TW201416669A - 感測裝置及其使用方法 - Google Patents

感測裝置及其使用方法 Download PDF

Info

Publication number
TW201416669A
TW201416669A TW101139419A TW101139419A TW201416669A TW 201416669 A TW201416669 A TW 201416669A TW 101139419 A TW101139419 A TW 101139419A TW 101139419 A TW101139419 A TW 101139419A TW 201416669 A TW201416669 A TW 201416669A
Authority
TW
Taiwan
Prior art keywords
electrode
signal
sensing device
reading
electrode structure
Prior art date
Application number
TW101139419A
Other languages
English (en)
Other versions
TWI490487B (zh
Inventor
Chia-Fu Chou
Lesser-Rojas Leonardo
Ming-Li Chu
Andreas Erbe
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academia Sinica filed Critical Academia Sinica
Priority to TW101139419A priority Critical patent/TWI490487B/zh
Publication of TW201416669A publication Critical patent/TW201416669A/zh
Application granted granted Critical
Publication of TWI490487B publication Critical patent/TWI490487B/zh

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本發明揭示一種感測裝置,包含可接收外加偏壓的一電極結構、一訊號處理模組、以及一訊號傳遞介面模組。該電極結構包含一第一電極,以及相對於該第一電極放置的一第二電極,其中該第一電極及該第二電極各具有一尖點,且該等尖點的最近距離在20奈米以下。該訊號處理模組處理該電極結構接收到的訊號;該訊號傳遞介面模組將處理後的訊號傳遞出該感測裝置。

Description

感測裝置及其使用方法
本發明係關於一種感測裝置,特別係關於一種分子等級的感測裝置。
由於近年在生醫檢驗、基因分析、藥物或細胞偵測等生物醫學應用的研究,分子/細胞胞器等級的偵測與分析系統有長足的進步。許多微小尺寸的工具或技術(例如微米/奈米流體、奈米探針、以及表面強化震動光譜)的演進亦實現了單分子的偵測分析。然而,單分子等級的偵測與分析裝置或系統仍存在許多問題,限制了待測樣品的濃度以及偵測訊號的取得。
習知的偵測與分析裝置大多仰賴待測樣品於溶液中的擴散機制,此種狀態可稱做被動傳輸(passive transport)。為了感測濃度極低的待測樣品,就必須克服被動傳輸所帶來的問題,例如藉由人為設計直接輸送待測樣品至靠近高靈敏度感測器周邊,藉以得到足夠的訊號強度。
先前相關研究多使用由下而上(bottom-up)的方法形成感測偶極。若待測物為生物分子,例如短鏈DNA多核苷酸,該感測偶極上則需要進行表面修飾以捕捉生物分子。 待測的生物分子通常會標有螢光染劑方便觀察或拉曼染劑,此情況下量測到的拉曼訊號只能證明捕捉到待測物,並不包含任何待測物鍵結的振動資訊。另外,先前的感測結構需要施加低頻AC訊號於感測偶極,因此分子傳輸及捕捉 的機制常牽涉複雜的動電(electrokinetic)現象。施加低頻AC訊號並給予一定長度的時間(例如10分鐘)後,感測偶極可以慢慢吸引待測物靠近,當待測物的量累積到一預定門檻值方可產生足夠強度的訊號;換句話說,若待測物於溶液中的濃度極低,則不管等待多長的時間,施加低頻AC訊號的方式也不能得到有意義的訊號。也因為上述方式需要一段等待時間,及時(real-time)偵測與及時訊號讀取也受到限制。
本發明揭露一種新的感測裝置以解決上述分子等級偵測/分析裝置所遇到的問題。
本發明的一實施例揭示一種電極結構,該電極結構包含一第一電極,以及相對於該第一電極放置的一第二電極。其中該第一電極及該第二電極各具有一尖點,且該等尖點的最近距離在20奈米以下。
本發明的另一實施例揭示一種感測裝置,包含可接收外加偏壓的一電極結構、一訊號處理模組、以及一訊號傳遞介面模組。該電極結構包含一第一電極,以及相對於該第一電極放置的一第二電極,其中該第一電極及該第二電極各具有一尖點,且該等尖點的最近距離在20奈米以下。該訊號處理模組處理該電極結構接收到的訊號;該訊號傳遞介面模組將處理後的訊號傳遞出該感測裝置。
本發明的另一實施例揭示一種使用上述感測裝置的方法。該方法包含以下步驟:施加電壓於上述的電極結構上 ;捕捉待測物於上述的電極結構的尖點之間;讀取該待測物產生的第一訊號;施加雷射光於該待測物;以及讀取該待測物產生的第二訊號。
本發明的感測裝置藉由具有高再現性的"由上而下"(top-down)方式製造感測偶極。由於本發明之設計能夠直接施加DC以及AC電流於該感測偶極,具有高電場梯度的非均勻電場形成於感測偶極之間,待測樣品可因為介電泳(dielectrophoresis,DEP)現象被感測偶極吸引,主動地趨近並附著其上,因此感測偶極表面可以在沒有任何化學或生物修飾的狀況下捕捉到待測樣品。本感測裝置的感測偶極具有尖點,尖點彼此大約距離10奈米,藉由雷射光的照射即可以進行表面強化拉曼光譜(surface-enhanced Raman spectroscopy,SERS)的測試。因為表面電漿效應有效增強拉曼訊號,測得的拉曼光譜為真實的待測物鍵結振動資訊。
本感測裝置直接施加高頻AC電流於感測偶極,使得待測物的移動不牽涉複雜的動電(electrokinetic)機制,而是主要經由介電泳(DEP)現象使感測偶極對被極化的待測物產生吸引力。本感測裝置可同時施加DC電流於感測偶極,用以獲得偶極間電流資訊以瞭解待測物的捕捉過程。除此之外,各步驟諸如捕捉待測物、獲得偶極間電流資訊、以及得到拉曼光譜資訊均可以及時(real-time)進行。本 發明揭露之感測裝置不受待測物濃度過低以及感測訊號過弱的限制,而能同時提供待測物捕捉過程以及待測物鍵結振動的相關資訊。
圖1顯示本發明實施例中的一感測裝置10,包含一電極結構101、一訊號處理模組102、以及一訊號傳遞模組103。在本實施例中,上述結構及模組均置於一承載板100上,承載板100可為但不限於一電路板。圖1顯示的電極結構101由許多電極對組成,該電極對具有置於整個電極結構101的邊緣且面積較大的接墊,並由該等接墊向電極結構101的中央延伸。該接墊可經由打線製程與承載板電連接。如圖1所示,電極結構101中的每個電極對都可接受外加直流電流、外加交流電流、或同時接收兩者。訊號處理模組102用以處理電極結構101接收到的訊號,訊號處理模組102主要為放大器以及濾波器之組合,本發明一實施例中,訊號處理模組102為轉阻放大器(Transimpedance Amplifier)以及低通濾波器(low-pass filter)之組合。訊號傳遞模組103將處理後的訊號傳遞出感測裝置10,本發明一實施例中,訊號傳遞模組103可為一通用序列匯流排(USB),處理後的訊號經過訊號傳遞模組103傳遞至一電腦。相同地,該電腦對感測裝置10的控制訊號亦由訊號傳遞模組103傳遞。
圖2A顯示圖1電極結構101的放大圖。電極結構101包含一第一電極21以及一第二電極22,第一電極21以及第二電極22構成一電極對。此點可由電極對延伸至電極結構101中央的相對位置分辨,一電極對尺寸最小的部分位置相對 。同樣地,另一組電極對(第一電極23以及第二電極24)也照相同方式排列。圖2A的電極結構101中總共有15組電極對,該等電極對尺寸最小的部分聚集在電極結構101中央,並呈前後排列(in tandem)。
圖2B顯示圖2A中方框部分的放大圖。每個呈前後排列電極對之間的距離m至少為5微米,圖2B顯示每五個電極對形成一電極群,與下方五個電極對形成的另一電極群之間有一較大的間距n,不同電極群可以量測不同待測物,或具有不同的電極形狀。圖3A顯示圖2B中方框部分的放大圖。圖3A左半部為圖2A電極結構101的第一電極21,右半部為第二電極22,兩電極之間不相連。第一電極21又分為較粗的微米電極31與較細的奈米電極32兩部分,此處所稱的微米電極與奈米電極分別代表製備(微光顯影)過程中需要容許的最小尺寸。
相同地,因為本實施例中第二電極22與第一電極21形狀對稱,第二電極22也可分為較粗的微米電極31'與較細的奈米電極32'兩部分,第一電極21的奈米電極32位於微米電極31的短邊31a,第二電極22的奈米電極32'也位於微米電極31'的短邊31a'。本發明另一實施例中,第一電極21與第二電極22形狀不對稱,第一電極21的奈米電極32位於微米電極31的短邊31a,而第二電極22的奈米電極32'位於微米電極31'的長邊31b'。
圖3B顯示圖3A中方框部分的放大圖。圖3B描繪第一電極21與第二電極22的尖點。兩電極尖點之間的最近距離l在 20奈米之下。第一電極尖點的角度θ1可介於20度至120度之間;第二電極尖點的角度θ2亦可介於20度至120度之間。若第一電極21與第二電極22為對稱,則兩電極的尖點角度需一致;若為不對稱,則兩電極的尖點角度不需一致,且如上所述,奈米電極在微米電極上的位置也可以不同。
第一電極21與第二電極22的材料可為鈦、金、銀、銅、鋁,或其組合。本發明一實施例中,第一電極21與第二電極22為金,因為於電極尖點的金具有較強的表面電漿效應。本發明另一實施例中,第一電極21與第二電極22為鋁,由於鋁在大氣中表面自然會覆蓋厚度約為1至2奈米的緻密氧化層33(見圖3B),可以避免鋁電極與待測溶液中的離子進行直接接觸而造成耗損;另一方面,因為鋁電極具有天然氧化層33,許多表面修飾或官能基化的應用可以在氧化物上進行,以對特定生物分子進行檢測。
圖4A以及圖4B分別顯示一電極對電極尖點的掃瞄式電子顯微鏡(scanning electron microscopy)照片。圖4A電極尖點的最近距離為13奈米,圖4B電極尖點的最近距離為8.11奈米,顯示由本發明所使用的方法製造出的電極其尖點距離可在20奈米之下。微米電極的製造方法屬於微電子領域的通常知識,在此不贅述。奈米電極的製造方法如圖5A至圖5D所示。圖5A至圖5D為奈米電極製造方法的剖面圖,一實施例中,7公釐見方的矽基板50上有厚度為1.2微米的氧化矽層51如圖5A所示,電子束微影製程使用的光阻52旋塗於該氧化矽層21之上。圖5B顯示經過兩束部分重疊的 電子束過度曝光並顯影之後殘存的光阻,其中光阻被移除的部分暴露出底下的氧化矽層51,而形成的兩個開口53中間刻意存留奈米尺寸的光阻52'。圖5C顯示由金屬濺鍍製程形成的一10奈米鈦薄膜54用以增加黏合度,接著濺鍍另一層40奈米的鋁薄膜55於鈦薄膜54之上。圖5D顯示經過一剝離(lift off)製程之後,光阻連帶其上方的金屬薄膜皆被移除,而剩下兩個鋁奈米電極。本領域具有通常知識者應瞭解上述的鋁奈米電極可由不同的金屬材料置換,例如鈦、鉻、金、銀、銅、白金,或其組合。
本發明另外揭露一種使用上述感測裝置的方法,該方法的步驟包含施加一直流電、一交流電、或其組合於上述的電極結構上。該電極結構間形成的不均勻電場藉由介電力捕捉待測物(通常為不帶電的介電物質)至上述的電極結構尖點之間。上述感測裝置讀取一第一訊號,該第一訊號可為兩電極之間的電流值;接著施加一雷射光於兩電極之間(即為待測物所在位置),並讀取一第二訊號,該第二訊號可為一表面增強拉曼光譜(Surface-Enhanced Raman Spectroscopy,SERS)訊號。上述的訊號讀取步驟不具有特定先後順序,換句話說,使用者可以先讀取電流訊號再讀取拉曼光譜訊號、先讀取拉曼光譜訊號再讀取電流訊號、或同時讀取兩訊號。值得注意的是,在讀取拉曼光譜訊號之前必須要進行雷射光照射步驟;而施加直流、交流偏壓的過程因為有關於待測物的捕捉,故需要早於或同時於其它訊號讀取步驟。
圖6A顯示本發明一實施例的電流訊號讀取裝置。含有單層與多層奈米碳管(待測物)的液滴601(本實施例為4μL、0.004mg/mL)施加於電極結構60之間,待施加電壓後液滴601將自然蒸發。在液滴601未完全蒸發之前,由於有直流偏壓(0.1V)與交流偏壓(100mVrms、4MHz)同時存在於電極結構60,介電泳現象吸引單層與多層奈米碳管至兩電極之間,部分的奈米碳管橫跨兩電極以形成一通路,而電極結構60將讀取到一微小電流,本實施例中該微小電流為皮安培(pico Ampere)/奈安培(nano Ampere)等級。該微小電流藉由一訊號處理模組602,例如一轉阻放大器(Transimpedance Amplifier)以及低通濾波器(low-pass filter)之組合被感測裝置讀取。圖6B顯示圖6A偵測到的電流訊號61,圖6B的縱軸為電流、橫軸為時間,特殊的曲線形狀可視為在上述量測情況下單層與多層奈米碳管的電子指紋。如圖6B所示,以階梯狀增加的電流值起始於待測液滴浸潤兩電極(wetting peak),之後的隨著橫跨導通的單層與多層奈米碳管增加而漸漸上升(trapping window)並持平,直到待測液滴蒸發完畢(drying peak)得到一極值。隨後由於單層與多層奈米碳管仍然橫跨於兩電極之間,電流值再次慢慢上升(CNT leftovers)。本發明之感測裝置造成的介電泳現象為可逆(reversible),當交流偏壓施加於電極結構時,電極結構之間產生的不均勻電場對介電物質(待測物)產生吸引力,介電物質將會朝向電場梯度最大處(電極尖點)靠近。當移除交流偏壓時,不均勻電場消失,原本 聚集於電極尖點附近的介電物質則會遵循一般擴散原則離開電極尖點,若給予足夠的時間,介電物質濃度分佈將會回到最初的狀態。
為了進一步確定捕捉到的待測物為單層與多層奈米碳管,掃瞄式共焦拉曼光譜將於下一步驟中進行。圖7顯示一掃瞄式共焦拉曼光譜測試裝置的剖面示意圖。一基板70上具有兩奈米電極71。一包含單層與多層奈米碳管72的液滴73置放於奈米電極71上,其中一個單層或多層奈米碳管72橫跨於兩電極71之間。一道氦氖雷射光74(波長633nm)由上方照向兩電極71之間的位置(該位置稱做"觀察熱點"),氦氖雷射光74焦點大小由繞射極限決定。此時被照射到的單層或多層奈米碳管72發出表面增強拉曼光譜(Surface-Enhanced Raman Spectroscopy,SERS)訊號75,拉曼訊號因為與奈米電極71尖點的區域化表面電漿交互作用而被增強,達成的效果遠比非奈米電極結構所產生的拉曼訊號強度高出許多個數量級。
圖8顯示本發明一實施例中奈米碳管的特徵振動模式。圖8的橫軸為波數,縱軸為拉曼訊號強度。狹窄的1598cm-1拉曼峰值對應於單層奈米碳管中的碳-碳拉伸振動模式(stretching mode)。此拉曼訊號可與上述電流資訊同時讀取,且讀取的都是及時(real-time)訊號,也就是說,低濃度待測物將不會影響訊號讀取速度,有別於習知的感測技術。
本發明亦可使用於蛋白質分子R-phycoerythrin(RPE) 的感測。按照上述的感測步驟,在RPE濃度0.8nM以及直流電0.1V、交流電7Vpp與1MHz的條件下,使用者可以分別得到RPE的電子指紋與表面增強拉曼光譜訊號(未顯示)。由於此感測步驟與上述感測單層或多層奈米碳管的步驟相同,在此不重複敘述。
圖9顯示本發明另一實施例之感測裝置90的部分俯視圖。感測裝置90具有複數個微米電極91成前後排列,以及複數個奈米電極91'形成於微米電極91的短邊上。承載板900上設計有一微流道92,待測物93藉由一外加小偏壓送入微流道92。微流道92與成對的奈米電極91'間互相重疊,當通入交流偏壓時,通過微流道92的待測物93都可以感受到電極91'間的吸引力。微流道92的形狀不一定如圖9所示為一直線,其它結構諸如複數條流道或曲道都涵蓋於本發明的範圍之內。微流道92的流速控制與介電泳產生的力需要達成一平衡,亦即,流體帶給待測物93的速度仍然能夠使待測物93對不均勻電場產生位移反應。
本發明之技術內容及技術特點已揭示如上,然而熟悉本項技術之人士仍可能基於本發明之教示及揭示而作種種不背離本發明精神之替換及修飾。因此,本發明之保護範圍應不限於實施例所揭示者,而應包括各種不背離本發明之替換及修飾,並為以下之申請專利範圍所涵蓋。
10‧‧‧感測裝置
100‧‧‧承載板
101‧‧‧電極結構
102‧‧‧訊號處理模組
103‧‧‧訊號傳遞模組
21‧‧‧第一電極
22‧‧‧第二電極
23‧‧‧第一電極
24‧‧‧第二電極
31‧‧‧微米電極
31a‧‧‧短邊
31b‧‧‧長邊
31'‧‧‧微米電極
31a'‧‧‧短邊
31b'‧‧‧長邊
32‧‧‧奈米電極
32'‧‧‧奈米電極
33‧‧‧氧化層
50‧‧‧矽基板
51‧‧‧氧化矽
52‧‧‧光阻
52'‧‧‧奈米尺寸的光阻
53‧‧‧開口
54‧‧‧鈦薄膜
55‧‧‧鋁薄膜
60‧‧‧電極結構
601‧‧‧液滴
602‧‧‧訊號處理模組
61‧‧‧電流訊號
70‧‧‧基板
71‧‧‧奈米電極
72‧‧‧奈米碳管
73‧‧‧液滴
74‧‧‧雷射光
75‧‧‧表面增強拉曼光譜訊號
90‧‧‧感測裝置
900‧‧‧承載板
91‧‧‧微米電極
91'‧‧‧奈米電極
92‧‧‧微流道
93‧‧‧待測物
圖1顯示本發明實施例中的一感測裝置;圖2A顯示圖1電極結構的放大圖; 圖2B顯示圖2A中方框部分的放大圖;圖3A顯示圖2B中方框部分的放大圖;圖3B顯示圖3A中方框部分的放大圖;圖4A以及圖4B分別顯示一電極對電極尖點的掃瞄式電子顯微鏡(scanning electron microscopy)照片;圖5A至圖5D為奈米電極製造方法的剖面圖;圖6A顯示本發明一實施例的電流訊號讀取裝置;圖6B顯示圖6A偵測到的電流訊號;圖7顯示一掃瞄式共焦拉曼光譜測試裝置的剖面示意圖;圖8顯示本發明一實施例中奈米碳管的特徵振動模式;以及圖9顯示本發明另一實施例之感測裝置的部分俯視圖。
10‧‧‧感測裝置
100‧‧‧承載板
101‧‧‧電極結構
102‧‧‧訊號處理模組
103‧‧‧訊號傳遞模組

Claims (20)

  1. 一種電極結構,包含:一第一電極;以及一第二電極,相對於該第一電極放置;其中該第一電極及該第二電極各具有一尖點,且該等尖點的最近距離在20奈米以下。
  2. 根據請求項1之電極結構,其中該第一電極以及該第二電極分別連接至一AC外加偏壓、一DC外加偏壓、或其組合。
  3. 根據請求項1之電極結構,其中該第一電極以及該第二電極的材料包含鈦、鉻、金、銀、銅、鋁、白金,或其組合。
  4. 根據請求項1之電極結構,更包含複數個由該第一電極以及該第二電極組成的電極對,其中每一電極對之間相距至少5微米。
  5. 根據請求項1之電極結構,其中該第一電極以及該第二電極尖點的夾角介於20至120度之間。
  6. 根據請求項1之電極結構,其中該第一電極以及該第二電極的形狀對稱。
  7. 一種感測裝置,包含:可接收外加偏壓的一電極結構,該電極結構包含:一第一電極;以及一第二電極,相對於該第一電極放置;其中該第一電極及該第二電極各具有一尖點,且該等尖點的最近距離在20奈米以下;一訊號處理模組,處理該電極結構的訊號;以及一訊號傳遞介面模組,傳遞訊號於該感測裝置與外界 之間。
  8. 根據請求項7之感測裝置,其中該第一電極以及該第二電極分別連接至一AC外加偏壓、一DC外加偏壓、或其組合。
  9. 根據請求項7之感測裝置,其中該第一電極以及該第二電極的材料包含鈦、金、銀、銅、鋁,或其組合。
  10. 根據請求項7之感測裝置,更包含複數個由該第一電極以及該第二電極組成的電極對,其中每一電極對之間相距至少5微米。
  11. 根據請求項7之感測裝置,其中該第一電極以及該第二電極尖點的夾角介於20至120度之間。
  12. 根據請求項7之感測裝置,其中該第一電極以及該第二電極的形狀對稱。
  13. 一種使用感測裝置的方法,包含:施加電壓於請求項7所述的該電極結構上;捕捉待測物於請求項7所述的該電極結構的尖點之間;讀取該待測物產生的第一訊號;施加雷射光於該待測物;以及讀取該待測物產生的第二訊號。
  14. 根據請求項13之方法,其中該施加電壓步驟包含施加一交流電、一直流電,或其組合。
  15. 根據請求項13之方法,其中讀取該第一訊號步驟包含讀取一電相關訊號。
  16. 根據請求項15之方法,其中讀取一電相關訊號步驟包含讀取一經過放大及濾波處理的電流訊號。
  17. 根據請求項13之方法,其中施加一雷射光步驟包含施加一 接近繞射極限的雷射光束。
  18. 根據請求項13之方法,其中讀取該第二訊號步驟包含讀取一表面增強拉曼光譜(Surface-Enhanced Raman Spectroscopy,SERS)訊號。
  19. 根據請求項13之方法,其中該施加電壓以及該施加雷射光的步驟可以同時進行。
  20. 根據請求項13之方法,其中讀取該第一訊號以及讀取該第二訊號的步驟可以同時進行。
TW101139419A 2012-10-25 2012-10-25 電極裝置、感測裝置、及其使用方法 TWI490487B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101139419A TWI490487B (zh) 2012-10-25 2012-10-25 電極裝置、感測裝置、及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101139419A TWI490487B (zh) 2012-10-25 2012-10-25 電極裝置、感測裝置、及其使用方法

Publications (2)

Publication Number Publication Date
TW201416669A true TW201416669A (zh) 2014-05-01
TWI490487B TWI490487B (zh) 2015-07-01

Family

ID=51293756

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101139419A TWI490487B (zh) 2012-10-25 2012-10-25 電極裝置、感測裝置、及其使用方法

Country Status (1)

Country Link
TW (1) TWI490487B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI574028B (zh) * 2015-06-22 2017-03-11 李美燕 集成式振波發射感測元、使用其之感測陣列及電子設備及其製造方法
TWI615607B (zh) * 2015-07-29 2018-02-21 惠普發展公司有限責任合夥企業 分析物檢測設備及其製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393883B (zh) * 2009-07-09 2013-04-21 Univ Nat Cheng Kung Microfluidic wafers with Raman spectroscopy
CN102507706B (zh) * 2011-10-11 2013-10-30 重庆大学 细菌介电电泳阻抗检测的微流控芯片分析微系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI574028B (zh) * 2015-06-22 2017-03-11 李美燕 集成式振波發射感測元、使用其之感測陣列及電子設備及其製造方法
TWI615607B (zh) * 2015-07-29 2018-02-21 惠普發展公司有限責任合夥企業 分析物檢測設備及其製造方法
US10444151B2 (en) 2015-07-29 2019-10-15 Hewlett-Packard Development Company, L.P. Surface enhanced luminescence electric field generating base

Also Published As

Publication number Publication date
TWI490487B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
US9915614B2 (en) Microfluidic systems and devices for molecular capture, manipulation, and analysis
Carminati Advances in high-resolution microscale impedance sensors
JP5922361B2 (ja) 活性マイクロシーブおよび生物学的応用のための方法
JP4932066B2 (ja) 流路デバイス及びそれを含むサンプル処理装置
TWI538736B (zh) 一種分子富集的裝置及方法
Lesser-Rojas et al. Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements
Panday et al. Simultaneous ionic current and potential detection of nanoparticles by a multifunctional nanopipette
US8804105B2 (en) Combined optical imaging and electrical detection to characterize particles carried in a fluid
KR101709762B1 (ko) 생체분자 농축 기능 일체형 센서 및 그 제조방법
Salemmilani et al. Dielectrophoretic nanoparticle aggregation for on-demand surface enhanced Raman spectroscopy analysis
JP7439293B2 (ja) 導波管強化分析物検出ストリップを備えたドッキングステーション
US8062596B2 (en) Apparatus for detecting nano particle having nano-gap electrode
Sang et al. Portable microsystem integrates multifunctional dielectrophoresis manipulations and a surface stress biosensor to detect red blood cells for hemolytic anemia
KR101472839B1 (ko) 기체 내 미세입자 검출 장치 및 이의 제작 방법
JP4868190B2 (ja) ナノ粒子計測装置
Emaminejad et al. Portable cytometry using microscale electronic sensing
TWI490487B (zh) 電極裝置、感測裝置、及其使用方法
Santos et al. Label-free detection of biomolecules in microfluidic systems using on-chip UV and impedimetric sensors
WO2007060989A1 (ja) 表面増強ラマン散乱(sers)による微量物質の検知方法ならびに装置、微量アナライト検知用マイクロ流路チップ
US20140209463A1 (en) Traveling wave dielectrophoresis sensing device
KR101646182B1 (ko) 바이오 센서
CN111051885A (zh) 检测系统及生产方法
US20230226559A1 (en) Dielectrophoresis detection device
CN114870917A (zh) 用于识别不同细胞的微流控芯片及其制备方法和检测平台
KR102086583B1 (ko) 바이오센서 칩 및 암 진단 시스템