TWI499803B - Directional waveguide-based backlight,method for generating a multiview 3d image and waveguides - Google Patents

Directional waveguide-based backlight,method for generating a multiview 3d image and waveguides Download PDF

Info

Publication number
TWI499803B
TWI499803B TW102135328A TW102135328A TWI499803B TW I499803 B TWI499803 B TW I499803B TW 102135328 A TW102135328 A TW 102135328A TW 102135328 A TW102135328 A TW 102135328A TW I499803 B TWI499803 B TW I499803B
Authority
TW
Taiwan
Prior art keywords
directional
waveguide
backlight
pixels
grating
Prior art date
Application number
TW102135328A
Other languages
Chinese (zh)
Other versions
TW201421075A (en
Inventor
David A Fattal
Zhen Peng
Di Liang
Raymond G Beausoleil
Original Assignee
Hewlett Packard Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co filed Critical Hewlett Packard Development Co
Publication of TW201421075A publication Critical patent/TW201421075A/en
Application granted granted Critical
Publication of TWI499803B publication Critical patent/TWI499803B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29338Loop resonators
    • G02B6/29343Cascade of loop resonators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Integrated Circuits (AREA)

Description

基於方向性波導之背光、用以產生多視野3D影像之方法及波導Backlight based directional waveguide, method for generating multi-view 3D image and waveguide

本發明係有關用以使用於多視野顯示螢幕之具有積體混合雷射之基於方向性波導之背光技術。此申請案係關於2012年4月27日申請之名為「用以使用於顯示螢幕之方向性像元技術」之PCT專利申請案第PCT/US2012/035573號(代理人檔案編號82963238),以及與本案同時申請之名為「用以使用於多視野顯示螢幕之基於方向性波導之背光技術」且讓渡予本申請案受讓人的PCT專利申請案;其均藉由參考方式併入本案。The present invention relates to a directional waveguide based backlighting technique with integrated lasers for use in a multi-view display screen. This application is related to PCT Patent Application No. PCT/US2012/035573 (Attorney Docket No. 82963238), filed on Apr. 27, 2012, entitled <RTIgt; A PCT patent application filed at the same time as the present application entitled "Backlight Technology for Directional Waveguides for Multi-View Display Screens" and assigned to the assignee of the present application; .

顯示螢幕中再現光場之能力已成為成像及顯示器技術中之主要探索目標。一光場為空間中以每一方向行進穿過每一點之所有光線的集合。任何自然真實世界之景色可由其光場所充分刻劃,其光場提供和所有經過該景色的光線之強度、顏色和方向有關之資訊。其目的是為了使一顯示螢幕之觀看者可如同人們所能親身感受那樣地體驗景色。The ability to display the reproduced light field in the screen has become a major exploration target in imaging and display technology. A light field is a collection of all rays of light that travel through each point in each direction in space. Any natural real world view can be fully scribed by its light field, and its light field provides information about the intensity, color and direction of all light passing through the scene. The purpose is to enable a viewer of a display screen to experience the scenery as one can experience.

現今在電視、個人電腦、筆記型電腦和行動裝置 可得之顯示螢幕大部分仍維持二維型態,且因此不能夠精確地再現一光場。三度空間(3D)顯示器於最近誕生,但受困於角度與空間解析度不足及僅能提供有限數量的畫面。例子包含基於立體影像、視差屏障或雙凸透鏡之3D顯示器。Today in TV, personal computers, laptops and mobile devices Most of the available display screens still maintain a two-dimensional pattern, and therefore cannot accurately reproduce a light field. Three-dimensional (3D) displays have recently been born, but suffer from insufficient angular and spatial resolution and can only provide a limited number of images. Examples include 3D displays based on stereoscopic images, parallax barriers or lenticular lenses.

這些顯示器中常見議題為製造以像元等級之準確度控制以針對寬廣範圍之視角及空間解析度能達到好的影像品質之光場顯示器之困難度。A common topic in these displays is the difficulty of fabricating light field displays that are controlled with pixel level accuracy to achieve good image quality over a wide range of viewing angles and spatial resolutions.

依據本發明之一實施例,係特地提出一種用以使用於多視野顯示螢幕之具有積體混合雷射之基於方向性波導之背光,包括:一具有多個波導陣列之波導層,每一波導陣列具有一組波導,每一波導具有多個方向性像元以散射多個輸入平面光束成多個方向性光束,每一方向性光束有由該等多個方向性像元中之一方向性像元之性質控制的方向和角度展度;以及配置在一結合於波導層之基底中以提供多個輸入平面光束的多個混合雷射。According to an embodiment of the present invention, a directional-based waveguide-based backlight having an integrated hybrid laser for use in a multi-view display screen is specifically provided, comprising: a waveguide layer having a plurality of waveguide arrays, each waveguide The array has a plurality of waveguides, each waveguide having a plurality of directional pixels to scatter a plurality of input plane beams into a plurality of directional beams, each directional beam having a directionality from the plurality of directional pixels The direction and angular spread controlled by the nature of the pixel; and a plurality of hybrid lasers disposed in a substrate coupled to the waveguide layer to provide a plurality of input planar beams.

100、200、215、500、700、900、940、1100‧‧‧方向性背光100, 200, 215, 500, 700, 900, 940, 1100 ‧ ‧ directional backlight

105a-d、205a-d、220a-d、305、325、400、705a-d、905a-d、945a-d、1120‧‧‧混合雷射105a-d, 205a-d, 220a-d, 305, 325, 400, 705a-d, 905a-d, 945a-d, 1120‧‧ mixed laser

110、210、225、310、510、610、710、1115‧‧‧基底110, 210, 225, 310, 510, 610, 710, 1115‧‧‧ base

115a-d、120a-d、515a-d、520a-d、910a-d、915a-d、950a-d、955a-d‧‧‧平面光束115a-d, 120a-d, 515a-d, 520a-d, 910a-d, 915a-d, 950a-d, 955a-d‧‧‧ planar beam

125a-d、315、340、420、525a-d、615、715a-d、805a-c、920a-d、960a-d、1000‧‧‧波導125a-d, 315, 340, 420, 525a-d, 615, 715a-d, 805a-c, 920a-d, 960a-d, 1000‧‧ ‧Band

130a-d、530a-d、620a-b、645a-b、720a、810a-c、925、965、1020a-e‧‧‧方向性像元130a-d, 530a-d, 620a-b, 645a-b, 720a, 810a-c, 925, 965, 1020a-e‧‧‧ directional pixels

135a-d、535a-d、820a-c、930、970‧‧‧方向性光束135a-d, 535a-d, 820a-c, 930, 970‧‧ ‧ directional beam

