JP2009025555A - Manufacturing method of optical waveguide - Google Patents

Manufacturing method of optical waveguide Download PDF

Info

Publication number
JP2009025555A
JP2009025555A JP2007188690A JP2007188690A JP2009025555A JP 2009025555 A JP2009025555 A JP 2009025555A JP 2007188690 A JP2007188690 A JP 2007188690A JP 2007188690 A JP2007188690 A JP 2007188690A JP 2009025555 A JP2009025555 A JP 2009025555A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
oxide compound
manufacturing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007188690A
Other languages
Japanese (ja)
Other versions
JP4603020B2 (en
Inventor
Takeshi Umeki
毅伺 梅木
Masao Yube
雅生 遊部
Yoshiki Nishida
好毅 西田
Osamu Tadanaga
修 忠永
Katsuaki Magari
克明 曲
Tsutomu Yanagawa
勉 柳川
Hiroyuki Suzuki
博之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007188690A priority Critical patent/JP4603020B2/en
Publication of JP2009025555A publication Critical patent/JP2009025555A/en
Application granted granted Critical
Publication of JP4603020B2 publication Critical patent/JP4603020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an optical waveguide wherein propagation loss is reduced by recovering oxygen deficiency in vacuum plasma. <P>SOLUTION: This manufacturing method of the optical waveguide for forming the optical waveguide in an oxide compound substrate includes first process of forming the optical waveguide in the oxide compound substrate by dry etching process, and a second process of re-coupling the oxygen damaged by the dry etching process by applying heat treatment to the oxide compound substrate having the optical waveguide in an oxygen atmosphere. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光導波路の製造方法に関し、より詳細には、非線形光学効果及び電気光学効果を利用した波長変換素子に広く使われている酸化物化合物基板の加工および光導波路の作製方法に関する。   The present invention relates to a method for manufacturing an optical waveguide, and more particularly, to a method for processing an oxide compound substrate and a method for manufacturing an optical waveguide, which are widely used for wavelength conversion elements using nonlinear optical effects and electro-optical effects.

近年、光通信システムの通信容量の増大を図るために、波長の異なる複数の光を多重化して伝送する波長分割多重(WDM)通信システムが積極的に導入されている。このようなWDM通信システムにおいては、限られた波長数を有効に利用するために、信号波長を任意の信号波長に変換する波長変換デバイスの実用化が求められている。   In recent years, in order to increase the communication capacity of an optical communication system, a wavelength division multiplexing (WDM) communication system that multiplexes and transmits a plurality of lights having different wavelengths has been actively introduced. In such a WDM communication system, in order to effectively use a limited number of wavelengths, there is a demand for practical use of a wavelength conversion device that converts a signal wavelength into an arbitrary signal wavelength.

従来、光の波長を変換する波長変換素子としては、半導体光増幅器を用いるもの、四光波混合を利用するもの等が知られている。しかしながら、これらの波長変換素子においては光通信システムにおいて求められる、高効率、高速、広帯域、低ノイズ、偏波無依存などの条件を満足させることはできていなかった。   Conventionally, as a wavelength conversion element for converting the wavelength of light, a device using a semiconductor optical amplifier, a device using four-wave mixing, and the like are known. However, these wavelength conversion elements have not been able to satisfy conditions such as high efficiency, high speed, wide band, low noise, and polarization independence required in an optical communication system.

一方、二次非線形光学効果の一種である擬似位相整合による第二高調波発生、和周波発生、差周波発生を利用した波長変換素子の応用が期待されている。図1に、従来の擬似位相整合型の波長変換素子の構成を示す。波長変換素子は、比較的小さな光強度を有する信号光Aと、比較的大きな光強度を有する制御光Bとを合波する合波器11と、分極反転構造を有する非線形光学結晶からなる光導波路12と、差周波光Cと制御光Bとを分離するに分波器13とから構成されている。信号光Aは、光導波路12において、別の波長を有する差周波光Cへと変換され、制御光Bと共に出射される。例えば、制御光Bの波長λ1=0.77μmとした場合、波長λ2=1.55μmの信号光Aは、波長λ3=1.53μmの差周波光Cに変換される。   On the other hand, application of wavelength conversion elements utilizing second harmonic generation, sum frequency generation, and difference frequency generation by quasi phase matching, which is a kind of second-order nonlinear optical effect, is expected. FIG. 1 shows a configuration of a conventional quasi phase matching type wavelength conversion element. The wavelength conversion element includes an optical waveguide composed of a multiplexer 11 that multiplexes signal light A having relatively small light intensity and control light B having relatively large light intensity, and a nonlinear optical crystal having a polarization inversion structure. 12 and a demultiplexer 13 for separating the difference frequency light C and the control light B. The signal light A is converted into the difference frequency light C having another wavelength in the optical waveguide 12 and emitted together with the control light B. For example, when the wavelength λ1 = 0.77 μm of the control light B, the signal light A having the wavelength λ2 = 1.55 μm is converted into the difference frequency light C having the wavelength λ3 = 1.53 μm.

