JP6248410B2 - Temperature control device for wavelength conversion element - Google Patents

Temperature control device for wavelength conversion element Download PDF

Info

Publication number
JP6248410B2
JP6248410B2 JP2013094154A JP2013094154A JP6248410B2 JP 6248410 B2 JP6248410 B2 JP 6248410B2 JP 2013094154 A JP2013094154 A JP 2013094154A JP 2013094154 A JP2013094154 A JP 2013094154A JP 6248410 B2 JP6248410 B2 JP 6248410B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion element
temperature
control device
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013094154A
Other languages
Japanese (ja)
Other versions
JP2014215528A (en
Inventor
和哉 井上
和哉 井上
徳田 勝彦
勝彦 徳田
守 久光
守 久光
一智 門倉
一智 門倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2013094154A priority Critical patent/JP6248410B2/en
Publication of JP2014215528A publication Critical patent/JP2014215528A/en
Application granted granted Critical
Publication of JP6248410B2 publication Critical patent/JP6248410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、波長変換素子の温度制御装置に関する。   The present invention relates to a temperature control device for a wavelength conversion element.

従来のこの種の波長変換素子としては、所望の波長のレーザ光を得るために、強誘電体結晶基板内部で分極方向が周期的に反転する周期分極反転構造を形成したものが用いられている。この波長変換素子は、入射する基本波のレーザ光と擬似位相整合することによって高調波のレーザ光を出力する。   As this type of conventional wavelength conversion element, in order to obtain laser light having a desired wavelength, an element having a periodically poled structure in which the polarization direction is periodically reversed inside the ferroelectric crystal substrate is used. . This wavelength conversion element outputs harmonic laser light by quasi-phase matching with the incident fundamental wave laser light.

波長変換素子を使用する場合には、位相整合条件を満たすように波長変換素子の温度を位相整合温度(一定温度)に保持する必要がある。一般的には、ペルチェ素子を熱容量が大きく且つ熱伝導も良好な金属平板と接触させ、金属平板を介してペルチェ素子により波長変換素子の温度を制御している。   When using a wavelength conversion element, it is necessary to maintain the temperature of the wavelength conversion element at a phase matching temperature (a constant temperature) so as to satisfy the phase matching condition. In general, the Peltier element is brought into contact with a metal flat plate having a large heat capacity and good heat conduction, and the temperature of the wavelength conversion element is controlled by the Peltier element via the metal flat plate.

波長変換素子内部の温度T(z)は、波長変換素子内部での発熱量をQ(z)、波長変換素子の熱抵抗をRLT、金属平板の熱抵抗をRM、金属平板と波長変換素子間の熱抵抗をRI、金属平板のペルチェ素子と接触している面の温度をTBとすると、
T(z)=Q(z)×(RLT+RM+RI)+TBで表される。
The temperature T (z) inside the wavelength conversion element is the amount of heat generated inside the wavelength conversion element Q (z), the thermal resistance of the wavelength conversion element is RLT, the thermal resistance of the metal flat plate is RM, and between the metal flat plate and the wavelength conversion element The thermal resistance of RI is RI, and the temperature of the surface in contact with the Peltier element of the metal plate is TB.
T (z) = Q (z) × (RLT + RM + RI) + TB.

波長変換素子を低出力で使用する場合のように、波長変換素子内部での発熱量Q(z)が小さい場合には、図(a)に示すように、波長変換素子2の温度T(z)を均一に保持でき、位相整合温度と略同じとすることできる。即ち、低出力の波長変換では、基本波や第2高調波の吸収量が小さく内部発熱が小さいため、波長変換素子2の温度を均一に保つことができる。 As in the case of using the wavelength conversion element at a low output, when the amount of heat generated within the wavelength conversion element Q (z) is small, as shown in FIG. 5 (a), the wavelength conversion element 2 Temperature T ( z) can be kept uniform and can be substantially the same as the phase matching temperature. That is, in the low-power wavelength conversion, the absorption amount of the fundamental wave and the second harmonic is small and the internal heat generation is small, so that the temperature of the wavelength conversion element 2 can be kept uniform.

