TW201403753A - Semiconductor structure formation method - Google Patents

Semiconductor structure formation method Download PDF

Info

Publication number
TW201403753A
TW201403753A TW101151256A TW101151256A TW201403753A TW 201403753 A TW201403753 A TW 201403753A TW 101151256 A TW101151256 A TW 101151256A TW 101151256 A TW101151256 A TW 101151256A TW 201403753 A TW201403753 A TW 201403753A
Authority
TW
Taiwan
Prior art keywords
power source
dielectric layer
sub
mask layer
layer
Prior art date
Application number
TW101151256A
Other languages
Chinese (zh)
Other versions
TWI514515B (en
Inventor
zhao-xiang Wang
Jie Liang
Original Assignee
Advanced Micro Fab Equip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Fab Equip Inc filed Critical Advanced Micro Fab Equip Inc
Publication of TW201403753A publication Critical patent/TW201403753A/en
Application granted granted Critical
Publication of TWI514515B publication Critical patent/TWI514515B/zh

Links

Abstract

The invention discloses a semiconductor structure formation method, which comprises the following steps: providing a substrate, and forming a dielectric layer on the substrate; forming a first mask layer on the dielectric layer, wherein the first mask layer is provided with an opening for exposing the surface of the dielectric layer; and carrying out plasma etching on the dielectric layer through taking the first mask layer as a mask, when a bias power source is opened, etching part of the dielectric layer, and when the bias power source is closed, forming polymers on the surface of the first mask layer, and repeating the processes of opening the bias power source and closing the bias power source until a dual damascene structure with grooves and through holes is formed, wherein the bias power source outputs bias power in a pulse mode. Through adopting the plasma etching and repeating the etching step and the polymer formation step, a certain thickness of the polymer can be kept, and the first mask layer is protected from being damaged or the damage rate is reduced, thereby improving the etching selection ratio of the dielectric layer relative to the first mask layer.

Description

半導體結構的形成方法Method of forming a semiconductor structure

本發明係關於一種半導體製作領域,特別是關於一種半導體結構的形成方法。The present invention relates to the field of semiconductor fabrication, and more particularly to a method of forming a semiconductor structure.

隨著積體電路向亞微米尺寸發展,器件的密集程度和工藝的複雜程度不斷增加,對工藝過程的嚴格控制變得更為重要。其中,凹槽用於填充金屬以形成金屬互連結構,作為有源區與有源區之間,有源區與外界電路之間的連接的通道,由於其在器件結構組成中具有的重要作用,使得凹槽的形成工藝歷來為本領域技術人員所重視。As integrated circuits move toward sub-micron dimensions, the density of devices and the complexity of the process continue to increase, and strict control of the process becomes more important. Wherein, the recess is used to fill the metal to form a metal interconnect structure, as a connection between the active region and the active region, and between the active region and the external circuit, due to its important role in the structural composition of the device. The process of forming the grooves has always been valued by those skilled in the art.

圖1~圖3為現有凹槽形成過程的結構示意圖。1 to 3 are schematic structural views of a conventional groove forming process.

參考圖1,提供半導體襯底100,在所述半導體襯底上形成介質層101,所述介質層101為單層結構或多層堆疊結構,例如:所述介質層101為氧化矽層的單層結構;在所述介質層101表面形成掩膜層102,所述掩膜層102具有暴露介質層101表面的開口103,所述掩膜層102的材料為氮化鈦。Referring to FIG. 1, a semiconductor substrate 100 is provided on which a dielectric layer 101 is formed, which is a single layer structure or a multilayer stack structure, for example, the dielectric layer 101 is a single layer of a ruthenium oxide layer. Structure; a mask layer 102 is formed on the surface of the dielectric layer 101, the mask layer 102 having an opening 103 exposing the surface of the dielectric layer 101, and the material of the mask layer 102 is titanium nitride.

參考圖2,採用等離子體刻蝕工藝,沿開口103刻蝕所述介質層101,形成凹槽104,所述凹槽暴露半導體襯底100的表面,等離子體刻蝕採用的氣體為CF4或C4F8Referring to FIG. 2, the dielectric layer 101 is etched along the opening 103 by a plasma etching process to form a recess 104 that exposes the surface of the semiconductor substrate 100. The gas used for plasma etching is CF 4 or C 4 F 8 .

然而,在實際的生產發現,由於掩膜層102材料會存在一定的應力,因此掩膜層102的厚度較薄(小於100納米),進行等離子體刻蝕時,氟自由基會腐蝕掩膜層,使掩膜層會變薄或損傷(參考圖3),掩膜層的變薄或損傷,會降低介質層相對於掩膜層的刻蝕選擇比,會造成刻蝕形成的凹槽的變形或橋接。However, in actual production, since the material of the mask layer 102 has a certain stress, the thickness of the mask layer 102 is thin (less than 100 nm), and the fluorine radical erodes the mask layer during plasma etching. To make the mask layer thin or damaged (refer to Figure 3), the thinning or damage of the mask layer will reduce the etching selectivity of the dielectric layer relative to the mask layer, which will cause deformation of the groove formed by etching. Or bridging.

更多關於凹槽的形成方法,請參考公開號為US2009/0224405A1的美國專利。For more details on the formation of the grooves, please refer to US Patent Publication No. US2009/0224405A1.

緣此,本發明之目的即是提供一種半導體結構的形成方法,用以提高介質層相對於掩膜層的刻蝕選擇比。Accordingly, it is an object of the present invention to provide a method of forming a semiconductor structure for increasing the etching selectivity of a dielectric layer relative to a mask layer.

本發明為解決習知技術之問題所採用之技術手段係一種半導體結構的形成方法,包括:提供基底,在所述基底上形成介質層;在所述介質層上形成第一掩膜層,所述第一掩膜層具有暴露介質層表面的開口;以所述第一掩膜層為掩膜,對所述介質層進行等離子體刻蝕,偏置功率源以脈衝的方式輸出偏置功率,當偏置功率源打開時,刻蝕部分所述介質層,當偏置功率源關閉時,在第一掩膜層表面形成聚合物,重複偏置功率源打開和偏置功率源關閉的過程,直至形成具有凹槽和通孔的雙大馬士革結構。The technical means for solving the problems of the prior art is a method for forming a semiconductor structure, comprising: providing a substrate, forming a dielectric layer on the substrate; forming a first mask layer on the dielectric layer, The first mask layer has an opening exposing a surface of the dielectric layer; the first mask layer is used as a mask, and the dielectric layer is plasma etched, and the bias power source outputs a bias power in a pulse manner. When the bias power source is turned on, etching part of the dielectric layer, when the bias power source is turned off, forming a polymer on the surface of the first mask layer, repeating the process of biasing the power source to turn on and off the bias power source, Until a double damascene structure with grooves and through holes is formed.

在本發明的一實施例中,所述等離子體刻蝕採用的氣體為CF4、C4F8、C4F6、CHF3、CH2F2、CO中的一種或幾種。In an embodiment of the invention, the gas used in the plasma etching is one or more of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , and CO.

在本發明的一實施例中,所述等離子體刻蝕採用的氣體還包括O2和Ar。In an embodiment of the invention, the gas used in the plasma etching further includes O 2 and Ar.

在本發明的一實施例中,所述等離子體刻蝕的射頻功率源功率為0~2000瓦,射頻頻率為60~120兆赫茲,偏置功率源的功率為100~4000瓦,偏置頻率為2~15兆赫茲,刻蝕腔壓力為20~200毫托。In an embodiment of the invention, the plasma etched RF power source has a power of 0 to 2000 watts, the RF frequency is 60 to 120 megahertz, and the bias power source has a power of 100 to 4000 watts. The etch chamber pressure is 20~200 mTorr for 2~15 MHz.

在本發明的一實施例中,所述偏置功率源輸出的一個脈衝週期內,所述偏置功率源打開的時間為第一時間,所述偏置功率源關閉的時間為第二時間,第一時間與第一時間和第二時間之和的比值為第一占空比,等離子體刻蝕過程中,所述第一占空比保持不變。In an embodiment of the present invention, the bias power source is turned on for a first time, and the bias power source is turned off for a second time. The ratio of the first time to the sum of the first time and the second time is the first duty cycle, and the first duty cycle remains unchanged during the plasma etching process.

在本發明的一實施例中,所述第一占空比的範圍為10%~90%。In an embodiment of the invention, the first duty ratio ranges from 10% to 90%.

在本發明的一實施例中,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,所述偏置功率源滯後射頻功率源一段時間打開。In an embodiment of the invention, when the plasma etching is performed, when the RF power source is turned on, the etching gas is ionized, and the bias power source lags the RF power source for a period of time.

在本發明的一實施例中,所述偏置功率源滯後打開的時間小於等於所述偏置功率源關閉的第二時間。In an embodiment of the invention, the time during which the bias power source is delayed to open is less than or equal to the second time when the bias power source is turned off.

在本發明的一實施例中,所述射頻功率源以脈衝的方式輸出射頻功率,所述射頻功率源輸出的一個脈衝週期內,所述射頻功率源打開的時間為第三時間,所述射頻功率源關閉的時間為第四時間,第三時間與第三時間和第四時間之和的比值為第二占空比,等離子體刻蝕過程中,所述第二占空比保持不變。In an embodiment of the invention, the radio frequency power source outputs the radio frequency power in a pulse manner, and the radio frequency power source is turned on for a third time in a pulse period of the output of the radio frequency power source, the radio frequency The time when the power source is turned off is the fourth time, and the ratio of the third time to the sum of the third time and the fourth time is the second duty ratio, and the second duty ratio remains unchanged during the plasma etching.

在本發明的一實施例中,所述射頻功率源輸出脈衝的頻率等於偏置功率源輸出脈衝的頻率。In an embodiment of the invention, the frequency of the RF power source output pulse is equal to the frequency of the bias power source output pulse.

在本發明的一實施例中,所述射頻功率源輸出脈衝的頻率和偏置功率源輸出脈衝的頻率小於等於50千赫茲。In an embodiment of the invention, the frequency of the RF power source output pulse and the frequency of the bias power source output pulse are less than or equal to 50 kHz.

在本發明的一實施例中,所述偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比。In an embodiment of the invention, the first duty cycle of the bias power source output pulse is less than the second duty cycle of the RF power source output pulse.

在本發明的一實施例中,所述第一占空比範圍為10%~80%,所述第二占空比範圍為30%~90%。In an embodiment of the invention, the first duty ratio ranges from 10% to 80%, and the second duty ratio ranges from 30% to 90%.

在本發明的一實施例中,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,相對應的所述偏置功率源也打開。In an embodiment of the invention, when the plasma etching is performed, when the RF power source is turned on, the etching gas is ionized, and the corresponding bias power source is also turned on.

在本發明的一實施例中,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,所述偏置功率源滯後射頻功率源一段時間打開。In an embodiment of the invention, when the plasma etching is performed, when the RF power source is turned on, the etching gas is ionized, and the bias power source lags the RF power source for a period of time.

在本發明的一實施例中,所述偏置功率源滯後打開的時間小於等於所述射頻功率源打開的第三時間。In an embodiment of the invention, the time during which the bias power source is delayed to open is less than or equal to a third time when the RF power source is turned on.

在本發明的一實施例中,所述介質層的材料為低K介電材料或超低K介電材料,所述第一掩膜層的材料為氮化鈦。In an embodiment of the invention, the material of the dielectric layer is a low-k dielectric material or an ultra-low-K dielectric material, and the material of the first mask layer is titanium nitride.

在本發明的一實施例中,所述介質層的厚度大於200納米,所述第一掩膜層的厚度小於60納米。In an embodiment of the invention, the dielectric layer has a thickness greater than 200 nanometers, and the first mask layer has a thickness less than 60 nanometers.

在本發明的一實施例中,所述雙大馬士革結構的形成過程為:刻蝕所述第一掩膜層,形成暴露介質層表面的第一子開口;在第一掩膜層上形成光刻膠層,光刻膠層填充滿所述第一子開口,圖形化所述光刻膠層,形成第二子開口,第二子開口的位置與第一子開口的位置相對應,第二子開口暴露介質層表面,第二子開口的寬度小於第一子開口的寬度;沿第二子開口,採用等離子體刻蝕所述介質層,形成貫穿所述介質層的第一子通孔;去除所述圖形化的光刻膠層;沿第二子開口,採用等離子體刻蝕部分所述介質層,形成第一子凹槽,所述第一子通孔和第一子凹槽構成雙大馬士革結構。In an embodiment of the invention, the dual damascene structure is formed by etching the first mask layer to form a first sub-opening exposing a surface of the dielectric layer; forming a photolithography on the first mask layer a glue layer, a photoresist layer filling the first sub-opening, patterning the photoresist layer to form a second sub-opening, the position of the second sub-opening corresponding to the position of the first sub-opening, the second sub- Opening the surface of the dielectric layer, the width of the second sub-opening is smaller than the width of the first sub-opening; along the second sub-opening, the dielectric layer is etched by plasma to form a first sub-via through the dielectric layer; The patterned photoresist layer; along the second sub-opening, partially etching the dielectric layer to form a first sub-groove, the first sub-via and the first sub-groove forming a double damascus structure.

在本發明的一實施例中,所述介質層為多層堆疊結構,包括:第一介質層、位於第一介質層表面的第二掩膜層、位於第二掩膜層表面的第二介質層,所述第二掩膜層中具有暴露第一介質層表面的第三子開口,第二介質層填充滿所述第三子開口。In an embodiment of the invention, the dielectric layer is a multi-layer stacked structure, including: a first dielectric layer, a second mask layer on a surface of the first dielectric layer, and a second dielectric layer on a surface of the second mask layer. The second mask layer has a third sub-opening exposing the surface of the first dielectric layer, and the second dielectric layer fills the third sub-opening.

在本發明的一實施例中,所述第一介質層和第二介質層的材料為低K介電材料、超低K介電材料或氧化矽,所述第二掩膜層的材料為氮化矽、氮氧化矽、碳化矽或碳氮化矽,所述第一掩膜層的材料為光刻膠或無定形碳。In an embodiment of the invention, the material of the first dielectric layer and the second dielectric layer is a low-K dielectric material, an ultra-low-K dielectric material or yttrium oxide, and the material of the second mask layer is nitrogen. The ruthenium oxide, the ruthenium oxynitride, the tantalum carbide or the tantalum carbonitride, and the material of the first mask layer is photoresist or amorphous carbon.

在本發明的一實施例中,所述雙大馬士革結構的形成過程為:以第一掩膜層為掩膜,採用等離子體刻蝕所述第一介質層,形成第二子凹槽,第二子凹槽暴露第二掩膜層表面,第二子凹槽的位置與第三子開口的位置相對應,第一子凹槽的寬度大於第三子開口的寬度;沿第三子開口,採用等離子體刻蝕所述第二介質層,形成貫穿所述第二介質層的第二子通孔,所述第二子凹槽和第二子通孔構成凹槽。In an embodiment of the present invention, the dual damascene structure is formed by: using a first mask layer as a mask, plasma etching the first dielectric layer to form a second sub-groove, and second The sub-groove exposes the surface of the second mask layer, the position of the second sub-groove corresponds to the position of the third sub-opening, the width of the first sub-groove is greater than the width of the third sub-opening; along the third sub-opening, The second dielectric layer is plasma etched to form a second sub-via through the second dielectric layer, and the second sub-groove and the second sub-via form a recess.

經由本發明所採用之技術手段,等離子體刻蝕時,射頻功率源打開電離刻蝕氣體,形成等離子體,偏置功率源以脈衝的方式輸出偏置功率,當偏置功率源打開時,刻蝕部分所述介質層,當偏置功率源關閉時,在第一掩膜層表面形成聚合物,聚合物在後續刻蝕時,保護第一掩膜層不會受到損傷或者減小第一掩膜層損傷的速率,提高了介質層相對於第一掩膜層的刻蝕選擇比。Through the technical means adopted by the present invention, during plasma etching, the RF power source turns on the ionizing etching gas to form a plasma, and the bias power source outputs the bias power in a pulse manner, when the bias power source is turned on, Etching a portion of the dielectric layer, when the bias power source is turned off, forming a polymer on the surface of the first mask layer, and protecting the first mask layer from damage or reducing the first mask during subsequent etching The rate of damage of the film layer increases the etching selectivity of the dielectric layer relative to the first mask layer.

再者,射頻功率源連續的輸出射頻功率,偏置功率源以脈衝的方式輸出脈衝功率,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,相對應的所述偏置功率源滯後射頻功率源一段時間打開,即滯後的一段時間內,偏置功率源是關閉的,此時進行聚合物形成步驟;在一段時間後,偏置功率源打開,偏置功率源以正常的脈衝的方式輸出偏置功率,在刻蝕步驟開始前,會先進行聚合物形成步驟,在第一掩膜層表面形成聚合物,從而在刻蝕一開始,保護第一掩膜層不會被刻蝕損傷。Furthermore, the RF power source continuously outputs the RF power, and the bias power source outputs the pulse power in a pulse manner. When the plasma etching is performed, when the RF power source is turned on, the etching gas is ionized, and the corresponding bias is applied. The power source lags the RF power source for a period of time, that is, the lag power source is turned off for a period of time, and the polymer forming step is performed; after a period of time, the bias power source is turned on, and the bias power source is turned on. The normal pulse mode outputs the bias power. Before the etching step begins, the polymer forming step is performed to form a polymer on the surface of the first mask layer, so that the first mask layer is not protected at the beginning of the etching. Will be etched and damaged.

更者,進行等離子體刻蝕時,射頻功率源和偏置功率源以脈衝的方式輸出射頻功率和脈衝功率,射頻功率源和偏置功率源脈衝的輸出頻率相等,相位相同,偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比,刻蝕步驟後部分,射頻功率源是打開的,而偏置功率源提前關閉,因此部分聚合物會沉積在掩膜層表面,刻蝕步驟後,射頻功率源和偏置功率源均關閉,進行聚合物形成步驟(聚合物進一步的沉積),在第一掩膜層表面形成聚合物,加上刻蝕步驟中形成部分聚合物,使聚合物的厚度更厚,從而更好的保護第一掩膜層不會受到損害或被損害的速率減小,提高介質層相對於第一掩膜層的刻蝕選擇比,並且聚合物的形成和刻蝕效果更佳。第一占空比小於第二占空比,所述第一占空比範圍為10%~80%,所述第二占空比範圍為30%~90%,在提高刻蝕效率同時,又能在第一掩膜層表面形成足夠的聚合物。Moreover, when plasma etching is performed, the RF power source and the bias power source output the RF power and the pulse power in a pulse manner, and the output frequencies of the RF power source and the bias power source pulse are equal, the phases are the same, and the bias power source is the same. The first duty cycle of the output pulse is less than the second duty cycle of the output pulse of the RF power source. After the etching step, the RF power source is turned on, and the bias power source is turned off early, so some of the polymer is deposited in the mask. After the etching step, the RF power source and the bias power source are both turned off, the polymer forming step (deposition of the polymer is further deposited), the polymer is formed on the surface of the first mask layer, and the etching step is added. Forming a part of the polymer to make the thickness of the polymer thicker, thereby better protecting the first mask layer from being damaged or damaged, and increasing the etching selectivity of the dielectric layer relative to the first mask layer And the formation and etching effect of the polymer is better. The first duty ratio is less than the second duty ratio, the first duty ratio ranges from 10% to 80%, and the second duty ratio ranges from 30% to 90%, while improving the etching efficiency, A sufficient amount of polymer can be formed on the surface of the first mask layer.

本發明所採用的具體實施例,將藉由以下之實施例及附呈圖式作進一步之說明。The specific embodiments of the present invention will be further described by the following examples and the accompanying drawings.

發明人在採用現有的等離子體刻蝕工藝在刻蝕介質層的過程中發現,由於掩膜層材料會存在一定的應力,因此掩膜層的厚度較薄,進行等離子體刻蝕時,氟自由基會腐蝕掩膜層,使掩膜層會變薄或損傷,掩膜層的變薄或損傷,會降低介質層相對於掩膜層的刻蝕選擇比,會造成刻蝕形成的凹槽的變形或橋接,後續在凹槽中形成互連結構時,影響器件的穩定性。The inventor found in the process of etching the dielectric layer by using the existing plasma etching process that since the mask layer material has a certain stress, the thickness of the mask layer is thin, and fluorine is free during plasma etching. The etched mask layer will make the mask layer thin or damaged, and the thinning or damage of the mask layer will reduce the etching selectivity ratio of the dielectric layer to the mask layer, which will cause the groove formed by etching. Deformation or bridging, which subsequently affects the stability of the device when forming an interconnect structure in the recess.

為解決上述問題,發明人提出一種半導體結構的形成方法,參考圖4,圖4為本發明第一實施例半導體結構的形成方法的流程示意圖,包括:In order to solve the above problems, the inventors have proposed a method for forming a semiconductor structure. Referring to FIG. 4, FIG. 4 is a schematic flow chart of a method for forming a semiconductor structure according to a first embodiment of the present invention, including:

步驟S21,提供基底,在所述基底上形成介質層;Step S21, providing a substrate on which a dielectric layer is formed;

步驟S22,在所述介質層上形成第一掩膜層,所述第一掩膜層具有暴露介質層表面的開口;Step S22, forming a first mask layer on the dielectric layer, the first mask layer having an opening exposing a surface of the dielectric layer;

步驟S23,以所述第一掩膜層為掩膜,對所述介質層進行等離子體刻蝕,射頻功率源以連續的方式輸出射頻功率,偏置功率源以脈衝的方式輸出偏置功率,偏置功率源輸出脈衝的第一占空比保持不變,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,相對應的所述偏置功率源也打開。Step S23, using the first mask layer as a mask, performing plasma etching on the dielectric layer, the RF power source outputs RF power in a continuous manner, and the bias power source outputs the bias power in a pulse manner. The first duty cycle of the output pulse of the bias power source remains unchanged. When the plasma etching is performed, when the RF power source is turned on, the etching gas is ionized, and the corresponding bias power source is also turned on.

圖5~圖8為本發明第一實施例半導體結構的形成過程的剖面結構示意圖;圖9為本發明第一實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖。5 to FIG. 8 are schematic cross-sectional structural views showing a process of forming a semiconductor structure according to a first embodiment of the present invention; FIG. 9 is a diagram showing a bias power signal outputted by a radio frequency power source and a bias power source output according to a first embodiment of the present invention; .

參考圖5,提供基底200,在所述基底200上形成介質層202;在所述介質層202表面形成第一掩膜層203,所述第一掩膜層203具有暴露介質層202表面的開口205。Referring to FIG. 5, a substrate 200 is provided on which a dielectric layer 202 is formed; a first mask layer 203 is formed on a surface of the dielectric layer 202, the first mask layer 203 having an opening exposing a surface of the dielectric layer 202 205.

所述基底200為矽襯底、鍺襯底、矽鍺襯底、碳化矽襯底、氮化鎵襯底其中的一種。所述基底200內形成有離子摻雜區、矽通孔等(圖中未示出);所述基底200上還可以形成電晶體、電阻、電容、記憶體等半導體器件(圖中未示出)。The substrate 200 is one of a germanium substrate, a germanium substrate, a germanium substrate, a tantalum carbide substrate, and a gallium nitride substrate. An ion doping region, a germanium via hole, or the like (not shown) is formed in the substrate 200; a semiconductor device such as a transistor, a resistor, a capacitor, or a memory may be formed on the substrate 200 (not shown in the drawing) ).

在本發明的其他實施例中,所述基底200上還形成有一層或多層層間介質層(圖中未示出),所述層間介質層的材料為氧化矽、低K介電材料或超低K介電材料,所述介質層中形成有金屬互連線、導電插塞等半導體結構。In other embodiments of the present invention, the substrate 200 is further formed with one or more interlayer dielectric layers (not shown), and the interlayer dielectric layer is made of yttria, low-k dielectric material or ultra-low a K dielectric material in which a semiconductor structure such as a metal interconnection or a conductive plug is formed.

所述介質層202的材料為低K介電材料或超低K介電材料,所述介質層的厚度大於200納米,所述第一掩膜層203的材料為氮化鈦,後續採用等離子體刻蝕所述介質層202,形成具有凹槽和通孔的雙大馬士革結構,等離子體刻蝕過程中,會在所述第一掩膜層203表面形成聚合物,保護第一掩膜層203不會被刻蝕,從而提高介質層材料與第一掩膜層材料的刻蝕選擇比。由於刻蝕過程中會在第一掩膜層203表面形成聚合物,刻蝕過程中第一掩膜層203的損耗會減小,所述第一掩膜層203的厚度小於60納米,以減小施加在介質層202上的應力。The material of the dielectric layer 202 is a low-k dielectric material or an ultra-low-K dielectric material, the dielectric layer has a thickness greater than 200 nm, and the material of the first mask layer 203 is titanium nitride, followed by plasma. The dielectric layer 202 is etched to form a double damascene structure having grooves and via holes. During the plasma etching process, a polymer is formed on the surface of the first mask layer 203 to protect the first mask layer 203. It will be etched to increase the etch selectivity of the dielectric layer material to the first mask layer material. Since a polymer is formed on the surface of the first mask layer 203 during the etching process, the loss of the first mask layer 203 is reduced during the etching process, and the thickness of the first mask layer 203 is less than 60 nm to reduce The stress applied to the dielectric layer 202 is small.

所述雙大馬士革結構的形成過程為:刻蝕所述第一掩膜層,形成暴露介質層表面的第一子開口;在第一掩膜層上形成光刻膠層,光刻膠層填充滿所述第一子開口,圖形化所述光刻膠層,形成第二子開口,第二子開口的位置與第一子開口的位置相對應,第二子開口暴露介質層表面,第二子開口的寬度小於第一子開口的寬度;沿第二子開口,採用等離子體刻蝕所述介質層,形成貫穿所述介質層的第一子通孔;去除所述圖形化的光刻膠層;沿第二子開口,採用等離子體刻蝕部分所述介質層,形成第一子凹槽,所述第一子通孔和第一子凹槽構成雙大馬士革結構。等離子體刻蝕所述介質層時,會相應的在光刻膠層或第一掩膜層表面形成聚合物,從而提高介質層材料與第一掩膜層材料或光刻膠材料的刻蝕選擇比。The double damascene structure is formed by etching the first mask layer to form a first sub-opening exposing a surface of the dielectric layer; forming a photoresist layer on the first mask layer, and filling the photoresist layer The first sub-opening, patterning the photoresist layer to form a second sub-opening, the position of the second sub-opening corresponding to the position of the first sub-opening, the second sub-opening exposing the surface of the dielectric layer, the second sub- The width of the opening is smaller than the width of the first sub-opening; along the second sub-opening, the dielectric layer is etched by plasma to form a first sub-via through the dielectric layer; and the patterned photoresist layer is removed And along the second sub-opening, the dielectric layer is partially etched by plasma to form a first sub-groove, and the first sub-via and the first sub-groove constitute a double damascene structure. When the dielectric layer is plasma etched, a polymer is formed on the surface of the photoresist layer or the first mask layer, thereby improving etching selection of the dielectric layer material and the first mask layer material or the photoresist material. ratio.

由於形成雙大馬士革結構的工藝流程為公知技術,本發明實施例針對形成雙大馬士革結構刻蝕工藝提出改善,為了更簡便和清晰的闡述本發明的意圖,本實施例和後續的實施例以及說明書附圖中以在介質層中形成凹槽代替形成雙大馬士革結構作為示例。Since the process for forming the double damascene structure is a well-known technique, the embodiment of the present invention provides an improvement for forming a double damascene structure etching process. In order to explain the intention of the present invention more simply and clearly, the present embodiment and subsequent embodiments and the description are attached. In the figure, a groove is formed in the dielectric layer instead of forming a double damascene structure as an example.

在本發明的其他實施例中,所述介質層為多層堆疊結構,包括:第一介質層、位於第一介質層表面的第二掩膜層、位於第二掩膜層表面的第二介質層,所述第二掩膜層中具有暴露第一介質層表面的第三子開口,第二介質層填充滿所述第三子開口。所述第一介質層和第二介質層的材料為低K介電材料、超低K介電材料或氧化矽,所述第二掩膜層的材料為氮化矽、氮氧化矽、碳化矽或碳氮化矽,所述第一掩膜層的材料為光刻膠或無定形碳。後續刻蝕所述堆疊結構,形成雙大馬士革結構,所述雙大馬士革結構的形成方法為:以第一掩膜層為掩膜,採用等離子體刻蝕所述第一介質層,形成第二子凹槽,第二子凹槽暴露第二掩膜層表面,第二子凹槽的位置與第三子開口的位置相對應,第一子凹槽的寬度大於第三子開口的寬度;沿第三子開口,採用等離子體刻蝕所述第二介質層,形成貫穿所述第二介質層的第二子通孔,所述第二子凹槽和第二子通孔構成雙大馬士革結構。等離子體刻蝕所述第一介質層和第二介質層時,會相應的在第一掩膜層和第二掩膜層表面形成聚合物,從而提高第一介質層相對於第一掩膜層的刻蝕選擇比,以及第二介質層相對於第一掩膜層和第二掩膜層的刻蝕選擇比。In other embodiments of the present invention, the dielectric layer is a multi-layer stacked structure, including: a first dielectric layer, a second mask layer on a surface of the first dielectric layer, and a second dielectric layer on a surface of the second mask layer. The second mask layer has a third sub-opening exposing the surface of the first dielectric layer, and the second dielectric layer fills the third sub-opening. The material of the first dielectric layer and the second dielectric layer is a low-k dielectric material, an ultra-low-K dielectric material or yttrium oxide, and the material of the second mask layer is tantalum nitride, niobium oxynitride, niobium carbide Or bismuth carbonitride, the material of the first mask layer is photoresist or amorphous carbon. Subsequently, the stacked structure is etched to form a double damascene structure, and the double damascene structure is formed by: using a first mask layer as a mask, plasma etching the first dielectric layer to form a second sub-concave a second sub-groove exposing a surface of the second mask layer, the position of the second sub-groove corresponding to the position of the third sub-opening, the width of the first sub-groove being greater than the width of the third sub-opening; a sub-opening, the second dielectric layer is etched by plasma to form a second sub-via through the second dielectric layer, and the second sub-groove and the second sub-via form a dual damascene structure. When the first dielectric layer and the second dielectric layer are plasma etched, a polymer is formed on the surfaces of the first mask layer and the second mask layer, thereby increasing the first dielectric layer relative to the first mask layer. The etch selectivity ratio and the etch selectivity ratio of the second dielectric layer to the first mask layer and the second mask layer.

參考圖6和圖7,以所述第一掩膜層203為掩膜,對所述介質層202進行等離子體刻蝕,射頻功率源以連續的方式輸出射頻功率,偏置功率源以脈衝的方式輸出偏置功率,所述等離子體刻蝕包括刻蝕步驟和聚合物形成步驟,當射頻功率源打開,偏置功率源也打開時,射頻功率電離刻蝕氣體,形成等離子體,進行刻蝕步驟,刻蝕部分所述介質層202,形成刻蝕凹槽206,當偏置功率源保持打開,偏置功率源關閉時,進行聚合物形成步驟,在第一掩膜層203表面形成聚合物204。Referring to FIG. 6 and FIG. 7, the dielectric layer 202 is plasma etched by using the first mask layer 203 as a mask, and the RF power source outputs RF power in a continuous manner, and the bias power source is pulsed. The method outputs a bias power, and the plasma etching includes an etching step and a polymer forming step. When the RF power source is turned on and the bias power source is also turned on, the RF power is ionized to etch the gas, form a plasma, and perform etching. Step of etching a portion of the dielectric layer 202 to form an etched recess 206. When the bias power source remains open and the bias power source is turned off, a polymer forming step is performed to form a polymer on the surface of the first mask layer 203. 204.

需要說明的是,本實施例以及後續實施例中進行等離子體刻蝕採用的刻蝕裝置可以是電感耦合等離子體刻蝕裝置(ICP)也可以是電容耦合等離子體刻蝕裝置(CCP),電感耦合等離子體刻蝕裝置和電容耦合等離子體刻蝕裝置提供的射頻功率源頻率大於等於27兆赫茲,偏置功率源頻率小於等於15兆赫茲。當所述刻蝕裝置為電容耦合等離子體刻蝕裝置時,射頻功率源可以施加在上電極上或者施加在上下電極上,用於產生射頻功率,電離刻蝕氣體,產生等離子體,並控制等離子體的密度;偏置功率源施加在下電極,用於產生偏置功率,影響鞘層特性(鞘層電壓或加速電壓),並控制等離子體的能量分佈。當所述刻蝕裝置為電感耦合等離子體刻蝕裝置時,射頻功率源可以施加在電感線圈,用於產生射頻功率,電離刻蝕氣體,產生等離子體,並控制等離子體的密度;偏置功率源施加在下電極,用於產生偏置功率,影響鞘層特性(鞘層電壓或加速電壓),並控制等離子體的能量分佈。It should be noted that the etching device used for plasma etching in this embodiment and subsequent embodiments may be an inductively coupled plasma etching device (ICP) or a capacitively coupled plasma etching device (CCP). The coupled plasma etching device and the capacitively coupled plasma etching device provide a radio frequency power source with a frequency greater than or equal to 27 MHz and a bias power source frequency of 15 MHz or less. When the etching device is a capacitively coupled plasma etching device, a radio frequency power source may be applied to the upper electrode or applied to the upper and lower electrodes for generating radio frequency power, ionizing the etching gas, generating a plasma, and controlling the plasma. The density of the body; a bias power source is applied to the lower electrode for generating bias power, affecting sheath properties (sheath voltage or accelerating voltage), and controlling the energy distribution of the plasma. When the etching device is an inductively coupled plasma etching device, a radio frequency power source can be applied to the inductor coil for generating radio frequency power, ionizing the etching gas, generating a plasma, and controlling the density of the plasma; bias power A source is applied to the lower electrode for generating bias power, affecting sheath properties (sheath voltage or accelerating voltage), and controlling the energy distribution of the plasma.

參考圖9,圖9為本實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖,射頻功率源連續的輸出射頻功率,偏置功率源以脈衝的方式輸出脈衝功率,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,相對應的所述偏置功率源也打開,偏置功率源輸出的一個脈衝週期C1內,偏置功率源打開的時間為第一時間T1,偏置功率源關閉的時間為第二時間T2,第一時間T1與第一時間T1和第二時間T2之和的比值為第一占空比,偏置功率源輸出脈衝的第一占空比保持不變。等離子體刻蝕時,射頻功率源持續輸出射頻功率(一直打開),射頻功率電離刻蝕氣體,形成等離子體,當偏置功率源打開時(輸出偏置功率),進行刻蝕步驟;當偏置功率源關閉時(不輸出偏置功率),進行聚合物形成步驟。所述第一占空比為10%~90%,較佳的所述第一占空比為30%~70%,使得刻蝕步驟和聚合物形成步驟保持一定的時間,在進行等離子體刻蝕時,在提高刻蝕效率的同時,在第一掩膜層表面形成足量的聚合物,使得第一掩膜層不會被損傷或被損傷的速率減小,提高介質層相對於第一掩膜層的刻蝕選擇比。Referring to FIG. 9, FIG. 9 is a diagram of a bias power signal outputted by a radio frequency power source and a bias power source output of the RF power source according to the embodiment. The RF power source continuously outputs the RF power, and the bias power source outputs the pulse power in a pulse manner. When the plasma etching is performed, when the RF power source is turned on, the ionizing etching gas is turned on, and the corresponding bias power source is also turned on, and the bias power source is turned on within one pulse period C1 of the bias power source output. The time is the first time T1, the time when the bias power source is off is the second time T2, and the ratio of the first time T1 to the sum of the first time T1 and the second time T2 is the first duty ratio, the bias power source The first duty cycle of the output pulse remains unchanged. During plasma etching, the RF power source continuously outputs RF power (always open), the RF power ionizes the etching gas to form a plasma, and when the bias power source is turned on (output bias power), the etching step is performed; When the power source is turned off (no bias power is output), a polymer formation step is performed. The first duty ratio is 10% to 90%, and the first duty ratio is preferably 30% to 70%, so that the etching step and the polymer forming step are kept for a certain period of time, and the plasma is engraved. In the etch, while increasing the etching efficiency, a sufficient amount of polymer is formed on the surface of the first mask layer, so that the rate at which the first mask layer is not damaged or damaged is reduced, and the dielectric layer is increased relative to the first layer. The etching selectivity of the mask layer.

繼續參考圖6和圖7,開始進行等離子體刻蝕時,當射頻功率源打開,偏置功率源也同時打開時,進行刻蝕步驟,射頻功率電離刻蝕氣體,激發形成等離子體,刻蝕部分所述介質層202,形成刻蝕凹槽206;當射頻功率源保持打開,而偏置功率源關閉時,進行聚合物形成步驟,在第一掩膜層203的表面形成聚合物204,所述聚合物204在下一個刻蝕週期沿刻蝕凹槽206刻蝕介質層202時保護第一掩膜層203不會受到損害或被損害的速率減小,從而提高介質層202相對於第一掩膜層203的刻蝕選擇比。在聚合物形成步驟,所述刻蝕凹槽206的側壁也會形成部分聚合物(圖中未示出),在下一個刻蝕週期中,保護刻蝕凹槽206的側壁不會過刻蝕,使最終形成的凹槽側壁具有較好的形貌。Continuing to refer to FIG. 6 and FIG. 7 , when the plasma etching is started, when the RF power source is turned on and the bias power source is simultaneously turned on, the etching step is performed, and the RF power is ionized to etch the gas, and the plasma is excited and etched. a portion of the dielectric layer 202 forms an etched recess 206; when the RF power source remains open and the bias power source is turned off, a polymer forming step is performed to form a polymer 204 on the surface of the first mask layer 203. The polymer 204 protects the first mask layer 203 from being damaged or damaged at the rate of etching the dielectric layer 202 along the etched recess 206 during the next etch cycle, thereby increasing the dielectric layer 202 relative to the first mask. The etching selectivity of the film layer 203. In the polymer forming step, the sidewall of the etched recess 206 also forms a portion of the polymer (not shown), and the sidewall of the protective etched trench 206 is not overetched during the next etch cycle. The resulting groove sidewalls have a better morphology.

所述等離子體刻蝕的射頻功率源功率為0~2000瓦,射頻頻率為60~120兆赫茲,偏置功率源的功率為100~4000瓦,偏置頻率為2~15兆赫茲,刻蝕腔壓力為20~200毫托,所述偏置功率源打開和關閉的頻率小於等於50千赫茲,在進行等離子體刻蝕時,在提高刻蝕效率的同時,在第一掩膜層203表面形成足量的聚合物,使得第一掩膜層203不會被損傷,提高介質層202相對於第一掩膜層203的刻蝕選擇比。The plasma etched RF power source has a power of 0 to 2000 watts, an RF frequency of 60 to 120 megahertz, a bias power source of 100 to 4000 watts, a bias frequency of 2 to 15 MHz, and etching. The cavity pressure is 20~200 mTorr, and the bias power source is turned on and off at a frequency of 50 kHz or less. When plasma etching is performed, the etching efficiency is improved while the surface of the first mask layer 203 is increased. A sufficient amount of polymer is formed such that the first mask layer 203 is not damaged, increasing the etching selectivity of the dielectric layer 202 relative to the first mask layer 203.