このような、擬似位相整合を利用した波長変換素子を作製する方法は、ニオブ酸リチウム(LiNbO3、以下LNという)などの非線形光学結晶基板に周期分極反転構造を作製した後、プロトン交換導波路を作製することによって波長変換素子を作製していた。しかしながら、プロトン交換導波路は、表面からのプロトンの拡散によって光導波路を形成するために、基板の表面近くに高屈折率層が存在し、基板の深さ方向の導波モードの形状が扁平になることが避けられない。このため、励起光の波長よりも長波長である信号光の光電界の中心位置が、励起光の光電界の中心位置よりも下に位置することになる。その結果、信号光と励起光のモード重なりが悪くなり、高効率な波長変換を達成することに難点があった。 A method of manufacturing such a wavelength conversion element using quasi-phase matching is described in that a periodic polarization reversal structure is formed on a nonlinear optical crystal substrate such as lithium niobate (LiNbO 3 , hereinafter referred to as LN), The wavelength conversion element was produced by producing. However, since the proton exchange waveguide forms an optical waveguide by proton diffusion from the surface, a high refractive index layer exists near the surface of the substrate, and the shape of the waveguide mode in the depth direction of the substrate is flat. It cannot be avoided. For this reason, the center position of the optical field of the signal light having a longer wavelength than the wavelength of the excitation light is positioned below the center position of the optical field of the excitation light. As a result, the mode overlap between the signal light and the excitation light deteriorates, and there is a difficulty in achieving highly efficient wavelength conversion.

これに対し、導波路中への光閉じ込めを改善し、バルク構造の非線形光学材料を利用した高効率な波長変換を実現するために、リッジ型の光導波路構造を有する波長変換素子が提案されている。リッジ型光導波路を作製する方法は、Mg添加LN基板に、非線形定数が周期的に変調された周期分極反転構造を作製した後、別に用意したLN基板に、接着剤を用いて接着する。平面研削加工によって、Mg添加LN基板の基板厚さを薄くした後、ダイシングソーを用いた精密研削加工によって、リッジ型光導波路を作製する(例えば、非特許文献1参照)。   On the other hand, in order to improve optical confinement in the waveguide and realize highly efficient wavelength conversion using a nonlinear optical material with a bulk structure, a wavelength conversion element having a ridge type optical waveguide structure has been proposed. Yes. In the method of manufacturing a ridge-type optical waveguide, a periodically poled structure in which a nonlinear constant is periodically modulated is manufactured on an Mg-added LN substrate, and then bonded to an LN substrate prepared separately using an adhesive. After the substrate thickness of the Mg-added LN substrate is reduced by surface grinding, a ridge-type optical waveguide is manufactured by precision grinding using a dicing saw (for example, see Non-Patent Document 1).

M.Iwai, et al., “High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser”, Applied Physics Letters, Vol.83, No.18, p.3659-3661, 3 Nov. 2003M.Iwai, et al., “High-power blue generation from a periodically poled MgO: LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd: Y3Al5O12 laser”, Applied Physics Letters, Vol.83, No. 18, p.3659-3661, 3 Nov. 2003 皆方誠、「LiNbO3光導波路デバイス」、信学論C−I、Vol.J77-C-I, No.5, p.194-205, 1994.5Makoto Minakata, "LiNbO3 Optical Waveguide Device", IEICE Theory, Vol.J77-CI, No.5, p.194-205, 1994.5

しかしながら、従来のダイシングソーを用いた加工方法では、導波路のコアの大きさが、加工精度によって制限される。例えば、上述のMg添加LN基板の精密研削加工では、コアの幅は10μmであり、さらに、小さなコア径を有する光導波路を形成することが難しい。また、導波路の長手方向に直線以外の光導波路を形成することが困難であるといった問題があった。これらの問題を解決するために、ドライエッチングプロセスを用いた光導波路の形成手法が有望視されている。   However, in the conventional processing method using a dicing saw, the size of the waveguide core is limited by the processing accuracy. For example, in the above-described precision grinding of the Mg-added LN substrate, the core width is 10 μm, and it is difficult to form an optical waveguide having a small core diameter. There is also a problem that it is difficult to form an optical waveguide other than a straight line in the longitudinal direction of the waveguide. In order to solve these problems, a method for forming an optical waveguide using a dry etching process is considered promising.

しかしながら、LN等の酸化物化合物は、ドライエッチングプロセスによる加工に非常に時間がかかることが知られている。そして、酸化物化合物基板を真空プラズマ中に長時間さらすと、化合物欠損生ずるという問題もあった。例えば、LN基板を真空プラズマ中に長時間さらすと、Liと酸素が欠損することが知られている(例えば、非特許文献2参照)。基板から酸素が欠損すると、基板が黒ずんでしまうため、光導波路の伝播損失が増加してしまうという問題があった。   However, it is known that an oxide compound such as LN takes a very long time for processing by a dry etching process. Further, when the oxide compound substrate is exposed to vacuum plasma for a long time, there is a problem in that a compound defect occurs. For example, it is known that when an LN substrate is exposed to vacuum plasma for a long time, Li and oxygen are lost (see, for example, Non-Patent Document 2). When oxygen is deficient from the substrate, the substrate is darkened, and there is a problem that propagation loss of the optical waveguide increases.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、真空プラズマ中での酸素欠損を回復させ、伝播損失の少ない光導波路の製造方法を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a method of manufacturing an optical waveguide that recovers oxygen vacancies in vacuum plasma and has low propagation loss.