140a‧‧‧槽溝/光柵140a‧‧‧groove/grating

230‧‧‧軸線230‧‧‧ axis

300、600‧‧‧頂視圖300, 600‧‧‧ top view

320、625‧‧‧側視圖320, 625‧‧‧ side view

330、635‧‧‧矽氧化物層330, 635‧‧‧矽 oxide layer

335、640‧‧‧矽層335, 640‧‧ ‧ layers

405‧‧‧III-IV族區域/III-IV族量子井區域/III-V族活性區域/III-IV族層/III-V族材料405‧‧‧III-IV area/III-IV group quantum well area/III-V group active area/III-IV group layer/III-V material

410‧‧‧矽/矽氧化物層410‧‧‧矽/矽Oxide layer

415‧‧‧氮化層415‧‧‧ nitride layer

505a-d、605、630‧‧‧分佈回饋型雷射/DFB雷射505a-d, 605, 630‧‧‧ distributed feedback laser/DFB laser

800‧‧‧背光800‧‧‧ Backlight

815a-c‧‧‧光束815a-c‧‧‧beam

935、975‧‧‧3D影像935, 975‧‧3D images

1005a-e‧‧‧波導區域1005a-e‧‧‧Wave area

1010‧‧‧角度部段1010‧‧‧ Angle section

1015a-b‧‧‧水平部段1015a-b‧‧‧ horizontal section

1105a-c‧‧‧波導陣列1105a-c‧‧‧Wave array

1110‧‧‧觀察部段1110‧‧‧ observation section

1200~1215‧‧‧步驟1200~1215‧‧‧Steps

L ‧‧‧光柵長度 L ‧‧‧raster length

W ‧‧‧光柵寬度 W ‧‧‧raster width

θ‧‧‧方位角度Θ‧‧‧ azimuth angle

Λ‧‧‧光柵節距Λ‧‧·Grating pitch

△Θ‧‧‧角度展度△Θ‧‧‧ Angle spread

本申請案配合與附圖關聯的下列詳細描述即可更充分地理解,圖中相似參考字符表示全文相似部件,以及其中:圖1繪示一根據多種例子之具有積體混合雷射之基於波導之方向性背光的上視圖之示意圖;圖2A-B繪示具有積體混合雷射之基於波導之方向性背光的上視圖之示意圖; 圖3繪示一方向性背光之不同的俯視及側視截面圖;圖4繪示一實例混合雷射之示意圖;圖5繪示一根據多種例子之使用分佈回饋型雷射之方向性背光之示意圖;圖6繪示圖5之方向性背光之不同俯視及側視截面圖;圖7繪示一根據多種例子之方向性背光之3D視圖;圖8繪示一實例方向性背光之另一個3D視圖;圖9A-B繪示根據多種例子之方向性背光之俯視圖;圖10繪示一具有幾何區別區域之波導之例子;圖11繪示一含有具圖10之波導之多個波導陣列之方向性背光之示意圖;以及圖12係一用以根據多種例子之以方向性背光產生3D影像之流程圖。The present application will be more fully understood from the following detailed description in conjunction with the accompanying drawings in which FIG. 2A-B is a schematic diagram of a top view of a waveguide-based directional backlight having an integrated hybrid laser; 3 is a different top and side cross-sectional view of a directional backlight; FIG. 4 is a schematic diagram of an example hybrid laser; and FIG. 5 illustrates a directional backlight using a distributed feedback laser according to various examples. FIG. 6 is a different top and side cross-sectional view of the directional backlight of FIG. 5; FIG. 7 is a 3D view of a directional backlight according to various examples; FIG. 8 illustrates another 3D of an example directional backlight. 9A-B are top views of a directional backlight according to various examples; FIG. 10 illustrates an example of a waveguide having geometrically distinct regions; and FIG. 11 illustrates a direction of a plurality of waveguide arrays including the waveguide of FIG. A schematic diagram of a backlight; and FIG. 12 is a flow chart for generating a 3D image with a directional backlight according to various examples.

本文揭露一用於多視野顯示螢幕之具有積體混合雷射之基於方向性波導之背光。此方向性背光使用積體混合雷射對由多個波導陣列組成之波導層產生多個輸入平面光束。該等混合雷射可包含配置在連結於波導層之矽/矽氧化物基底中之混合矽質環形雷射和分佈回饋型雷射。每一波導陣列由一組波導組成。每一波導由多個方向性像元 組成以引導輸入平面光束和散射部分光束成輸出方向性光束。該輸入平面光束在與設計成實質上平面的方向性背光實質相同之平面上傳播。A backlight based directional waveguide with an integrated laser for a multi-view display screen is disclosed herein. This directional backlight produces a plurality of input planar beams for a waveguide layer composed of a plurality of waveguide arrays using an integrated hybrid laser. The hybrid lasers can include a hybrid enamel ring laser and a distributed feedback type laser disposed in a ruthenium/iridium oxide substrate coupled to the waveguide layer. Each waveguide array consists of a set of waveguides. Each waveguide consists of multiple directional pixels The composition is configured to direct the input planar beam and the scattered partial beam into an output directional beam. The input planar beam propagates in substantially the same plane as the directional backlight designed to be substantially planar.

在多種例子中,方向性像元有配置於波導中或頂部之實質上平行及傾斜的槽溝之圖形化光柵。波導可為例如介電質或聚合物波導等等。圖形化光柵可包括於波導中蝕刻出來之槽溝或由積設在波導頂部之材料構成之槽溝(例如任何可積設和蝕刻或去除之材料,包含任何介電質或金屬)。In various examples, the directional pixels have patterned gratings disposed in substantially parallel and inclined grooves in the waveguide or at the top. The waveguide can be, for example, a dielectric or polymer waveguide or the like. The patterned grating may comprise a trench etched into the waveguide or a trench formed of a material deposited on top of the waveguide (e.g., any material that may be deposited and etched or removed, including any dielectric or metal).

如同下文更詳細描述地,每一方向性像元可被一光柵長度(亦即沿著輸入平面光束的傳播軸之量度)、一光柵寬度(亦即橫越輸入平面光束的傳播軸之量度)、一槽溝方位、一節距、和一工作週期所設定。每一方向性像元可發射方向性光束,其方向由槽溝方位及光柵節距決定,其角度展度由光柵長度及寬度決定。使用一50%或左右之工作周期,圖形化光柵之第二傅立葉係數消失從而預防額外的不想要方向之光散射。這確保不論輸出角度為何,只有一方向性光束從每一方向性像元發出。As described in more detail below, each directional pixel can be a grating length (i.e., a measure of the axis of propagation along the input plane beam), a grating width (i.e., a measure of the propagation axis across the input plane beam). , a groove orientation, a pitch, and a duty cycle. Each directional pixel can emit a directional beam whose direction is determined by the groove orientation and the grating pitch. The angular spread is determined by the length and width of the grating. Using a duty cycle of 50% or so, the second Fourier coefficient of the patterned grating disappears to prevent additional unwanted light scattering. This ensures that only one directional beam is emitted from each directional cell regardless of the output angle.

如同下文進一步更詳細描述地,一方向性背光可以設計成含有具有某一光柵長度、光柵寬度、槽溝方位、節距及工作週期之方向性像元。每一方向性像元可產生具有一給定視野之方向性光束,使得在多個波導中之多個方向性像元提供構成多視野3D影像之多個畫面。該多視野3D影像可為由背光中的方向性像元發出的方向性光束所產生 之紅色、藍色和綠色的多視野3D影像。As described in further detail below, a directional backlight can be designed to contain directional pixels having a certain grating length, grating width, groove orientation, pitch, and duty cycle. Each directional pixel can produce a directional beam having a given field of view such that a plurality of directional pixels in the plurality of waveguides provide a plurality of pictures that form a multi-view 3D image. The multi-view 3D image can be generated by a directional beam emitted by a directional pixel in the backlight Multi-view 3D images of red, blue and green.

應知,在下文的描述中,闡述了眾多具體細節以徹底了解諸實例。然而應知,此等實例在不限定於這些具體細節的情況下亦可被實行。在其他例子中,習知方法和結構可能不詳細描述,以避免不必要地模糊了此等實例的描述。此外,此等實例可彼此結合來使用。It should be understood that in the following description, numerous specific details are set forth However, it should be understood that such examples may be practiced without limitation to these specific details. In other instances, well-known methods and structures may not be described in detail to avoid unnecessarily obscuring the description of the examples. Moreover, such examples can be used in conjunction with each other.

現在參考圖1,描述一根據多種例子之具有積體混合雷射之基於波導的方向性背光之上視圖之示意圖。方向性背光100包含配置於基底110中之混合雷射105a-d以產生供波導125a-d組成之波導陣列用之準直輸入平面光束115a-d和120a-d。當本文中普遍述及時,平面光束意指光線方向實質相互平行的光束。混合雷射105a-d可為例如混合矽質環狀雷射(於下文參考圖4更詳細描述),且配置在基底110以連結於每一波導。每一混合矽質環狀雷射可用來產生一給定顏色之光。例如混合矽質雷射105a可為一紅光雷射,混合矽質雷射105b可為一綠光雷射,混合矽質雷射105c可為一藍光雷射,而混合矽質雷射105d可為一白光雷射。Referring now to Figure 1, a schematic diagram of a top view of a waveguide-based directional backlight having an integrated hybrid laser according to various examples is depicted. Directional backlight 100 includes hybrid lasers 105a-d disposed in substrate 110 to produce collimated input planar beams 115a-d and 120a-d for waveguide arrays composed of waveguides 125a-d. When referred to herein in a timely manner, a planar beam means a beam of light that is substantially parallel to each other. The hybrid lasers 105a-d can be, for example, mixed enamel annular lasers (described in more detail below with respect to FIG. 4) and disposed on the substrate 110 to couple to each waveguide. Each mixed enamel ring laser can be used to produce a given color of light. For example, the mixed enamel laser 105a may be a red laser, the mixed enamel laser 105b may be a green laser, the mixed enamel laser 105c may be a blue laser, and the mixed enamel laser 105d may be For a white laser.

波導125a-d可為具有多個方向性像元配置其上之介電質或聚合物波導,該等方向性像元譬若諸如配置於波導125a上之方向性像元130a-d。方向性像元130a-d散射部分輸入平面光束115a-d和120a-d成輸出方向性光束135a-d。在多種例子中,每一方向性像元130a-d有實質上平行之槽溝之圖形化光柵,此等溝槽例如為針對方向性像元130a的槽溝140a。光柵的槽溝厚度對於所有槽溝可實質上 相同,而導致實質平面式的設計。槽溝可於波導中蝕刻出來或由積設於波導頂上之材料組成(例如,任一可被積設和蝕刻或去除之材料,包含任何介電質或金屬)。The waveguides 125a-d can be dielectric or polymer waveguides having a plurality of directional pixel elements disposed thereon, such as directional pixels 130a-d disposed on the waveguide 125a. The directional pixels 130a-d scatter portions of the input planar beams 115a-d and 120a-d into output directional beams 135a-d. In various examples, each directional element 130a-d has a patterning grating of substantially parallel grooves, such as grooves 140a for directional elements 130a. The groove thickness of the grating can be substantially The same, resulting in a substantially flat design. The trenches may be etched in the waveguide or comprised of a material deposited on top of the waveguide (eg, any material that may be deposited and etched or removed, including any dielectric or metal).

每一方向性光束135a-d具有由其對應的方向性像元130a-d中之圖形化光柵所決定之給定方向和角度展度。尤其,每一方向性光束135a-d之方向由圖形化光柵之方位和光柵節距決定。每一方向性光束之角度展度則是由圖形化光柵之光柵長度和寬度決定。例如方向性光束135a之方向由圖形化光柵140a之方位和光柵節距所決定。Each directional beam 135a-d has a given direction and angular spread determined by the patterned grating in its corresponding directional pixels 130a-d. In particular, the direction of each directional beam 135a-d is determined by the orientation of the patterned grating and the grating pitch. The angular spread of each directional beam is determined by the length and width of the grating of the patterned grating. For example, the direction of the directional beam 135a is determined by the orientation of the patterned grating 140a and the grating pitch.

理解的是,此種實質上平面的設計及基於輸入平面光束115a-d、120a-d之方向性光束135a-d之形成,需要一節距實質上較傳統繞射光柵為小之光柵。例如,傳統繞射光柵在傳播實質上橫越光柵平面之光束照射下散射光線。於此,在每一方向性像元130a-d中之光柵於產生方向性光束135a-d時實質上位於與輸入平面光束115a-d、120a-d相同的平面上。此平面設計使得可以用混合雷射105a-d照明。It is understood that such a substantially planar design and the formation of directional beams 135a-d based on input planar beams 115a-d, 120a-d require a grating having a substantially smaller pitch than conventional diffraction gratings. For example, conventional diffraction gratings scatter light by propagating a beam of light that substantially traverses the plane of the grating. Here, the grating in each of the directional pixels 130a-d is substantially on the same plane as the input planar beams 115a-d, 120a-d when the directional beams 135a-d are generated. This planar design makes it possible to illuminate with a hybrid laser 105a-d.

在多種例子中,方向性光束135a-d由包含一光柵長度L 、光柵寬度W 、槽溝方位θ、和光柵節距Λ之方向性像元130a-d中之光柵性質精確地控制。尤其,光柵140a之光柵長度L 控制了沿著輸入光之傳播軸之方向性光束135a之角度展度△Θ,而該光柵寬度W 控制了橫向於輸入光之傳播軸之方向性光束135a之角度展度△Θ,公式如下: 此處λ為方向性光束135a之波長。光柵方位角度θ指定之槽溝方位、以及Λ指定之光柵節距或週期,控制了方向性光束135a之方向。In various examples, the directional beams 135a-d are precisely controlled by the grating properties in the directional pixels 130a-d comprising a grating length L , a grating width W , a groove orientation θ, and a grating pitch Λ. In particular, the grating length L of the grating 140a controls the angular spread ΔΘ of the directional light beam 135a along the propagation axis of the input light, and the grating width W controls the angle of the directional light beam 135a transverse to the propagation axis of the input light. The degree of development △ Θ, the formula is as follows: Here λ is the wavelength of the directional beam 135a. The orientation of the groove specified by the grating azimuth angle θ, and the grating pitch or period specified by Λ, control the direction of the directional beam 135a.

光柵長度L 及光柵寬度W 可在大小上於0.1至200μm的範圍中變動。槽溝方位角度θ和光柵節距Λ可被設定來滿足方向性光束135a之一期望方向,其中例如該槽溝方位角度θ於-40至+40度之等級,和光柵節距Λ於200-700nm之等級。The grating length L and the grating width W may vary in the range of 0.1 to 200 μm in size. The groove azimuth angle θ and the grating pitch Λ can be set to satisfy a desired direction of one of the directional beams 135a, wherein, for example, the groove azimuth angle θ is on the order of -40 to +40 degrees, and the grating pitch is at 200- 700nm grade.

應知,方向性背光100只為了例示之目的展示為具有四個波導125a-d之一波導陣列。依照多種例子之方向性背光可設計成具有許多所述的波導陣列(例如,多於100個),依方向性背光100如何被使用而定(例如,使用於3D顯示螢幕、3D手錶、行動裝置等)。同樣應知的是,方向性像元可具任何形狀,包含例如圓形、橢圓形、多角形、或其他幾何形狀。It will be appreciated that the directional backlight 100 is shown for illustrative purposes only as one of the four waveguides 125a-d. A directional backlight according to various examples can be designed to have many of the described waveguide arrays (eg, more than 100) depending on how the directional backlight 100 is used (eg, for 3D display screens, 3D watches, mobile devices) Wait). It should also be appreciated that the directional pixels can have any shape including, for example, a circle, an ellipse, a polygon, or other geometric shapes.

圖2A-B繪示根據多種其他例子之具有積體混合雷射之基於波導之方向性背光之上視圖之示意圖。圖2A中,方向性背光200具有連結基底210以位於每一波導之間的混合雷射205a-d。圖2B中,方向性背光215具有連結基底225以與每一波導之底部相鄰之混合雷射220a-d。混合雷射220a-d也展示為不相對於穿過基底225之軸線230呈對齊。被熟於此技者理解的是,配置於連結在一波導層之基底中之積體混合雷射之多種其他組合也可在不脫離本文描述之原則的情況下設計出來。例如混合雷射可配置於基底中以 位於波導頂部上或底部上。2A-B are schematic diagrams showing a top view of a waveguide-based directional backlight having an integrated hybrid laser in accordance with various other examples. In FIG. 2A, directional backlight 200 has hybrid lasers 205a-d that join substrate 210 to be positioned between each waveguide. In FIG. 2B, directional backlight 215 has hybrid lasers 220a-d that join substrate 225 to be adjacent the bottom of each waveguide. The hybrid lasers 220a-d are also shown as being non-aligned relative to the axis 230 passing through the substrate 225. It will be understood by those skilled in the art that various other combinations of integrated lasers disposed in a substrate coupled to a waveguide layer can be devised without departing from the principles described herein. For example, a hybrid laser can be disposed in the substrate to Located on the top or bottom of the waveguide.

現在注意圖3,其中展示了根據多種例子之一方向性背光的不同的俯視及側視剖面圖。頂視圖300展示配置於基底310中且連結波導315之混合雷射305。側視圖320展示一方向性背光(例如方向性背光100、200、和215)之橫截面側視圖。混合雷射325由一配置於由矽層335和矽氧化物層330組成之矽/矽氧化物基底上之活性材料(例如一III-V族半導體材料)組成。該矽氧化物層330提供波導340一個良好包覆材料。Attention is now directed to Figure 3, which shows different top and side cross-sectional views of a directional backlight according to various examples. The top view 300 shows a hybrid laser 305 disposed in the substrate 310 and joining the waveguides 315. Side view 320 shows a cross-sectional side view of a directional backlight, such as directional backlights 100, 200, and 215. The hybrid laser 325 is comprised of an active material (e.g., a III-V semiconductor material) disposed on a ruthenium/iridium oxide substrate comprised of a tantalum layer 335 and a tantalum oxide layer 330. The tantalum oxide layer 330 provides a good cladding material for the waveguide 340.

一混合雷射在圖4中更詳細描述。混合雷射400結合經由氮化層415連結於矽/矽氧化物層410之一III-IV族量子井區域405。光學波導420由矽/矽氧化物層410中之兩凹槽定義,使得混合雷射400表現得像一反轉的脊型波導。因為III-V族區域405係一混合矽(例如磷化銦(“InP”)和鋁鎵銦砷化物(“AlGaInAs”))層板,III-V族層405和矽/矽氧化物層410間的連結會自動對齊,且其間之連結不需要對齊步驟。因為混合雷射400之光學模式重疊了III-V族材料405和矽質波導420,所以電氣幫浦增益可以從III-V族活性區域405得到。A hybrid laser is described in more detail in Figure 4. The hybrid laser 400 is bonded to one of the III-IV family of quantum well regions 405 via the nitride layer 415. The optical waveguide 420 is defined by two grooves in the tantalum/niobium oxide layer 410 such that the hybrid laser 400 behaves like an inverted ridge waveguide. Because the III-V region 405 is a mixed germanium (eg, indium phosphide ("InP") and aluminum gallium indium arsenide ("AlGaInAs")), III-V layer 405 and germanium/antimony oxide layer 410 The links between the two are automatically aligned, and the links between them do not require an alignment step. Since the optical mode of the hybrid laser 400 overlaps the III-V material 405 and the enamel waveguide 420, the electrical pump gain can be obtained from the III-V active region 405.

如熟於此技者所理解,混合雷射400只是可被整合至一方向性背光中的一波導層中之一混合雷射的一個例子。其他類型之混合雷射可被使用,譬若諸如分佈回饋型雷射。現在參考圖5,描述一使用分佈回饋型雷射之方向性背光。方向性背光500包含配置於基底510中之分佈回饋型 雷射(“DFB”)505a-d以產生供波導525a-d組成之一波導陣列用之準直輸入平面光束515a-d和520a-d。波導525a-d可為具有多個方向性像元配置其上之介電質或聚合物波導,此等方向性像元譬若諸如為配置於波導525a上之方向性像元530a-d。方向性像元530a-d散射部分輸入平面光束515a-d和520a-d成具有方向性像元530a-d之多個性質所精確地控制的一方向和角度展度之輸出方向性光束535a-d。As understood by those skilled in the art, hybrid laser 400 is but one example of a hybrid laser that can be integrated into one of the waveguide layers in a directional backlight. Other types of hybrid lasers can be used, such as distributed feedback lasers. Referring now to Figure 5, a directional backlight using a distributed feedback type of laser is described. The directional backlight 500 includes a distributed feedback type disposed in the substrate 510 Lasers ("DFB") 505a-d are used to generate collimated input planar beams 515a-d and 520a-d for use in a waveguide array of waveguides 525a-d. The waveguides 525a-d can be dielectric or polymer waveguides having a plurality of directional pixel elements disposed thereon, such as directional elements 530a-d disposed on the waveguide 525a. Directional pixels 530a-d scatter portions of input plane beams 515a-d and 520a-d into an output directional beam 535a having a direction and angular spread that are precisely controlled by a plurality of properties of directional pixels 530a-d. d.

圖6展示根據多種例子之圖5的一方向性背光之不同的俯視及側視剖面圖。頂視圖600展示配置於基底610中且連結於具有方向性像元620a-b的波導615之DFB雷射605。側視圖625展示圖5的方向性背光之一橫截面側視圖。DFB雷射630由一配置在矽層640和矽氧化物層635形成之一矽/矽氧化物基底上之活性材料(例如一III-V族半導體材料)形成。矽氧化物層635為具有方向性像元645a-b的一波導提供一個良好包覆材料。6 shows a different top and side cross-sectional view of the directional backlight of FIG. 5 in accordance with various examples. Top view 600 shows a DFB laser 605 disposed in substrate 610 and coupled to waveguide 615 having directional pixels 620a-b. Side view 625 shows a cross-sectional side view of one of the directional backlights of FIG. The DFB laser 630 is formed of an active material (e.g., a III-V semiconductor material) disposed on a tantalum/niobium oxide substrate formed on the tantalum layer 640 and the tantalum oxide layer 635. The tantalum oxide layer 635 provides a good cladding material for a waveguide having directional pixels 645a-b.

應知,展示於圖1-7中之多個實例繪示直接地整合光進入一波導層的多種方式。具有容易以含有如上文描述之多個方向性像元之一波導層製成的光源(例如圖1-4中展示之多個混合環形雷射和圖5-6中展示之DFB雷射)之目標之其他例子,亦屬可行。It should be understood that the various examples shown in Figures 1-7 illustrate various ways of directly integrating light into a waveguide layer. Having a light source (e.g., a plurality of hybrid ring lasers as shown in Figures 1-4 and a DFB laser shown in Figures 5-6) that are readily fabricated with a waveguide layer comprising a plurality of directional elements as described above. Other examples of the target are also feasible.

當圖1-6中之例子以二維型態表示時,圖7展示具有配置在連結於波導715a-d之基底710中之混合雷射705a-d之方向性背光700之一例示性3D視圖。混合雷射705a-d產生多個輸入平面光束(由圖中的箭頭符號繪示),該等多個輸入 平面光束被散射成具有在波導715a-d中之方向性像元(例如波導715a中之方向性像元720a)所精確控制之一方向和角度展度之方向性光束。While the examples in Figures 1-6 are shown in a two-dimensional version, Figure 7 shows an exemplary 3D view of a directional backlight 700 having hybrid lasers 705a-d disposed in a substrate 710 coupled to waveguides 715a-d. . The hybrid lasers 705a-d produce a plurality of input plane beams (illustrated by arrow symbols in the figure), the plurality of inputs The planar beam is scattered into a directional beam having precisely controlled one direction and angular spread of directional elements in the waveguides 715a-d (e.g., directional elements 720a in the waveguide 715a).

如熟於此技者所理解,每一方向性像元可具有不同的性質(例如節距、方位、光柵長度、光柵寬度等)。現在參考圖8,描述一實例方向性背光之一3D視圖。背光800展示具備波導805a-c組成之一波導陣列。每一波導具有多個方向性像元配置其上,譬若諸如波導805a中之方向性像元810a,波導805b中之方向性像元810b,和波導805c中之方向性像元810c。方向性像元810a-c可被設計成具有不同的光柵節距和方位。每一方向性像元810a-c接收從一混合雷射出來之一輸入平面光束(例如光束815a-c),並且根據每一方向性像元之光柵節距和方位散射此光束成方向性光束(例如方向性光束820a-c)。如上文描述,方向性光束820a-c因此能使多個畫面生成一3D影像。每一方向性光束可被其對應的方向性像元之性質精確地控制。As understood by those skilled in the art, each directional pixel can have different properties (e.g., pitch, orientation, grating length, raster width, etc.). Referring now to Figure 8, a 3D view of an example directional backlight is depicted. Backlight 800 shows a waveguide array having waveguides 805a-c. Each waveguide has a plurality of directional pixel configurations thereon, such as directional pixel 810a in waveguide 805a, directional pixel 810b in waveguide 805b, and directional pixel 810c in waveguide 805c. The directional pixels 810a-c can be designed to have different grating pitches and orientations. Each directional pixel 810a-c receives an input planar beam (e.g., light beam 815a-c) from a hybrid laser and scatters the directional beam according to the grating pitch and orientation of each directional pixel. (eg, directional beams 820a-c). As described above, the directional beams 820a-c can thus generate a 3D image for a plurality of pictures. Each directional beam can be precisely controlled by the properties of its corresponding directional pixel.

現在注意圖9A-B,其中繪示根據多種例子之方向性背光之上視圖。圖9A中,方向性背光900展示為具有產生輸入平面光束910a-d和915a-d之混合雷射905a-d、及由多個配置其上之多角方向性像元組成的波導920a-d(此等像元例如為波導920a中之方向性像元925)。每一方向性像元能夠散射一部分輸入平面光束成輸出方向性光束(例如由方向性像元925散射之方向性光束930)。由波導920a-d中的所有方向性像元散射之多個方向性光束可呈現多個影像畫 面,此等畫面結合時形成一3D影像,譬若諸如3D影像935。Attention is now directed to Figures 9A-B, which illustrate a top view of a directional backlight in accordance with various examples. In Figure 9A, directional backlight 900 is shown with hybrid lasers 905a-d that produce input planar beams 910a-d and 915a-d, and waveguides 920a-d that are comprised of a plurality of polygonal directional elements disposed thereon ( These pixels are, for example, directional pixels 925 in the waveguide 920a. Each directional pixel is capable of scattering a portion of the input planar beam into an output directional beam (eg, a directional beam 930 scattered by directional pixels 925). Multiple directional beams scattered by all of the directional elements in the waveguides 920a-d can present multiple images In the face, these pictures combine to form a 3D image, such as a 3D image 935.

同樣地,圖9B中,方向性背光940展示為具有產生輸入平面光束950a-d和955a-d之混合雷射945a-d、及由多個配置其上之多角方向性像元組成的波導960a-d(此等像元例如為波導960a中之方向性像元965)。每一方向性像元能夠散射一部分輸入平面光束成一輸出方向性光束(例如由方向性像元965散射之方向性光束970)。由波導960a-d中所有方向性像元散射之方向性光束可呈現多個影像畫面,此等畫面結合時形成一3D影像,譬若諸如3D影像975。Similarly, in FIG. 9B, directional backlight 940 is shown having a hybrid laser 945a-d that produces input planar beams 950a-d and 955a-d, and a waveguide 960a that is comprised of a plurality of polygonal directional elements disposed thereon. -d (such pixels are, for example, directional pixels 965 in waveguide 960a). Each directional pixel is capable of scattering a portion of the input planar beam into an output directional beam (e.g., directional beam 970 scattered by directional pixels 965). The directional beam scattered by all of the directional elements in the waveguides 960a-d can present a plurality of image frames that, when combined, form a 3D image, such as a 3D image 975.

在多種例子中,一波導陣列中之波導可設計成具有幾何區別區域。每一幾何區別區域有一垂直於該區域的方位之方向性像元,因此使方向性光束能夠在每一區域有不同的垂直方位。圖10展示一具有多個幾何區別區域之波導的例子。波導1000有幾何區別波導區域1005a-1005e。每一波導區域可有一單一水平部段,例如波導區域1005a,或多個具有不同方位之部段,例如波導區域1005b-e。波導區域1005b-e有一置於兩個水平定向部段之間的角度部段。例如波導區域1005e有置於水平部段1015a-b之間的角度部段1010。In various examples, the waveguides in a waveguide array can be designed to have geometrically distinct regions. Each geometrically distinct region has a directional pixel that is perpendicular to the orientation of the region, thereby enabling the directional beam to have a different vertical orientation in each region. Figure 10 shows an example of a waveguide having a plurality of geometrically distinct regions. The waveguide 1000 has geometrically distinct waveguide regions 1005a-1005e. Each waveguide region can have a single horizontal section, such as waveguide region 1005a, or a plurality of segments having different orientations, such as waveguide regions 1005b-e. The waveguide region 1005b-e has an angular section disposed between the two horizontally oriented sections. For example, the waveguide region 1005e has an angular section 1010 disposed between the horizontal sections 1015a-b.

每一波導區域有一配置其上之單一方向性像元,例如方向性像元1020a-e。放置於每一波導區域中之方向性像元1020a-e垂直於圖中所示區域之方位定向。于具有一角度部段位於兩水平部段之間的波導區域(例如區域1005b-e)的情況下,方向性像元(例如像元1020b-e)垂直於該 角度部段之方位配置。此使由每一方向性像元散射出來之方向性光束,能夠在每一區域中有不同的垂直方位。Each waveguide region has a single directional pixel disposed thereon, such as directional pixels 1020a-e. The directional pixels 1020a-e placed in each waveguide region are oriented perpendicular to the orientation of the regions shown in the figures. In the case of a waveguide region (e.g., region 1005b-e) having an angular segment between the two horizontal segments, the directional pixels (e.g., pixels 1020b-e) are perpendicular to the The orientation of the angular section. This allows the directional beam scattered by each directional element to have a different vertical orientation in each region.

現在注意圖11,此繪示一具有含有圖10之波導之多個波導陣列之方向性背光之示意圖。方向性背光1100展示為具有一含有多個波導陣列1105a-c之波導層。每一波導陣列具有四個波導(例如一用於紅光、一用於綠光、一用於藍光、及另一個用於白光),該等波導具有配置於結合在波導層之基底1115上之多個積體混合雷射(例如混合雷射1120)。波導陣列1105a-c可被設計來形成不同觀察部段,譬若諸如觀察部段1110。每一觀察部段可有設計來散射方向性光束成一給定影像畫面以產生一3D影像之方向性像元。Attention is now directed to Fig. 11, which is a schematic illustration of a directional backlight having a plurality of waveguide arrays including the waveguide of Fig. 10. The directional backlight 1100 is shown as having a waveguide layer comprising a plurality of waveguide arrays 1105a-c. Each waveguide array has four waveguides (for example, one for red light, one for green light, one for blue light, and the other for white light), and the waveguides are disposed on a substrate 1115 bonded to the waveguide layer. Multiple integrated lasers (eg hybrid laser 1120). The waveguide arrays 1105a-c can be designed to form different viewing sections, such as for example viewing section 1110. Each viewing section can be designed to scatter a directional beam into a given image frame to produce a directional image of a 3D image.

一使用依照多種例子之方向性背光產生3D影像之流程圖於圖12中繪示。首先,方向性背光之方向性像元之性質被指定(步驟1200)。該性質可包含方向性像元中之圖形化光柵之特性,譬若諸如光柵長度、光柵寬度、方位、節距、和工作周期。如上文所述,方向性背光中之每一方向性像元可被指定具有一給定之性質組,以產生具有根據此等性質所精確控制的一方向及角度展度之方向性光束。其次,一方向性背光被製造成具有配置於多個波導之上之多個方向性像元(步驟1205)。該等波導可為介電質或聚合物波導等等。方向性像元可於波導中蝕刻出來,或由具有積設於波導頂部之材料之圖形化光柵構成(該材料例如為任何可被積設和蝕刻或去除之材料,包含任何介電質或金屬)。在多種例子中,波導也可有如圖10-11所示之幾何區別 區域。從配置在一連結多個波導之基底中之多個混合雷射出來之光以輸入平面光束形式輸入進方向性背光(步驟1210)。最後,一3D影像從方向性背光中之方向性像元所散射之方向性光束產生(步驟1215)。A flow chart for generating a 3D image using a directional backlight in accordance with various examples is illustrated in FIG. First, the nature of the directional pixels of the directional backlight is specified (step 1200). This property may include the characteristics of a patterned raster in a directional pixel, such as raster length, raster width, orientation, pitch, and duty cycle. As described above, each directional pixel in the directional backlight can be designated to have a given set of properties to produce a directional beam having a direction and angular spread that is precisely controlled according to such properties. Second, the directional backlight is fabricated to have a plurality of directional pixels disposed over the plurality of waveguides (step 1205). The waveguides can be dielectric or polymer waveguides and the like. The directional pixels may be etched in the waveguide or formed by a patterned grating having a material deposited on top of the waveguide (the material being, for example, any material that may be deposited and etched or removed, including any dielectric or metal ). In many cases, the waveguide can also have geometric differences as shown in Figure 10-11. region. Light from a plurality of hybrid lasers disposed in a substrate connecting the plurality of waveguides is input into the directional backlight in the form of an input planar beam (step 1210). Finally, a 3D image is generated from a directional beam of light scattered by the directional pixels in the directional backlight (step 1215).

有利的是,使用方向性背光中之方向性像元所達到的精確控制,使得一3D影像能夠被產生而又能夠易於製造實質上平面的結構。方向性像元的不同組態可產生不同的3D影像。本文描述之方向性背光可用來于顯示螢幕中提供3D影像(此等顯示螢幕例如為電視、行動裝置、平板電腦、電動遊戲裝置,諸如此類),以及於譬若諸如3D手錶、3D藝術裝置、3D醫療裝置等等其他應用中提供3D影像。Advantageously, the precise control achieved by the directional pixels in the directional backlight enables a 3D image to be produced while making it easy to fabricate a substantially planar structure. Different configurations of directional pixels can produce different 3D images. The directional backlights described herein can be used to provide 3D images in a display screen (such as televisions, mobile devices, tablets, video game devices, and the like), and such as 3D watches, 3D art devices, 3D. 3D images are provided in other applications such as medical devices.

應知,前文對所揭露的實例之描述係提供來使任何熟於此技者能夠製作或使用本申請之發明。對此等例子的多種修改將易於為熟於此技者看出,且本文定義之廣義原則可在不偏離本發明之精神或範疇的情形下適用於其他例子。因此,本申請之發明不欲限制於本文所展示之例子,而是要給予符合本文揭露的原則和新穎特色之最廣泛範疇。It is to be understood that the foregoing description of the disclosed examples is provided to enable any skilled person to make or use the invention. A variety of modifications to the examples are readily apparent to those skilled in the art, and the broad principles defined herein may be applied to other examples without departing from the spirit or scope of the invention. Therefore, the invention of the present application is not intended to be limited to the examples shown herein, but the broadest scope of the principles and novel features disclosed herein.

100‧‧‧方向性背光100‧‧‧ Directional backlight

105a-d‧‧‧混合雷射105a-d‧‧‧Hybrid laser

110‧‧‧基底110‧‧‧Base

115a-d、120a-d‧‧‧平面光束115a-d, 120a-d‧‧‧ plane beam

125a-d‧‧‧波導125a-d‧‧‧Band

130a-d‧‧‧方向性像元130a-d‧‧‧ directional pixels

135a-d‧‧‧方向性光束135a-d‧‧‧Directional beam

Claims (16)

一種基於方向性波導之背光,其係使用於多視野顯示螢幕、具有積體混合雷射,該背光包含:一具有多個波導陣列之波導層,每一波導陣列具有一組波導,每一波導具有多個方向性像元以散射多個輸入平面光束成多個方向性光束,每一方向性光束具有由該等多個方向性像元中之一方向性像元之性質控制的一方向和角度展度;以及用以提供該等多個輸入平面光束之配置在一連結該波導層的基底中之多個混合雷射。 A directional waveguide-based backlight for use in a multi-view display screen having an integrated hybrid laser comprising: a waveguide layer having a plurality of waveguide arrays, each waveguide array having a set of waveguides, each waveguide Having a plurality of directional pixels to scatter a plurality of input plane beams into a plurality of directional beams, each directional beam having a direction controlled by the properties of one of the plurality of directional pixels An angular spread; and a plurality of hybrid lasers disposed to provide the plurality of input plane beams in a substrate coupled to the waveguide layer. 如請求項1之基於方向性波導之背光,其中該等多個混合雷射包括從由混合環狀雷射與混合分佈回饋型雷射組成之群組選出之混合雷射。 The directional waveguide-based backlight of claim 1, wherein the plurality of hybrid lasers comprise a hybrid laser selected from the group consisting of a hybrid annular laser and a hybrid distributed feedback laser. 如請求項1之基於方向性波導之背光,其中該等多個波導陣列係實質上呈平面式。 The directional waveguide based backlight of claim 1, wherein the plurality of waveguide arrays are substantially planar. 如請求項1之基於方向性波導之背光,其中該等多個方向性像元中之每一方向性像元包括具有多個實質上平行和傾斜的槽溝之多個圖形化光柵。 The directional waveguide based backlight of claim 1, wherein each of the plurality of directional pixels comprises a plurality of patterned gratings having a plurality of substantially parallel and inclined grooves. 如請求項4之基於方向性波導之背光,其中一方向性像元之性質包括一光柵長度、一光柵寬度、一光柵方位、一光柵節距、和一工作週期。 The directional waveguide based backlight of claim 4, wherein the properties of a directional pixel include a grating length, a grating width, a grating orientation, a grating pitch, and a duty cycle. 如請求項5之基於方向性波導之背光,其中一方向性像元之節距及方位控制由該方向性像元散射之一方向性 光束之方向。 The backlight of the directional waveguide according to claim 5, wherein a pitch and azimuth control of a directional pixel is directional by the directional pixel scattering The direction of the beam. 如請求項6之基於方向性波導之背光,其中一方向性像元之長度及寬度控制由一方向性像元散射之一方向性光束之角度展度。 The directional waveguide based backlight of claim 6, wherein the length and width of a directional pixel control the angular spread of a directional beam by a directional element. 如請求項1之基於方向性波導之背光,其中該組波導中之一波導包含多個幾何區別區域,每一區域具有多個部段和一單一方向性像元。 A directional waveguide based backlight of claim 1, wherein one of the set of waveguides comprises a plurality of geometrically distinct regions, each region having a plurality of segments and a single directional pixel. 一種用以產生多視野3D影像之方法,其使用具有多個積體混合雷射之基於波導之方向性背光,該方法包含:為多個方向性像元指定多個性質,每一方向性像元由一具有實質上平行和傾斜的槽溝之圖形化光柵構成;製造具有配置於多個波導上的該等多個方向性像元之一方向性背光;使用從多個配置在一連結該等多個波導的基底中之多個混合雷射出來之光照射該等多個波導;以及使用該方向性背光中之該等多個方向性像元散射之方向性光束來產生該多視野影像。 A method for generating a multi-view 3D image using a waveguide-based directional backlight having a plurality of integrated lasers, the method comprising: assigning a plurality of properties to each of the plurality of directional pixels, each directional image The element is formed by a patterned grating having substantially parallel and inclined grooves; manufacturing a directional backlight having one of the plurality of directional pixels disposed on the plurality of waveguides; And a plurality of mixed laser light from the plurality of waveguides illuminate the plurality of waveguides; and using the directional light beams scattered by the plurality of directional pixels in the directional backlight to generate the multi-view image . 如請求項9之方法,其中每一方向性光束係由一方向性像元之該等性質控制。 The method of claim 9, wherein each directional beam is controlled by the properties of a directional cell. 如請求項10之方法,其中一方向性像元之該等性質包含一光柵長度、一光柵寬度、一光柵方位、一光柵節距、和一工作週期。 The method of claim 10, wherein the properties of a directional cell comprise a raster length, a raster width, a raster orientation, a grating pitch, and a duty cycle. 如請求項11之方法,其中一方向性像元之節距及方位控制該方向性像元散射之一方向性光束之方向。 The method of claim 11, wherein the pitch and orientation of a directional cell control the direction of the directional beam of the directional cell. 如請求項11之方法,其中一方向性像元之長度及寬度控制該方向性像元散射之一方向性光束之角度展度。 The method of claim 11, wherein the length and width of a directional cell control the angular spread of the directional beam of the directional cell. 如請求項11之方法,其中製造一方向性背光包含製造具有多個幾何區別區域之一波導,每一區域有多個部段和一單一方向性像元。 The method of claim 11, wherein fabricating a directional backlight comprises fabricating a waveguide having a plurality of geometrically distinct regions, each region having a plurality of segments and a single directional pixel. 一種波導,包含:多個幾何區別區域,每一區域具有多個部段;以及配置於該等多個幾何區別區域上之多個方向性像元,用以散射多個輸入平面光束成多個方向性光束,每一方向性光束具有由該等多個方向性像元中之一方向性像元之多個性質控制的一方向及角度展度;其中,該等輸入平面光束係由配置於連結該波導之一基底上的多個混合雷射產生。 A waveguide comprising: a plurality of geometrically distinct regions, each region having a plurality of segments; and a plurality of directional pixels disposed on the plurality of geometrically distinct regions for scattering a plurality of input plane beams into a plurality of a directional beam, each directional beam having a direction and an angular spread controlled by a plurality of properties of one of the plurality of directional pixels; wherein the input plane beams are arranged A plurality of hybrid lasers coupled to one of the substrates of the waveguide are produced. 如請求項15之波導,其中該等多個部段包含一放置於兩水平定向部段間之角度部段。 The waveguide of claim 15 wherein the plurality of segments comprise an angular section disposed between the two horizontally oriented segments.
TW102135328A 2012-09-28 2013-09-30 Directional waveguide-based backlight,method for generating a multiview 3d image and waveguides TWI499803B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/058026 WO2014051624A1 (en) 2012-09-28 2012-09-28 Directional waveguide-based backlight with integrated hybrid lasers for use in a multivew display screen

Publications (2)

Publication Number Publication Date
TW201421075A TW201421075A (en) 2014-06-01
TWI499803B true TWI499803B (en) 2015-09-11

Family

ID=50388809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102135328A TWI499803B (en) 2012-09-28 2013-09-30 Directional waveguide-based backlight,method for generating a multiview 3d image and waveguides

Country Status (2)

Country Link
TW (1) TWI499803B (en)
WO (1) WO2014051624A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105677005B (en) * 2014-11-19 2020-12-11 中兴通讯股份有限公司 Screen control method and device of mobile terminal
CN104460115B (en) 2014-12-31 2017-09-01 苏州大学 A kind of various visual angles pixel directing backlight module and bore hole 3D display device
CN105372824B (en) 2015-12-22 2017-12-29 苏州苏大维格光电科技股份有限公司 A kind of bore hole 3D laser display apparatus
JP6776359B2 (en) * 2016-01-30 2020-10-28 レイア、インコーポレイテッドLeia Inc. Multi-beam element backlighting with convergent view
CN105676473B (en) * 2016-04-18 2019-05-03 苏州苏大维格光电科技股份有限公司 A kind of bore hole 3D display device
CN105700226A (en) * 2016-04-25 2016-06-22 京东方科技集团股份有限公司 Viewing angle control mechanism, light guide plate, backlight module, array substrate and display panel
EP3638946A4 (en) * 2017-06-16 2020-12-23 LEIA Inc. Multiview backlight, multiview display and method employing offset multibeam elements
CN113138471A (en) * 2020-01-19 2021-07-20 苏州苏大维格科技集团股份有限公司 Naked eye three-dimensional display system, tiled display device and generation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228339A (en) * 1999-12-09 2001-08-24 Gc Communication Method amd device for machining light guide with laser beam, light guide obtained by it and pack light screen incorporating its light guide
TW200519429A (en) * 2003-12-05 2005-06-16 Hon Hai Prec Ind Co Ltd Light guide plate and backlight device using the same
US20050201705A1 (en) * 2004-02-12 2005-09-15 Panorama Flat Ltd. Apparatus, method, and computer program product for structured waveguide including recursion zone
TW200900637A (en) * 2007-04-12 2009-01-01 Koninkl Philips Electronics Nv Improved light guide and light-output device
US7800710B2 (en) * 2004-06-24 2010-09-21 Olympus Corporation Image display apparatus and in-vehicle image display apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300560A (en) * 2002-02-22 2005-10-27 Mitsuteru Kimura Display unit
KR101196909B1 (en) * 2010-03-04 2012-11-05 영남대학교 산학협력단 Backlight unit of direct illumination type

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228339A (en) * 1999-12-09 2001-08-24 Gc Communication Method amd device for machining light guide with laser beam, light guide obtained by it and pack light screen incorporating its light guide
TW200519429A (en) * 2003-12-05 2005-06-16 Hon Hai Prec Ind Co Ltd Light guide plate and backlight device using the same
US20050201705A1 (en) * 2004-02-12 2005-09-15 Panorama Flat Ltd. Apparatus, method, and computer program product for structured waveguide including recursion zone
US7800710B2 (en) * 2004-06-24 2010-09-21 Olympus Corporation Image display apparatus and in-vehicle image display apparatus
TW200900637A (en) * 2007-04-12 2009-01-01 Koninkl Philips Electronics Nv Improved light guide and light-output device

Also Published As

Publication number Publication date
WO2014051624A1 (en) 2014-04-03
TW201421075A (en) 2014-06-01

Similar Documents

Publication Publication Date Title
TWI499803B (en) Directional waveguide-based backlight,method for generating a multiview 3d image and waveguides
KR101788776B1 (en) Directional backlight
KR101918038B1 (en) Directional pixel for use in a display screen
TW201418845A (en) Directional waveguide-based backlight for use in a multiview display screen
KR101788777B1 (en) Directional backlight with a modulation layer
US9459461B2 (en) Directional backlight
CN106291958B (en) Display device and image display method
US9389415B2 (en) Directional pixel for use in a display screen
WO2018072527A1 (en) Three-dimensional display device
US20140300840A1 (en) Directional backlight with a modulation layer
US8797620B2 (en) Autostereoscopic display assembly based on digital semiplanar holography
WO2014081415A1 (en) Directional waveguide-based pixel for use in a multiview display screen
CN106575034A (en) Exit pupil expanding diffractive optical waveguiding device
CN104272199A (en) Multiview 3d wrist watch
JP7178415B2 (en) Methods for Equipping Multi-View Camera Arrays, Multi-View Systems, and Camera Sub-Arrays with Shared Cameras
US20160255328A1 (en) Multiview 3d telepresence
CN102955258A (en) Three-dimensional image display apparatus
KR20200017556A (en) Multibeam device-based backlight with micro lens and display using same
JP5767531B2 (en) IP stereoscopic display
JP2021508965A (en) Cross-rendering multi-view cameras, systems, and methods
CN104932151A (en) Liquid crystal optical element and image apparatus
JP6393078B2 (en) Light emitting element
US9915773B1 (en) Backlight module and stereo display device using the same
JP2022191307A (en) Horizontal parallax multiview display having slanted multibeam columns and method
JP5906102B2 (en) Light-oriented light emitting device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees