TW201442247A - Thin film transistor array substrate and method for manufacturing the same - Google Patents
Thin film transistor array substrate and method for manufacturing the same Download PDFInfo
- Publication number
- TW201442247A TW201442247A TW102115257A TW102115257A TW201442247A TW 201442247 A TW201442247 A TW 201442247A TW 102115257 A TW102115257 A TW 102115257A TW 102115257 A TW102115257 A TW 102115257A TW 201442247 A TW201442247 A TW 201442247A
- Authority
- TW
- Taiwan
- Prior art keywords
- film transistor
- thin film
- insulating layer
- line
- layer
- Prior art date
Links
Landscapes
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
本發明涉及一種薄膜電晶體陣列基板及其製造方法。 The present invention relates to a thin film transistor array substrate and a method of fabricating the same.
有機電致發光二極體(OLED)顯示技術與傳統的LCD顯示方式不同,具有自發光的特性,可以做得更輕更薄,可視角度更大,色彩更鮮艶,具有LCD不可比擬的優點,近年來OLED應用越來越廣泛。 The organic electroluminescent diode (OLED) display technology is different from the traditional LCD display mode, and has self-luminous characteristics, which can be made lighter and thinner, has a larger viewing angle, and has more vivid colors, and has the advantages that the LCD is incomparable. In recent years, OLED applications have become more widespread.
如圖1所示,現有的驅動有機發光二極體的薄膜電晶體陣列基板,包括掃描驅動單元11、數據線驅動單元12和多個像素13。其中每一個像素單元13都對應一條初始化電源線14。初始化電源線14與掃描線15、發光控制線16(E1~En)均平行佈置。初始化電源線14與數據線17和電源線18垂直佈置。在外圍電路中,初始化電源線14和陰極金屬19連接後接地。 As shown in FIG. 1, a conventional thin film transistor array substrate for driving an organic light emitting diode includes a scan driving unit 11, a data line driving unit 12, and a plurality of pixels 13. Each of the pixel units 13 corresponds to an initialization power line 14. The initialization power line 14 is arranged in parallel with the scan line 15 and the illumination control line 16 (E1 to En). The initialization power line 14 is arranged vertically with the data line 17 and the power line 18. In the peripheral circuit, the initialization power line 14 and the cathode metal 19 are connected and grounded.
如圖2所示,初始化電源線14和像素電極21為同一層金屬,初始化電源線14與第六個薄膜電晶體T6的源極是透過接觸孔20相連接。 As shown in FIG. 2, the initialization power supply line 14 and the pixel electrode 21 are the same layer of metal, and the initialization power supply line 14 and the source of the sixth thin film transistor T6 are connected through the contact hole 20.
如圖3所示,初始化電源線14和第六個薄膜電晶體T6的電路連接是首先把沉積於基板22的半導體層23例如低溫多晶矽層的第一絕緣層24a和第二絕緣層24b蝕刻出一個孔,接著再沉積金屬層25,金屬層25與數據線17(見圖2)和電源線18為同層金屬,然後在金屬層25上沉積平坦化層26,並在平坦化層26刻蝕接觸孔,最後沉積像素電極27後光刻形成圖2所示的初始化電源線14和像素電極21。 As shown in FIG. 3, the circuit connection of the initializing power supply line 14 and the sixth thin film transistor T6 is to first etch the first insulating layer 24a and the second insulating layer 24b of the semiconductor layer 23 deposited on the substrate 22, such as a low temperature polysilicon layer. A hole is then deposited with a metal layer 25, which is in the same layer as the data line 17 (see FIG. 2) and the power line 18, and then a planarization layer 26 is deposited on the metal layer 25 and is patterned in the planarization layer 26. The contact hole is etched, and finally, the pixel electrode 27 is deposited and photolithographically formed to form the initialization power supply line 14 and the pixel electrode 21 shown in FIG.
上述傳統的薄膜電晶體陣列中,初始化電源線14與像素電極21為同一層金屬,用同一次光刻製程形成圖案,存在以下主要問題:由於初始化電源線14和像素電極21為同層金屬,限制了像素電極21在陣列基板上的排列方式和面積,即降低了像素的開口率;而且在與初始化電源線14垂直的方向上紅、綠、藍三種材料的蒸鍍也受到限制,產品的發光亮度不能最大化;同時,像素內的接觸孔20的結構複雜,要進行三次光刻製程才能實現電性連接,因為像素內的孔尺寸較小,所以容易有像素電極27和半導體接觸不良的問題,影響產品的良率。 In the above conventional thin film transistor array, the initialization power supply line 14 and the pixel electrode 21 are the same layer of metal, and the pattern is formed by the same photolithography process. The main problem is that since the initialization power supply line 14 and the pixel electrode 21 are the same layer metal, The arrangement and area of the pixel electrodes 21 on the array substrate are limited, that is, the aperture ratio of the pixels is reduced; and the evaporation of the three materials of red, green and blue in the direction perpendicular to the initialization of the power supply line 14 is also limited, the product The brightness of the light is not maximized. At the same time, the structure of the contact hole 20 in the pixel is complicated, and the three-lithography process is required to realize the electrical connection. Since the hole size in the pixel is small, the pixel electrode 27 and the semiconductor are in poor contact. The problem affects the yield of the product.
本發明的一個目的在於提供一種像素開口率高的薄膜電晶體陣列基板及其製造方法,以解决現有技術中的問題。 An object of the present invention is to provide a thin film transistor array substrate having a high pixel aperture ratio and a method of fabricating the same to solve the problems in the prior art.
為實現上述目的,本發明採用如下技術方案: 本發明提供一種薄膜電晶體陣列基板,包括基板、絕緣層、電源線、數據線和初始化電源線、平坦化層和像素電極。絕緣層形成在該基板之上;電源線、數據線和初始化電源線均形成在該絕緣層上;平坦化層覆蓋該電源線、數據線和初始化電源線;像素電極形成在該平坦化層上。 To achieve the above object, the present invention adopts the following technical solutions: The present invention provides a thin film transistor array substrate comprising a substrate, an insulating layer, a power supply line, a data line and an initialization power supply line, a planarization layer, and a pixel electrode. An insulating layer is formed on the substrate; a power line, a data line, and an initialization power line are formed on the insulating layer; a planarization layer covers the power line, the data line, and an initialization power line; and a pixel electrode is formed on the planarization layer .
根據本發明的一實施方式,該薄膜電晶體陣列基板更包含:多條掃描線、多條發光控制線、掃描線驅動單元、數據線驅動單元、第一開關薄膜電晶體、第二驅動薄膜電晶體、第一儲存電容、第二儲存電容、第三開關薄膜电晶體、第四開關薄膜電晶體、第五開關薄膜电晶體和第六薄膜電晶體。掃描線驅動單元用於向掃描線提供掃描信號,向發光控制線提供發光控制信號;數據線驅動單元用於向數據線提供數據信號;第一開關薄膜電晶體的源極和數據線連接,用於控制數據線信號寫入;第二驅動薄膜電晶體的源極和第一開關薄膜電晶體的汲極連接;第一儲存電容連接於第二驅動薄膜電晶體的閘極和電源線之間;第二儲存電容連接於第二驅動薄膜電晶體的閘極和掃描線之其中一者之間;第三開關薄膜电晶體的源極和電源線連接,閘極連接發光控制線之其中一者;第四開關薄膜電晶體的汲極和有機發光二極體連接,其源極和第二驅動薄膜電晶體的汲極連接;第五開關薄膜电晶體的源極和第二驅動薄膜電晶體的閘極連接,用於補償驅動薄膜電晶體閾值電壓變化;第六薄膜電晶體的源極和初始化電源線連接,用於對 第二驅動薄膜電晶體的閘極電壓進行初始化。 According to an embodiment of the present invention, the thin film transistor array substrate further includes: a plurality of scan lines, a plurality of light emission control lines, a scan line driving unit, a data line driving unit, a first switching film transistor, and a second driving film a crystal, a first storage capacitor, a second storage capacitor, a third switching thin film transistor, a fourth switching thin film transistor, a fifth switching thin film transistor, and a sixth thin film transistor. The scan line driving unit is configured to provide a scan signal to the scan line, and provide an illumination control signal to the illumination control line; the data line drive unit is configured to provide a data signal to the data line; the source of the first switch film transistor is connected to the data line, Writing a control signal line signal; a source of the second driving thin film transistor is connected to a drain of the first switching thin film transistor; and a first storage capacitor is connected between the gate of the second driving thin film transistor and the power line; The second storage capacitor is connected between one of the gate and the scan line of the second driving film transistor; the source of the third switching film transistor is connected to the power line, and the gate is connected to one of the light-emitting control lines; The drain of the fourth switching thin film transistor is connected to the organic light emitting diode, the source is connected to the drain of the second driving thin film transistor; the source of the fifth switching thin film transistor and the gate of the second driving thin film transistor a pole connection for compensating for a threshold voltage change of the driving thin film transistor; a source of the sixth thin film transistor is connected with an initial power supply line for The gate voltage of the second driving thin film transistor is initialized.
根據本發明的一實施方式,該的薄膜電晶體陣列基板更包含位於該絕緣層下面的半導體層。 According to an embodiment of the invention, the thin film transistor array substrate further comprises a semiconductor layer under the insulating layer.
根據本發明的一實施方式,其中該絕緣層中形成有接觸孔,該初始化電源線透過該接觸孔與該半導體層電連接。 According to an embodiment of the invention, a contact hole is formed in the insulating layer, and the initialization power line is electrically connected to the semiconductor layer through the contact hole.
根據本發明的一實施方式,該初始化電源線與該數據線平行設置。 According to an embodiment of the invention, the initialization power line is disposed in parallel with the data line.
根據本發明的一實施方式,該絕緣層包括由氧化矽製成的第一絕緣層和位於第一絕緣層上由氮化矽製成的第二絕緣層。 According to an embodiment of the invention, the insulating layer comprises a first insulating layer made of yttrium oxide and a second insulating layer made of tantalum nitride on the first insulating layer.
根據本發明的一實施方式,其中該半導體層為低溫多晶矽層。 According to an embodiment of the invention, the semiconductor layer is a low temperature polysilicon layer.
本發明提供一種薄膜電晶體陣列基板的製造方法,包括如下步驟:步驟S1:提供一基板;步驟S2:在基板上形成一半導體層;步驟S3:在半導體上形成絕緣層;步驟S4:在絕緣層中形成接觸孔;步驟S5:在該絕緣層上形成電源線、數據線和初始化電源線;步驟S6:在所得結構上形成平坦化層;步驟S7:在平坦化層上形成像素電極。 The invention provides a method for manufacturing a thin film transistor array substrate, comprising the steps of: step S1: providing a substrate; step S2: forming a semiconductor layer on the substrate; step S3: forming an insulating layer on the semiconductor; step S4: insulating A contact hole is formed in the layer; step S5: forming a power supply line, a data line, and an initialization power supply line on the insulating layer; step S6: forming a planarization layer on the resultant structure; and step S7: forming a pixel electrode on the planarization layer.
根據本發明的一實施方式,其中,該步驟S2中,透過磁控濺射製程或氣相沉積製程或蒸鍍製程形成該半導體層。 According to an embodiment of the invention, in the step S2, the semiconductor layer is formed by a magnetron sputtering process or a vapor deposition process or an evaporation process.
根據本發明的一實施方式,其中,該步驟S3中,採用PECVD製程或旋塗製程在半導體層上製備絕緣層。 According to an embodiment of the invention, in the step S3, an insulating layer is formed on the semiconductor layer by a PECVD process or a spin coating process.
根據本發明的一實施方式,其中,該步驟S4中,用光刻和蝕刻製程形成該接觸孔。 According to an embodiment of the invention, in the step S4, the contact hole is formed by a photolithography and etching process.
根據本發明的一實施方式,其中,該初始化電源線透過該接觸孔與該半導體層電連接。 According to an embodiment of the invention, the initialization power line is electrically connected to the semiconductor layer through the contact hole.
根據本發明的一實施方式,其中,該步驟S3中,絕緣層包括由氧化矽形成的第一絕緣層和由氮化矽形成的第二絕緣層,先在半導體上先形成第一絕緣層後,再在第一絕緣層上形成第二絕緣層。 According to an embodiment of the present invention, in the step S3, the insulating layer comprises a first insulating layer formed of yttrium oxide and a second insulating layer formed of tantalum nitride, after first forming a first insulating layer on the semiconductor And forming a second insulating layer on the first insulating layer.
根據本發明的一實施方式,其中在該絕緣層上形成電源線、數據線和初始化電源線包括:在該絕緣層上形成金屬層;在該金屬層上形成光罩圖案;利用該光罩圖案,蝕刻該金屬層,形成該電源線、數據線和初始化電源線。 According to an embodiment of the present invention, the forming a power line, a data line, and an initial power line on the insulating layer includes: forming a metal layer on the insulating layer; forming a mask pattern on the metal layer; using the mask pattern Etching the metal layer to form the power line, the data line, and the initialization power line.
根據本發明的一實施方式,其中該電源線、數據線和初始化電源線透過一次蝕刻製程形成。 According to an embodiment of the invention, the power line, the data line, and the initialization power line are formed by an etching process.
從上述技術方案可知,本發明的優點和積極效果在於:初始化電源線與數據線為同一層金屬層,初始化電源線不在像素電極所在的層,因此初始化電源線不占據像素電極的佈線空間,像素面積可以做到最大化,從而大幅度提高像素開口率,從而提高有效的發光面積,提升產品性能。 It can be seen from the above technical solutions that the advantages and positive effects of the present invention are: initializing the power line and the data line as the same metal layer, and initializing the power line not in the layer where the pixel electrode is located, so the initialization power line does not occupy the wiring space of the pixel electrode, and the pixel The area can be maximized, thereby greatly increasing the pixel aperture ratio, thereby increasing the effective light-emitting area and improving product performance.
透過以下參照附圖對優選實施例的說明,本發明的上述以及其它目的、特徵和優點將更加明顯。 The above and other objects, features and advantages of the present invention will become apparent from
11‧‧‧掃描驅動單元 11‧‧‧Scan Drive Unit
12‧‧‧數據線驅動單元 12‧‧‧Data line drive unit
13‧‧‧像素 13‧‧‧ pixels
14‧‧‧初始化電源線 14‧‧‧Initialize the power cord
15‧‧‧掃描線 15‧‧‧ scan line
16‧‧‧發光控制線 16‧‧‧Lighting control line
17‧‧‧數據線 17‧‧‧Data line
18‧‧‧電源線 18‧‧‧Power cord
19‧‧‧陰極金屬 19‧‧‧Cathode metal
20‧‧‧接觸孔 20‧‧‧Contact hole
21‧‧‧像素電極 21‧‧‧pixel electrode
22‧‧‧基板 22‧‧‧Substrate
23‧‧‧半導體層 23‧‧‧Semiconductor layer
24a‧‧‧第一絕緣層 24a‧‧‧first insulation
24b‧‧‧第二絕緣層 24b‧‧‧Second insulation
25‧‧‧金屬層 25‧‧‧metal layer
26‧‧‧平坦化層 26‧‧‧Destivation layer
27‧‧‧像素電極 27‧‧‧pixel electrode
7‧‧‧源電極 7‧‧‧ source electrode
8‧‧‧汲電極 8‧‧‧汲 electrode
9‧‧‧第三有機層 9‧‧‧ Third organic layer
圖1是現有的薄膜電晶體陣列基板的結構示意圖;圖2是現有的薄膜電晶體陣列基板中單個像素的平面圖;圖3是現有的薄膜電晶體陣列基板中的初始化電源線和第六薄膜電晶體的源極接觸孔的結構示意圖;圖4是本發明的薄膜電晶體陣列基板的結構示意圖;圖5A是本發明的薄膜電晶體陣列中單個像素的平面圖;圖5B是本發明的薄膜電晶體陣列中的像素驅動電路圖;圖6是本發明的薄膜電晶體陣列基板中的初始化電源線和第六薄膜電晶體的源極接觸孔的結構示意圖;圖7是本發明的薄膜電晶體陣列基板中的外圍連接結構平面圖;圖8是本發明的薄膜電晶體陣列基板中的外圍連接結構剖面圖。 1 is a schematic structural view of a conventional thin film transistor array substrate; FIG. 2 is a plan view of a single pixel in a conventional thin film transistor array substrate; and FIG. 3 is an initial power supply line and a sixth thin film power in the conventional thin film transistor array substrate. 4 is a schematic structural view of a thin film transistor array substrate of the present invention; FIG. 5A is a plan view of a single pixel in the thin film transistor array of the present invention; and FIG. 5B is a thin film transistor of the present invention; FIG. 6 is a schematic structural view of a source contact hole of an initializing power supply line and a sixth thin film transistor in the thin film transistor array substrate of the present invention; FIG. 7 is a thin film transistor array substrate of the present invention; FIG. 8 is a cross-sectional view showing a peripheral connection structure in the thin film transistor array substrate of the present invention.
下面將詳細描述本發明的具體實施例。應當注意,這裏描述的實施例只用於舉例說明,並不用於限制本發明。 Specific embodiments of the present invention will be described in detail below. It should be noted that the embodiments described herein are for illustrative purposes only and are not intended to limit the invention.
薄膜電晶體陣列基板Thin film transistor array substrate
如圖4所示,本發明的驅動有機發光二極體的薄膜電晶體陣列基板,包括基板22,形成在該基板22上的絕緣 層,形成在絕緣層上的電源線18、數據線17和初始化電源線14,覆蓋電源線18、數據線17和初始化電源線14的平坦化層26,以及形成在平坦化層26上的像素電極。 As shown in FIG. 4, the thin film transistor array substrate for driving an organic light emitting diode of the present invention comprises a substrate 22, and an insulation formed on the substrate 22 The layer, the power line 18, the data line 17 and the initialization power line 14 formed on the insulating layer cover the power line 18, the data line 17 and the planarization layer 26 of the initialization power line 14, and the pixels formed on the planarization layer 26. electrode.
進一步地,本發明的薄膜電晶體陣列基板更包含掃描線驅動單元11、數據線驅動單元12和多個像素13。 Further, the thin film transistor array substrate of the present invention further includes a scan line driving unit 11, a data line driving unit 12, and a plurality of pixels 13.
掃描線驅動單元11包括給掃描線15提供驅動信號的閘線驅動單元和給發光控制線16(E1~En)提供發光控制信號的發光控制單元。其中掃描線15(G1~Gn)是雙側驅動,發光控制線16(E1~En)分奇偶單側驅動。數據線驅動單元12給數據線17(D1~Dn)提供控制薄膜電晶體灰階的模擬或數字信號。各電源線18在外圍回路中接在一起後提供電源ELVDD。像素單元13分佈在掃描線15(G1~Gn)、發光控制線16(E1~En)與初始化電源線14、數據線17、電源線18的垂直交叉處。 The scanning line driving unit 11 includes a gate driving unit that supplies a driving signal to the scanning line 15, and an emission control unit that supplies an emission control signal to the emission control lines 16 (E1 to En). The scanning line 15 (G1~Gn) is a double-side driving, and the lighting control line 16 (E1~En) is divided into an odd-even one-side driving. The data line driving unit 12 supplies the data lines 17 (D1 to Dn) with analog or digital signals for controlling the gray scale of the thin film transistor. Each of the power supply lines 18 is connected together in a peripheral circuit to supply a power source ELVDD. The pixel unit 13 is distributed at a vertical intersection of the scanning lines 15 (G1 to Gn), the light emission control lines 16 (E1 to En), the initialization power supply line 14, the data line 17, and the power supply line 18.
本發明中,初始化電源線14和數據線17(D1~Dn)平行排列,並且和掃描線15垂直排列,其優點在於初始化電源線14和像素電極21(見圖5A)不在同一層,圖5A中像素電極21的圖形可以隨意排列,像素13的開口率最大,在不增加光刻次數的前提下,產品的亮度和壽命有效改善。 In the present invention, the initialization power supply line 14 and the data lines 17 (D1 to Dn) are arranged in parallel and arranged perpendicularly to the scanning line 15, which is advantageous in that the initialization power supply line 14 and the pixel electrode 21 (see FIG. 5A) are not in the same layer, FIG. 5A The pattern of the pixel electrode 21 can be randomly arranged, and the aperture ratio of the pixel 13 is the largest, and the brightness and life of the product are effectively improved without increasing the number of photolithography.
參見圖5A和圖5B。每個像素單元13包括第一開關薄膜電晶體T1、第二驅動薄膜電晶體T2、第一儲存電容C1、第二儲存電容C2、第三開關薄膜电晶體T3、第四開關薄膜電晶體T4、第五開關薄膜电晶體T5和第六薄膜電晶體T6。 See Figures 5A and 5B. Each of the pixel units 13 includes a first switching thin film transistor T1, a second driving thin film transistor T2, a first storage capacitor C1, a second storage capacitor C2, a third switching thin film transistor T3, and a fourth switching thin film transistor T4. The fifth switching film transistor T5 and the sixth film transistor T6.
第一開關薄膜電晶體T1的源極和數據線17連接,用於控制數據線17信號寫入。 The source of the first switching thin film transistor T1 is connected to the data line 17 for controlling the signal writing of the data line 17.
第二驅動薄膜電晶體T2的源極和第一開關薄膜電晶體T1的汲極連接,用於控制發光强度。 The source of the second driving thin film transistor T2 is connected to the drain of the first switching thin film transistor T1 for controlling the luminous intensity.
第一儲存電容C1連接於第二驅動薄膜電晶體T2的閘極和電源線18之間,第一儲存電容C1的作用是在有機電致發光期間,保持第二個驅動薄膜電晶體T2的閘極電壓恒定不變。第二儲存電容C2連接於第二驅動薄膜電晶體T2的閘極和掃描線之間。 The first storage capacitor C1 is connected between the gate of the second driving thin film transistor T2 and the power supply line 18. The first storage capacitor C1 functions to maintain the gate of the second driving thin film transistor T2 during the organic electroluminescence. The pole voltage is constant. The second storage capacitor C2 is connected between the gate of the second driving thin film transistor T2 and the scan line.
第三開關薄膜电晶體T3的源極和電源線18連接,用於控制電源線18開關。 The source of the third switching thin film transistor T3 is connected to the power supply line 18 for controlling the power line 18 switch.
第四開關薄膜電晶體T4的汲極和有機發光二極體連接,其源極和第二驅動薄膜電晶體T2的汲極連接,用於控制有機發光二極體發光。 The drain of the fourth switching thin film transistor T4 is connected to the organic light emitting diode, and the source thereof is connected to the drain of the second driving thin film transistor T2 for controlling the organic light emitting diode to emit light.
第五開關薄膜电晶體T5的源極和第二驅動薄膜電晶體T2的閘極連接,用於補償驅動薄膜電晶體閾值電壓變化。 The source of the fifth switching thin film transistor T5 is connected to the gate of the second driving thin film transistor T2 for compensating for the threshold voltage variation of the driving thin film transistor.
第六薄膜電晶體T6的源極和初始化電源線14連接,用於對第二驅動薄膜電晶體T2的閘極電壓進行初始化。 The source of the sixth thin film transistor T6 is connected to the initialization power supply line 14 for initializing the gate voltage of the second driving thin film transistor T2.
如圖7所示,第六薄膜電晶體T6的閘極對應的掃描線15為上一行像素的掃描線,其中初始化電源線14和陰極19在外圍回路中連接在一起後接到ELVSS。例如,如圖8所示,將數據線金屬層25上的平坦化層26去掉,然 後直接蒸鍍陰極金屬28,將初始化電源線和陰極ELVSS直接連接,最終引出到柔性印刷電路板(FPC)和外圍的驅動電路連接。 As shown in FIG. 7, the gate line corresponding to the gate of the sixth thin film transistor T6 is the scan line of the pixel of the previous row, wherein the initialization power line 14 and the cathode 19 are connected together in the peripheral loop and then connected to the ELVSS. For example, as shown in FIG. 8, the planarization layer 26 on the data line metal layer 25 is removed, After that, the cathode metal 28 is directly vapor-deposited, and the initializing power supply line and the cathode ELVSS are directly connected, and finally led out to the flexible printed circuit board (FPC) and the peripheral driving circuit.
本發明中,第六薄膜電晶體T6的初始化電源線14的佈線方向與數據線17和電源線18平行,並且與數據線17用同一層金屬層。初始化電源線14與薄膜電晶體T6的源極透過接觸孔20連接在一起。 In the present invention, the wiring direction of the initialization power supply line 14 of the sixth thin film transistor T6 is parallel to the data line 17 and the power supply line 18, and the same metal layer is used for the data line 17. The initialization power supply line 14 is connected to the source of the thin film transistor T6 through the contact hole 20.
有效顯示區域內直接用金屬層25作為Vint line,將Vint line線引出到有效顯示區外,然後在金屬層25上蝕刻出接觸孔20,將像素電極27和金屬層25接觸,與外圍電路連接,因為有效顯示區域外的孔比顯示區內的孔的尺寸大,製程容易控制,上層金屬27和半導體層23容易接觸。 In the effective display area, the metal layer 25 is directly used as the Vint line, and the Vint line is taken out of the effective display area, and then the contact hole 20 is etched on the metal layer 25, and the pixel electrode 27 and the metal layer 25 are contacted to be connected to the peripheral circuit. Since the hole outside the effective display area is larger than the size of the hole in the display area, the process is easily controlled, and the upper metal 27 and the semiconductor layer 23 are easily contacted.
本發明中,初始化電源線14與數據線17為同一層金屬層,初始化電源線14不占據像素電極21的佈線空間,所以像素面積可以做到最大化,從而提高有效的發光面積,提升產品性能,增加市場競爭力。 In the present invention, the initialization power line 14 and the data line 17 are the same metal layer, and the initialization power line 14 does not occupy the wiring space of the pixel electrode 21, so the pixel area can be maximized, thereby improving the effective light-emitting area and improving product performance. To increase market competitiveness.
薄膜電晶體陣列基板的製造方法Method for manufacturing thin film transistor array substrate
如圖6所示,本發明的薄膜電晶體陣列基板的製造方法包括如下步驟: As shown in FIG. 6 , the manufacturing method of the thin film transistor array substrate of the present invention comprises the following steps:
步驟S1:提供一玻璃基板22。 Step S1: A glass substrate 22 is provided.
步驟S2:在玻璃基板22上,透過磁控濺射製程或氣相沉積製程或蒸鍍製程形成半導體層23,例如低溫多晶矽層,半導體層23和薄膜電晶體溝道處的半導體材料為同 一層。 Step S2: forming a semiconductor layer 23 on the glass substrate 22 through a magnetron sputtering process or a vapor deposition process or an evaporation process, such as a low temperature polysilicon layer, and the semiconductor material at the semiconductor layer 23 and the thin film transistor channel are the same layer.
步驟S3:採用PECVD製程或旋塗製程在半導體層23上先形成第一絕緣層24a後,再在第一絕緣層24a上面形成第二絕緣層24b。其中第一絕緣層24a在半導體層23和圖5A所示的掃描線15之間,第二絕緣層24b在圖5A所示的掃描線15和數據線17之間起絕緣作用。第一絕緣層24a的材料可以是例如氧化矽,第二絕緣層24b的材料可以是例如氮化矽。 Step S3: After the first insulating layer 24a is formed on the semiconductor layer 23 by a PECVD process or a spin coating process, a second insulating layer 24b is formed on the first insulating layer 24a. The first insulating layer 24a is between the semiconductor layer 23 and the scanning line 15 shown in FIG. 5A, and the second insulating layer 24b is insulated between the scanning line 15 and the data line 17 shown in FIG. 5A. The material of the first insulating layer 24a may be, for example, yttrium oxide, and the material of the second insulating layer 24b may be, for example, tantalum nitride.
步驟S4:第一絕緣層24a和第二絕緣層24b中透過光刻或蝕刻等製程形成接觸孔20。 Step S4: The contact hole 20 is formed by a process such as photolithography or etching in the first insulating layer 24a and the second insulating layer 24b.
步驟S5:之後在第一絕緣層24a和第二絕緣層24b形成數據線17、電源線18和初始化電源線14。進一步地,該步驟S5中,可以先在第二絕緣層24b上沉積金屬層25,在金屬層25上形成光罩圖案,利用光罩圖案,蝕刻該金屬層25,形成該電源線18、數據線17和初始化電源線14。更進一步地,該電源線18、數據線17和初始化電源線14透過一次蝕刻製程形成。因此,本發明中,數據線17、電源線18和初始化電源線14為同層金屬。 Step S5: The data line 17, the power supply line 18, and the initialization power supply line 14 are formed on the first insulating layer 24a and the second insulating layer 24b. Further, in the step S5, the metal layer 25 may be deposited on the second insulating layer 24b, the reticle pattern is formed on the metal layer 25, and the metal layer 25 is etched by the reticle pattern to form the power line 18 and the data. Line 17 and initialization power line 14. Further, the power line 18, the data line 17, and the initialization power line 14 are formed by an etching process. Therefore, in the present invention, the data line 17, the power supply line 18, and the initialization power supply line 14 are the same layer of metal.
步驟S6:接著沉積平坦化層26,這層平坦化層26的主要目的是消除下層圖形的斷差引起的像素發光面積不平整。 Step S6: Next, a planarization layer 26 is deposited. The main purpose of this planarization layer 26 is to eliminate the unevenness of the pixel light-emitting area caused by the variation of the underlying pattern.
步驟S7:最後在平坦化層26上面形成像素電極27後完成陣列製程相關的製程。 Step S7: Finally, after the pixel electrode 27 is formed on the planarization layer 26, the process related to the array process is completed.
本發明的薄膜電晶體陣列基板的製造方法中,用數 據線材料即金屬層25將圖5A所示的像素內的初始化電源線14引出的主要優點是像素內的接觸孔20的光刻次數减少,可有效防止圖5A所示的像素初始化電源線14和下層半導體材料接觸不良的問題。 In the method for manufacturing a thin film transistor array substrate of the present invention, The main advantage of drawing the initialization power supply line 14 in the pixel shown in FIG. 5A according to the line material, that is, the metal layer 25, is that the number of lithography times of the contact hole 20 in the pixel is reduced, and the pixel initialization power supply line 14 shown in FIG. 5A can be effectively prevented. Poor contact with the underlying semiconductor material.
透過上述的說明,本發明在不增加光刻次數的前提下,能夠提升產品良率和性能。 Through the above description, the present invention can improve product yield and performance without increasing the number of lithography.
在上面的描述中闡述了很多具體的細節以便於充分的理解本發明,本發明不受上面公開的具體實施例的限制;其次本發明中用到的圖例為了便於說明,不依一般比例做等比例放大;最後本發明中提到的薄膜電晶體陣列基板包括但不限於低溫多晶矽薄膜電晶體陣列基板。 In the above description, many specific details are set forth in order to provide a sufficient understanding of the present invention. The present invention is not limited by the specific embodiments disclosed above. The drawings used in the present invention are not to be construed as being Amplification; Finally, the thin film transistor array substrate mentioned in the present invention includes, but is not limited to, a low temperature polycrystalline germanium thin film transistor array substrate.
雖然已參照幾個典型實施例描述了本發明,但應當理解,所用的術語是說明和示例性、而非限制性的術語。由於本發明能夠以多種形式具體實施而不脫離發明的精神或實質,所以應當理解,上述實施例不限於任何前述的細節,而應在隨附請求項所限定的精神和範圍內廣泛地解釋,因此落入請求項或其等效範圍內的全部變化和改型都應為隨附請求項所涵蓋。 While the invention has been described with respect to the exemplary embodiments illustrated embodiments The present invention may be embodied in a variety of forms without departing from the spirit and scope of the invention. It is to be understood that the above-described embodiments are not limited to the details of the foregoing, but are construed broadly within the spirit and scope of the appended claims. All changes and modifications that fall within the scope of the claims or their equivalents should therefore be covered by the accompanying claims.
11‧‧‧掃描驅動單元 11‧‧‧Scan Drive Unit
12‧‧‧數據線驅動單元 12‧‧‧Data line drive unit
13‧‧‧像素 13‧‧‧ pixels
14‧‧‧初始化電源線 14‧‧‧Initialize the power cord
15‧‧‧掃描線 15‧‧‧ scan line
16‧‧‧發光控制線 16‧‧‧Lighting control line
17‧‧‧數據線 17‧‧‧Data line
18‧‧‧電源線 18‧‧‧Power cord
19‧‧‧陰極金屬 19‧‧‧Cathode metal
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310136120.XA CN103199096B (en) | 2013-04-18 | 2013-04-18 | Thin film transistor array substrate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201442247A true TW201442247A (en) | 2014-11-01 |
TWI518918B TWI518918B (en) | 2016-01-21 |
Family
ID=48721545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102115257A TWI518918B (en) | 2013-04-18 | 2013-04-29 | Thin film transistor array substrate and method for manufacturing the same |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103199096B (en) |
TW (1) | TWI518918B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10916188B2 (en) | 2017-05-27 | 2021-02-09 | Ordos Yuansheng Optoelectronics Co., Ltd. | Pixel compensation circuit, compensation method, and display device |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104134424A (en) * | 2014-05-27 | 2014-11-05 | 四川虹视显示技术有限公司 | AMOLED (Active Matrix Organic Light Emitting Diode) pixel structure and manufacturing method thereof |
KR102272230B1 (en) * | 2014-10-29 | 2021-07-05 | 삼성디스플레이 주식회사 | Display panel for compensating negative power supply voltage, display module and mobile device including the same |
CN106157882B (en) * | 2015-04-24 | 2019-01-15 | 上海和辉光电有限公司 | Dot structure |
CN107871757B (en) * | 2016-09-23 | 2020-04-14 | 京东方科技集团股份有限公司 | Organic light emitting diode array substrate, preparation method thereof and display device |
CN108305888B (en) * | 2017-01-12 | 2020-10-16 | 上海和辉光电股份有限公司 | Array substrate and display panel |
CN107274829B (en) * | 2017-07-10 | 2020-04-14 | 上海天马有机发光显示技术有限公司 | Organic electroluminescent display panel and display device |
CN109727531A (en) * | 2017-10-31 | 2019-05-07 | 云谷(固安)科技有限公司 | A kind of display panel and terminal |
CN110136651B (en) * | 2019-06-12 | 2021-09-17 | 京东方科技集团股份有限公司 | Array substrate, OLED display panel and display device |
US11348533B1 (en) | 2019-06-13 | 2022-05-31 | Apple Inc. | Methods and apparatus for accelerating scan signal fall time to reduce display border width |
CN112951830B (en) * | 2021-02-01 | 2023-02-07 | 泉芯集成电路制造(济南)有限公司 | Integrated circuit device, memory, and electronic apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101334564A (en) * | 2007-06-28 | 2008-12-31 | 上海广电Nec液晶显示器有限公司 | LCD and making method thereof |
-
2013
- 2013-04-18 CN CN201310136120.XA patent/CN103199096B/en active Active
- 2013-04-29 TW TW102115257A patent/TWI518918B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10916188B2 (en) | 2017-05-27 | 2021-02-09 | Ordos Yuansheng Optoelectronics Co., Ltd. | Pixel compensation circuit, compensation method, and display device |
Also Published As
Publication number | Publication date |
---|---|
TWI518918B (en) | 2016-01-21 |
CN103199096B (en) | 2014-12-17 |
CN103199096A (en) | 2013-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI518918B (en) | Thin film transistor array substrate and method for manufacturing the same | |
US10504973B2 (en) | OLED display panel and manufacturing method and display device thereof | |
US10615231B2 (en) | Organic light emitting diode substrate, method for manufacturing the same, and display panel | |
US9679953B2 (en) | WOLED back panel and method of manufacturing the same | |
WO2018054149A1 (en) | Organic light-emitting diode (oled) array substrate and fabrication method therefor, display device | |
CN105140260A (en) | Organic light-emitting diode array substrate and manufacturing method thereof and display device | |
CN103985736A (en) | AMOLED array substrate, manufacturing method and display device | |
US11568821B2 (en) | Array substrate and method for manufacturing same and method for controlling same, and display apparatus | |
CN104952884A (en) | AMOLED (active matrix/organic light emitting diode) backboard structure and manufacturing method thereof | |
US9385171B2 (en) | Active matrix organic light-emitting diode array substrate, manufacturing method thereof and display device including the same | |
JP2020529047A (en) | Manufacturing method of flexible display panel and flexible display panel | |
JP2022539621A (en) | Display panel, manufacturing method thereof, and display device | |
WO2023280110A1 (en) | Display substrate and preparation method therefor | |
US20140246653A1 (en) | AMOLED Display and Manufacturing Method Thereof | |
WO2018188153A1 (en) | Woled display device | |
CN113035925A (en) | Display panel and display device | |
CN203850301U (en) | Active matrix organic electroluminescent device array substrate and display device | |
KR101294844B1 (en) | Fabricating method for organic electro-luminescence display device and organic electro-luminescence display device using the same | |
TWI239790B (en) | Organic light-emitting device and fabrication method thereof | |
US9773851B2 (en) | OLED display device comprising an insulative layer of varying thickness and manufacturing method thereof | |
WO2019001362A1 (en) | Display substrate and manufacturing method thereof, display panel and display device | |
WO2015027532A1 (en) | Organic light emitting diode anode connection structure and manufacturing method thereof | |
WO2015188472A1 (en) | Array substrate and manufacturing method therefor | |
CN104393026A (en) | OLED display substrate, manufacturing method of OLED display substrate, and display device adopting OLED display substrate | |
US20190067402A1 (en) | Display panel and manufacturing method thereof and display device |