本発明は、このような目的を達成するために、請求項1に記載の発明は、酸化物化合物基板に光導波路を形成する光導波路の製造方法において、ドライエッチングプロセスにより、前記酸化物化合物基板に光導波路を形成する第1の工程と、前記光導波路が形成された前記酸化物化合物基板を、酸素雰囲気中で熱処理を行うことにより、前記ドライエッチングプロセスで欠損した酸素を再結合させる第2の工程とを備えたことを特徴とする。   In order to achieve the above object, the present invention provides a method for manufacturing an optical waveguide in which an optical waveguide is formed on an oxide compound substrate, wherein the oxide compound substrate is formed by a dry etching process. And a second step of recombining oxygen deficient in the dry etching process by heat-treating the oxide compound substrate on which the optical waveguide is formed in an oxygen atmosphere. The process is provided.

前記酸化物化合物基板は、前記光導波路コアが形成される第1の基板と第2の基板とが貼り合わされており、前記第1の基板の屈折率は、前記第2の基板の屈折率よりも高い。前記第1の基板と第2の基板とが、熱処理による拡散接合によって直接貼り合わされた酸化物化合物基板を用いることもできる。液相エピタキシャル法により第2の基板上に結晶成長されて、前記光導波路コアが形成される第1の基板からなる酸化物化合物基板とすることもできる。   The oxide compound substrate is formed by bonding a first substrate on which the optical waveguide core is formed and a second substrate, and the refractive index of the first substrate is higher than the refractive index of the second substrate. Is also expensive. An oxide compound substrate in which the first substrate and the second substrate are directly bonded to each other by diffusion bonding by heat treatment may be used. An oxide compound substrate made of the first substrate on which the optical waveguide core is formed by crystal growth on the second substrate by a liquid phase epitaxial method can also be used.

前記第2の工程における熱処理は、200度以上前記酸化物化合物基板のキュリー温度以下の温度で行う。より望ましくは、350度以上800度以下の温度で行う。また、熱処理は、3時間以上行うのが望ましい。   The heat treatment in the second step is performed at a temperature not lower than 200 degrees and not higher than the Curie temperature of the oxide compound substrate. More preferably, it is performed at a temperature of 350 ° C. or higher and 800 ° C. or lower. The heat treatment is preferably performed for 3 hours or more.

前記第1の基板は、二次非線形効果を有し、非線形定数が周期的に変調された周期分極反転構造を有することもできる。また、前記酸化物化合物基板は、LiTaO3、KTaO3、KNb(x)Ta(1-x)3(0<x<1)、K(y)Li(1-y)Nb(x)Ta(1-x)3(0<x<1,0<y<1)、KNbO3、KTiOPO4、または、それらにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有した酸化物化合物とすることもできる。 The first substrate may have a periodic polarization reversal structure having a second-order nonlinear effect and having a nonlinear constant periodically modulated. The oxide compound substrate includes LiTaO 3 , KTaO 3 , KNb (x) Ta (1-x) O 3 (0 <x <1), K (y) Li (1-y) Nb (x) Ta (1-x) O 3 (0 <x <1, 0 <y <1), KNbO 3 , KTiOPO 4 , or at least one selected from the group consisting of Mg, Zn, Sc, In It can also be set as an oxide compound.

以上説明したように、本発明によれば、ドライエッチングプロセスの後に、酸素雰囲気中で熱処理を行うことにより、ドライエッチングプロセスで欠損した酸素を再結合させるので、伝播損失の少ない光導波路を作製することが可能となる。   As described above, according to the present invention, oxygen deficient in the dry etching process is recombined by performing heat treatment in an oxygen atmosphere after the dry etching process, so that an optical waveguide with less propagation loss is manufactured. It becomes possible.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。従来、酸化物化合物基板を真空プラズマ中に長時間さらすと、化合物欠損生ずることが知られており、雰囲気によって酸素が結晶から出入りすることも知られていた(非特許文献2参照)。しかしながら、欠損した酸素をどの様にして回復させるか、すなわち欠損の生じた酸化物化合物基板に酸素を再結合させる方法は知られていなかった。本願発明は、酸素雰囲気中の熱処理により、欠損した酸素を回復することができ、光導波路の伝播損失の増加を抑えることができることを見出したことによる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Conventionally, it has been known that when an oxide compound substrate is exposed to vacuum plasma for a long time, a compound deficiency occurs, and oxygen enters and exits the crystal depending on the atmosphere (see Non-Patent Document 2). However, a method for recovering deficient oxygen, that is, a method of recombining oxygen to a deficient oxide compound substrate has not been known. The present invention is based on the finding that deficient oxygen can be recovered by heat treatment in an oxygen atmosphere, and an increase in propagation loss of the optical waveguide can be suppressed.

図2に、本発明の実施例1にかかる波長変換素子用の薄膜基板を作製する方法を示す。第1の基板21は、ZカットZn添加LiNbO3基板であり、予め1.5μm帯で位相整合条件が満たされるように周期的な分極反転構造が作製されている。第2の基板22は、ZカットMg添加LiNbO3基板である。第1の基板21と第2の基板22は、何れもLiNbO3に添加物を添加したものであり、熱膨張係数がほぼ一致している。また、添加物の種類を変えることにより、第1の基板21の屈折率は、第2の基板22の屈折率よりも高い。第1の基板21と第2の基板22とは、いずれも両面が光学研磨されている3インチウエハ(図2は、便宜上方形の基板を示す)であり、基板の厚さは300μmである。 FIG. 2 shows a method of manufacturing a thin film substrate for a wavelength conversion element according to Example 1 of the present invention. The first substrate 21 is a Z-cut Zn-added LiNbO 3 substrate, and a periodically domain-inverted structure is prepared in advance so that the phase matching condition is satisfied in the 1.5 μm band. The second substrate 22 is a Z-cut Mg-added LiNbO 3 substrate. Each of the first substrate 21 and the second substrate 22 is obtained by adding an additive to LiNbO 3 , and the thermal expansion coefficients are almost the same. Further, the refractive index of the first substrate 21 is higher than the refractive index of the second substrate 22 by changing the kind of the additive. Each of the first substrate 21 and the second substrate 22 is a 3-inch wafer (FIG. 2 shows a rectangular substrate for convenience) having both surfaces optically polished, and the thickness of the substrate is 300 μm.

