TW201418845A - Directional waveguide-based backlight for use in a multiview display screen - Google Patents

Directional waveguide-based backlight for use in a multiview display screen Download PDF

Info

Publication number
TW201418845A
TW201418845A TW102135332A TW102135332A TW201418845A TW 201418845 A TW201418845 A TW 201418845A TW 102135332 A TW102135332 A TW 102135332A TW 102135332 A TW102135332 A TW 102135332A TW 201418845 A TW201418845 A TW 201418845A
Authority
TW
Taiwan
Prior art keywords
directional
waveguide
backlight
grating
pixels
Prior art date
Application number
TW102135332A
Other languages
Chinese (zh)
Inventor
David Fattal
Raymond G Beausoleil
Marco Fiorentino
James A Brug
Original Assignee
Hewlett Packard Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co filed Critical Hewlett Packard Development Co
Publication of TW201418845A publication Critical patent/TW201418845A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer

Abstract

A directional waveguide-based backlight for use in a multiview display screen is disclosed. The directional backlight has a plurality of light sources to generate a plurality of input planar lightbeams. The plurality of input planar lightbeams illuminates a plurality of waveguide arrays having a set of waveguides. Each waveguide has a plurality of directional pixels to scatter the plurality of input planar lightbeams into a plurality of directional lightbeams. The directional lightbeams have a direction and angular spread controlled by characteristics of the directional pixels. The directional waveguide-based backlight can be used to generate a 3D image by specifying the characteristics of the directional pixels in the waveguides.

Description

用以使用於多視野顯示螢幕之基於方向性波導之背光技術 Backlighting technology based on directional waveguide for multi-view display

本發明所描述的標的係有關用以使用於多視野顯示螢幕之基於方向性波導之背光技術。此申請案係關於2012年4月27日申請之名為「用以使用於顯示螢幕之方向性像元」之PCT專利申請案第PCT/US2012/035573號(代理人檔案編號82963238),以及與本案同時申請之名為「用以使用於多視野顯示螢幕之具有積體混合雷射之基於方向性波導之背光技術」且讓渡予本申請案之受讓人並藉由參考方式併入本案的PCT專利申請案。 The subject matter described herein relates to a directional waveguide based backlighting technique for use in a multi-view display screen. This application is related to PCT Patent Application No. PCT/US2012/035573 (Attorney Docket No. 82963238), filed on Apr. 27, 2012, entitled "Using directional directional elements for display screens", and The present application is also entitled "Backlight Technology for directional waveguides with integrated lasers for multi-view display screens" and is assigned to the assignee of the present application and incorporated herein by reference. PCT patent application.

顯示螢幕中再現光場之能力已成為成像及顯示器技術中之主要探索目標。一光場為空間中以每一方向行進穿過每一點之所有光線的集合。任何自然真實世界之景色可由其光場所充分刻劃,其光場提供和所有經過該景色的光線之強度、顏色和方向有關之資訊。其目的是為了使一顯示螢幕之觀看者可如同人們所能親身感受那樣地體驗景色。 The ability to display the reproduced light field in the screen has become a major exploration target in imaging and display technology. A light field is a collection of all rays of light that travel through each point in each direction in space. Any natural real world view can be fully scribed by its light field, and its light field provides information about the intensity, color and direction of all light passing through the scene. The purpose is to enable a viewer of a display screen to experience the scenery as one can experience.

現今在電視、個人電腦、筆記型電腦和行動裝置可得之顯示螢幕大部分仍維持二維型態,且因此不能夠精 確地再現一光場。三度空間(3D)顯示器於最近誕生,但受困於角度與空間解析度不足及僅能提供有限數量的畫面。例子包含基於立體圖像、視差屏障或雙凸透鏡之3D顯示器。 Most of the display screens available on TVs, personal computers, notebook computers, and mobile devices still maintain a two-dimensional pattern, and therefore cannot be refined. Definitely reproduce a light field. Three-dimensional (3D) displays have recently been born, but suffer from insufficient angular and spatial resolution and can only provide a limited number of images. Examples include 3D displays based on stereo images, parallax barriers or lenticular lenses.

這些顯示器中常見議題為製造以像元等級之準確度控制以針對寬廣範圍之視角及空間解析度能達到好的影像品質之光場顯示器之困難度。 A common topic in these displays is the difficulty of fabricating light field displays that are controlled with pixel level accuracy to achieve good image quality over a wide range of viewing angles and spatial resolutions.

依據本發明之一實施例,係特地提出一種用以使用於多視野顯示螢幕之基於方向性波導之背光,包括:用以產生多個輸入平面光束之多個光源;以及多個波導陣列,每一波導陣列包含一組波導,每一波導包含多個圖形化光柵之方向性像元以散射該等多個輸入平面光束成多個方向性光束,每一方向性光束包含由該等多個方向性像元中之一方向性像元性質所控制之方向和角度展度。 According to an embodiment of the present invention, a directional-based waveguide-based backlight for use in a multi-view display screen is specifically provided, including: a plurality of light sources for generating a plurality of input plane beams; and a plurality of waveguide arrays, each A waveguide array includes a plurality of waveguides, each waveguide comprising a plurality of directional directional elements of the patterned grating to scatter the plurality of input plane beams into a plurality of directional beams, each directional beam comprising the plurality of directions The direction and angular spread controlled by one of the directional elements in a sexual pixel.

100、200、300、335、500‧‧‧方向性背光 100, 200, 300, 335, 500‧‧‧ directional backlight

105a-d、305a-d、340a-d‧‧‧光源 105a-d, 305a-d, 340a-d‧‧‧ light source

110a-d、310a-d、345a-d‧‧‧平面光束 110a-d, 310a-d, 345a-d‧‧‧ planar beam

115、505a-c‧‧‧波導陣列 115, 505a-c‧‧‧ Waveguide Array

120a-d、205a-c、315a-d、350a-d、400‧‧‧波導 120a-d, 205a-c, 315a-d, 350a-d, 400‧‧ ‧Band

125a-c、210a-c、320、355、420a-e‧‧‧方向性像元 125a-c, 210a-c, 320, 355, 420a-e‧‧‧ directional pixels

130a-c、220a-c、325、360‧‧‧方向性光束 130a-c, 220a-c, 325, 360‧‧‧ directional beam

135a‧‧‧槽溝/光柵 135a‧‧‧groove/grating

215a-c‧‧‧光束 215a-c‧‧‧beam

330、365‧‧‧3D影像 330, 365‧‧3D images

405a-e‧‧‧波導區域 405a-e‧‧‧Wave area

410‧‧‧角度部段 410‧‧‧Angle section

415a-b‧‧‧水平部段 415a-b‧‧‧ horizontal section

510‧‧‧觀察部段 510‧‧‧ observation section

600、605、610、615‧‧‧步驟 600, 605, 610, 615‧‧ steps

L‧‧‧光柵長度 L ‧‧‧raster length

W‧‧‧光柵寬度 W ‧‧‧raster width

θ‧‧‧槽溝方位角度/光柵方位角度 Θ‧‧‧groove azimuth angle/grating azimuth angle

Λ‧‧‧光柵節距 Λ‧‧·Grating pitch

△Θ‧‧‧角度展度 △Θ‧‧‧ Angle spread

本申請案配合與附圖關聯的下列詳細描述即可更充分地理解,圖中相似參考字符表示全文相似部件,以及其中:圖1繪示一根據多種例子之基於波導之方向性背光的上視圖之示意圖;圖2繪示一實例背光之3D視圖之示意圖;圖3A-B繪示依據圖1之方向性背光之上視圖;圖4繪示一具有幾何區別區域之波導之例子;圖5繪示一具有含圖4之波導之多重波導陣列之 方向性背光之示意圖;以及圖6為一使用根據多種例子之基於方向性波導之背光產生一3D影像之流程圖。 The present application will be more fully understood from the following detailed description in conjunction with the accompanying drawings in which FIG. 2 is a schematic view of a 3D view of an example backlight; FIG. 3A-B is a top view of the directional backlight according to FIG. 1; FIG. 4 is an example of a waveguide having a geometrically distinct area; Shown a multiple waveguide array having a waveguide including FIG. A schematic diagram of a directional backlight; and FIG. 6 is a flow diagram for generating a 3D image using a directional waveguide based backlight according to various examples.

本文揭露一用於多視野顯示螢幕之基於方向性波導之背光。該方向性背光使用多個光源去對多個波導陣列產生多個輸入平面光束。每一波導陣列由一組波導組成。每一波導由多個方向性像元組成以引導輸入平面光束和散射部份光束成輸出方向性光束。該輸入平面光束在與設計成實質上平面的方向性底板實質相同之平面上傳播。 A backlight based directional waveguide for a multi-view display screen is disclosed herein. The directional backlight uses a plurality of light sources to generate a plurality of input planar beams for a plurality of waveguide arrays. Each waveguide array consists of a set of waveguides. Each waveguide is composed of a plurality of directional pixels to direct the input planar beam and the scattered partial beam into an output directional beam. The input planar beam propagates in substantially the same plane as the directional floor designed to be substantially planar.

在多種實例中,方向性像元有配置於波導中或頂部之實質上平行及傾斜的槽溝之圖形化光柵。波導可為例如介電質或聚合物波導等等。圖形化光柵可包括於波導中蝕刻出來之槽溝或由積設在波導頂部之材料構成之槽溝(例如任何可積設和蝕刻或去除之材料,包含任何介電質或金屬)。 In various examples, the directional pixels have patterned gratings of substantially parallel and slanted trenches disposed in or at the top of the waveguide. The waveguide can be, for example, a dielectric or polymer waveguide or the like. The patterned grating may comprise a trench etched into the waveguide or a trench formed of a material deposited on top of the waveguide (e.g., any material that may be deposited and etched or removed, including any dielectric or metal).

在多種實例中,多個光源包含光譜帶寬約30nm或更小數值之多個窄帶寬光源。例如,窄帶寬光源可包含發光二極體(LED)、雷射等。如同下文更詳細描述地,每一方向性像元可被一光柵長度(亦即沿著輸入平面光束的傳播軸之量度)、一光柵寬度(亦即橫越輸入平面光束的傳播軸之量度)、一槽溝方位、一節距、和一工作週期所設定。每一方向性像元可發射方向性光束,其方向由槽溝方位及光柵節距決定,其角度展度由光柵長度及寬度決定。使用一 50%或左右之工作周期,圖形化光柵之第二傅立葉係數消失從而預防額外的不想要方向之光散射。這確保不論輸出角度為何,只有一方向性光束從每一方向性像元發出。 In various examples, the plurality of light sources comprise a plurality of narrow bandwidth light sources having a spectral bandwidth of about 30 nm or less. For example, a narrow bandwidth light source can include a light emitting diode (LED), a laser, and the like. As described in more detail below, each directional pixel can be a grating length (i.e., a measure of the axis of propagation along the input plane beam), a grating width (i.e., a measure of the propagation axis across the input plane beam). , a groove orientation, a pitch, and a duty cycle. Each directional pixel can emit a directional beam whose direction is determined by the groove orientation and the grating pitch. The angular spread is determined by the length and width of the grating. Use one At a duty cycle of 50% or so, the second Fourier coefficient of the patterned grating disappears to prevent additional unwanted light scattering. This ensures that only one directional beam is emitted from each directional cell regardless of the output angle.

如同下文進一步更詳細描述地,一方向性背光可以設計成含有具有某一光柵長度、光柵寬度、槽溝方位、節距及工作週期之方向性像元。每一方向性像元可產生具有一給定視野之方向性光束,使得在多個波導中之多個方向性像元提供構成多視野3D影像之多個畫面。該多視野3D影像可為由背光中的方向性像元發出的方向性光束所產生之紅色、藍色和綠色的多視野3D影像。 As described in further detail below, a directional backlight can be designed to contain directional pixels having a certain grating length, grating width, groove orientation, pitch, and duty cycle. Each directional pixel can produce a directional beam having a given field of view such that a plurality of directional pixels in the plurality of waveguides provide a plurality of pictures that form a multi-view 3D image. The multi-view 3D image may be a multi-view 3D image of red, blue, and green generated by a directional beam emitted by a directional pixel in the backlight.

應知,在下文的描述中,闡述了眾多具體細節以徹底了解諸實例。然而應知,此等實例在不限定於這些具體細節的情況下亦可被實行。在其他例子中,習知方法和結構可能不詳細描述,以避免不必要地模糊了此等實例的描述。此外,此等實例可彼此結合來使用。 It should be understood that in the following description, numerous specific details are set forth However, it should be understood that such examples may be practiced without limitation to these specific details. In other instances, well-known methods and structures may not be described in detail to avoid unnecessarily obscuring the description of the examples. Moreover, such examples can be used in conjunction with each other.

現在參考圖1,描述一根據多種例子之基於波導的方向性背光之上視圖之示意圖。方向性背光100包含光源105a-d以產生供波導120a-d組成之波導陣列115用之準直的輸入平面光束110a-d。如本文一般描述地,一平面光束表示光束中之光線方向彼此實質上平行的一束光。波導120a-d可為具有多個方向性像元配置其上之介電質或聚合物波導,譬若諸如方向性像元125a-c配置於波導120a之上。方向性像元125a-c散射部分輸入平面光束110a成輸出方向性光束130a-c。 Referring now to Figure 1, a schematic diagram of a top view of a waveguide-based directional backlight in accordance with various examples is depicted. Directional backlight 100 includes light sources 105a-d to produce input planar light beams 110a-d for collimating waveguide arrays 115 composed of waveguides 120a-d. As generally described herein, a planar beam represents a beam of light in the beam that is substantially parallel to each other. The waveguides 120a-d can be dielectric or polymer waveguides having a plurality of directional pixel configurations thereon, such as if directional pixels 125a-c are disposed over the waveguide 120a. The directional pixels 125a-c scatter a portion of the input planar beam 110a into an output directional beam 130a-c.

在許多例子中,每一方向性像元125a-c有實質上平行之槽溝之圖形化光柵,此等溝槽例如為針對方向性像元125a的槽溝135a。光柵的槽溝厚度對於所有槽溝可實質上相同,而導致實質平面式的設計。槽溝可於波導中蝕刻出來或由積設於波導頂上之材料組成(例如,任一可被積設和蝕刻或去除之材料,包含任何介電質或金屬)。 In many examples, each directional pixel 125a-c has a patterned grating of substantially parallel grooves, such as grooves 135a for directional elements 125a. The groove thickness of the grating can be substantially the same for all grooves, resulting in a substantially planar design. The trenches may be etched in the waveguide or comprised of a material deposited on top of the waveguide (eg, any material that may be deposited and etched or removed, including any dielectric or metal).

每一方向性光束130a-c具有由其對應的方向性像元125a-c中之圖形化光柵所決定之給定方向和角度展度。尤其,每一方向性光束130a-c之方向是由圖形化光柵之方位及光柵節距決定。每一方向性光束之角度展度則是由圖形化光柵之光柵長度及寬度決定。例如,方向性光束130a之方向是由圖形化光柵135a之方位及光柵節距所決定。 Each directional beam 130a-c has a given direction and angular spread determined by the patterned grating in its corresponding directional pixels 125a-c. In particular, the direction of each directional beam 130a-c is determined by the orientation of the patterned grating and the grating pitch. The angular spread of each directional beam is determined by the length and width of the grating of the patterned grating. For example, the direction of the directional beam 130a is determined by the orientation of the patterned grating 135a and the grating pitch.

理解的是,此種實質上平面的設計及基於輸入平面光束110a的方向性光束130a-c之形成,需要一節距實質上較傳統繞射光柵為小之光柵。例如,傳統繞射光柵在傳播實質上橫越光柵平面之光束照射下散射光線。於此,在每一方向性像元125a-c中之光柵於產生方向性光束130a-c時實質上位於與輸入平面光束110a相同的平面上。此平面設計使得可以用光源105a-d照明。 It is understood that such a substantially planar design and the formation of directional beams 130a-c based on input planar beam 110a require a grating having a substantially smaller pitch than conventional diffraction gratings. For example, conventional diffraction gratings scatter light by propagating a beam of light that substantially traverses the plane of the grating. Here, the grating in each of the directional pixels 125a-c is substantially in the same plane as the input planar beam 110a when the directional beam 130a-c is generated. This planar design allows illumination with light sources 105a-d.

在不同例子中,光源105a-d可為例如LED之窄帶寬光源。例如,光源105a可為一紅光LED,光源105b可為一綠光LED,光源105c可為一藍光LED,而光源105d可為一白光LED。因此,由波導120a出來的方向性光束130a-d可為紅色光束,波導120b出來的方向性光束可為綠色光束,波 導120c出來的方向性光束可為藍色光束,而波導120d出來的方向性光束可為白色光束。如下文描述,方向性像元可被設計來提供方向性光束之方向和角度展度的精確控制,使多個畫面能夠形成。 In various examples, the light sources 105a-d can be narrow bandwidth sources such as LEDs. For example, the light source 105a can be a red LED, the light source 105b can be a green LED, the light source 105c can be a blue LED, and the light source 105d can be a white LED. Therefore, the directional light beams 130a-d from the waveguide 120a may be red beams, and the directional light beams from the waveguide 120b may be green beams, waves. The directional beam from the guide 120c may be a blue beam, and the directional beam from the waveguide 120d may be a white beam. As described below, directional pixels can be designed to provide precise control of the direction and angular spread of the directional beam, enabling multiple frames to be formed.

方向性光束130a-c由包含一光柵長度L、光柵寬度W、槽溝方位θ、和光柵節距Λ之方向性像元125a-c中之光柵性質精確地控制。尤其,光柵135a之光柵長度L控制了沿著輸入光之傳播軸之方向性光束130a之角度展度△Θ,而該光柵寬度W控制了橫向於輸入光之傳播軸之方向性光束130a之角度展度△Θ,公式如下: 此處λ為方向性光束130a之波長。光柵方位角度θ指定之槽溝方位、以及Λ指定之光柵節距或週期,控制了方向性光束130a之方向。 The directional beams 130a-c are precisely controlled by the grating properties of the directional pixels 125a-c comprising a grating length L , a grating width W , a groove orientation θ, and a grating pitch Λ. In particular, the grating length L of the grating 135a controls the angular spread ΔΘ of the directional beam 130a along the propagation axis of the input light, and the grating width W controls the angle of the directional beam 130a transverse to the propagation axis of the input light. The degree of development △ Θ, the formula is as follows: Here λ is the wavelength of the directional beam 130a. The orientation of the groove indicated by the grating azimuth angle θ, and the grating pitch or period specified by Λ, control the direction of the directional beam 130a.

光柵長度L及光柵寬度W可在大小上於0.1至200μm的範圍中變動。槽溝方位角度θ和光柵節距Λ可被設定來滿足方向性光束130a之一期望方向,其中例如該槽溝方位角度θ於-40至+40度之等級,和光柵節距Λ於200-700nm之等級。 The grating length L and the grating width W may vary in the range of 0.1 to 200 μm in size. The groove azimuth angle θ and the grating pitch Λ can be set to satisfy a desired direction of the directional beam 130a, wherein, for example, the groove azimuth angle θ is on the order of -40 to +40 degrees, and the grating pitch is at 200- 700nm grade.

應知,方向性背光100只為了例示之目的展示為具有四個波導120a-d之一波導陣列115。依照多種例子之方向性背光可設計成具有許多此種波導陣列(例如多於100個),依方向性背光100如何被使用而定(例如使用於3D顯示 螢幕、3D手錶、行動裝置等)。同樣應知的是,方向性像元可具任何形狀,包含例如圓形、橢圓形、多角形、或其他幾何形狀。再者,理解的是,任何窄帶寬光源可用來產生輸入平面光束110a-d(例如一雷射或LED)。 It will be appreciated that the directional backlight 100 is shown for illustrative purposes only as one of the four waveguides 120a-d of the waveguide array 115. A directional backlight according to various examples can be designed to have many such waveguide arrays (eg, more than 100) depending on how the directional backlight 100 is used (eg, for 3D display) Screens, 3D watches, mobile devices, etc.). It should also be appreciated that the directional pixels can have any shape including, for example, a circle, an ellipse, a polygon, or other geometric shapes. Again, it is understood that any narrow bandwidth source can be used to generate input planar beams 110a-d (e.g., a laser or LED).

圖2展示一實例背光之3D視圖。背光200展示為具有一由波導205a-c組成之波導陣列。每一波導有多個配置其上之方向性像元,譬若諸如波導205a中之方向性像元210a、波導205b中之方向性像元210b、和波導205c中之方向性像元210c。方向性像元210a-c可設計成具有不同的光柵節距和方位。每一方向性像元210a-c接收一輸入平面光束(例如光束215a-c),及根據每一方向性像元之光柵節距及方位去散射此等光束成方向性光束(例如方向性光束220a-c)。如上文描述,方向性光束220a-c因此能使多個畫面生成一3D影像。每一方向性光束可被其對應的方向性像元之性質精確地控制。 Figure 2 shows a 3D view of an example backlight. Backlight 200 is shown having a waveguide array comprised of waveguides 205a-c. Each waveguide has a plurality of directional pixels disposed thereon, such as directional cell 210a in waveguide 205a, directional cell 210b in waveguide 205b, and directional cell 210c in waveguide 205c. The directional pixels 210a-c can be designed to have different grating pitches and orientations. Each directional pixel 210a-c receives an input planar beam (e.g., beams 215a-c) and de-scatters the directional beams (e.g., directional beams) according to the grating pitch and orientation of each directional pixel. 220a-c). As described above, the directional beams 220a-c can thus generate a 3D image for a plurality of pictures. Each directional beam can be precisely controlled by the properties of its corresponding directional pixel.

現在注意圖3A-B,其中繪示依據圖1之方向性背光之上視圖。在圖3A中,方向性背光300展示為具有產生輸入平面光束310a-d之光源305a-d(例如LED)、及由多個配置其上之多角方向性像元構成的波導315a-d(此像元例如為波導315a中之方向性像元320)。每一方向性像元能夠散射一部分輸入平面光束成一輸出方向性光束(例如由方向性像元320從輸入平面光束310a散射之方向性光束325)。由波導315a-d中的所有方向性像元散射之方向性光束可呈現多個影像畫面,此等畫面結合時形成一3D影像,譬若諸如3D影 像330。 Attention is now directed to Figures 3A-B, which show a top view of the directional backlight in accordance with Figure 1. In FIG. 3A, directional backlight 300 is shown with light sources 305a-d (eg, LEDs) that produce input planar beams 310a-d, and waveguides 315a-d that are comprised of a plurality of polygonal directional elements disposed thereon (this) The pixel is, for example, a directional pixel 320 in the waveguide 315a). Each directional pixel is capable of scattering a portion of the input planar beam into an output directional beam (e.g., a directional beam 325 scattered by the directional pixel 320 from the input planar beam 310a). The directional beam scattered by all the directional elements in the waveguides 315a-d can present a plurality of image frames, and when these images are combined, a 3D image is formed, such as a 3D image. Like 330.

同樣地,圖3B中,方向性背光335展示為具有產生輸入平面光束345a-d之光源340a-d(例如LED)、及由多個配置其上之多角方向性像元所組成的波導350a-d(此像元例如為波導350a中之方向性像元355)。每一方向性像元能夠散射一部分輸入平面光束成一輸出方向性光束(例如由方向性像元355從輸入平面光束345a散射之方向性光束360)。由波導350a-d中所有方向性像元散射之方向性光束可呈現多個影像畫面,此等畫面結合時形成一3D影像,譬若諸如3D影像365。 Similarly, in FIG. 3B, directional backlight 335 is shown with light sources 340a-d (eg, LEDs) that produce input planar light beams 345a-d, and waveguides 350a that are comprised of a plurality of polygonal directional elements disposed thereon. d (This pixel is, for example, the directional pixel 355 in the waveguide 350a). Each directional pixel can scatter a portion of the input planar beam into an output directional beam (e.g., a directional beam 360 that is scattered by the directional pixel 355 from the input planar beam 345a). The directional beam scattered by all of the directional elements in the waveguides 350a-d can present a plurality of image frames that, when combined, form a 3D image, such as a 3D image 365.

在多種例子中,一波導陣列中之波導可設計成具有幾何區別區域。每一幾何區別區域有一垂直於該區域的方位之方向性像元,因此使方向性光束能夠在每一區域有不同的垂直方位。圖4展示一具有多個幾何區別區域之波導的例子。波導400有幾何區別的波導區域405a-405e。每一波導區域可有一單一水平部段,例如波導區域405a,或多個具有不同方位之部段,例如波導區域405b-e。波導區域405b-e有一置於兩個水平定向部段之間的角度部段。例如,波導區域405e有置於水平部段415a-b之間的角度部段410。 In various examples, the waveguides in a waveguide array can be designed to have geometrically distinct regions. Each geometrically distinct region has a directional pixel that is perpendicular to the orientation of the region, thereby enabling the directional beam to have a different vertical orientation in each region. Figure 4 shows an example of a waveguide having a plurality of geometrically distinct regions. The waveguide 400 has geometrically distinct waveguide regions 405a-405e. Each waveguide region may have a single horizontal section, such as waveguide region 405a, or a plurality of segments having different orientations, such as waveguide regions 405b-e. The waveguide region 405b-e has an angular section disposed between the two horizontally oriented sections. For example, waveguide region 405e has an angular section 410 disposed between horizontal sections 415a-b.

每一波導區域有一配置其上之單一方向性像元,例如方向性像元420a-e。放置於每一波導區域中之方向性像元420a-e垂直於圖中所示區域之方位定向。于具有一角度部段位於兩水平部段之間的波導區域(例如區域405b-e) 的情況下,方向性像元(例如像元420b-e)垂直於該角度部段之方位配置。此使由每一方向性像元散射出來之方向性光束,能夠在每一區域中有不同的垂直方位。 Each waveguide region has a single directional pixel disposed thereon, such as directional pixels 420a-e. The directional pixels 420a-e placed in each waveguide region are oriented perpendicular to the orientation of the regions shown in the figures. a waveguide region (eg, region 405b-e) having an angular section between the two horizontal sections In the case of a directional pixel (e.g., pixel 420b-e), it is disposed perpendicular to the orientation of the angular segment. This allows the directional beam scattered by each directional element to have a different vertical orientation in each region.

現在注意圖5,此繪示了一具有含有圖4之波導之多個波導陣列之方向性背光之示意圖。方向性背光500展示為具有多個波導陣列505a-c,而每一波導陣列具有四個波導(例如一用於紅光、一用於綠光、一用於藍光、而另一個用於白光)。波導陣列505a-c可被設計來形成不同觀察部段,例如觀察部段510。每一觀察部段可有設計成散射方向性光束成一給定影像畫面以產生3D影像之方向性像元。 Attention is now directed to Figure 5, which shows a schematic diagram of a directional backlight having a plurality of waveguide arrays comprising the waveguide of Figure 4. The directional backlight 500 is shown having a plurality of waveguide arrays 505a-c, and each waveguide array has four waveguides (eg, one for red light, one for green light, one for blue light, and the other for white light). . Waveguide arrays 505a-c can be designed to form different viewing sections, such as viewing section 510. Each viewing section may have directional pixels designed to scatter a directional beam into a given image frame to produce a 3D image.

一使用依照多種例子之方向性背光產生3D影像之流程圖於圖6中繪示。首先,方向性背光之方向性像元之性質被指定(步驟600)。該等性質可包含方向性像元中之圖形化光柵之性質,譬若諸如光柵長度、光柵寬度、方位、節距、和工作週期。如上文所述,方向性背光中之每一方向性像元可被指定具有一給定之性質組,以產生具有根據此等性質所精確控制的一方向及角度展度之方向性光束。其次,一方向性背光被製造成具有配置於多個波導之上之多個方向性像元(步驟605)。該等波導可為介電質或聚合物波導等等。方向性像元可於波導中蝕刻出來,或由具有積設於波導頂部之材料之圖形化光柵構成(該材料例如為任何可被積設和蝕刻或去除之材料,包含任何介電質或金屬)。在多種例子中,波導也可有如圖4-5所示之幾何區別區域。從多個光源出來之光以輸入平面光束形式輸入進方向 性背光(步驟610)。最後,一3D影像從方向性背光中之方向性像元所散射之方向性光束產生(步驟615)。 A flow chart for generating a 3D image using a directional backlight in accordance with various examples is illustrated in FIG. First, the nature of the directional pixels of the directional backlight is specified (step 600). Such properties may include the properties of a patterned raster in a directional pixel, such as raster length, raster width, orientation, pitch, and duty cycle. As described above, each directional pixel in the directional backlight can be designated to have a given set of properties to produce a directional beam having a direction and angular spread that is precisely controlled according to such properties. Second, the directional backlight is fabricated to have a plurality of directional pixels disposed on the plurality of waveguides (step 605). The waveguides can be dielectric or polymer waveguides and the like. The directional pixels can be etched in the waveguide or formed of a patterned grating having a material deposited on top of the waveguide (the material is, for example, any material that can be deposited and etched or removed, including any dielectric or metal ). In various examples, the waveguide may also have geometrically distinct regions as shown in Figures 4-5. Light from multiple sources is input in the form of an input planar beam A backlight (step 610). Finally, a 3D image is generated from a directional beam of light scattered by the directional pixels in the directional backlight (step 615).

有利的是,使用方向性背光中之方向性像元所達到的精確控制,使得一3D影像能夠被產生而又能夠易於製造實質上平面的結構。方向性像元的不同組態可產生不同的3D影像。本文描述之方向性背光可用來于顯示螢幕中提供3D影像(此等顯示螢幕例如為電視、行動裝置、平板電腦、電動遊戲裝置,諸如此類),以及於譬若諸如3D手錶、3D藝術裝置、3D醫療裝置等等其他應用中提供3D影像。 Advantageously, the precise control achieved by the directional pixels in the directional backlight enables a 3D image to be produced while making it easy to fabricate a substantially planar structure. Different configurations of directional pixels can produce different 3D images. The directional backlights described herein can be used to provide 3D images in a display screen (such as televisions, mobile devices, tablets, video game devices, and the like), and such as 3D watches, 3D art devices, 3D. 3D images are provided in other applications such as medical devices.

應知,前文對所揭露的實例之描述係提供來使任何熟於此技者能夠製作或使用本申請之發明。對此等例子的多種修改將易於為熟於此技者看出,且本文定義之廣義原則可在不偏離本發明之精神或範疇的情形下適用於其他例子。因此,本申請之發明不欲限制於本文所展示之例子,而是要給予符合本文揭露的原則和新穎特色之最廣泛範疇。 It is to be understood that the foregoing description of the disclosed examples is provided to enable any skilled person to make or use the invention. A variety of modifications to the examples are readily apparent to those skilled in the art, and the broad principles defined herein may be applied to other examples without departing from the spirit or scope of the invention. Therefore, the invention of the present application is not intended to be limited to the examples shown herein, but the broadest scope of the principles and novel features disclosed herein.

100‧‧‧方向性背光 100‧‧‧ Directional backlight

105a-d‧‧‧光源 105a-d‧‧‧Light source

110a-d‧‧‧輸入平面光束 110a-d‧‧‧ input plane beam

115‧‧‧波導陣列 115‧‧‧Wave array

120a-d‧‧‧波導 120a-d‧‧‧Band

125a-c‧‧‧方向性像元 125a-c‧‧‧ directional pixels

130a-c‧‧‧方向性光束 130a-c‧‧‧Directional beam

135a‧‧‧槽溝 135a‧‧‧ trench

Claims (16)

一種用以使用於多視野顯示螢幕之基於方向性波導之背光,包括:用以產生多個輸入平面光束之多個光源;以及多個波導陣列,每一波導陣列具有一組波導,每一波導具有多個含有圖形化光柵之方向性像元以散射該等多個輸入平面光束成多個方向性光束,每一方向性光束具有由該等多個方向性像元中之一方向性像元之性質控制之一方向和角度展度。 A directional waveguide based backlight for use in a multi-view display screen, comprising: a plurality of light sources for generating a plurality of input plane beams; and a plurality of waveguide arrays, each waveguide array having a set of waveguides, each waveguide Having a plurality of directional pixels including a patterned grating to scatter the plurality of input plane beams into a plurality of directional beams, each directional beam having one of the plurality of directional pixels The nature controls one direction and angle spread. 如請求項1之基於方向性波導之背光,其中該等多個光源包含多個窄帶寬光源。 A directional waveguide based backlight of claim 1, wherein the plurality of light sources comprise a plurality of narrow bandwidth light sources. 如請求項1之基於方向性波導之背光,其中該等多個波導陣列係實質上呈平面式。 The directional waveguide based backlight of claim 1, wherein the plurality of waveguide arrays are substantially planar. 如請求項1之基於方向性波導之背光,其中該等圖形化光柵包含多個實質上平行和傾斜之槽溝。 A directional waveguide based backlight according to claim 1, wherein the patterned grating comprises a plurality of substantially parallel and inclined grooves. 如請求項4之基於方向性波導之背光,其中一方向性像元之性質包含一光柵長度、一光柵寬度、一光柵方位、一光柵節距、和一工作週期。 The directional waveguide based backlight of claim 4, wherein the properties of a directional pixel comprise a grating length, a grating width, a grating orientation, a grating pitch, and a duty cycle. 如請求項5之基於方向性波導之背光,其中一方向性像元之節距及方位控制了一由該方向性像元散射之方向性光束之方向。 A backlight based on a directional waveguide of claim 5, wherein the pitch and orientation of a directional pixel control a direction of a directional beam scattered by the directional element. 如請求項6之基於方向性波導之背光,其中一方向性像元之長度及寬度控制了一由方向性像元散射之方向性 光束之角度展度。 The backlight of the directional waveguide according to claim 6, wherein the length and width of a directional pixel control a directionality of directional pixel scattering The angular spread of the beam. 如請求項1之基於方向性波導之背光,其中該組波導中之一波導包含多個幾何區別區域,每一區域具有多個部段和一單一方向性像元。 A directional waveguide based backlight of claim 1, wherein one of the set of waveguides comprises a plurality of geometrically distinct regions, each region having a plurality of segments and a single directional pixel. 一種用以使用基於波導之方向性背光產生多視野3D影像之方法,包含:為多個方向性像元指定多個性質,每一方向性像元由一具有實質上平行和傾斜的槽溝之圖形化光柵構成;製造具有配置於多個波導上的該等多個方向性像元之一方向性背光;使用從多個光源出來之光照射該等多個波導;以及使用該方向性背光中之該等多個方向性像元散射之方向性光束來生產該多視野影像。 A method for generating a multi-view 3D image using a waveguide-based directional backlight, comprising: assigning a plurality of properties to a plurality of directional pixels, each directional pixel having a substantially parallel and inclined groove a patterned grating; manufacturing a directional backlight having one of the plurality of directional pixels disposed on the plurality of waveguides; illuminating the plurality of waveguides using light from the plurality of light sources; and using the directional backlight The directional light beams scattered by the plurality of directional pixels produce the multi-view image. 如請求項9之方法,其中每一方向性光束係由一方向性像元之該等性質控制。 The method of claim 9, wherein each directional beam is controlled by the properties of a directional cell. 如請求項10之方法,其中一方向性像元之該等性質包含一光柵長度、一光柵寬度、一光柵方位、一光柵節距、和一工作週期。 The method of claim 10, wherein the properties of a directional cell comprise a raster length, a raster width, a raster orientation, a grating pitch, and a duty cycle. 如請求項11之方法,其中一方向性像元之節距及方位控制該方向性像元散射之一方向性光束之方向。 The method of claim 11, wherein the pitch and orientation of a directional cell control the direction of the directional beam of the directional cell. 如請求項11之方法,其中一方向性像元之長度及寬度控制該方向性像元散射之一方向性光束之角度展度。 The method of claim 11, wherein the length and width of a directional cell control the angular spread of the directional beam of the directional cell. 如請求項11之方法,其中製造一方向性背光包含製造具有多個幾何區別區域之一波導,每一區域有多個部段和 一單一方向性像元。 The method of claim 11, wherein fabricating a directional backlight comprises fabricating a waveguide having a plurality of geometrically distinct regions, each region having a plurality of segments and A single directional pixel. 一種波導,包含:多個幾何區別區域,每一區域具有多個部段;以及配置於該等多個幾何區別區域上之多個方向性像元,用以散射一輸入平面光束成多個方向性光束,每一方向性光束具有由該等多個方向性像元中之一方向性像元之性質控制的一方向及角度展度。 A waveguide comprising: a plurality of geometrically distinct regions, each region having a plurality of segments; and a plurality of directional pixels disposed on the plurality of geometrically distinct regions for scattering an input planar beam into a plurality of directions A beam of light, each directional beam having a direction and angular spread controlled by the properties of one of the plurality of directional pixels. 如請求項15之波導,其中該等多個部段包含一放置於兩水平定向部段間之角度部段。 The waveguide of claim 15 wherein the plurality of segments comprise an angular section disposed between the two horizontally oriented segments.
TW102135332A 2012-09-28 2013-09-30 Directional waveguide-based backlight for use in a multiview display screen TW201418845A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/058022 WO2014051623A1 (en) 2012-09-28 2012-09-28 Directional waveguide-based backlight for use in a multivew display screen

Publications (1)

Publication Number Publication Date
TW201418845A true TW201418845A (en) 2014-05-16

Family

ID=50388808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102135332A TW201418845A (en) 2012-09-28 2013-09-30 Directional waveguide-based backlight for use in a multiview display screen

Country Status (2)

Country Link
TW (1) TW201418845A (en)
WO (1) WO2014051623A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI649604B (en) * 2017-01-06 2019-02-01 美商雷亞有限公司 Static multi-view display and its operation method
TWI658298B (en) * 2016-05-23 2019-05-01 美商雷亞有限公司 Diffractive multibeam element-based backlight, system and method
TWI696851B (en) * 2019-09-12 2020-06-21 揚明光學股份有限公司 Light source module

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3243093A4 (en) 2015-01-10 2018-09-19 LEIA Inc. Diffraction grating-based backlighting having controlled diffractive coupling efficiency
KR102243288B1 (en) * 2015-01-28 2021-04-22 레이아 인코포레이티드 Three-dimensional (3d) electronic display
CN106959544B (en) * 2016-01-08 2020-12-04 京东方科技集团股份有限公司 Backlight module, liquid crystal display and preparation process thereof
CN108463764B (en) 2016-01-16 2022-10-28 镭亚股份有限公司 Head-up display based on multibeam diffraction grating
KR102322334B1 (en) 2016-01-30 2021-11-05 레이아 인코포레이티드 Multibeam device-based backlights and displays using same
EP3408699B1 (en) 2016-01-30 2023-10-11 LEIA Inc. Multibeam element-based backlighting having converging views
EP3563083B1 (en) 2016-12-28 2023-06-07 LEIA Inc. Multiview displays having a reflective support structure
CA3044193C (en) 2016-12-28 2020-12-22 Leia Inc. Multiview backlighting employing fluorescent multibeam elements
CA3055529C (en) 2017-04-04 2022-08-30 Leia Inc. Multilayer multiview display and method
JP7008807B2 (en) 2017-09-27 2022-01-25 レイア、インコーポレイテッド Multicolor static multiview display and method
KR102615891B1 (en) 2017-09-28 2023-12-21 레이아 인코포레이티드 Grating-coupled light guide, display system, and method employing optical concentration
CN111566538B (en) 2017-12-18 2023-09-08 镭亚股份有限公司 Head-up display, system and method based on multi-beam element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2277586T3 (en) * 1999-12-09 2007-07-16 Phlox PROCEDURE AND DEVICE OF MACHINING BY LASER OF LIGHT GUIDES, LIGHT GUIDES AND BACKLIGHTED SCREENS THAT INCLUDE THESE GUIDES.
JP2005300560A (en) * 2002-02-22 2005-10-27 Mitsuteru Kimura Display unit
GB0326005D0 (en) * 2003-11-07 2003-12-10 Koninkl Philips Electronics Nv Waveguide for autostereoscopic display
TWI282446B (en) * 2003-12-05 2007-06-11 Hon Hai Prec Ind Co Ltd Light guide plate and backlight device using the same
JP3908241B2 (en) * 2004-06-24 2007-04-25 オリンパス株式会社 Video display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658298B (en) * 2016-05-23 2019-05-01 美商雷亞有限公司 Diffractive multibeam element-based backlight, system and method
TWI649604B (en) * 2017-01-06 2019-02-01 美商雷亞有限公司 Static multi-view display and its operation method
TWI696851B (en) * 2019-09-12 2020-06-21 揚明光學股份有限公司 Light source module

Also Published As

Publication number Publication date
WO2014051623A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
TW201418845A (en) Directional waveguide-based backlight for use in a multiview display screen
KR101788776B1 (en) Directional backlight
JP5964500B2 (en) Directional backlight with modulation layer
US10082613B2 (en) Directional backlight with a modulation layer
US10120198B2 (en) Directional backlight
TWI499803B (en) Directional waveguide-based backlight,method for generating a multiview 3d image and waveguides
KR101918038B1 (en) Directional pixel for use in a display screen
TWI540401B (en) Multiview 3d wrist watch and method for generating a 3d time view in multiview 3d wrist watch
US20160255328A1 (en) Multiview 3d telepresence
CN104272199A (en) Multiview 3d wrist watch
WO2014081415A1 (en) Directional waveguide-based pixel for use in a multiview display screen
JP7178415B2 (en) Methods for Equipping Multi-View Camera Arrays, Multi-View Systems, and Camera Sub-Arrays with Shared Cameras
JP2008009358A (en) Parallax barrier and three-dimensional video display device
JP7339259B2 (en) Cross-rendering multi-view camera, system, and method
CN108061973A (en) Directional backlight unit and the image display including the directional backlight unit
US11119335B2 (en) Display panel, controlling method and fabricating method thereof
TWM557367U (en) Slanted light emitting unit and 2D/3D swithcable or concurrent display device
TWI651547B (en) Slanted light emitting unit and 2d/3d swithcable or concurrent display device
JP5912653B2 (en) Light emitting element
JP2017167529A (en) Directional pixel used in display screen