TW201440173A - Buried word line dram and manufacturing method thereof - Google Patents
Buried word line dram and manufacturing method thereof Download PDFInfo
- Publication number
- TW201440173A TW201440173A TW102112155A TW102112155A TW201440173A TW 201440173 A TW201440173 A TW 201440173A TW 102112155 A TW102112155 A TW 102112155A TW 102112155 A TW102112155 A TW 102112155A TW 201440173 A TW201440173 A TW 201440173A
- Authority
- TW
- Taiwan
- Prior art keywords
- word line
- doping
- buried word
- substrate
- random access
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
本發明是有關於一種動態隨機存取記憶體及其製造方法,且特別是有關於一種埋入式字元線動態隨機存取記憶體及其製造方法。 The present invention relates to a dynamic random access memory and a method of fabricating the same, and more particularly to a buried word line dynamic random access memory and a method of fabricating the same.
動態隨機存取記憶體屬於一種揮發性記憶體,其是由多個記憶胞構成。每一個記憶胞主要是由一個電晶體與一個由電晶體所操控的電容器所構成,且每一個記憶胞藉由字元線與位元線彼此電性連接。 Dynamic random access memory is a kind of volatile memory, which is composed of a plurality of memory cells. Each memory cell is mainly composed of a transistor and a capacitor controlled by a transistor, and each of the memory cells is electrically connected to each other by a word line and a bit line.
為提高動態隨機存取記憶體的積集度以加快元件的操作速度,以及符合消費者對於小型化電子裝置的需求,近年來發展出埋入式字元線動態隨機存取記憶體(buried word line DRAM),以滿足上述種種需求。 In order to improve the accumulative degree of dynamic random access memory to speed up the operation speed of components and meet the needs of consumers for miniaturized electronic devices, buried word line dynamic random access memory (buried word) has been developed in recent years. Line DRAM) to meet the above needs.
然而,傳統的埋入式字元線動態隨機存取記憶體使用單一離子濃度的離子植入製程來形成源/汲極,此種植入方法會在埋 入式字元線閘極下方產生較高的電場,從而在源/汲極與閘極之間的重疊區域造成較高的閘極引致汲極漏電流(GIDL current),並降低埋入式字元線動態隨機存取記憶體的記憶時間(retention time)。 However, conventional embedded word line dynamic random access memory uses a single ion concentration ion implantation process to form the source/drain, which is buried A higher electric field is generated below the gate of the input word line, thereby causing a higher gate to cause a drain current (GIDL current) and a buried word in the overlap region between the source/drain and the gate. The retention time of the dynamic random access memory of the meta-line.
本發明提供一種埋入式字元線動態隨機存取記憶體及其製造方法,可改善較高的閘極引致汲極漏電流及較短的記憶時間的問題。 The invention provides a buried word line dynamic random access memory and a manufacturing method thereof, which can improve the problem of high gate induced drain leakage current and short memory time.
本發明提供一種埋入式字元線動態隨機存取記憶體,包括基板、至少一個埋入式字元線結構、第一摻雜區以及第二摻雜區。埋入式字元線結構,配置在基板中。第一摻雜區,鄰接埋入式字元線結構配置在基板中。第二摻雜區,配置在第一摻雜區上方的基板中,其中第一摻雜區的摻雜濃度低於第二摻雜區的摻雜濃度。 The present invention provides a buried word line dynamic random access memory, comprising a substrate, at least one buried word line structure, a first doped region, and a second doped region. The buried word line structure is disposed in the substrate. The first doped region is disposed adjacent to the buried word line structure in the substrate. The second doped region is disposed in the substrate above the first doped region, wherein the doping concentration of the first doped region is lower than the doping concentration of the second doped region.
依照本發明的一實施例所述,在上述的埋入式字元線動態隨機存取記憶體中,第一摻雜區的摻雜劑量為1.5×1012 atoms/cm2~1.5×1013 atoms/cm2。 According to an embodiment of the present invention, in the embedded word line dynamic random access memory, the doping amount of the first doping region is 1.5×10 12 atoms/cm 2 to 1.5×10 13 . Atom/cm 2 .
依照本發明的一實施例所述,在上述的埋入式字元線動態隨機存取記憶體中,第二摻雜區的摻雜劑量為1.5×1013 atoms/cm2~1.5×1014 atoms/cm2。 According to an embodiment of the present invention, in the embedded word line dynamic random access memory, the doping amount of the second doping region is 1.5×10 13 atoms/cm 2 to 1.5×10 14 . Atom/cm 2 .
依照本發明的一實施例所述,在上述的埋入式字元線動 態隨機存取記憶體中,埋入式字元線結構包括埋入式字元線以及閘介電層。埋入式字元線,配置於基板的溝渠內。閘介電層,配置於溝渠的底部及側壁上,其中埋入式字元線藉由閘介電層與基板分隔。 According to an embodiment of the invention, the embedded character line is moved In the random access memory, the buried word line structure includes a buried word line and a gate dielectric layer. The embedded word line is disposed in the trench of the substrate. The gate dielectric layer is disposed on the bottom and the sidewall of the trench, wherein the buried word line is separated from the substrate by the gate dielectric layer.
依照本發明的一實施例所述,在上述的埋入式字元線動態隨機存取記憶體中,埋入式字元線結構更包括襯層,襯層配置於埋入式字元線與閘介電層之間。 According to an embodiment of the present invention, in the embedded word line dynamic random access memory, the buried word line structure further includes a lining layer, and the lining layer is disposed on the buried word line and Between the gate dielectric layers.
依照本發明的一實施例所述,在上述的埋入式字元線動態隨機存取記憶體中,第一摻雜區與第二摻雜區的界面在基板中的深度為埋入式字元線的頂部表面在基板中的深度。 According to an embodiment of the present invention, in the buried word line dynamic random access memory, the interface between the first doped region and the second doped region has a depth in the substrate as a buried word. The depth of the top surface of the wire in the substrate.
本發明提供一種埋入式字元線動態隨機存取記憶體的製造方法,包括以下步驟。提供基板,基板中形成有至少一埋入式字元線結構。在基板中形成鄰接埋入式字元線結構的第一摻雜區。在基板中形成第二摻雜區,其中第二摻雜區形成於第一摻雜區上方,且第一摻雜區的摻雜濃度低於第二摻雜區的摻雜濃度。 The invention provides a method for manufacturing a buried word line dynamic random access memory, which comprises the following steps. A substrate is provided, and at least one buried word line structure is formed in the substrate. A first doped region adjacent to the buried word line structure is formed in the substrate. A second doped region is formed in the substrate, wherein the second doped region is formed over the first doped region, and a doping concentration of the first doped region is lower than a doping concentration of the second doped region.
依照本發明的一實施例所述,在上述的埋入式字元線動態隨機存取記憶體的製造方法中,第一摻雜區的摻雜劑量為1.5×1012 atoms/cm2~1.5×1013 atoms/cm2,而第二摻雜區的摻雜劑量為1.5×1013 atoms/cm2~1.5×1014 atoms/cm2。 According to an embodiment of the present invention, in the method for fabricating a buried word line dynamic random access memory, the doping amount of the first doping region is 1.5×10 12 atoms/cm 2 to 1.5. ×10 13 atoms/cm 2 , and the doping amount of the second doping region is 1.5 × 10 13 atoms / cm 2 ~ 1.5 × 10 14 atoms / cm 2 .
依照本發明的一實施例所述,在上述的埋入式字元線動態隨機存取記憶體的製造方法中,形成第一摻雜區時所提供的摻雜能量大於形成第二摻雜區時所提供的摻雜能量。 According to an embodiment of the present invention, in the method for fabricating a buried word line dynamic random access memory, the doping energy provided when the first doped region is formed is greater than the second doped region. The doping energy provided at the time.
依照本發明的一實施例所述,在上述的埋入式字元線動態隨機存取記憶體的製造方法中,形成埋入式字元線結構的步驟包括以下步驟。於基板中形成溝渠。於溝渠的表面形成閘介電層。於閘介電層上形成埋入式字元線。 According to an embodiment of the present invention, in the method of fabricating a buried word line dynamic random access memory, the step of forming a buried word line structure includes the following steps. A trench is formed in the substrate. A gate dielectric layer is formed on the surface of the trench. A buried word line is formed on the gate dielectric layer.
依照本發明的一實施例所述,在上述的埋入式字元線動態隨機存取記憶體的製造方法中,形成埋入式字元線之前還可包括於閘介電層表面形成襯層。 According to an embodiment of the present invention, in the method for fabricating a buried word line dynamic random access memory, before forming the buried word line, a liner may be formed on the surface of the gate dielectric layer. .
基於上述,在本發明所提出的埋入式字元線動態隨機存取記憶體中,由於在鄰接埋入式字元線結構的基板中配置摻雜濃度不同的第一摻雜區及第二摻雜區,且其中第一摻雜區的摻雜濃度小於第二摻雜區的摻雜濃度,因此在不劣化源/汲極導電性及記憶體的單胞電流(cell current)的情形下,可以有效地減少埋入式字元線的閘極邊緣角落下方的電場,並從而改善舊有埋入式字元線動態隨機存取記憶體的較高的閘極引致汲極漏電流及較短的記憶時間的問題。 Based on the above, in the embedded word line dynamic random access memory of the present invention, the first doped region and the second doped region having different doping concentrations are disposed in the substrate adjacent to the buried word line structure. a doped region, wherein the doping concentration of the first doped region is less than the doping concentration of the second doped region, and thus, without degrading source/drain conductivity and cell current of the memory , can effectively reduce the electric field below the corner of the gate edge of the buried word line, and thereby improve the higher gate induced buckling leakage current of the old embedded word line dynamic random access memory and Short memory time issues.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
10、20‧‧‧埋入式字元線動態隨機存取記憶體 10, 20‧‧‧ Buried word line dynamic random access memory
100、200‧‧‧基板 100, 200‧‧‧ substrate
102、202‧‧‧埋入式字元線結構 102, 202‧‧‧ Buried word line structure
104、204‧‧‧第一摻雜區 104, 204‧‧‧First doped area
106、206‧‧‧第二摻雜區 106, 206‧‧‧Second doped area
108、208‧‧‧埋入式字元線 108, 208‧‧‧ Buried word line
110、210‧‧‧閘介電層 110, 210‧‧‧ gate dielectric layer
112、212‧‧‧襯層 112, 212‧‧‧ lining
114、214‧‧‧井區 114, 214‧‧‧ Well Area
200a‧‧‧溝渠 200a‧‧‧ Ditch
304、306、314‧‧‧摻雜濃度曲線 Doping concentration curve of 304, 306, 314‧‧
圖1為本發明的一實施例中的埋入式字元線動態隨機存取記憶體的剖面示意圖。 1 is a cross-sectional view showing a buried word line dynamic random access memory in accordance with an embodiment of the present invention.
圖2A至圖2C表示本發明的一實施例中的埋入式字元線動態隨機存取記憶體的製造方法的流程圖。 2A to 2C are flowcharts showing a method of manufacturing a buried word line dynamic random access memory in an embodiment of the present invention.
圖3表示本發明的一實施例中的埋入式字元線動態隨機存取記憶體的摻雜區的摻雜濃度曲線圖。 3 is a graph showing a doping concentration profile of a doped region of a buried word line dynamic random access memory in an embodiment of the present invention.
圖1為本發明的一實施例中的埋入式字元線動態隨機存取記憶體的剖面示意圖。 1 is a cross-sectional view showing a buried word line dynamic random access memory in accordance with an embodiment of the present invention.
請參照圖1,埋入式字元線動態隨機存取記憶體10包括基板100、至少一個埋入式字元線結構102、第一摻雜區104以及第二摻雜區106。基板100的材料例如是單晶矽、多晶矽、非晶矽或其他適合的材料。在本實施例中,基板100還可包括井區114,井區114一般配置在基板100上。井區114例如是經P型摻質或N型摻質所摻雜的區域,且井區114的形成方法包括離子植入法。 Referring to FIG. 1 , the buried word line dynamic random access memory 10 includes a substrate 100 , at least one buried word line structure 102 , a first doped region 104 , and a second doped region 106 . The material of the substrate 100 is, for example, single crystal germanium, polycrystalline germanium, amorphous germanium or other suitable material. In the present embodiment, the substrate 100 may further include a well region 114, which is generally disposed on the substrate 100. The well region 114 is, for example, a region doped with a P-type dopant or an N-type dopant, and the formation method of the well region 114 includes an ion implantation method.
埋入式字元線結構102配置在基板100中。在本實施例中,埋入式字元線結構102包括埋入式字元線108、閘介電層110以及襯層112。埋入式字元線108配置在基板100的溝渠內,埋入式字元線108的材料例如是鎢、矽化鎢、氮化鈦…等過渡金屬導體,形成方法例如是物理氣相沈積法、化學氣相沈積法或原子層氣相沈積法。閘介電層110配置在基板100中的溝渠的底部及側壁上,其中埋入式字元線108藉由閘介電層110與基板100分隔。閘介電層110的材料例如是氧化矽,其形成方法包括在爐管中進 行熱氧化製程之類的製程。襯層112配置在埋入式字元線108與閘介電層110之間。襯層112的材料包括氮化鈦、氮化組…等過渡金屬氮化物,其形成方法例如是物理氣相沈積法、化學氣相沈積法或原子層氣相沈積法。襯層112的作用為增加埋入式字元線108與閘介電層110之間的附著力,從而增加埋入式字元線動態隨機存取記憶體10的可靠度。 The buried word line structure 102 is disposed in the substrate 100. In the present embodiment, the buried word line structure 102 includes a buried word line 108, a gate dielectric layer 110, and a liner layer 112. The buried word line 108 is disposed in the trench of the substrate 100. The material of the buried word line 108 is, for example, a transition metal conductor such as tungsten, tungsten telluride, or titanium nitride. The forming method is, for example, physical vapor deposition. Chemical vapor deposition or atomic layer vapor deposition. The gate dielectric layer 110 is disposed on the bottom and sidewalls of the trench in the substrate 100, wherein the buried word line 108 is separated from the substrate 100 by the gate dielectric layer 110. The material of the gate dielectric layer 110 is, for example, hafnium oxide, and the method for forming the same includes forming in the furnace tube. A process such as a thermal oxidation process. The liner 112 is disposed between the buried word line 108 and the gate dielectric layer 110. The material of the lining layer 112 includes transition metal nitrides such as titanium nitride, nitrided group, etc., and the forming method thereof is, for example, physical vapor deposition, chemical vapor deposition or atomic layer vapor deposition. The role of the liner 112 is to increase the adhesion between the buried word line 108 and the gate dielectric layer 110, thereby increasing the reliability of the embedded word line dynamic random access memory 10.
