TW201410707A - Canine fusion interferon - Google Patents

Canine fusion interferon Download PDF

Info

Publication number
TW201410707A
TW201410707A TW102131708A TW102131708A TW201410707A TW 201410707 A TW201410707 A TW 201410707A TW 102131708 A TW102131708 A TW 102131708A TW 102131708 A TW102131708 A TW 102131708A TW 201410707 A TW201410707 A TW 201410707A
Authority
TW
Taiwan
Prior art keywords
canine
interferon
igg
cifnα2
protein
Prior art date
Application number
TW102131708A
Other languages
Chinese (zh)
Inventor
Tsun-Yung Kuo
Original Assignee
Schweitzer Biotech Company Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweitzer Biotech Company Ltd filed Critical Schweitzer Biotech Company Ltd
Publication of TW201410707A publication Critical patent/TW201410707A/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

This invention relates to a canine fusion interferon. The canine fusion interferon comprises a canine interferon and the Fc region of canine immunoglobulin G (IgG). The canine interferon and the Fc region of canine immunoglobulin G can be further fused with a linker. This invention also relates to a polynucleotide that encodes the canine fusion interferon and the use of the canine fusion interferon.

Description

犬融合干擾素 Canine fusion interferon

本發明係關於動物保健領域,特別是關於一種具有抗病毒活性的犬融合干擾素。 The present invention relates to the field of animal health, and in particular to a canine fusion interferon having antiviral activity.

干擾素最早是在1957年由英國學者Alick Isaacs和Jean Lindenmann在進行流感病毒試驗中所發現,當細胞遭受病毒感染後,會立即製造一種細胞激素,誘發鄰近細胞產生抗病毒蛋白,干擾病毒的複製。該細胞激素隨後被命名為干擾素(Interferon,IFN)。 Interferon was first discovered in 1957 by British scholars Alick Isaacs and Jean Lindenmann in the influenza virus test. When a cell is infected with a virus, it immediately creates a cytokine that induces adjacent cells to produce antiviral proteins that interfere with viral replication. . This cytokine was subsequently named Interferon (IFN).

干擾素為一種醣蛋白,主要有干擾素α、β、γ三種,可經由不同的病原進行誘發產生,例如:病毒、細菌、立克次體、原蟲及雙股核苷酸等;誘發後的干擾素不會與病原直接作用,而是經由誘導產生抗病毒蛋白以達到抗病毒的功能,這些抗病毒蛋白包括依賴雙股RNA的蛋白激活酶(dsRNA-dependent protein kinase,PKR)、Mx蛋白(Mx protein)及2’,5’-寡腺苷酸合成酶(2’,5’Oligoadenylate synthetase/RNase L,OAS)等。其中PKR為一種蛋白質激酶,可使eIF2磷酸化,使宿主細胞停止轉譯病毒蛋白;Mx蛋白則是一種三磷酸鳥苷酸水解酶(GTPase),可與病毒蛋白結合而干擾病毒的複製及蛋白質的運輸;而OAS則可將病毒的雙股RNA進行水解。另一方面, 干擾素也會誘導鄰近細胞產生抗病毒蛋白阻礙病毒感染其他細胞,並讓細胞建立抗病毒狀態,達成干擾病毒感染的效用。除了具有抗病毒作用外,干擾素還具有抗腫瘤、促進細胞分化和免疫調節等功用。 Interferon is a glycoprotein, mainly composed of interferon α, β, γ, which can be induced by different pathogens, such as viruses, bacteria, rickettsia, protozoa and double-stranded nucleotides; The interferon does not act directly on the pathogen, but instead produces antiviral proteins by inducing antiviral proteins, including dsRNA-dependent protein kinase (PKR), Mx protein. (Mx protein) and 2', 5'-oligoadenylate synthetase (RNase L, OAS). PKR is a protein kinase that phosphorylates eIF2, allowing host cells to stop translating viral proteins. Mx protein is a guanylate triphosphate hydrolase (GTPase) that binds to viral proteins and interferes with viral replication and protein. Transport; OAS can hydrolyze the double-stranded RNA of the virus. on the other hand, Interferon also induces the production of antiviral proteins in neighboring cells, which prevents the virus from infecting other cells, and allows the cells to establish an antiviral state and achieve the effect of interfering with viral infections. In addition to its antiviral effect, interferon also has anti-tumor, cell differentiation and immune regulation.

目前市面上的干擾素製劑,多為針對人類所開發設計,例如:用來治療人類B型與C型肝炎等病毒性疾病以及卡波西氏瘤(Kaposi’s sarcoma,KS)、黑色素腫瘤(malignant melanoma)等腫瘤疾病上的干擾素。 Currently, interferon preparations on the market are mostly designed for humans, for example, for treating viral diseases such as human type B and hepatitis C, and Kaposi's sarcoma (KS) and melanoma (malignant melanoma). ) Interferon on tumor diseases.

近年來,受到高齡化、少子化的社會趨勢所影響,寵物數量越來越多,也連帶帶動許多寵物相關行業的發展,其中最普遍的寵物-狗,也逐漸在人類工作上扮演重要角色,根據美國寵物商品製造協會(APPMA)調查顯示,美國寵物相關行業的產值在2009年已達520億美元,其中寵物醫療約占40%(約208億美元),寵物藥品約占24%(約124.8億美元),而在寵物藥品中,抗生素製劑及皮膚照護用品約占70%,其餘30%則為疫苗及治療性藥物,其中治療性藥物種類少但是價格高,是一個極具有發展潛力的市場。本發明即是針對犬隻開發專用之干擾素作為治療性藥物。 In recent years, affected by the aging and declining social trends, the number of pets has increased, which has led to the development of many pet-related industries. The most common pet-dog has gradually played an important role in human work. According to the United States Pet Products Manufacturers Association (APPMA) survey, the value of the US pet-related industry has reached 52 billion US dollars in 2009, of which pet medical care accounts for about 40% (about 20.8 billion US dollars), pet medicine accounts for about 24% (about 124.8) In the pet medicine, antibiotic preparations and skin care products account for about 70%, and the remaining 30% are vaccines and therapeutic drugs. Among them, there are few types of therapeutic drugs but high prices, which is a market with great development potential. . The present invention is directed to the development of a specific interferon for dogs as a therapeutic drug.

本發明於第一部份中提供一種犬融合干擾素。由於干擾素屬於小分子蛋白質,在體內半衰期短(約2~8小時)且不穩定,因此本發明所提供的犬融合干擾素是將犬干擾素蛋白與半衰期較長的犬免疫球蛋白IgG Fc片段融合,而形成較穩定的犬融合干擾素。於一較佳實施例中,該犬干擾素蛋白以及該犬免疫球蛋白IgG Fc片段是以由甘胺酸(Glycine,G)及絲胺酸(Serine,S)組成的連接子(linker)所連接起來的。於一實施例中,該犬干擾素蛋白為犬干擾素α2,具有如SEQ ID No:2所示之胺基酸序列;該犬免疫球蛋 白IgG Fc片段具有如SEQ ID No:4所示之胺基酸序列;而該連接子具有如SEQ ID No:6所示之胺基酸序列;該犬融合干擾素具有如SEQ ID No:8所示之胺基酸序列。 The present invention provides a canine fusion interferon in the first part. Since the interferon belongs to a small molecule protein and has a short half-life (about 2 to 8 hours) in vivo and is unstable, the canine fusion interferon provided by the present invention is a canine interferon protein and a canine immunoglobulin IgG Fc having a long half-life. The fragments are fused to form a more stable canine fusion interferon. In a preferred embodiment, the canine interferon protein and the canine immunoglobulin IgG Fc fragment are linked by a linker consisting of glycine (Glycine, G) and serine (Srine). Connected together. In one embodiment, the canine interferon protein is canine interferon alpha 2, having the amino acid sequence set forth in SEQ ID No: 2; the canine immunoglobulin The white IgG Fc fragment has the amino acid sequence set forth in SEQ ID No: 4; and the linker has the amino acid sequence set forth in SEQ ID No: 6; the canine fusion interferon has SEQ ID No: 8 The amino acid sequence shown.

本發明於第二部分中提供一種編碼上述犬融合干擾素的多核苷酸。本發明所提供之犬融合干擾素是藉由基因轉殖技術而得。首先將編碼犬干擾素蛋白的DNA序列,以及編碼犬免疫球蛋白IgG Fc片段的DNA序列選殖到表現載體系統中,形成含有編碼犬融合干擾素之DNA序列的質體,再將該質體轉殖到表現系統中,經誘導蛋白質表現後而得到犬融合干擾素。 The present invention provides a polynucleotide encoding the above canine fusion interferon in the second part. The canine fusion interferon provided by the present invention is obtained by gene transfer technology. First, a DNA sequence encoding a canine interferon protein, and a DNA sequence encoding a canine immunoglobulin IgG Fc fragment are selected into a expression vector system to form a plastid containing a DNA sequence encoding a canine fusion interferon, and the plastid is then ligated. Transgenic into the expression system, can be obtained by inducing protein expression to obtain canine fusion interferon.

於一較佳實施例中,除了將編碼犬干擾素蛋白的DNA序列以及編碼犬免疫球蛋白IgG Fc片段的DNA序列選殖到表現載體系統中,並將編碼由甘胺酸及絲胺酸組成的連接子(linker)的DNA序列選殖到該表現載體系統中,以連接該編碼犬干擾素蛋白的DNA序列以及編碼犬免疫球蛋白IgG Fc片段的DNA序列。於一實施例中,該編碼犬干擾素蛋白的DNA序列具有如SEQ ID No:1所示之序列,該編碼犬免疫球蛋白IgG Fc片段的DNA序列具有如SEQ ID No:3所示之序列,而該編碼由甘胺酸及絲胺酸組成的連接子(linker)的DNA序列具有如SEQ ID No:5所示之序列;該編碼犬融合干擾素的DNA序列具有如SEQ ID No:7所示之序列。 In a preferred embodiment, the DNA sequence encoding the canine interferon protein and the DNA sequence encoding the canine immunoglobulin IgG Fc fragment are selected into a performance vector system and the coding consists of glycine and serine. The DNA sequence of the linker is cloned into the expression vector system to ligate the DNA sequence encoding the canine interferon protein and the DNA sequence encoding the canine immunoglobulin IgG Fc fragment. In one embodiment, the DNA sequence encoding the canine interferon protein has the sequence set forth in SEQ ID No: 1, and the DNA sequence encoding the canine immunoglobulin IgG Fc fragment has the sequence set forth in SEQ ID No: 3. And the DNA sequence encoding the linker consisting of glycine and serine has a sequence as shown in SEQ ID No: 5; the DNA sequence encoding the canine fusion interferon has SEQ ID No: 7 The sequence shown.

該表現載體可為原核生物表現載體或真核生物表現載體。該原核生物表現載體包含但不限於pET系列表現載體以及pGEX系列表現載體。該真核生物表現載體包含但不限於pcDNA系列表現載體。 The expression vector can be a prokaryotic expression vector or a eukaryotic expression vector. The prokaryotic expression vector includes, but is not limited to, a pET series expression vector and a pGEX series expression vector. The eukaryotic expression vector includes, but is not limited to, a pcDNA series expression vector.

該表現系統可為原核生物表現系統(如:細菌)或真核生物表 現系統(如:酵母菌、昆蟲細胞、植物細胞和哺乳動物細胞等)。於一實施例中,該表現系統為大腸桿菌(Escherichia coli)。於另一實施例中,該表現系統為哺乳動物細胞。可用於本發明犬融合干擾素表現的哺乳動物細胞包含但不限於3T3細胞、中國倉鼠卵巢細胞(Chinese hamster ovary cells,CHO cells)、幼鼠腎細胞(baby hamster kidney cells,BHK cells)、人類子宮頸癌細胞(HeLa cells),以及人類肝癌細胞(HepG2 cells)等。 The expression system can be a prokaryotic expression system (eg, a bacterium) or a eukaryotic expression system (eg, yeast, insect cells, plant cells, and mammalian cells, etc.). In one embodiment, the expression system is Escherichia coli . In another embodiment, the expression system is a mammalian cell. Mammalian cells useful for the expression of canine fusion interferon of the present invention include, but are not limited to, 3T3 cells, Chinese hamster ovary cells (CHO cells), baby hamster kidney cells (BHK cells), humans. Cervical cancer cells (HeLa cells), and human hepatoma cells (HepG2 cells).

本發明於第三部分中提供一種犬融合干擾素在製備犬抗病毒藥物中的用途。經試驗證明,本發明所提供之犬融合干擾素具有誘導細胞產生抗病毒蛋白,以達到抗病毒的效果。於一實施例中,以本發明之犬融合干擾素(CIFNα2-IgG Fc)誘導狗腎臟細胞(MDCK)產生抗病毒蛋白,並分別以西方墨點法以及即時定量PCR(real-time RT-PCR)分析抗病毒蛋白及其基因的表現量,結果顯示,本發明之犬融合干擾素(CIFNα2-IgG Fc)可誘導MDCK細胞產生抗病毒蛋白Mx蛋白,並誘導MDCK細胞增加抗病毒蛋白Mx蛋白、PKR蛋白、OAS蛋白的基因表現量。因此,本發明所提供之犬融合干擾素可誘導抗病毒蛋白的產生並用來製備犬抗病毒藥物。 The invention provides in a third part the use of a canine fusion interferon for the preparation of a canine antiviral drug. It has been proved by experiments that the canine fusion interferon provided by the invention has the function of inducing cells to produce antiviral protein to achieve antiviral effect. In one embodiment, the canine fusion interferon (CIFNα2-IgG Fc) of the present invention induces the production of antiviral proteins in dog kidney cells (MDCK) by Western blotting and real-time RT-PCR, respectively. Analysis of the amount of antiviral protein and its gene expression, the results show that the canine fusion interferon (CIFNα2-IgG Fc) of the present invention can induce MDCK cells to produce antiviral protein Mx protein, and induce MDCK cells to increase antiviral protein Mx protein, Gene expression of PKR protein and OAS protein. Therefore, the canine fusion interferon provided by the present invention can induce the production of antiviral proteins and is used to prepare canine antiviral drugs.

術語“預防、保護、對抗”意謂,相較於未使用本發明犬融合干擾素的動物或細胞樣本,使用本發明犬融合干擾素的動物或細胞樣本,具有較高的存活率,且該樣本內的病毒數量較低。 The term "preventing, protecting, combating" means that an animal or cell sample of the canine fusion interferon of the present invention has a higher survival rate than an animal or cell sample not using the canine fusion interferon of the present invention, and The number of viruses in the sample is low.

術語“治療”意謂,預防或部份預防疾病、症狀、病況,及/或部份或完全治癒或緩解疾病、症狀、病況、或因疾病所造成的不利影響。 The term "treating" means preventing or partially preventing a disease, a condition, a condition, and/or partially or completely curing or ameliorating a disease, a symptom, a condition, or an adverse effect caused by the disease.

術語“抑制”意謂,與基線相比,在質量或數量上的減少。例如,在本發明的背景下,抑制病毒的複製,是指與基線相比,病毒複製減 少。同理,抑制病毒感染,是指與基線相比,減少病毒感染。 The term "inhibiting" means a decrease in quality or quantity compared to the baseline. For example, in the context of the present invention, inhibition of viral replication refers to a reduction in viral replication compared to baseline. less. Similarly, inhibition of viral infection refers to a reduction in viral infection compared to baseline.

本說明書中所述之所有技術性及科學術語,除非另外有所定義,皆為該所屬領域具有通常技藝者可共同瞭解的意義。 All of the technical and scientific terms described in this specification, unless otherwise defined, are intended to be common to those of ordinary skill in the art.

本發明係以下面的實施例予以示範闡明,但本發明不受下述實施例所限制。 The present invention is exemplified by the following examples, but the present invention is not limited by the following examples.

圖一為以西方墨點法分析帶有pET24a-CIFNα2-IgG Fc質體的大腸桿菌所表現的犬融合干擾素(CIFNα2-IgG Fc);M:蛋白質分子量標準(Protein Marker);第1道:以mouse anti 6x His抗體分析;第2道:以rabbit anti canine IFN抗體分析;第3道:以rabbit anti canine IgG抗體分析;第4道:以mouse anti canine IFN抗體分析。 Figure 1 shows the canine fusion interferon (CIFNα2-IgG Fc) expressed by E. coli harboring pET24a-CIFNα2-IgG Fc plastid by western blot method; M: Protein Marker; Protein 1; Analysis by mouse anti 6x His antibody; lane 2: analysis with rabbit anti canine IFN antibody; lane 3: analysis with rabbit anti canine IgG antibody; lane 4: analysis with mouse anti canine IFN antibody.

圖二A為pcDNA3載體轉染至CHO細胞後,以Zeocin抗生素篩選後以IFA分析之結果;圖二B為帶有編碼犬融合干擾素基因(CIFNα2-IgG Fc)的質體轉染至CHO細胞後,以Zeocin抗生素篩選後以IFA分析之結果。 Figure 2A shows the results of IFA analysis after transfection of the pcDNA3 vector into CHO cells with Zeocin antibiotics; Figure 2B shows the transfection of CHO cells with plastids encoding the canine fusion interferon gene (CIFNα2-IgG Fc) After the screening with Zeocin antibiotics, the results were analyzed by IFA.

圖三為以西方墨點法分析帶有pcDNA3-CIFNα2-IgG Fc質體的CHO細胞所表現的犬融合干擾素(CIFNα2-IgG Fc);M:蛋白質分子量標準(Protein Marker);第1道:以mouse anti canine IFN抗體分析;第2道:以rabbit anti canine IFN抗體分析;第3道:以rabbit anti canine IgG抗體分析;第4道:以mouse anti 6x His抗體分析。 Figure 3 shows canine fusion interferon (CIFNα2-IgG Fc) expressed by CHO cells with pcDNA3-CIFNα2-IgG Fc plastid by Western blot method; M: Protein Marker; Protein 1; Analysis by mouse anti canine IFN antibody; lane 2: analysis with rabbit anti canine IFN antibody; lane 3: analysis with rabbit anti canine IgG antibody; lane 4: analysis with mouse anti 6x His antibody.

圖四為以西方墨點法分析犬融合干擾素(CIFNα2-IgG Fc)所誘導之抗病毒蛋白;A為以rabbit anti Mx protein抗體偵測抗病毒蛋白Mx蛋 白;B為α微管蛋白(α-tubulin)(內對照組);第1道:未處理的MDCK細胞(負對照組);第2道:以干擾素誘導劑polyI:C處理的MDCK細胞;第3道:以犬融合干擾素(CIFNα2-IgG Fc)處理的MDCK細胞。 Figure 4 shows the antiviral protein induced by canine fusion interferon (CIFNα2-IgG Fc) by western blot method; A is the antiviral protein Mx egg detected by rabbit anti Mx protein antibody White; B is α-tubulin (intra-control group); lane 1: untreated MDCK cells (negative control group); lane 2: MDCK cells treated with interferon inducer polyI:C Lane 3: MDCK cells treated with canine fusion interferon (CIFNα2-IgG Fc).

圖五為以即時定量PCR(real-time PCR)分析犬融合干擾素(CIFNα2-IgG Fc)誘導MDCK細胞表現抗病毒蛋白Mx蛋白的基因表現量。 Figure 5 is a graph showing the gene expression of anti-viral protein Mx protein in MDCK cells induced by canine fusion interferon (CIFNα2-IgG Fc) by real-time PCR.

圖六為以即時定量PCR(real-time PCR)分析犬融合干擾素(CIFNα2-IgG Fc)誘導MDCK細胞表現抗病毒蛋白PKR蛋白的基因表現量。 Figure 6 is a graph showing the gene expression of the anti-viral protein PKR protein in MDCK cells induced by canine fusion interferon (CIFNα2-IgG Fc) by real-time PCR.

圖七為以即時定量PCR(real-time PCR)分析犬融合干擾素(CIFNα2-IgG Fc)誘導MDCK細胞表現抗病毒蛋白OAS蛋白的基因表現量。 Figure 7 shows the gene expression of the anti-viral protein OAS protein in MDCK cells induced by canine fusion interferon (CIFNα2-IgG Fc) by real-time PCR.

實施例一 犬干擾素α2基因(CIFNα2)選殖及其表現載體的構築Example 1 Selection of Canine Interferon α2 Gene (CIFNα2) and Construction of Its Expression Vector

取4x105個狗腎臟細胞(Madin-Darby Canine Kidney,MDCK)接種於6孔細胞培養盤內,培養24小時後轉染干擾素誘導劑-聚肌苷酸胞嘧啶核苷酸(polyinosinic:polycytidylic acid,polyI:C)2μg/well,接著每隔24小時收集細胞一次,並以異硫氰酸胍(guanidine thiocyanate,GTC)法萃取總RNA(total RNA)。接著將萃取的總RNA進行反轉錄聚合酶連鎖反應(reverse polymerase chain reaction,RT-PCR);先將20 μl萃取之總RNA以70℃作用3分鐘後,取15 μl總RNA、1 μl正向引子、1 μl反向引子以及3 μl蒸餾水及AMV反轉錄試劑(AMV RT Kit),合計總體積為20 μl,混合均勻後放入PCR反應器中(Applied Biosystems GeneAmp PCR system 2400),反應條件為先以42℃ 30秒進行cDNA合成,接著進行PCR反應增殖犬干擾素α2基因片段,以93℃ 30秒、53℃ 30秒、72℃ 1分鐘進行35個循環,最後以72℃ 5分鐘完成PCR反應。其中,犬干擾素α2基因(CIFNα2)的特異性引子序列如下: 4x10 5 dog kidney cells (Madin-Darby Canine Kidney, MDCK) were inoculated into 6-well cell culture plates and transfected with interferon inducer-polyinosinic: polycytidylic acid for 24 hours. , polyI: C) 2 μg / well, then collect the cells once every 24 hours, and extract total RNA (total RNA) by guanidine thiocyanate (GTC) method. The extracted total RNA is then subjected to reverse polymerase chain reaction (RT-PCR); 20 μl of the extracted total RNA is applied at 70 ° C for 3 minutes, and then 15 μl of total RNA and 1 μl of the positive phase are taken. Primer, 1 μl reverse primer and 3 μl distilled water and AMV reverse transcription reagent (AMV RT Kit), the total volume is 20 μl, mixed uniformly and placed in a PCR reactor (Applied Biosystems GeneAmp PCR system 2400), the reaction conditions are First, cDNA synthesis was carried out at 42 ° C for 30 seconds, followed by PCR reaction to proliferate canine interferon α2 gene fragment, and 35 cycles were performed at 93 ° C for 30 seconds, 53 ° C for 30 seconds, and 72 ° C for 1 minute, and finally PCR was completed at 72 ° C for 5 minutes. reaction. Among them, the specific primer sequence of the canine interferon α2 gene (CIFNα2) is as follows:

正向引子(CIFNα2/F1):(SEQ ID NO:9) Forward primer (CIFNα2/F1): (SEQ ID NO: 9)

反向引子(CIFNα2/R1):(SEQ ID NO:10)。 Reverse primer (CIFNα2/R1): (SEQ ID NO: 10).

將PCR反應產物以洋菜膠電泳(agarose electrophoresis)分析確認產物片段大小,接著以核酸提取試劑盒(Gel/PCR DNA Fragments Extraction kit,Geneaid公司,台灣)進行PCR產物純化。接著以載體試劑盒(yT&A Cloning Vector Kit,Yeastern Biotech公司,台灣)選殖RT-PCR產物之DNA片段,分別取8 μl PCR產物、3 μl蒸餾水、2 μl yT&A cloning vector、1 μl T4 ligase buffer、1 μl T4 ligase,混合均勻後置於14℃水浴槽進行接合作用(ligation)12小時,再轉形(transformation)至宿主大腸桿菌(E.coli)中,過夜培養後,挑選出帶有CIFNα2/yT&A質體的大腸桿菌,並進行定序確認增殖的PCR產物序列確實為犬干擾素α2基因(CIFNα2),犬干擾素α2基因序列如SEQ ID No:1所示,其胺基酸序列如SEQ ID No:2所示。 The PCR reaction product was analyzed by agarose electrophoresis to confirm the size of the product fragment, followed by purification of the PCR product using a nucleic acid extraction kit (Gel/PCR DNA Fragments Extraction kit, Geneaid, Taiwan). Next, the DNA fragment of the RT-PCR product was cloned with a vector kit (yT&A Cloning Vector Kit, Yeastern Biotech, Taiwan), and 8 μl of PCR product, 3 μl of distilled water, 2 μl of yT&A cloning vector, and 1 μl of T4 ligase buffer were taken. 1 μl of T4 ligase, mixed uniformly, placed in a 14 ° C water bath for ligation for 12 hours, and then transformed into the host E. coli , after overnight culture, selected with CIFNα2 / The PCR product sequence of yT&A plastid Escherichia coli and sequence-confirmed proliferation is indeed the canine interferon alpha 2 gene (CIFNα2), the canine interferon alpha 2 gene sequence is shown in SEQ ID No: 1, and the amino acid sequence is SEQ. ID No: 2 is shown.

接著以快速質粒抽提試劑盒(High-Speed Plasmid Mini Kit,Geneaid公司,台灣)自上述帶有CIFNα2/yT&A質體的大腸桿菌中進行CIFNα2/yT&A質體的萃取及純化。再將上述CIFNα2/yT&A質體、表現載體pET24a以及表現載體pcDNA3分別以限制酶EcoRI以及XhoI進行酶切反應, 並以核酸提取試劑盒(Geneaid公司,台灣)純化酶切後的犬干擾素基因(CIFNα2)及表現載體,接著進行接合反應,將犬干擾素基因(CIFNα2)分別選殖到pET24a載體與pcDNA3載體中形成pET24a-CIFNα2質體與pcDNA3-CIFNα2質體,並將pET24a-CIFNα2質體與pcDNA3-CIFNα2質體分別轉形至表現宿主大腸桿菌(E.coli)與轉染(transfection)至中國倉鼠卵巢細胞株(CHO cells)中,選出帶有pET24a-CIFNα2質體的大腸桿菌及帶有pcDNA3-CIFNα2質體的中國倉鼠卵巢細胞株(CHO cells)。 Next, the CIFNα2/yT&A plastid was extracted and purified from the above-mentioned Escherichia coli carrying the CIFNα2/yT&A plastid using a Rapid Plasmid Extraction Kit (High-Speed Plasmid Mini Kit, Geneaid, Taiwan). The CIFNα2/yT&A plastid, the expression vector pET24a and the expression vector pcDNA3 were digested with restriction enzymes Eco RI and Xho I, respectively, and purified by a nucleic acid extraction kit (Geneaid, Taiwan). Gene (CIFNα2) and expression vector, followed by ligation, the canine interferon gene (CIFNα2) was separately selected into pET24a vector and pcDNA3 vector to form pET24a-CIFNα2 plastid and pcDNA3-CIFNα2 plastid, and pET24a-CIFNα2 The plastids of pcDNA3-CIFNα2 were transformed into E. coli and transfection into Chinese hamster ovary cell lines (CHO cells), and Escherichia coli with pET24a-CIFNα2 plastid was selected. Chinese hamster ovary cell line (CHO cells) with pcDNA3-CIFNα2 plastid.

實施例二 犬免疫球蛋白IgG Fc片段基因選殖Example 2 Canine immunoglobulin IgG Fc fragment gene selection

取新鮮狗脾臟,並以GTC法萃取總RNA。接著將萃取的總RNA進行反轉錄聚合酶連鎖反應(RT-PCR);先將20 μl萃取之總RNA以70℃作用3分鐘後,取15 μl總RNA、1 μl正向引子、1 μl反向引子以及3 μl蒸餾水及AMV反轉錄試劑(AMV RT Kit),合計總體積為20 μl,混合均勻後放入PCR反應器中(Applied Biosystems GeneAmp PCR system 2400),反應條件為先以42℃ 30秒進行cDNA合成,接著進行PCR反應增殖犬免疫球蛋白IgG Fc片段基因,以93℃ 30秒、53℃ 30秒、72℃ 1分鐘進行35個循環,最後以72℃ 5分鐘完成PCR反應。其中,犬免疫球蛋白IgG Fc片段基因(Canine IgG Fc)的特異性引子序列如下: Fresh dog spleens were taken and total RNA was extracted by GTC method. The extracted total RNA is then subjected to reverse transcription polymerase chain reaction (RT-PCR); 20 μl of the extracted total RNA is applied at 70 ° C for 3 minutes, then 15 μl of total RNA, 1 μl of forward primer, and 1 μl of anti- To the primer and 3 μl of distilled water and AMV reverse transcription reagent (AMV RT Kit), the total volume was 20 μl, and the mixture was uniformly mixed and placed in a PCR reactor (Applied Biosystems GeneAmp PCR system 2400) under the reaction conditions of 42 ° C. cDNA synthesis was performed in seconds, followed by PCR reaction to proliferate the canine immunoglobulin IgG Fc fragment gene, and 35 cycles were performed at 93 ° C for 30 seconds, 53 ° C for 30 seconds, and 72 ° C for 1 minute, and finally the PCR reaction was completed at 72 ° C for 5 minutes. Among them, the specific primer sequence of the canine immunoglobulin IgG Fc fragment gene (Canine IgG Fc) is as follows:

正向引子(Canine IgG Fc/F1):(SEQ ID NO:11) Forward primer (Canine IgG Fc/F1): (SEQ ID NO: 11)

反向引子(Canine IgG Fc/R1):(SEQ ID NO: 12)。 Reverse primer (Canine IgG Fc/R1): (SEQ ID NO: 12).

將PCR反應產物以洋菜膠電泳分析確認產物片段大小,接著以核酸提取試劑盒(Geneaid公司,台灣)進行PCR產物純化。接著以yT&A Cloning Vector Kit(Yeastern Biotech公司,台灣)選殖RT-PCR產物之DNA片段,分別取8 μl PCR產物、3 μl蒸餾水、2 μl yT&A cloning vector、1 μl T4 ligase buffer、1 μl T4 ligase,混合均勻後置於14℃水浴槽進行接合作用12小時,再轉型至宿主大腸桿菌(E.coli)中,過夜培養後,挑選出帶有Canine IgG Fc/yT&A質體的大腸桿菌,並進行定序確認增殖的PCR產物序列確實為犬免疫球蛋白IgG Fc片段基因(Canine IgG Fc),犬免疫球蛋白IgG Fc片段基因序列如SEQ ID No:3所示,其胺基酸序列如SEQ ID No:4所示。 The PCR reaction product was analyzed by gel electrophoresis to confirm the size of the product fragment, followed by purification of the PCR product using a nucleic acid extraction kit (Geneaid, Taiwan). Next, the DNA fragment of the RT-PCR product was cloned with yT&A Cloning Vector Kit (Yeastern Biotech, Taiwan), and 8 μl of PCR product, 3 μl of distilled water, 2 μl of yT&A cloning vector, 1 μl of T4 ligase buffer, and 1 μl of T4 ligase were taken. After mixing, it was placed in a 14 ° C water bath for bonding for 12 hours, and then transformed into host E. coli . After overnight culture, Escherichia coli with Canine IgG Fc/yT&A plastid was selected and subjected to The sequence of the PCR product confirmed by sequencing is indeed the canine immunoglobulin IgG Fc fragment gene (Canine IgG Fc), the canine immunoglobulin IgG Fc fragment gene sequence is shown in SEQ ID No: 3, and the amino acid sequence is SEQ ID No: 4 is shown.

實施例三 犬融合干擾素(CIFNα2-IgG Fc)表現載體的構築Example 3 Construction of canine fusion interferon (CIFNα2-IgG Fc) expression vector

在本實施例中,將實施例一所得的犬干擾素α2基因(CIFNα2)(SEQ ID No:1)以及實施例二所得的犬免疫球蛋白IgG Fc片段基因(Canine IgG-Fc)(SEQ ID No:3)以甘胺酸(Glycine,G)及絲胺酸(Serine,S)組成的連接子(linker)的DNA序列(SEQ ID No:5)連接,以構築犬融合干擾素(CIFNα-IgG Fc)的DNA序列(SEQ ID No:7)。 In the present example, the canine interferon alpha 2 gene (CIFNα2) (SEQ ID No: 1) obtained in Example 1 and the canine immunoglobulin IgG Fc fragment gene (Canine IgG-Fc) obtained in Example 2 (SEQ ID) No: 3) The DNA sequence (SEQ ID No: 5) of a linker consisting of glycine (Glycine, G) and serine (Serine, S) was ligated to construct a canine fusion interferon (CIFNα- DNA sequence of IgG Fc) (SEQ ID No: 7).

首先,以PCR反應分別增幅犬干擾素α2基因(CIFNα2)(SEQ ID No:1)以及犬免疫球蛋白IgG Fc片段基因(Canine IgG-Fc)(SEQ ID No:3),並利用PCR引子設計將甘胺酸及絲胺酸組成的連接子的DNA序列(SEQ ID No:5)分段與犬干擾素α2基因(CIFNα2)以及犬免疫球蛋白IgG Fc片段基因(Canine IgG-Fc)一同進行PCR反應增幅。其中,犬干擾素α2基因(CIFNα2) 的特異性引子序列如下: First, the canine interferon alpha 2 gene (CIFNα2) (SEQ ID No: 1) and the canine immunoglobulin IgG Fc fragment gene (Canine IgG-Fc) (SEQ ID No: 3) were amplified by PCR, and PCR primers were used for design. The DNA sequence (SEQ ID No: 5) of the linker consisting of glycine and serine was segmented together with the canine interferon alpha 2 gene (CIFNα2) and the canine immunoglobulin IgG Fc fragment gene (Canine IgG-Fc). The PCR reaction increased. Among them, canine interferon alpha 2 gene (CIFNα2) The specific primer sequence is as follows:

正向引子(CIFNα2/F2):(SEQ ID NO:13) Forward introduction (CIFNα2/F2): (SEQ ID NO: 13)

反向引子(CIFNα2-linker/R):(SEQ ID NO:14); Reverse primer (CIFNα2-linker/R): (SEQ ID NO: 14);

而犬免疫球蛋白IgG Fc片段基因的特異性引子序列如下:正向引子(Linker-IgG/F): AGAGAAAATGGA-3’(SEQ ID NO:15) The specific primer sequence of the canine immunoglobulin IgG Fc fragment gene is as follows: forward primer (Linker-IgG/F): AGAGAAAATGGA-3' (SEQ ID NO: 15)

反向引子(IgG-Fc/R2):(SEQ ID NO:16)。 Reverse primer (IgG-Fc/R2): (SEQ ID NO: 16).

在PCR反應管中加入0.3ng的質體DNA(CIFNα2/yT&A質體或Canine IgG Fc/yT&A質體)、5 μl 10x PCR反應液、8 μl 1.25 mM dNTP、1 μl 50 μM 5’端正向引子、1 μl 50 μM 3’端反向引子、33 μl滅菌水、1 μl Taq聚合酶,混合均勻後放入PCR反應器中(Applied Biosystems GeneAmp PCR system 2400),反應條件為先以94℃ 5分鐘將DNA變性,接著以94℃ 30秒、57℃ 30秒、72℃ 30秒進行30個循環,最後以72℃ 5分鐘完成PCR反應。 Add 0.3 ng of plastid DNA (CIFNα2/yT&A plastid or Canine IgG Fc/yT&A plastid) to the PCR reaction tube, 5 μl of 10x PCR reaction solution, 8 μl of 1.25 mM dNTP, 1 μl of 50 μM 5'-end forward primer 1 μl of 50 μM 3' reverse primer, 33 μl of sterilized water, 1 μl of Taq polymerase, mixed well and placed in a PCR reactor (Applied Biosystems GeneAmp PCR system 2400) under the conditions of 94 ° C for 5 minutes. The DNA was denatured, followed by 30 cycles of 94 ° C for 30 seconds, 57 ° C for 30 seconds, and 72 ° C for 30 seconds, and finally the PCR reaction was completed at 72 ° C for 5 minutes.

將PCR反應產物以洋菜膠電泳分析確認產物片段大小,接著 以核酸提取試劑盒(Geneaid公司,台灣)進行PCR產物純化。再將純化後的PCR產物犬干擾素α2基因(CIFNα2)以限制酶KpnI以及BamHI進行酶切反應,將純化後的PCR產物犬免疫球蛋白IgG Fc片段基因(Canine IgG-Fc)以限制酶BamHI以及XhoI進行酶切反應,並將表現載體pcDNA3以限制酶KpnI以及XhoI進行酶切反應後,再以核酸提取試劑盒(Geneaid公司,台灣)純化酶切後的PCR產物及表現載體,接著進行接合反應,將PCR產物選殖到pcDNA3載體中形成pcDNA3-CIFNα2-IgG Fc質體,並將pcDNA3-CIFNα2-IgG Fc質體轉染至中國倉鼠卵巢細胞株(CHO cells)中,選出帶有pcDNA3-CIFNα2-IgG Fc質體的中國倉鼠卵巢細胞株(CHO cells),並進行定序確認增殖的PCR產物序列確實為本實施例犬融合干擾素(CIFNα2-IgG Fc)的DNA序列(SEQ ID No:7),而本實施例犬融合干擾素(CIFNα2-IgG Fc)的胺基酸序列如SEQ ID No:8所示。 The PCR reaction product was analyzed by gel electrophoresis to confirm the size of the product fragment, followed by purification of the PCR product using a nucleic acid extraction kit (Geneaid, Taiwan). The purified PCR product canine interferon α2 gene (CIFNα2) was digested with restriction enzymes Kpn I and Bam HI, and the purified PCR product canine immunoglobulin IgG Fc fragment gene (Canine IgG-Fc) was restricted. The enzymes Bam HI and Xho I were digested, and the expression vector pcDNA3 was digested with restriction enzymes Kpn I and Xho I, and then the PCR product was purified by nucleic acid extraction kit (Geneaid, Taiwan). Expression vector, followed by ligation reaction, the PCR product was cloned into pcDNA3 vector to form pcDNA3-CIFNα2-IgG Fc plastid, and pcDNA3-CIFNα2-IgG Fc plastid was transfected into Chinese hamster ovary cell line (CHO cells). The Chinese hamster ovary cell line (CHO cells) carrying the pcDNA3-CIFNα2-IgG Fc plastid was selected, and the PCR product sequence which confirmed the proliferation was confirmed to be the DNA of the canine fusion interferon (CIFNα2-IgG Fc) of the present example. The sequence (SEQ ID No: 7), and the amino acid sequence of the canine fusion interferon (CIFNα2-IgG Fc) of the present example is shown in SEQ ID No: 8.

此外,以pcDNA3-CIFNα2-IgG Fc質體為PCR反應的模板,並以下列引子對本實施例犬融合干擾素(CIFNα2-IgG Fc)DNA序列進行增殖: In addition, the pcDNA3-CIFNα2-IgG Fc plastid was used as a template for the PCR reaction, and the canine fusion interferon (CIFNα2-IgG Fc) DNA sequence of the present example was propagated with the following primers:

正向引子(CIFNα2/F1):(SEQ ID NO:9) Forward primer (CIFNα2/F1): (SEQ ID NO: 9)

反向引子(CIFNα2-IgG/R):(SEQ ID NO:17)。 Reverse primer (CIFNα2-IgG/R): (SEQ ID NO: 17).

PCR反應條件為先以94℃ 5分鐘將DNA變性,接著以94℃ 30秒、55℃ 30 秒、72℃ 30秒進行30個循環,最後以72℃ 5分鐘完成PCR反應。 The PCR reaction conditions were first denatured at 94 ° C for 5 minutes, followed by 94 ° C for 30 seconds, 55 ° C 30 The cycle was carried out for 30 cycles at 72 ° C for 30 seconds, and finally the PCR reaction was completed at 72 ° C for 5 minutes.

接著將PCR反應產物以洋菜膠電泳分析確認產物片段大小,接著以核酸提取試劑盒(Geneaid公司,台灣)進行PCR產物純化。再將純化後的PCR產物犬融合干擾素(CIFNα2-IgG Fc)與表現載體pET24a以限制酶EcoRI以及XhoI進行酶切反應,再以核酸提取試劑盒(Geneaid公司,台灣)純化酶切後的PCR產物及表現載體,接著進行接合反應,將PCR產物選殖到pET24a載體中形成pET24a-CIFNα2-IgG Fc質體,並將pET24a-CIFNα2-IgG Fc質體轉形至表現宿主大腸桿菌BL21中,選出帶有pET24a-CIFNα2-IgG Fc質體的大腸桿菌BL21,並進行定序確認增殖的PCR產物序列確實為本實施例犬融合干擾素(CIFNα2-IgG Fc)的DNA序列(SEQ ID No:7)。 Next, the PCR reaction product was analyzed by gel electrophoresis to confirm the size of the product fragment, followed by purification of the PCR product using a nucleic acid extraction kit (Geneaid, Taiwan). The purified PCR product canine fusion interferon (CIFNα2-IgG Fc) was digested with the expression vector pET24a with restriction enzymes Eco RI and Xho I, and then purified by nucleic acid extraction kit (Geneaid, Taiwan). PCR product and expression vector, followed by ligation reaction, the PCR product was cloned into pET24a vector to form pET24a-CIFNα2-IgG Fc plastid, and pET24a-CIFNα2-IgG Fc plastid was transformed into the expression host E. coli BL21 The PCR product sequence in which E. coli BL21 carrying the pET24a-CIFNα2-IgG Fc plastid was selected and sequenced to confirm proliferation was indeed the DNA sequence of the canine fusion interferon (CIFNα2-IgG Fc) of the present example (SEQ ID No: 7).

實施例四 犬融合干擾素(CIFNα-IgG Fc)在原核生物中的表現Example 4 Performance of canine fusion interferon (CIFNα-IgG Fc) in prokaryotes

將實施例三所得到的pET24a-CIFNα-IgG Fc質體轉形至表現宿主大腸桿菌BL21。先取200 μl勝任細胞加入5 μl實施例三所得到的pET24a-CIFNα-IgG Fc質體,置於冰上30分鐘後,再立即放入42℃水浴槽中1分30秒進行熱休克(heat shock),接著放入冰水中,靜置5分鐘後,再加入800 μl LB培養液,37℃水浴培養1小時。再以室溫3000xg離心5分鐘,去除600 μl上清液,並將下層剩餘的LB及菌塊沖散,取200 μl菌液加至含有30 μg/ml卡那黴素(kanamycin)或50 μg/ml氨苄青黴素(ampicillin)的LB固體培養基上塗抹,37℃過夜培養後,挑選單一菌落進行培養及定序確認轉形無誤。 The pET24a-CIFNα-IgG Fc plastid obtained in Example 3 was transformed into the expression host E. coli BL21. First, take 200 μl of competent cells and add 5 μl of the pET24a-CIFNα-IgG Fc plastid obtained in Example 3. Place on ice for 30 minutes, then immediately put it into a 42 °C water bath for 1 minute and 30 seconds for heat shock. Then, it was placed in ice water, and after standing for 5 minutes, 800 μl of LB medium was further added, and the mixture was incubated at 37 ° C for 1 hour in a water bath. Centrifuge at room temperature 3000xg for 5 minutes, remove 600 μl of the supernatant, and disperse the remaining LB and bacteria in the lower layer. Add 200 μl of the bacterial solution to 30 μg/ml kanamycin or 50 μg. /ml ampicillin (ampicillin) was applied to LB solid medium, and cultured overnight at 37 ° C, a single colony was selected for culture and sequencing confirmed that the transformation was correct.

將帶有實施例三所得到的pET24a-CIFNα-IgG Fc質體的表現宿主大腸桿菌BL21接種至含有30 μg/ml卡那黴素(kanamycin)的LB培養基 培養12小時後,取1%體積的菌液接種至250 ml含有30 μg/ml卡那黴素(kanamycin)的LB培養液培養,於37℃下培養至菌液濃度達OD600nm為0.6~0.8時,加入1mM異丙基-β-D-硫代半乳糖吡喃糖苷(Isopropyl-beta-D-thiogalactopyranoside,IPTG)誘導,分別於誘導4、6、8小時收集菌液樣本,8小時後以13000xg,4℃,離心10分鐘,去除上清液,將菌塊以12.5%或10%十二烷基磺酸鈉-聚丙烯醯胺膠電泳分析(sodium dodecyl sulfate-polyacrylamide gel electrophoresis,SDS-PAGE),並以西方墨點法檢測犬融合干擾素(CIFNα2-IgG Fc)蛋白表現的情況。 The expression host E. coli BL21 carrying the pET24a-CIFNα-IgG Fc plastid obtained in Example 3 was inoculated to an LB medium containing 30 μg/ml kanamycin for 12 hours, and then 1% by volume was taken. The inoculum was inoculated to 250 ml of LB medium containing 30 μg/ml kanamycin, and cultured at 37 ° C until the concentration of the solution reached OD 600nm of 0.6-0.8, and 1 mM isopropyl-β- was added. Induced by Isopropyl-beta-D-thiogalactopyranoside (IPTG), the bacterial samples were collected at 4, 6, and 8 hours after induction, and after 8 hours, centrifuged at 13,000 x g, 4 ° C for 10 minutes to remove The supernatant was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) by 12.5% or 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the dog was detected by Western blotting method. Fusion of interferon (CIFNα2-IgG Fc) protein expression.

將上述SDS-PAGE分析後的膠體上的蛋白轉印至PVDF膜上,並將轉印後的PVDF膜置於封閉緩衝液(blocking buffer,5% Skim milk溶於TBST)中,於室溫下作用1小時,以去除非特異性反應,再以TBST(10 mM Tris-HCl pH 8.0,150 mM NaCl,0.3% Tween 20)清洗三次,每次5分鐘,隨後分別加入鼠抗6xHis(mouse anti 6xHis)單株抗體(Invitrogen公司,美國)、兔抗犬干擾素(rabbit anti-canine IFN)多株抗體、兔抗犬IgG(rabbit anti-canine IgG)多株抗體以及鼠抗犬干擾素(mouse anti-canine IFN)多株抗體作為初級抗體偵測犬融合干擾素;加入抗體後於室溫下作用1小時後,以TBST清洗六次,每次5分鐘,再加入已標記鹼性磷酸酶(AP)的山羊抗鼠(goat anti mouse)抗體(Sigma公司,美國)或是已標記鹼性磷酸酶(AP)的山羊抗兔(goat anti rabbit)抗體(Sigma公司,美國),作為次級抗體,該抗體事先以含有0.5% skin milk的TBST稀釋2000倍,於室溫下輕輕搖晃作用1小時後,以TBST清洗6次,每次5分鐘,再加AP受質NBT/BCIP(Bio-Rad)呈色約1~2分鐘後,倒掉顯色劑以清水沖洗終止呈色反應。 The protein on the colloid analyzed by the above SDS-PAGE was transferred onto a PVDF membrane, and the transferred PVDF membrane was placed in a blocking buffer (5% Skim milk dissolved in TBST) at room temperature. The effect was 1 hour to remove the non-specific reaction, and then washed three times with TBST (10 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.3% Tween 20) for 5 minutes each, followed by the addition of mouse anti-6xHis (mouse anti 6xHis) Monoclonal antibody (Invitrogen, USA), rabbit anti-canine IFN antibody, rabbit anti-canine IgG antibody, and mouse anti-canine interferon (mouse anti) -canine IFN) multiple antibodies were used as primary antibodies to detect canine fusion interferon; after addition of antibody, the cells were washed at room temperature for 1 hour, washed twice with TBST for 5 minutes, and then labeled with alkaline phosphatase (AP). Goat anti-mouse antibody (Sigma, USA) or goat anti-rabbit antibody (Sigma, USA) labeled with alkaline phosphatase (AP) as a secondary antibody, The antibody was diluted 2000 times with TBST containing 0.5% skin milk and gently shaken at room temperature. After 1 hour, the cells were washed 6 times with TBST for 5 minutes, and then added with AP-treated NBT/BCIP (Bio-Rad) for about 1 to 2 minutes. Then, the developer was poured off and rinsed with water to terminate the color reaction.

西方墨點法分析結果如圖一所示,帶有犬融合干擾素基因的大腸桿菌菌塊可被鼠抗6xHis(mouse anti 6xHis)單株抗體、兔抗犬干擾素(rabbit anti-canine IFN)多株抗體、兔抗犬IgG(rabbit anti-canine IgG)多株抗體以及鼠抗犬干擾素(mouse anti-canine IFN)多株抗體辨認,顯示該大腸桿菌含有犬融合干擾素,且本實施例之犬融合干擾素的蛋白質分子量約為51 KDa,與西方墨點法分析結果一致。 Western blot analysis results are shown in Figure 1. The E. coli bacterium with canine fusion interferon gene can be murine anti-6xHis (mouse anti 6xHis) monoclonal antibody, rabbit anti-canine IFN (rabbit anti-canine IFN) Multiple antibody, rabbit anti-canine IgG antibody and mouse anti-canine IFN antibody were identified, indicating that the Escherichia coli contains canine fusion interferon, and this embodiment The molecular weight of the dog fusion interferon is about 51 KDa, which is consistent with the Western blot analysis.

實施例五 犬融合干擾素(CIFNα2-IgG Fc)在真核生物中的表現Example 5 Performance of canine fusion interferon (CIFNα2-IgG Fc) in eukaryotes

將實施例三所得到的pcDNA3-CIFNα2-IgG Fc質體轉染至中國倉鼠卵巢細胞株(CHO cells)。取3 μg pcDNA3-CIFNα2-IgG Fc質體DNA加入無抗生素且無血清的VP培養基(Invitrogen)中震盪15秒(混合液A);另外將6 μg Lipofectamine試劑(Invitrogen)加入無抗生素且無血清的VP培養基中(混合液B),於室溫下作用5分鐘;接著將混合液A加入混合液B中,震盪15秒後於室溫下作用30分鐘。再將上述混合液(A+B)均勻加入經過隔夜培養的CHO細胞中,將細胞置於37℃、5% CO2培養箱內作用6小時後,去除混合液並加入含有10%胎牛血清(FBS)的F12培養基,將細胞置於37℃、5% CO2培養箱內繼續培養48小時。 The pcDNA3-CIFNα2-IgG Fc plastid obtained in Example 3 was transfected into Chinese hamster ovary cell line (CHO cells). 3 μg of pcDNA3-CIFNα2-IgG Fc plastid DNA was added to antibiotic-free and serum-free VP medium (Invitrogen) for 15 seconds (mixture A); 6 μg of Lipofectamine reagent (Invitrogen) was added to antibiotic-free and serum-free In VP medium (mixture B), it was allowed to act at room temperature for 5 minutes; then, the mixture A was added to the mixture B, shaken for 15 seconds, and then allowed to act at room temperature for 30 minutes. The above mixture (A+B) was uniformly added to the overnight cultured CHO cells, and the cells were placed in a 37 ° C, 5% CO 2 incubator for 6 hours, and then the mixture was removed and added with 10% fetal bovine serum. The F12 medium of (FBS) was cultured in a 37 ° C, 5% CO 2 incubator for 48 hours.

接著,以博菜黴素(Zeocin)篩選帶有犬融合干擾素基因的CHO細胞。將經過轉染的CHO細胞株繼代培養於24孔細胞培養盤中,以含有10% FBS、100 Units/ml青鏈黴素(Penicillin)、100 Units/ml鏈黴素(Streptomycin)和700 μg/ml博菜黴素(Zeocin)的F12培養基培養以進行篩選。接著將細胞以磷酸鹽緩衝液(PBS)清洗兩次後加入0.125%胰蛋白酶(Trypsin) 進行消化,待細胞圓化後,搖晃角瓶使細胞脫落,以培養基將細胞沖散懸浮,細胞培養於37℃、5% CO2培養箱,繼代兩次後,待活著的細胞約剩一至兩成時,將細胞培養基替換成含有50 μg/ml博菜黴素(Zeocin)以及10% FBS的F12培養基,待細胞恢復原來生長速度後,以間接免疫螢光染色(Indirect Immunofluorescence Assay,IFA)法以及西方墨點法確認細胞是否帶有犬融合干擾素(CIFN-IgG Fc)基因並且表現該重組蛋白。 Next, CHO cells harboring the canine fusion interferon gene were screened with Zeocin. The transfected CHO cell line was subcultured in a 24-well cell culture dish containing 10% FBS, 100 Units/ml Penicillin, 100 Units/ml Streptomycin, and 700 μg. /ml Bocomycin (Zeocin) was cultured in F12 medium for screening. Then, the cells were washed twice with phosphate buffered saline (PBS) and then added with 0.125% trypsin (Trypsin) for digestion. After the cells were rounded, the cells were shaken to shake off the cells, and the cells were dispersed and suspended in a medium, and the cells were cultured. In a 37 ° C, 5% CO 2 incubator, after subculture twice, when the cells to be alive remained about one to two percent, the cell culture medium was replaced with 50 μg/ml of Zeocin and 10% FBS. F12 medium, after the cells were restored to the original growth rate, the cells were confirmed by the Indirect Immunofluorescence Assay (IFA) method and the western blot method to confirm whether the cells contained the canine fusion interferon (CIFN-IgG Fc) gene and expressed the recombination. protein.

1. 以間接免疫螢光染色(IFA)法檢測豬融合重組型干擾素的表現 1. Detection of porcine fusion recombinant interferon by indirect immunofluorescence staining (IFA)

將轉染的CHO細胞接種在24孔細胞培養盤內(2×105 cells/well)以含10% FBS的F12培養基培養2天後,以PBS清洗三次後加入80%丙酮(-20℃),並於4℃下靜置30分鐘進行細胞固定,再以PBS清洗三次後,加入以PBS稀釋5000倍的rabbit anti canine IgG抗體(300 μl/well),置於37℃培養箱中避光作用30分鐘,再以PBS清洗三次後,每孔加入300 μl以PBS稀釋2000倍的goat anti rabbit-FITC抗體,置於37℃培養箱中避光作用30分鐘後,以螢光顯微鏡觀察。 The transfected CHO cells were seeded in a 24-well cell culture dish (2×10 5 cells/well) in F12 medium containing 10% FBS for 2 days, washed three times with PBS and then added with 80% acetone (-20 ° C). And fixed at 4 ° C for 30 minutes for cell fixation, and then washed three times with PBS, then added 5,000 times diluted rabbit anti canine IgG antibody (300 μl / well), placed in a 37 ° C incubator in the dark After washing for 30 minutes in PBS, 300 μl of goat anti rabbit-FITC antibody diluted 2000 times with PBS was added to each well, and placed in a 37 ° C incubator for 30 minutes in the dark, and then observed under a fluorescent microscope.

螢光顯微鏡觀察結果如圖二所示。經過博菜黴素(Zeocin)篩選後存活的CHO細胞帶有犬融合干擾素基因,以間接免疫螢光染色(IFA)法分析可觀察到螢光訊號(如圖二B所示);而轉染pcDNA3-CIFNα2載體的CHO細胞則沒有螢光訊號(如圖二A所示)。 The results of the fluorescence microscope observation are shown in Figure 2. The CHO cells surviving by Zeocin have a canine fusion interferon gene, and the fluorescent signal can be observed by indirect immunofluorescence staining (IFA) analysis (as shown in Figure 2B); CHO cells infected with the pcDNA3-CIFNα2 vector did not have a fluorescent signal (as shown in Figure 2A).

2. 以西方墨點法檢測豬融合重組型干擾素的表現2. Detection of porcine fusion recombinant interferon by Western blotting

西方墨點法的試驗步驟如實施例四所述,分別以鼠抗6xHis(mouse anti 6xHis)單株抗體(Invitrogen公司,美國)、兔抗犬干擾素(rabbit anti-canine IFN)多株抗體、兔抗犬IgG(rabbit anti-canine IgG)多株抗體以及鼠抗犬干擾素(mouse anti-canine IFN)多株抗體作為初級抗體偵測轉染的CHO細胞分泌物是否含有犬融合干擾素(CIFNα2-IgG Fc);並以已標記鹼性磷酸酶(AP)的山羊抗鼠(goat anti mouse)抗體(Sigma公司,美國)或是已標記鹼性磷酸酶(AP)的山羊抗兔(goat anti rabbit)抗體(Sigma公司,美國),作為次級抗體呈色;結果如圖三所示,帶有犬融合干擾素基因的CHO細胞分泌物可被鼠抗6xHis(mouse anti 6xHis)單株抗體、兔抗犬干擾素(rabbit anti-canine IFN)多株抗體、兔抗犬IgG(rabbit anti-canine IgG)多株抗體以及鼠抗犬干擾素(mouse anti-canine IFN)多株抗體辨認,顯示該CHO細胞含有犬融合干擾素,且本實施例之犬融合干擾素的蛋白質分子量約為51 KDa,與西方墨點法分析結果一致。 The experimental procedure of the Western blotting method was as described in Example 4, using mouse anti-6xHis (mouse anti 6xHis) monoclonal antibody (Invitrogen, USA), rabbit anti-canine interferon (rabbit). Anti-canine IFN) polyclonal antibody, rabbit anti-canine IgG antibody and mouse anti-canine IFN antibody were used as primary antibodies to detect transfection of CHO cells. Whether the animal contains canine fusion interferon (CIFNα2-IgG Fc); and goat anti-mouse antibody (Sigma, USA) or labeled alkaline phosphatase (labeled alkaline phosphatase (AP)) AP) goat anti-rabbit antibody (Sigma, USA) as a secondary antibody; results shown in Figure 3. CHO cell secretion with canine fusion interferon gene can be inhibited by mouse anti-6xHis (mouse anti 6xHis) monoclonal antibody, rabbit anti-canine IFN antibody, rabbit anti-canine IgG antibody and mouse anti-canine IFN) multiple antibody recognition, showing that the CHO cells contain canine fusion interferon, and the protein molecular weight of the canine fusion interferon of this example is about 51 KDa, which is consistent with the Western blot analysis.

實施例六 犬融合干擾素(CIFNα2-IgG Fc)誘導細胞產生抗病毒蛋白的活性分析Example 6 Activity analysis of canine fusion interferon (CIFNα2-IgG Fc) induced by cells to produce antiviral protein

1. 以犬干擾素(CIFNα2)、犬融合干擾素(CIFNα2-IgG Fc)及干擾素誘導劑(polyI:C)誘導狗腎臟細胞(MDCK)產生抗病毒蛋白1. Inducing antiviral protein in dog kidney cells (MDCK) by canine interferon (CIFNα2), canine fusion interferon (CIFNα2-IgG Fc) and interferon inducer (polyI:C)

首先將狗腎臟細胞(MDCK)種於6孔細胞培養盤內(4x105細胞/孔),於37℃、5% CO2條件下培養24小時,去除上清培養液後,以PBS清洗三次,根據不同組別分別加入100 μg犬干擾素α2(Canine IFNα2)、100 μg犬融合干擾素(CIFNα2-IgG Fc)及預混好的2.5 μg polyI:C與lipofectamine 2000混合液,於37℃、5% CO2條件下培養1小時,再補0.5% DMEM培養液至3ml,接著置於37℃、5% CO2的培養箱中培養,24小時後分別收集MDCK細胞總蛋白質及細胞總RNA進行分析(每個處理進行3重複)。 First, the dog kidney cells (MDCK) were seeded in a 6-well cell culture tray (4× 10 5 cells/well), cultured at 37° C. under 5% CO 2 for 24 hours, and the supernatant culture solution was removed and washed three times with PBS. Add 100 μg of canine interferon alpha 2 (Canine IFNα2), 100 μg of canine fusion interferon (CIFNα2-IgG Fc) and premixed 2.5 μg of polyI:C and lipofectamine 2000 mixture at 37 ° C, 5 Incubate for 1 hour under % CO 2 condition, supplement 0.5% DMEM medium to 3 ml, then incubate in a 37 ° C, 5% CO 2 incubator, and collect MDCK cell total protein and total cellular RNA for analysis after 24 hours. (3 repetitions per process).

2. 狗腎臟細胞(MDCK)總蛋白質的萃取2. Extraction of total protein from dog kidney cells (MDCK)

將上述各組MDCK細胞以PBS清洗三次,加入細胞裂解緩衝液(cell lysis buffer,100 μl/孔),並將細胞培養盤置於室溫下,以振盪器(shaker)以120 rpm均勻搖晃,搖晃時每隔3~5分鐘以手輕拍細胞培養盤使細胞脫落,收集細胞團塊及溶液,於4℃下以14000xg離心20分鐘,離心後分別取上清液(細胞質內蛋白)及下層細胞碎塊,分別置於-20℃備用。並以Protein Assay試劑盒(Bio-Rad公司)進行細胞質內總蛋白的定量。 Each of the above groups of MDCK cells was washed three times with PBS, and cell lysis buffer (100 μl/well) was added, and the cell culture plate was placed at room temperature, and shaken uniformly with a shaker at 120 rpm. When shaking, every 3 to 5 minutes, gently pat the cell culture plate to detach the cells, collect the cell mass and solution, centrifuge at 14000 xg for 20 minutes at 4 ° C, and centrifuge the supernatant (cytoplasmic protein) and the lower cells. The pieces were placed at -20 ° C for use. The total protein in the cytoplasm was quantified using the Protein Assay kit (Bio-Rad).

3. 狗腎臟細胞(MDCK)總RNA的萃取3. Extraction of total RNA from dog kidney cells (MDCK)

以核酸提取試劑盒(Nucleic Acid Extraction Kit I,FAVORGEN公司)萃取MDCK細胞總RNA。先加入570 μl VNE buffer將細胞團塊沖散並置於室溫作用10分鐘,再加入570 μl 99.9%乙醇,以振盪器(vortex)均勻混合,接著將室溫作用完畢之液體加入VNE column中,以8000xg離心1分鐘,去掉套管中的液體,加入400μl W1 buffer,以8000xg離心1分鐘,去除套管液體,加入600μl Wash buffer,以8000xg離心1分鐘,去除套管液體,再次加入600μl Wash buffer,以8000xg離心1分鐘,去除套管液體後再以13000xg離心3分鐘,去除套管液體,並加入50μl RNase free water回溶RNA,並以13000xg離心3分鐘後,將RNA置於-20℃備用。 The total RNA of MDCK cells was extracted with a nucleic acid extraction kit (Nucleic Acid Extraction Kit I, FAVORGEN). First add 570 μl VNE buffer to disperse the cell pellet and let it sit at room temperature for 10 minutes, then add 570 μl of 99.9% ethanol, mix it evenly with a vortex, and then add the liquid at room temperature to the VNE column. Centrifuge at 8000xg for 1 minute, remove the liquid in the cannula, add 400μl W1 buffer, centrifuge at 8000xg for 1 minute, remove the cannula fluid, add 600μl Wash buffer, centrifuge at 8000xg for 1 minute, remove the cannula fluid, and add 600μl Wash buffer again. Centrifuge at 8000xg for 1 minute, remove the cannula fluid, centrifuge at 13000xg for 3 minutes, remove the cannula fluid, add 50μl of RNase free water, and centrifuge at 13000xg for 3 minutes, then place the RNA at -20 °C. .

4. 以西方墨點法分析抗病毒蛋白的表現4. Analysis of the performance of antiviral proteins by Western blotting

西方墨點法的試驗步驟如實施例四所述;分別以0.05% TBST稀釋500倍的兔抗Mx蛋白(rabbit anti Mx1)抗體(GeneTex公司,美國)作為一級抗體,以及以標記有辣根过氧化物酶(HRP)的山羊抗兔(goat anti rabbit-HRP)抗體(以0.05% TBST配置)(KPL公司,美國)作為二級抗體,分別 偵測以CHO細胞表現的犬融合干擾素(CIFNα2-IgG Fc)及干擾素誘導劑(polyI:C)處理過的MDCK細胞內,是否含有抗病毒蛋白Mx蛋白。 The Western blot method was tested as described in Example 4; rabbit anti-Mx1 antibody (GeneTex, USA) diluted 500-fold with 0.05% TBST as primary antibody, and labeled with horseradish Oxidase (HRP) goat anti-rabbit (HRP) antibody (configured in 0.05% TBST) (KPL, USA) as secondary antibody, respectively It was detected whether the anti-viral protein Mx protein was contained in MDCK cells treated with canine fusion interferon (CIFNα2-IgG Fc) and interferon inducer (polyI:C) expressed in CHO cells.

結果如圖四所示,以CHO細胞表現的犬融合干擾素(CIFNα2-IgG Fc)及以干擾素誘導劑(polyI:C)處理過的MDCK細胞內皆含有Mx蛋白,且未處理組的MDCK細胞內沒有Mx蛋白的產生,顯示MDCK細胞經過本發明犬融合干擾素的處理後可以誘導抗病毒蛋白-Mx蛋白的產生(如圖四A所示)。 As a result, as shown in Fig. 4, MK protein was contained in canine fusion interferon (CIFNα2-IgG Fc) expressed by CHO cells and MDCK cells treated with interferon inducer (polyI: C), and MDCK of untreated group was obtained. There is no production of Mx protein in the cells, indicating that MDCK cells can induce the production of antiviral protein-Mx protein after treatment with the canine fusion interferon of the present invention (as shown in Figure 4A).

5. 以即時定量PCR(real-time RT-PCR)分析抗病毒蛋白的基因表現量5. Analysis of gene expression of antiviral proteins by real-time RT-PCR

以QuantiFast SYBR Green RT-PCR Handbook kit(QIAGEN公司,荷蘭)將上述所萃取之總RNA(20 ng)進行real-time RT-PCR,以分析抗病毒蛋白(Mx蛋白、PKR蛋白、OAS蛋白)的基因表現量。先將上述萃取之總RNA稀釋至5 ng/μl,接著依序加入12.5 μl 2x QuantiFast SYBR Green RT-PCR Master Mix、1 μl正向引子、1 μl反向引子、QuantiFast RT Mix、模板RNA及RNase-free water,進行real-time RT-PCR反應;各抗病毒蛋白的特異性引子序列如下: The total RNA extracted (20 ng) was subjected to real-time RT-PCR using a QuantiFast SYBR Green RT-PCR Handbook kit (QIAGEN, The Netherlands) to analyze antiviral proteins (Mx protein, PKR protein, OAS protein). Gene expression. The above extracted total RNA was diluted to 5 ng/μl, followed by 12.5 μl of 2x QuantiFast SYBR Green RT-PCR Master Mix, 1 μl forward primer, 1 μl reverse primer, QuantiFast RT Mix, template RNA and RNase. -free water for real-time RT-PCR reactions; the specific primer sequences for each antiviral protein are as follows:

Mx蛋白正向引子(Mx real-time/F):5’-ATGAGCCATGACGAGGTTTC-3’(SEQ ID NO:18) Mx protein forward primer (Mx real-time/F): 5'-ATGAGCCATGACGAGGTTTC-3' (SEQ ID NO: 18)

Mx蛋白反向引子(Mx real-time/R):5’-TTCAGGAGCCAGCTGTAGGT-3’(SEQ ID NO:19) Mx protein reverse primer (Mx real-time/R): 5'-TTCAGGAGCCAGCTGTAGGT-3' (SEQ ID NO: 19)

PKR蛋白正向引子(PKR real-time/F):5’-TGAGCAATGCCAGATACAGTG-3’(SEQ ID NO:20) PKR protein forward primer (PKR real-time/F): 5'-TGAGCAATGCCAGATACAGTG-3' (SEQ ID NO: 20)

PKR蛋白反向引子(PKR real-time/R):5’-CCATATCCACCTGAGCCAAT-3’(SEQ ID NO:21) PKR protein reverse primer (PKR real-time/R): 5'-CCATATCCACCTGAGCCAAT-3' (SEQ ID NO: 21)

OAS蛋白正向引子(OAS real-time/F):5’-AGCTCGAGAAACGAGGACAG-3’(SEQ ID NO:22) OAS protein forward primer (OAS real-time/F): 5'-AGCTCGAGAAACGAGGACAG-3' (SEQ ID NO: 22)

OAS蛋白反向引子(OAS real-time/R):5’-ACTTCAGGGTTGGGTCTGTG-3’(SEQ ID NO:23) OAS protein reverse primer (OAS real-time/R): 5'-ACTTCAGGGTTGGGTCTGTG-3' (SEQ ID NO: 23)

另以管家基因(housekeeping gene)肌動蛋白(actin)的表現量作為對照組:Actin蛋白正向引子(Actin real-time/F):5’-GCGCAAGTACTCTGTGTGGAT-3’(SEQ ID NO:24) In addition, the expression amount of actin of the housekeeping gene was used as a control group: Actin real-time/F: 5'-GCGCAAGTACTCTGTGTGGAT-3' (SEQ ID NO: 24)

Actin蛋白反向引子(Actin real-time/R):5’-GTCGTACTCCTGCTTGCTGAT-3’(SEQ ID NO:25) Actin protein reverse primer (Actin real-time/R): 5'-GTCGTACTCCTGCTTGCTGAT-3' (SEQ ID NO: 25)

Real-time RT-PCR反應條件為:反轉錄反應(Reverse transcription)50℃ 10分鐘,接著進行PCR起始步驟95℃ 5分鐘,變性(Denaturation)95℃ 10秒,黏合/延伸(annealing/extension)60℃ 30秒,共35個循環後完成反應,實驗結果則代人下列公式進行計算,並以Sigmastat軟體進行分析。公式如下:2-△Ct=2-{(CT gene of interest-CT internal control)-(CT gene of interest-CT intemal control)}各抗病毒蛋白的real-time RT-PCR結果分別如圖五至圖七所示。 Real-time RT-PCR reaction conditions were: Reverse transcription 50 ° C for 10 minutes, followed by PCR initiation step 95 ° C for 5 minutes, Denaturation (95 ° C for 10 seconds, bonding / extension (annealing / extension) The reaction was completed after a total of 35 cycles at 60 ° C for 30 seconds. The results of the experiment were calculated by the following formula and analyzed by Sigmastat software. The formula is as follows: 2 -△Ct =2 -{(CT gene of interest-CT internal control)-(CT gene of interest-CT intemal control)} The real-time RT-PCR results of each antiviral protein are shown in Figure 5 to Figure 7 shows.

如圖五所示,分別以20 ng大腸桿菌表現純化的犬干擾素α2(CIFNα2)、犬融合干擾素(CIFNα2-IgG Fc)及CHO細胞表現純化的犬融合干擾素(CIFNα2-IgG Fc)處理MDCK細胞24小時後,以CHO細胞表現純化的犬融合干擾素(CIFNα2-IgG Fc)處理組所被誘發的Mx蛋白基因表現量最高,為以大腸桿菌表現純化的犬干擾素α2(CIFNα2)處理組的Mx蛋白基因表現量的7.9倍,且約為未處理組(負對照組)的Mx蛋白基因表現量的41倍(p<0.05)。 As shown in Figure 5, purified canine interferon alpha 2 (CIFNα2), canine fusion interferon (CIFNα2-IgG Fc) and CHO cells were purified by canine fusion interferon (CIFNα2-IgG Fc). After 24 hours of MDCK cells, the Mx protein gene induced by CHO cell-purified canine fusion interferon (CIFNα2-IgG Fc) treatment group was the highest, which was treated with canine interferon α2 (CIFNα2) purified by E. coli. The Mx protein gene expression of the group was 7.9 times, and was about 41 times that of the Mx protein gene in the untreated group (negative control group) ( p < 0.05).

如圖六所示,分別以20 ng大腸桿菌表現純化的犬干擾素α2(CIFNα2)、犬融合干擾素(CIFNα2-IgG Fc)及CHO細胞表現純化的犬融合干擾素(CIFNα2-IgG Fc)處理MDCK細胞24小時後,以大腸桿菌表現純化的犬 干擾素α2(CIFNα2)處理組被誘發的PKR蛋白基因表現量最高;而相較於未處理組(負對照組)的PKR蛋白基因表現量,以大腸桿菌表現純化的犬融合干擾素(CIFNα2-IgG Fc)、CHO細胞表現純化的犬融合干擾素(CIFNα2-IgG Fc)以及干擾素誘導劑polyI:C處理的MDCK細胞內仍有誘導PKR蛋白的基因表現(p<0.05)。 As shown in Fig. 6, purified canine interferon α2 (CIFNα2), canine fusion interferon (CIFNα2-IgG Fc) and CHO cells were purified by canine fusion interferon (CIFNα2-IgG Fc). After 24 hours of MDCK cells, the PKR protein gene was induced to the highest in the canine interferon alpha 2 (CIFNα2)-treated group, while the PKR protein gene expression was higher in the untreated group (negative control group). Purified PKR protein was also expressed in E. coli-expressing canine fusion interferon (CIFNα2-IgG Fc), CHO cells expressing purified canine fusion interferon (CIFNα2-IgG Fc), and interferon inducer polyI:C-treated MDCK cells. Gene performance ( p <0.05).

如圖七所示,分別以20 ng大腸桿菌表現純化的犬干擾素α2(CIFNα2)、犬融合干擾素(CIFNα2-IgG Fc)及CHO細胞表現純化的犬融合干擾素(CIFNα2-IgG Fc)處理MDCK細胞24小時後,以CHO細胞表現純化的犬融合干擾素(CIFNα2-IgG Fc)處理組被誘發的OAS蛋白基因表現量最高;而相較於未處理組(負對照組)的OAS蛋白基因表現量,以大腸桿菌表現純化的犬干擾素α2(CIFNα2)、犬融合干擾素(CIFNα2-IgG Fc)以及干擾素誘導劑polyI:C處理的MDCK細胞內仍有誘導OAS蛋白的基因表現(p<0.05)。 As shown in Figure 7, purified canine interferon alpha 2 (CIFNα2), canine fusion interferon (CIFNα2-IgG Fc) and CHO cells were purified by canine fusion interferon (CIFNα2-IgG Fc). After 24 hours of MDCK cells, the purified canine fusion interferon (CIFNα2-IgG Fc)-treated group showed the highest OAS protein gene expression; whereas the OAS protein gene was compared to the untreated group (negative control group). The amount of expression, E. coli expression purified canine interferon alpha 2 (CIFNα2), canine fusion interferon (CIFNα2-IgG Fc) and interferon inducer polyI:C-treated MDCK cells still have gene expression of induced OAS protein ( p <0.05).

由上述實施例可知,本發明所提供之犬融合干擾素可以誘導犬細胞產生抗病毒蛋白的表現,進而達到抗病毒的效果。 It can be seen from the above examples that the canine fusion interferon provided by the invention can induce the expression of antiviral proteins in canine cells, thereby achieving the antiviral effect.

上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The detailed description of the preferred embodiments of the present invention is intended to be limited to the scope of the invention, and is not intended to limit the scope of the invention. The patent scope of this case.

綜上所述,本案所揭露之技術特徵已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。 In summary, the technical features disclosed in this case have fully complied with the statutory invention patent requirements of novelty and progressiveness. If you apply in accordance with the law, you are requested to approve the application for this invention patent to encourage invention.

<110> 福又達生物科技股份有限公司 <110> Fuda Biotech Co., Ltd.

<120> 犬融合干擾素 <120> Canine fusion interferon

<130> P13-0200 <130> P13-0200

<150> CN201210319688.0 <150> CN201210319688.0

<151> 2012-09-03 <151> 2012-09-03

<160> 25 <160> 25

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 561 <211> 561

<212> DNA <212> DNA

<213> 犬(Canis familiaris) <213> Canine ( Canis familiaris )

<400> 1 <400> 1

<210> 2 <210> 2

<211> 187 <211> 187

<212> PRT <212> PRT

<213> 犬(Canis familiaris) <213> Canine ( Canis familiaris )

<400> 2 <400> 2

<210> 3 <210> 3

<211> 711 <211> 711

<212> DNA <212> DNA

<213> 犬(Canis familiaris) <213> Canine ( Canis familiaris )

<400> 3 <400> 3

<210> 4 <210> 4

<211> 237 <211> 237

<212> PRT <212> PRT

<213> 犬(Canis familiaris) <213> Canine ( Canis familiaris )

<400> 4 <400> 4

<210> 5 <210> 5

<211> 48 <211> 48

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬融合干擾素連接子DNA序列 <223> Canine fusion interferon linker DNA sequence

<400> 5 <400> 5

<210> 6 <210> 6

<211> 16 <211> 16

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬融合干擾素連接子胺基酸序列 <223> Canine fusion interferon linker amino acid sequence

<400> 6 <400> 6

<210> 7 <210> 7

<211> 1320 <211> 1320

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬融合干擾素DNA序列 <223> Canine fusion interferon DNA sequence

<400> 7 <400> 7

<210> 8 <210> 8

<211> 440 <211> 440

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬融合干擾素胺基酸序列 <223> Canine fusion interferon amino acid sequence

<400> 8 <400> 8

<210> 9 <210> 9

<211> 26 <211> 26

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬干擾素α2正向引子序列 <223> Canine interferon alpha 2 forward primer sequence

<400> 9 <400> 9

<210> 10 <210> 10

<211> 24 <211> 24

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬干擾素α2反向引子序列 <223> Canine interferon alpha 2 reverse primer sequence

<400> 10 <400> 10

<210> 11 <210> 11

<211> 29 <211> 29

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬IgG Fc片段正向引子序列 <223> Canine IgG Fc fragment forward primer sequence

<400> 11 <400> 11

<210> 12 <210> 12

<211> 32 <211> 32

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬IgG Fc片段反向引子序列 <223> Canine IgG Fc fragment reverse primer sequence

<400> 12 <400> 12

<210> 13 <210> 13

<211> 26 <211> 26

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬干擾素α2正向引子序列 <223> Canine interferon alpha 2 forward primer sequence

<400> 13 <400> 13

<210> 14 <210> 14

<211> 38 <211> 38

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬干擾素α2及連接子反向引子序列 <223> Canine interferon alpha 2 and linker reverse primer sequences

<400> 14 <400> 14

<210> 15 <210> 15

<211> 56 <211> 56

<212> DNA <212> DNA

<213> Artificial Sequence <213> Artificial Sequence

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬IgG Fc片段及連接子正向引子序列 <223> Canine IgG Fc fragment and linker forward primer sequence

<400> 15 <400> 15

<210> 16 <210> 16

<211> 32 <211> 32

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬IgG Fc片段反向引子序列 <223> Canine IgG Fc fragment reverse primer sequence

<400> 16 <400> 16

<210> 17 <210> 17

<211> 26 <211> 26

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 犬融合干擾素反向引子序列 <223> Canine fusion interferon reverse primer sequence

<400> 17 <400> 17

<210> 18 <210> 18

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> Mx蛋白即時定量PCR正向引子序列 <223> Mx protein real-time quantitative PCR forward primer sequence

<400> 18 <400> 18

<210> 19 <210> 19

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> Mx蛋白即時定量PCR反向引子序列 <223> Mx protein real-time quantitative PCR reverse primer sequence

<400> 19 <400> 19

<210> 20 <210> 20

<211> 21 <211> 21

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> PKR蛋白即時定量PCR正向引子序列 <223> PKR protein real-time quantitative PCR forward primer sequence

<400> 20 <400> 20

<210> 21 <210> 21

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> PKR蛋白即時定量PCR反向引子序列 <223> PKR protein real-time quantitative PCR reverse primer sequence

<400> 21 <400> 21

<210> 22 <210> 22

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> OAS蛋白即時定量PCR正向引子序列 <223> OAS protein real-time quantitative PCR forward primer sequence

<400> 22 <400> 22

<210> 23 <210> 23

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> OAS蛋白即時定量PCR反向引子序列 <223> OAS protein real-time quantitative PCR reverse primer sequence

<400> 23 <400> 23

<210> 24 <210> 24

<211> 21 <211> 21

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 微管蛋白即時定量PCR正向引子序列 <223> Tubulin real-time quantitative PCR forward primer sequence

<400> 24 <400> 24

<210> 25 <210> 25

<211> 21 <211> 21

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 微管蛋白即時定量PCR反向引子序列 <223> Tubulin real-time PCR reverse primer sequence

<400> 25 <400> 25

Claims (9)

一種犬融合干擾素,包含一犬干擾素以及一犬免疫球蛋白Fc片段。 A canine fusion interferon comprising a canine interferon and a canine immunoglobulin Fc fragment. 如申請專利範圍第1項所述之犬融合干擾素,其中該犬干擾素以及該犬免疫球蛋白Fc片段是由一連接子所連接。 The canine fusion interferon of claim 1, wherein the canine interferon and the canine immunoglobulin Fc fragment are linked by a linker. 如申請專利範圍第1或2項所述之犬融合干擾素,其中該犬干擾素具有如SEQ ID No:2所示之序列。 The canine fusion interferon of claim 1 or 2, wherein the canine interferon has the sequence set forth in SEQ ID No: 2. 如申請專利範圍第1或2項所述之犬融合干擾素,其中該犬免疫球蛋白Fc片段具有如SEQ ID No:4所示之序列。 The canine fusion interferon of claim 1 or 2, wherein the canine immunoglobulin Fc fragment has the sequence set forth in SEQ ID No: 4. 如申請專利範圍第2項所述之犬融合干擾素,其中該連接子具有如SEQ ID No:6所示之序列。 The canine fusion interferon of claim 2, wherein the linker has the sequence set forth in SEQ ID No: 6. 如申請專利範圍第2項所述之犬融合干擾素,其中該犬融合干擾素具有如SEQ ID No:8所示之序列。 The canine fusion interferon of claim 2, wherein the canine fusion interferon has the sequence set forth in SEQ ID No: 8. 一種編碼如申請專利範圍第1項所述之犬融合干擾素的多核苷酸。 A polynucleotide encoding a canine fusion interferon as described in claim 1 of the patent application. 如申請專利範圍第7項所述之多核苷酸,其中該多核苷酸具有如SEQ ID No:7所示之序列。 The polynucleotide of claim 7, wherein the polynucleotide has the sequence set forth in SEQ ID No: 7. 一種如申請專利範圍第1項所述之犬融合干擾素在製備犬抗病毒藥物中的用途。 A use of canine fusion interferon as described in claim 1 of the patent application for the preparation of a canine antiviral drug.
TW102131708A 2012-09-03 2013-09-03 Canine fusion interferon TW201410707A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210319688.0A CN103665166A (en) 2012-09-03 2012-09-03 Dog fusion interferon

Publications (1)

Publication Number Publication Date
TW201410707A true TW201410707A (en) 2014-03-16

Family

ID=50304026

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102131708A TW201410707A (en) 2012-09-03 2013-09-03 Canine fusion interferon

Country Status (2)

Country Link
CN (1) CN103665166A (en)
TW (1) TW201410707A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3458585A4 (en) * 2016-05-20 2019-10-30 President and Fellows of Harvard College Gene therapy methods for age-related diseases and conditions
CN106282279A (en) * 2016-08-25 2017-01-04 安徽九川生物科技有限公司 A kind of canine recombinant interferon-ALPHA standard substance, its preparation method and titration method
CN107217068A (en) * 2017-07-18 2017-09-29 哈尔滨紫霞生物科技有限公司 A kind of method for improving canine recombinant interferon alpha fusion protein antiviral activity
CN107129994A (en) * 2017-07-18 2017-09-05 哈尔滨紫霞生物科技有限公司 A kind of method for improving canine recombinant interferon beta fusion protein antiviral activity
CN107177614A (en) * 2017-07-18 2017-09-19 哈尔滨紫霞生物科技有限公司 A kind of method for improving canine recombinant interferon gamma fusion protein antiviral activity
CN110551211B (en) * 2018-05-30 2022-05-24 福又达生物科技股份有限公司 Detection kit containing anti-enterovirus 71 type VP1 protein monoclonal antibody
CN111233998B (en) * 2018-08-02 2021-10-19 中国农业科学院北京畜牧兽医研究所 Canine interferon CaIFN-lambda mutant and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026779A1 (en) * 1999-10-15 2003-02-06 Liming Yu Treatment of tumors and viral infections with a hybrid conjugate of interferon and an immunoglobulin Fc
CN101184771A (en) * 2005-05-26 2008-05-21 先灵公司 Interferon-igg fusion
CN102094034A (en) * 2009-12-09 2011-06-15 泰州新生源生物医药有限公司 Process for purifying recombinant human Fc fusion pegylated interferon
CN101967196A (en) * 2010-11-10 2011-02-09 夏志南 Interferon fusion protein, preparation thereof and application thereof
CN102628062B (en) * 2012-04-13 2014-11-19 中国农业科学院生物技术研究所 Expression method of animal alpha interferon and gamma interferon

Also Published As

Publication number Publication date
CN103665166A (en) 2014-03-26

Similar Documents

Publication Publication Date Title
TW201410707A (en) Canine fusion interferon
Skjesol et al. Structural and functional studies of STAT1 from Atlantic salmon (Salmo salar)
Huang et al. Fish TRIM8 exerts antiviral roles through regulation of the proinflammatory factors and interferon signaling
CN101918440B (en) Use of avian cytokines and genetic sequences encoding the avian cytokines
Praveen et al. Constitutive expression of tumor necrosis factor-alpha in cytotoxic cells of teleosts and its role in regulation of cell-mediated cytotoxicity
Zhang et al. Tongue sole (Cynoglossus semilaevis) prothymosin alpha: Cytokine-like activities associated with the intact protein and the C-terminal region that lead to antiviral immunity via Myd88-dependent and-independent pathways respectively
Lim et al. Co-administration of avian influenza virus H5 plasmid DNA with chicken IL-15 and IL-18 enhanced chickens immune responses
Gibbert et al. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease
Fu et al. IFN-γ in turtle: conservation in sequence and signalling and role in inhibiting iridovirus replication in Chinese soft-shelled turtle Pelodiscus sinensis
Wu et al. Interaction of IRF9 and STAT2 synergistically up-regulates IFN and PKR transcription in Ctenopharyngodon idella
Perez-Martin et al. Type III interferon protects swine against foot-and-mouth disease
He et al. Molecular cloning of Y-Box binding protein-1 from mandarin fish and its roles in stress-response and antiviral immunity
Zhang et al. Grouper STAT1a is involved in antiviral immune response against iridovirus and nodavirus infection
Zhang et al. DDX1 from Cherry valley duck mediates signaling pathways and anti-NDRV activity
Jiang et al. Expression regulation and functional characterization of a novel interferon inducible gene Gig2 and its promoter
Li et al. Grouper Atg12 negatively regulates the antiviral immune response against Singapore grouper iridovirus (SGIV) infection
Lu et al. Two IFNGR1 homologues in Tetraodon nigroviridis: origin, expression analysis and ligand-binding preference
WO2019029081A1 (en) Application of interferon κ in the preparation of anti enveloped virus drugs
Yin et al. Synergistic effects of adjuvants interferon-γ and levamisole on DNA vaccination against infection with Newcastle disease virus
CN114989266B (en) African swine fever virus pA104R protein immunosuppression related amino acid site and application thereof
CN109331171B (en) Preparation method of plasmodium protein and application of plasmodium protein in anti-tumor aspect
CN110716035B (en) Echinococcosis-resistant high-throughput drug screening method based on echinococcosis tubulin as target spot
Zhang et al. Grouper USP12 exerts antiviral activity against nodavirus infection
CN107096015A (en) The antivirus action of novel antiviral molecule Kdm6a a kind of and its application
CN112370524A (en) Antiviral composition and preparation method and application thereof