TW201408986A - Cooling plate and water cooling heat dissipation device having the same - Google Patents
Cooling plate and water cooling heat dissipation device having the same Download PDFInfo
- Publication number
- TW201408986A TW201408986A TW102118977A TW102118977A TW201408986A TW 201408986 A TW201408986 A TW 201408986A TW 102118977 A TW102118977 A TW 102118977A TW 102118977 A TW102118977 A TW 102118977A TW 201408986 A TW201408986 A TW 201408986A
- Authority
- TW
- Taiwan
- Prior art keywords
- plate
- cooling
- water
- heat
- plate body
- Prior art date
Links
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本案是有關一種致冷板與具有致冷板的水冷散熱裝置。 The case relates to a refrigerating plate and a water-cooling heat dissipating device having a refrigerating plate.
電子元件於工作中常會伴隨高溫,若不將熱有效排除,輕則導致當機的狀況,嚴重時則可能導致燒毀。一般來說,用來解決電子晶片的散熱問題通常是於電子晶片上設置散熱裝置,並藉由散熱裝置的風扇、熱管、具有鰭片的散熱塊(heat sink)、致冷板、或水冷模組等元件來排除晶片工作時產生的熱。 Electronic components often accompany high temperatures during operation. If the heat is not effectively removed, it may cause a crash, and in severe cases, it may cause burns. In general, the problem of heat dissipation for an electronic chip is usually to provide a heat sink on the electronic chip, and a heat sink, a heat pipe, a heat sink with fins, a cooling plate, or a water-cooled mold. Groups and other components to eliminate the heat generated when the wafer is working.
在組裝散熱裝置時,可將散熱塊設置於晶片的表面上,並利用風扇、熱管或水冷模組把散熱塊的熱排除。又或者,直接將厚度小於散熱塊的致冷板貼附於晶片上,也具有散熱的效果,但散熱效果並不及散熱塊。 When the heat sink is assembled, the heat sink can be disposed on the surface of the wafer, and the heat of the heat sink can be removed by using a fan, a heat pipe or a water cooling module. Or, directly attaching the cooling plate having a thickness smaller than the heat dissipation block to the wafer, and also having the effect of dissipating heat, but the heat dissipation effect is not as good as the heat dissipation block.
此外,習知散熱塊的整體厚度高,對於電子產品薄型化的需求造成不便。而習知致冷板雖然厚度薄,但其結構為實心的金屬板,與空氣接觸的面積小,且僅能把晶片 的熱藉由傳導的方式傳至整個致冷板板體,無熱儲存的能力,散熱效果有限。 In addition, the conventional overall thickness of the heat sink block is high, which is inconvenient for the demand for thinning of the electronic product. Although the conventional cold plate is thin, its structure is a solid metal plate, and the area in contact with air is small, and only the wafer can be used. The heat is transferred to the entire plate of the cold plate by conduction, and the heat storage capacity is limited, and the heat dissipation effect is limited.
本案揭示一種致冷板包含板體與工作流體。板體其內具有的密閉空間。工作流體容置於密閉空間中。 The present disclosure discloses a cooling plate comprising a plate body and a working fluid. The sealed space inside the plate body. The working fluid is placed in a confined space.
本案揭示一種水冷散熱裝置包含致冷板與水冷模組。致冷板包含板體與工作流體。板體其內具有真空的密閉空間。工作流體容置於密閉空間中。水冷模組連接於致冷板。 The present disclosure discloses a water-cooling heat sink comprising a cooling plate and a water cooling module. The cooling plate contains the plate body and the working fluid. The plate body has a closed space with a vacuum inside. The working fluid is placed in a confined space. The water cooling module is connected to the cooling plate.
由於本案之致冷板具有工作流體,且工作流體容置於板體的密閉空間中,因此當致冷板設置於熱源上時,熱源產生的熱不僅可藉由板體導熱,且板體內的工作流體還可吸收熱而產生相變化,使得致冷板同時具有熱擴散與熱儲存的能力。此外,當水冷模組連接於致冷板時,致冷板與冷卻液皆位於致冷板連接頭的空腔中,因此可降低致冷板的溫度。 Since the cold plate of the present case has a working fluid and the working fluid is accommodated in the sealed space of the plate body, when the cooling plate is disposed on the heat source, the heat generated by the heat source can not only be thermally conductive through the plate body, but also in the plate body. The working fluid can also absorb heat to produce a phase change such that the refrigerated plate has both the ability to thermally diffuse and thermally store. In addition, when the water-cooling module is connected to the cooling plate, both the cooling plate and the cooling liquid are located in the cavity of the cooling plate connector, so that the temperature of the cooling plate can be lowered.
100‧‧‧致冷板 100‧‧‧ cold plate
100a‧‧‧致冷板 100a‧‧‧ cold plate
110‧‧‧板體 110‧‧‧ board
112‧‧‧密閉空間 112‧‧‧Confined space
114‧‧‧外表面 114‧‧‧ outer surface
120‧‧‧工作流體 120‧‧‧Working fluid
122‧‧‧內表面 122‧‧‧ inner surface
124‧‧‧內表面 124‧‧‧ inner surface
132‧‧‧第一凹凸結構 132‧‧‧First concave structure
134‧‧‧第二凹凸結構 134‧‧‧second concave structure
136‧‧‧第二凹凸結構 136‧‧‧second concave structure
200‧‧‧水冷散熱裝置 200‧‧‧Water cooling device
210‧‧‧水冷模組 210‧‧‧Water cooling module
212‧‧‧致冷板連接頭 212‧‧‧Temperature plate connector
213‧‧‧空腔 213‧‧‧ cavity
214‧‧‧水汞 214‧‧‧ Mercury
215‧‧‧冷卻液 215‧‧‧ coolant
216‧‧‧排熱部 216‧‧‧Hot Department
218a‧‧‧第一連接管 218a‧‧‧First connecting tube
218b‧‧‧第二連接管 218b‧‧‧Second connection tube
220‧‧‧風扇 220‧‧‧fan
310‧‧‧熱源 310‧‧‧heat source
320‧‧‧電路板 320‧‧‧ boards
2-2‧‧‧線段 2-2‧‧‧ segments
5-5‧‧‧線段 5-5‧‧‧ segments
D1‧‧‧方向 D1‧‧ Direction
D2‧‧‧方向 D2‧‧ Direction
D3‧‧‧方向 D3‧‧ Direction
第1圖繪示根據本案一實施方式之致冷板的立體圖。 FIG. 1 is a perspective view of a cold plate according to an embodiment of the present invention.
第2圖繪示第1圖之致冷板沿線段2-2的剖面圖。 Figure 2 is a cross-sectional view of the cold plate of Figure 1 taken along line 2-2.
第3圖繪示第2圖之致冷板使用於熱源時的剖面圖。 Fig. 3 is a cross-sectional view showing the cold plate of Fig. 2 used in a heat source.
第4圖繪示根據本案另一實施方式之致冷板的立體圖。 4 is a perspective view of a cold plate according to another embodiment of the present invention.
第5圖繪示第4圖之致冷板沿線段5-5的剖面圖。 Figure 5 is a cross-sectional view of the cold plate of Figure 4 taken along line 5-5.
第6圖繪示第5圖之致冷板使用於熱源時的剖面圖。 Fig. 6 is a cross-sectional view showing the cold plate of Fig. 5 used in a heat source.
第7圖繪示根據本案一實施方式之水冷散熱裝置的分解圖。 FIG. 7 is an exploded view of a water-cooling heat sink according to an embodiment of the present invention.
第8圖繪示第7圖之水冷散熱裝置使用於熱源時的剖面圖。 Figure 8 is a cross-sectional view showing the water-cooling heat sink of Figure 7 used in a heat source.
以下將以圖式揭露本案之多數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本案。也就是說,在本案部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。 Numerous embodiments of the present invention are disclosed in the following figures, and for the sake of clarity, many practical details will be described in the following description. However, it should be understood that these practical details are not applied to limit the case. That is to say, in some implementations of this case, these practical details are not necessary. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.
第1圖繪示根據本案一實施方式之致冷板100的立體圖。第2圖繪示第1圖之致冷板100沿線段2-2的剖面圖。同時參閱第1圖與第2圖,致冷板100包含板體110與工作流體120。板體110為空心的結構,其內具有真空的密閉空間112。工作流體120容置於密閉空間112中。其中,板體110的材質可以為銅、鋁或其他具高熱傳係數的金屬。工作流體120可以為水或酒精,但並不以水或酒精為限。 FIG. 1 is a perspective view of a cold plate 100 according to an embodiment of the present invention. 2 is a cross-sectional view of the cold plate 100 of FIG. 1 taken along line 2-2. Referring also to FIGS. 1 and 2, the refrigerating plate 100 includes a plate body 110 and a working fluid 120. The plate body 110 has a hollow structure with a vacuum confined space 112 therein. The working fluid 120 is housed in the enclosed space 112. The material of the plate body 110 may be copper, aluminum or other metal with a high heat transfer coefficient. The working fluid 120 can be water or alcohol, but is not limited to water or alcohol.
在本實施方式中,密閉空間112可經由抽真空製程而呈真空狀態,使工作流體120的沸點降低。其中,真空密閉空間112之壓力範圍包含低真空(760至100 torr)、中 真空(100至1 torr)、中高真空(1至10-3 torr)與高真空(10-3至10-7 torr)。實際上,真空密閉空間112之壓力會根據熱源310的瓦數或工作流體的性質來做調整。在以下敘述中,將說明上述致冷板100使用時的狀態。 In the present embodiment, the sealed space 112 can be in a vacuum state by an evacuation process to lower the boiling point of the working fluid 120. Wherein, the pressure range of the vacuum confined space 112 includes a low vacuum (760 to 100 torr), a medium vacuum (100 to 1 torr), a medium high vacuum (1 to 10 -3 torr), and a high vacuum (10 -3 to 10 -7 torr) ). In fact, the pressure of the vacuum confined space 112 will be adjusted depending on the wattage of the heat source 310 or the nature of the working fluid. In the following description, the state when the above-described cooling plate 100 is used will be described.
第3圖繪示第2圖之致冷板100使用於熱源310時的剖面圖。如圖所示,熱源310設置於電路板320上。熱源310可以為中央處理器(Central Processing Unit;CPU)、影像晶片或其他會發熱的電子元件。當致冷板100設置於熱源310上時,熱源310產生的熱可藉由板體110導熱。同時,板體110內的工作流體120可吸收板體110的熱而產生相變化。致冷板100靠近熱源310的一側為高溫處(例如致冷板100下側),遠離熱源310的一側為低溫處(例如致冷板100上側)。 FIG. 3 is a cross-sectional view showing the cold plate 100 of FIG. 2 used in the heat source 310. As shown, the heat source 310 is disposed on the circuit board 320. The heat source 310 can be a central processing unit (CPU), an imaging chip, or other electronic components that generate heat. When the cooling plate 100 is disposed on the heat source 310, the heat generated by the heat source 310 can be thermally conducted by the plate body 110. At the same time, the working fluid 120 in the plate body 110 can absorb the heat of the plate body 110 to cause a phase change. The side of the cooling plate 100 near the heat source 310 is at a high temperature (for example, the lower side of the cooling plate 100), and the side away from the heat source 310 is at a low temperature (for example, the upper side of the cooling plate 100).
舉例來說,當工作流體120為水時,靠近內表面122的液態水受熱會形成水蒸氣,並往方向D1移動至內表面124。由於內表面124的溫度低於內表面122的溫度,水蒸氣可於低溫的內表面124凝結成液態水。在內表面124凝結的液態水累積一定體積的水量後,會受重力的影響往方向D2滴落回內表面122。如此一來,工作流體120便可藉由不斷的相變化來穩定熱源310的溫度,避免熱源310過熱而損壞。 For example, when the working fluid 120 is water, the liquid water near the inner surface 122 is heated to form water vapor and moves to the inner surface 124 in the direction D1. Since the temperature of the inner surface 124 is lower than the temperature of the inner surface 122, the water vapor can condense into liquid water at the low temperature inner surface 124. After the liquid water condensed on the inner surface 124 accumulates a certain volume of water, it is dripped back to the inner surface 122 in the direction D2 by the influence of gravity. In this way, the working fluid 120 can stabilize the temperature of the heat source 310 by continuous phase change, and prevent the heat source 310 from being overheated and damaged.
也就是說,致冷板100除了具有熱擴散功能,還具有熱儲存的能力。 That is to say, the cooling plate 100 has the ability of heat storage in addition to the heat diffusion function.
第4圖繪示根據本案另一實施方式之致冷板100a 的立體圖。第5圖繪示第4圖之致冷板100a沿線段5-5的剖面圖。同時參閱第4圖與第5圖,致冷板100a包含板體110與工作流體120。與第1圖、第2圖實施方式不同的地方在於:板體110背對密閉空間112的外表面114具有多數個第一凹凸結構132,且板體110朝向密閉空間112的內表面122、124分別具有多數個第二凹凸結構134、136。其中,第一凹凸結構132與第二凹凸結構134、136可以為凸肋、溝槽、網格或上述之組合。第一凹凸結構132、第二凹凸結構134、136可直接由板體110加工(例如沖壓)而成,或藉由焊接、黏合等方式固定於板體110上,並不以限制本案。 4 is a diagram showing a cold plate 100a according to another embodiment of the present disclosure. Stereogram. Figure 5 is a cross-sectional view of the cold plate 100a of Figure 4 taken along line 5-5. Referring also to FIGS. 4 and 5, the refrigerating plate 100a includes the plate body 110 and the working fluid 120. The difference from the first embodiment and the second embodiment is that the outer surface 114 of the plate body 110 facing the closed space 112 has a plurality of first concave-convex structures 132, and the plate body 110 faces the inner surfaces 122 and 124 of the closed space 112. There are a plurality of second concave-convex structures 134, 136, respectively. The first concave-convex structure 132 and the second concave-convex structures 134, 136 may be convex ribs, grooves, meshes or a combination thereof. The first concave-convex structure 132 and the second concave-convex structures 134 and 136 may be directly processed (for example, stamped) from the plate body 110, or fixed to the plate body 110 by welding, bonding, or the like, and are not limited to the present invention.
在以下敘述中,將說明上述致冷板100a使用時的狀態。 In the following description, the state when the above-described cooling plate 100a is used will be described.
第6圖繪示第5圖之致冷板100a使用於熱源310時的剖面圖。當致冷板100a設置於熱源310上時,熱源310產生的熱可藉由板體110導熱。同時,板體110內的工作流體120可吸收板體110的熱而產生相變化。在本實施方式中,第二凹凸結構134可增加內表面122接觸液態工作流體120的面積,可提升板體110高溫處傳導至液態工作流體120的熱傳效率,使液態工作流體120的蒸發速度加快。此外,第二凹凸結構136可增加內表面124接觸氣態工作流體120的面積,可提升板體110低溫處傳導至氣態工作流體120的熱傳效率,使氣態工作流體120的冷凝速度加快。 FIG. 6 is a cross-sectional view showing the heat sink 310 of FIG. 5 used in the heat source 310. When the cooling plate 100a is disposed on the heat source 310, the heat generated by the heat source 310 can be thermally conducted by the plate body 110. At the same time, the working fluid 120 in the plate body 110 can absorb the heat of the plate body 110 to cause a phase change. In the present embodiment, the second concave-convex structure 134 can increase the area of the inner surface 122 contacting the liquid working fluid 120, and can improve the heat transfer efficiency of the plate body 110 to the liquid working fluid 120 at a high temperature, and the evaporation rate of the liquid working fluid 120. accelerate. In addition, the second concave-convex structure 136 can increase the area of the inner surface 124 contacting the gaseous working fluid 120, and can improve the heat transfer efficiency of the plate body 110 to the gaseous working fluid 120 at a low temperature, and accelerate the condensation speed of the gaseous working fluid 120.
再者,第一凹凸結構132位於板體110的外表面114,可增加外表面114接觸空氣的面積,而提升板體110的散熱效率。也就是說,第一凹凸結構132、第二凹凸結構134、136皆可提升致冷板100a的熱交換速率,有效排除熱源310的熱。 Moreover, the first concave-convex structure 132 is located on the outer surface 114 of the plate body 110, which can increase the area of the outer surface 114 contacting the air, and improve the heat dissipation efficiency of the plate body 110. That is to say, both the first concave-convex structure 132 and the second concave-convex structure 134, 136 can increase the heat exchange rate of the cold plate 100a, and effectively exclude the heat of the heat source 310.
上述的第一凹凸結構132與第二凹凸結構134、136可依熱源310的散熱需求選擇性地設計於板體110上,依設計者需求而定,並不以限制本案。舉例來說,板體110可僅具有第二凹凸結構134,而不具有第一凹凸結構132與第二凹凸結構136;又或者,板體110可僅具有第一凹凸結構132,而不具有第二凹凸結構134、136,可依設計者需求而定。 The first concave-convex structure 132 and the second concave-convex structures 134 and 136 can be selectively designed on the plate body 110 according to the heat dissipation requirement of the heat source 310, which is not limited by the designer. For example, the plate body 110 may have only the second concave-convex structure 134 without the first concave-convex structure 132 and the second concave-convex structure 136; or the plate body 110 may have only the first concave-convex structure 132 without the first The two concave-convex structures 134, 136 can be determined according to the needs of the designer.
然而,當熱源310處於高負載而具有高溫度時,為了有效對熱源310排熱,可將本案的致冷板連接一水冷模組。 However, when the heat source 310 is under high load and has a high temperature, in order to effectively heat the heat source 310, the cooling plate of the present invention can be connected to a water-cooling module.
應瞭解到,在以上敘述中,已敘述過的元件連接關係將不在重複贅述,合先敘明。以下敘述中,將以具有致冷板100a的水冷散熱裝置為例作說明。 It should be understood that in the above description, the component connection relationships that have been described will not be repeated, and will be described first. In the following description, a water-cooling heat sink having a cooling plate 100a will be described as an example.
第7圖繪示根據本案一實施方式之水冷散熱裝置200的分解圖。第8圖繪示第7圖之水冷散熱裝置200使用於熱源310時的剖面圖。同時參閱第7圖與第8圖,水冷散熱裝置200包含致冷板100a與水冷模組210。水冷模組210可連接於致冷板100a。水冷模組210包含致冷板連接頭212(俗稱水冷頭)、水汞214、排熱部216(俗稱水冷排)、 第一連接管218a、第二連接管218b與冷卻液215。其中,致冷板連接頭212具有空腔213,且致冷板100a位於空腔213中。水汞214設置於空腔213中。第二連接管218b與第一連接管218a皆連接於致冷板連接頭212與排熱部216之間。冷卻液215容置於空腔213、排熱部216、第一連接管218a與第二連接管218b中。 FIG. 7 is an exploded view of the water-cooling heat sink 200 according to an embodiment of the present invention. FIG. 8 is a cross-sectional view showing the water cooling device 200 of FIG. 7 used in the heat source 310. Referring also to FIGS. 7 and 8, the water-cooling heat sink 200 includes a cooling plate 100a and a water cooling module 210. The water cooling module 210 can be coupled to the refrigerating plate 100a. The water cooling module 210 includes a cooling plate connector 212 (commonly referred to as a water cooling head), a mercury mercury 214, and a heat exhausting portion 216 (commonly referred to as a water cooling row). The first connecting pipe 218a and the second connecting pipe 218b are connected to the coolant 215. Wherein, the cooling plate connector 212 has a cavity 213, and the cooling plate 100a is located in the cavity 213. Mercury 214 is disposed in the cavity 213. The second connecting pipe 218b and the first connecting pipe 218a are both connected between the cold plate connecting head 212 and the heat exhausting portion 216. The coolant 215 is housed in the cavity 213, the heat exhausting portion 216, the first connecting pipe 218a, and the second connecting pipe 218b.
在本實施方式中,冷卻液215可以為水,但並不以水為限。風扇220可以為系統風扇或是排熱部216附加的風扇。風扇220朝向排熱部216吹風,可降低排熱部216的溫度,進而降低排熱部216中冷卻液215的溫度。 In the present embodiment, the cooling liquid 215 may be water, but is not limited to water. The fan 220 may be a fan attached to the system fan or the heat exhaust unit 216. The fan 220 blows toward the heat exhausting portion 216, and the temperature of the heat exhausting portion 216 can be lowered, thereby lowering the temperature of the cooling liquid 215 in the heat exhausting portion 216.
當熱源310工作時,水汞214可使冷卻液215沿排熱部216、第一連接管218a、致冷板連接頭212與第二連接管218b的方向D3流動。由於致冷板100a之板體110接觸冷卻液215的外表面114具有第一凹凸結構132,因此冷卻液215能快速將板體110的熱帶走,加快靠近內表面124之氣態工作流體120的冷凝速度,使致冷板100a整體的熱交換速率有所提升。如此一來,水冷散熱裝置200便能有效降低熱源310的溫度。 When the heat source 310 is in operation, the water mercury 214 can cause the coolant 215 to flow in the direction D3 of the heat exhaust portion 216, the first connecting pipe 218a, the cold plate connecting head 212, and the second connecting pipe 218b. Since the outer surface 114 of the plate 110 of the refrigerating plate 100a contacting the coolant 215 has the first concavo-convex structure 132, the coolant 215 can quickly move the tropic of the plate 110 to accelerate the condensation of the gaseous working fluid 120 near the inner surface 124. The speed increases the heat exchange rate of the entire plate 100a. In this way, the water-cooling heat sink 200 can effectively reduce the temperature of the heat source 310.
當冷卻液215於空腔213中經過致冷板100a後,冷卻液215的溫度會升高,並經第二連接管218b流入至排熱部216。接著,風扇220產生的風可利用熱對流原理使排熱部216降溫,因此流出排熱部216的冷卻液215會較流入排熱部216具有較低的溫度。之後,便可將低溫的冷卻液215藉由第一連接管218a流入致冷板連接頭212的空腔 213中。 When the coolant 215 passes through the refrigerating plate 100a in the cavity 213, the temperature of the coolant 215 rises and flows into the heat exhaust portion 216 via the second connecting pipe 218b. Then, the wind generated by the fan 220 can cool the heat exhaust portion 216 by the principle of heat convection, so that the coolant 215 flowing out of the heat exhaust portion 216 has a lower temperature than the heat exhaust portion 216. Thereafter, the low temperature coolant 215 can flow into the cavity of the cold plate connector 212 through the first connecting pipe 218a. 213.
在本實施方式中,水汞214可以為定速水汞或變頻水汞。當水汞214為定速水汞時,只要水汞214通電,冷卻液215便會沿排熱部216、第一連接管218a、致冷板連接頭212與第二連接管218b循環流動,使水冷散熱裝置200具有排熱的效果。當水汞214斷電時,冷卻液215便停止流動,此時水冷散熱裝置200仍可藉由致冷板100a與空腔213中的冷卻液215儲熱。 In the present embodiment, the mercury mercury 214 may be a fixed speed mercury or a variable frequency mercury. When the mercury 214 is fixed-speed mercury, as long as the mercury 214 is energized, the coolant 215 circulates along the heat-dissipating portion 216, the first connecting pipe 218a, the cooling plate connecting head 212 and the second connecting pipe 218b, so that The water-cooling heat sink 200 has the effect of exhausting heat. When the mercury 214 is de-energized, the coolant 215 stops flowing. At this time, the water-cooling heat sink 200 can still store heat by the cooling plate 215 in the cooling plate 100a and the cavity 213.
當水汞214為變頻水汞時,可電性連接測量熱源310的溫控裝置(未繪示)。溫控裝置可感測熱源310的溫度,並調整水汞214的功率。舉例來說,熱源310的溫度越低,水汞214功率越低,冷卻液215的流量越小;熱源310的溫度越高,水汞214功率越高,冷卻液215的流量越大。如此一來,水冷散熱裝置200便具有節能的效果。此外,溫控裝置亦可設定熱源310高於一溫度特定值(例如70℃)時,水汞214才通電啟動,依設計者需求而定,不以限制本案。 When the mercury mercury 214 is a variable frequency mercury, the temperature control device (not shown) for measuring the heat source 310 can be electrically connected. The temperature control device senses the temperature of the heat source 310 and adjusts the power of the mercury mercury 214. For example, the lower the temperature of the heat source 310, the lower the power of the mercury 214, and the smaller the flow rate of the coolant 215; the higher the temperature of the heat source 310, the higher the power of the mercury 214, and the greater the flow rate of the coolant 215. In this way, the water-cooling heat sink 200 has an energy-saving effect. In addition, the temperature control device can also set the heat source 310 to be higher than a specific temperature value (for example, 70 ° C), the mercury mercury 214 is powered on, depending on the designer's needs, and does not limit the case.
由於本案其他實施方式的致冷板(例如第1圖實施方式的致冷板100)連接水冷模組210的方式皆與致冷板100a連接水冷模組210的方式相同,且原理相似,因此不重複贅述。 The method of connecting the water-cooling module 210 to the cooling plate 210 of the other embodiments of the present invention is the same as that of the cooling plate 100a, and the principle is similar, so Repeat the details.
本案的致冷板與水冷散熱裝置具有以下優點: The cold plate and water cooling device of the present invention have the following advantages:
(1)致冷板具有工作流體,且工作流體容置於板體的密閉空間中,因此當致冷板設置於熱源上時,熱源產生 的熱不僅可藉由板體導熱,且板體內的工作流體還可吸收熱而產生相變化,使得致冷板同時具有熱擴散與熱儲存的能力。 (1) The cooling plate has a working fluid, and the working fluid is accommodated in the sealed space of the plate body, so when the cooling plate is disposed on the heat source, the heat source is generated The heat can not only be thermally conductive by the plate body, but also the working fluid in the plate body can absorb heat to produce a phase change, so that the cooling plate has both heat diffusion and heat storage capability.
(2)當水冷模組連接於致冷板時,致冷板與冷卻液皆位於致冷板連接頭的空腔中,冷卻液可快速帶走致冷板的熱,因此可有效熱源的溫度。 (2) When the water-cooling module is connected to the cooling plate, the cooling plate and the cooling liquid are located in the cavity of the cooling plate connector, and the coolant can quickly take away the heat of the cooling plate, thereby effectively increasing the temperature of the heat source. .
(3)第一凹凸結構與第二凹凸結構可依熱源的散熱需求選擇性地設計於致冷板的板體外表面或內表面上,使致冷板整體的熱交換速率增加。 (3) The first concavo-convex structure and the second concavo-convex structure may be selectively designed on the outer surface or the inner surface of the plate of the refrigerating plate according to the heat dissipation requirement of the heat source, so that the heat exchange rate of the entire refrigerating plate is increased.
雖然本案已以實施方式揭露如上,然其並非用以限定本案,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可作各種之更動與潤飾,因此本案之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present case. Anyone skilled in the art can make various changes and refinements without departing from the spirit and scope of the case. Therefore, the scope of protection of this case is considered. The scope defined in the patent application is subject to change.
100a‧‧‧致冷板 100a‧‧‧ cold plate
110‧‧‧板體 110‧‧‧ board
112‧‧‧密閉空間 112‧‧‧Confined space
114‧‧‧外表面 114‧‧‧ outer surface
120‧‧‧工作流體 120‧‧‧Working fluid
122‧‧‧內表面 122‧‧‧ inner surface
124‧‧‧內表面 124‧‧‧ inner surface
132‧‧‧第一凹凸結構 132‧‧‧First concave structure
134‧‧‧第二凹凸結構 134‧‧‧second concave structure
136‧‧‧第二凹凸結構 136‧‧‧second concave structure
200‧‧‧水冷散熱裝置 200‧‧‧Water cooling device
210‧‧‧水冷模組 210‧‧‧Water cooling module
212‧‧‧致冷板連接頭 212‧‧‧Temperature plate connector
213‧‧‧空腔 213‧‧‧ cavity
214‧‧‧水汞 214‧‧‧ Mercury
215‧‧‧冷卻液 215‧‧‧ coolant
216‧‧‧排熱部 216‧‧‧Hot Department
218a‧‧‧第一連接管 218a‧‧‧First connecting tube
218b‧‧‧第二連接管 218b‧‧‧Second connection tube
220‧‧‧風扇 220‧‧‧fan
310‧‧‧熱源 310‧‧‧heat source
320‧‧‧電路板 320‧‧‧ boards
D1‧‧‧方向 D1‧‧ Direction
D2‧‧‧方向 D2‧‧ Direction
D3‧‧‧方向 D3‧‧ Direction
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/969,602 US20140054009A1 (en) | 2012-08-27 | 2013-08-18 | Cooling plate and water cooling device having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261693337P | 2012-08-27 | 2012-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201408986A true TW201408986A (en) | 2014-03-01 |
Family
ID=50820319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102118977A TW201408986A (en) | 2012-08-27 | 2013-05-29 | Cooling plate and water cooling heat dissipation device having the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201408986A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI857383B (en) | 2022-11-01 | 2024-10-01 | 宏碁股份有限公司 | Heat dissipation module |
-
2013
- 2013-05-29 TW TW102118977A patent/TW201408986A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI857383B (en) | 2022-11-01 | 2024-10-01 | 宏碁股份有限公司 | Heat dissipation module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWM512883U (en) | Heat dissipation module, water-cooling heat dissipation module and heat dissipation system | |
US7369410B2 (en) | Apparatuses for dissipating heat from semiconductor devices | |
TW201724959A (en) | Thermoelectric cooling module and heat dissipation apparatus including the same | |
TWI801696B (en) | Phase change cooling device | |
KR20200002624A (en) | Thermal management with variable conductance heat pipe | |
US20100032141A1 (en) | cooling system utilizing carbon nanotubes for cooling of electrical systems | |
CN111246706B (en) | Double-sided heat dissipation device | |
US20070097637A1 (en) | Heat dissipation device | |
CN113985989A (en) | Heat dissipation equipment | |
US20100218512A1 (en) | Heat exchanger for thermoelectric applications | |
JP2004071969A (en) | Thermoelectric cooling apparatus | |
TW200534775A (en) | Heat dissipation module | |
TW201837414A (en) | Heat Spreader and Heat Dissipation Assembly Using the Heat Spreader | |
US20080105404A1 (en) | Heat dissipating system having a heat dissipating cavity body | |
US20140054009A1 (en) | Cooling plate and water cooling device having the same | |
CN114003111A (en) | Heat dissipation equipment for computer chip | |
TWI837610B (en) | Devices of drawing out surface heat of electronic components | |
CN211720642U (en) | Heat dissipation assembly and electric appliance | |
JP2006041355A (en) | Cooling device | |
TW201408986A (en) | Cooling plate and water cooling heat dissipation device having the same | |
JP2007081375A (en) | Cooling device | |
TWI656828B (en) | Heat sink | |
JP3152577U (en) | Heat dissipation structure for communication equipment case | |
JP2004047789A (en) | Heat sink | |
CN216210886U (en) | Vacuum cavity temperature equalizing plate heat dissipation device for computer chip |