第1の基板21と第2の基板22の表面を、通常の酸洗浄あるいはアルカリ洗浄によって親水性にした後、マイクロパーティクルが極力存在しない清浄雰囲気中で、基板21,22を重ね合わせる。重ね合わせた基板21,22を電気炉に入れ、400度で3時間熱処理することにより拡散接合を行う(第一の工程)。接着された基板21,22は、接合面にマイクロパーティクル等の挟み込みがなくボイドフリーであり、室温に戻したときにクラックなどは発生しなかった。   After the surfaces of the first substrate 21 and the second substrate 22 are made hydrophilic by normal acid cleaning or alkali cleaning, the substrates 21 and 22 are superposed in a clean atmosphere in which microparticles are not present as much as possible. The superposed substrates 21 and 22 are placed in an electric furnace and subjected to diffusion bonding by heat treatment at 400 degrees for 3 hours (first step). The bonded substrates 21 and 22 are void-free with no interposition of microparticles or the like on the bonding surfaces, and no cracks or the like occurred when the temperature was returned to room temperature.

次に、研磨定盤の平坦度が管理された研磨装置を用いて、接着された基板21,22の第1の基板21の厚さが20μmになるまで研磨加工を施す。研磨加工の後に、ポリッシング加工を行うことにより鏡面の研磨表面を得る(第二の工程)。基板の最大高さと最小高さとの差である平行度を、光学的な平行度測定機を用いて測定したところ、3インチウエハの周囲を除き、ほぼ全体にわたってサブミクロンの平行度が得られた。波長変換素子用の薄膜基板23は、接着剤を用いず、第1の基板21と第2の基板22とを熱処理による拡散接合によって直接貼り合わせたので、3インチウエハの全面積にわたって均一な組成、膜厚を有する基板となる。   Next, using a polishing apparatus in which the flatness of the polishing surface plate is controlled, polishing is performed until the thickness of the first substrate 21 of the bonded substrates 21 and 22 becomes 20 μm. After polishing, polishing is performed to obtain a mirror-polished surface (second step). When the parallelism, which is the difference between the maximum height and the minimum height of the substrate, was measured using an optical parallelism measuring machine, submicron parallelism was obtained almost entirely except for the periphery of a 3-inch wafer. . The thin film substrate 23 for the wavelength conversion element has a uniform composition over the entire area of the 3-inch wafer because the first substrate 21 and the second substrate 22 are directly bonded together by diffusion bonding by heat treatment without using an adhesive. The substrate has a film thickness.

図3に、本発明の実施例1にかかる波長変換素子を作製する方法を示す。第三の工程では、ドライエッチングプロセスを用いて、薄膜基板23に光導波路を作製する。最初に、薄膜基板23の表面、すなわち第1の基板21の表面に、通常のフォトリソグラフィのプロセスによって導波路パターンに応じたマスク24a,24bを作製する。次に、ドライエッチング装置に薄膜基板23をセットし、CF4ガスをエッチングガスとして薄膜基板23の表面をエッチングする。このようにして、ダイシングソーによる精密研削加工では作製が困難な高さ8μm、幅8μmのコアを有するリッジ型光導波路25a〜25cを、精度よく作製することができる。図示されているように、ドライエッチングのプロセスにおいては、マスクと薄膜のエッチング選択比が大きくないために、光導波路25がメサ形状となる。 FIG. 3 shows a method of manufacturing the wavelength conversion element according to Example 1 of the present invention. In the third step, an optical waveguide is formed on the thin film substrate 23 using a dry etching process. First, masks 24a and 24b corresponding to the waveguide pattern are formed on the surface of the thin film substrate 23, that is, the surface of the first substrate 21 by an ordinary photolithography process. Next, the thin film substrate 23 is set in a dry etching apparatus, and the surface of the thin film substrate 23 is etched using CF 4 gas as an etching gas. In this manner, the ridge-type optical waveguides 25a to 25c having a core having a height of 8 μm and a width of 8 μm, which are difficult to manufacture by precision grinding using a dicing saw, can be manufactured with high accuracy. As shown in the drawing, in the dry etching process, the optical waveguide 25 has a mesa shape because the etching selectivity between the mask and the thin film is not large.

図4に、基板から波長変換素子を切り出す工程を示す。ここでは、3インチウエハである薄膜基板23上に、平行に複数のリッジ型光導波路を作製した。各々の光導波路ごとに薄膜基板23を短冊状に切り出し、光導波路25の両端面26a,26bを光学研磨することにより、長さ60mmの波長変換素子を作製する。これら波長変換素子の光導波路の一方の端面に、0.98μmの測定光を入射する。他方の端面から得られた出射光を測定すると、伝播損失は−15dBと非常に大きい損失となる。LNのドライプラズマに対するエッチングレートが非常に遅く、20時間プラズマに基板をさらしたことにより、酸素が基板内から抜け出し、伝播損失が増加した。   FIG. 4 shows a step of cutting out the wavelength conversion element from the substrate. Here, a plurality of ridge-type optical waveguides were produced in parallel on a thin-film substrate 23 which is a 3-inch wafer. The thin film substrate 23 is cut into a strip shape for each optical waveguide, and both end surfaces 26a and 26b of the optical waveguide 25 are optically polished to produce a wavelength conversion element having a length of 60 mm. Measurement light of 0.98 μm is incident on one end face of the optical waveguide of these wavelength conversion elements. When the outgoing light obtained from the other end face is measured, the propagation loss is a very large loss of -15 dB. The etching rate of LN with respect to dry plasma was very slow, and exposure of the substrate to the plasma for 20 hours caused oxygen to escape from the substrate, increasing propagation loss.

そこで、第四の工程において、第三の工程で光導波路25が形成された基板を電気炉に入れ、酸素雰囲気中(酸素濃度50%)、400度で1時間熱処理を施す。これにより、プラズマエッチングにより欠損した酸素を回復することができる。酸素アニール処理の後に、図4に示した方法で波長変換素子を作製し、伝播損失を測定する。一方の端面に0.98μmの測定光を入射すると、伝播損失は−8dBと測定された。その後、再び光導波路25が形成された基板を電気炉に入れ、さらに2時間の熱処理を施した。伝播損失を測定したところ、−2dBまで改善された。   Therefore, in the fourth step, the substrate on which the optical waveguide 25 has been formed in the third step is placed in an electric furnace, and heat treatment is performed at 400 ° C. for 1 hour in an oxygen atmosphere (oxygen concentration 50%). Thereby, oxygen deficient by plasma etching can be recovered. After the oxygen annealing treatment, a wavelength conversion element is manufactured by the method shown in FIG. 4, and the propagation loss is measured. When measurement light of 0.98 μm was incident on one end face, the propagation loss was measured as −8 dB. Thereafter, the substrate on which the optical waveguide 25 was formed was again placed in an electric furnace and further subjected to heat treatment for 2 hours. When the propagation loss was measured, it was improved to -2 dB.

この伝播損失の値は、単位長さ当たりの光導波路の伝播損失に直すと、0.3dB/cmという非常に低損失となる。合わせて3時間の酸素アニール処理を施した波長変換素子に、波長0.77μmの制御光と波長1.55μmの信号光を入射したところ、波長1.53μmの波長変換光が得られ高効率で波長変換を実現できた。   When this propagation loss value is converted to the propagation loss of the optical waveguide per unit length, it becomes a very low loss of 0.3 dB / cm. When a control light having a wavelength of 0.77 μm and a signal light having a wavelength of 1.55 μm are incident on the wavelength conversion element that has been subjected to the oxygen annealing treatment for 3 hours in total, a wavelength conversion light having a wavelength of 1.53 μm is obtained with high efficiency Wavelength conversion was realized.

従来のプロトン交換導波路を用いた波長変換素子と、接着剤を用いて導波路となる基板を接着した波長変換素子とは、再度、高温(200度以上)での熱処理を施すことができない。前者はプロトンの再拡散、後者は接着剤の溶融を起こすからである。実施例1のように直接接合によって基板を接着した波長変換素子は、再度、高温での熱処理を施すことができるので、欠損の生じた酸化物化合物基板に酸素を再結合させ、伝播損失の少ない光導波路の作製に適している。   A conventional wavelength conversion element using a proton exchange waveguide and a wavelength conversion element obtained by bonding a substrate serving as a waveguide using an adhesive cannot be subjected to heat treatment at a high temperature (200 degrees or more) again. This is because the former causes re-diffusion of protons and the latter causes melting of the adhesive. Since the wavelength conversion element in which the substrates are bonded by direct bonding as in Example 1 can be subjected to heat treatment at a high temperature again, oxygen is recombined to the oxide compound substrate in which defects are generated, and propagation loss is small. Suitable for production of optical waveguide.

第四の工程における熱処理は、実施可能な処理時間を考慮すると、200度以上が望ましく、350〜800度が適している。また、基板材料の結晶の変化を防ぐために、酸化物化合物基板のキュリー温度以下で行うことが望ましい。熱処理の時間は、温度にもよるが、400度では、1時間以上が望ましく、3時間以上行うのがよい。600度では、30分以上が望ましく、800度では、15分以上が望ましく、温度が高いほど処理時間は短くてもよい。また、酸素濃度は40%以上が適している。   The heat treatment in the fourth step is preferably 200 ° C. or more, and 350 to 800 ° C. is appropriate in consideration of the feasible processing time. Moreover, in order to prevent the crystal | crystallization of a board | substrate material from changing, it is desirable to carry out below the Curie temperature of an oxide compound board | substrate. The heat treatment time depends on the temperature, but is preferably 1 hour or longer at 400 ° C., and is preferably 3 hours or longer. At 600 degrees, 30 minutes or longer is desirable, and at 800 degrees, 15 minutes or longer is desirable. The higher the temperature, the shorter the processing time. Further, an oxygen concentration of 40% or more is suitable.

図5に、本発明の実施例2にかかる波長変換素子用の薄膜基板を作製する方法を示す。第2の基板42は、ZカットMg添加LiNbO3基板である。第2の基板42の上に、液相エピタキシャル法により10μmのZn添加LiNbO3結晶を成長させる。成長させた結晶が第1の基板41となる。第1の基板41の表面を研磨加工の後に、ポリッシング加工を行うことにより鏡面の研磨表面を得る。 FIG. 5 shows a method for producing a thin film substrate for a wavelength conversion element according to Example 2 of the present invention. The second substrate 42 is a Z-cut Mg-added LiNbO 3 substrate. A 10 μm Zn-doped LiNbO 3 crystal is grown on the second substrate 42 by a liquid phase epitaxial method. The grown crystal becomes the first substrate 41. After polishing the surface of the first substrate 41, a polishing surface is obtained by polishing.

次に、ドライエッチングプロセスを用いて、実施例1と同様の光導波路を作製する。すなわち、第一の工程として、薄膜基板43の表面、すなわち第1の基板41の表面に、通常のフォトリソグラフィのプロセスによって導波路パターンに応じたマスク44a,44bを作製する。次に、ドライエッチング装置に薄膜基板43をセットし、CF4ガスをエッチングガスとして薄膜基板43の表面をエッチングする。このようにして、高さ8μm、幅8μmのコアを有するリッジ型光導波路45a〜45cを作製することができる。 Next, an optical waveguide similar to that of Example 1 is manufactured using a dry etching process. That is, as a first step, masks 44a and 44b corresponding to the waveguide pattern are formed on the surface of the thin film substrate 43, that is, the surface of the first substrate 41 by an ordinary photolithography process. Next, the thin film substrate 43 is set in a dry etching apparatus, and the surface of the thin film substrate 43 is etched using CF 4 gas as an etching gas. In this manner, ridge-type optical waveguides 45a to 45c having a core having a height of 8 μm and a width of 8 μm can be manufactured.

図4に示した工程と同様に、各々の光導波路ごとに薄膜基板43を短冊状に切り出し、光導波路45の両端面を光学研磨することにより、長さ10mmの波長変換素子を作製する。これら波長変換素子の光導波路の一方の端面に、0.98μmの測定光を入射する。他方の端面から得られた出射光を測定すると、伝播損失は−3dBと非常に大きい損失となる。   Similar to the process shown in FIG. 4, the thin film substrate 43 is cut into a strip shape for each optical waveguide, and both the end faces of the optical waveguide 45 are optically polished, thereby producing a wavelength conversion element having a length of 10 mm. Measurement light of 0.98 μm is incident on one end face of the optical waveguide of these wavelength conversion elements. When the outgoing light obtained from the other end face is measured, the propagation loss is a very large loss of -3 dB.

そこで、第二の工程において、第一の工程で光導波路45が形成された基板を電気炉に入れ、酸素雰囲気中(酸素濃度50%)、400度で3時間熱処理を施す。これにより、プラズマエッチングにより欠損した酸素を回復することができる。酸素アニール処理の後に、図4に示した方法で波長変換素子を作製し、伝播損失を測定する。一方の端面に0.98μmの測定光を入射すると、伝播損失は−0.5dBと非常に小さな値が測定される。   Therefore, in the second step, the substrate on which the optical waveguide 45 is formed in the first step is put in an electric furnace, and heat treatment is performed at 400 degrees for 3 hours in an oxygen atmosphere (oxygen concentration 50%). Thereby, oxygen deficient by plasma etching can be recovered. After the oxygen annealing treatment, a wavelength conversion element is manufactured by the method shown in FIG. 4, and the propagation loss is measured. When measurement light of 0.98 μm is incident on one end face, the propagation loss is measured as a very small value of −0.5 dB.

実施例2のように結晶成長によって基板を作製した波長変換素子は、再度、高温での熱処理を施すことができるので、実施例1と同様に、欠損の生じた基板に酸素を再結合させ、伝播損失の少ない光導波路の作製に適している。   Since the wavelength conversion element in which the substrate is produced by crystal growth as in Example 2 can be subjected to heat treatment at a high temperature again, as in Example 1, oxygen is recombined with the deficient substrate, Suitable for fabrication of optical waveguides with low propagation loss.

本実施形態では、基板材料の酸化物化合物として、LNについて記述したが、このほか、LiTaO3、KTaO3、KNb(x)Ta(1-x)3(0<x<1)、K(y)Li(1-y)Nb(x)Ta(1-x)3(0<x<1,0<y<1)、KNbO3、KTiOPO4、または、それらにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有した酸化物化合物などを用いることもできる。 In the present embodiment, LN is described as the oxide compound of the substrate material, but LiTaO 3 , KTaO 3 , KNb (x) Ta (1-x) O 3 (0 <x <1), K ( y) Li (1-y) Nb (x) Ta (1-x) O 3 (0 <x <1, 0 <y <1), KNbO 3 , KTiOPO 4 , or Mg, Zn, Sc, An oxide compound containing at least one selected from the group consisting of In as an additive can also be used.

従来の擬似位相整合型の波長変換素子の構成を示す図である。It is a figure which shows the structure of the conventional quasi phase matching type | mold wavelength conversion element. 本発明の実施例1にかかる波長変換素子用の薄膜基板を作製する方法を示す図である。It is a figure which shows the method to produce the thin film substrate for wavelength conversion elements concerning Example 1 of this invention. 本発明の実施例1にかかる波長変換素子を作製する方法を示す図である。It is a figure which shows the method of producing the wavelength conversion element concerning Example 1 of this invention. 基板から波長変換素子を切り出す工程を示す図である。It is a figure which shows the process of cutting out a wavelength conversion element from a board | substrate. 本発明の実施例2にかかる波長変換素子用の薄膜基板を作製する方法を示す図である。It is a figure which shows the method to produce the thin film substrate for wavelength conversion elements concerning Example 2 of this invention.

符号の説明Explanation of symbols

11 合波器
12 光導波路
13 分波器
21,41 第1の基板
22,23 第2の基板
23,43 薄膜基板
24,44 マスク
25,45 光導波路
26 端面
DESCRIPTION OF SYMBOLS 11 Multiplexer 12 Optical waveguide 13 Divider 21,41 1st board | substrate 22,23 2nd board | substrate 23,43 Thin film substrate 24,44 Mask 25,45 Optical waveguide 26 End surface

Claims (9)

酸化物化合物基板に光導波路を形成する光導波路の製造方法において、
ドライエッチングプロセスにより、前記酸化物化合物基板に光導波路を形成する第1の工程と、
前記光導波路が形成された前記酸化物化合物基板を、酸素雰囲気中で熱処理を行うことにより、前記ドライエッチングプロセスで欠損した酸素を再結合させる第2の工程と
を備えたことを特徴とする光導波路の製造方法。
In the method of manufacturing an optical waveguide for forming an optical waveguide on an oxide compound substrate,
A first step of forming an optical waveguide on the oxide compound substrate by a dry etching process;
And a second step of recombining oxygen deficient in the dry etching process by heat-treating the oxide compound substrate on which the optical waveguide is formed in an oxygen atmosphere. A method for manufacturing a waveguide.
前記酸化物化合物基板は、前記光導波路コアが形成される第1の基板と第2の基板とが貼り合わされており、前記第1の基板の屈折率は、前記第2の基板の屈折率よりも高いことを特徴とする請求項1に記載の光導波路の製造方法。   The oxide compound substrate is formed by bonding a first substrate on which the optical waveguide core is formed and a second substrate, and the refractive index of the first substrate is higher than the refractive index of the second substrate. The method of manufacturing an optical waveguide according to claim 1, wherein 前記酸化物化合物基板は、前記光導波路コアが形成される第1の基板と第2の基板とが、熱処理による拡散接合によって直接貼り合わされていることを特徴とする請求項2に記載の光導波路の製造方法。   3. The optical waveguide according to claim 2, wherein the oxide compound substrate is formed by directly bonding a first substrate on which the optical waveguide core is formed and a second substrate by diffusion bonding by heat treatment. Manufacturing method. 前記酸化物化合物基板は、液相エピタキシャル法により第2の基板上に結晶成長されて、前記光導波路コアが形成される第1の基板からなり、前記第1の基板の屈折率は、前記第2の基板の屈折率よりも高いことを特徴とする請求項1に記載の光導波路の製造方法。   The oxide compound substrate includes a first substrate on which a crystal is grown on a second substrate by a liquid phase epitaxial method to form the optical waveguide core, and the refractive index of the first substrate is The method for manufacturing an optical waveguide according to claim 1, wherein the refractive index of the substrate is higher than that of the second substrate. 前記第2の工程における熱処理は、200度以上前記酸化物化合物基板のキュリー温度以下の温度で行うことを特徴とする請求項1ないし4のいずれかに記載の光導波路の製造方法。   5. The method of manufacturing an optical waveguide according to claim 1, wherein the heat treatment in the second step is performed at a temperature of 200 ° C. or more and a Curie temperature or less of the oxide compound substrate. 前記第2の工程における熱処理は、350度以上800度以下の温度で行うことを特徴とする請求項5に記載の光導波路の製造方法。   The method for manufacturing an optical waveguide according to claim 5, wherein the heat treatment in the second step is performed at a temperature of 350 degrees to 800 degrees. 前記第2の工程における熱処理は、3時間以上行うことを特徴とする請求項1ないし6のいずれかに記載の光導波路の製造方法。   The method for manufacturing an optical waveguide according to claim 1, wherein the heat treatment in the second step is performed for 3 hours or more. 前記第1の基板は、二次非線形効果を有し、非線形定数が周期的に変調された周期分極反転構造を有することを特徴とする請求項1ないし7に記載の光導波路の製造方法。   8. The method of manufacturing an optical waveguide according to claim 1, wherein the first substrate has a second-order nonlinear effect and has a periodically poled structure in which a nonlinear constant is periodically modulated. 前記酸化物化合物基板は、LiTaO3、KTaO3、KNb(x)Ta(1-x)3(0<x<1)、K(y)Li(1-y)Nb(x)Ta(1-x)3(0<x<1,0<y<1)、KNbO3、KTiOPO4、または、それらにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有した酸化物化合物からなることを特徴とする請求項1ないし8に記載の光導波路の製造方法。 The oxide compound substrate includes LiTaO 3 , KTaO 3 , KNb (x) Ta (1-x) O 3 (0 <x <1), K (y) Li (1-y) Nb (x) Ta (1 -x) O 3 (0 <x <1, 0 <y <1), KNbO 3 , KTiOPO 4 , or at least one selected from the group consisting of Mg, Zn, Sc, and In as an additive 9. The method for manufacturing an optical waveguide according to claim 1, wherein the optical waveguide is made of an oxide compound.
JP2007188690A 2007-07-19 2007-07-19 Manufacturing method of optical waveguide Active JP4603020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188690A JP4603020B2 (en) 2007-07-19 2007-07-19 Manufacturing method of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188690A JP4603020B2 (en) 2007-07-19 2007-07-19 Manufacturing method of optical waveguide

Publications (2)

Publication Number Publication Date
JP2009025555A true JP2009025555A (en) 2009-02-05
JP4603020B2 JP4603020B2 (en) 2010-12-22

Family

ID=40397408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188690A Active JP4603020B2 (en) 2007-07-19 2007-07-19 Manufacturing method of optical waveguide

Country Status (1)

Country Link
JP (1) JP4603020B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118465A (en) * 2010-12-03 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion device and wavelength conversion system
JP2015014716A (en) * 2013-07-05 2015-01-22 Tdk株式会社 Optical waveguide and electro-optic device
WO2020254799A1 (en) * 2019-06-19 2020-12-24 University Of Southampton Method for fabrication of ridge waveguides

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7228792B2 (en) 2019-06-07 2023-02-27 パナソニックIpマネジメント株式会社 Wavelength converter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497232A (en) * 1990-08-10 1992-03-30 Matsushita Electric Ind Co Ltd Production of wavelength conversion element and incidence tapered optical waveguide
JPH04127129A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Colinear optical deflector and its manufacture, optical deflection device, optical integrated head, and optical information recording and reproducing device
JPH04335328A (en) * 1991-05-10 1992-11-24 Hitachi Ltd Second harmonic generating element and production thereof and light source device formed by using second harmonic generating element
JPH0597590A (en) * 1991-10-08 1993-04-20 Sumitomo Cement Co Ltd Production of oxide high-temperature superconducting thin film and optical element using the same
JPH11111688A (en) * 1997-10-01 1999-04-23 Sumitomo Osaka Cement Co Ltd Method for cleaning surface of plasma etched composite oxide substrate
JP2000066050A (en) * 1998-08-19 2000-03-03 Ngk Insulators Ltd Production of optical waveguide parts and optical waveguide parts
JP2005148465A (en) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd Optical waveguide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497232A (en) * 1990-08-10 1992-03-30 Matsushita Electric Ind Co Ltd Production of wavelength conversion element and incidence tapered optical waveguide
JPH04127129A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Colinear optical deflector and its manufacture, optical deflection device, optical integrated head, and optical information recording and reproducing device
JPH04335328A (en) * 1991-05-10 1992-11-24 Hitachi Ltd Second harmonic generating element and production thereof and light source device formed by using second harmonic generating element
JPH0597590A (en) * 1991-10-08 1993-04-20 Sumitomo Cement Co Ltd Production of oxide high-temperature superconducting thin film and optical element using the same
JPH11111688A (en) * 1997-10-01 1999-04-23 Sumitomo Osaka Cement Co Ltd Method for cleaning surface of plasma etched composite oxide substrate
JP2000066050A (en) * 1998-08-19 2000-03-03 Ngk Insulators Ltd Production of optical waveguide parts and optical waveguide parts
JP2005148465A (en) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd Optical waveguide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118465A (en) * 2010-12-03 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion device and wavelength conversion system
JP2015014716A (en) * 2013-07-05 2015-01-22 Tdk株式会社 Optical waveguide and electro-optic device
WO2020254799A1 (en) * 2019-06-19 2020-12-24 University Of Southampton Method for fabrication of ridge waveguides
US12007667B2 (en) 2019-06-19 2024-06-11 University Of Southampton Method for fabrication of ridge waveguides

Also Published As

Publication number Publication date
JP4603020B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP3753236B2 (en) Method for manufacturing thin film substrate for wavelength conversion element and method for manufacturing wavelength conversion element
Umeki et al. Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide
JP2020076834A (en) Wavelength conversion device
JP2014222331A (en) Wavelength conversion element
JP4603020B2 (en) Manufacturing method of optical waveguide
JP7062937B2 (en) Optical element and its manufacturing method
JP4646333B2 (en) Harmonic generator
JP6228507B2 (en) Wavelength conversion element
JP2011064895A (en) Wavelength conversion device and wavelength conversion apparatus
JP2014211539A (en) Wavelength conversion element
JP5814183B2 (en) Wavelength conversion device
JP3999748B2 (en) Method for manufacturing wavelength conversion element
JP7295467B2 (en) Optical element and its manufacturing method
JP3999589B2 (en) Method for manufacturing thin film substrate for wavelength conversion element, thin film substrate for wavelength conversion element, and method for manufacturing wavelength conversion element
JP2009217133A (en) Harmonic wave generator
JP2007316541A (en) Method of manufacturing optical element and optical element
JP2004020749A (en) Manufacturing method for thin film substrate for wavelength transducer, and manufacturing method of wavelength transformation element
JP3999732B2 (en) Method for manufacturing wavelength conversion element
JP2004085868A (en) Optical waveguide device and its manufacturing method
JP2014211538A (en) Wavelength conversion element
JP6401107B2 (en) Optical amplifier
JP2005128255A (en) Wavelength conversion element and its manufacturing method
JP3736681B2 (en) Method for manufacturing wavelength conversion element
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
KR100721318B1 (en) Fabricating method for quasi-phase- matched waveguides

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100519

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4603020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350