第一摻雜區104是鄰接埋入式字元線結構102而配置在基板100中。第一摻雜區104的形成方法例如是離子植入法,第一摻雜區104的摻質例如是N型摻質(如磷或砷,但不限於此)或P型摻質(如硼,但不限於此),摻質與井區114的P型或N型摻質相反,且第一摻雜區104的摻雜劑量例如是1.5×1012 atoms/cm2~1.5×1013 atoms/cm2。 The first doped region 104 is disposed adjacent to the buried word line structure 102 and disposed in the substrate 100. The method of forming the first doping region 104 is, for example, ion implantation. The dopant of the first doping region 104 is, for example, an N-type dopant (such as phosphorus or arsenic, but not limited thereto) or a P-type dopant (such as boron). However, the doping is opposite to the P-type or N-type dopant of the well region 114, and the doping amount of the first doping region 104 is, for example, 1.5×10 12 atoms/cm 2 to 1.5×10 13 atoms. /cm 2 .
第二摻雜區106,配置在第一摻雜區104上的基板100中。第二摻雜區106的形成方法例如是離子植入法,其中第二摻雜區106的摻質例如是N型摻質或P型摻質,摻質與第一摻雜區104的相同,且第二摻雜區106的摻雜劑量例如是1.5×1013 atoms/cm2~1.5×1014 atoms/cm2。在本實施例中,第一摻雜區104與第二摻雜區106的界面在基板100中的深度大約為埋入式字元線108的頂部表面在基板100中的深度,因此可減少第二摻雜區106與埋入式字元線108的重疊深度,從而可減少埋入式字元線108閘極附近的高電場區的面積,進一步降低閘極引致汲極漏電流。另外,第一摻雜區104摻雜濃度降低亦使得第一摻雜區104 與埋入式字元線108的重疊區域的電場強度降低,從而降低閘極引致汲極漏電流。更具體地說,相較於傳統單一摻雜濃度的埋入式字元線動態隨機存取記憶體而言,由於在本實施例中,第二摻雜區106在深度上幾乎不與具有良好導電性的埋入式字元線108重疊,而且第一摻雜區104與埋入式字元線108的重疊區域的摻質濃度降低,因此可降低埋入式字元線108所造成的閘極引致汲極漏電流。 The second doping region 106 is disposed in the substrate 100 on the first doping region 104. The method of forming the second doping region 106 is, for example, an ion implantation method, wherein the dopant of the second doping region 106 is, for example, an N-type dopant or a P-type dopant, and the dopant is the same as that of the first doping region 104. And the doping amount of the second doping region 106 is, for example, 1.5×10 13 atoms/cm 2 to 1.5×10 14 atoms/cm 2 . In the present embodiment, the depth of the interface between the first doping region 104 and the second doping region 106 in the substrate 100 is approximately the depth of the top surface of the buried word line 108 in the substrate 100, thereby reducing the The overlapping depth of the doped region 106 and the buried word line 108 can reduce the area of the high electric field region near the gate of the buried word line 108, and further reduce the drain leakage current caused by the gate. In addition, the decrease in the doping concentration of the first doping region 104 also reduces the electric field strength of the overlapping region of the first doping region 104 and the buried word line 108, thereby reducing the gate-induced drain leakage current. More specifically, compared to the conventional single doping concentration of the buried word line dynamic random access memory, since in the present embodiment, the second doping region 106 hardly has a good depth. The conductive buried word lines 108 overlap, and the dopant concentration of the overlapping regions of the first doped region 104 and the buried word line 108 is lowered, thereby reducing the gate caused by the buried word line 108. Extremely induced blander leakage current.
值得一提的是,由於第一摻雜區104的摻雜濃度低於第二摻雜區106的摻雜濃度,且第二摻雜區106在深度上幾乎不與埋入式字元線108重疊,因此在不劣化埋入式字元線動態隨機存取記憶體10的單胞電流的情形下,可降低埋入式字元線動態隨機存取記憶體10的閘極引致汲極漏電流,並從而提高埋入式字元線動態隨機存取記憶體10的記憶時間。除此之外,相較於僅具有單一摻雜區的傳統埋入式字元線動態隨機存取記憶體而言,由於埋入式字元線108在深度上幾乎不與第二摻雜區106重疊,因此在此可降低閘極至源/汲極電容(gate-to source/drain capacitance)的情形下,本實施例的埋入式字元線動態隨機存取記憶體10可提供源/汲極較佳的閘極覆蓋控制(overlay control of gate to source/drain),進而降低閘極至源/汲極之耦合電容(coupled capacitance),並進一步地改善耦合干擾(coupling disturbance)。 It is worth mentioning that since the doping concentration of the first doping region 104 is lower than the doping concentration of the second doping region 106, and the second doping region 106 is hardly in the depth with the buried word line 108 The overlap, so that the gate-induced drain leakage current of the buried word line dynamic random access memory 10 can be reduced without degrading the single cell current of the embedded word line dynamic random access memory 10. And thereby increasing the memory time of the embedded word line dynamic random access memory 10. In addition, compared to a conventional buried word line dynamic random access memory having only a single doped region, since the buried word line 108 is hardly in depth with the second doped region 106 overlaps, so in the case where the gate-to-source/drain capacitance can be reduced, the buried word line dynamic random access memory 10 of the present embodiment can provide the source/ The interlayer control of gate to source/drain further reduces the gate-to-source/drain coupling capacitance and further improves the coupling disturbance.
基於上述實施例可知,相較於第一摻雜區104而言,第二摻雜區106的摻雜濃度較大且幾乎不與埋入式字元線108重 疊,因此在不劣化埋入式字元線動態隨機存取記憶體10的單胞電流的情形下,可降低埋入式字元線動態隨機存取記憶體10的閘極引致汲極漏電流,因而提高埋入式字元線動態隨機存取記憶體10的記憶時間。 Based on the above embodiment, the doping concentration of the second doping region 106 is larger than that of the first doping region 104 and is hardly heavy with the buried word line 108. Stacking, so that the gate-induced drain leakage current of the buried word line dynamic random access memory 10 can be reduced without degrading the single cell current of the embedded word line dynamic random access memory 10. Therefore, the memory time of the embedded word line dynamic random access memory 10 is improved.
需注意的是,雖然在本實施例中,為了方便說明而以埋入式字元線動態隨機存取記憶體10具有一個埋入式字元線結構102為例進行說明,但是本發明並不以此為限。在其他實施例中,埋入式字元線動態隨機存取記憶體10亦可具有多個埋入式字元線結構102,亦即只要是具有至少一個埋入式字元線結構102即屬於本發明所保護的範圍。除此之外,在本實施例中,雖然使用上述的埋入式字元線結構102,但是本發明不以此為限,在其他實施例中,亦可使用其他類型的埋入式字元線結構。 It should be noted that, in the present embodiment, for the sake of convenience of explanation, the embedded word line dynamic random access memory 10 has a buried word line structure 102 as an example, but the present invention does not. This is limited to this. In other embodiments, the embedded word line dynamic random access memory 10 can also have a plurality of buried word line structures 102, that is, as long as it has at least one buried word line structure 102. The scope of protection of the present invention. In addition, in the present embodiment, although the above-described buried word line structure 102 is used, the present invention is not limited thereto, and in other embodiments, other types of buried characters may be used. Line structure.
圖2A至圖2C表示本發明的一實施例中的埋入式字元線動態隨機存取記憶體的製造方法的流程圖。 2A to 2C are flowcharts showing a method of manufacturing a buried word line dynamic random access memory in an embodiment of the present invention.
首先,請參照圖2A,提供基板200,基板200中形成有至少一個埋入式字元線結構202及井區214。在本實施中,形成埋入式字元線結構202包括以下步驟。於基板200中先形成溝渠200a,溝渠200a的形成方法例如是乾式蝕刻或其他非等向性(anisotropic)蝕刻方法;接著,於基板200的溝渠200a的表面形成閘介電層210,閘介電層210的形成方法例如是在爐管中進行熱氧化製程;繼之,在於閘介電層210上可選擇性地形成襯層212,襯層212的形成方法例如是物理氣相沈積法、化學氣相沈積法或原 子層氣相沈積法。接著,於襯層212表面形成埋入式字元線208,埋入式字元線208的形成方法例如是物理氣相沈積法、化學氣相沈積法或原子層氣相沈積法。在本實施例中,襯層212是形成於埋入式字元線208與閘介電層210之間。然而,本發明並不以此為限,在其他實施例中,亦可不形成襯層212而直接在基板200的溝渠200a的底部與側壁上形成埋入式字元線208。井區214的結構及形成方法相似於上述實施例的井區114,故在此不再贅述。 First, referring to FIG. 2A, a substrate 200 is provided. At least one buried word line structure 202 and a well region 214 are formed in the substrate 200. In the present embodiment, forming the buried word line structure 202 includes the following steps. A trench 200a is formed in the substrate 200. The trench 200a is formed by a dry etching or other anisotropic etching method. Then, a gate dielectric layer 210 is formed on the surface of the trench 200a of the substrate 200. The formation method of the layer 210 is, for example, a thermal oxidation process in a furnace tube; then, a liner layer 212 is selectively formed on the gate dielectric layer 210, and the formation method of the liner layer 212 is, for example, physical vapor deposition, chemistry. Vapor deposition or original Sublayer vapor deposition. Next, a buried word line 208 is formed on the surface of the liner 212. The method of forming the buried word line 208 is, for example, a physical vapor deposition method, a chemical vapor deposition method, or an atomic layer vapor deposition method. In the present embodiment, the liner 212 is formed between the buried word line 208 and the gate dielectric layer 210. However, the present invention is not limited thereto. In other embodiments, the buried word line 208 may be formed directly on the bottom and sidewalls of the trench 200a of the substrate 200 without forming the liner 212. The structure and formation method of the well region 214 is similar to the well region 114 of the above embodiment, and therefore will not be described herein.
接著,請參照圖2B,在基板200中形成鄰接埋入式字元線結構202的第一摻雜區204。第一摻雜區204的摻質可為N型摻質,例如磷或砷,但不限於此;或者,第一摻雜區204的摻質可為P型摻質,例如硼,但不限於此。而第一摻雜區204的摻質一般與井區114的P型或N型摻質相反,且第一摻雜區204的形成方法例如是離子植入法,摻雜劑量約為1.5×1012 atoms/cm2~1.5×1013 atoms/cm2。 Next, referring to FIG. 2B, a first doped region 204 adjacent to the buried word line structure 202 is formed in the substrate 200. The dopant of the first doping region 204 may be an N-type dopant, such as phosphorus or arsenic, but is not limited thereto; or the dopant of the first doping region 204 may be a P-type dopant, such as boron, but is not limited thereto. this. The doping of the first doping region 204 is generally opposite to the P-type or N-type dopant of the well region 114, and the first doping region 204 is formed by, for example, ion implantation, and the doping amount is about 1.5×10. 12 atoms/cm 2 ~ 1.5 × 10 13 atoms/cm 2 .
繼之,請參照圖2C,在基板200中形成第二摻雜區206,其中第二摻雜區206形成於第一摻雜區204上,且第一摻雜區204的摻雜濃度低於第二摻雜區206的摻雜濃度。第二摻雜區206的摻質與第一摻雜區204的摻質相同。在本實施例中,相較於第一摻雜區204的形成方法而言,第二摻雜區206的形成方法例如是在基板200上以較小的摻雜能量進行離子植入法,從而在第一摻雜區204上形成摻雜劑量約為1.5×1013 atoms/cm2~1.5×1014 atoms/cm2的第二摻雜區206。進一步地說,由於第二摻雜區206 是直接形成於第一摻雜區204上,故在形成第二摻雜區206時不用額外提供另外的光罩即可進行第二摻雜區206的離子植入製程,因此可降低光罩的使用成本,且此製程完全相容於現今的DRAM製程技術。除此之外,在本實施例中,由於第一摻雜區204所提供的摻雜能量大於形成所提供的摻雜能量,因此可確保第一摻雜區204在基板200中的摻雜深度大於第二摻雜區206在基板200中的摻雜深度。除此之外,可適當地調整上述摻雜能量以調整第二摻雜區206的深度,從而避免第二摻雜區206與埋入式字元線208發生過度重疊而造成閘極引致汲極漏電流的問題。 Then, referring to FIG. 2C, a second doping region 206 is formed in the substrate 200, wherein the second doping region 206 is formed on the first doping region 204, and the doping concentration of the first doping region 204 is lower than Doping concentration of the second doping region 206. The dopant of the second doping region 206 is the same as the dopant of the first doping region 204. In the present embodiment, the method of forming the second doping region 206 is, for example, performing ion implantation on the substrate 200 with a small doping energy, as compared with the method of forming the first doping region 204. A second doping region 206 having a doping amount of about 1.5 × 10 13 atoms / cm 2 to 1.5 × 10 14 atoms / cm 2 is formed on the first doping region 204. Further, since the second doping region 206 is directly formed on the first doping region 204, the second doping region 206 can be performed without additionally providing an additional photomask when forming the second doping region 206. The ion implantation process reduces the cost of the mask and is fully compatible with today's DRAM process technology. In addition, in the present embodiment, since the doping energy provided by the first doping region 204 is greater than the doping energy provided, the doping depth of the first doping region 204 in the substrate 200 can be ensured. Greater than the doping depth of the second doped region 206 in the substrate 200. In addition, the above doping energy can be appropriately adjusted to adjust the depth of the second doping region 206, thereby avoiding excessive overlap of the second doping region 206 and the buried word line 208, thereby causing gate buckling. Leakage current problem.
接著,以本發明所屬技術領域具有通常知識者所熟知的埋入式字元線動態隨機存取記憶體的製程完成埋入式字元線動態隨機存取記憶體20,並在此不再贅述。 Then, the embedded word line dynamic random access memory 20 is completed by the process of the embedded word line dynamic random access memory which is well known to those skilled in the art, and will not be described herein. .
基於上述實施例可知,由於第二摻雜區206的摻雜濃度是形成在第一摻雜區204上方的基板200中,因此可利用同一個光罩進行第一摻雜區204與第二摻雜區206的離子植入製程,故此製程方法可節省光罩的使用成本。 Based on the above embodiment, since the doping concentration of the second doping region 206 is formed in the substrate 200 above the first doping region 204, the first doping region 204 and the second doping may be performed by using the same photomask. The ion implantation process of the impurity region 206, so the process method can save the use cost of the photomask.
將原有汲極摻雜能量20KeV、摻雜劑量為2.8×1013 atoms/cm2的製程參數,改為第一摻雜區之摻雜能量35KeV、摻雜劑量為1×1013 atoms/cm2;第二摻雜區之摻雜能量10KeV、摻雜劑量為2.4×1013 atoms/cm2。結果和原有的摻雜區相比,具有不同摻雜濃度的兩個摻雜區之記憶時間可改善40毫秒(millisecond)以上。 The process parameters of the original doping energy of 20KeV and the doping amount of 2.8×10 13 atoms/cm 2 were changed to the doping energy of the first doping region of 35KeV, and the doping amount was 1×10 13 atoms/cm. 2 ; the doping energy of the second doping region is 10 KeV, and the doping amount is 2.4×10 13 atoms/cm 2 . As a result, the memory time of the two doped regions having different doping concentrations can be improved by more than 40 milliseconds compared to the original doped region.
圖3表示本發明的一實施例中的埋入式字元線動態隨機存取記憶體的摻雜區的摻雜濃度曲線圖。圖3的縱軸表示在埋入式字元線動態隨機存取記憶體的深度,而圖3的横軸表示上述深度所對應的摻雜濃度。 3 is a graph showing a doping concentration profile of a doped region of a buried word line dynamic random access memory in an embodiment of the present invention. The vertical axis of Fig. 3 indicates the depth of the embedded random word line dynamic random access memory, and the horizontal axis of Fig. 3 indicates the doping concentration corresponding to the above depth.
請參照圖3,其中曲線314為圖1的實施例中的井區114的摻雜濃度曲線,曲線304表示圖1的實施例中的第一摻雜區104的摻雜濃度曲線,而曲線306表示圖1的實施例中的第二摻雜區106的摻雜濃度曲線。實務上,圖3之摻雜濃度可由下述之摻雜劑量來實現:第一摻雜區106的摻雜深度大約為200nm~300nm,且所對應的摻雜劑量大約為1.5×1012 atoms/cm2~1.5×1013 atoms/cm2;第二摻雜區106的摻雜深度大約為100nm~200nm,且所對應的摻雜劑量大約為1.5×1013 atoms/cm2~1.5×1014 atoms/cm2。 Referring to FIG. 3, curve 314 is the doping concentration curve of well region 114 in the embodiment of FIG. 1, curve 304 is the doping concentration curve of first doping region 104 in the embodiment of FIG. 1, and curve 306 is shown. The doping concentration curve of the second doping region 106 in the embodiment of FIG. 1 is shown. In practice, the doping concentration of FIG. 3 can be achieved by the following doping amount: the doping depth of the first doping region 106 is about 200 nm to 300 nm, and the corresponding doping amount is about 1.5×10 12 atoms/ Cm 2 ~ 1.5 × 10 13 atoms / cm 2 ; the doping depth of the second doping region 106 is about 100 nm ~ 200 nm, and the corresponding doping amount is about 1.5 × 10 13 atoms / cm 2 ~ 1.5 × 10 14 Atom/cm 2 .
綜上所述,上述實施例至少具有以下特點。上述實施例所提出的埋入式字元線動態隨機存取記憶體在不劣化埋入式字元線動態隨機存取記憶體的單胞電流的情形下,可有效地降低埋入式字元線動態隨機存取記憶體的閘極引致汲極漏電流,並進而提高埋入式字元線動態隨機存取記憶體的記憶時間。除此之外,依照本發明的製造方法,更可利用同一個光罩進行兩次不同摻雜能量的離子植入製程以節省光罩成本。 In summary, the above embodiment has at least the following features. The embedded word line dynamic random access memory proposed in the above embodiment can effectively reduce the buried character without degrading the unit current of the embedded word line dynamic random access memory. The gate of the line dynamic random access memory causes a drain leakage current, and further improves the memory time of the embedded word line dynamic random access memory. In addition, according to the manufacturing method of the present invention, two ion implantation processes with different doping energies can be performed by using the same mask to save the cost of the mask.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍 當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of protection of the present invention It is subject to the definition of the scope of the patent application attached.
10‧‧‧埋入式字元線動態隨機存取記憶體 10‧‧‧ Buried word line dynamic random access memory
100‧‧‧基板 100‧‧‧Substrate
102‧‧‧埋入式字元線結構 102‧‧‧ Buried word line structure
104‧‧‧第一摻雜區 104‧‧‧First doped area
106‧‧‧第二摻雜區 106‧‧‧Second doped area
108‧‧‧埋入式字元線 108‧‧‧Blinded word line
110‧‧‧閘介電層 110‧‧‧gate dielectric layer
112‧‧‧襯層 112‧‧‧ lining
114‧‧‧井區 114‧‧‧ Well Area
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102112155A TWI512902B (en) | 2013-04-03 | 2013-04-03 | Buried word line dram and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102112155A TWI512902B (en) | 2013-04-03 | 2013-04-03 | Buried word line dram and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201440173A true TW201440173A (en) | 2014-10-16 |
TWI512902B TWI512902B (en) | 2015-12-11 |
Family
ID=52113910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102112155A TWI512902B (en) | 2013-04-03 | 2013-04-03 | Buried word line dram and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI512902B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115116961A (en) * | 2021-03-19 | 2022-09-27 | 华邦电子股份有限公司 | Dynamic random access memory and manufacturing method thereof |
US11538811B2 (en) | 2021-02-25 | 2022-12-27 | Winbond Electronics Corp. | Dynamic random access memory and method of manufacturing the same |
US11711914B2 (en) | 2021-04-07 | 2023-07-25 | Winbond Electronics Corp. | Semiconductor structure having buried gate structure and method of manufacturing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7473952B2 (en) * | 2005-05-02 | 2009-01-06 | Infineon Technologies Ag | Memory cell array and method of manufacturing the same |
US7956387B2 (en) * | 2006-09-08 | 2011-06-07 | Qimonda Ag | Transistor and memory cell array |
KR101556238B1 (en) * | 2009-02-17 | 2015-10-01 | 삼성전자주식회사 | Method of fabricating semiconductor device having buried wiring |
-
2013
- 2013-04-03 TW TW102112155A patent/TWI512902B/en active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11538811B2 (en) | 2021-02-25 | 2022-12-27 | Winbond Electronics Corp. | Dynamic random access memory and method of manufacturing the same |
TWI809359B (en) * | 2021-02-25 | 2023-07-21 | 華邦電子股份有限公司 | Method of manufacturing dyanmic random access memory |
CN115116961A (en) * | 2021-03-19 | 2022-09-27 | 华邦电子股份有限公司 | Dynamic random access memory and manufacturing method thereof |
US11711914B2 (en) | 2021-04-07 | 2023-07-25 | Winbond Electronics Corp. | Semiconductor structure having buried gate structure and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TWI512902B (en) | 2015-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9634109B2 (en) | Semiconductor device having dual work function gate structure, method for fabricating the same, transistor circuit having the same, memory cell having the same, and electronic device having the same | |
US9818843B2 (en) | Transistor having dual work function buried gate electrode and method for fabricating the same | |
US9472646B2 (en) | Dual work function buried gate type transistor and method for fabricating the same | |
US9018695B2 (en) | Semiconductor device and method for manufacturing the same | |
CN109427652B (en) | Method for manufacturing embedded character line structure and structure | |
KR101662282B1 (en) | Semiconductor device having a buried gate pattern including high-k dielectric capping layer and fabricating method thereof | |
KR101095745B1 (en) | Semiconductor Device and Method for Manufacturing the same | |
US9012303B2 (en) | Method for fabricating semiconductor device with vertical transistor structure | |
CN103545373A (en) | Semiconductor device and method for fabricating the same | |
TWI532181B (en) | Recessed channel access transistor device and fabrication method thereof | |
TWI512902B (en) | Buried word line dram and manufacturing method thereof | |
US9704989B2 (en) | Semiconductor device and method for manufacturing the same | |
JP2011192800A (en) | Semiconductor device and method for manufacturing the same | |
US20110298040A1 (en) | Semiconductor device and method of manufacturing the same | |
CN104112746B (en) | Embedded type word line dynamic random access memory and its manufacture method | |
US9754889B2 (en) | Electronic component of integrated circuitry and a method of forming a conductive via to a region of semiconductor material | |
JP2013062350A (en) | Semiconductor device and manufacturing method of the same | |
TW201620079A (en) | Static random access memory and manufacturing method thereof | |
US20160118306A1 (en) | Semiconductor device with buried metal layer | |
KR20120042575A (en) | Method for manufacturing semiconductor device | |
JP2015207692A (en) | Semiconductor device and method for manufacturing the same | |
KR20080089018A (en) | Method for fabricating semiconductor device |