TW201413359A - Wavelength conversion element, light source device, and method for manufacturing wavelength conversion element - Google Patents

Wavelength conversion element, light source device, and method for manufacturing wavelength conversion element Download PDF

Info

Publication number
TW201413359A
TW201413359A TW102133658A TW102133658A TW201413359A TW 201413359 A TW201413359 A TW 201413359A TW 102133658 A TW102133658 A TW 102133658A TW 102133658 A TW102133658 A TW 102133658A TW 201413359 A TW201413359 A TW 201413359A
Authority
TW
Taiwan
Prior art keywords
wavelength conversion
electrode
conversion element
ferroelectric crystal
polarization inversion
Prior art date
Application number
TW102133658A
Other languages
Chinese (zh)
Inventor
Toshikazu Kubo
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of TW201413359A publication Critical patent/TW201413359A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A wavelength conversion element (10) is formed using a ferroelectric crystal (100). The ferroelectric crystal (100) is provided with a plurality of polarization reversal regions (110) at intervals in a first direction (X direction). The interval (L) between the polarization reversal regions (110) is from 6.0 μm to 9.9 μm (inclusive). The width (H) of the polarization reversal regions (110) in a second direction (Y direction) that is perpendicular to the first direction is from 0.01 mm to 1 mm (inclusive).

Description

波長變換元件、光源裝置及波長變換元件之製造方法 Wavelength conversion element, light source device, and method of manufacturing wavelength conversion element

本發明係關於在強介電質結晶設極化反轉構造之波長變換元件、光源裝置及波長變換元件之製造方法。 The present invention relates to a wavelength conversion element, a light source device, and a method of manufacturing a wavelength conversion element in which a polarization inversion structure is provided in a ferroelectric crystal.

變換光的波長之波長變換元件之一,有使用擬似相位整合者。此波長變換元件,係於強介電質結晶週期性設置極化反轉區域者。極化反轉區域,係於強介電質結晶之一面之中使第1電極接觸於欲使極化反轉的區域,而且使第2電極接觸於強介電質結晶的相反面全面,對第1電極及第2電極之間施加電壓而形成。專利文獻1,記載著使此第1電極之垂直於極化反轉週期的方向之長度,為強介電質結晶的厚度的2倍以下。 One of the wavelength conversion elements that convert the wavelength of light has a pseudo phase integrator. This wavelength conversion element is a region in which a polarization reversal region is periodically set in a ferroelectric crystal. The polarization inversion region is formed in a region of the ferroelectric crystal to bring the first electrode into contact with the region where the polarization is to be reversed, and the second electrode is in contact with the opposite surface of the ferroelectric crystal. A voltage is applied between the first electrode and the second electrode. Patent Document 1 describes that the length of the first electrode perpendicular to the polarization inversion period is twice or less the thickness of the ferroelectric crystal.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本特許第3884197號公報 [Patent Document 1] Japanese Patent No. 3884197

為了提高波長變換元件的品質,有必要使極化反轉區域完全如設計地形成。但是本案發明人檢討的結果,會有即使第1電極接著也發生不被極化反轉的部份的場合。這樣的場合,波長變換元件的品質會發生脫離基準的情形,結果會使波長變換元件的生產率降低。 In order to improve the quality of the wavelength conversion element, it is necessary to form the polarization inversion region completely as designed. However, as a result of the review by the inventors of the present invention, there is a case where a portion which is not reversed by polarization is generated even after the first electrode. In such a case, the quality of the wavelength conversion element is deviated from the reference, and as a result, the productivity of the wavelength conversion element is lowered.

本發明係有鑑於前述情形而完成之發明,目的在於提高波長變換元件的生產率。 The present invention has been made in view of the above circumstances, and an object thereof is to improve the productivity of a wavelength conversion element.

根據本發明的話,波長變換元件具備強介電質結晶。此強介電質結晶,具有沿著第1方向週期性設置的複數極化反轉區域。極化反轉區域的週期,為6.0μm以上9.9μm以下。此外,正交於第1方向的第2方向之極化反轉區域的寬幅為0.01mm以上1mm以下。 According to the invention, the wavelength conversion element is provided with a ferroelectric crystal. The ferroelectric crystal has a complex polarization inversion region periodically disposed along the first direction. The period of the polarization inversion region is 6.0 μm or more and 9.9 μm or less. Further, the width of the polarization inversion region orthogonal to the second direction in the first direction is 0.01 mm or more and 1 mm or less.

根據本發明的話,光源裝置具有發生波長1020nm以上1200nm以下的雷射光的光源,與前述之波長變換元件。 According to the present invention, the light source device has a light source that generates laser light having a wavelength of 1020 nm or more and 1200 nm or less, and the wavelength conversion element described above.

相關於本發明的波長變換元件的製造方法,具有以下的步驟。首先於位在強介電質結晶的第1面於被極化反轉的第1區域上,以使複數第1電極沿著第1方向週期性配置,同時在強介電質結晶之第1面的相反面亦即第2面上配置第2電極。接著,藉由對第1電極與第2電 極之間施加電壓形成極化反轉區域。複數第1電極的週期,為6.0μm以上9.9μm以下。此外,正交於第1方向的第2方向之第1電極的寬幅為0.01mm以上1mm以下。 The method for producing a wavelength conversion element according to the present invention has the following steps. First, the first surface of the ferroelectric crystal is placed on the first region where the polarization is reversed, so that the plurality of first electrodes are periodically arranged along the first direction, and at the same time as the first of the ferroelectric crystallization. The second electrode is disposed on the second surface of the opposite surface of the surface. Next, by the first electrode and the second electrode A voltage is applied between the poles to form a polarization inversion region. The period of the plurality of first electrodes is 6.0 μm or more and 9.9 μm or less. Further, the width of the first electrode orthogonal to the second direction in the first direction is 0.01 mm or more and 1 mm or less.

相關於本發明的波長變換元件之製造方法,藉由反覆第1步驟及第2步驟,而製造複數之波長變換元件。在第1步驟,於強介電質結晶的第1面上,以使該第1電極與第1面之接觸部分成為週期性的方式配置第1電極,同時於強介電質結晶之第1面的相反面亦即第2面上配置第2電極。在第2步驟,藉由對第1電極與第2電極之間施加電壓形成極化反轉區域。接著在反覆進行第1步驟及第2步驟之前,改變正交於第1方向的第2方向之第1電極的寬幅,製作複數波長變換元件之試料。接著,藉由調查複數試料之極化反轉區域的生產率,決定在第1步驟使用的第1電極的寬幅。 According to the method of manufacturing a wavelength conversion element of the present invention, a plurality of wavelength conversion elements are manufactured by repeating the first step and the second step. In the first step, the first electrode is placed on the first surface of the ferroelectric crystal so that the contact portion between the first electrode and the first surface is periodic, and the first electrode is the first of the ferroelectric crystal. The second electrode is disposed on the second surface of the opposite surface of the surface. In the second step, a polarization inversion region is formed by applying a voltage between the first electrode and the second electrode. Next, before the first step and the second step are repeated, the width of the first electrode orthogonal to the second direction in the first direction is changed to prepare a sample of the complex wavelength conversion element. Next, the width of the first electrode used in the first step was determined by investigating the productivity of the polarization inversion region of the plurality of samples.

根據本發明,可以提高波長變換元件的生產率。 According to the present invention, the productivity of the wavelength conversion element can be improved.

10‧‧‧波長變換元件 10‧‧‧ wavelength conversion components

20‧‧‧光源 20‧‧‧Light source

30‧‧‧溫度調節元件 30‧‧‧temperature regulating components

32‧‧‧熱傳導部 32‧‧‧Heat conduction department

40‧‧‧溫度檢測部 40‧‧‧ Temperature Detection Department

42‧‧‧強度檢測部 42‧‧‧Intensity Detection Department

50‧‧‧控制部 50‧‧‧Control Department

60‧‧‧分歧部 60‧‧‧Differentiation Department

100‧‧‧強介電質結晶 100‧‧‧Dynamic crystallization

102‧‧‧波導 102‧‧‧Band

110‧‧‧極化反轉區域 110‧‧‧Polarization reversal zone

210‧‧‧絕緣膜 210‧‧‧Insulation film

220‧‧‧第1電極 220‧‧‧1st electrode

222‧‧‧第2電極 222‧‧‧2nd electrode

圖1(a)係顯示相關於第1實施型態的波長變換元件的構成的平面圖,(b)係(a)的A-A’剖面圖。 Fig. 1(a) is a plan view showing a configuration of a wavelength conversion element according to a first embodiment, and Fig. 1(b) is a cross-sectional view taken along line A-A' of Fig. 1(a).

圖2係供說明製造波長變換元件的方法之圖。 Fig. 2 is a view for explaining a method of manufacturing a wavelength conversion element.

圖3係顯示極化反轉區域的寬幅H與波長變換元件的生產率之關係之一例。 Fig. 3 is a view showing an example of the relationship between the width H of the polarization inversion region and the productivity of the wavelength conversion element.

圖4係顯示相關於第2實施型態之波長變換元件的構成之平面圖。 Fig. 4 is a plan view showing the configuration of a wavelength conversion element according to a second embodiment.

圖5係顯示相關於第3實施型態之光源裝置的構成之圖。 Fig. 5 is a view showing the configuration of a light source device according to a third embodiment.

圖6係顯示相關於第4實施型態之光源裝置的構成之圖。 Fig. 6 is a view showing the configuration of a light source device according to a fourth embodiment.

圖7係顯示圖6的變形例之圖。 Fig. 7 is a view showing a modification of Fig. 6.

以下,使用圖面說明本發明之實施型態。又,於所有的圖面,同樣的構成要素賦予同樣的符號,而適當地省略其說明。 Hereinafter, embodiments of the present invention will be described using the drawings. In the drawings, the same components are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.

(第1實施形態) (First embodiment)

圖1(a)係顯示相關於第1實施型態之波長變換元件10的構成之平面圖。圖1(b)為圖1(a)之A-A’剖面圖。波長變換元件10,使用強介電質結晶100來形成。於強介電質結晶100,複數極化反轉區域110,沿著第1方向(圖1(a)之X方向)週期設置。極化反轉區域110的週期L,為6.0μm以上9.9μm以下。接著,正交於第1方向的第2方向(圖1(a)之Y方向)之極化反轉區域110的寬幅H為0.01mm以上1mm以下。如此進 行的話,波長變換元件的品質會變得不容易偏離基準。以下詳細進行說明。 Fig. 1(a) is a plan view showing the configuration of the wavelength conversion element 10 according to the first embodiment. Fig. 1(b) is a cross-sectional view taken along line A-A' of Fig. 1(a). The wavelength conversion element 10 is formed using a ferroelectric crystal 100. In the ferroelectric crystal 100, the complex polarization inversion region 110 is periodically set along the first direction (X direction of FIG. 1(a)). The period L of the polarization inversion region 110 is 6.0 μm or more and 9.9 μm or less. Next, the width H of the polarization inversion region 110 orthogonal to the second direction in the first direction (the Y direction in FIG. 1(a)) is 0.01 mm or more and 1 mm or less. So enter If it is done, the quality of the wavelength conversion element will not easily deviate from the reference. The details will be described below.

強介電質結晶100,例如為被添加Mg(鎂)的LiNbO3(鈮酸鋰)或者LiTaO3(鉭酸鋰),表面為+Z面。強介電質結晶100的厚度例如為0.2mm以上2.0mm以下。於平面俯視,極化反轉區域110,係反覆設於波長變換元件10。極化反轉區域110的第1方向的寬幅W的設計值,為極化反轉區域110的週期L的一半。但是因為起因於製造製程的不一致,寬幅W會成為週期L的45%以上55%以下。 The ferroelectric crystal 100 is, for example, LiNbO 3 (lithium niobate) or LiTaO 3 (lithium niobate) to which Mg (magnesium) is added, and the surface is a +Z plane. The thickness of the ferroelectric crystal 100 is, for example, 0.2 mm or more and 2.0 mm or less. The polarization inversion region 110 is reversely disposed on the wavelength conversion element 10 in plan view. The design value of the width W in the first direction of the polarization inversion region 110 is half of the period L of the polarization inversion region 110. However, because of the inconsistency in the manufacturing process, the width W becomes 45% or more and 55% or less of the period L.

於本實施型態,極化反轉區域110的週期L,為6.0μm以上9.9μm以下。因此,波長變換元件10作為使波長1020nm以上1200nm以下的入射光,變換為波長510nm以上600nm以下的射出光的元件而發揮機能。 In the present embodiment, the period L of the polarization inversion region 110 is 6.0 μm or more and 9.9 μm or less. Therefore, the wavelength conversion element 10 functions as an element that converts incident light having a wavelength of 1020 nm or more and 1200 nm or less into an emission light having a wavelength of 510 nm or more and 600 nm or less.

圖2係供說明製造波長變換元件10的方法之圖。圖2(a)為平面圖,圖2(b)為圖2(a)之A-A’剖面圖。此波長變換元件10的製造方法,具有以下之步驟。首先,於強介電質結晶100的第1面(例如表面)配置第1電極220,同時於強介電質結晶100的第2面(與第1面相反側之面)配置第2電極222。第1電極220,僅接觸於第1面之中被形成極化反轉區域110的區域。亦即,第1電極220,係以與第1面接觸部分成為週期性的方式被配置的。此時,接觸部分的週期,為6.0μm以上9.9μm以下。此外,第2方向(圖2(a)之Y方向)之第 1電極220的寬幅為0.01mm以上1mm以下。接著,藉由對第1電極220與第2電極222之間施加電壓形成極化反轉區域110。以下詳細進行說明。 FIG. 2 is a view for explaining a method of manufacturing the wavelength conversion element 10. Fig. 2(a) is a plan view, and Fig. 2(b) is a cross-sectional view taken along line A-A' of Fig. 2(a). The method of manufacturing the wavelength conversion element 10 has the following steps. First, the first electrode 220 is disposed on the first surface (for example, the surface) of the ferroelectric crystal 100, and the second electrode 222 is disposed on the second surface (surface opposite to the first surface) of the ferroelectric crystal 100. . The first electrode 220 is in contact only with a region in which the polarization inversion region 110 is formed among the first faces. In other words, the first electrode 220 is disposed such that the contact portion with the first surface is periodic. At this time, the period of the contact portion is 6.0 μm or more and 9.9 μm or less. In addition, the second direction (the Y direction of Fig. 2 (a)) The width of the 1 electrode 220 is 0.01 mm or more and 1 mm or less. Next, a polarization inversion region 110 is formed by applying a voltage between the first electrode 220 and the second electrode 222. The details will be described below.

首先,於強介電質結晶100的第2面(在本圖為下面)上,藉由例如濺鍍法或真空蒸鍍法形成第2電極222。第2電極222例如為Al(鋁)膜或Cr(鉻)膜,其厚度例如為0.5μm。 First, the second electrode 222 is formed on the second surface (in the figure below) of the ferroelectric crystal 100 by, for example, a sputtering method or a vacuum deposition method. The second electrode 222 is, for example, an Al (aluminum) film or a Cr (chromium) film, and has a thickness of, for example, 0.5 μm.

接著,於強介電質結晶100的第1面上,形成絕緣膜210,選擇性除去絕緣膜210。藉此,強介電質結晶100的第1面之中不被極化反轉的區域以絕緣膜210覆蓋。絕緣膜210,例如為光阻膜,亦可為其他之絕緣膜。 Next, an insulating film 210 is formed on the first surface of the ferroelectric crystal 100 to selectively remove the insulating film 210. Thereby, a region of the first surface of the ferroelectric crystal 100 that is not reversed by polarization is covered with the insulating film 210. The insulating film 210 is, for example, a photoresist film, and may be another insulating film.

接著,於強介電質結晶100的第1面上及絕緣膜210上,形成第1電極220。第1電極220的形成方法,與第2電極222的形成方法相同。接著,對第1電極220與第2電極222之間施加電壓。藉此於強介電質結晶100形成極化反轉區域110。此後,除去第1電極220及第2電極222,進而除去絕緣膜210。 Next, the first electrode 220 is formed on the first surface of the ferroelectric crystal 100 and the insulating film 210. The method of forming the first electrode 220 is the same as the method of forming the second electrode 222. Next, a voltage is applied between the first electrode 220 and the second electrode 222. Thereby, the polarization inversion region 110 is formed in the ferroelectric crystal 100. Thereafter, the first electrode 220 and the second electrode 222 are removed, and the insulating film 210 is removed.

其次,說明本實施型態之效果。為了要使用電壓施加法在強介電質結晶100精度佳地形成極化反轉區域110,不僅要強介電質結晶100的結晶組成或結晶構造為均勻,而且第1電極220及第2電極222的構造也最好是均勻的。本發明著眼於這一點,假定第2方向之第1電極220的寬幅H會左右極化反轉性。 Next, the effect of this embodiment will be described. In order to form the polarization inversion region 110 with high precision in the ferroelectric crystal 100 by the voltage application method, not only the crystal composition or the crystal structure of the ferroelectric crystal 100 is uniform, but also the first electrode 220 and the second electrode. The construction of 222 is also preferably uniform. In view of this, the present invention assumes that the width H of the first electrode 220 in the second direction is left-right polarization reversal.

圖3(a)(b)顯示極化反轉區域110的寬幅,亦即第1電極220之中接觸於強介電質結晶100的部分的寬幅與波長變換元件10的生產率的關係之一例。在圖3(a),L=7.38μm,在圖3(b)所示之例為L=9.52μm。於強介電質結晶100,使用厚度為0.5mm,添加MgO的LiNbO3。針對各寬幅H製作了5個試料。於圖3,把對於第1電極220與強介電質結晶100的接觸部分之極化反轉區域100的面積的比率定義為生產率。亦即,前述接觸部分全部極化反轉的場合,生產率為100%。又,成為極化反轉區域110的區域,可以藉由濕式蝕刻強介電質結晶100而確認。 3(a) and (b) show the width of the polarization inversion region 110, that is, the relationship between the width of the portion of the first electrode 220 that is in contact with the ferroelectric crystal 100 and the productivity of the wavelength conversion element 10. An example. In Fig. 3(a), L = 7.38 μm, and in the example shown in Fig. 3 (b), L = 9.52 μm. For the ferroelectric crystal 100, LiNbO 3 having a thickness of 0.5 mm and MgO was added. Five samples were prepared for each width H. In FIG. 3, the ratio of the area of the polarization inversion region 100 of the contact portion of the first electrode 220 and the ferroelectric crystal 100 is defined as the productivity. That is, when the contact portions are all reversed in polarization, the productivity is 100%. Further, the region to be the polarization inversion region 110 can be confirmed by wet etching the ferroelectric crystal 100.

於圖3(a)、(b)之任一例,寬幅H成為2mm以下的話,不極化反轉的區域(以下記載為未反轉區域)減少,極化反轉區域110的生產率提高。特別是寬幅H為1mm以下的場合,生產率大幅提高,超過95%。進而寬幅H成為0.5mm以下的話,未反轉區域不發生。此傾向在寬幅達0.1mm為止都被確認了。 In any of the examples of (a) and (b) of FIG. 3, when the width H is 2 mm or less, the region where the polarization is not reversed (hereinafter referred to as the non-reverse region) is reduced, and the productivity of the polarization inversion region 110 is improved. In particular, when the width H is 1 mm or less, the productivity is greatly improved, and it exceeds 95%. Further, when the width H is 0.5 mm or less, the non-reversed area does not occur. This tendency was confirmed up to a width of 0.1 mm.

寬幅H成為0.05mm以下的話,再度產生未反轉區域,極化反轉區域110的生產率稍微減少。但是在寬幅為0.01mm的場合,生產率為95%以上。 When the width H is 0.05 mm or less, the unreversed region is again generated, and the productivity of the polarization inversion region 110 is slightly reduced. However, when the width is 0.01 mm, the productivity is 95% or more.

如此,於本實施型態,在製造波長變換元件10之前,改變第1電極220之中與強介電質結晶100接觸的部分的寬幅H而製作複數試料。接著使用該製作的試料,調查極化反轉區域110的生產率與寬幅H的關係。接 著根據其結果,決定第1電極220之中接觸於強介電質結晶100的部分的寬幅H。 As described above, in the present embodiment, before the wavelength conversion element 10 is manufactured, the width H of the portion of the first electrode 220 that is in contact with the ferroelectric crystal 100 is changed to prepare a plurality of samples. Next, using the prepared sample, the relationship between the productivity of the polarization inversion region 110 and the width H was investigated. Connect Based on the result, the width H of the portion of the first electrode 220 that is in contact with the ferroelectric crystal 100 is determined.

接著,於極化反轉區域110的週期L為為6.0μm以上9.9μm以下的場合,寬幅H為0.01mm以上1mm以下的話,波長變換元件10的生產率提高。使寬幅H為0.02mm以上0.5mm以下的話,波長變換元件10的生產率更為提高。進而使寬幅H為0.1mm以上0.5mm以下的話,波長變換元件10的生產率特別變高。 When the period L of the polarization inversion region 110 is 6.0 μm or more and 9.9 μm or less, the productivity of the wavelength conversion element 10 is improved when the width H is 0.01 mm or more and 1 mm or less. When the width H is 0.02 mm or more and 0.5 mm or less, the productivity of the wavelength conversion element 10 is further improved. Further, when the width H is 0.1 mm or more and 0.5 mm or less, the productivity of the wavelength conversion element 10 is particularly high.

(第2實施形態) (Second embodiment)

圖4係顯示相關於第2實施型態之波長變換元件10的構成之平面圖。相關於本實施型態的波長變換元件10,除了具有波導102這點外,與相關於第1實施型態的波長變換元件10為同樣的構成。 Fig. 4 is a plan view showing the configuration of the wavelength conversion element 10 according to the second embodiment. The wavelength conversion element 10 according to the present embodiment has the same configuration as the wavelength conversion element 10 according to the first embodiment except that the waveguide 102 is provided.

詳細地說,波導102,延伸於第1方向(圖4之X方向)。波導102,為背脊型或埋入型之任一種。而極化反轉構造110,設於波導102。 In detail, the waveguide 102 extends in the first direction (the X direction in FIG. 4). The waveguide 102 is either a back ridge type or a buried type. The polarization inversion structure 110 is provided in the waveguide 102.

藉由本實施型態,可以得到與第1實施型態同樣的效果。 According to this embodiment, the same effects as those of the first embodiment can be obtained.

(第3實施形態) (Third embodiment)

圖5係顯示相關於第3實施型態之光源裝置的構成之圖。此光源裝置,具有波長變換元件10及光源20。波長變換元件10的構成,與第1實施型態或第2實施型太相 同。光源20,發出波長1020nm以上1200nm以下的雷射光。光源20,例如發生超寬頻雷射光。此外,光源20亦可為射出單一波長的雷射二極體。由光源20射出的光,射入波長變換元件10。波長變換元件10,把入射的光與以波長變換而射出。射出的光的波長為510nm以上1200nm以下。又,由光源20射出的光,使用光纖導光至波長變換元件10亦可,藉由反射鏡等光學零件來導光亦可。 Fig. 5 is a view showing the configuration of a light source device according to a third embodiment. This light source device has a wavelength conversion element 10 and a light source 20. The configuration of the wavelength conversion element 10 is too phased with the first embodiment or the second embodiment. with. The light source 20 emits laser light having a wavelength of 1020 nm or more and 1200 nm or less. The light source 20, for example, produces ultra-wideband laser light. In addition, the light source 20 may also be a laser diode that emits a single wavelength. The light emitted from the light source 20 is incident on the wavelength conversion element 10. The wavelength conversion element 10 emits incident light by wavelength conversion. The wavelength of the emitted light is 510 nm or more and 1200 nm or less. Further, the light emitted from the light source 20 may be guided to the wavelength conversion element 10 by using an optical fiber, and may be guided by an optical component such as a mirror.

於本實施型態,光源裝置進而具有溫度調節元件30、熱傳導部32、溫度檢測部40,及控制部50。溫度調節元件30,透過熱傳導部32接觸於波長變換元件10。溫度調節元件30,具有發熱機能及吸熱機能之至少一方。溫度調節元件30,例如具有加熱器及珀爾帖(Peltier)元件之至少一方。熱傳導部,例如由Cu(銅)等熱傳導率高的物質來形成。溫度檢測部40檢測出波長變換元件10的溫度。控制部50,根據溫度檢測部40的檢測結果,控制溫度調節元件30。亦即,控制部50藉由控制溫度調節元件30,使波長變換元件10的溫度成為所要的範圍內。此所要的溫度,例如為25℃以上80℃以下。 In the present embodiment, the light source device further includes a temperature adjustment element 30, a heat conduction portion 32, a temperature detecting portion 40, and a control portion 50. The temperature adjustment element 30 is in contact with the wavelength conversion element 10 through the heat conduction portion 32. The temperature adjustment element 30 has at least one of a heat generating function and a heat absorbing function. The temperature adjustment element 30 has, for example, at least one of a heater and a Peltier element. The heat conduction portion is formed of, for example, a material having high thermal conductivity such as Cu (copper). The temperature detecting unit 40 detects the temperature of the wavelength conversion element 10. The control unit 50 controls the temperature adjustment element 30 based on the detection result of the temperature detecting unit 40. That is, the control unit 50 controls the temperature adjustment element 30 so that the temperature of the wavelength conversion element 10 is within a desired range. The desired temperature is, for example, 25 ° C or more and 80 ° C or less.

根據本實施型態,波長變換元件10的生產率很高。因此,可以降低光源裝置的製造成本。此外,光源裝置具備溫度調節元件30、溫度檢測部40以及控制部50,所以可以把波長變換元件10的溫度控制在所要的範 圍。因此,可以把波長變換元件10的波長變換效率維持在高的值。 According to this embodiment, the productivity of the wavelength conversion element 10 is high. Therefore, the manufacturing cost of the light source device can be reduced. Further, since the light source device includes the temperature adjustment element 30, the temperature detecting unit 40, and the control unit 50, the temperature of the wavelength conversion element 10 can be controlled to a desired range. Wai. Therefore, the wavelength conversion efficiency of the wavelength conversion element 10 can be maintained at a high value.

(第4實施形態) (Fourth embodiment)

圖6係顯示相關於第4實施型態之光源裝置的構成之圖。此光源裝置,除了替代溫度檢測部40而具備強度檢測部42這一點以外,係與相關於第3實施型態的光源裝置相同的構成。又,於本實施型態,光源,為雷射二極體等波長寬幅很窄的激發光源。 Fig. 6 is a view showing the configuration of a light source device according to a fourth embodiment. This light source device has the same configuration as that of the light source device according to the third embodiment except that the intensity detecting unit 42 is provided instead of the temperature detecting unit 40. Further, in the present embodiment, the light source is an excitation light source having a narrow wavelength and a narrow wavelength such as a laser diode.

強度檢測部42,檢測由波長變換元件10射出的光的強度。接著控制部50,根據強度檢測部42的檢測結果,控制溫度調節元件30。具體而言,控制部50以強度檢測部42的檢測結果變高(較佳者為成為最大)的方式,控制溫度調節元件30。 The intensity detecting unit 42 detects the intensity of the light emitted by the wavelength conversion element 10. Next, the control unit 50 controls the temperature adjustment element 30 based on the detection result of the intensity detecting unit 42. Specifically, the control unit 50 controls the temperature adjustment element 30 such that the detection result of the intensity detecting unit 42 becomes higher (preferably, it is the largest).

又,如圖7所示,相關於本實施型態的光源裝置,亦可具備分歧部60。分歧部60,分歧出從波長變換元件10射出的光的一部分,輸入強度檢測部42。 Moreover, as shown in FIG. 7, the light source device according to this embodiment may be provided with the branch portion 60. The branching unit 60 diverges a part of the light emitted from the wavelength conversion element 10 and inputs it to the intensity detecting unit 42.

藉由本實施型態,可以得到與第3實施型態同樣的效果。 According to this embodiment, the same effects as those of the third embodiment can be obtained.

(實施例1) (Example 1)

製作複數第2實施型態所示之波長變換元件10。於此實施例,極化反轉區域110的週期如表1所示。接著,於各週期,製作5個試料。接著,測定極化反轉區域110 的生產率。此生產率的定義,與圖3所示的生產率相同。 The wavelength conversion element 10 shown in the second embodiment is produced. In this embodiment, the period of the polarization inversion region 110 is as shown in Table 1. Next, five samples were prepared in each cycle. Next, the polarization inversion region 110 is measured. Productivity. This productivity is defined by the same productivity as shown in FIG.

在本實施例,於表1所示的所有條件,極化反轉區域110的生產率為95%。藉此,於週期6.0μm以上9.9μm以下的場合,顯示波長變換元件10的生產率提高。 In the present embodiment, the productivity of the polarization inversion region 110 was 95% under all the conditions shown in Table 1. Thereby, when the cycle is 6.0 μm or more and 9.9 μm or less, the productivity of the wavelength conversion element 10 is improved.

(實施例2) (Example 2)

使用在實施例1製作的波長變換元件10,製作第3實施型態所示的光源裝置。光源20射出的光的波長為1020nm以上1200nm以下。於表2分別顯示波長變換元件10射出的光的波長的設計值,與實測值。又,於本實施例,控制部50把波長變換元件10的溫度控制在40℃。 The light source device shown in the third embodiment was produced using the wavelength conversion element 10 produced in the first embodiment. The wavelength of the light emitted from the light source 20 is 1020 nm or more and 1200 nm or less. Table 2 shows the design values of the wavelengths of the light emitted from the wavelength conversion element 10, and the measured values. Further, in the present embodiment, the control unit 50 controls the temperature of the wavelength conversion element 10 to 40 °C.

如表2所示,所有的試料,波長變換元件10射出的光的波長,與設計值幾乎相同。 As shown in Table 2, the wavelength of the light emitted from the wavelength conversion element 10 was almost the same as the design value for all the samples.

以上,參照圖面說明本發明之實施型態及實 施例,但此僅為本發明之例示,亦可採用前述以外的種種構成。 The embodiments of the present invention will be described above with reference to the drawings. The embodiment is merely an exemplification of the present invention, and various configurations other than the above may be employed.

110‧‧‧極化反轉區域 110‧‧‧Polarization reversal zone

10‧‧‧波長變換元件 10‧‧‧ wavelength conversion components

100‧‧‧強介電質結晶 100‧‧‧Dynamic crystallization

Claims (8)

一種波長變換元件,其特徵為具備:強介電質結晶、以及於前述強介電質結晶,沿著第1方向週期性設置的複數極化反轉區域;前述極化反轉區域的週期為6.0μm以上9.9μm以下,正交於前述第1方向的第2方向之前述極化反轉區域的寬幅為0.01mm以上1mm以下。 A wavelength conversion element comprising: a ferroelectric crystal, and a complex polarization inversion region periodically disposed along a first direction in the ferroelectric crystal; the period of the polarization inversion region is 6.0 μm or more and 9.9 μm or less, and the width of the polarization inversion region orthogonal to the second direction in the first direction is 0.01 mm or more and 1 mm or less. 如申請專利範圍第1項之波長變換元件,其中前述極化反轉區域的寬幅為0.1mm以上0.5mm以下。 The wavelength conversion element according to claim 1, wherein the polarization inversion region has a width of 0.1 mm or more and 0.5 mm or less. 如申請專利範圍第1項之波長變換元件,其中具備設於前述強介電質結晶,沿著前述第1方向延伸的波導;前述複數極化反轉區域,設於前述波導。 The wavelength conversion element according to claim 1, further comprising: a waveguide provided in the ferroelectric crystal extending along the first direction; wherein the complex polarization inversion region is provided in the waveguide. 一種光源裝置,其特徵為具備:發出波長1020nm以上1200nm以下的雷射光的光源,以及波長變換由前述光源射出的光之波長變換元件;前述波長變換元件,具備:強介電質結晶、以及於前述強介電質結晶,沿著第1方向週期性設置的複數極化反轉區域;前述極化反轉區域的週期為6.0μm以上9.9μm以下,正交於前述第1方向的第2方向之前述極化反轉區域 的寬幅為0.01mm以上1mm以下。 A light source device comprising: a light source that emits laser light having a wavelength of 1020 nm or more and 1200 nm or less; and a wavelength conversion element that converts light emitted from the light source; wherein the wavelength conversion element includes: a ferroelectric crystal, and The ferroelectric crystal is a complex polarization inversion region periodically provided along the first direction; the period of the polarization inversion region is 6.0 μm or more and 9.9 μm or less, and is orthogonal to the second direction of the first direction Polarization inversion region The width is 0.01 mm or more and 1 mm or less. 如申請專利範圍第4項之光源裝置,其中具備檢測出前述強介電質結晶的溫度之溫度檢測部,以及根據前述溫度檢測部的檢測結果控制前述強介電質結晶的溫度之控制部。 A light source device according to claim 4, further comprising: a temperature detecting unit that detects a temperature of the ferroelectric crystal, and a control unit that controls a temperature of the ferroelectric crystal according to a detection result of the temperature detecting unit. 如申請專利範圍第4項之光源裝置,其中具備檢測出由前述波長變換元件射出的光的強度之強度檢測部,以及根據前述強度檢測部的檢測結果控制前述強介電質結晶的溫度之控制部。 A light source device according to claim 4, further comprising: an intensity detecting unit that detects the intensity of the light emitted from the wavelength converting element, and a control for controlling the temperature of the ferroelectric crystallization according to the detection result of the intensity detecting unit unit. 一種波長變換元件之製造方法,其特徵為具備:於強介電質結晶的第1面上,以使第1電極與前述第1面之接觸部分成為週期性的方式配置前述第1電極,同時於前述強介電質結晶之前述第1面的相反面亦即第2面上配置第2電極的步驟,以及藉由對前述第1電極與前述第2電極之間施加電壓,形成極化反轉區域的步驟;前述接觸部分的週期為6.0μm以上9.9μm以下,正交於前述第1方向的第2方向之前述第1電極的寬幅為0.01mm以上1mm以下。 A method for producing a wavelength conversion element, comprising: arranging the first electrode on a first surface of a ferroelectric crystal so that a contact portion between the first electrode and the first surface is periodic; a step of disposing a second electrode on a second surface opposite to the first surface of the ferroelectric crystal, and applying a voltage between the first electrode and the second electrode to form a polarization inverse The step of the transition region; the period of the contact portion is 6.0 μm or more and 9.9 μm or less, and the width of the first electrode orthogonal to the second direction in the first direction is 0.01 mm or more and 1 mm or less. 一種波長變換元件之製造方法,其特徵為具備:於強介電質結晶的第1面上,以使第1電極與前述第1面之接觸部分成為週期性的方式配置前述第1電極,同時於前述強介電質結晶之前述第1面的相反面亦即第2面 上配置第2電極的第1步驟,以及藉由對前述第1電極與前述第2電極之間施加電壓,形成極化反轉區域的第2步驟;藉由反覆進行前述第1步驟及前述第2步驟,製造複數波長變換元件,反覆進行前述第1步驟及前述第2步驟之前,改變正交於前述第1方向的第2方向之前述第1電極的寬幅,製作複數前述波長變換元件的試料,藉由調查前述複數試料之前述極化反轉區域的生產率,決定在前述第1步驟使用的前述第1電極的寬幅。 A method for producing a wavelength conversion element, comprising: arranging the first electrode on a first surface of a ferroelectric crystal so that a contact portion between the first electrode and the first surface is periodic; a second side opposite to the first surface of the ferroelectric crystal a first step of arranging the second electrode, and a second step of forming a polarization inversion region by applying a voltage between the first electrode and the second electrode; and performing the first step and the In the second step, the plurality of wavelength conversion elements are manufactured, and before the first step and the second step are repeated, the width of the first electrode orthogonal to the second direction in the first direction is changed to form a plurality of the wavelength conversion elements. In the sample, the width of the first electrode used in the first step was determined by investigating the productivity of the polarization inversion region of the plurality of samples.
TW102133658A 2012-09-20 2013-09-17 Wavelength conversion element, light source device, and method for manufacturing wavelength conversion element TW201413359A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012206751A JP2014062960A (en) 2012-09-20 2012-09-20 Wavelength conversion element, light source device, and manufacturing method of wavelength conversion element

Publications (1)

Publication Number Publication Date
TW201413359A true TW201413359A (en) 2014-04-01

Family

ID=50340989

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102133658A TW201413359A (en) 2012-09-20 2013-09-17 Wavelength conversion element, light source device, and method for manufacturing wavelength conversion element

Country Status (3)

Country Link
JP (1) JP2014062960A (en)
TW (1) TW201413359A (en)
WO (1) WO2014045658A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511918A (en) * 2018-03-13 2018-09-07 东北石油大学 Electromagnetic wave asymmetric transmission controller based on Meta Materials
CN111684347A (en) * 2018-02-08 2020-09-18 住友电气工业株式会社 Optical wavelength converter and method for manufacturing optical wavelength converter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200642A (en) * 2015-04-07 2016-12-01 富士電機株式会社 Light source device and wavelength conversion method
JP7273338B2 (en) * 2019-06-20 2023-05-15 日本電信電話株式会社 Wavelength converter
JP7473789B2 (en) * 2020-03-13 2024-04-24 富士通株式会社 Wavelength conversion device and wavelength conversion method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102366A (en) * 1973-01-31 1974-09-27
JPS58138920U (en) * 1982-03-12 1983-09-19 日本電気株式会社 Automatic tuning SHG device
JPH04310929A (en) * 1991-04-09 1992-11-02 Ricoh Co Ltd Optical second harmonic generating element
JP3050333B2 (en) * 1991-05-10 2000-06-12 株式会社日立製作所 Method for manufacturing second harmonic generation element
JP3443889B2 (en) * 1993-09-10 2003-09-08 ソニー株式会社 Local polarization control method for nonlinear optical materials
JP3915145B2 (en) * 1996-03-12 2007-05-16 松下電器産業株式会社 Optical wavelength conversion element and method of manufacturing polarization inversion
JPH09292637A (en) * 1996-04-26 1997-11-11 Kyocera Corp Second harmonic generating element
JP3884197B2 (en) * 1999-10-06 2007-02-21 三菱電線工業株式会社 Fabrication method of domain-inverted structure
JP2009139395A (en) * 2007-12-03 2009-06-25 Mitsubishi Electric Corp Wavelength conversion laser beam source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684347A (en) * 2018-02-08 2020-09-18 住友电气工业株式会社 Optical wavelength converter and method for manufacturing optical wavelength converter
CN108511918A (en) * 2018-03-13 2018-09-07 东北石油大学 Electromagnetic wave asymmetric transmission controller based on Meta Materials

Also Published As

Publication number Publication date
JP2014062960A (en) 2014-04-10
WO2014045658A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
Evans et al. Continuous‐wave lasing in cesium lead bromide perovskite nanowires
TW201413359A (en) Wavelength conversion element, light source device, and method for manufacturing wavelength conversion element
Wang et al. High-responsivity graphene-on-silicon slot waveguide photodetectors
US6738397B2 (en) Solid-state light source apparatus
JPH10503602A (en) Fabrication of patterned polarized dielectric structures and devices
Zeng et al. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon
US20100033806A1 (en) Wavelength Converter Manufacturing Method and Wavelength Converter
Zhang et al. Emission characteristics of all-silicon distributed feedback lasers with a wide gain range
JP2007225786A (en) Optical element and manufacturing method of optical element
Liu et al. Bright multicolored photoluminescence of hybrid graphene/silicon optoelectronics
Gesemann et al. Thermal emission properties of 2D and 3D silicon photonic crystals
JP2018041957A (en) Photoelectric conversion device and method of controlling operation wavelength of the same
JP6136666B2 (en) Optical waveguide and electro-optic device
JP2010156787A (en) Method for manufacturing optical functional element
JP2009025555A (en) Manufacturing method of optical waveguide
JP2008224972A (en) Optical element and method for manufacturing the same
JP2009271496A (en) Method of fabricating optical functional element
JP2002250948A (en) Polarization reversal structure element
JP4865191B2 (en) Method for manufacturing a substrate having a periodically poled region
Inoue et al. Fabrication of SiGe/Ge microbridges based on Ge-on-Si (1 1 0) and observation of resonant light emission
CN101162342A (en) Periodicity optical superlattices multiple wavelengths filter capable of thermal tuning
JP2009169344A (en) Wavelength conversion element
JP2008158404A (en) Wavelength conversion element and method for manufacturing the same
JP2007316541A (en) Method of manufacturing optical element and optical element
Rao et al. Experimental characterization of the thermo-optic coefficient vs. temperature for 4H-SiC and GaN semiconductors at the wavelength of 632 nm