JP2017167529A - Directional pixel used in display screen - Google Patents

Directional pixel used in display screen Download PDF

Info

Publication number
JP2017167529A
JP2017167529A JP2017035523A JP2017035523A JP2017167529A JP 2017167529 A JP2017167529 A JP 2017167529A JP 2017035523 A JP2017035523 A JP 2017035523A JP 2017035523 A JP2017035523 A JP 2017035523A JP 2017167529 A JP2017167529 A JP 2017167529A
Authority
JP
Japan
Prior art keywords
diffraction grating
directional
light beam
display screen
directional pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017035523A
Other languages
Japanese (ja)
Other versions
JP6871758B2 (en
Inventor
デイビッド、エイ.ファタル
A Fattal David
ジェームズ、エイ.ブルグ
A Brug James
ペン、ゼン
Zhen Peng
マルコ、フィオレンティーノ
Fiorentino Marco
レイモンド、ジー.ボーソレイユ
G Beausoleil Raymond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leia Inc
Original Assignee
Leia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leia Inc filed Critical Leia Inc
Priority to JP2017035523A priority Critical patent/JP6871758B2/en
Publication of JP2017167529A publication Critical patent/JP2017167529A/en
Application granted granted Critical
Publication of JP6871758B2 publication Critical patent/JP6871758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a directional pixel that has a bright field accurately controlled in a pixel level in order to achieve excellent image quality over wide ranges of viewing angle and spatial resolution.SOLUTION: There is provided a directional pixel 100 used in a display screen, the directional pixel 100 receiving a plane light beam 125. The directional pixel 100 includes a light propagation layer 110, and a diffraction grating 105 that scatters part of the plane light beam 125 into a directional light beam 130 having controlled direction and angle diffusion.SELECTED DRAWING: Figure 1

Description

表示画面に明視野(light field)を再生する能力は、画像処理及び表示技術における主要な探究であった。明視野は、空間内の各点を通って各方向に進むすべての光線の組である。いかなる自然な実際の光景も、その光景を通過するすべての光線の強度、色、及び方向に関する情報をもたらすその明視野により十分に特徴付けることができる。目標は、表示画面の閲覧者が、光景を、本人が直接経験するかのように経験することを可能にすることである。   The ability to reproduce a light field on a display screen has been a major quest in image processing and display technology. The bright field is the set of all rays that travel in each direction through each point in space. Any natural actual scene can be well characterized by its bright field that provides information about the intensity, color, and direction of all rays that pass through the scene. The goal is to allow viewers of the display screen to experience the scene as if it were directly experienced by the person.

テレビ、パーソナルコンピュータ、ラップトップ機、及び携帯機器の現在利用可能な表示画面は、概して2次元のままであり、従って明視野を正確に再生することができない。3次元(“3D”)ディスプレイが最近出現したが、与える視像(view)の数が限られていることに加えて、角度分解能及び空間分解能が不足するという欠点がある。例は、ホログラフィック回折格子(grating)、パララックスバリア、又はレンチキュラレンズに基づく3Dディスプレイを含んでいる。   Currently available display screens for televisions, personal computers, laptops, and portable devices generally remain two-dimensional and therefore cannot reproduce the bright field accurately. Three-dimensional ("3D") displays have recently emerged, but have the disadvantage of lack of angular and spatial resolution, in addition to the limited number of views provided. Examples include 3D displays based on holographic gratings, parallax barriers, or lenticular lenses.

これらのディスプレイの間での共通の課題は、広範囲の視野角及び空間分解能にわたって優れた画質を達成するために、画素レベルで正確に制御される明視野を有するディスプレイを製作することが困難なことである。   A common challenge among these displays is that it is difficult to produce a display with a bright field that is precisely controlled at the pixel level in order to achieve excellent image quality over a wide range of viewing angles and spatial resolutions. It is.

本出願は、添付の図面とともに以下の詳細な説明と関連付けて十分に理解することができ、添付の図面では、全体にわたって同様の参照符号は同様の部分を指している。   The present application can be more fully understood in conjunction with the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout.

様々な実施形態による指向性画素(directional pixel)の概略図を示す。FIG. 3 shows a schematic diagram of a directional pixel according to various embodiments. 様々な実施形態による別の指向性画素の概略図を示す。FIG. 6 shows a schematic diagram of another directional pixel according to various embodiments. 様々な実施形態による指向性画素の構成の断面を示す。2 shows a cross section of a configuration of directional pixels according to various embodiments. 様々な実施形態による指向性画素の構成の断面を示す。2 shows a cross section of a configuration of directional pixels according to various embodiments. 様々な実施形態による指向性画素の構成の断面を示す。2 shows a cross section of a configuration of directional pixels according to various embodiments. 様々な実施形態による指向性画素の構成の断面を示す。2 shows a cross section of a configuration of directional pixels according to various embodiments. 図1〜図2の回折格子の特性をより詳細に示す概略図を示す。FIG. 3 shows a schematic diagram illustrating in more detail the characteristics of the diffraction grating of FIGS. 様々な実施形態による回折格子に対するFDTDシミュレーションの結果を示す概略図を示す。FIG. 6 shows a schematic diagram illustrating the results of an FDTD simulation for a diffraction grating according to various embodiments. 様々な実施形態により構築された複数の指向性画素を有するマルチビュー表示画面(multi-view display screen)の一例を示す。FIG. 6 illustrates an example of a multi-view display screen having a plurality of directional pixels constructed in accordance with various embodiments. 様々な実施形態により構築された複数の指向性画素を有するプライバシー表示画面の一例を示す。FIG. 6 illustrates an example of a privacy display screen having a plurality of directional pixels constructed according to various embodiments.

表示画面で使用される指向性画素が開示される。指向性画素は、入力の平面光ビームを受け取り、入力の平面光ビームの制御されたわずかな部分(fraction)を、出力の指向性光ビームへと散乱させる。入力の平面光ビームは、実質的に平面状に設計された指向性画素と実質的に同一の面を伝播する。指向性光ビームは、所望の空間的方向及び所望の角度広がり(angular spread)を有し、従って面を通過しているように見える光線を効率よく生成する。   A directional pixel for use in a display screen is disclosed. The directional pixel receives the input planar light beam and scatters a controlled fraction of the input planar light beam into the output directional light beam. The input planar light beam propagates in substantially the same plane as the directional pixel designed to be substantially planar. A directional light beam efficiently produces a light beam having a desired spatial direction and a desired angular spread, and thus appearing to pass through a surface.

様々な実施形態において、指向性画素は、光伝播層(light propagating layer)の内部又は上部(top)に設けられた実質的に平行で傾斜した溝のパターニングされた回折格子を有している。光伝播層は、例えば、任意の透明材料で形成された透明な導波層(waveguiding layer)でもよく、とりわけ例えば、窒化シリコン(“SiN”)、ガラス又は水晶、インジウムスズ酸化物(“ITO”)などの透明材料で形成された透明な導波層でもよい。様々な実施形態において、光伝播層は、不透明(例えばシリコン)、反射性、又は透明(ガラス)であり得る担体基板上に存在してもよい。パターニングされた回折格子は、光伝播層にエッチングされた溝、又は光伝播層の上部に堆積された材料(例えば、堆積されてエッチング又はリフトオフされ得る任意の材料であり、任意の誘電体又は金属を含む)で形成された溝から成り得る。   In various embodiments, the directional pixel comprises a patterned diffraction grating with substantially parallel and inclined grooves provided within or on the top of the light propagating layer. The light propagation layer may be, for example, a transparent waveguiding layer formed of any transparent material, for example, silicon nitride (“SiN”), glass or quartz, indium tin oxide (“ITO”), among others. A transparent waveguide layer formed of a transparent material such as In various embodiments, the light propagation layer may be present on a carrier substrate that may be opaque (eg, silicon), reflective, or transparent (glass). The patterned diffraction grating is a groove etched into the light propagation layer, or a material deposited on top of the light propagation layer (eg, any material that can be deposited and etched or lifted off, any dielectric or metal ).

本明細書でより詳細に以下で説明されるように、回折格子は、回折格子の長さ(即ち、入力の平面光ビームの伝播軸に沿った寸法)、回折格子の幅(即ち、入力の平面光ビームの伝播軸を横切る寸法)、溝の配向、ピッチ、及びデューティサイクルにより規定することができる。指向性光ビームは、溝の配向と回折格子のピッチとにより決定される方向と、回折格子の長さ及び幅により決定される角度広がりとを有する。50%程度のデューティサイクルを用いることにより、回折格子パターンの2番目のフーリエ係数が消滅し、これにより付加的な望ましくない方向への光の散乱を防止する。これは、指向性画素から、出力の角度とは無関係に一方向の光ビームだけが出現することを保証する。   As will be described in more detail herein below, the diffraction grating comprises the length of the diffraction grating (ie, the dimension along the propagation axis of the input planar light beam), the width of the diffraction grating (ie, the input Dimensional across the propagation axis of the planar light beam), groove orientation, pitch, and duty cycle. The directional light beam has a direction determined by the groove orientation and diffraction grating pitch, and an angular spread determined by the length and width of the diffraction grating. By using a duty cycle on the order of 50%, the second Fourier coefficient of the diffraction grating pattern disappears, thereby preventing light scattering in additional undesirable directions. This ensures that only a unidirectional light beam emerges from the directional pixel regardless of the output angle.

以下の説明において、実施形態の十分な理解をもたらすために、多数の特定の詳細が説明されることが理解される。しかしながら、これらの実施形態は、これらの特定の詳細に限定されることなく実施できることが理解される。他の例では、これらの実施形態の説明が不必要に不明瞭になることを回避するために、周知の方法及び構造は詳細には説明されないことがある。また、これらの実施形態は互いに組み合わされて用いられてもよい。   In the following description, it is understood that numerous specific details are set forth in order to provide a thorough understanding of the embodiments. However, it is understood that these embodiments can be practiced without being limited to these specific details. In other instances, well-known methods and structures may not be described in detail to avoid unnecessarily obscuring the description of these embodiments. Moreover, these embodiments may be used in combination with each other.

次に図1を参照して、様々な実施形態による指向性画素の概略図が説明される。指向性画素100は、光伝播層110内に回折格子105を含んでいる。回折格子105は、実質的に平行で傾斜した複数の溝115を含んでおり、これらの溝115は、入力光ビームの伝播軸にわたって、軸に対して溝角度θを有する。回折格子の溝115の厚さは、すべての溝に関して実質的に同一とすることができ、実質的に平面状の設計をもたらす。入射光が入力の平面光ビーム125の形で指向性画素100に照射(impinge)される場合、回折格子105は、入力の平面光ビーム125の制御されたわずかな部分を、指向性光ビーム130へと散乱させる。   Referring now to FIG. 1, a schematic diagram of directional pixels according to various embodiments is described. The directional pixel 100 includes a diffraction grating 105 in the light propagation layer 110. The diffraction grating 105 includes a plurality of substantially parallel and inclined grooves 115 that have a groove angle θ relative to the axis over the propagation axis of the input light beam. The thickness of the grating grooves 115 can be substantially the same for all grooves, resulting in a substantially planar design. When incident light impinges on the directional pixel 100 in the form of an input planar light beam 125, the diffraction grating 105 causes a small portion of the input planar light beam 125 to be transferred to the directional light beam 130. Scatter into

この実質的に平面状の設計及び平面光ビームが入射したときの指向性光ビーム130の形成は、従来の回折格子(diffraction grating)よりも実質的に小さいピッチを有する回折格子を必要とすることが理解される。例えば、従来の回折格子は、実質的に回折格子の面にわたって伝播する光ビームが照射されると、光を散乱させる。本願において、回折格子105は、指向性光ビーム130を生成する場合、入射する平面光ビーム125と実質的に同一の面上にある。この平面状の設計は、小型で一体型の光源を有する照明を可能にする。   This substantially planar design and formation of the directional light beam 130 when a planar light beam is incident requires a diffraction grating having a substantially smaller pitch than conventional diffraction gratings. Is understood. For example, conventional diffraction gratings scatter light when irradiated with a light beam that propagates substantially across the surface of the diffraction grating. In the present application, the diffraction grating 105 is on substantially the same plane as the incident planar light beam 125 when generating the directional light beam 130. This planar design allows illumination with a small, integrated light source.