しかし、波長変換素子2を高出力で使用する場合には、発熱量Q(z)がZ方向に大きな分布を持ち、波長変換素子2の温度が不均一になる。一般に、第2高調波の吸収量が大きいため、入射側よりも出射側の発熱が大きくなる。具体的には、光が波長変換素子2の入射側から出射側に進むにつれて第2高調波の出力が増加するので、入射側に比較して出射側の発熱が大きくなる。このため、図(a)に示すように、入射側よりも出射側の波長変換素子2の温度が高くなる。 However, when the wavelength conversion element 2 is used with high output, the calorific value Q (z) has a large distribution in the Z direction, and the temperature of the wavelength conversion element 2 becomes non-uniform. In general, since the amount of absorption of the second harmonic is large, heat generation on the emission side is larger than that on the incident side. Specifically, since the output of the second harmonic increases as the light travels from the incident side to the emission side of the wavelength conversion element 2, heat generation on the emission side becomes larger than that on the incident side. For this reason, as shown to Fig.6 (a), the temperature of the wavelength conversion element 2 of the output side becomes higher than the incident side.

この場合、図(a)に示すように位相整合温度と波長変換素子2の温度とは乖離しており、不均一な温度分布により位相整合条件を満足できなくなり、第2高調波出力が飽和したり、第2高調波を安定して出力できない。 In this case, the temperature of the phase matching temperature and the wavelength converting element 2 as shown in FIG. 6 (a) is deviated, may not meet the phase matching condition by non-uniform temperature distribution, the second harmonic output is saturated Or stable output of the second harmonic.

また、波長変換素子2と金属平板1Aとが一様に接触している場合(RIがZ方向に分布を持たない場合)、波長変換素子2の発熱量Q(z)に応じた不均一な温度分布が発生する。この不均一な温度分布を抑制する方法として、金属平板1Aと波長変換素子2との間の熱抵抗RIを接触面の全体に亙り、可能な限り小さくする方法もある。これによれば、波長変換素子2から金属平板1Aへの吸熱が大きくなり、不均一な温度分布も多少抑制されるが、不均一な温度分布の抑制効果は十分ではなかった。   In addition, when the wavelength conversion element 2 and the metal flat plate 1A are in uniform contact (when RI does not have a distribution in the Z direction), non-uniformity according to the heat generation amount Q (z) of the wavelength conversion element 2 A temperature distribution occurs. As a method of suppressing this non-uniform temperature distribution, there is also a method of reducing the thermal resistance RI between the metal flat plate 1A and the wavelength conversion element 2 over the entire contact surface as much as possible. According to this, the heat absorption from the wavelength conversion element 2 to the metal flat plate 1A is increased, and the uneven temperature distribution is somewhat suppressed, but the effect of suppressing the uneven temperature distribution is not sufficient.

そこで、発熱が大きく温度が高い出射側と、発熱が小さく温度が低い入射側との温度差をより小さくするためには、温度の低い入射側の吸熱に対して、温度の高い出射側の吸熱を良くすれば良い。これを実現するために、例えば、図(b)に示すように、金属平板1Aとペルチェ素子3aで構成される入射側用の温度調整装置と、金属平板1Bとペルチェ素子3bで構成される出射側の温度調整装置とを設けた装置が知られている(特許文献1)。 Therefore, in order to reduce the temperature difference between the emission side with high heat generation and high temperature and the incident side with low heat generation and low temperature, the heat absorption on the emission side with high temperature is different from the heat absorption on the incident side with low temperature. You should improve. In order to realize this, for example, as shown in FIG. 7 (b), an incident-side temperature adjustment device composed of a metal flat plate 1A and a Peltier element 3a, and a metal flat plate 1B and a Peltier element 3b. An apparatus provided with a temperature adjusting device on the emission side is known (Patent Document 1).

これによれば、出射側のペルチェ素子3bの温度を、入射側のペルチェ素子3aの温度よりも低くすることにより、入射側に対して出射側の吸熱が大きくなるので、波長変換素子2の温度分布が抑制されて、波長変換素子2の温度が位相整合温度に近づくようになる。   According to this, by making the temperature of the emission-side Peltier element 3b lower than the temperature of the incident-side Peltier element 3a, the heat absorption on the emission side becomes larger than the incident side, so the temperature of the wavelength conversion element 2 The distribution is suppressed, and the temperature of the wavelength conversion element 2 approaches the phase matching temperature.

国際公開2008−050802号公報International Publication No. 2008-050802

しかしながら、特許文献1に記載された装置では、複数の温度調整装置を設けなれればならず、装置の構成が複雑化していた。   However, in the apparatus described in Patent Document 1, it is necessary to provide a plurality of temperature adjusting devices, and the configuration of the apparatus is complicated.

本発明の課題は、高出力の波長変換素子において第2高調波出力の飽和を抑制し第2高調波出力を安定して出力でき、簡単な構成からなる波長変換素子の温度制御装置を提供することにある。   An object of the present invention is to provide a temperature control device for a wavelength conversion element having a simple configuration that can suppress the saturation of the second harmonic output and stably output the second harmonic output in a high-power wavelength conversion element. There is.

本発明に係る温度制御装置は、上記課題を解決するために、基本波を高調波に変換するとともに、前記基本波が入射される入射面及び前記高調波が出射される出射面とを有する波長変換素子と、前記波長変換素子を保持し且つ熱伝導が良好な平板状の保持部材と、前記保持部材を加熱冷却することにより前記波長変換素子の温度を調整する温度調整素子とを備え、前記保持部材と前記波長変換素子との少なくとも一方は、前記保持部材と前記波長変換素子とが接触する接触面の熱抵抗が前記入射面から前記出射面までの少なくとも一部で変動分布するように構成されていることを特徴とする。 In order to solve the above-described problem, the temperature control device according to the present invention converts a fundamental wave into a harmonic, and has a wavelength having an incident surface on which the fundamental wave is incident and an exit surface on which the harmonic is emitted. A conversion element; a flat plate-shaped holding member that holds the wavelength conversion element and has good heat conduction; and a temperature adjustment element that adjusts the temperature of the wavelength conversion element by heating and cooling the holding member, At least one of the holding member and the wavelength conversion element is configured such that the thermal resistance of the contact surface where the holding member and the wavelength conversion element are in contact varies and is distributed at least partially from the incident surface to the emission surface. It is characterized by being.

本発明によれば、平板状の保持部材と波長変換素子との少なくとも一方は、保持部材と波長変換素子とが接触する接触面の熱抵抗が入射面から出射面までの少なくとも一部で変動分布するように構成されているので、高出力の波長変換素子において、波長変換素子内部に不均一な発熱がある場合でも、不均一な温度分布を抑制でき、第2高調波出力の飽和を抑制し第2高調波出力を安定して出力でき、簡単な構成からなる波長変換素子の温度制御装置を提供できる。 According to the present invention, at least one of the flat plate-shaped holding member and the wavelength conversion element has a fluctuation distribution in which the thermal resistance of the contact surface where the holding member and the wavelength conversion element are in contact is at least partially from the incident surface to the output surface. In the high-power wavelength conversion element, even when there is non-uniform heat generation inside the wavelength conversion element, the non-uniform temperature distribution can be suppressed and saturation of the second harmonic output is suppressed. It is possible to provide a temperature control device for a wavelength conversion element that can output the second harmonic output stably and has a simple configuration.

実施例1の波長変換素子の温度制御装置を示す図である。1 is a diagram illustrating a temperature control device for a wavelength conversion element of Example 1. FIG. 実施例2の波長変換素子の温度制御装置を示す図である。It is a figure which shows the temperature control apparatus of the wavelength conversion element of Example 2. FIG. 実施例3の波長変換素子の温度制御装置を示す図である。It is a figure which shows the temperature control apparatus of the wavelength conversion element of Example 3. FIG. 実施例4の波長変換素子の温度制御装置を示す図である。It is a figure which shows the temperature control apparatus of the wavelength conversion element of Example 4. FIG. 従来例1の波長変換素子の温度制御装置を示す図である。It is a figure which shows the temperature control apparatus of the wavelength conversion element of the prior art example 1. FIG. 従来例2の波長変換素子の温度制御装置を示す図である。It is a figure which shows the temperature control apparatus of the wavelength conversion element of the prior art example 2. FIG. 従来例3の波長変換素子の温度制御装置を示す図である。It is a figure which shows the temperature control apparatus of the wavelength conversion element of the prior art example 3.

以下、本発明の波長変換素子の温度制御装置の実施の形態を図面に基づいて詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a temperature control device for a wavelength conversion element according to the present invention will be described in detail based on the drawings.

本発明は、1つの温度調整装置で、波長変換素子の高出力時に生ずる波長変換素子の温度分布を抑制するために、金属平板と波長変換素子とが接触する面の熱抵抗を入射側と出射側とで変化分布させることを特徴とする。この方法として、本実施例では、以下の3つの方法を採用している。   In the present invention, in order to suppress the temperature distribution of the wavelength conversion element generated at the time of high output of the wavelength conversion element with one temperature adjustment device, the thermal resistance of the surface where the metal flat plate and the wavelength conversion element are in contact is emitted from the incident side It is characterized by a distribution of changes between the sides. In this embodiment, the following three methods are adopted as this method.

第1の手法は、金属平板の表面性状を変化させることにより、金属平板と波長変換素子との接触の熱抵抗を変化させる。第2の手法は、金属平板の材質を変化させる。第3の手法は、波長変換素子の金属平板と接触する面の表面性状を変化させる。   The first method changes the thermal resistance of the contact between the metal flat plate and the wavelength conversion element by changing the surface property of the metal flat plate. In the second method, the material of the metal flat plate is changed. The third method changes the surface property of the surface that contacts the metal flat plate of the wavelength conversion element.

まず、第1の手法の具体例を説明する。図1は、実施例1の波長変換素子の温度制御装置を示す図である。図1(b)に示す波長変換素子の温度制御装置において、波長変換素子2は、基本波を高調波に変換するとともに、基本波が入射される入射面及び高調波が出射される出射面とを有する。   First, a specific example of the first method will be described. 1 is a diagram illustrating a temperature control device for a wavelength conversion element according to a first embodiment. In the temperature control device for a wavelength conversion element shown in FIG. 1B, the wavelength conversion element 2 converts a fundamental wave into a harmonic wave, an incident surface on which the fundamental wave is incident, and an emission surface from which the harmonic wave is emitted. Have

金属平板(保持部材)1は、波長変換素子2を保持し且つ熱伝導が良好であり、金属平板1と波長変換素子2とが接触する接触面の熱抵抗が入射面から出射面まで変動分布するように構成されている。この例では、金属平板(保持部材)1には、波長変換素子2と接触する接触面の内の入射側Iから略中央部Mに亙って、凹凸からなる一定長さの固定長溝部4が形成されている。   The metal flat plate (holding member) 1 holds the wavelength conversion element 2 and has good heat conduction, and the thermal resistance of the contact surface where the metal flat plate 1 and the wavelength conversion element 2 are in contact varies from the incident surface to the output surface. Is configured to do. In this example, the metal flat plate (holding member) 1 has a fixed long groove portion 4 having a certain length of irregularities extending from the incident side I of the contact surface in contact with the wavelength conversion element 2 to the substantially central portion M. Is formed.

ペルチェ素子(温度調整素子)3は、金属平板1を加熱冷却することにより波長変換素子2の温度を調整する。   The Peltier element (temperature adjustment element) 3 adjusts the temperature of the wavelength conversion element 2 by heating and cooling the metal flat plate 1.

このように、図1に示す実施例1の波長変換素子の温度制御装置によれば、金属平板1には、波長変換素子2と接触する接触面の内の入射側Iから略中央部Mに亙って固定長溝部4が形成されているので、この固定長溝部4により熱抵抗が大きくなる。   Thus, according to the temperature control device of the wavelength conversion element of Example 1 shown in FIG. 1, the metal flat plate 1 has a substantially central portion M from the incident side I of the contact surface in contact with the wavelength conversion element 2. Since the fixed long groove portion 4 is formed, the thermal resistance is increased by the fixed long groove portion 4.

このため、図1(a)に示すように、入射側Iから略中央部Mまでは、波長変換素子2の温度は急激に上昇する。一方、略中央部Mから出射側までは、波長変換素子2の温度は緩やかに上昇する。このため、図1(a)に示すように、波長変換素子2の温度は位相整合温度に近づくようになるので、位相整合条件を満たすことができる。   For this reason, as shown to Fig.1 (a), the temperature of the wavelength conversion element 2 rises rapidly from the incident side I to the approximate center part M. FIG. On the other hand, the temperature of the wavelength conversion element 2 gradually rises from approximately the center M to the emission side. For this reason, as shown in FIG. 1A, the temperature of the wavelength conversion element 2 comes close to the phase matching temperature, so that the phase matching condition can be satisfied.

即ち、高出力の波長変換素子2において、波長変換素子内部に不均一な発熱がある場合でも、不均一な温度分布を抑制でき、第2高調波出力の飽和を抑制し第2高調波出力を安定して出力できる。また、図8に示す複数の温度調整装置を用いることなく、1つの金属平板1を用いているので、簡単な構成からなる波長変換素子の温度制御装置を提供できる。   That is, in the high-power wavelength conversion element 2, even when there is non-uniform heat generation inside the wavelength conversion element, the non-uniform temperature distribution can be suppressed, the saturation of the second harmonic output is suppressed, and the second harmonic output is reduced. Stable output is possible. In addition, since one metal flat plate 1 is used without using a plurality of temperature adjusting devices shown in FIG. 8, a temperature control device for a wavelength conversion element having a simple configuration can be provided.

なお、熱抵抗を入射側Iと出射側とで変える方法としては、実施例1で説明した入射側に凹凸を形成する方法以外の方法を用いても良い。例えば、出射側の面よりも入射側の面を粗くする。あるいは、入射側よりも出射側の接触圧力を大きくする。あるいは、金属平板の出射側表面に金属膜、導電膜のように熱伝達をより高める膜を形成する。金属膜や導電膜としては、一様な膜を形成しても良く、例えば、ドット状、帯状になるようにパターニングをしても良い。あるいは、熱伝達を高める膜と波長変換素子との接する面積を入射側から出射側に進むに連れて大きくする。あるいは、金属平板の入射側表面に熱伝達が低くなるように膜を形成する。   In addition, as a method of changing the thermal resistance between the incident side I and the emission side, a method other than the method of forming irregularities on the incident side described in the first embodiment may be used. For example, the incident side surface is made rougher than the emission side surface. Alternatively, the contact pressure on the exit side is made larger than that on the entrance side. Alternatively, a film that further enhances heat transfer, such as a metal film or a conductive film, is formed on the emission side surface of the metal flat plate. As the metal film or the conductive film, a uniform film may be formed, and for example, patterning may be performed in a dot shape or a band shape. Alternatively, the area where the wavelength conversion element is in contact with the film that enhances heat transfer is increased as it proceeds from the incident side to the emission side. Alternatively, a film is formed on the incident surface of the metal flat plate so that the heat transfer is low.

図2は、実施例2の波長変換素子の温度制御装置を示す図である。実施例2では、第1の手法を採用している。図2(b)に示す実施例2の波長変換素子の温度制御装置において、金属平板1aは、入射面側の熱抵抗と出射面側の熱抵抗とが連続的に変化するように構成されている。この例では、金属平板1aには、波長変換素子2と接触する接触面の入射側Iから出射面側に亙って溝の幅が徐々に狭くなっていく凹凸部が形成されている。   FIG. 2 is a diagram illustrating a temperature control device for a wavelength conversion element according to the second embodiment. In the second embodiment, the first method is adopted. In the temperature control device for a wavelength conversion element of Example 2 shown in FIG. 2B, the metal flat plate 1a is configured so that the thermal resistance on the incident surface side and the thermal resistance on the output surface side are continuously changed. Yes. In this example, the metal flat plate 1 a is provided with a concavo-convex portion in which the width of the groove gradually decreases from the incident side I to the output surface side of the contact surface in contact with the wavelength conversion element 2.

このように、図2に示す実施例2の波長変換素子の温度制御装置によれば、金属平板1aには、波長変換素子2と接触する接触面の入射側Iから出射面側に亙って溝の幅が徐々に狭くなっていく凹凸部が形成されているので、熱抵抗も入射側Iから出射面側に亙って連続的に変化していく。   Thus, according to the temperature control device for the wavelength conversion element of Example 2 shown in FIG. 2, the metal flat plate 1 a extends from the incident side I of the contact surface in contact with the wavelength conversion element 2 to the emission surface side. Since the concavo-convex portion in which the width of the groove is gradually narrowed is formed, the thermal resistance also changes continuously from the incident side I to the output surface side.

このため、図2(a)に示すように、波長変換素子の温度が均一で滑らかになる。波長変換素子の温度が位相整合温度と略同一となるので、実施例1の効果と同様な効果が得られる。 For this reason, as shown to Fig.2 (a), the temperature of a wavelength conversion element becomes uniform and smooth. Since the temperature of the wavelength conversion element is substantially equal to the phase matching temperature, Ru obtained same effect as in Example 1.

(実施例3)(Example 3)

は、実施例の波長変換素子の温度制御装置を示す図である。実施例では、第の手法を採用している。図1に示す実施例1では、金属平板1に、波長変換素子2と接触する接触面の内の入射側Iから略中央部Mに亙って、凹凸からなる一定長さの固定長溝部4を形成したが、図に示す実施例4では、波長変換素子2aに、金属平板1と接触する接触面の内の入射側Iから略中央部Mに亙って、凹凸からなる一定長さの固定長溝部4aを形成したことを特徴とする。 FIG. 3 is a diagram illustrating a temperature control device for a wavelength conversion element according to a third embodiment. In the third embodiment, the second method is adopted. In Example 1 shown in FIG. 1, a fixed long groove portion 4 having a certain length of unevenness is formed on a metal flat plate 1 from the incident side I of the contact surface in contact with the wavelength conversion element 2 to the substantially central portion M. However, in Example 4 shown in FIG. 3 , the wavelength conversion element 2a has a certain length of irregularities extending from the incident side I of the contact surface in contact with the metal flat plate 1 to the substantially central portion M. The fixed long groove portion 4a is formed.

このように波長変換素子2aに、金属平板1と接触する接触面の内の入射側Iから略中央部Mに亙って固定長溝部4aを形成しても、実施例1と同様に動作し同様な効果が得られる。   Thus, even if the fixed long groove portion 4a is formed on the wavelength conversion element 2a from the incident side I of the contact surface in contact with the metal flat plate 1 to the substantially central portion M, the same operation as in the first embodiment is performed. Similar effects can be obtained.

なお、熱抵抗を入射側Iと出射側とで変える方法としては、実施例1で説明した入射側に凹凸を形成する方法以外の方法を用いても良い。例えば、出射側の面よも入射側の面を粗くする。あるいは、入射側よりも出射側の接触圧力を大きくする。あるいは、波長変換素子の出射側表面に金属膜、導電膜のように熱伝達をより高める膜を形成する。金属膜や導電膜としては、一様な膜を形成しても良く、例えば、ドット状、帯状になるようにパターニングをしても良い。あるいは、熱伝達を高める膜と波長変換素子との接する面積を入射側から出射側に進むに連れて大きくする。あるいは、波長変換素子の入射側表面に熱伝達が低くなるように膜を形成する。
(実施例4)
In addition, as a method of changing the thermal resistance between the incident side I and the emission side, a method other than the method of forming irregularities on the incident side described in the first embodiment may be used. For example, the incident side surface is made rougher than the exit side surface. Alternatively, the contact pressure on the exit side is made larger than that on the entrance side. Alternatively, a film that further enhances heat transfer, such as a metal film or a conductive film, is formed on the emission side surface of the wavelength conversion element. As the metal film or the conductive film, a uniform film may be formed, and for example, patterning may be performed in a dot shape or a band shape. Alternatively, the area where the wavelength conversion element is in contact with the film that enhances heat transfer is increased as it proceeds from the incident side to the emission side. Alternatively, a film is formed on the incident side surface of the wavelength conversion element so as to reduce heat transfer.
Example 4

は、実施例の波長変換素子の温度制御装置を示す図である。実施例では、第3の手法を採用している。図2に示す実施例2では、金属平板1aに、波長変換素子2と接触する接触面の入射側Iから出射面側に亙って溝の幅が徐々に狭くなっていく凹凸部を形成したが、図に示す実施例では、波長変換素子2bに、金属平板1と接触する接触面の入射側Iから出射面側に亙って溝の幅が徐々に狭くなっていく凹凸部を形成したことを特徴とする。 FIG. 4 is a diagram illustrating a temperature control device for a wavelength conversion element according to a fourth embodiment. In the fourth embodiment, the third method is adopted. In Example 2 shown in FIG. 2, the metal flat plate 1a is formed with an uneven portion in which the width of the groove gradually decreases from the incident side I to the output surface side of the contact surface in contact with the wavelength conversion element 2. However, in Example 4 shown in FIG. 4 , the wavelength conversion element 2 b is provided with a concavo-convex portion in which the width of the groove gradually decreases from the incident side I to the output surface side of the contact surface in contact with the metal flat plate 1. It is formed.

このように波長変換素子2bに、金属平板1と接触する接触面の入射側Iから出射面側に亙って溝の幅が徐々に狭くなっていく凹凸部を形成しても、実施例2と同様に動作し同様な効果が得られる。   In this way, even if the wavelength conversion element 2b is formed with an uneven portion in which the width of the groove gradually decreases from the incident side I to the output surface side of the contact surface in contact with the metal flat plate 1, Example 2 It operates in the same way as the above, and the same effect can be obtained.

なお、本発明は、上述した実施例1乃至実施例の波長変換素子の温度制御装置に限定されるものではない。即ち、金属平板1と波長変換素子2との少なくとも一方が、金属平板1と波長変換素子2とが接触する接触面の熱抵抗が入射面から出射面までの少なくとも一部で変動分布するように構成されていれば、上述した実施例の効果と同様な効果が得られる。 In addition, this invention is not limited to the temperature control apparatus of the wavelength conversion element of Example 1 thru | or Example 4 mentioned above. That is, at least one of the metal flat plate 1 and the wavelength conversion element 2 is distributed so that the thermal resistance of the contact surface where the metal flat plate 1 and the wavelength conversion element 2 are in contact varies at least partially from the incident surface to the output surface. If configured, the same effects as those of the above-described embodiment can be obtained.

また、実施例1乃至実施例の波長変換素子の温度制御装置のいずれか2つ以上の波長変換素子の温度制御装置を組み合わせて用いても良い。このようすれば、さらにその効果が大となる。 Also, any two or more wavelength conversion element temperature control devices of the wavelength conversion element temperature control devices of the first to fourth embodiments may be used in combination. This further increases the effect.

本発明に係る波長変換素子の温度制御装置は、ガス濃度分析装置、固定レーザ装置に利用可能である。   The temperature control device for a wavelength conversion element according to the present invention can be used for a gas concentration analyzer and a fixed laser device.

1,1a,10 金属平板
2,2a,2b 波長変換素子
3 ペルチェ素子
4,4a 固定長溝部
5,5a 可変長溝部
1,1a, 10 Metal flat plate
2, 2a, 2b Wavelength conversion element 3 Peltier element 4, 4a Fixed long groove 5, 5a Variable length groove

Claims (5)

基本波を高調波に変換するとともに、前記基本波が入射される入射面及び前記高調波が出射される出射面とを有する波長変換素子と、
前記波長変換素子を保持し且つ熱伝導が良好な平板状の保持部材と、
前記保持部材を加熱冷却することにより前記波長変換素子の温度を調整する温度調整素子とを備え、
前記波長変換素子は、前記保持部材と前記波長変換素子とが接触する接触面の熱抵抗が前記入射面から前記出射面までの少なくとも一部で変動分布するように構成されていることを特徴とする波長変換素子の温度制御装置。
A wavelength conversion element that converts a fundamental wave into a harmonic and has an incident surface on which the fundamental wave is incident and an exit surface from which the harmonic is emitted;
A flat plate-shaped holding member that holds the wavelength conversion element and has good heat conduction;
A temperature adjusting element that adjusts the temperature of the wavelength conversion element by heating and cooling the holding member;
The wavelength conversion element is configured such that a thermal resistance of a contact surface where the holding member and the wavelength conversion element are in contact with each other varies at least partially from the incident surface to the emission surface. Temperature control device for wavelength conversion element.
前記波長変換素子は、前記出射面の熱抵抗に対して前記入射面の熱抵抗が大きくなるように構成されていることを特徴とする請求項1記載の波長変換素子の温度制御装置。 The temperature control device for a wavelength conversion element according to claim 1 , wherein the wavelength conversion element is configured such that a thermal resistance of the incident surface is larger than a thermal resistance of the emission surface. 前記保持部材と前記波長変換素子との少なくとも一方には、前記接触面の内の前記入射面側に凹凸が形成されていることを特徴とする請求項2記載の波長変換素子の温度制御装置。   The temperature control device for a wavelength conversion element according to claim 2, wherein at least one of the holding member and the wavelength conversion element is formed with irregularities on the incident surface side of the contact surface. 前記波長変換素子は、、前記入射面側の熱抵抗と前記出射面側の熱抵抗とが連続的に変化するように構成されていることを特徴とする請求項1記載の波長変換素子の温度制御装置。 2. The temperature of the wavelength conversion element according to claim 1 , wherein the wavelength conversion element is configured such that a thermal resistance on the incident surface side and a thermal resistance on the emission surface side are continuously changed. Control device. 前記波長変換素子は、前記波長変換素子と接触する接触面の入射側から出射面側に亙って溝の幅が徐々に狭くなっていく凹凸部が形成されていることを特徴とする請求項4記載の波長変換素子の温度制御装置。 The wavelength conversion element is characterized in that an uneven part is formed in which the width of the groove gradually decreases from the incident side to the output surface side of the contact surface in contact with the wavelength conversion element. 4. The temperature control device for a wavelength conversion element according to 4.
JP2013094154A 2013-04-26 2013-04-26 Temperature control device for wavelength conversion element Expired - Fee Related JP6248410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013094154A JP6248410B2 (en) 2013-04-26 2013-04-26 Temperature control device for wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013094154A JP6248410B2 (en) 2013-04-26 2013-04-26 Temperature control device for wavelength conversion element

Publications (2)

Publication Number Publication Date
JP2014215528A JP2014215528A (en) 2014-11-17
JP6248410B2 true JP6248410B2 (en) 2017-12-20

Family

ID=51941312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013094154A Expired - Fee Related JP6248410B2 (en) 2013-04-26 2013-04-26 Temperature control device for wavelength conversion element

Country Status (1)

Country Link
JP (1) JP6248410B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565690B2 (en) * 2000-02-28 2010-10-20 日本碍子株式会社 Second harmonic generator
JP2003270467A (en) * 2002-01-09 2003-09-25 Matsushita Electric Ind Co Ltd Method of manufacturing optical waveguide device, optical waveguide device, and coherent light source and optical apparatus using the optical waveguide device
JP2004053781A (en) * 2002-07-18 2004-02-19 Noritsu Koki Co Ltd Second harmonic generation device and method for controlling temperature in second harmonic generation device
JP4467280B2 (en) * 2003-10-22 2010-05-26 富士通株式会社 Optical device module
US7999998B2 (en) * 2006-10-27 2011-08-16 Panasonic Corporation Short wavelength light source and laser image forming apparatus
JP2009048165A (en) * 2007-07-25 2009-03-05 Panasonic Corp Temperature control apparatus for optical crystal
JP2011113073A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Wavelength conversion element
JP5811702B2 (en) * 2011-08-31 2015-11-11 株式会社島津製作所 Temperature control device

Also Published As

Publication number Publication date
JP2014215528A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
Dai et al. Whispering gallery-mode lasing in ZnO microrods at room temperature
US7999998B2 (en) Short wavelength light source and laser image forming apparatus
US9134054B2 (en) Thermo-electric cooling system and method for cooling electronic devices
WO2016140946A1 (en) Plasmon-enhanced terahertz graphene-based photodetector and method of fabrication
JP2010521815A5 (en)
JPWO2009116134A1 (en) Laser light source module
KR100826436B1 (en) Wavelength converted laser apparatus
JP2001305592A (en) Laser wavelength changing device
JPWO2009031278A1 (en) Wavelength conversion device, image display device, and processing device
JP6248410B2 (en) Temperature control device for wavelength conversion element
WO2014045658A1 (en) Wavelength conversion element, light source device, and method for manufacturing wavelength conversion element
JP2016533026A (en) System and method for controlling a plurality of wavelength tuning lasers arranged
CA2717476C (en) Optical module
WO2016092810A1 (en) Wavelength-variable laser device
US10007170B2 (en) Monolithic frequency converter
TWI572912B (en) Light modulator
JP6618145B2 (en) Thermal radiation light source
JP2009048165A (en) Temperature control apparatus for optical crystal
JP2009181083A (en) Module of periodic polarization inverse element
JP4862960B2 (en) Wavelength conversion laser device and image display device
Chen et al. Highly efficient Nd3+: LaB3O6 cleavage microchip laser
WO2016117457A1 (en) Planar waveguide laser device
JP6385246B2 (en) Planar waveguide laser device
Yuliang et al. Compact 532 nm microchip laser array utilizing optical contact Nd: YVO4/PPMgOLN
JP4678004B2 (en) Second harmonic light generation apparatus and second harmonic light generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R151 Written notification of patent or utility model registration

Ref document number: 6248410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees