TW201436472A - Apparatus and method for parallel type SAR ADC - Google Patents

Apparatus and method for parallel type SAR ADC Download PDF

Info

Publication number
TW201436472A
TW201436472A TW102107520A TW102107520A TW201436472A TW 201436472 A TW201436472 A TW 201436472A TW 102107520 A TW102107520 A TW 102107520A TW 102107520 A TW102107520 A TW 102107520A TW 201436472 A TW201436472 A TW 201436472A
Authority
TW
Taiwan
Prior art keywords
signal
comparison
clock
buffer
slow
Prior art date
Application number
TW102107520A
Other languages
Chinese (zh)
Other versions
TWI481201B (en
Inventor
Wei-Liang Lin
Shih-Ying Zeng
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW102107520A priority Critical patent/TWI481201B/en
Publication of TW201436472A publication Critical patent/TW201436472A/en
Application granted granted Critical
Publication of TWI481201B publication Critical patent/TWI481201B/en

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Abstract

An apparatus for parallel type SAR (Successive Approximation Register) ADC (Analog to Digital Converter) is disclosed. The apparatus for parallel type SAR ADC includes two switches, two capacitor arrays, a compare module, a fast buffer, a slow buffer, a delay buffer, and a control logic module. The switches, the capacitor arrays, and the compare module are electrically connected. The compare module is to produce a compare signal. The slow buffer is to accept the compare signal and to produce a ValidSlow signal. The fast buffer is to accept the compare signal and to produce a ValidFast signal. The delay buffer is to accept the compare signal and to produce a ValidLoop signal to reset the compare module. The control logic module is to accept the ValidFast signal and the ValidSlow signal to control the voltage of the capacitors of the capacitor arrays.

Description

平行訊號型漸進式類比數位轉換器及方法 Parallel signal type progressive analog digital converter and method

本發明是有關於一種漸進式類比數位轉換器及方法,且特別是有關於一種平行訊號型漸進式類比數位轉換器及方法。 The present invention relates to a progressive analog digital converter and method, and more particularly to a parallel signal type progressive analog digital converter and method.

隨著科技的進步,電子技術與設備在現代生活中扮演越來越重要的角色,舉凡各式資料的處理:聲音、溫度、光線、壓力、訊號,都可見到由電子設備處理的應用,然而電子設備通常僅可處理電子數位訊號,因此類比數位轉換器(Analog to Digital Converter,ADC)便應運而生。 With the advancement of technology, electronic technology and equipment play an increasingly important role in modern life. The processing of various types of data: sound, temperature, light, pressure, and signal can be seen in applications processed by electronic devices. Electronic devices usually only process electronic digital signals, so analog to digital converters (ADCs) have emerged.

類比數位轉換器的主要作用是把自然界的類比訊號轉換為電子設備可以處理的數位訊號,其中漸進式(Successive Approximation Register,SAR)類比數位轉換器(ADC)被公認有著低功耗的特性,卻由於SAR ADC本身的架構需進行多次比較周期,進而限制了其轉換速度,因此傳統的SAR ADC一直被限制在低功率、低速的應 用。 The main function of the analog-to-digital converter is to convert the natural analog signal into a digital signal that can be processed by electronic devices. Among them, the Progressive Approximation Register (SAR) analog digital converter (ADC) is recognized as having low power consumption, but Since the architecture of the SAR ADC itself requires multiple comparison cycles, which limits its conversion speed, traditional SAR ADCs have been limited to low power and low speed. use.

近年來隨著架構和製程的改良,SAR ADC也已經開始朝向發展高速的應用,尤其是分時平行式(timing-interleaved)的架構更經常被採用於高速的類比數位轉換器。SAR ADC的基本工作原理,是利用二進制的方式來尋找每個位元的解析度,因此需要一個比取樣頻率更高的位元循環時脈(Bit cycling clock)來達成,若以解析度10位元為例,就需要高出取樣頻率的10倍以上的位元循環時脈,為了避免這個高速時脈通過整個晶片,非同步位元循環時脈(asynchronous Bit cycling clock)便應運而生。 In recent years, with the improvement of architecture and process, SAR ADC has also begun to develop high-speed applications, especially the timing-interleaved architecture is more often used in high-speed analog digital converters. The basic working principle of SAR ADC is to use binary method to find the resolution of each bit. Therefore, it needs a bit cycling clock higher than the sampling frequency to achieve 10 bits. For example, in the case of a bit cycle clock that is more than 10 times the sampling frequency, in order to avoid the high-speed clock passing through the entire wafer, an asynchronous bit cycling clock is born.

但習知的SAR ADC即使相較最初發展時期已克服許多問題並且提高速度,卻仍舊受限於其架構需進行多次比較,而為了在每次比較都能正常運作,在每進行下一次比較前都需要延遲足夠的時間以確保輸入訊號能穩定通過SAR ADC電路,此延遲時間同時也限制了SAR ADC的速度,延遲時間成為SAR ADC發展更高速的瓶頸。 However, even though the conventional SAR ADC has overcome many problems and speeds up compared with the initial development period, it is still limited by the fact that its architecture needs to be compared multiple times, and in order to operate normally in each comparison, every next comparison is made. It is necessary to delay enough time to ensure that the input signal can pass through the SAR ADC circuit. This delay time also limits the speed of the SAR ADC. The delay time becomes a higher speed bottleneck for the development of SAR ADC.

因此,本發明之一目的是在提供一種平行訊號型漸進式類比數位轉換器及方法,以進行高速的漸進式類比數位轉換。 Accordingly, it is an object of the present invention to provide a parallel signal type progressive analog digital converter and method for high speed progressive analog digital conversion.

依據本發明之一實施方式,提供一種平行訊號型漸進式類比數位轉換器,其包含二開關、二電容陣列、一 比較模組、一快速緩衝器、一緩慢緩衝器、一延遲緩衝器及一控制邏輯模組,其中各電容陣列分別電性連接各開關,且各電容陣列具有複數電容,比較模組具有二輸入端、一輸出端及一比較時脈端,各輸入端分別電性連接各電容陣列,比較模組用以產生一比較訊號;快速緩衝器電性連接比較模組之輸出端,且快速緩衝器具有一快速緩衝時間,快速緩衝器用以接收比較訊號並產生一有效快速訊號,有效快速訊號用以切換二電容陣列之那些電容;緩慢緩衝器電性連接比較模組之輸出端,緩慢緩衝器具有一緩慢緩衝時間,且緩慢緩衝時間長於快速緩衝時間,緩慢緩衝器用以接收比較訊號並產生一有效緩慢訊號,有效緩慢訊號用以觸發切換二電容陣列之那些電容;延遲緩衝器電性連接比較模組之輸出端及比較時脈端,延遲緩衝器具有一延遲緩衝時間,且延遲緩衝時間短於緩慢緩衝時間而長於快速緩衝時間,延遲緩衝器自輸出端接收比較訊號並產生一有效迴圈訊號,且比較模組之比較時脈端用以接收有效迴圈訊號以重置比較模組;控制邏輯模組電性連接快速緩衝器、緩慢緩衝器及二電容陣列,控制邏輯模組接收有效快速訊號及有效緩慢訊號以產生複數切換訊號,這些切換訊號用以控制二電容陣列之那些電容的電壓值。 According to an embodiment of the present invention, a parallel signal type progressive analog digital converter is provided, which comprises a two switch, a two capacitor array, and a a comparison module, a fast buffer, a slow buffer, a delay buffer, and a control logic module, wherein each capacitor array is electrically connected to each switch, and each capacitor array has a plurality of capacitors, and the comparison module has two inputs. a terminal, an output terminal and a comparison clock terminal, each input terminal is electrically connected to each capacitor array, the comparison module is used to generate a comparison signal; the fast buffer is electrically connected to the output end of the comparison module, and the fast buffer device There is a fast buffer time, the fast buffer is used to receive the comparison signal and generate an effective fast signal, the effective fast signal is used to switch the capacitance of the two capacitor array; the slow buffer is electrically connected to the output of the comparison module, and the slow buffer has a slow Buffer time, and the slow buffer time is longer than the fast buffer time. The slow buffer is used to receive the comparison signal and generate a valid slow signal. The effective slow signal is used to trigger the switching of the capacitors of the two capacitor array. The delay buffer is electrically connected to the comparison module. The output buffer and the comparison clock terminal have a delay buffer time and delay The buffering time is shorter than the slow buffering time and longer than the fast buffering time. The delay buffer receives the comparison signal from the output terminal and generates an effective loop signal, and the comparison clock terminal of the comparison module is configured to receive the effective loop signal to reset the comparison. The control logic module is electrically connected to the fast buffer, the slow buffer and the two capacitor array, and the control logic module receives the effective fast signal and the effective slow signal to generate the complex switching signals, and the switching signals are used to control the two capacitor arrays. The voltage value of those capacitors.

依據上述之平行訊號型漸進式類比數位轉換器,其中開關可為靴帶式開關,比較模組可包含一比較器及一比較器反及閘,其中比較器具有二比較輸出端、二輸入端及比較時脈端,比較器用以產生二比較輸出訊號,各比較 輸出訊號分別輸出於各比較輸出端,比較器反及閘電性連接二比較輸出端並產生比較訊號。 According to the above parallel signal type progressive analog digital converter, wherein the switch can be a bootstrap switch, the comparison module can include a comparator and a comparator reverse gate, wherein the comparator has two comparison outputs and two inputs. And comparing the clock terminals, the comparator is used to generate two comparison output signals, each comparison The output signals are respectively outputted to the comparison outputs, and the comparators are connected to the comparators and the comparison outputs are generated.

依據上述之平行訊號型漸進式類比數位轉換器,其中控制邏輯模組可包含一循環時脈產生器、一邏輯單元、複數驅動器及複數切換器,其中循環時脈產生器用以接收緩慢緩衝器產生之有效緩慢訊號及一預設取樣時脈訊號,並產生有序的複數循環時脈訊號,那些循環時脈訊號用以觸發切換二電容陣列的那些電容,邏輯單元與快速緩衝器、循環時脈產生器及比較器之二比較輸出端電性連接,邏輯單元用以接收各比較輸出訊號、那些循環時脈訊號、預設取樣時脈訊號及快速緩衝器產生之有效快速訊號,邏輯單元並產生複數位元訊號,那些驅動器與邏輯單元電性連接,用以接收那些位元訊號並產生複數驅動訊號,各切換器與各驅動器電性連接,那些切換器用以接收那些驅動訊號並產生那些切換訊號。其中循環時脈產生器可為D型正反器陣列。 According to the above parallel signal type progressive analog digital converter, wherein the control logic module can include a cyclic clock generator, a logic unit, a complex driver and a complex switch, wherein the cyclic clock generator is configured to receive a slow buffer generation The effective slow signal and a preset sampling clock signal, and generate an ordered complex cyclic clock signal, those cyclic clock signals are used to trigger those capacitors that switch the two capacitor array, the logic unit and the fast buffer, the cyclic clock The comparator and the comparator are electrically connected to the comparison output, and the logic unit is configured to receive the comparison output signals, the cyclic clock signals, the preset sampling clock signals, and the effective fast signals generated by the flash buffer, and generate the logic units. The plurality of bit signals are electrically connected to the logic unit for receiving the bit signals and generating the plurality of driving signals. The switches are electrically connected to the drivers, and the switches are used to receive the driving signals and generate the switching signals. . The cyclic clock generator can be a D-type flip-flop array.

依據上述之平行訊號型漸進式類比數位轉換器,其中更可包含一比較時脈模組,其電性連接延遲緩衝器、循環時脈產生器及比較模組之比較時脈端,比較時脈模組包含一比較時脈反或閘及一比較時脈反閘,比較時脈反或閘用以接收預設取樣時脈訊號、延遲緩衝器產生之有效迴圈訊號、及循環時脈產生器產生之那些循環時脈訊號之最後一者,並產生一比較時脈反或訊號,比較時脈反閘則電性連接比較時脈反或閘,用以接收比較時脈反或訊號並產 生一比較時脈訊號,比較時脈訊號用以輸入至比較模組之比較時脈端以重置比較模組。 According to the above-mentioned parallel signal type progressive analog digital converter, a comparison clock module can be further included, which is electrically connected to the delay buffer, the cyclic clock generator and the comparison clock of the comparison module, and compares the clock. The module includes a comparison clock inverse gate and a comparison clock reverse gate, and the comparison clock reverse gate is used to receive the preset sampling clock signal, the effective loop signal generated by the delay buffer, and the cyclic clock generator. The last one of the cyclic clock signals is generated, and a comparison clock reverse signal or signal is generated, and the clock reverse gate is electrically connected to the clock reverse gate or the gate to receive the comparison clock signal or signal. A comparison clock signal is used to compare the clock signal to the comparison clock terminal of the comparison module to reset the comparison module.

依據本發明另一實施方式,提供一種平行訊號型漸進式類比數位轉換器,其包含二開關、二電容陣列、一比較模組、一快速緩衝器、一緩慢緩衝器、一延遲緩衝器、一循環時脈產生器、一邏輯單元、複數驅動器、複數切換器及一比較時脈模組,其中各電容陣列分別電性連接各開關,且各電容陣列具有複數電容,比較模組具有二輸入端、一輸出端及一比較時脈端,各輸入端各分別電性連接各電容陣列,比較模組用以產生二比較輸出訊號並將二比較輸出訊號經反及運算而產生一比較訊號;快速緩衝器電性連接比較模組之輸出端,快速緩衝器具有一快速緩衝時間,且快速緩衝器用以接收比較訊號並產生一有效快速訊號;緩慢緩衝器電性連接比較模組之輸出端,緩慢緩衝器具有一緩慢緩衝時間,且緩慢緩衝時間長於快速緩衝時間,緩慢緩衝器用以接收比較訊號並產生一有效緩慢訊號;延遲緩衝器電性連接比較模組之輸出端及比較時脈端,延遲緩衝器具有一延遲緩衝時間,且延遲緩衝時間短於緩慢緩衝時間而長於快速緩衝時間,延遲緩衝器自輸出端接收比較訊號並產生一有效迴圈訊號,且比較模組之比較時脈端用以接收有效迴圈訊號以重置比較模組;循環時脈產生器用以接收緩慢緩衝器產生之有效緩慢訊號及一預設取樣時脈訊號,並產生有序的複數循環時脈訊號,那些循環時脈訊號用以觸發切換二電容陣列的那些電容;邏輯單元與快速 緩衝器、比較模組及循環時脈產生器電性連接,邏輯單元用以接收各比較輸出訊號、那些循環時脈訊號、預設取樣時脈訊號及快速緩衝器產生之有效快速訊號,並產生複數位元訊號;那些驅動器與邏輯單元電性連接,那些驅動器用以接收那些位元訊號並產生複數驅動訊號;各切換器與各驅動器電性連接,那些切換器用以接收那些驅動訊號並產生複數切換訊號,那些切換訊號用以控制二電容陣列之那些電容的電壓值;比較時脈模組電性連接延遲緩衝器、循環時脈產生器及比較模組之比較時脈端,比較時脈模組用以接收預設取樣時脈訊號、延遲緩衝器產生之有效迴圈訊號、及循環時脈產生器產生之那些循環時脈訊號之最後一者,並產生一比較時脈訊號以輸入至比較模組之比較時脈端,藉以重置比較模組。 According to another embodiment of the present invention, a parallel signal type progressive analog digital converter includes a two switch, a two capacitor array, a comparison module, a fast buffer, a slow buffer, a delay buffer, and a a cyclic clock generator, a logic unit, a complex driver, a complex switch, and a comparison clock module, wherein each capacitor array is electrically connected to each switch, and each capacitor array has a plurality of capacitors, and the comparison module has two inputs. And an output terminal and a comparison clock end, each input end is electrically connected to each capacitor array, and the comparison module is configured to generate two comparison output signals and perform a comparison signal by inversely calculating the two comparison output signals; The buffer is electrically connected to the output end of the comparison module, the fast buffer has a fast buffer time, and the fast buffer is used to receive the comparison signal and generate an effective fast signal; the slow buffer is electrically connected to the output end of the comparison module, and is slowly buffered. Has a slow buffer time, and the slow buffer time is longer than the fast buffer time, and the slow buffer is used to receive the comparison. And generate a valid slow signal; the delay buffer is electrically connected to the output of the comparison module and the comparison clock end, the delay buffer has a delay buffer time, and the delay buffer time is shorter than the slow buffer time and longer than the fast buffer time, the delay The buffer receives the comparison signal from the output end and generates an effective loop signal, and the comparison clock terminal of the comparison module is configured to receive the effective loop signal to reset the comparison module; the loop clock generator is configured to receive the slow buffer generation The effective slow signal and a preset sampling clock signal, and generate an ordered complex cyclic clock signal, those cyclic clock signals are used to trigger those capacitors that switch the two capacitor array; logic unit and fast The buffer, the comparison module and the cyclic clock generator are electrically connected, and the logic unit is configured to receive the comparison output signals, the cyclic clock signals, the preset sampling clock signals, and the effective fast signals generated by the fast buffer, and generate The plurality of bit signals; the drivers are electrically connected to the logic unit, the drivers are used to receive the bit signals and generate the plurality of driving signals; the switches are electrically connected to the drivers, and the switches are used to receive the driving signals and generate the complex signals. Switching signals, those switching signals are used to control the voltage values of those capacitors of the two-capacitor array; comparing the time-pulse modules of the clock-connecting module electrically connecting the delay buffer, the cyclic clock generator and the comparison module to compare the clock modes The group is configured to receive a preset sampling clock signal, an effective loop signal generated by the delay buffer, and a last one of the cyclic clock signals generated by the cyclic clock generator, and generate a comparison clock signal for input to the comparison. The module compares the clock end to reset the comparison module.

依據上述之平行訊號型漸進式類比數位轉換器,其中開關可為靴帶式開關,循環時脈產生器可為D型正反器陣列。 According to the above parallel signal type progressive analog digital converter, wherein the switch can be a bootstrap switch, and the cyclic clock generator can be a D-type flip-flop array.

依據本發明又一實施方式,提供一種平行訊號型漸進式類比數位轉換方法,其包含步驟:進行一比較步驟,比較步驟將二輸入訊號透過一比較模組轉換為一比較訊號,將比較訊號延遲一快速緩衝時間而產生一有效快速訊號,進行一準備電容步驟,準備電容步驟將比較訊號延遲一緩慢緩衝時間而產生一有效緩慢訊號,其中緩慢緩衝時間長於快速緩衝時間,藉由有效緩慢訊號以觸發切換二電容陣列之複數電容,進行一漸進式轉換步驟,漸進式轉換 步驟利用有效快速訊號及有效緩慢訊號產生複數切換訊號,並藉由那些切換訊號以控制二電容陣列之那些電容的電壓值,進行一準備比較器步驟,準備比較器步驟將比較訊號延遲一延遲緩衝時間而產生一有效迴圈訊號,其中延遲緩衝時間短於緩慢緩衝時間而長於快速緩衝時間,並藉由有效迴圈訊號以重置比較模組。 According to still another embodiment of the present invention, a parallel signal type progressive analog digital conversion method is provided, comprising the steps of: performing a comparison step of converting a two input signal into a comparison signal through a comparison module, delaying the comparison signal A fast buffering time generates an effective fast signal, and a preparation capacitor step is performed. The preparation capacitor step delays the comparison signal by a slow buffering time to generate a valid slow signal, wherein the slow buffering time is longer than the fast buffering time, by effectively slowing the signal Triggering switching the complex capacitance of the two capacitor arrays, performing a progressive conversion step, progressive conversion The step of generating a complex switching signal by using the effective fast signal and the effective slow signal, and performing a comparator step by preparing the comparator to control the voltage value of the capacitors of the two capacitor array, preparing the comparator step to delay the comparison signal by a delay buffer The time generates an effective loop signal, wherein the delay buffer time is shorter than the slow buffer time and longer than the fast buffer time, and the comparison module is reset by the effective loop signal.

依據上述之平行訊號型漸進式類比數位轉換方法,其中比較步驟更可包含將二輸入訊號透過一比較器轉換為二比較輸出訊號,及將各比較輸出訊號分別進行一反及邏輯運算而產生比較訊號。 According to the above parallel signal type progressive analog digital conversion method, the comparing step may further include converting the two input signals into a second comparison output signal through a comparator, and performing a reverse and logical operation on each of the comparison output signals to generate a comparison. Signal.

依據上述之平行訊號型漸進式類比數位轉換方法,其中準備電容步驟更可包含將有效緩慢訊號配合一預設取樣時脈訊號而產生有序的複數循環時脈訊號,及藉由那些循環時脈訊號觸發切換二電容陣列之那些電容。 According to the above parallel signal type progressive analog digital conversion method, the step of preparing the capacitance may further comprise generating an ordered complex cyclic clock signal by combining the effective slow signal with a preset sampling clock signal, and by using the cyclic clock. The signal triggers switching those capacitors of the two capacitor array.

依據上述之平行訊號型漸進式類比數位轉換方法,其中漸進式轉換步驟更可包含將各比較輸出訊號配合有效快速訊號、預設取樣時脈訊號及那些循環時脈訊號之一者而轉換為一位元訊號,將位元訊號轉換為驅動訊號,將驅動訊號轉換為那些切換訊號之一者,切換訊號切換二電容陣列之那些電容之一者以控制二電容陣列之那些電容的電壓值,將二電容陣列之電壓值作為二輸入訊號。 According to the above parallel signal type progressive analog digital conversion method, the progressive conversion step may further include converting each comparison output signal into one of an effective fast signal, a preset sampling clock signal, and one of those cyclic clock signals. The bit signal converts the bit signal into a driving signal, and converts the driving signal into one of those switching signals. The switching signal switches one of those capacitors of the two capacitor array to control the voltage values of those capacitors of the two capacitor array. The voltage value of the two capacitor array is used as a two-input signal.

依據上述之平行訊號型漸進式類比數位轉換方法,其中準備比較器步驟更可包含將有效迴圈訊號配合預設取樣時脈訊號及那些循環時脈訊號之最後一者而產生一 比較時脈訊號,將比較時脈訊號輸入至比較模組以重置比較模組。 According to the above parallel signal type progressive analog digital conversion method, the step of preparing the comparator may further comprise generating an effective loop signal with a preset sampling clock signal and a last one of the cyclic clock signals. Comparing the clock signals, the clock signals are compared to the comparison module to reset the comparison module.

由上述可知,本發明之平行訊號型漸進式類比數位轉換器及平行訊號型漸進式類比數位轉換方法採用二路平行式非同步時脈來完成漸進式類比數位轉換器的轉換過程,使得每次轉換所需之觸發訊號在上個比較周期就已準備好,因此能節省每次轉換等待觸發訊號的時間,進而提升類比數位轉換的取樣頻率,達到高速的效能。 It can be seen from the above that the parallel signal type progressive analog digital converter and the parallel signal type analog analog digital conversion method of the present invention use a two-way parallel asynchronous clock to complete the conversion process of the progressive analog digital converter, so that each time The trigger signal required for the conversion is ready in the last comparison cycle, so that the time for waiting for the trigger signal for each conversion can be saved, thereby increasing the sampling frequency of the analog digital conversion to achieve high-speed performance.

110、120‧‧‧開關 110, 120‧‧‧ switch

111、112‧‧‧接點 111, 112‧‧‧ contacts

210‧‧‧第一電容陣列 210‧‧‧First Capacitor Array

211、212‧‧‧接點 211, 212‧‧‧ contacts

220‧‧‧第二電容陣列 220‧‧‧Second capacitor array

300‧‧‧比較模組 300‧‧‧Comparative Module

301‧‧‧輸出端 301‧‧‧output

310‧‧‧比較器 310‧‧‧ Comparator

311‧‧‧第一輸入端 311‧‧‧ first input

312‧‧‧第二輸入端 312‧‧‧ second input

313‧‧‧第一比較輸出端 313‧‧‧First comparison output

314‧‧‧第二比較輸出端 314‧‧‧Second comparison output

315‧‧‧比較時脈端 315‧‧‧Compared with the clock

320‧‧‧比較器反及閘 320‧‧‧ Comparator reverse gate

400‧‧‧快速緩衝器 400‧‧‧Quick buffer

401、402‧‧‧接點 401, 402‧‧‧Contacts

500‧‧‧緩慢緩衝器 500‧‧‧ Slow buffer

600‧‧‧延遲緩衝器 600‧‧‧Delay buffer

700‧‧‧控制邏輯模組 700‧‧‧Control logic module

710‧‧‧循環時脈產生器 710‧‧‧Cycle clock generator

711‧‧‧D型正反器 711‧‧‧D type flip-flop

720‧‧‧邏輯單元 720‧‧‧Logical unit

721‧‧‧邏輯單元及閘 721‧‧‧Logical unit and gate

722‧‧‧邏輯單元D型正反器 722‧‧‧Logical unit D type flip-flop

730‧‧‧驅動器 730‧‧‧ drive

731、732‧‧‧接點 731, 732‧‧‧ contacts

740‧‧‧切換器 740‧‧‧Switcher

741、742‧‧‧接點 741, 742‧‧‧ contacts

800‧‧‧比較時脈模組 800‧‧‧Compared Clock Module

810‧‧‧比較時脈反或閘 810‧‧‧Compare clock reverse or gate

820‧‧‧比較時脈反閘 820‧‧‧Compare clock reverse gate

S101~S107‧‧‧步驟 S101~S107‧‧‧Steps

S910‧‧‧比較步驟 S910‧‧‧Compare steps

S920‧‧‧產生有效快速訊號步驟 S920‧‧‧ Generate effective fast signal steps

S930‧‧‧準備電容步驟 S930‧‧‧Preparation of capacitance steps

S940‧‧‧準備比較器步驟 S940‧‧‧Preparation of comparator steps

S950‧‧‧漸進式轉換步驟 S950‧‧‧ Progressive conversion steps

S960‧‧‧進行下一周期步驟 S960‧‧‧Next cycle steps

Biti‧‧‧位元 Biti‧‧ bits

Clk(i+1)‧‧‧循環時脈訊號 Clk(i+1)‧‧‧cycle clock signal

Clk12‧‧‧循環時脈訊號之最後一者 The last of the Clk12‧‧‧ cycle signals

Clki‧‧‧循環時脈訊號之一者 Clki‧‧‧One of the loop signals

Clkc‧‧‧比較時脈訊號 Clkc‧‧·Compare clock signal

Clkcb‧‧‧比較時脈反或訊號 Clkcb‧‧‧Compare clock or signal

Clks‧‧‧預設取樣時脈訊號 Clks‧‧‧Preset sampling clock signal

Outp‧‧‧第一比較輸出訊號 Outp‧‧‧First comparison output signal

Outn‧‧‧第二比較輸出訊號 Outn‧‧‧Second comparison output signal

Spi、Sni‧‧‧位元訊號 Spi, Sni‧‧‧ bit signal

Vip、Vin‧‧‧輸入訊號 Vip, Vin‧‧‧ input signal

ValidPre‧‧‧比較訊號 ValidPre‧‧‧ comparison signal

ValidFast‧‧‧有效快速訊號 ValidFast‧‧‧ effective fast signal

ValidSlow‧‧‧有效緩慢訊號 ValidSlow‧‧‧ effective slow signal

ValidLoop‧‧‧有效迴圈訊號 ValidLoop‧‧‧effective loop signal

第1圖係繪示依照本發明一實施方式的平行訊號型漸進式類比數位轉換器的架構示意圖。 FIG. 1 is a schematic diagram showing the architecture of a parallel signal type progressive analog digital converter according to an embodiment of the present invention.

第2圖係繪示依照第1圖的平行訊號型漸進式類比數位轉換器的轉換流程示意圖。 FIG. 2 is a schematic diagram showing the conversion process of the parallel signal type progressive analog digital converter according to FIG. 1.

第3圖係繪示第1圖的開關的電路圖。 Fig. 3 is a circuit diagram showing the switch of Fig. 1.

第4圖係繪示第1圖的第一電容陣列的電路佈局圖。 4 is a circuit layout diagram of the first capacitor array of FIG. 1.

第5圖係繪示第1圖的比較器的電路圖。 Fig. 5 is a circuit diagram showing the comparator of Fig. 1.

第6圖係繪示第1圖的快速緩衝器的電路圖。 Fig. 6 is a circuit diagram showing the fast buffer of Fig. 1.

第7圖係繪示第1圖的循環時脈產生器及比較時脈反或閘的電路圖。 Fig. 7 is a circuit diagram showing the cyclic clock generator of Fig. 1 and the comparison clock reverse gate.

第8圖係繪示第1圖的邏輯單元的電路圖。 Figure 8 is a circuit diagram showing the logic unit of Figure 1.

第9圖係繪示第7圖及第8圖中訊號的時序圖。 Figure 9 is a timing chart showing the signals in Figures 7 and 8.

第10圖係繪示第1圖的驅動器的電路圖。 Fig. 10 is a circuit diagram showing the driver of Fig. 1.

第11圖係繪示第1圖的切換器的電路圖。 Fig. 11 is a circuit diagram showing the switch of Fig. 1.

第12圖係繪示依照本發明又一實施方式的平行訊號型漸進式類比數位轉換方法的流程圖。 FIG. 12 is a flow chart showing a parallel signal type progressive analog digital conversion method according to still another embodiment of the present invention.

請參照第1圖,其繪示依照本發明一實施方式的平行訊號型漸進式類比數位轉換器的架構示意圖,本實施方式以10位元的平行訊號型漸進式類比數位轉換器為例,但實際應用的位元數可由所屬技術領域中具有通常知識者依需求而自行變化。 Referring to FIG. 1 , a schematic diagram of a parallel signal type progressive analog digital converter according to an embodiment of the present invention is shown. The present embodiment uses a 10-bit parallel signal progressive analog digital converter as an example, but The number of bits of the actual application can be varied by the person having ordinary knowledge in the art as needed.

如第1圖所示之平行訊號型漸進式類比數位轉換器包含二開關110及120、一第一電容陣列210、一第二電容陣列220、一比較模組300、一快速緩衝器400、一緩慢緩衝器500、一延遲緩衝器600、一控制邏輯模組700及一比較時脈模組800,其中第一電容陣列210電性連接開關110,第二電容陣列220電性連接開關120,第一電容陣列210及第二電容陣列220各具有複數電容,第一電容陣列210由其電容的電壓值而提供一輸入訊號Vip至比較模組300,第二電容陣列220由其電容的電壓值而提供一輸入訊號Vin至比較模組300。 The parallel signal type analog analog digital converter shown in FIG. 1 includes two switches 110 and 120, a first capacitor array 210, a second capacitor array 220, a comparison module 300, a fast buffer 400, and a a slow buffer 500, a delay buffer 600, a control logic module 700, and a comparison clock module 800, wherein the first capacitor array 210 is electrically connected to the switch 110, and the second capacitor array 220 is electrically connected to the switch 120, A capacitor array 210 and a second capacitor array 220 each have a plurality of capacitors. The first capacitor array 210 provides an input signal Vip from the voltage value of the capacitor to the comparison module 300, and the second capacitor array 220 has a voltage value of the capacitor. An input signal Vin is provided to the comparison module 300.

比較模組300具有二輸入端、一輸出端301及一比較時脈端315,其中二輸入端分別為一第一輸入端311及一第二輸入端312,第一輸入端311電性連接第一電容陣列210用以接收輸入訊號Vip,第二輸入端312電性連 接第二電容陣列220用以接收輸入訊號Vin。比較模組300用以產生一比較訊號ValidPre於輸出端301。更詳細地說,比較模組300包含一比較器310及一比較器反及閘320,比較器310具有二比較輸出端、二輸入端及比較時脈端315,其中二輸入端分別為前述的第一輸入端311及第二輸入端312,二比較輸出端分別為一第一比較輸出端313及一第二比較輸出端314,比較器310用以產生一第一比較輸出訊號Outp於第一比較輸出端313及一第二比較輸出訊號Outn於第二比較輸出端314,比較器反及閘320電性連接比較器310的第一比較輸出端313及第二比較輸出端314,使得第一比較輸出訊號Outp及第二比較輸出訊號Outn共同經過比較器反及閘320,並產生一比較訊號ValidPre於輸出端301。 The comparison module 300 has a second input end, an output end 301 and a comparison clock end 315. The two input ends are respectively a first input end 311 and a second input end 312, and the first input end 311 is electrically connected. A capacitor array 210 is used to receive the input signal Vip, and the second input terminal 312 is electrically connected. The second capacitor array 220 is connected to receive the input signal Vin. The comparison module 300 is configured to generate a comparison signal ValidPre at the output terminal 301. In more detail, the comparison module 300 includes a comparator 310 and a comparator inverse gate 320. The comparator 310 has two comparison outputs, two input terminals and a comparison clock terminal 315, wherein the two input terminals are respectively the foregoing The first input terminal 311 and the second input terminal 312, the second comparison output terminals are a first comparison output terminal 313 and a second comparison output terminal 314, respectively, and the comparator 310 is configured to generate a first comparison output signal Outp at the first Comparing the output terminal 313 and the second comparison output signal Outn to the second comparison output terminal 314, the comparator and the gate 320 are electrically connected to the first comparison output terminal 313 and the second comparison output terminal 314 of the comparator 310, so that the first The comparison output signal Outp and the second comparison output signal Outn pass through the comparator reverse gate 320 and generate a comparison signal ValidPre at the output terminal 301.

快速緩衝器400電性連接比較模組300之輸出端301,且快速緩衝器400具有一快速緩衝時間,快速緩衝器400用以接收比較訊號ValidPre並產生一有效快速訊號ValidFast。有效快速訊號ValidFast係用以切換第一電容陣列210或第二電容陣列220之電容,其機制將與控制邏輯模組700一併於後詳述。 The fast buffer 400 is electrically connected to the output terminal 301 of the comparison module 300, and the fast buffer 400 has a fast buffer time. The fast buffer 400 is configured to receive the comparison signal ValidPre and generate a valid fast signal ValidFast. The effective fast signal ValidFast is used to switch the capacitance of the first capacitor array 210 or the second capacitor array 220, the mechanism of which will be detailed later with the control logic module 700.

緩慢緩衝器500電性連接比較模組300之輸出端301,緩慢緩衝器500具有一緩慢緩衝時間,且緩慢緩衝時間長於快速緩衝時間,緩慢緩衝器500用以接收比較訊號ValidPre並產生一有效緩慢訊號ValidSlow。有效緩慢訊號ValidSlow係用以觸發切換第一電容陣列210或第二電容 陣列220之電容,其機制將控制邏輯模組700一併於後詳述。 The slow buffer 500 is electrically connected to the output terminal 301 of the comparison module 300. The slow buffer 500 has a slow buffer time, and the slow buffer time is longer than the fast buffer time. The slow buffer 500 is used to receive the comparison signal ValidPre and generate a slow response. Signal ValidSlow. The effective slow signal ValidSlow is used to trigger the switching of the first capacitor array 210 or the second capacitor The capacitance of the array 220, the mechanism of which will be described in detail later in the control logic module 700.

延遲緩衝器600電性連接比較模組300之輸出端301,延遲緩衝器600具有一延遲緩衝時間,且延遲緩衝時間短於緩慢緩衝時間而長於快速緩衝時間,延遲緩衝器600自輸出端301接收比較訊號ValidPre並產生一有效迴圈訊號ValidLoop。迴圈訊號ValidLoop係用以輸入至比較時脈模組800以重置比較模組300,其機制將與比較時脈模組800一併於後詳述。 The delay buffer 600 is electrically connected to the output terminal 301 of the comparison module 300. The delay buffer 600 has a delay buffer time, and the delay buffer time is shorter than the slow buffer time and longer than the fast buffer time. The delay buffer 600 receives from the output terminal 301. Compare the signal ValidPre and generate a valid loop signal ValidLoop. The loop signal ValidLoop is used to input to the comparison clock module 800 to reset the comparison module 300. The mechanism will be detailed later with the comparison clock module 800.

控制邏輯模組700電性連接快速緩衝器400、緩慢緩衝器500、第一電容陣列210及第二電容陣列220,控制邏輯模組700接收有效快速訊號ValidFast及有效緩慢訊號ValidSlow以產生複數切換訊號,這些切換訊號用以控制第一電容陣列210及第二電容陣列220的那些電容的電壓值,以進行漸進式類比數位轉換。 The control logic module 700 is electrically connected to the fast buffer 400, the slow buffer 500, the first capacitor array 210 and the second capacitor array 220. The control logic module 700 receives the valid fast signal ValidFast and the valid slow signal ValidSlow to generate a complex switching signal. These switching signals are used to control the voltage values of those capacitors of the first capacitor array 210 and the second capacitor array 220 for progressive analog digital conversion.

更詳細地說,控制邏輯模組700包含一循環時脈產生器710、一邏輯單元720、複數驅動器730及複數切換器740,循環時脈產生器710係用以接收預設取樣時脈訊號Clks及緩慢緩衝器500所產生之有效緩慢訊號ValidSlow,並產生有序的複數循環時脈訊號Clk(i+1),這些循環時脈訊號Clk(i+1)用以觸發切換第一電容陣列210及第二電容陣列220的那些電容;邏輯單元720與快速緩衝器400、循環時脈產生器710、及比較器310之二比較輸出端313及314電性連接,邏輯單元720係用以接收各比 較輸出訊號Outp或Outn、那些循環時脈訊號Clk(i+1)、預設取樣時脈訊號Clks、及快速緩衝器400產生之有效快速訊號ValidFast,並產生複數位元訊號;各驅動器730分別與邏輯單元720電性連接,驅動器730用以接收那些位元訊號並產生複數驅動訊號;各切換器740分別與各驅動器730電性連接,切換器740係用以接收那些驅動訊號並產生前述的那些切換訊號,用以控制第一電容陣列210及第二電容陣列220的那些電容的電壓值。 In more detail, the control logic module 700 includes a cyclic clock generator 710, a logic unit 720, a complex driver 730, and a complex switch 740. The loop clock generator 710 is configured to receive a preset sampling clock signal Clks. And the effective slow signal ValidSlow generated by the slow buffer 500, and generates an ordered complex cyclic clock signal Clk(i+1), and the cyclic clock signals Clk(i+1) are used to trigger the switching of the first capacitor array 210. And the capacitors of the second capacitor array 220; the logic unit 720 is electrically connected to the comparison buffers 313 and 314 of the fast buffer 400, the cyclic clock generator 710, and the comparator 310, and the logic unit 720 is configured to receive each ratio The output signal Outp or Outn, the cyclic clock signal Clk(i+1), the preset sampling clock signal Clks, and the valid fast signal ValidFast generated by the fast buffer 400, and generate a complex bit signal; each driver 730 respectively The switch 740 is electrically connected to each of the drivers 730, and the switch 740 is configured to receive the drive signals and generate the foregoing, and the driver 730 is electrically connected to the logic unit 720. Those switching signals are used to control the voltage values of those capacitors of the first capacitor array 210 and the second capacitor array 220.

比較時脈模組800與延遲緩衝器600、循環時脈產生器710、及比較模組300之比較時脈端315電性連接,比較時脈模組800自延遲緩衝器600接收有效迴圈訊號ValidLoop並產生一比較時脈訊號Clkc輸出至比較模組300之比較時脈端315,用以重置比較模組300。更詳細地說,比較時脈模組800包含一比較時脈反或閘810及一比較時脈反閘820,比較時脈反或閘810用以接收預設取樣時脈訊號Clks、延遲緩衝器600產生之有效迴圈訊號ValidLoop、及循環時脈產生器710產生之那些循環時脈訊號Clk(i+1)之最後一者Clk12,並產生一比較時脈反或訊號Clkcb,比較時脈反閘820電性連接比較時脈反或閘810,用以接收比較時脈反或訊號Clkcb,並產生上述的比較時脈訊號Clkc以輸入至比較模組300之比較時脈端315以重置比較模組300。 The comparison clock module 800 is electrically connected to the comparison clock terminal 315 of the delay buffer 600, the cyclic clock generator 710, and the comparison module 300, and the comparison clock module 800 receives the effective loop signal from the delay buffer 600. The ValidLoop generates a comparison clock signal Clkc output to the comparison clock terminal 315 of the comparison module 300 for resetting the comparison module 300. In more detail, the comparison clock module 800 includes a comparison clock inverse gate 810 and a comparison clock reverse gate 820. The comparison clock inverse gate 810 is configured to receive a preset sampling clock signal Clks and a delay buffer. The effective loop signal generated by 600, ValidLoop, and the last one of the cyclic clock signals Clk(i+1) generated by the cyclic clock generator 710, Clk12, and a comparison clock reverse signal or signal Clkcb, compare clock reverse The gate 820 is electrically connected to the clock reverse gate 810 for receiving the comparison clock inverse signal Clkcb, and generates the comparison clock signal Clkc to be input to the comparison clock terminal 315 of the comparison module 300 to reset the comparison. Module 300.

配合參照第2圖,其係繪示依照第1圖的平行訊號型漸進式類比數位轉換器的轉換流程示意圖。於開始 後,進行步驟S101,由比較模組300比較判斷第一電容陣列210所輸入的輸入訊號Vip是否大於第二電容電列220所輸入的輸入訊號Vin,於此第一次比較周期時不需切換任何電容即可開始進行比較。若步驟S101的判斷結果為是,即若輸入訊號Vip大於輸入訊號Vin,則進從進行步驟S102,將此比較周期所比較的位元Biti設為1,並進行步驟S103,切換第一電容陣列210的電容改變電容值,使得切換後的第一電容陣列210中的輸入訊號Vip成為原輸入訊號Vip-Vref/2i,其中Vref為平行訊號型漸進式類比數位轉換器的電壓值範圍,而第二電容陣列220中的輸入訊號Vin維持不變,再繼續進行步驟S106;若步驟S101的判斷結果為否,即若輸入訊號Vip不大於輸入訊號Vin,則進從進行步驟S104,將此比較周期所比較的位元Biti設為0,並進行步驟S105,切換第二電容陣列220的電容改變電容值,使得切換後的第二電容陣列220中的輸入訊號Vin成為原輸入訊號Vin-Vref/2i,其中Vref為平行訊號型漸進式類比數位轉換器的電壓值範圍,而第一電容陣列210中的輸入訊號Vip維持不變,再繼續進步驟S106。步驟S106判斷i=N,其中N表示平行訊號型漸進式類比數位轉換器共有N位元,因此步驟S106用以判斷目前比較的第i位元是否是最後一位,例如第1圖所示的實施方式為10位元,則N=10,代表總共會進行10次比較。若步驟S106的結果為否,即若比較未完成,則進行步驟S107,設定i為i+1以繼續進行下一位元的比較,並回到步驟S101繼 續;若步驟S106的結果為是,即代表完成所有位元的比較,則停止,完成平行訊號型漸進式類比數位轉換。 Referring to FIG. 2, it is a schematic diagram showing a conversion flow of a parallel signal type progressive analog digital converter according to FIG. After the start, step S101 is performed, and the comparison module 300 compares and determines whether the input signal Vip input by the first capacitor array 210 is greater than the input signal Vin input by the second capacitor array 220, and is not used in the first comparison period. You need to switch any capacitors to start the comparison. If the result of the determination in step S101 is YES, that is, if the input signal Vip is greater than the input signal Vin, proceeding to step S102, the bit Biti compared with the comparison period is set to 1, and step S103 is performed to switch the first capacitor array. The capacitance of 210 changes the capacitance value, so that the input signal Vip in the switched first capacitor array 210 becomes the original input signal Vip-Vref/2 i , where Vref is the voltage value range of the parallel signal type progressive analog digital converter, and The input signal Vin in the second capacitor array 220 remains unchanged, and then proceeds to step S106; if the result of the determination in step S101 is no, that is, if the input signal Vip is not greater than the input signal Vin, then proceeding to step S104, the comparison is performed. The bit Biti of the cycle is set to 0, and step S105 is performed to switch the capacitance of the second capacitor array 220 to change the capacitance value, so that the input signal Vin in the switched second capacitor array 220 becomes the original input signal Vin-Vref/ 2 i , wherein Vref is a voltage value range of the parallel signal type progressive analog digital converter, and the input signal Vip in the first capacitor array 210 remains unchanged, and then proceeds to step S106. Step S106 determines that i=N, where N represents a parallel signal type progressive analog digital converter sharing N bits, so step S106 is used to determine whether the currently compared i-th bit is the last bit, for example, as shown in FIG. The implementation is 10 bits, then N = 10, which means that a total of 10 comparisons will be made. If the result of step S106 is no, that is, if the comparison is not completed, then step S107 is performed, setting i to i+1 to continue the comparison of the next bit, and returning to step S101 to continue; if the result of step S106 is YES, That is to say, after completing the comparison of all the bits, it stops and completes the parallel signal type progressive analog digital conversion.

配合參照第3圖,其係繪示第1圖的開關110的電路圖,開關110及開關120皆可使用如第3圖所繪示的靴帶式開關,在此僅以開關110為例說明。開關110之接點111接收一預設預設取樣時脈訊號Clks以作為觸發開關110的訊號,接點112則輸出一開關訊號至第一電容陣列210。另外,開關120可使用與開關110相同或類似的結構,其中開開120輸出的另一開關訊號則傳送至第二電容陣列220,在此不另加繪示。開關110及開關120另可採用MOS開關或其他開關,而不限於本實施方式之靴帶式開關。 Referring to FIG. 3, a circuit diagram of the switch 110 of FIG. 1 is shown. Both the switch 110 and the switch 120 can use the bootstrap switch as shown in FIG. 3. Here, only the switch 110 is taken as an example. The contact 111 of the switch 110 receives a preset preset sampling clock signal Clks as a signal for triggering the switch 110, and the contact 112 outputs a switching signal to the first capacitor array 210. In addition, the switch 120 can use the same or similar structure as the switch 110, wherein the other switching signal of the open 120 output is transmitted to the second capacitor array 220, which is not shown here. The switch 110 and the switch 120 may alternatively be MOS switches or other switches, and are not limited to the boot band switches of the present embodiment.

配合參照第4圖,其係繪示第1圖的第一電容陣列210的電路佈局圖,第二電容陣列220與第一電容陣列210皆可使用如第4圖所繪示的電路佈局,在此僅以第一電容陣列210為例說明。第一電容陣列210之接點211與第3圖中開關110的接點112電性連接,接點211用以接收來自接點112的開關訊號,並以接點212電性連接至比較模組300的第一輸入端311;第二電容陣列220可使用與第一電容陣列210相同或類似的電路佈局,則第二電容陣列接收來自開關120的開關訊號並電性連接至比較模組300的第二輸入端312。 Referring to FIG. 4, which is a circuit layout diagram of the first capacitor array 210 of FIG. 1, the second capacitor array 220 and the first capacitor array 210 can use the circuit layout as shown in FIG. This is only illustrated by taking the first capacitor array 210 as an example. The contact 211 of the first capacitor array 210 is electrically connected to the contact 112 of the switch 110 in FIG. 3, and the contact 211 is used for receiving the switching signal from the contact 112, and is electrically connected to the comparison module by the contact 212. The first input terminal 311 of the second capacitor array 220 can use the same or similar circuit layout as the first capacitor array 210, and the second capacitor array receives the switching signal from the switch 120 and is electrically connected to the comparison module 300. Second input 312.

配合參照第5圖,其係繪示第1圖中比較模組300的比較器310的電路圖,其中來自第一電容陣列210的訊號自第一輸入端311輸入至比較器310,來自第二電容陣 列220的訊號自第二輸入端312輸入至比較器310,比較時脈端315用以接受比較時脈訊號Clkc以重置比較器310,第一比較輸出訊號Outp則自第一比較輸出端313電性連接至比較器反及閘320,第二比較輸出訊號Outn自第二比較輸出端314電性連接至比較器反及閘320,經比較器反及閘320產生比較訊號ValidPre至輸出端301。 Referring to FIG. 5, a circuit diagram of the comparator 310 of the comparison module 300 in FIG. 1 is shown, wherein the signal from the first capacitor array 210 is input from the first input terminal 311 to the comparator 310 from the second capacitor. Array The signal of the column 220 is input from the second input terminal 312 to the comparator 310, and the comparison clock terminal 315 is configured to receive the comparison clock signal Clkc to reset the comparator 310. The first comparison output signal Outp is from the first comparison output terminal 313. The second comparison output signal Outn is electrically connected to the comparator opposite gate 320 from the second comparison output terminal 314, and the comparison signal ValidPre is outputted to the output terminal 301 via the comparator reverse gate 320. .

配合參照第6圖,其係繪示第1圖的快速緩衝器400的電路圖,其中快速緩衝器400、緩慢緩衝器500及延遲緩衝器600皆可採用類似第6圖所繪示的電路圖,在此僅以快速緩衝器400為例。快速緩衝器400的接點401電性連接比較模組300的輸出端301並接受比較訊號ValidPre,經第6圖所示電路而延遲一快速緩衝時間,產生有效快速訊號ValidFast至接點402,快速緩衝器400的接點402電性連接至控制邏輯模組700的邏輯單元720;緩慢緩衝器500則電性連接比較模組300的輸出端301,接受比較訊號ValidPre並延遲一緩慢緩衝時間,產生有效緩慢訊號ValidSlow並電性連接至邏輯模組700的循環時脈產生器710;延遲緩衝器600則電性連接比較模組300的輸出端301,接受比較訊號ValidPre並延遲一延遲緩衝時間,產生有效迴圈訊號ValidLoop並電性連接至比較時脈模組800的比較時脈反或閘810。 Referring to FIG. 6 , it is a circuit diagram of the fast buffer 400 of FIG. 1 , wherein the fast buffer 400 , the slow buffer 500 , and the delay buffer 600 can adopt a circuit diagram similar to that shown in FIG. 6 . This is exemplified by the fast buffer 400. The contact 401 of the fast buffer 400 is electrically connected to the output terminal 301 of the comparison module 300 and receives the comparison signal ValidPre, and delays a fast buffer time by the circuit shown in FIG. 6, generating an effective fast signal ValidFast to the contact 402, which is fast. The contact 402 of the buffer 400 is electrically connected to the logic unit 720 of the control logic module 700; the slow buffer 500 is electrically connected to the output terminal 301 of the comparison module 300, accepts the comparison signal ValidPre and delays a slow buffer time, and generates The effective slow signal ValidSlow is electrically connected to the cyclic clock generator 710 of the logic module 700; the delay buffer 600 is electrically connected to the output terminal 301 of the comparison module 300, receives the comparison signal ValidPre and delays a delay buffer time, and generates The valid loop signal ValidLoop is electrically coupled to the compare clock inverse gate 810 of the comparison clock module 800.

配合參照第7圖,其係繪示第1圖的循環時脈產生器710及比較時脈反或閘810的電路圖,其中循環時脈產生器710可採用由D型正反器711所組成的D型正反器 陣列,循環時脈產生器710接收預設取樣時脈訊號Clks及有效緩慢訊號ValidSlow,並依序產生循環時脈訊號Clk(i+1),其中i表示目前正在比較決定的位元,Clki用於觸發切換第一電容陣列210或第二電容陣列220的電容,循環時脈訊號Clk(i+1)則用以觸發切換下一比較周期中的第一電容陣列210或第二電容陣列220的電容,因此下一比較周期中的電容觸發訊號在上一比較周期就可準備好,所以應用本實例的平行訊號型漸進式類比數位轉換器可節省此等待電容觸發訊號的延遲時間,進而可提高平行訊號型漸進式類比數位轉換器的取樣頻率而達到高速的應用。本實施方式以10位元為例,因此依序產生循環時脈訊號Clk1、Clk2、Clk3、...、Clk12的高電位,其中Clk12電性連接至比較時脈模組800的比較時脈反或閘810,用以產生比較時脈訊號Clkc。 Referring to FIG. 7, a circuit diagram of the cyclic clock generator 710 and the comparison clock inverse gate 810 of FIG. 1 is illustrated, wherein the cyclic clock generator 710 can be composed of a D-type flip-flop 711. D-type flip-flop The array, the cyclic clock generator 710 receives the preset sampling clock signal Clks and the valid slow signal ValidSlow, and sequentially generates the cyclic clock signal Clk(i+1), where i represents the bit currently being compared, and Clki uses In order to trigger the switching of the capacitance of the first capacitor array 210 or the second capacitor array 220, the cyclic clock signal Clk(i+1) is used to trigger the switching of the first capacitor array 210 or the second capacitor array 220 in the next comparison period. Capacitance, so the capacitor trigger signal in the next comparison cycle can be prepared in the previous comparison cycle, so the parallel signal type analog analog converter of this example can save the delay time of the waiting capacitor trigger signal, thereby improving A parallel signal analog progressive analog converter with a sampling frequency for high speed applications. In the embodiment, the 10-bit is taken as an example, so that the high potentials of the cyclic clock signals Clk1, Clk2, Clk3, ..., Clk12 are sequentially generated, wherein the Clk12 is electrically connected to the comparison clock of the comparison clock module 800. Or gate 810 is used to generate a comparison clock signal Clkc.

請共同參照第1圖、第2圖及第8圖,第8圖係繪示第1圖的邏輯單元720的電路圖。邏輯單元720可包含一邏輯單元及閘721及一邏輯單元D型正反器722,邏輯單元及閘721接受來自循環時脈產生器710的循環時脈訊號Clki及來自快速緩衝器400的有效快速訊號ValidFast,再將輸出電性連接至邏輯單元D型正反器722。邏輯單元D型正反器722的輸入及輸出與第2圖中的步驟S101的判斷結果相關,先以當步驟S101的判斷結果為是為例,代表輸入訊號Vip大於輸入訊號Vin,則邏輯單元D型正反器722接受邏輯單元及閘721的輸出、第一比較輸 出端313的第一比較輸出訊號Outp、預設取樣時脈訊號Clks,並產生位元訊號Spi及位元Biti,其中Biti為1;若第2圖中的步驟S101的判斷結果為否,代表輸入訊號Vip不大於輸入訊號Vin,則邏輯單元D型正反器722接受邏輯單元及閘721的輸出、第二比較輸出端314的第二比較輸出訊號Outn、預設取樣時脈訊號Clks,並產生位元訊號Sni及位元Biti,其中Biti為0。 Please refer to FIG. 1 , FIG. 2 and FIG. 8 together. FIG. 8 is a circuit diagram of the logic unit 720 of FIG. 1 . The logic unit 720 can include a logic unit and a gate 721 and a logic unit D-type flip-flop 722. The logic unit and the gate 721 receive the cyclic clock signal Clki from the cyclic clock generator 710 and the effective fast from the fast buffer 400. The signal ValidFast is electrically connected to the logic unit D-type flip-flop 722. The input and output of the logic unit D-type flip-flop 722 are related to the determination result of step S101 in FIG. 2, first, taking the result of the determination in step S101 as an example, and representing that the input signal Vip is greater than the input signal Vin, the logic unit The D-type flip-flop 722 accepts the output of the logic unit and the gate 721, and the first comparison loses The first comparison output signal Outp of the output 313, the preset sampling clock signal Clks, and the bit signal Spi and the bit Biti are generated, wherein Biti is 1; if the judgment result of step S101 in FIG. 2 is no, the representative The input signal Vip is not greater than the input signal Vin, and the logic unit D-type flip-flop 722 receives the output of the logic unit and the gate 721, the second comparison output signal Outn of the second comparison output 314, and the preset sampling clock signal Clks, and A bit signal Sni and a bit Biti are generated, where Biti is 0.

請共同參照第1圖、第7圖、第8圖及第9圖,第9圖係繪示第7圖及第8圖中各訊號的時序圖,包含預設取樣時脈訊號Clks、比較時脈訊號Clkc、有效快速訊號ValidFast、有效緩慢訊號ValidSlow、循環時脈訊號Clk1、循環時脈訊號Clk1及有效快速訊號ValidFast共同通過邏輯單元及閘721後的訊號Clk1&ValidFast、循環時脈訊號Clk2、循環時脈訊號Clk2及效快速訊號ValidFast共同通過邏輯單元及閘721後的訊號Clk2&ValidFast、循環時脈訊號Clk9、循環時脈訊號Clk10、循環時脈訊號Clk11及循環時脈訊號之最後一者Clk12。可看出預設取樣時脈訊號Clks使得如第7圖所示的第一個D型正反器711的接點Qb設為「1」,即產生循環時脈訊號Clk1,其它D型正反器則重置為「0」;隨著有效緩慢訊號ValidSlow的切換,1的訊號依序傳遞位移,即循環時脈訊號Clk2至循環時脈訊號Clk11依序產生高電位,即循環時脈訊號Clk2至循環時脈訊號Clk11依序被設為「1」;當「1」的訊號傳遞至Clk11時,最後一個D型正反器所產生的循環時脈訊號之最後一 者Clk12被設為「1」,並且修正比較時脈訊號Clkc的值為高電位,此時一個周期完成;當下一個預設取樣時脈訊號Clks的高電位產生時,則所有D型正反器再次回到初始值,開始下一周期。 Please refer to FIG. 1 , FIG. 7 , FIG. 8 and FIG. 9 together. FIG. 9 is a timing diagram of signals in FIG. 7 and FIG. 8 , including preset sampling clock signal Clks and comparison time. Pulse signal Clkc, effective fast signal ValidFast, effective slow signal ValidSlow, cyclic clock signal Clk1, cyclic clock signal Clk1 and valid fast signal ValidFast through the logic unit and gate 721 after the signal Clk1 & ValidFast, cyclic clock signal Clk2, cycle time The pulse signal Clk2 and the fast signal ValidFast jointly pass the signal Clk2 & ValidFast after the logic unit and the gate 721, the cyclic clock signal Clk9, the cyclic clock signal Clk10, the cyclic clock signal Clk11 and the last one of the cyclic clock signals Clk12. It can be seen that the preset sampling clock signal Clks makes the contact Qb of the first D-type flip-flop 711 as shown in FIG. 7 set to "1", that is, the cyclic clock signal Clk1 is generated, and other D-type positive and negative The device is reset to "0"; with the switching of the valid slow signal ValidSlow, the signal of 1 is sequentially transmitted, that is, the cyclic pulse signal Clk2 to the cyclic pulse signal Clk11 sequentially generate a high potential, that is, the cyclic pulse signal Clk2 The cycle clock signal Clk11 is set to "1" in sequence; when the signal of "1" is transmitted to Clk11, the last one of the cyclic clock signals generated by the last D-type flip-flop Clk12 is set to "1", and the value of the modified clock signal Clkc is corrected to be high, and one cycle is completed; when the high potential of the pulse signal Clks is generated for the next preset sampling, all D-type flip-flops are generated. Go back to the initial value and start the next cycle.

繼續參照第10圖,其係繪示第1圖的驅動器730的電路圖,其中接點731係電性連接邏輯單元720,並接受第8圖中的位元訊號Spi或Sni,接點732係電性連接切換器740。各驅動器730分別電性連接各切換器740,用以觸發切換器740以觸發切換電容。 Continuing to refer to FIG. 10, which is a circuit diagram of the driver 730 of FIG. 1, wherein the contact 731 is electrically connected to the logic unit 720 and receives the bit signal Spi or Sni in FIG. 8, and the contact 732 is electrically connected. The switch 740 is connected. Each driver 730 is electrically connected to each switch 740 for triggering the switch 740 to trigger the switching capacitor.

請共同參照第1圖、第4圖及第11圖,第11圖係繪示第1圖的切換器740的電路圖,其中接點741電性連接驅動器730,接點742電性連接第一電容陣列210或第二電容陣列220之電容之一者之接點211,其中第一電容陣列210及第二電容陣列220之每一電容皆電性連接一切換器740,切換器740用以切換電容以改變電容的電壓值,進而改變電容所在的第一電容陣列210的輸入訊號Vip的電壓值,或改變變電容所在的第二電容陣列220的輸入訊號Vin的電壓值,又在每一位元的比較周期中,只有一切換器740會切換一電容。 Referring to FIG. 1 , FIG. 4 and FIG. 11 together, FIG. 11 is a circuit diagram of the switch 740 of FIG. 1 , wherein the contact 741 is electrically connected to the driver 730 , and the contact 742 is electrically connected to the first capacitor. A contact 211 of one of the capacitors of the array 210 or the second capacitor array 220, wherein each capacitor of the first capacitor array 210 and the second capacitor array 220 is electrically connected to a switch 740, and the switch 740 is used to switch capacitors. To change the voltage value of the capacitor, thereby changing the voltage value of the input signal Vip of the first capacitor array 210 where the capacitor is located, or changing the voltage value of the input signal Vin of the second capacitor array 220 where the variable capacitance is located, and at each bit In the comparison period, only one switch 740 switches a capacitor.

由上述本發明之實施方式可知,延遲緩衝器600的延遲緩衝時間需長於快速緩衝器400的快速緩衝時間,但延遲緩衝時間比起快速緩衝時間可約略相等而只稍微長一點,以維持訊號的穩定,同時又達成相當短的延遲;又透過延遲緩衝器600所產生的有效迴圈訊號ValidLoop重 置比較模組300,因此下一周期的比較模組300的重置可在上一周期就完成,使得無需花費額外時間等待比較器的重置,因此達成平行訊號型漸進式類比數位轉換器所必需的延遲時間可縮減到相當快;更透過緩慢緩衝器500產生的有效緩慢訊號ValidSlow可觸發切換下一位元比較周期的電容,節省了等待電容觸發準備的延遲時間。 As can be seen from the above embodiments of the present invention, the delay buffer time of the delay buffer 600 needs to be longer than the fast buffer time of the fast buffer 400, but the delay buffer time can be approximately equal to the fast buffer time and only slightly longer to maintain the signal. Stable, while achieving a fairly short delay; again through the effective loop signal generated by the delay buffer 600 ValidLoop The comparison module 300 is set, so the reset of the comparison module 300 of the next cycle can be completed in the previous cycle, so that no additional time is required to wait for the reset of the comparator, so that the parallel signal type analog analog digital converter is realized. The required delay time can be reduced to a relatively fast speed; the effective slow signal ValidSlow generated by the slow buffer 500 can trigger the switching of the capacitance of the next bit comparison period, saving the delay time of waiting for the capacitor trigger preparation.

根據上述之實施方式,比較模組300花費的時間可為150ps(皮秒),快速緩衝器400的快速緩衝時間可為70ps,邏輯單元720花費的時間可為110ps,驅動器730花費的時間可為80ps,切換器740花費的時間可為50ps,因此每比較轉換一位元所花費的總共延遲時間可為310ps,相較習知技術大為減少,也因此依據本發明之一實施方式的取樣頻率可達167MS/s(每秒百萬次),下表為以本發明之一實例為例的規格表相較相較先前技術的規格表: According to the above embodiment, the comparison module 300 can take 150 ps (picoseconds), the fast buffer 400 can have a fast buffer time of 70 ps, the logic unit 720 can take 110 ps, and the driver 730 can take At 80 ps, the time taken by the switch 740 can be 50 ps, so the total delay time taken to convert one bit per comparison can be 310 ps, which is greatly reduced compared to the prior art, and thus the sampling frequency according to one embodiment of the present invention. Up to 167 MS/s (million times per second), the following table shows a specification sheet based on an example of the present invention compared to the prior art specification sheet:

由上表可看出依據本發明之一實施方式相較先前技術表現極佳,尤其是取樣頻率相較先前技術達到大幅提升。 It can be seen from the above table that an embodiment according to the present invention performs better than the prior art, and in particular, the sampling frequency is greatly improved compared to the prior art.

請參照第12圖並一同參照上述說明,第12圖係繪示依照本發明又一實施方式的平行訊號型漸進式類比數位轉換方法的流程圖。開始後,先進行一比較步驟S910,將二輸入訊號透過一比較器轉換為二比較輸出訊號,並將各比較輸出訊號分別進行一反及邏輯運算而產生一比較訊號。 Referring to FIG. 12 and the above description together, FIG. 12 is a flow chart showing a parallel signal type progressive analog digital conversion method according to still another embodiment of the present invention. After the start, a comparison step S910 is performed to convert the two input signals into two comparison output signals through a comparator, and each of the comparison output signals is subjected to a reverse logic operation to generate a comparison signal.

接著進行產生有效快速訊號步驟S920、準備電容步驟S930、及準備比較器步驟S940,產生有效快速訊號步驟S920係將比較訊號延遲一快速緩衝時間而產生一有效快速訊號ValidFast;準備電容步驟S930係將比較訊號延 遲一緩慢緩衝時間而產生一有效緩慢訊號,其中緩慢緩衝時間長於快速緩衝時間,將有效緩慢訊號配合一預設取樣時脈訊號以產生有序的複數循環時脈訊號Clk(i+1),藉由這些循環時脈訊號Clk(i+1)觸發切換二電容陣列的那些電容;準備比較器步驟S940係將比較訊號延遲一延遲緩衝時間而產生一有效迴圈訊號,其中延遲緩衝時間短於緩慢緩衝時間而長於快速緩衝時間,將有效迴圈訊號配合預設取樣時脈訊號及那些循環時脈訊號Clk(i+1)之最後一者而產生一比較時脈訊號Clkc,將比較時脈訊號Clkc輸入至比較模組以重置比較模組。 Then, an effective fast signal generating step S920, a preparation capacitor step S930, and a preparation comparator step S940 are generated, and an effective fast signal is generated. Step S920 is to delay the comparison signal by a fast buffering time to generate an effective fast signal ValidFast; the preparing capacitor step S930 is to be performed. Comparative signal delay Slowly buffering time to generate a valid slow signal, wherein the slow buffering time is longer than the fast buffering time, and the effective slow signal is matched with a preset sampling clock signal to generate an ordered complex cyclic clock signal Clk(i+1), The capacitors of the two capacitor arrays are triggered by the cyclic pulse signals Clk(i+1); the comparator step S940 is configured to delay the comparison signal by a delay buffer time to generate an effective loop signal, wherein the delay buffer time is shorter than The slow buffer time is longer than the fast buffer time. The effective loop signal is matched with the preset sampling clock signal and the last one of the cyclic clock signals Clk(i+1) to generate a comparison clock signal Clkc, which will compare the clock. The signal Clkc is input to the comparison module to reset the comparison module.

漸進式轉換步驟S950利用產生有效快速訊號步驟S920所產生的有效快速訊號ValidFast及準備電容步驟S930所產生的循環時脈訊號Clk(i+1)而進行一位元的類比數位轉換,包含將各比較輸出訊號配合有效快速訊號ValidFast、預設取樣時脈訊號及那些循環時脈訊號Clk(i+1)之一者Clki而轉換為一位元訊號及一位元Biti,將位元訊號轉換為驅動訊號,將驅動訊號轉換為一切換訊號,切換訊號切換二電容陣列之那些電容之一者以控制二電容陣列之那些電容的電壓值,將二電容陣列之電壓值作為比較器的二輸入訊號。 The progressive conversion step S950 performs the analog-to-digital conversion of the one-bit element by using the effective fast signal ValidFast generated by the effective fast signal step S920 and the cyclic clock signal Clk(i+1) generated by the preparatory capacitance step S930, including each Comparing the output signal with the valid fast signal ValidFast, the preset sampling clock signal and one of the cyclic clock signals Clk(i+1), Clki, into a one-dimensional signal and one bit Biti, converting the bit signal into Driving the signal, converting the driving signal into a switching signal, switching the signal to switch one of the capacitors of the two capacitor array to control the voltage values of the capacitors of the two capacitor array, and using the voltage value of the two capacitor array as the two input signals of the comparator .

進行下一周期步驟S960判斷是否已完成所有位元的比較轉換,若未完成所有位元的比較轉換則回到比較步驟S910繼續,若已完成所有位元的比較轉換則結束。 The next cycle step S960 is performed to determine whether the comparison conversion of all the bits has been completed. If the comparison conversion of all the bits is not completed, the process returns to the comparison step S910 to continue, and if the comparison conversion of all the bits has been completed, the process ends.

綜上所述,應用本發明的平行訊號型漸進式類比 數位轉換器及平行訊號型漸進式類比數位轉換方法提前準備下一位元比較周期所需訊號,達到縮短必需的延遲時間,進而大幅提升取樣頻率,達到高速,並維持漸進式類比數位轉換器的低功率的優勢,而同時達到低功率、高速的優點。 In summary, the parallel signal type progressive analogy of the present invention is applied. The digital converter and the parallel signal type progressive analog digital conversion method prepare the signal required for the next one-dimensional comparison period in advance, thereby shortening the necessary delay time, thereby greatly increasing the sampling frequency, achieving high speed, and maintaining the progressive analog digital converter. The advantage of low power, while achieving the advantages of low power and high speed.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

110、120‧‧‧開關 110, 120‧‧‧ switch

210‧‧‧第一電容陣列 210‧‧‧First Capacitor Array

220‧‧‧第二電容陣列 220‧‧‧Second capacitor array

300‧‧‧比較模組 300‧‧‧Comparative Module

301‧‧‧輸出端 301‧‧‧output

310‧‧‧比較器 310‧‧‧ Comparator

311‧‧‧第一輸入端 311‧‧‧ first input

312‧‧‧第二輸入端 312‧‧‧ second input

313‧‧‧第一比較輸出端 313‧‧‧First comparison output

314‧‧‧第二比較輸出端 314‧‧‧Second comparison output

315‧‧‧比較時脈端 315‧‧‧Compared with the clock

320‧‧‧比較器反及閘 320‧‧‧ Comparator reverse gate

400‧‧‧快速緩衝器 400‧‧‧Quick buffer

500‧‧‧緩慢緩衝器 500‧‧‧ Slow buffer

600‧‧‧延遲緩衝器 600‧‧‧Delay buffer

700‧‧‧控制邏輯模組 700‧‧‧Control logic module

710‧‧‧循環時脈產生器 710‧‧‧Cycle clock generator

720‧‧‧邏輯單元 720‧‧‧Logical unit

730‧‧‧驅動器 730‧‧‧ drive

740‧‧‧切換器 740‧‧‧Switcher

800‧‧‧比較時脈模組 800‧‧‧Compared Clock Module

810‧‧‧比較時脈反或閘 810‧‧‧Compare clock reverse or gate

820‧‧‧比較時脈反閘 820‧‧‧Compare clock reverse gate

Claims (14)

一種平行訊號型漸進式類比數位轉換器,其包含:二開關;二電容陣列,各該電容陣列分別電性連接各該開關,且各該電容陣列具有複數電容;一比較模組,其具有二輸入端、一輸出端及一比較時脈端,各該輸入端分別電性連接各該電容陣列,該比較模組用以產生一比較訊號;一快速緩衝器,其電性連接該比較模組之該輸出端,該快速緩衝器具有一快速緩衝時間,該快速緩衝器用以接收該比較訊號並產生一有效快速訊號,該有效快速訊號用以切換該二電容陣列之該些電容;一緩慢緩衝器,其電性連接該比較模組之該輸出端,該緩慢緩衝器具有一緩慢緩衝時間,且該緩慢緩衝時間長於該快速緩衝時間,該緩慢緩衝器用以接收該比較訊號並產生一有效緩慢訊號,該有效緩慢訊號用以觸發切換該二電容陣列之該些電容;一延遲緩衝器,其電性連接該比較模組之該輸出端及該比較時脈端,該延遲緩衝器具有一延遲緩衝時間,且該延遲緩衝時間短於該緩慢緩衝時間而長於該快速緩衝時間,該延遲緩衝器自該輸出端接收該比較訊號並產生一有效迴圈訊號,且該比較時脈端用以接收該有效迴圈訊號以重置該比較模組;及一控制邏輯模組,其電性連接該快速緩衝器、該緩慢 緩衝器及該二電容陣列,該控制邏輯模組接收該有效快速訊號及該有效緩慢訊號以產生複數切換訊號,該些切換訊號用以控制該二電容陣列之該些電容的電壓值。 A parallel signal type progressive analog digital converter comprising: two switches; two capacitor arrays, each of which is electrically connected to each of the switches, and each of the capacitor arrays has a plurality of capacitors; and a comparison module has two An input terminal, an output terminal and a comparison clock terminal, each of the input terminals being electrically connected to each of the capacitor arrays, wherein the comparison module is configured to generate a comparison signal; and a fast buffer electrically connected to the comparison module The fast buffer has a fast buffer time for receiving the comparison signal and generating an effective fast signal, the effective fast signal is used to switch the capacitors of the two capacitor array; a slow buffer The slow buffer has a slow buffering time, and the slow buffering time is longer than the fast buffering time. The slow buffer is configured to receive the comparison signal and generate a valid slow signal. The effective slow signal is used to trigger the switching of the capacitors of the two capacitor arrays; a delay buffer electrically connected to the comparison And the output buffer and the comparison clock end, the delay buffer has a delay buffer time, and the delay buffer time is shorter than the slow buffer time and longer than the fast buffer time, the delay buffer receives the comparison from the output end The signal generates an effective loop signal, and the comparison clock terminal is configured to receive the effective loop signal to reset the comparison module; and a control logic module electrically connected to the fast buffer, the slow The buffer and the two capacitor arrays, the control logic module receives the valid fast signal and the effective slow signal to generate a plurality of switching signals, and the switching signals are used to control voltage values of the capacitors of the two capacitor arrays. 如請求項1之平行訊號型漸進式類比數位轉換器,其中該開關為靴帶式開關。 A parallel-signal progressive analog digital converter according to claim 1, wherein the switch is a bootstrap switch. 如請求項1之平行訊號型漸進式類比數位轉換器,其中該比較模組包含:一比較器,其具有二比較輸出端、該二輸入端及該比較時脈端,該比較器用以產生二比較輸出訊號,各該比較輸出訊號分別輸出於各該比較輸出端;及一比較器反及閘,其電性連接該二比較輸出端並產生該比較訊號。 The parallel signal type analog analog digital converter of claim 1, wherein the comparison module comprises: a comparator having two comparison outputs, the two input terminals and the comparison clock terminal, wherein the comparator is configured to generate two Comparing the output signals, each of the comparison output signals is respectively outputted to each of the comparison output terminals; and a comparator is connected to the gate, and is electrically connected to the two comparison output terminals to generate the comparison signal. 如請求項3之平行訊號型漸進式類比數位轉換器,其中該控制邏輯模組包含:一循環時脈產生器,用以接收該緩慢緩衝器產生之該有效緩慢訊號及一預設取樣時脈訊號,並產生有序的複數循環時脈訊號,該些循環時脈訊號用以觸發切換該二電容陣列的該些電容;一邏輯單元,與該快速緩衝器、該循環時脈產生器及該比較器之該二比較輸出端電性連接,該邏輯單元用以接收各該比較輸出訊號、該些循環時脈訊號、該預設取樣時 脈訊號及該快速緩衝器產生之該有效快速訊號,並產生複數位元訊號;複數驅動器,與該邏輯單元電性連接,用以接收該些位元訊號並產生複數驅動訊號;及複數切換器,各該切換器與各該驅動器電性連接,該些切換器用以接收該些驅動訊號並產生該些切換訊號。 The parallel signal type analog analog digital converter of claim 3, wherein the control logic module comprises: a cyclic clock generator for receiving the valid slow signal generated by the slow buffer and a predetermined sampling clock And generating an ordered plurality of cyclic clock signals, wherein the cyclic clock signals are used to trigger switching of the capacitors of the two capacitor arrays; a logic unit, the fast buffer, the loop clock generator, and the The two comparison output terminals of the comparator are electrically connected, and the logic unit is configured to receive each of the comparison output signals, the cyclic clock signals, and the preset sampling time. a pulse signal and the valid fast signal generated by the fast buffer, and generating a complex bit signal; a plurality of drivers electrically connected to the logic unit for receiving the bit signals and generating a complex driving signal; and a plurality of switchers Each of the switches is electrically connected to each of the drivers, and the switches are configured to receive the driving signals and generate the switching signals. 如請求項4之平行訊號型漸進式類比數位轉換器,其中該循環時脈產生器為D型正反器陣列。 The parallel signal type progressive analog digital converter of claim 4, wherein the cyclic clock generator is a D-type flip-flop array. 如請求項4之平行訊號型漸進式類比數位轉換器,其中更包含:一比較時脈模組,其電性連接該延遲緩衝器、該循環時脈產生器及該比較模組之該比較時脈端,該比較時脈模組包含:一比較時脈反或閘,用以接收該預設取樣時脈訊號、該延遲緩衝器產生之該有效迴圈訊號、及該循環時脈產生器產生之該些循環時脈訊號之最後一者,並產生一比較時脈反或訊號;及一比較時脈反閘,其電性連接該比較時脈反或閘,用以接收該比較時脈反或訊號並產生一比較時脈訊號,該比較時脈訊號用以輸入至該比較模組之該比較時脈端以重置該比較模組。 The parallel-signal progressive analog-to-digital converter of claim 4, further comprising: a comparison clock module electrically connected to the delay buffer, the cyclic clock generator, and the comparison module The pulse clock module includes: a comparison clock reverse gate or a gate for receiving the preset sampling clock signal, the effective loop signal generated by the delay buffer, and the loop clock generator generating The last one of the cyclic clock signals, and a comparison clock reverse signal or signal; and a comparison clock reverse gate, which is electrically connected to the comparison clock reverse gate or the gate to receive the comparison clock reverse Or the signal generates a comparison clock signal, and the comparison clock signal is input to the comparison clock end of the comparison module to reset the comparison module. 一種平行訊號型漸進式類比數位轉換器,其包含:二開關;二電容陣列,各該電容陣列分別電性連接各該開關,且各該電容陣列具有複數電容;一比較模組,其具有二輸入端、一輸出端及一比較時脈端,各該輸入端各分別電性連接各該電容陣列,該比較模組用以產生二比較輸出訊號並將該二比較輸出訊號經反及運算而產生一比較訊號;一快速緩衝器,其電性連接該比較模組之該輸出端,該快速緩衝器具有一快速緩衝時間,該快速緩衝器用以接收該比較訊號並產生一有效快速訊號;一緩慢緩衝器,其電性連接該比較模組之該輸出端,該緩慢緩衝器具有一緩慢緩衝時間,且該緩慢緩衝時間長於該快速緩衝時間,該緩慢緩衝器用以接收該比較訊號並產生一有效緩慢訊號;一延遲緩衝器,其電性連接該比較模組之該輸出端及該比較時脈端,該延遲緩衝器具有一延遲緩衝時間,且該延遲緩衝時間短於該緩慢緩衝時間而長於該快速緩衝時間,該延遲緩衝器自該輸出端接收該比較訊號並產生一有效迴圈訊號,且該比較時脈端用以接收該有效迴圈訊號以重置該比較模組;一循環時脈產生器,用以接收該緩慢緩衝器產生之該有效緩慢訊號及一預設取樣時脈訊號,並產生有序的複數循環時脈訊號,該些循環時脈訊號用以觸發切換該二電容 陣列的該些電容;一邏輯單元,與該快速緩衝器、該比較模組及該循環時脈產生器電性連接,該邏輯單元用以接收各該比較輸出訊號、該些循環時脈訊號、該預設取樣時脈訊號及該快速緩衝器產生之該有效快速訊號,並產生複數位元訊號;複數驅動器,與該邏輯單元電性連接,用以接收該些位元訊號並產生複數驅動訊號;複數切換器,各該切換器與各該驅動器電性連接,該些切換器用以接收該些驅動訊號並產生複數切換訊號,該些切換訊號用以控制該二電容陣列之該些電容的電壓值;以及一比較時脈模組,其電性連接該延遲緩衝器、該循環時脈產生器及該比較模組之該比較時脈端,該比較時脈模組用以接收該預設取樣時脈訊號、該延遲緩衝器產生之該有效迴圈訊號、及該循環時脈產生器產生之該些循環時脈訊號之最後一者,並產生一比較時脈訊號以輸入至該比較時脈端,藉以重置該比較模組。 A parallel signal type progressive analog digital converter comprising: two switches; two capacitor arrays, each of which is electrically connected to each of the switches, and each of the capacitor arrays has a plurality of capacitors; and a comparison module has two An input end, an output end, and a comparison clock end, each of the input ends is electrically connected to each of the capacitor arrays, wherein the comparison module is configured to generate two comparison output signals and inversely calculate the two comparison output signals. Generating a comparison signal; a fast buffer electrically connected to the output end of the comparison module, the fast buffer having a fast buffer time, the fast buffer for receiving the comparison signal and generating an effective fast signal; a buffer electrically connected to the output end of the comparison module, the slow buffer has a slow buffer time, and the slow buffer time is longer than the fast buffer time, the slow buffer is configured to receive the comparison signal and generate an effective slow a delay buffer electrically connected to the output of the comparison module and the comparison clock end, the delay buffer a delay buffering time, and the delay buffering time is shorter than the slow buffering time and longer than the fast buffering time, the delay buffer receives the comparison signal from the output end and generates an effective loop signal, and the comparison clock end uses Receiving the effective loop signal to reset the comparison module; a loop clock generator for receiving the valid slow signal generated by the slow buffer and a preset sampling clock signal, and generating an ordered complex number Looping clock signals, the cyclic clock signals are used to trigger switching of the two capacitors The logic unit is electrically connected to the fast buffer, the comparison module, and the cyclic clock generator, and the logic unit is configured to receive each of the comparison output signals, the cyclic clock signals, The preset sampling clock signal and the valid fast signal generated by the fast buffer, and generating a complex bit signal; the plurality of drivers are electrically connected to the logic unit for receiving the bit signals and generating a complex driving signal The plurality of switches are electrically connected to the respective drivers, and the switches are configured to receive the driving signals and generate a plurality of switching signals, wherein the switching signals are used to control voltages of the capacitors of the two capacitor arrays And a comparison clock module electrically connected to the delay buffer, the loop clock generator and the comparison clock end of the comparison module, wherein the comparison clock module is configured to receive the preset sampling a clock signal, the active loop signal generated by the delay buffer, and the last one of the cyclic clock signals generated by the loop clock generator, and generating a comparison clock signal When input to the clock terminal of the comparator, thereby resetting the comparison module. 如請求項7之平行訊號型漸進式類比數位轉換器,其中該開關為靴帶式開關。 A parallel-signal progressive analog digital converter according to claim 7, wherein the switch is a bootstrap switch. 如請求項7之平行訊號型漸進式類比數位轉換器,其中該循環時脈產生器為D型正反器陣列。 The parallel signal type progressive analog digital converter of claim 7, wherein the cyclic clock generator is a D-type flip-flop array. 一種平行訊號型漸進式類比數位轉換方法,其包含:進行一比較步驟:將二輸入訊號透過一比較模組轉換為一比較訊號;將該比較訊號延遲一快速緩衝時間而產生一有效快速訊號;進行一準備電容步驟:將該比較訊號延遲一緩慢緩衝時間而產生一有效緩慢訊號,其中該緩慢緩衝時間長於該快速緩衝時間,藉由該有效緩慢訊號以觸發切換二電容陣列之複數電容;進行一漸進式轉換步驟:利用該有效快速訊號及該有效緩慢訊號產生複數切換訊號,藉由該些切換訊號以控制該二電容陣列之該些電容的電壓值;及進行一準備比較器步驟:將該比較訊號延遲一延遲緩衝時間而產生一有效迴圈訊號,其中該延遲緩衝時間短於該緩慢緩衝時間而長於該快速緩衝時間,藉由該有效迴圈訊號以重置該比較模組。 A parallel signal type analog analog digital conversion method includes: performing a comparison step of: converting a two input signal into a comparison signal through a comparison module; delaying the comparison signal by a fast buffer time to generate an effective fast signal; Performing a step of preparing a capacitor: delaying the comparison signal by a slow buffering time to generate a valid slow signal, wherein the slow buffering time is longer than the fast buffering time, and the effective slow signal is used to trigger the switching of the complex capacitance of the two capacitor array; a progressive conversion step: generating a complex switching signal by using the effective fast signal and the effective slow signal, wherein the switching signals are used to control voltage values of the capacitors of the two capacitor arrays; and performing a preparation comparator step: The comparison signal delays a delay buffer time to generate an effective loop signal, wherein the delay buffer time is shorter than the slow buffer time and longer than the fast buffer time, and the valid loop signal is used to reset the comparison module. 如請求項10之平行訊號型漸進式類比數位轉換方法,其中該比較步驟更包含:將該二輸入訊號透過一比較器轉換為二比較輸出訊號;及將各該比較輸出訊號分別進行一反及邏輯運算而產生該比較訊號。 The parallel signal type progressive analog digital conversion method of claim 10, wherein the comparing step further comprises: converting the two input signals into a second comparison output signal through a comparator; and respectively performing each of the comparison output signals The comparison operation is generated by a logical operation. 如請求項11之平行訊號型漸進式類比數位轉換方法,其中該準備電容步驟更包含:將該有效緩慢訊號配合一預設取樣時脈訊號而產生有序的複數循環時脈訊號;及藉由該些循環時脈訊號觸發切換該二電容陣列之該些電容。 The parallel signal analog digital conversion method of claim 11, wherein the step of preparing the capacitance further comprises: generating the ordered complex cyclic clock signal by using the effective slow signal with a preset sampling clock signal; The cyclic clock signals trigger switching of the capacitors of the two capacitor arrays. 如請求項12之平行訊號型漸進式類比數位轉換方法,其中該漸進式轉換步驟更包含:將各該比較輸出訊號配合該有效快速訊號、該預設取樣時脈訊號及該些循環時脈訊號之一者而轉換為一位元訊號;將該位元訊號轉換為驅動訊號;將該驅動訊號轉換為該些切換訊號之一者;該切換訊號切換該二電容陣列之該些電容之一者以控制該二電容陣列之該些電容的電壓值;及將該二電容陣列之電壓值作為該二輸入訊號。 The parallel signal type progressive analog digital conversion method of claim 12, wherein the progressive conversion step further comprises: matching each of the comparison output signals with the valid fast signal, the preset sampling clock signal, and the cyclic pulse signals Converting to a one-bit signal; converting the bit signal into a driving signal; converting the driving signal into one of the switching signals; the switching signal switching one of the capacitors of the two capacitor array The voltage values of the capacitors of the two capacitor arrays are controlled; and the voltage values of the two capacitor arrays are used as the two input signals. 如請求項12之平行訊號型漸進式類比數位轉換方法,其中該準備比較器步驟包含:將該有效迴圈訊號配合該預設取樣時脈訊號及該些循環時脈訊號之最後一者而產生一比較時脈訊號;及將該比較時脈訊號輸入至該比較模組以重置該比較模組。 The parallel signal type analog analog digital conversion method of claim 12, wherein the preparing the comparator step comprises: generating the valid loop signal with the preset sampling clock signal and the last one of the cyclic clock signals Comparing the clock signal; and inputting the comparison clock signal to the comparison module to reset the comparison module.
TW102107520A 2013-03-04 2013-03-04 Apparatus and method for parallel type sar adc TWI481201B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102107520A TWI481201B (en) 2013-03-04 2013-03-04 Apparatus and method for parallel type sar adc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102107520A TWI481201B (en) 2013-03-04 2013-03-04 Apparatus and method for parallel type sar adc

Publications (2)

Publication Number Publication Date
TW201436472A true TW201436472A (en) 2014-09-16
TWI481201B TWI481201B (en) 2015-04-11

Family

ID=51943526

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102107520A TWI481201B (en) 2013-03-04 2013-03-04 Apparatus and method for parallel type sar adc

Country Status (1)

Country Link
TW (1) TWI481201B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107835021A (en) * 2017-11-24 2018-03-23 西安交通大学 A kind of asynchronous sequential control circuit of Variable delay and control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621409A (en) * 1995-02-15 1997-04-15 Analog Devices, Inc. Analog-to-digital conversion with multiple charge balance conversions
TW441192B (en) * 2000-04-21 2001-06-16 Winbond Electronics Corp Test method and circuit for successive approximation analog digital converter integrated circuit
TWI231098B (en) * 2002-12-27 2005-04-11 Novatek Microelectronics Corp Correcting system and method of successive approximation A/D converter
US6958722B1 (en) * 2004-06-11 2005-10-25 Texas Instruments Incorporated SAR ADC providing digital codes with high accuracy and high throughput performance
US7834793B2 (en) * 2008-11-26 2010-11-16 Analog Devices, Inc. Self-timed clocked analog to digital converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107835021A (en) * 2017-11-24 2018-03-23 西安交通大学 A kind of asynchronous sequential control circuit of Variable delay and control method
CN107835021B (en) * 2017-11-24 2020-10-27 西安交通大学 Variable-delay asynchronous time sequence control circuit and control method

Also Published As

Publication number Publication date
TWI481201B (en) 2015-04-11

Similar Documents

Publication Publication Date Title
WO2020173225A1 (en) High-speed digital logic circuit for sar_adc, and sampling adjustment method
CN107835021B (en) Variable-delay asynchronous time sequence control circuit and control method
CN107113003B (en) Analog-digital converter based on successive approximation register
US9191011B2 (en) Double data rate counter, and analog-digital converting apparatus and CMOS image sensor using the same
TWI572143B (en) Successive approximation register (sar) analog- to-digital converter (adc) circuit and method thereof
CN106941345B (en) D trigger and asynchronous successive approximation type analog-to-digital converter
US10103184B2 (en) Latch circuit, double data rate ring counter based on the latch circuit, hybrid counting device, analog-digital converting device, and CMOS image sensor
US7414562B2 (en) Analog-to-digital conversion using asynchronous current-mode cyclic comparison
US8907834B2 (en) Apparatus and methods for converting analog signal to N-bit digital data
WO2017091928A1 (en) High-speed pipelined successive approximation adc based on dynamic ringing-based operational amplifier
KR20100092542A (en) Counter circuit, device including the same, and counting method
CN108781082B (en) Analog-to-digital conversion circuit, image sensor, and analog-to-digital conversion method
US8115845B2 (en) Counter array and image sensor including the same
CN107947792B (en) Low-power-consumption SAR ADC control logic circuit
US10116318B1 (en) Method and system for asynchronous clock generation for successive approximation analog-to-digital converter (SAR ADC)
KR20180137532A (en) Asynchronous clock generation for time-interleaved successive approximate analog-to-digital converters
US7791523B2 (en) Two-step sub-ranging analog-to-digital converter and method for performing two-step sub-ranging in an analog-to-digital converter
CN110768674A (en) Analog-to-digital conversion device, analog-to-digital conversion equipment and analog-to-digital conversion method
TWI605689B (en) Analog to digital conversion device
CN106656190B (en) Successive approximation type analog-digital conversion circuit and method thereof
CN106788345B (en) Ramp signal generator using resistance structure
TWI481201B (en) Apparatus and method for parallel type sar adc
KR20080075737A (en) Method and apparatus for analog to digital converting using switched capacitors
JP2012222813A (en) Semiconductor device and driving method for the same
JP2005012250A (en) A/d converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees