JP2015014716A - Optical waveguide and electro-optic device - Google Patents

Optical waveguide and electro-optic device Download PDF

Info

Publication number
JP2015014716A
JP2015014716A JP2013141439A JP2013141439A JP2015014716A JP 2015014716 A JP2015014716 A JP 2015014716A JP 2013141439 A JP2013141439 A JP 2013141439A JP 2013141439 A JP2013141439 A JP 2013141439A JP 2015014716 A JP2015014716 A JP 2015014716A
Authority
JP
Japan
Prior art keywords
film
optical waveguide
ridge
optical
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013141439A
Other languages
Japanese (ja)
Other versions
JP6136666B2 (en
Inventor
権治 佐々木
Kenji Sasaki
権治 佐々木
岩塚 信治
Shinji Iwatsuka
信治 岩塚
千原 宏
Hiroshi Chihara
宏 千原
大石 昌弘
Masahiro Oishi
昌弘 大石
真理 谷口
Mari Taniguchi
真理 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2013141439A priority Critical patent/JP6136666B2/en
Publication of JP2015014716A publication Critical patent/JP2015014716A/en
Application granted granted Critical
Publication of JP6136666B2 publication Critical patent/JP6136666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide with a low loss, which has a ridge-shaped part using a lithium niobate film.SOLUTION: The optical waveguide has a ridge-shaped part using a lithium niobate film; and the optical waveguide includes a work-affected region where an element ratio of Li/Nb is 0.4 or more and 0.9 or less and an oxidation number of Nb of 4.8 or more and 5.0 or less.

Description

本発明は、ニオブ酸リチウム膜を用いた光導波路、電気光学デバイスに関する。   The present invention relates to an optical waveguide and an electro-optical device using a lithium niobate film.

ニオブ酸リチウム(LN)は大きな電気光学定数を有し、光変調器、光ジャイロ、光スイッチや電界センサなどのデバイスに応用されてきている。   Lithium niobate (LN) has a large electro-optic constant and has been applied to devices such as optical modulators, optical gyros, optical switches, and electric field sensors.

現在、LNはバルク単結晶を用いてデバイスを作製するものが主流であるが、特許文献1のようにサファイア基板上などにLN膜を形成し、デバイスを作製する技術も開示されている。   At present, LN is mainly used to fabricate devices using a bulk single crystal, but as disclosed in Patent Document 1, a technique for fabricating a device by forming an LN film on a sapphire substrate or the like is also disclosed.

このように膜でデバイスを作製すれば、バルク単結晶を加工した場合と比べて小型化、低電力化が可能となる。   When a device is manufactured using a film in this way, it is possible to reduce the size and power consumption compared to the case of processing a bulk single crystal.

しかし、本発明者がLN膜を用いてリッジ形状構造を持つ光導波路の試作を行ったところ、光伝播損失が非常に大きく、デバイスとして使用できない問題が発生した。   However, when the present inventor made a trial manufacture of an optical waveguide having a ridge shape structure using an LN film, the light propagation loss was very large, and there was a problem that it could not be used as a device.

特許文献2にはバルクLNの加工時に表面に生じたLi欠乏を補修する技術が開示されている。   Patent Document 2 discloses a technique for repairing Li deficiency generated on the surface during processing of bulk LN.

しかし、この技術は900℃以上の高温で熱処理を行う必要があるが、LN膜の場合、高温に加熱すると基板との熱膨張差などで応力が発生し、LN膜にクラックが入ってしまう。また、上記文献ではLiの欠乏を補修することにより、DCドリフトや光損失の増加を抑制した光学素子を提供できるとしている。   However, this technique requires heat treatment at a high temperature of 900 ° C. or higher. However, in the case of an LN film, if it is heated to a high temperature, stress is generated due to a difference in thermal expansion from the substrate and cracks are generated in the LN film. Further, in the above document, an optical element that suppresses an increase in DC drift and optical loss can be provided by repairing the deficiency of Li.

特開2006−195383号公報JP 2006-195383 A 特開2006−284964号公報JP 2006-284964 A

本発明の課題は、ニオブ酸リチウム膜を用いたリッジ形状部を有する低損失の光導波路を提供することである。   An object of the present invention is to provide a low-loss optical waveguide having a ridge-shaped portion using a lithium niobate film.

本発明は、ニオブ酸リチウム膜を用いたリッジ形状部を有する光導波路において、Li/Nb元素比率が0.4以上、0.9以下であり、Nb酸化数が4.8以上5.0以下である加工変質領域を有していることを特徴とする光導波路である。   In the optical waveguide having a ridge-shaped portion using a lithium niobate film, the present invention has a Li / Nb element ratio of 0.4 to 0.9 and an Nb oxidation number of 4.8 to 5.0. It is an optical waveguide characterized by having a work-affected region.

本発明は、ニオブ酸リチウム膜の膜厚が2μm以下のエピタキシャル膜としてもよい。   The present invention may be an epitaxial film having a lithium niobate film thickness of 2 μm or less.

本発明は、光導波路を用いた電気光学デバイスとしても良く、ニオブ酸リチウム膜上にバッファ層を有する電気光学デバイスとしても良い。   The present invention may be an electro-optical device using an optical waveguide or an electro-optical device having a buffer layer on a lithium niobate film.

本発明により、ニオブ酸リチウム膜を用いたリッジ形状部を有する低損失の光導波路を提供することが可能となる。   According to the present invention, it is possible to provide a low-loss optical waveguide having a ridge-shaped portion using a lithium niobate film.

実施形態に係る単結晶基板上の膜の側断面図である。It is a sectional side view of the film | membrane on the single crystal substrate which concerns on embodiment. 実施形態に係る光導波路を示す側断面図である。It is a sectional side view which shows the optical waveguide which concerns on embodiment. 実施形態に係る電気光学デバイスを示す側断面図である。1 is a side sectional view showing an electro-optical device according to an embodiment. プリズムカプラの散乱検出法による伝播損失測定の模式図である。It is a schematic diagram of the propagation loss measurement by the scattering detection method of a prism coupler. 実施形態に係る熱処理温度と光伝播損失、Li/Nb元素比率、Nb酸化数の関係図、およびNb酸化数と光伝播損失の関係図である。It is the heat processing temperature which concerns on embodiment, a light propagation loss, a Li / Nb element ratio, the relationship figure of Nb oxidation number, and the relationship figure of Nb oxidation number and light propagation loss.

図2は本発明の実施形態に係る光導波路を示す側断面図を示す。この光導波路は単結晶基板1と、バッファ層2と、ニオブ酸リチウム膜3(以降、LN膜3と称する)と、LN膜3の形状を加工したリッジ形状部4と、加工の際にできた変質領域5とを有している。以下、工程順に本発明の好適な実施形態について説明する。   FIG. 2 is a side sectional view showing an optical waveguide according to an embodiment of the present invention. This optical waveguide is formed by processing the single crystal substrate 1, the buffer layer 2, the lithium niobate film 3 (hereinafter referred to as the LN film 3), the ridge shape portion 4 obtained by processing the shape of the LN film 3, and the processing. And an altered region 5. Hereinafter, preferred embodiments of the present invention will be described in the order of processes.

まず、図1のように単結晶基板1上にLN膜3が成膜されたものを用意する。   First, as shown in FIG. 1, a single crystal substrate 1 having an LN film 3 formed thereon is prepared.

単結晶基板1としては、高品質なLN膜3を形成させることができる基板が好ましく、サファイア単結晶基板もしくはシリコン単結晶基板が好ましい。単結晶基板1の結晶方位は特に限定されない。シリコン単結晶基板を用いる場合は屈折率がLN膜3よりも大きいため、LN光導波路を作るにはLN膜3よりも低屈折率のバッファ層2を単結晶基板1とLN膜3の間に挟むなどの工夫が必要となる。低屈折率のバッファ層2は伝播損失を悪化しないような透明な素材であり、厚さはデバイス特性が良くなるように最適化する必要がある。サファイア基板を用いる場合は、サファイアがLN膜3よりも低屈折率のため、バッファ層2は不要となる。   As the single crystal substrate 1, a substrate on which a high quality LN film 3 can be formed is preferable, and a sapphire single crystal substrate or a silicon single crystal substrate is preferable. The crystal orientation of single crystal substrate 1 is not particularly limited. When a silicon single crystal substrate is used, since the refractive index is larger than that of the LN film 3, a buffer layer 2 having a lower refractive index than that of the LN film 3 is formed between the single crystal substrate 1 and the LN film 3 in order to form an LN optical waveguide. It is necessary to devise such as pinching. The low refractive index buffer layer 2 is a transparent material that does not deteriorate the propagation loss, and the thickness needs to be optimized so that the device characteristics are improved. When a sapphire substrate is used, the buffer layer 2 is not necessary because sapphire has a lower refractive index than the LN film 3.

LN膜3はエピタキシャル膜が好ましい。単結晶に近いエピタキシャル膜を用いることにより、所望の電気光学特性が得られる。LN膜3の配向はデバイスの形態によって適宜適したものを用いる。なお、LN膜3をc軸配向のエピタキシャル膜として形成する場合、c軸配向のLN膜3は3回対称の対称性を有しているので、下地の単結晶基板1も同じ対称性を有していることが望ましく、サファイア単結晶基板の場合はc面、シリコン単結晶基板の場合は(111)面の基板が好ましい。   The LN film 3 is preferably an epitaxial film. By using an epitaxial film close to a single crystal, desired electro-optical characteristics can be obtained. For the orientation of the LN film 3, a suitable one is used depending on the form of the device. When the LN film 3 is formed as a c-axis oriented epitaxial film, the c-axis oriented LN film 3 has a three-fold symmetry, so that the underlying single crystal substrate 1 has the same symmetry. In the case of a sapphire single crystal substrate, a c-plane is preferable, and in the case of a silicon single crystal substrate, a (111) plane substrate is preferable.

LN膜3の組成はLixNbOzで表すと、xが0.9〜1.05であり、zは通常2.8〜3.2である。LiおよびNbは10%以下を別元素に置き換えても良い。置き換え例としては、K、Na、Rb、Cs、Be、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Cr、Mo、W、Fe、Co、Ni、Zn、Sc、Ceなどがあり、2種類以上の組み合わせでも良い。   When the composition of the LN film 3 is expressed by LixNbOz, x is 0.9 to 1.05, and z is usually 2.8 to 3.2. Li and Nb may replace 10% or less with another element. Examples of replacement include K, Na, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, Cr, Mo, W, Fe, Co, Ni, Zn, Sc, Ce, and the like. There may be a combination of two or more.

LN膜3の膜厚は0.5〜2.5μmが好適である。より好ましくは1.0〜2.0μmである。薄すぎる場合は、LN膜3に光が閉じ込めきれず、膜外に光が漏れて導波することになり、実効屈折率の変化が少なくなったり、伝播損失が増える恐れがある。厚い場合は電界を印加するためにより高い電圧が必要となったり、膜成長中もしくは成長後に内部応力でクラックが入るなどの問題が生じる。   The film thickness of the LN film 3 is preferably 0.5 to 2.5 μm. More preferably, it is 1.0-2.0 micrometers. If it is too thin, light cannot be confined in the LN film 3, and light leaks out of the film and is guided, which may reduce the change in effective refractive index and increase propagation loss. If it is thick, a higher voltage is required to apply an electric field, and problems such as cracking due to internal stress occur during or after film growth.

LN膜3の形成方法としては、スパッタ法、CVD法、ゾルゲル法など手段は問わないが、高品質なエピタキシャル膜であることが好ましい。単結晶基板1にサファイアを用いる場合は、サファイア単結晶基板上に直接、LN膜3をエピタキシャル成長することができる。   The LN film 3 may be formed by any method such as a sputtering method, a CVD method, and a sol-gel method, but a high quality epitaxial film is preferable. When sapphire is used for the single crystal substrate 1, the LN film 3 can be epitaxially grown directly on the sapphire single crystal substrate.

LN膜3はデバイスを作る上で分極されていることが望ましく、成膜後に分極処理が必要となる場合がある。   It is desirable that the LN film 3 is polarized for manufacturing a device, and there is a case where polarization processing is required after the film formation.

リッジ形状部4は光導波路の中心となる部分である。LN膜3上にレジストなどのマスクをパターニングし、エッチングでリッジ形状部4を形成する。ここで、リッジ形状部4は凸形状部の上に突き出した場所を指す。この上に突き出した場所は、左右の場所と比較して、LN膜3の膜厚が厚くなっているので、実効屈折率が高くなっている。そのため、左右方向についても光を閉じ込めることができ、3次元光導波路として機能する。リッジ形状部4の形状は光を導波可能とする形状であればよく、リッジ形状部4におけるLN膜3の膜厚が、左右のLN膜3の膜厚より厚ければよい。上に凸のドーム形状、三角形状などであっても良い。リッジ形状部4の幅、高さ、形状等はデバイス特性が上がるように最適化する必要がある。   The ridge-shaped portion 4 is a portion that becomes the center of the optical waveguide. A mask such as a resist is patterned on the LN film 3, and the ridge-shaped portion 4 is formed by etching. Here, the ridge shape part 4 points out the location protruded on the convex shape part. Since the LN film 3 is thicker at the locations protruding above the left and right locations, the effective refractive index is higher. Therefore, light can be confined also in the left-right direction, and it functions as a three-dimensional optical waveguide. The shape of the ridge-shaped portion 4 may be any shape that can guide light, and the film thickness of the LN film 3 in the ridge-shaped portion 4 may be larger than the film thickness of the left and right LN films 3. An upward convex dome shape, a triangular shape, or the like may be used. The width, height, shape, and the like of the ridge shape portion 4 need to be optimized so as to improve the device characteristics.

加工変質領域5はリッジ形状部4をドライエッチングで形成したときに、エッチングのダメージを受けた領域である。LN膜3はウェットエッチングングしづらく、ドライエッチングが微細加工に適している。ドライエッチングは反応性イオンエッチングやミリングなどが挙げられる。加工後の加工変質領域5は、X線電子分光で分析を行ったときのNb酸化数が4.5以下、Li/Nbの元素比率が0.4以上0.9以下となっており、加工変質領域5部分の光伝播損失が非常に大きい。光はリッジ形状部4内部だけでなく、リッジ形状部4の外側にも滲み出して伝搬するため、リッジ形状部4の側面およびリッジ形状部4近傍の加工変質領域5が原因となり、光導波路の伝搬損失が大きくなり、デバイスとして用いることが困難となる。   The work-affected region 5 is a region damaged by etching when the ridge-shaped portion 4 is formed by dry etching. The LN film 3 is difficult to perform wet etching, and dry etching is suitable for fine processing. Examples of dry etching include reactive ion etching and milling. The processed alteration region 5 after processing has an Nb oxidation number of 4.5 or less and an Li / Nb element ratio of 0.4 to 0.9 when analyzed by X-ray electron spectroscopy. The light propagation loss in the altered region 5 is very large. Since light oozes out not only inside the ridge-shaped portion 4 but also outside the ridge-shaped portion 4 and propagates, the side surface of the ridge-shaped portion 4 and the work-affected region 5 in the vicinity of the ridge-shaped portion 4 cause the optical waveguide. Propagation loss increases, making it difficult to use as a device.

この光導波路に熱処理などをすることにより、Nb酸化数が4.8以上5.0以下になったとき、低損失の光導波路を提供することが出来る。具体的には大気中で140〜300℃で熱処理を行う。発明者による実験では、650℃以上で熱処理をした場合は、LN膜3の内部応力が大きくなり、クラックが発生してしまう。また、300℃を超える温度ではLN膜3表面にLiNbOやLiNbなどの変質相が析出したりするため300℃以下が好ましい。140℃未満では加工変質領域5が変化しないか、変化が少な過ぎるため不適である。140〜300℃で熱処理を施すと加工変質領域5のNb酸化数が4.8以上5.0以下となり、光伝播損失は大きく改善する。一方、Li/Nb元素比率はほとんど変化せず、0.4以上0.9以下のままである。 By heat-treating this optical waveguide, a low-loss optical waveguide can be provided when the Nb oxidation number becomes 4.8 or more and 5.0 or less. Specifically, heat treatment is performed at 140 to 300 ° C. in the atmosphere. In the experiment by the inventor, when heat treatment is performed at 650 ° C. or higher, the internal stress of the LN film 3 increases and cracks are generated. Further, when the temperature exceeds 300 ° C., an altered phase such as Li 3 NbO 4 or LiNb 3 O 8 is deposited on the surface of the LN film 3, so that the temperature is preferably 300 ° C. or lower. If it is less than 140 ° C., the work-affected region 5 does not change, or the change is too small. When heat treatment is performed at 140 to 300 ° C., the Nb oxidation number in the work-affected region 5 becomes 4.8 or more and 5.0 or less, and the light propagation loss is greatly improved. On the other hand, the Li / Nb element ratio hardly changes and remains at 0.4 or more and 0.9 or less.

本実施形態の光導波路では、LN膜3表面はLi欠乏のままである。従来技術において、Li欠乏による絶縁性の低下は光変調器におけるDCドリフト問題の原因の一つとされ、LN結晶はできうる限り欠陥のない最高品質のものが求められてきた。DCドリフトは光出力の動作点の経時変化のことである。動作点は通常、光出力が最大光出力と最小光出力の平均値となるようにDCバイアスにより調整されるが、LN膜3の抵抗が十分大きくないことからバイアス効果が徐々に変動してしまうのである。しかし、例えば以下のような光変調器を作った場合ではDCドリフトの問題が発生しなくなり、Li欠乏は問題とならない。図3のように、光導波路を形成したLN膜3上にバッファ層6、さらに光導波路に電界をかけるための第1電極および第2電極を形成する。この際、LN膜3の体積抵抗率がバッファ層6の体積抵抗率と比較して十分に低い場合、例えば1/100以下のような場合、DC電圧はほとんどバッファ層6に印加されるため、DCの影響は低減される。つまり、DCドリフトは発生しない。この場合、動作点補正については、DC電圧を印加する以外の公知の方法で行えばよい。   In the optical waveguide of this embodiment, the surface of the LN film 3 remains Li-deficient. In the prior art, a decrease in insulation due to Li deficiency is one of the causes of a DC drift problem in an optical modulator, and an LN crystal having the highest quality with as few defects as possible has been demanded. DC drift is a change with time of the operating point of the light output. The operating point is normally adjusted by a DC bias so that the light output becomes an average value of the maximum light output and the minimum light output. However, since the resistance of the LN film 3 is not sufficiently high, the bias effect gradually varies. It is. However, for example, when the following optical modulator is manufactured, the problem of DC drift does not occur and Li deficiency does not become a problem. As shown in FIG. 3, the buffer layer 6 and the first and second electrodes for applying an electric field to the optical waveguide are formed on the LN film 3 on which the optical waveguide is formed. At this time, when the volume resistivity of the LN film 3 is sufficiently low compared with the volume resistivity of the buffer layer 6, for example, in the case of 1/100 or less, the DC voltage is almost applied to the buffer layer 6, The effect of DC is reduced. That is, no DC drift occurs. In this case, the operating point correction may be performed by a known method other than applying a DC voltage.

本実施形態の低損失光導波路は、光変調器、光ファイバジャイロ素子、光スイッチや電界センサなどの電気光学デバイスに応用が可能である。   The low-loss optical waveguide of this embodiment can be applied to electro-optic devices such as an optical modulator, an optical fiber gyro element, an optical switch, and an electric field sensor.

(実施例1)
まず、c面サファイア基板にLN膜3の成膜を行った。基板加熱装置を備えたRFスパッタリング装置にLNターゲットを装着し、O2とArを混合させたスパッタガスを導入し、1μmのc軸配向のLNエピタキシャル膜を形成した。
Example 1
First, the LN film 3 was formed on the c-plane sapphire substrate. An LN target was mounted on an RF sputtering apparatus equipped with a substrate heating apparatus, and a sputtering gas in which O 2 and Ar were mixed was introduced to form a 1 μm c-axis oriented LN epitaxial film.

このLN膜3上にフォトリソグラフィの手法でリッジ形状部4部分をレジストでパターニングし、ミリング装置でLN膜3のドライエッチングを行った。ミリング装置はVeeco製のRF−350で、ビーム電圧300〜700V、ビーム電流300〜800mAの条件を用いた。そして、レジスト部分を有機溶剤で剥離し、高さ0.4μm、幅2μm、長さ20mmのリッジ型光導波路を形成した。   On the LN film 3, the ridge-shaped portion 4 was patterned with a resist by photolithography, and the LN film 3 was dry-etched with a milling apparatus. The milling apparatus was RF-350 manufactured by Veeco, and the conditions of a beam voltage of 300 to 700 V and a beam current of 300 to 800 mA were used. Then, the resist portion was peeled off with an organic solvent to form a ridge type optical waveguide having a height of 0.4 μm, a width of 2 μm, and a length of 20 mm.

リッジ形状部4形成時の加工変質領域5を改善するため、200℃で1時間熱処理を行った。   In order to improve the work-affected region 5 when the ridge-shaped portion 4 was formed, heat treatment was performed at 200 ° C. for 1 hour.

形成した光導波路の両端を切断し、研磨を行い、光ファイバーをUV接着剤で調芯固定した。波長1550nmの半導体レーザを用いて、光の伝播損失を測定した。結果は2dB/cmであった。   Both ends of the formed optical waveguide were cut and polished, and the optical fiber was aligned and fixed with a UV adhesive. Using a semiconductor laser with a wavelength of 1550 nm, light propagation loss was measured. The result was 2 dB / cm.

(実施例2)
ドライエッチングや熱処理の効果を見るために、1.0μmのc軸配向のLN膜3にリッジ形状部4を形成せずに、図4に模式するプリズムカプラの散乱検出法で光の伝播損失を測定した。測定には波長1550nmの半導体レーザ、ルチル(TiO)単結晶のプリズムを用い、TMモードの散乱光量変化をプローブの距離を変えて測定し、そのグラフの傾きから伝播損失を求めた。また、X線電子分光によりLN膜3表面のLi/Nb元素比率とNb酸化数を求めた。測定に用いたX線電子分光装置はULVAC−PHI製のQuantera2であり、X線源は単色化されたAl−Kα線を用い、X線出力は15kV25mW、ビーム径100μm、パスエネルギー55eVにて測定を行った。酸化数は得られた各結合ピークの面積比より見積もった。
(Example 2)
In order to see the effect of dry etching and heat treatment, the light propagation loss is reduced by the prism coupler scattering detection method schematically shown in FIG. 4 without forming the ridge-shaped portion 4 in the 1.0 μm c-axis oriented LN film 3. It was measured. The measurement was performed using a semiconductor laser with a wavelength of 1550 nm and a rutile (TiO 2 ) single crystal prism, and the change in the amount of scattered light in the TM mode was measured by changing the probe distance, and the propagation loss was determined from the slope of the graph. Further, the Li / Nb element ratio and the Nb oxidation number on the surface of the LN film 3 were determined by X-ray electron spectroscopy. The X-ray electron spectrometer used for the measurement is Quantera 2 manufactured by ULVAC-PHI, the X-ray source is a monochromatic Al-Kα ray, the X-ray output is 15 kV 25 mW, the beam diameter is 100 μm, and the path energy is 55 eV. Went. The oxidation number was estimated from the area ratio of each bond peak obtained.

まず、ドライエッチングの効果を表1に示す。ドライエッチング後はLi/Nb元素比率が減少、Nb酸化数が小さくなった加工変質領域5が最表面に生じ、光伝播損失が大きくなる。変質の度合いはドライエッチングの条件などにより変化する。サンプル2はサンプル1に比べて、高パワー高レートでドライエッチングを行っており、より低いLi/Nb元素比率とNb酸化数となっている。サンプル1を表1、サンプル2を表2に示す。   First, Table 1 shows the effect of dry etching. After dry etching, the work-affected region 5 in which the Li / Nb element ratio decreases and the Nb oxidation number decreases is generated on the outermost surface, and the light propagation loss increases. The degree of alteration varies depending on dry etching conditions. Sample 2 is dry-etched at a higher power and higher rate than sample 1, and has a lower Li / Nb element ratio and Nb oxidation number. Sample 1 is shown in Table 1 and Sample 2 is shown in Table 2.

Figure 2015014716
Figure 2015014716

Figure 2015014716
Figure 2015014716

このドライエッチングで光伝播損失が大きくなったサンプルを各温度1時間熱処理を加えたときの、光伝播損失の変化が図5(A)、Li/Nb元素比率の変化が図5(B)、Nb酸化数の変化が図5(C)である。そして、Nb酸化数と光伝播損失の関係を図5(D)に示す。図5(C)より、サンプル1、サンプル2共に、100℃付近からNb酸化数が大きくなることがわかる。また、図5(D)より、Nb酸化数の増加に伴い光伝播損失は小さくなることがわかる。特に、Nb酸化数が4.8以上5.0以下となる場合に光伝播損失は2dB/cm未満の小さい値となった。ドライエッチングによるダメージでLN膜3表面は、酸素欠損によりNb酸化数の低下が起きるが、140℃以上の熱処理により酸素欠損が補われ、Nb酸化数が増加し、光伝播損失が小さくなると考えられる。一方、ドライエッチングによるLi欠損は、140〜300℃の熱処理ではLi/Nb元素比率はほとんど変化せず、図5(B)より、Li/Nb元素比率が0.4以上0.9以下の加工変質領域5が残ったままの状態であることがわかる。なお、図5(B)の25℃、60℃、80℃、100℃、120℃、140℃、200℃、300℃、400℃、500℃、600℃におけるLi/Nb元素比率は、サンプル1でそれぞれ0.71、0.79、0.81、0.76、0.75、0.78、0.82、0.81、1.17、1.23、1.28、サンプル2でそれぞれ0.48、0.45、0.46、0.51、0.47、0.48、0.45、0.46、0.94、1.08、1.14である。また、同一熱処理温度の比較から図5(A)、図5(B)より、Li/Nb元素比率が0.4以上0.9以下の加工変質領域5が残ったままの状態であっても、光伝播損失は小さく、また、上述のようにDCドリフトの問題も工夫次第で回避できると考えられる。なお、400℃以上の熱処理をした場合はLi/Nb元素比率が1を超えているが、SEMやXRD観察により、LN膜3表面にLiNbOの析出が観察された。この析出はデバイスの特性を不安定なものとするため、熱処理温度は300℃以下とするのが好ましい。以上の結果は、2.0μmのc軸配向のLN膜3を形成した場合においても同様であった。 FIG. 5A shows the change in the light propagation loss and FIG. 5B shows the change in the Li / Nb element ratio when the sample in which the light propagation loss is increased by the dry etching is subjected to heat treatment for 1 hour at each temperature. The change in the Nb oxidation number is shown in FIG. FIG. 5D shows the relationship between the Nb oxidation number and the light propagation loss. FIG. 5 (C) shows that the Nb oxidation number increases from around 100 ° C. for both Sample 1 and Sample 2. Further, FIG. 5D shows that the light propagation loss decreases as the Nb oxidation number increases. In particular, when the Nb oxidation number was 4.8 or more and 5.0 or less, the light propagation loss was a small value of less than 2 dB / cm. Although the Nb oxidation number on the surface of the LN film 3 is lowered due to oxygen deficiency due to damage caused by dry etching, it is considered that the oxygen deficiency is compensated by heat treatment at 140 ° C. or higher, the Nb oxidation number is increased, and light propagation loss is reduced. . On the other hand, Li deficiency due to dry etching hardly changes the Li / Nb element ratio in the heat treatment at 140 to 300 ° C., and the Li / Nb element ratio is 0.4 to 0.9 from FIG. It can be seen that the altered region 5 remains. Note that the Li / Nb element ratios at 25 ° C., 60 ° C., 80 ° C., 100 ° C., 120 ° C., 140 ° C., 200 ° C., 300 ° C., 400 ° C., 500 ° C., and 600 ° C. in FIG. At 0.71, 0.79, 0.81, 0.76, 0.75, 0.78, 0.82, 0.81, 1.17, 1.23, 1.28, and Sample 2, respectively. 0.48, 0.45, 0.46, 0.51, 0.47, 0.48, 0.45, 0.46, 0.94, 1.08, and 1.14. From the comparison of the same heat treatment temperature, it can be seen from FIG. 5A and FIG. 5B that the work-affected region 5 having a Li / Nb element ratio of 0.4 or more and 0.9 or less remains. The light propagation loss is small, and it is considered that the problem of DC drift can be avoided depending on the device as described above. When the heat treatment was performed at 400 ° C. or higher, the Li / Nb element ratio exceeded 1, but precipitation of Li 3 NbO 4 was observed on the surface of the LN film 3 by SEM or XRD observation. In order for this precipitation to make the device characteristics unstable, the heat treatment temperature is preferably 300 ° C. or lower. The above results were the same when the 2.0 μm c-axis oriented LN film 3 was formed.

本発明は、光変調器、光ファイバジャイロ素子、光スイッチや電界センサなどの電気デバイスに応用が可能である。   The present invention can be applied to electrical devices such as an optical modulator, an optical fiber gyro element, an optical switch, and an electric field sensor.

1 単結晶基板
2 バッファ層2
3 LN膜
4 リッジ形状部
5 加工変質領域
6 バッファ層6
7 第1電極
8 第2電極
9 プリズム
10 プローブ
11 検出器
12 光
13 散乱光
1 Single crystal substrate 2 Buffer layer 2
3 LN film 4 Ridge-shaped portion 5 Work-affected region 6 Buffer layer 6
7 First electrode 8 Second electrode 9 Prism 10 Probe 11 Detector 12 Light 13 Scattered light

Claims (4)

ニオブ酸リチウム膜を用いたリッジ形状部を有する光導波路において、Li/Nb元素比率が0.4以上、0.9以下であり、Nb酸化数が4.8以上5.0以下である加工変質領域を有していることを特徴とする光導波路。   In an optical waveguide having a ridge-shaped portion using a lithium niobate film, Li / Nb element ratio is 0.4 or more and 0.9 or less, and Nb oxidation number is 4.8 or more and 5.0 or less. An optical waveguide having a region. 前記ニオブ酸リチウム膜の膜厚が2μm以下のエピタキシャル膜であることを特徴とする請求項1に記載の光導波路。   The optical waveguide according to claim 1, wherein the lithium niobate film is an epitaxial film having a thickness of 2 μm or less. 請求項1または2に記載の光導波路を用いたことを特徴とする電気光学デバイス。   An electro-optic device using the optical waveguide according to claim 1. 前記ニオブ酸リチウム膜上にバッファ層を有する請求項3に記載の電気光学デバイス。   The electro-optical device according to claim 3, further comprising a buffer layer on the lithium niobate film.
JP2013141439A 2013-07-05 2013-07-05 Optical waveguide and electro-optic device Active JP6136666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013141439A JP6136666B2 (en) 2013-07-05 2013-07-05 Optical waveguide and electro-optic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013141439A JP6136666B2 (en) 2013-07-05 2013-07-05 Optical waveguide and electro-optic device

Publications (2)

Publication Number Publication Date
JP2015014716A true JP2015014716A (en) 2015-01-22
JP6136666B2 JP6136666B2 (en) 2017-05-31

Family

ID=52436466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013141439A Active JP6136666B2 (en) 2013-07-05 2013-07-05 Optical waveguide and electro-optic device

Country Status (1)

Country Link
JP (1) JP6136666B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939709B2 (en) 2015-08-21 2018-04-10 Tdk Corporation Optical waveguide element and optical modulator using the same
US10649246B2 (en) 2016-07-19 2020-05-12 Tdk Corporation Dielectric thin film-applied substrate and optical modulation element using the same
EP3800501A1 (en) 2019-10-04 2021-04-07 NGK Insulators, Ltd. Bonded bodies for optical modulators, optical modulators and a method of producing bonded bodies for optical modulators

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327107A (en) * 1992-05-22 1993-12-10 Matsushita Electric Ind Co Ltd Optical waveguide type optical amplifire and its forming mehtod
JPH0659224A (en) * 1992-08-07 1994-03-04 Ibiden Co Ltd Production of waveguide having electrode
JP2002072267A (en) * 2000-08-25 2002-03-12 National Institute For Materials Science Optical functional element, single crystal subsrate for the element, and method for using the element
JP2002517780A (en) * 1998-05-11 2002-06-18 カリフォルニア インスチュート オブ テクノロジー Pressure annealing method of lithium niobate and resulting lithium niobate structure
JP2006195383A (en) * 2005-01-17 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> Optical modulator and its manufacturing method
JP2007025636A (en) * 2005-06-13 2007-02-01 Matsushita Electric Ind Co Ltd Method of fabricating optical element
JP2009025555A (en) * 2007-07-19 2009-02-05 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of optical waveguide
US20110123163A1 (en) * 2009-11-23 2011-05-26 The Aerospace Corporation Stable Lithium Niobate Waveguides, And Methods Of Making And Using Same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327107A (en) * 1992-05-22 1993-12-10 Matsushita Electric Ind Co Ltd Optical waveguide type optical amplifire and its forming mehtod
JPH0659224A (en) * 1992-08-07 1994-03-04 Ibiden Co Ltd Production of waveguide having electrode
JP2002517780A (en) * 1998-05-11 2002-06-18 カリフォルニア インスチュート オブ テクノロジー Pressure annealing method of lithium niobate and resulting lithium niobate structure
JP2002072267A (en) * 2000-08-25 2002-03-12 National Institute For Materials Science Optical functional element, single crystal subsrate for the element, and method for using the element
JP2006195383A (en) * 2005-01-17 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> Optical modulator and its manufacturing method
JP2007025636A (en) * 2005-06-13 2007-02-01 Matsushita Electric Ind Co Ltd Method of fabricating optical element
JP2009025555A (en) * 2007-07-19 2009-02-05 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of optical waveguide
US20110123163A1 (en) * 2009-11-23 2011-05-26 The Aerospace Corporation Stable Lithium Niobate Waveguides, And Methods Of Making And Using Same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939709B2 (en) 2015-08-21 2018-04-10 Tdk Corporation Optical waveguide element and optical modulator using the same
US10649246B2 (en) 2016-07-19 2020-05-12 Tdk Corporation Dielectric thin film-applied substrate and optical modulation element using the same
EP3800501A1 (en) 2019-10-04 2021-04-07 NGK Insulators, Ltd. Bonded bodies for optical modulators, optical modulators and a method of producing bonded bodies for optical modulators
US11448907B2 (en) 2019-10-04 2022-09-20 Ngk Insulators, Ltd. Bonded bodies for optical modulators, optical modulators and a method of producing bonded bodies for optical modulators

Also Published As

Publication number Publication date
JP6136666B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6787387B2 (en) Light modulator
Poberaj et al. Lithium niobate on insulator (LNOI) for micro‐photonic devices
Han et al. Optical and structural properties of single-crystal lithium niobate thin film
JP7075448B2 (en) Composite substrate for electro-optic elements
US10649246B2 (en) Dielectric thin film-applied substrate and optical modulation element using the same
JP2006195383A (en) Optical modulator and its manufacturing method
Siew et al. Rib microring resonators in lithium niobate on insulator
JP6136666B2 (en) Optical waveguide and electro-optic device
JP6369147B2 (en) Optical waveguide device and optical modulator using the same
Lee et al. Nonlinear optical properties of PVD-grown Cr2Te3 film and its nonlinear switching application
Saha et al. Fabrication and characterization of optical devices on lithium niobate on insulator chips
JP5464260B1 (en) Electro-optic element
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
US20230103702A1 (en) Optical scanning element
Posadas et al. Electro-optic barium titanate modulators on silicon photonics platform
CN1916673B (en) Optical element
JP7098666B2 (en) Composite substrate for electro-optic element and its manufacturing method
US20220365379A1 (en) Structure for an optoelectronics platform and method of fabricating a structure for an optoelectronics platform
Wang et al. Optical rib waveguide based on epitaxial Ba0. 7Sr0. 3TiO3 thin film grown on MgO
Eknoyan et al. Low‐voltage interferometric modulator in zinc‐diffused strontium barium niobate (SBN: 60)
Honda et al. 229 nm far-ultraviolet second harmonic generation in a vertical polarity inverted AlN bilayer channel waveguide
JP4137680B2 (en) Manufacturing method of light control element
Poberaj et al. High-density integrated optics in ion-sliced lithium niobate thin films
US20230061055A1 (en) Composite substrate for photonic crystal element, and photonic crystal element
Nordseth et al. The case for electro-optic waveguide devices from ferroelectric (Pb, La)(Zr, Ti) O [sub] 3 [/sub] thin film epilayers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6136666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150