指向性光ビーム130は、回折格子の長さL、回折格子の幅W、溝の配向θ、及び回折格子のピッチΛを有する回折格子105の特性により正確に制御される。具体的には、次式のように、回折格子の長さLが、入力光の伝播軸に沿った指向性光ビーム130の角度広がりΔΘを制御し、回折格子の幅Wが、入力光の伝播軸を横切る指向性光ビーム130の角度広がりΔΘを制御する、

ただし、λは指向性光ビーム130の波長である。回折格子の配向角θにより規定される溝の配向と、Λにより規定される回折格子のピッチ又は周期とが、本明細書において以下でより詳細に説明されるように、指向性光ビーム130の方向を制御する。
The directional light beam 130 is accurately controlled by the characteristics of the diffraction grating 105 having a diffraction grating length L, diffraction grating width W, groove orientation θ, and diffraction grating pitch Λ. Specifically, the length L of the diffraction grating controls the angular spread ΔΘ of the directional light beam 130 along the propagation axis of the input light, and the width W of the diffraction grating is set to Controlling the angular spread ΔΘ of the directional light beam 130 across the propagation axis;

Where λ is the wavelength of the directional light beam 130. The groove orientation defined by the diffraction grating orientation angle θ and the pitch or period of the diffraction grating defined by Λ, of the directional light beam 130 are described in more detail herein below. Control the direction.

回折格子の長さL及び回折格子の幅Wは、0.1〜200μmの範囲のサイズで変化し得る。溝の配向角θ及び回折格子のピッチΛは、指向性光ビーム130の所望の方向を満たすように設定してもよく、例えば、溝の配向角θは約−40〜+40度であり、回折格子のピッチΛは約200〜700nmである。   The length L of the diffraction grating and the width W of the diffraction grating can vary in size ranging from 0.1 to 200 μm. The groove orientation angle θ and the diffraction grating pitch Λ may be set to satisfy a desired direction of the directional light beam 130. For example, the groove orientation angle θ is about −40 to +40 degrees, The pitch Λ of the grating is about 200 to 700 nm.

回折格子の幅Wは、光伝播層の幅よりも実質的に小さくなり得ることが理解される。例えば、図2は、幅広の光伝播層205を有する指向性画素200を示し、この光伝播層205は、それに設けられた回折格子210よりもはるかに幅広である。光伝播層205は、層205の表面に照射される幅広の入力の平面光ビーム(矢印215で表されている)に対して機能するように設計可能である。   It is understood that the width W of the diffraction grating can be substantially smaller than the width of the light propagation layer. For example, FIG. 2 shows a directional pixel 200 having a wide light propagation layer 205 that is much wider than the diffraction grating 210 provided thereon. The light propagation layer 205 can be designed to function with a wide input planar light beam (represented by an arrow 215) that irradiates the surface of the layer 205.

回折格子の幅Wは、回折格子の長さLよりも実質的に小さくなり得ることも理解される。この場合、指向性画素により出力される指向性光ビームは、水平方向では非常に狭いが垂直方向では広い。このことは、指向性画素を、水平視差(垂直視差ではない)のみを与える表示画面で使用されるように設計することを可能にし、それにより、表示画面に関する設計及び製造の複雑さがかなり低減する。   It is also understood that the width W of the diffraction grating can be substantially smaller than the length L of the diffraction grating. In this case, the directional light beam output by the directional pixel is very narrow in the horizontal direction but wide in the vertical direction. This allows directional pixels to be designed to be used on display screens that provide only horizontal parallax (not vertical parallax), thereby significantly reducing the design and manufacturing complexity associated with the display screen. To do.

様々な実施形態において、指向性画素100及び200は、回折格子の溝(例えば回折格子の溝115)が光伝播層(例えば層105)にどのように設けられるかに依存して、様々な構成に構築可能である。図3A〜図3Dは、様々な実施形態による指向性画素の構成の異なる断面を示す。図3A〜図3Dに示す指向性画素は、光伝播層にエッチングされた、又は光伝播層の上部に堆積された材料(例えば、堆積されてエッチング又はリフトオフされ得る任意の材料であり、任意の誘電体又は金属を含む)で形成された回折格子の複数の溝を有している。   In various embodiments, directional pixels 100 and 200 can have various configurations depending on how the grating grooves (eg, diffraction grating grooves 115) are provided in the light propagation layer (eg, layer 105). Can be constructed. 3A-3D show different cross-sections of directional pixel configurations according to various embodiments. The directional pixels shown in FIGS. 3A-3D can be any material that has been etched into the light propagation layer or deposited on top of the light propagation layer (eg, any material that can be deposited and etched or lifted off, A plurality of grooves of a diffraction grating formed of (including a dielectric or metal).

例えば、図3Aの指向性画素300は光伝播層305を含み、この光伝播層305は、光伝播層305にエッチングされた回折格子310を有している。図3Bの指向性画素315は光伝播層320を含み、この光伝播層320は、(例えばリフトオフプロセスによる誘電体又は金属の堆積物を用いて)上部に堆積された回折格子325を有している。図3Cの指向性画素330は、基板340上に設けられた光伝播層335を含む。回折格子345は、光伝播層335にエッチングされている。また、図3Dの指向性画素350は、基板360上に構成された光伝播層355を含む。回折格子365は、光伝播層355の上部に堆積されている。   For example, the directional pixel 300 in FIG. 3A includes a light propagation layer 305, which has a diffraction grating 310 etched into the light propagation layer 305. The directional pixel 315 of FIG. 3B includes a light propagation layer 320 that has a diffraction grating 325 deposited thereon (eg, using a dielectric or metal deposit by a lift-off process). Yes. The directional pixel 330 in FIG. 3C includes a light propagation layer 335 provided on the substrate 340. The diffraction grating 345 is etched in the light propagation layer 335. The directional pixel 350 of FIG. 3D includes a light propagation layer 355 configured on the substrate 360. The diffraction grating 365 is deposited on top of the light propagation layer 355.

当業者は、図3A〜図3Dにそれぞれ示された指向性画素300、315、330、及び350が、とりわけ光リソグラフィ、ナノインプリントリソグラフィ、ロールトゥロール(roll-to-roll)インプリントリソグラフィ、インプリントモールドを用いた直接エンボスなどの様々な製造技術を用いて製造可能な例示の構成でしかないことを理解する。図3C〜図3Dに示す基板層340及び360が、1つ又は複数の基板層を含み得ることも理解される。更に、基板層340及び360が、透明、反射性、又は不透明であり得ることが理解される。   Those skilled in the art will recognize that the directional pixels 300, 315, 330, and 350 shown in FIGS. 3A-3D, respectively, are optical lithography, nanoimprint lithography, roll-to-roll imprint lithography, imprint, among others. It is understood that there are only exemplary configurations that can be manufactured using various manufacturing techniques, such as direct embossing with a mold. It is also understood that the substrate layers 340 and 360 shown in FIGS. 3C-3D can include one or more substrate layers. It is further understood that the substrate layers 340 and 360 can be transparent, reflective, or opaque.

次に、図1〜図2の回折格子の特性をより詳細に示す図4が注目される。指向性画素400内の回折格子405は、入力の平面光ビーム415が入射したときに、出力の指向性光ビーム410の方向及び角度広がりを規定する形状を有している。回折格子405の形状と指向性光ビーム410の方向との関係は、運動量保存則を用いて求めることができる。具体的には、(矢印420で表されている)平面光ビーム415の伝播の実効屈折率neffに関して測定された入力波の運動量Kと、(矢425及び430で表されている)回折格子の運動量K(の倍数)との和が、出力の指向性光ビーム410の運動量Kと等しくなければならない、

ただし、K、K、及びKは運動量のベクトルである。
Next, attention is paid to FIG. 4 showing the characteristics of the diffraction grating of FIGS. The diffraction grating 405 in the directional pixel 400 has a shape that defines the direction and angular spread of the output directional light beam 410 when the input planar light beam 415 is incident. The relationship between the shape of the diffraction grating 405 and the direction of the directional light beam 410 can be obtained using a momentum conservation law. Specifically, the momentum K i of the input wave measured with respect to the effective refractive index n eff of the propagation of the planar light beam 415 (represented by arrows 420) and the diffraction (represented by arrows 425 and 430). The sum of the grating momentum K g (a multiple of) must be equal to the momentum K o of the output directional light beam 410;

Here, Ki , Kg , and Ko are momentum vectors.

平面導波路(planar waveguide)の運動量Kは次のベクトルで与えることができる、

ただし、neffは回折格子405の実効屈折率である。平面光ビーム415が水平面を伝播する場合、垂直方向(vertical direction)の運動量がゼロに等しいことに注意されたい。回折格子405によりもたらされる運動量キック(momentum kick)Kは、次式で与えられる。

このため、出力の指向性光ビーム410の運動量Kは次式で与えられることになる、


ただし、k及びkは、運動量ベクトルKの水平成分及び垂直成分であり、即ち、K=(k,k)である。式5及び式6は、前述のように、指向性光ビーム410の方向が、回折格子の配向及び回折格子のピッチの関数であることを示す。
The momentum K i of the planar waveguide can be given by the following vector:

Where n eff is the effective refractive index of the diffraction grating 405. Note that when the planar light beam 415 propagates in a horizontal plane, the vertical direction momentum is equal to zero. The momentum kick K g provided by the diffraction grating 405 is given by:

Therefore, the momentum K o of directional light beam 410 of the output will be given by the following equation,


Where k x and k y are the horizontal and vertical components of the momentum vector K o , that is, K o = (k x , k y ). Equations 5 and 6 indicate that the direction of the directional light beam 410 is a function of the diffraction grating orientation and the diffraction grating pitch, as described above.

散乱角に関する上記の式は、計算クラスタ上で走る完全な3Dの有限差分時間領域計算(“FDTD”)を用いてシミュレートすることができる。次に図5を参照して、様々な実施形態による回折格子に対するFDTDシミュレーションの結果を示す概略図が説明される。入射の平面光ビームが照射された場合、指向性画素500中の回折格子505が指向性光ビーム510を生成する。FDTDシミュレーション及び指向性光ビーム510の散乱角の計算は、指向性光ビーム510を回折格子505の形状の関数として生成するために達成可能な正確な制御を示す。回折格子の50%のデューティサイクルは、画素から、出力角度にかかわらず1つの指向性光ビームだけが出現することを保証する。   The above equation for the scattering angle can be simulated using a full 3D finite difference time domain calculation (“FDTD”) running on a calculation cluster. Referring now to FIG. 5, a schematic diagram illustrating the results of an FDTD simulation for a diffraction grating according to various embodiments is described. When the incident planar light beam is irradiated, the diffraction grating 505 in the directional pixel 500 generates the directional light beam 510. The FDTD simulation and calculation of the scattering angle of the directional light beam 510 illustrate the precise control that can be achieved to generate the directional light beam 510 as a function of the shape of the diffraction grating 505. The 50% duty cycle of the diffraction grating ensures that only one directional light beam emerges from the pixel regardless of the output angle.

有利には、この正確な制御は、指向性画素を実質的に平面な構造に容易に製造することを可能にするとともに、指向性画素が任意の所望の視点に光を向けることを可能にする。指向性画素は明視野をエミュレートするためにマルチビュー表示画面で使用してもよく、多数の指向性画素が多数の視像をもたらす。加えて、指向性画素は、(例えば、閲覧者が、表示画面の指向性画素により出力された指向性光ビームを認識する位置に居ることにより)例えば閲覧者に対して安全で秘密の表示を提供するプライバシー表示画面などの他の用途で使用してもよい。   Advantageously, this precise control allows the directional pixel to be easily manufactured into a substantially planar structure and allows the directional pixel to direct light to any desired viewpoint. . Directional pixels may be used in multi-view display screens to emulate bright field, and a large number of directional pixels result in a large number of views. In addition, the directional pixel provides a safe and confidential display to the viewer, for example (for example, when the viewer is in a position to recognize the directional light beam output by the directional pixel on the display screen). You may use for other uses, such as a privacy display screen to provide.

様々な実施形態により構築された複数の指向性画素を有するマルチビュー表示画面の一例が、図6に示されている。表示画面600は、閲覧者(例えば閲覧者605a〜d)に対して複数の視像を提供するために複数の指向性画素(図示せず)を有するマルチビュー表示画面である。各指向性画素が、視像を形成するために使用可能な指向性光ビームを生成する。表示画面600内の多数の指向性画素を組み合わせることにより複数の指向性光ビームを生成可能であり、これにより明視野をエミュレートして、閲覧者605a〜dに、本人が直接経験するかのように自然な実際の光景を感知する能力を与える。   An example of a multi-view display screen having a plurality of directional pixels constructed according to various embodiments is shown in FIG. The display screen 600 is a multi-view display screen having a plurality of directional pixels (not shown) for providing a plurality of visual images to a viewer (for example, the viewers 605a to 605d). Each directional pixel produces a directional light beam that can be used to form a visual image. It is possible to generate a plurality of directional light beams by combining a large number of directional pixels in the display screen 600, thereby emulating a bright field, and whether the person directly experiences the viewers 605a to 605d. Gives the ability to perceive natural real scenes.

様々な実施形態により構築された複数の指向性画素を有するプライバシー表示画面の一例が、図7に示されている。プライバシー表示画面700は、閲覧者(例えば閲覧者705)に対して画面700に表示される内容の秘密の安全な視像を提供するために複数の指向性画素(図示せず)を有する表示画面である。この場合、プライバシー表示画面700の指向性画素は、閲覧者705にしか見えない制限された視像区域をもたらす。閲覧者710a〜bは、視像区域の外部におり、従って表示画面700の内容を見ることができない。   An example of a privacy display screen having a plurality of directional pixels constructed according to various embodiments is shown in FIG. The privacy display screen 700 is a display screen having a plurality of directional pixels (not shown) in order to provide a secret safe view of the content displayed on the screen 700 to a viewer (for example, the viewer 705). It is. In this case, the directional pixels of the privacy display screen 700 provide a limited viewing area that is only visible to the viewer 705. The viewers 710a-b are outside the viewing area and thus cannot view the contents of the display screen 700.

開示された実施形態のこれまでの説明は、あらゆる当業者が本開示を製造又は使用することができるように提供されていることが理解される。これらの実施形態に対する様々な修正形態が当業者には容易に明らかになるはずであり、本明細書で定義された一般的な原理は、本開示の精神又は範囲から逸脱することなく他の実施形態に適用され得る。従って、本開示は、本明細書で示された実施形態に限定されるように意図されたものではなく、本明細書で開示された原理及び新規な特徴と整合する最も広い範囲を与えられるように意図されている。

It is understood that the previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these embodiments should be readily apparent to those skilled in the art, and the general principles defined herein may be used in other implementations without departing from the spirit or scope of the disclosure. It can be applied to the form. Accordingly, this disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein. Is intended.

本発明は以下を提供する。
[1]表示画面で使用される指向性画素であって、上記指向性画素は、平面光ビームを受け取り、上記指向性画素は、
光伝播層と、
回折格子であって、上記平面光ビームの一部を、上記回折格子により制御された方向及び角度広がりを有する指向性光ビームへと散乱させる回折格子と、
を備える指向性画素。
2]上記光伝播層は、透明な窒化シリコン(“SiN”)層を備える、上記[1]に記載の指向性画素。
3]上記回折格子は、約50%のデューティサイクルを有する、上記[1]に記載の指向性画素。
4]上記回折格子は、ピッチ、配向、長さ、及び幅を有する複数の実質的に平行で傾斜した溝を備える、上記[1]に記載の指向性画素。
5]上記ピッチ及び配向は、上記指向性光ビームの上記方向を制御する、上記[4]に記載の指向性画素。
6]上記長さ及び幅は、上記指向性光ビームの上記角度広がりを制御する、上記[4]に記載の指向性画素。
7]上記指向性画素は、実質的に平面状である、上記[1]に記載の指向性画素。
8]上記表示画面は、マルチビュー表示画面である、上記[1]に記載の指向性画素。
9]上記表示画面は、プライバシー表示画面である、上記[1]に記載の指向性画素。
10]上記回折格子の幅は、上記回折格子の長さよりも実質的に小さく、上記表示画面は、水平視差のみの表示画面である、上記[4]に記載の指向性画素。
11]表示画面の指向性画素で使用される回折格子であって、上記回折格子は、入射する平面光ビームを指向性光ビームへと散乱させ、上記回折格子は、ピッチ、配向、長さ、及び幅を有する複数の実質的に平行で傾斜した溝を備え、上記ピッチ及び配向は、上記指向性光ビームの方向を制御し、上記長さ及び幅は、上記指向性光ビームの角度広がりを制御する、回折格子。
12]上記回折格子は、光伝播層にエッチングされている、上記[11]に記載の回折格子。
13]上記回折格子は、光伝播層の上部に堆積されている、上記[11]に記載の回折格子。
14]上記指向性光ビームの上記方向は、上記回折格子のピッチと、上記回折格子の配向と、上記指向性光ビームの波長と、上記回折格子の実効屈折率との関数である、上記[11]に記載の回折格子。
15]上記指向性光ビームの上記角度広がりは、上記回折格子の長さと、上記回折格子の幅と、上記指向性光ビームの波長との関数である、上記[11]に記載の回折格子。
16]上記表示画面は、マルチビュー表示画面である、上記[11]に記載の回折格子。
17]上記表示画面は、プライバシー表示画面である、上記[11]に記載の回折格子。
18]上記回折格子の幅は、上記回折格子の長さよりも実質的に小さく、上記表示画面は、水平視差のみの表示画面である、上記[11]に記載の回折格子。
19]表示画面で使用される指向性画素であって、
平面光ビームを搬送するように基板層上に設けられた光伝播層と、
回折格子であって、上記平面光ビームを、上記回折格子により制御された方向及び角度広がりを有する指向性光ビームへと散乱させるように上記光伝播層内に設けられた回折格子と、
を備える指向性画素。
20]上記回折格子は、上記光伝播層にエッチングされている、上記[19]に記載の指向性画素。
21]上記回折格子は、上記光伝播層の上部に堆積されている、上記[19]に記載の指向性画素。
22]上記表示画面は、マルチビュー表示画面である、上記[19]に記載の指向性画素。
23]上記表示画面は、プライバシー表示画面である、上記[19]に記載の指向性画素。
表示画面で使用される指向性画素が開示される。指向性画素は、入力の平面光ビームを受け取り、入力の平面光ビームの制御されたわずかな部分(fraction)を、出力の指向性光ビームへと散乱させる。入力の平面光ビームは、実質的に平面状に設計された指向性画素と実質的に同一の面を伝播する。指向性光ビームは、所望の空間方向及び所望の角度広がり(angular spread)を有し、従って面を通過しているように見える光線を効率よく生成する。
The present invention provides the following.
[1] A directional pixel used in a display screen, wherein the directional pixel receives a planar light beam, and the directional pixel is
A light propagation layer;
A diffraction grating that scatters a portion of the planar light beam into a directional light beam having a direction and angular spread controlled by the diffraction grating;
A directional pixel comprising.
[ 2] The directional pixel according to [1], wherein the light propagation layer includes a transparent silicon nitride (“SiN”) layer.
[ 3] The directional pixel according to [1], wherein the diffraction grating has a duty cycle of about 50%.
[ 4] The directional pixel according to [1], wherein the diffraction grating includes a plurality of substantially parallel and inclined grooves having a pitch, an orientation, a length, and a width.
[ 5] The directional pixel according to [4], wherein the pitch and orientation control the direction of the directional light beam.
[ 6] The directional pixel according to [4], wherein the length and width control the angular spread of the directional light beam.
[ 7] The directional pixel according to [1], wherein the directional pixel is substantially planar.
[ 8] The directional pixel according to [1], wherein the display screen is a multi-view display screen.
[ 9] The directional pixel according to [1], wherein the display screen is a privacy display screen.
[ 10] The directional pixel according to [4], wherein the width of the diffraction grating is substantially smaller than the length of the diffraction grating, and the display screen is a display screen with only horizontal parallax.
[ 11] A diffraction grating used in a directional pixel of a display screen, wherein the diffraction grating scatters an incident planar light beam into a directional light beam, and the diffraction grating has a pitch, orientation, and length. And a plurality of substantially parallel and inclined grooves having a width, wherein the pitch and orientation control the direction of the directional light beam, and the length and width are angular spreads of the directional light beam. Control the diffraction grating.
[ 12] The diffraction grating according to [11], wherein the diffraction grating is etched in the light propagation layer.
[ 13] The diffraction grating according to [11], wherein the diffraction grating is deposited on an upper portion of a light propagation layer.
[ 14] The direction of the directional light beam is a function of the pitch of the diffraction grating, the orientation of the diffraction grating, the wavelength of the directional light beam, and the effective refractive index of the diffraction grating, The diffraction grating according to [11].
[ 15] The diffraction grating according to [11], wherein the angular spread of the directional light beam is a function of a length of the diffraction grating, a width of the diffraction grating, and a wavelength of the directional light beam. .
[ 16] The diffraction grating according to [11], wherein the display screen is a multi-view display screen.
[ 17] The diffraction grating according to [11], wherein the display screen is a privacy display screen.
[ 18] The diffraction grating according to [ 11], wherein a width of the diffraction grating is substantially smaller than a length of the diffraction grating, and the display screen is a display screen with only horizontal parallax.
[ 19] A directional pixel used in a display screen,
A light propagation layer provided on the substrate layer to carry a planar light beam;
A diffraction grating provided in the light propagation layer to scatter the planar light beam into a directional light beam having a direction and angular spread controlled by the diffraction grating;
A directional pixel comprising.
[ 20] The directional pixel according to [19], wherein the diffraction grating is etched in the light propagation layer.
[ 21] The directional pixel according to [19], wherein the diffraction grating is deposited on an upper portion of the light propagation layer.
[ 22] The directional pixel according to [19], wherein the display screen is a multi-view display screen.
[ 23] The directional pixel according to [19], wherein the display screen is a privacy display screen.
A directional pixel for use in a display screen is disclosed. The directional pixel receives the input planar light beam and scatters a controlled fraction of the input planar light beam into the output directional light beam. The input planar light beam propagates in substantially the same plane as the directional pixel designed to be substantially planar. A directional light beam efficiently produces a light beam having a desired spatial direction and a desired angular spread, and thus appearing to pass through a surface.

Claims (23)

表示画面で使用される指向性画素であって、前記指向性画素は、平面光ビームを受け取り、前記指向性画素は、
光伝播層と、
回折格子であって、前記平面光ビームの一部を、前記回折格子により制御された方向及び角度広がりを有する指向性光ビームへと散乱させる回折格子と、
を備える指向性画素。
A directional pixel used in a display screen, wherein the directional pixel receives a planar light beam, and the directional pixel is
A light propagation layer;
A diffraction grating that scatters a portion of the planar light beam into a directional light beam having a direction and angular spread controlled by the diffraction grating;
A directional pixel comprising.
前記光伝播層は、透明な窒化シリコン(“SiN”)層を備える、請求項1に記載の指向性画素。   The directional pixel of claim 1, wherein the light propagation layer comprises a transparent silicon nitride (“SiN”) layer. 前記回折格子は、約50%のデューティサイクルを有する、請求項1に記載の指向性画素。   The directional pixel of claim 1, wherein the diffraction grating has a duty cycle of about 50%. 前記回折格子は、ピッチ、配向、長さ、及び幅を有する複数の実質的に平行で傾斜した溝を備える、請求項1に記載の指向性画素。   The directional pixel of claim 1, wherein the diffraction grating comprises a plurality of substantially parallel and inclined grooves having a pitch, orientation, length, and width. 前記ピッチ及び配向は、前記指向性光ビームの前記方向を制御する、請求項4に記載の指向性画素。   The directional pixel according to claim 4, wherein the pitch and orientation control the direction of the directional light beam. 前記長さ及び幅は、前記指向性光ビームの前記角度広がりを制御する、請求項4に記載の指向性画素。   The directional pixel according to claim 4, wherein the length and width control the angular spread of the directional light beam. 前記指向性画素は、実質的に平面状である、請求項1に記載の指向性画素。   The directional pixel according to claim 1, wherein the directional pixel is substantially planar. 前記表示画面は、マルチビュー表示画面である、請求項1に記載の指向性画素。   The directional pixel according to claim 1, wherein the display screen is a multi-view display screen. 前記表示画面は、プライバシー表示画面である、請求項1に記載の指向性画素。   The directional pixel according to claim 1, wherein the display screen is a privacy display screen. 前記回折格子の幅は、前記回折格子の長さよりも実質的に小さく、前記表示画面は、水平視差のみの表示画面である、請求項4に記載の指向性画素。   The directional pixel according to claim 4, wherein a width of the diffraction grating is substantially smaller than a length of the diffraction grating, and the display screen is a display screen with only horizontal parallax. 表示画面の指向性画素で使用される回折格子であって、前記回折格子は、入射する平面光ビームを指向性光ビームへと散乱させ、前記回折格子は、ピッチ、配向、長さ、及び幅を有する複数の実質的に平行で傾斜した溝を備え、前記ピッチ及び配向は、前記指向性光ビームの方向を制御し、前記長さ及び幅は、前記指向性光ビームの角度広がりを制御する、回折格子。   A diffraction grating used in a directional pixel of a display screen, wherein the diffraction grating scatters an incident planar light beam into a directional light beam, and the diffraction grating has pitch, orientation, length, and width. Wherein the pitch and orientation control the direction of the directional light beam, and the length and width control the angular spread of the directional light beam. ,Diffraction grating. 前記回折格子は、光伝播層にエッチングされている、請求項11に記載の回折格子。   The diffraction grating according to claim 11, wherein the diffraction grating is etched in a light propagation layer. 前記回折格子は、光伝播層の上部に堆積されている、請求項11に記載の回折格子。   The diffraction grating according to claim 11, wherein the diffraction grating is deposited on top of a light propagation layer. 前記指向性光ビームの前記方向は、前記回折格子のピッチと、前記回折格子の配向と、前記指向性光ビームの波長と、前記回折格子の実効屈折率との関数である、請求項11に記載の回折格子。   The direction of the directional light beam is a function of the pitch of the diffraction grating, the orientation of the diffraction grating, the wavelength of the directional light beam, and the effective refractive index of the diffraction grating. The diffraction grating described. 前記指向性光ビームの前記角度広がりは、前記回折格子の長さと、前記回折格子の幅と、前記指向性光ビームの波長との関数である、請求項11に記載の回折格子。   The diffraction grating of claim 11, wherein the angular spread of the directional light beam is a function of a length of the diffraction grating, a width of the diffraction grating, and a wavelength of the directional light beam. 前記表示画面は、マルチビュー表示画面である、請求項11に記載の回折格子。   The diffraction grating according to claim 11, wherein the display screen is a multi-view display screen. 前記表示画面は、プライバシー表示画面である、請求項11に記載の回折格子。   The diffraction grating according to claim 11, wherein the display screen is a privacy display screen. 前記回折格子の幅は、前記回折格子の長さよりも実質的に小さく、前記表示画面は、水平視差のみの表示画面である、請求項11に記載の回折格子。   The diffraction grating according to claim 11, wherein a width of the diffraction grating is substantially smaller than a length of the diffraction grating, and the display screen is a display screen with only horizontal parallax. 表示画面で使用される指向性画素であって、
平面光ビームを搬送するように基板層上に設けられた光伝播層と、
回折格子であって、前記平面光ビームを、前記回折格子により制御された方向及び角度広がりを有する指向性光ビームへと散乱させるように前記光伝播層内に設けられた回折格子と、
を備える指向性画素。
A directional pixel used in a display screen,
A light propagation layer provided on the substrate layer to carry a planar light beam;
A diffraction grating provided in the light propagation layer to scatter the planar light beam into a directional light beam having a direction and angular spread controlled by the diffraction grating;
A directional pixel comprising.
前記回折格子は、前記光伝播層にエッチングされている、請求項19に記載の指向性画素。   The directional pixel according to claim 19, wherein the diffraction grating is etched in the light propagation layer. 前記回折格子は、前記光伝播層の上部に堆積されている、請求項19に記載の指向性画素。   The directional pixel according to claim 19, wherein the diffraction grating is deposited on top of the light propagation layer. 前記表示画面は、マルチビュー表示画面である、請求項19に記載の指向性画素。   The directional pixel according to claim 19, wherein the display screen is a multi-view display screen. 前記表示画面は、プライバシー表示画面である、請求項19に記載の指向性画素。

The directional pixel according to claim 19, wherein the display screen is a privacy display screen.

JP2017035523A 2017-02-27 2017-02-27 Directional pixels used on the display screen Active JP6871758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017035523A JP6871758B2 (en) 2017-02-27 2017-02-27 Directional pixels used on the display screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017035523A JP6871758B2 (en) 2017-02-27 2017-02-27 Directional pixels used on the display screen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015508928A Division JP6342888B2 (en) 2012-04-27 2012-04-27 Directional pixels used on the display screen

Publications (2)

Publication Number Publication Date
JP2017167529A true JP2017167529A (en) 2017-09-21
JP6871758B2 JP6871758B2 (en) 2021-05-12

Family

ID=59910225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017035523A Active JP6871758B2 (en) 2017-02-27 2017-02-27 Directional pixels used on the display screen

Country Status (1)

Country Link
JP (1) JP6871758B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203122A (en) * 1986-03-04 1987-09-07 Furukawa Electric Co Ltd:The Plane display device
JPH05232519A (en) * 1991-02-14 1993-09-10 Ibiden Co Ltd Optical deflecting element
JPH0682612A (en) * 1992-08-28 1994-03-25 Toppan Printing Co Ltd Diffraction grating array and stereoscopic image display device using the same
JPH06332354A (en) * 1993-05-20 1994-12-02 Toppan Printing Co Ltd Display for simultaneously displaying plural images
JPH07162026A (en) * 1993-12-06 1995-06-23 Canon Inc Photodetector possessed of optical branching function
JPH11133255A (en) * 1997-10-30 1999-05-21 Fujitsu Ltd Optical monitoring device and its equipment
JP2001175197A (en) * 1999-12-20 2001-06-29 Sony Corp Optical device
JP2002031788A (en) * 2000-07-18 2002-01-31 Sony Corp Optical device
US20100284085A1 (en) * 2006-09-28 2010-11-11 Nokia Corporation Beam expansion with three-dimensional diffractive elements

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203122A (en) * 1986-03-04 1987-09-07 Furukawa Electric Co Ltd:The Plane display device
JPH05232519A (en) * 1991-02-14 1993-09-10 Ibiden Co Ltd Optical deflecting element
JPH0682612A (en) * 1992-08-28 1994-03-25 Toppan Printing Co Ltd Diffraction grating array and stereoscopic image display device using the same
JPH06332354A (en) * 1993-05-20 1994-12-02 Toppan Printing Co Ltd Display for simultaneously displaying plural images
JPH07162026A (en) * 1993-12-06 1995-06-23 Canon Inc Photodetector possessed of optical branching function
JPH11133255A (en) * 1997-10-30 1999-05-21 Fujitsu Ltd Optical monitoring device and its equipment
JP2001175197A (en) * 1999-12-20 2001-06-29 Sony Corp Optical device
JP2002031788A (en) * 2000-07-18 2002-01-31 Sony Corp Optical device
US20100284085A1 (en) * 2006-09-28 2010-11-11 Nokia Corporation Beam expansion with three-dimensional diffractive elements

Also Published As

Publication number Publication date
JP6871758B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP6342888B2 (en) Directional pixels used on the display screen
US9389415B2 (en) Directional pixel for use in a display screen
CN104335100B (en) Directional backlight body with modulating layer
US10359635B2 (en) Exit pupil expanding diffractive optical waveguiding device
US9201270B2 (en) Directional backlight with a modulation layer
CN104272170B (en) directional backlight body
CN110651204B (en) Diffraction grating with variable diffraction efficiency and method for displaying an image
Fattal et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display
CN103777432B (en) Spatial light modulator and light field three-dimensional display system thereof
Li et al. Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation
WO2014081415A1 (en) Directional waveguide-based pixel for use in a multiview display screen
US9781411B2 (en) Laser-etched 3D volumetric display
US8797620B2 (en) Autostereoscopic display assembly based on digital semiplanar holography
TW201418845A (en) Directional waveguide-based backlight for use in a multiview display screen
TWI499803B (en) Directional waveguide-based backlight,method for generating a multiview 3d image and waveguides
Shi et al. Spatial multiplexing holographic combiner for glasses-free augmented reality
WO2017118048A1 (en) Display device and method for driving same
Yue et al. Geometric phase generated optical illusion
Fattal et al. A multi-directional backlight for a wide-angle, glasses-free 3D display
Zhu et al. 3D-printed woodpile structure for integral imaging and invisibility cloaking
JP6871758B2 (en) Directional pixels used on the display screen
US20170293153A1 (en) Lenticular lens films and 3d display devices
Liu et al. Autostereoscopic 2D/3D display using liquid crystal lens and its applications for tablet PC
CN115943329A (en) High color uniformity dual material diffraction grating including stepped cavities
Lee et al. A method of quantifying moirés on 3D displays

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20181126

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181225

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190108

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190111

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190122

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20190903

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200629

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210224

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210406

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210416

R150 Certificate of patent or registration of utility model

Ref document number: 6871758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150