures for power transistor and methods of manufacture
CN107146814B (en) High voltage semiconductor device and method for manufacturing the same
CN108257955A (en) Semiconductor device with a plurality of semiconductor chips
TWI531064B (en) Lateral diffusion metal oxide semiconductor transistor structure