所述等離子體刻蝕採用的氣體為CF4、C4F8、C4F6、CHF3、CH2F2、CO中的一種或幾種,所述刻蝕採用的氣體還包括O2和Ar。CF4、C4F8、C4F6用於提供氟碳反應物,CHF3、CH2F2用於提高聚合物的濃度,O2用於控制聚合物的量,Ar用於形成正離子,CO用於控制氟碳的比例,Ar用於提供反應的能量。The gas used in the plasma etching is one or more of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , CO, and the gas used for the etching further includes O 2 . And Ar. CF 4 , C 4 F 8 , C 4 F 6 are used to provide a fluorocarbon reactant, CHF 3 , CH 2 F 2 are used to increase the concentration of the polymer, O 2 is used to control the amount of the polymer, and Ar is used to form a positive Ions, CO are used to control the proportion of fluorocarbon, and Ar is used to provide the energy of the reaction.

本實施例中所述等離子體刻蝕採用的氣體為CF4、C4F8、C4F6、CHF3、CH2F2、O2、CO和Ar的混合氣體,以保證等離子體刻蝕過程中,在掩膜層203表面形成足夠的聚合物。當射頻功率源打開,偏置功率源也打開時,CF4、C4F8、C4F6、CHF3、CH2F2等會被射頻功率電離生成F自由基、中性的CF2等分子碎片,同時也會生成一些正離子如:CF3 +等,Ar也會失去電子生成Ar+正離子,正離子經過等離子體鞘層(plasma sheath)和偏置功率的加速,會轟擊介質層材料,去除部分介質層,同時F自由基也會和介質層材料發生化學反應,去除部分介質層材料;當射頻功率源打開,偏置功率源關閉時,刻蝕氣體的電離過程一直在進行,電離形成的中性的活性成分如CF2等會複合生成氟碳聚合物,沉積在第一掩膜層203的表面,由於不存在加速電場或加速電場較小,正離子不會轟擊形成的聚合物204或轟擊力度減小,使形成的聚合物204全部或部分得以保存,後續繼續刻蝕時,由於存在一定厚度的聚合物204,從而保護第一掩膜層203不會受到損害或者受損害的速率減小。The gas used in the plasma etching in this embodiment is a mixed gas of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , O 2 , CO and Ar to ensure plasma engraving. During the etching process, sufficient polymer is formed on the surface of the mask layer 203. When the RF power source is turned on and the bias power source is also turned on, CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 etc. will be ionized by RF power to generate F radicals, neutral CF 2 . When the molecular fragments are generated, some positive ions such as CF 3 + are also generated. Ar also loses electrons to form Ar + positive ions. The positive ions are accelerated by the plasma sheath and the bias power, which will bombard the medium. The layer material removes part of the dielectric layer, and the F radical also chemically reacts with the dielectric layer material to remove part of the dielectric layer material; when the RF power source is turned on and the bias power source is turned off, the ionization process of the etching gas is always performed. The neutral active component such as CF 2 formed by ionization will form a fluorocarbon polymer and deposit on the surface of the first mask layer 203. Since there is no accelerating electric field or the acceleration electric field is small, the positive ions are not formed by bombardment. The polymer 204 or the bombardment force is reduced, so that all or part of the formed polymer 204 is preserved. When the etching is continued, the first mask layer 203 is protected from damage due to the presence of the polymer 204 of a certain thickness. The rate of damage is reduced.

參考圖8,重複上述刻蝕步驟和聚合物形成步驟,沿刻蝕凹槽203刻蝕所述介質層202,直至形成凹槽。Referring to FIG. 8, the above etching step and polymer forming step are repeated, and the dielectric layer 202 is etched along the etching recess 203 until a recess is formed.

重複刻蝕步驟和聚合物的形成步驟,使得聚合物204始終能保持一定的厚度,從而在整個刻蝕過程中,保護第一掩膜層203不會受到損傷或者被損傷的速率減小,提高介質層202相對於第一掩膜層203的刻蝕選擇比,使得介質層202相對於第一掩膜層203的刻蝕選擇比大於15:1。Repeating the etching step and the polymer forming step, so that the polymer 204 can always maintain a certain thickness, thereby protecting the first mask layer 203 from being damaged or being damaged at a reduced rate during the entire etching process, thereby improving The etch selectivity ratio of the dielectric layer 202 relative to the first mask layer 203 is such that the etch selectivity ratio of the dielectric layer 202 relative to the first mask layer 203 is greater than 15:1.

參考圖10,圖10為本發明第二實施例半導體結構的形成方法的流程示意圖,包括:Referring to FIG. 10, FIG. 10 is a schematic flow chart of a method for forming a semiconductor structure according to a second embodiment of the present invention, including:

步驟S31,提供基底,在所述基底上形成介質層;Step S31, providing a substrate on which a dielectric layer is formed;

步驟S32,在所述介質層上形成第一掩膜層,所述第一掩膜層具有暴露介質層表面的開口;Step S32, forming a first mask layer on the dielectric layer, the first mask layer having an opening exposing a surface of the dielectric layer;

步驟S33,以所述第一掩膜層為掩膜,對所述介質層進行等離子體刻蝕,射頻功率源以連續的方式輸出射頻功率,偏置功率源以脈衝的方式輸出偏置功率,偏置功率源輸出脈衝的第一占空比保持不變,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,所述偏置功率源滯後射頻功率源一段時間打開。Step S33, using the first mask layer as a mask, performing plasma etching on the dielectric layer, the RF power source outputs RF power in a continuous manner, and the bias power source outputs the bias power in a pulse manner. The first duty cycle of the output pulse of the bias power source remains unchanged. When the plasma etching is performed, when the RF power source is turned on, the etching gas is ionized, and the bias power source lags the RF power source for a period of time.

圖11~圖14為本發明第二實施例半導體結構的形成過程的剖面結構示意圖;圖15為本發明第二實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖。11 to FIG. 14 are schematic cross-sectional structural views showing a process of forming a semiconductor structure according to a second embodiment of the present invention; FIG. 15 is a diagram showing a bias power signal output of a radio frequency power source and a bias power source output according to a second embodiment of the present invention; .

參考圖11,提供基底300,在所述基底300上形成介質層302;在所述介質層302表面形成第一掩膜層303,所述第一掩膜層303具有暴露介質層302表面的開口305。Referring to FIG. 11, a substrate 300 is provided on which a dielectric layer 302 is formed; a first mask layer 303 is formed on a surface of the dielectric layer 302, the first mask layer 303 having an opening exposing a surface of the dielectric layer 302 305.

所述基底300為矽襯底、鍺襯底、矽鍺襯底、碳化矽襯底、氮化鎵襯底其中的一種。所述基底300內形成有離子摻雜區、矽通孔等(圖中未示出);所述基底300上還可以形成電晶體、電阻、電容、記憶體等半導體器件(圖中未示出)。The substrate 300 is one of a germanium substrate, a germanium substrate, a germanium substrate, a tantalum carbide substrate, and a gallium nitride substrate. An ion doping region, a germanium via hole, or the like (not shown) is formed in the substrate 300; a semiconductor device such as a transistor, a resistor, a capacitor, or a memory may be formed on the substrate 300 (not shown in the drawing) ).

在本發明的其他實施例中,所述基底300上還形成有一層或多層層間介質層(圖中未示出),所述層間介質層的材料為氧化矽、低K介電材料或超低K介電材料,所述介質層中形成有金屬互連線、導電插塞等半導體結構。In other embodiments of the present invention, the substrate 300 is further formed with one or more interlayer dielectric layers (not shown), and the interlayer dielectric layer is made of yttria, low-k dielectric material or ultra-low a K dielectric material in which a semiconductor structure such as a metal interconnection or a conductive plug is formed.

所述介質層302的材料為低K介電材料或超低K介電材料,所述介質層的厚度大於200納米,所述第一掩膜層303的材料為氮化鈦,後續採用等離子體刻蝕所述介質層302,形成具有凹槽和通孔的雙大馬士革結構,等離子體刻蝕過程中,會在所述第一掩膜層303表面形成聚合物,保護第一掩膜層303不會被刻蝕,從而提高介質層材料與第一掩膜層材料的刻蝕選擇比。由於刻蝕過程中會在第一掩膜層303形成聚合物,刻蝕過程中第一掩膜層303的損耗會減小,所述第一掩膜層303的厚度小於60納米,以減小施加在介質層302上的應力。The material of the dielectric layer 302 is a low-k dielectric material or an ultra-low-K dielectric material, the dielectric layer has a thickness greater than 200 nm, and the material of the first mask layer 303 is titanium nitride, followed by plasma. The dielectric layer 302 is etched to form a double damascene structure having grooves and via holes. During the plasma etching process, a polymer is formed on the surface of the first mask layer 303 to protect the first mask layer 303. It will be etched to increase the etch selectivity of the dielectric layer material to the first mask layer material. Since the polymer is formed in the first mask layer 303 during the etching process, the loss of the first mask layer 303 is reduced during the etching process, and the thickness of the first mask layer 303 is less than 60 nm to reduce The stress applied to the dielectric layer 302.

所述雙大馬士革結構的形成過程為:刻蝕所述第一掩膜層,形成暴露介質層表面的第一子開口;在第一掩膜層上形成光刻膠層,光刻膠層填充滿所述第一子開口,圖形化所述光刻膠層,形成第二子開口,第二子開口的位置與第一子開口的位置相對應,第二子開口暴露介質層表面,第二子開口的寬度小於第一子開口的寬度;沿第二子開口,採用等離子體刻蝕所述介質層,形成貫穿所述介質層的第一子通孔;去除所述圖形化的光刻膠層;沿第二子開口,採用等離子體刻蝕部分所述介質層,形成第一子凹槽,所述第一子通孔和第一子凹槽構成雙大馬士革結構。等離子體刻蝕所述介質層時,會相應的在光刻膠層或第一掩膜層表面形成聚合物,從而提高介質層材料與第一掩膜層材料或光刻膠材料的刻蝕選擇比。The double damascene structure is formed by etching the first mask layer to form a first sub-opening exposing a surface of the dielectric layer; forming a photoresist layer on the first mask layer, and filling the photoresist layer The first sub-opening, patterning the photoresist layer to form a second sub-opening, the position of the second sub-opening corresponding to the position of the first sub-opening, the second sub-opening exposing the surface of the dielectric layer, the second sub- The width of the opening is smaller than the width of the first sub-opening; along the second sub-opening, the dielectric layer is etched by plasma to form a first sub-via through the dielectric layer; and the patterned photoresist layer is removed And along the second sub-opening, the dielectric layer is partially etched by plasma to form a first sub-groove, and the first sub-via and the first sub-groove constitute a double damascene structure. When the dielectric layer is plasma etched, a polymer is formed on the surface of the photoresist layer or the first mask layer, thereby improving etching selection of the dielectric layer material and the first mask layer material or the photoresist material. ratio.

在本發明的其他實施例中,所述介質層為多層堆疊結構,包括:第一介質層、位於第一介質層表面的第二掩膜層、位於第二掩膜層表面的第二介質層,所述第二掩膜層中具有暴露第一介質層表面的第三子開口,第二介質層填充滿所述第三子開口。所述第一介質層和第二介質層的材料為低K介電材料、超低K介電材料或氧化矽,所述第二掩膜層的材料為氮化矽、氮氧化矽、碳化矽或碳氮化矽,所述第一掩膜層的材料為光刻膠或無定形碳。後續刻蝕所述堆疊結構,形成雙大馬士革結構,所述雙大馬士革結構的形成方法為:以第一掩膜層為掩膜,採用等離子體刻蝕所述第一介質層,形成第二子凹槽,第二子凹槽暴露第二掩膜層表面,第二子凹槽的位置與第三子開口的位置相對應,第一子凹槽的寬度大於第三子開口的寬度;沿第三子開口,採用等離子體刻蝕所述第二介質層,形成貫穿所述第二介質層的第二子通孔,所述第二子凹槽和第二子通孔構成雙大馬士革結構。等離子體刻蝕所述第一介質層和第二介質層時,會相應的在第一掩膜層和第二掩膜層表面形成聚合物,從而提高第一介質層相對於第一掩膜層的刻蝕選擇比,以及第二介質層相對於第一掩膜層和第二掩膜層的刻蝕選擇比。In other embodiments of the present invention, the dielectric layer is a multi-layer stacked structure, including: a first dielectric layer, a second mask layer on a surface of the first dielectric layer, and a second dielectric layer on a surface of the second mask layer. The second mask layer has a third sub-opening exposing the surface of the first dielectric layer, and the second dielectric layer fills the third sub-opening. The material of the first dielectric layer and the second dielectric layer is a low-k dielectric material, an ultra-low-K dielectric material or yttrium oxide, and the material of the second mask layer is tantalum nitride, niobium oxynitride, niobium carbide Or bismuth carbonitride, the material of the first mask layer is photoresist or amorphous carbon. Subsequently, the stacked structure is etched to form a double damascene structure, and the double damascene structure is formed by: using a first mask layer as a mask, plasma etching the first dielectric layer to form a second sub-concave a second sub-groove exposing a surface of the second mask layer, the position of the second sub-groove corresponding to the position of the third sub-opening, the width of the first sub-groove being greater than the width of the third sub-opening; a sub-opening, the second dielectric layer is etched by plasma to form a second sub-via through the second dielectric layer, and the second sub-groove and the second sub-via form a dual damascene structure. When the first dielectric layer and the second dielectric layer are plasma etched, a polymer is formed on the surfaces of the first mask layer and the second mask layer, thereby increasing the first dielectric layer relative to the first mask layer. The etch selectivity ratio and the etch selectivity ratio of the second dielectric layer to the first mask layer and the second mask layer.

參考圖12和圖13,以所述第一掩膜層303為掩膜,對所述介質層302進行等離子體刻蝕,射頻功率源以連續的方式輸出射頻功率,偏置功率源以脈衝的方式輸出偏置功率,偏置功率源輸出脈衝的第一占空比保持不變,所述等離子體刻蝕包括刻蝕步驟和聚合物形成步驟,開始進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,形成等離子體,所述偏置功率源滯後射頻功率源一段時間打開,即此時偏置功率源關閉,進行聚合物形成步驟,在第一掩膜層303表面形成聚合物;射頻功率源保持打開,接著偏置功率源打開,進行刻蝕步驟,沿開口305刻蝕所述介質層302,形成刻蝕凹槽306。Referring to FIG. 12 and FIG. 13 , the dielectric layer 302 is plasma etched by using the first mask layer 303 as a mask, and the RF power source outputs RF power in a continuous manner, and the bias power source is pulsed. The output bias power is maintained, and the first duty ratio of the output pulse of the bias power source remains unchanged. The plasma etching includes an etching step and a polymer forming step, and when the plasma etching is started, when the RF power source is Opening, ionizing the etching gas to form a plasma, the bias power source lags the RF power source for a period of time, that is, the bias power source is turned off, and the polymer forming step is performed to form a polymerization on the surface of the first mask layer 303. The RF power source remains open, then the bias power source is turned on, an etching step is performed, and the dielectric layer 302 is etched along the opening 305 to form an etched recess 306.

本實施例中,開始進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,形成等離子體,所述偏置功率源滯後射頻功率源一段時間打開,相比於第一實施例,在刻蝕步驟開始前,會先進行聚合物形成步驟,在第一掩膜層303表面形成聚合物,從而在刻蝕一開始,保護第一掩膜層303不會被刻蝕損傷。In this embodiment, when the plasma etching is started, when the RF power source is turned on, the etching gas is ionized to form a plasma, and the bias power source lags the RF power source for a period of time, compared to the first embodiment. Before the etching step begins, a polymer forming step is performed to form a polymer on the surface of the first mask layer 303, thereby protecting the first mask layer 303 from etching damage at the beginning of etching.

參考圖15,圖15為本實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖,射頻功率源連續的輸出射頻功率,偏置功率源以脈衝的方式輸出脈衝功率,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,相對應的所述偏置功率源滯後射頻功率源一段時間△T1打開,即△T1時間內,偏置功率源是關閉的,此時進行聚合物形成步驟;在△T1後,偏置功率源打開,偏置功率源以正常的脈衝的方式輸出偏置功率,偏置功率源輸出的一個脈衝週期C1內,偏置功率源打開的時間為第一時間T1,偏置功率源關閉的時間為第二時間T2,第一時間T1與第一時間T1和第二時間T2之和的比值為第一占空比,偏置功率源輸出脈衝的第一占空比保持不變,等離子體刻蝕時,射頻功率源持續輸出射頻功率(一直打開),射頻功率電離刻蝕氣體,形成等離子體,當偏置功率源打開時(輸出偏置功率),進行刻蝕步驟;當偏置功率源關閉時(不輸出偏置功率),進行聚合物形成步驟。所述滯後的時間△T1小於或等於偏置功率源關閉的第二時間T2,在不影響刻蝕效率的情況下,形成一定厚度的聚合物,所述第一占空比為10%~90%,較佳的所述第一占空比為30%~70%,使得刻蝕步驟和聚合物形成步驟保持一定的時間,在進行等離子體刻蝕時,在提高刻蝕效率的同時,在第一掩膜層表面形成足量的聚合物,使得第一掩膜層不會被損傷或被損傷的速率減小,提高介質層相對於第一掩膜層的刻蝕選擇比。Referring to FIG. 15, FIG. 15 is a diagram showing a bias power signal outputted by a radio frequency power source and a bias power source output of the RF power source according to the embodiment, a continuous output RF power of the RF power source, and a bias power source outputting a pulse power in a pulse manner. When the plasma etching is performed, when the RF power source is turned on, the etching gas is ionized, and the corresponding bias power source lags the RF power source for a period of time ΔT1 is turned on, that is, ΔT1 time, the bias power source Is closed, at this time the polymer formation step; after ΔT1, the bias power source is turned on, the bias power source outputs the bias power in a normal pulse manner, and the bias power source outputs a pulse period C1, The time when the bias power source is turned on is the first time T1, and the time when the bias power source is turned off is the second time T2, and the ratio of the first time T1 to the sum of the first time T1 and the second time T2 is the first duty ratio. The first duty cycle of the output pulse of the bias power source remains unchanged. When the plasma is etched, the RF power source continuously outputs the RF power (always open), and the RF power ionizes the etching gas to form a plasma. The bias power source is turned on (the bias power output), the step of etching; when the bias power source is turned off (no bias power output), a step for forming the polymer. The hysteresis time ΔT1 is less than or equal to the second time T2 when the bias power source is turned off, and a certain thickness of the polymer is formed without affecting the etching efficiency, and the first duty ratio is 10% to 90. Preferably, the first duty ratio is 30% to 70%, so that the etching step and the polymer forming step are maintained for a certain period of time, and during the plasma etching, while improving the etching efficiency, The surface of the first mask layer forms a sufficient amount of polymer such that the rate at which the first mask layer is not damaged or damaged is reduced, increasing the etching selectivity of the dielectric layer relative to the first mask layer.

繼續參考圖12和圖13,所述等離子體刻蝕的射頻功率源功率為0~2000瓦,射頻頻率為60~120兆赫茲,偏置功率源的功率為100~4000瓦,偏置頻率為2~15兆赫茲,刻蝕腔壓力為20~200毫托,所述偏置功率源打開和關閉的頻率小於等於50千赫茲,在進行等離子體刻蝕時,在提高刻蝕效率的同時,在第一掩膜層303表面形成足量的聚合物,使得第一掩膜層303不會被損傷,提高介質層302相對於第一掩膜層303的刻蝕選擇比。Continuing to refer to FIG. 12 and FIG. 13 , the plasma etched RF power source has a power of 0 to 2000 watts, an RF frequency of 60 to 120 MHz, and a bias power source of 100 to 4,000 watts. 2~15 MHz, the etching chamber pressure is 20~200 mTorr, and the bias power source is turned on and off at a frequency of 50 kHz or less. When plasma etching is performed, the etching efficiency is improved. A sufficient amount of polymer is formed on the surface of the first mask layer 303 such that the first mask layer 303 is not damaged, and the etching selectivity ratio of the dielectric layer 302 to the first mask layer 303 is increased.

所述等離子體刻蝕採用的氣體為CF4、C4F8、C4F6、CHF3、CH2F2、CO中的一種或幾種,所述刻蝕採用的氣體還包括O2和Ar。CF4、C4F8、C4F6用於提供氟碳反應物,CHF3、CH2F2用於提高聚合物的濃度,O2用於控制聚合物的量,Ar用於形成正離子,CO用於控制氟碳的比例,Ar用於提供反應的能量。The gas used in the plasma etching is one or more of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , CO, and the gas used for the etching further includes O 2 . And Ar. CF 4 , C 4 F 8 , C 4 F 6 are used to provide a fluorocarbon reactant, CHF 3 , CH 2 F 2 are used to increase the concentration of the polymer, O 2 is used to control the amount of the polymer, and Ar is used to form a positive Ions, CO are used to control the proportion of fluorocarbon, and Ar is used to provide the energy of the reaction.

本實施例中所述等離子體刻蝕採用的氣體為CF4、C4F8、C4F6、CHF3、CH2F2、O2、CO和Ar的混合氣體,以保證等離子體刻蝕過程中,在掩膜層303表面形成足夠的聚合物。當射頻功率源打開,偏置功率源也打開時,CF4、C4F8、C4F6、CHF3、CH2F2等會被射頻功率解離生成F自由基、中性的CF2等分子碎片,同時也會生成一些正離子如:CF3 +等,Ar也會失去電子生成Ar+正離子,正離子經過等離子體鞘層(plasma sheath)和偏置功率的加速,會轟擊介質層材料,去除部分介質層,同時F自由基也會和介質層材料發生化學反應,去除部分介質層材料;當射頻功率源打開,偏置功率源關閉時,此時腔室內還存在活性成分,而中性的活性成分如CF2等會複合生成氟碳聚合物,沉積在第一掩膜層303的表面,由於不存在加速電場或加速電場很小,正離子不會轟擊形成的聚合物304或轟擊力度減小,使形成的聚合物304全部或部分得以保存,後續繼續刻蝕時,由於存在一定厚度的聚合物304,從而保護第一掩膜層303不會受到損害或者受損害的速率減小。本實施例中,由於偏置功率源滯後射頻功率源一段時間打開,因此在刻蝕步驟開始前,會在第一掩膜層303表面先形成聚合物,從而在刻蝕一開始,保護第一掩膜層303不會被刻蝕損傷。The gas used in the plasma etching in this embodiment is a mixed gas of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , O 2 , CO and Ar to ensure plasma engraving. During the etching process, sufficient polymer is formed on the surface of the mask layer 303. When the RF power source is turned on and the bias power source is also turned on, CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 etc. will be dissociated by RF power to generate F radicals, neutral CF 2 . When the molecular fragments are generated, some positive ions such as CF 3 + are also generated. Ar also loses electrons to form Ar + positive ions. The positive ions are accelerated by the plasma sheath and the bias power, which will bombard the medium. The layer material removes part of the dielectric layer, and the F radical also chemically reacts with the dielectric layer material to remove part of the dielectric layer material; when the RF power source is turned on and the bias power source is turned off, the active component is still present in the chamber. Neutral active ingredients such as CF 2 may be combined to form a fluorocarbon polymer deposited on the surface of the first mask layer 303. Since there is no accelerating electric field or the acceleration electric field is small, the positive ions do not bombard the formed polymer 304. Or the bombardment force is reduced, so that all or part of the formed polymer 304 is preserved, and when the etching is continued, the first mask layer 303 is protected from damage or damage due to the presence of the polymer 304 of a certain thickness. small. In this embodiment, since the bias power source lags the RF power source for a period of time, a polymer is first formed on the surface of the first mask layer 303 before the etching step begins, thereby protecting the first at the beginning of the etching. The mask layer 303 is not damaged by etching.

參考圖14,重複上述刻蝕步驟和聚合物形成步驟,沿刻蝕凹槽303刻蝕所述介質層302,直至形成凹槽。Referring to FIG. 14, the above etching step and polymer forming step are repeated, and the dielectric layer 302 is etched along the etching recess 303 until a recess is formed.

偏置功率源以脈衝的方式輸出偏置功率,等離子體刻蝕時,重複刻蝕步驟和聚合物的形成步驟,使得聚合物304始終能保持一定的厚度,從而在整個刻蝕過程中,保護第一掩膜層303不會受到損傷或者被損傷的速率減小,提高介質層302相對於第一掩膜層303的刻蝕選擇比,使得介質層302相對於第一掩膜層303的刻蝕選擇比大於15:1。The bias power source outputs the bias power in a pulsed manner, and during the plasma etching, the etching step and the polymer forming step are repeated, so that the polymer 304 can always maintain a certain thickness, thereby protecting the entire etching process. The first mask layer 303 is not damaged or the rate of damage is reduced, and the etching selectivity ratio of the dielectric layer 302 relative to the first mask layer 303 is increased, so that the dielectric layer 302 is inscribed with respect to the first mask layer 303. The eccentricity selection ratio is greater than 15:1.

參考圖16,圖16為本發明第三實施例半導體結構的形成方法的流程示意圖,包括:Referring to FIG. 16, FIG. 16 is a schematic flowchart diagram of a method for forming a semiconductor structure according to a third embodiment of the present invention, including:

步驟S41,提供基底,在所述基底上形成介質層;Step S41, providing a substrate on which a dielectric layer is formed;

步驟S42,在所述介質層上形成第一掩膜層,所述第一掩膜層具有暴露介質層表面的開口;Step S42, forming a first mask layer on the dielectric layer, the first mask layer having an opening exposing a surface of the dielectric layer;

步驟S43,以所述第一掩膜層為掩膜,對所述介質層進行等離子體刻蝕,射頻功率源和偏置功率源以脈衝的方式輸出射頻功率和脈衝功率,射頻功率源和偏置功率源脈衝的輸出頻率相等,偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,相對應的所述偏置功率源也打開。Step S43, using the first mask layer as a mask, performing plasma etching on the dielectric layer, and the RF power source and the bias power source output the RF power and the pulse power in a pulse manner, and the RF power source and the bias voltage The output frequency of the power source pulse is equal, and the first duty ratio of the output pulse of the bias power source is smaller than the second duty ratio of the output pulse of the RF power source. When the plasma etching is performed, when the RF power source is turned on, the ionization is performed. The etching gas is applied, and the corresponding bias power source is also turned on.

圖17~圖20為本發明第三實施例半導體結構的形成過程的剖面結構示意圖;圖21為本發明第三實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖。17 to FIG. 20 are schematic cross-sectional structural views showing a process of forming a semiconductor structure according to a third embodiment of the present invention; and FIG. 21 is a diagram showing a bias power signal of an output of a radio frequency power source and a bias power source output according to a third embodiment of the present invention; .

參考圖17,提供基底400,在所述基底400上形成介質層402;在所述介質層402表面形成第一掩膜層403,所述第一掩膜層403具有暴露介質層402表面的開口405。Referring to FIG. 17, a substrate 400 is provided on which a dielectric layer 402 is formed; a first mask layer 403 is formed on a surface of the dielectric layer 402, the first mask layer 403 having an opening exposing a surface of the dielectric layer 402 405.

所述基底400為矽襯底、鍺襯底、矽鍺襯底、碳化矽襯底、氮化鎵襯底其中的一種。所述基底400內形成有離子摻雜區、矽通孔等(圖中未示出);所述基底400上還可以形成電晶體、電阻、電容、記憶體等半導體器件(圖中未示出)。The substrate 400 is one of a germanium substrate, a germanium substrate, a germanium substrate, a tantalum carbide substrate, and a gallium nitride substrate. An ion doping region, a germanium via hole, or the like (not shown) is formed in the substrate 400; a semiconductor device such as a transistor, a resistor, a capacitor, or a memory may be formed on the substrate 400 (not shown in the drawing) ).

在本發明的其他實施例中,所述基底400上還形成有一層或多層層間介質層(圖中未示出),所述層間介質層的材料為氧化矽、低K介電材料或超低K介電材料,所述介質層中形成有金屬互連線、導電插塞等半導體結構。In other embodiments of the present invention, the substrate 400 is further formed with one or more interlayer dielectric layers (not shown), and the interlayer dielectric layer is made of yttria, low-k dielectric material or ultra-low a K dielectric material in which a semiconductor structure such as a metal interconnection or a conductive plug is formed.

所述介質層402的材料為低K介電材料或超低K介電材料,所述介質層的厚度大於200納米,所述第一掩膜層403的材料為氮化鈦,後續採用等離子體刻蝕所述介質層402,形成具有凹槽和通孔的雙大馬士革結構,等離子體刻蝕過程中,會在所述第一掩膜層403表面形成聚合物,保護第一掩膜層403不會被刻蝕,從而提高介質層材料與第一掩膜層材料的刻蝕選擇比。由於刻蝕過程中會在第一掩膜層403形成聚合物,刻蝕過程中第一掩膜層303的損耗會減小,所述第一掩膜層403的厚度小於60納米,以減小施加在介質層402上的應力。The material of the dielectric layer 402 is a low-k dielectric material or an ultra-low-K dielectric material, the dielectric layer has a thickness greater than 200 nm, and the material of the first mask layer 403 is titanium nitride, followed by plasma. The dielectric layer 402 is etched to form a double damascene structure having grooves and via holes. During the plasma etching process, a polymer is formed on the surface of the first mask layer 403 to protect the first mask layer 403. It will be etched to increase the etch selectivity of the dielectric layer material to the first mask layer material. Since the polymer is formed in the first mask layer 403 during the etching process, the loss of the first mask layer 303 is reduced during the etching process, and the thickness of the first mask layer 403 is less than 60 nm to reduce The stress applied to the dielectric layer 402.

所述雙大馬士革結構的形成過程為:刻蝕所述第一掩膜層,形成暴露介質層表面的第一子開口;在第一掩膜層上形成光刻膠層,光刻膠層填充滿所述第一子開口,圖形化所述光刻膠層,形成第二子開口,第二子開口的位置與第一子開口的位置相對應,第二子開口暴露介質層表面,第二子開口的寬度小於第一子開口的寬度;沿第二子開口,採用等離子體刻蝕所述介質層,形成貫穿所述介質層的第一子通孔;去除所述圖形化的光刻膠層;沿第二子開口,採用等離子體刻蝕部分所述介質層,形成第一子凹槽,所述第一子通孔和第一子凹槽構成雙大馬士革結構。等離子體刻蝕所述介質層時,會相應的在光刻膠層或第一掩膜層表面形成聚合物,從而提高介質層材料與第一掩膜層材料或光刻膠材料的刻蝕選擇比。The double damascene structure is formed by etching the first mask layer to form a first sub-opening exposing a surface of the dielectric layer; forming a photoresist layer on the first mask layer, and filling the photoresist layer The first sub-opening, patterning the photoresist layer to form a second sub-opening, the position of the second sub-opening corresponding to the position of the first sub-opening, the second sub-opening exposing the surface of the dielectric layer, the second sub- The width of the opening is smaller than the width of the first sub-opening; along the second sub-opening, the dielectric layer is etched by plasma to form a first sub-via through the dielectric layer; and the patterned photoresist layer is removed And along the second sub-opening, the dielectric layer is partially etched by plasma to form a first sub-groove, and the first sub-via and the first sub-groove constitute a double damascene structure. When the dielectric layer is plasma etched, a polymer is formed on the surface of the photoresist layer or the first mask layer, thereby improving etching selection of the dielectric layer material and the first mask layer material or the photoresist material. ratio.

在本發明的其他實施例中,所述介質層為多層堆疊結構,包括:第一介質層、位於第一介質層表面的第二掩膜層、位於第二掩膜層表面的第二介質層,所述第二掩膜層中具有暴露第一介質層表面的第三子開口,第二介質層填充滿所述第三子開口。所述第一介質層和第二介質層的材料為低K介電材料、超低K介電材料或氧化矽,所述第二掩膜層的材料為氮化矽、氮氧化矽、碳化矽或碳氮化矽,所述第一掩膜層的材料為光刻膠或無定形碳。後續刻蝕所述堆疊結構,形成雙大馬士革結構,所述雙大馬士革結構的形成方法為:以第一掩膜層為掩膜,採用等離子體刻蝕所述第一介質層,形成第二子凹槽,第二子凹槽暴露第二掩膜層表面,第二子凹槽的位置與第三子開口的位置相對應,第一子凹槽的寬度大於第三子開口的寬度;沿第三子開口,採用等離子體刻蝕所述第二介質層,形成貫穿所述第二介質層的第二子通孔,所述第二子凹槽和第二子通孔構成雙大馬士革結構。等離子體刻蝕所述第一介質層和第二介質層時,會相應的在第一掩膜層和第二掩膜層表面形成聚合物,從而提高第一介質層相對於第一掩膜層的刻蝕選擇比,以及第二介質層相對於第一掩膜層和第二掩膜層的刻蝕選擇比。In other embodiments of the present invention, the dielectric layer is a multi-layer stacked structure, including: a first dielectric layer, a second mask layer on a surface of the first dielectric layer, and a second dielectric layer on a surface of the second mask layer. The second mask layer has a third sub-opening exposing the surface of the first dielectric layer, and the second dielectric layer fills the third sub-opening. The material of the first dielectric layer and the second dielectric layer is a low-k dielectric material, an ultra-low-K dielectric material or yttrium oxide, and the material of the second mask layer is tantalum nitride, niobium oxynitride, niobium carbide Or bismuth carbonitride, the material of the first mask layer is photoresist or amorphous carbon. Subsequently, the stacked structure is etched to form a double damascene structure, and the double damascene structure is formed by: using a first mask layer as a mask, plasma etching the first dielectric layer to form a second sub-concave a second sub-groove exposing a surface of the second mask layer, the position of the second sub-groove corresponding to the position of the third sub-opening, the width of the first sub-groove being greater than the width of the third sub-opening; a sub-opening, the second dielectric layer is etched by plasma to form a second sub-via through the second dielectric layer, and the second sub-groove and the second sub-via form a dual damascene structure. When the first dielectric layer and the second dielectric layer are plasma etched, a polymer is formed on the surfaces of the first mask layer and the second mask layer, thereby increasing the first dielectric layer relative to the first mask layer. The etch selectivity ratio and the etch selectivity ratio of the second dielectric layer to the first mask layer and the second mask layer.

參考圖18和圖19,以所述第一掩膜層403為掩膜,對所述介質層402進行等離子體刻蝕,射頻功率源和偏置功率源以脈衝的方式輸出射頻功率和脈衝功率,射頻功率源和偏置功率源脈衝的輸出頻率相等,偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,相對應的所述偏置功率源也打開。所述等離子體刻蝕包括刻蝕步驟和聚合物形成步驟,開始進行等離子體刻蝕時,進行刻蝕步驟,沿開口405刻蝕所述介質層402,形成刻蝕凹槽406;當射頻功率源關閉,偏置功率源也關閉時,在第一掩膜層303表面形成聚合物404,後續繼續刻蝕時,保護第一掩膜層303不會受到損傷或減小損傷的速率。Referring to FIG. 18 and FIG. 19, the dielectric layer 402 is plasma etched by using the first mask layer 403 as a mask, and the RF power source and the bias power source output the RF power and the pulse power in a pulse manner. The output frequency of the RF power source and the bias power source pulse are equal, and the first duty ratio of the output pulse of the bias power source is smaller than the second duty ratio of the output pulse of the RF power source, when the plasma etching is performed, when The RF power source is turned on, ionizing the etching gas, and the corresponding bias power source is also turned on. The plasma etching includes an etching step and a polymer forming step. When the plasma etching is started, an etching step is performed, and the dielectric layer 402 is etched along the opening 405 to form an etching recess 406; when the RF power is When the source is turned off and the bias power source is also turned off, the polymer 404 is formed on the surface of the first mask layer 303, and when the etching is continued, the first mask layer 303 is protected from damage or the rate of damage is reduced.

參考圖21,圖21為本實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖,射頻功率源以脈衝的方式的輸出射頻功率,偏置功率源以脈衝的方式輸出脈衝功率,射頻功率源和偏置功率源輸出脈衝的頻率相等,相位相同,偏置功率源輸出的一個脈衝週期C1內,偏置功率源打開的時間為第一時間T1,偏置功率源關閉的時間為第二時間T2,第一時間T1與第一時間T1和第二時間T2之和的比值為第一占空比,射頻功率源輸出的一個脈衝週期C2內,射頻功率源打開的時間為第三時間T3,射頻功率源關閉的時間為第四時間T4,第三時間T3與第三時間T3和第四時間T4之和的比值為第二占空比,第一占空比小於第二占空比,所述第一占空比範圍為10%~80%,所述第二占空比範圍為30%~90%,比如:第一占空比為40%,第二占空比為60%,在提高刻蝕效率同時,又能在第一掩膜層表面形成足夠的聚合物。Referring to FIG. 21, FIG. 21 is a diagram of a bias power signal outputted by a radio frequency power source and a bias power source output of the RF power source according to the embodiment. The RF power source outputs the RF power in a pulsed manner, and the bias power source is pulsed. Output pulse power, the frequency of the output pulse of the RF power source and the bias power source are equal, the phase is the same, and the bias power source is turned on for one pulse period C1, and the bias power source is turned on for the first time T1, the bias power source The closing time is the second time T2, and the ratio of the first time T1 to the sum of the first time T1 and the second time T2 is the first duty ratio, and the RF power source is turned on within one pulse period C2 of the RF power source output. The time is the third time T3, the time when the RF power source is off is the fourth time T4, and the ratio of the third time T3 to the sum of the third time T3 and the fourth time T4 is the second duty ratio, and the first duty ratio is less than The second duty ratio, the first duty ratio ranges from 10% to 80%, and the second duty ratio ranges from 30% to 90%, for example, the first duty ratio is 40%, and the second ratio is The air ratio is 60%, and while improving the etching efficiency, it can be in the first Sufficient polymer film layer formed on the surface.

本實施例中,進行等離子體刻蝕時,射頻功率源和偏置功率源以脈衝的方式輸出射頻功率和脈衝功率,射頻功率源和偏置功率源脈衝的輸出頻率相等,相位相同,偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比,在進行刻蝕步驟後部分,射頻功率源是打開的,而偏置功率源提前關閉,因此部分聚合物會沉積在掩膜層表面,刻蝕步驟後,射頻功率源和偏置功率源均關閉,進行聚合物形成步驟,在第一掩膜層表面形成聚合物,加上刻蝕步驟中形成部分聚合物,使聚合物的厚度更厚,從而更好的保護第一掩膜層不會受到損害或被損害的速率減小,提高介質層相對於第一掩膜層的刻蝕選擇比,並且聚合物的形成和刻蝕效果更佳。In this embodiment, when plasma etching is performed, the RF power source and the bias power source output the RF power and the pulse power in a pulse manner, and the output frequencies of the RF power source and the bias power source pulse are equal, the phases are the same, and the offset is The first duty cycle of the output pulse of the power source is less than the second duty cycle of the output pulse of the RF power source. After the etching step, the RF power source is turned on, and the bias power source is turned off early, so part of the polymer Deposited on the surface of the mask layer. After the etching step, the RF power source and the bias power source are both turned off, the polymer forming step is performed, a polymer is formed on the surface of the first mask layer, and a partial polymerization is formed in the etching step. To make the thickness of the polymer thicker, thereby better protecting the first mask layer from being damaged or damaged, increasing the etching selectivity of the dielectric layer relative to the first mask layer, and polymerizing The formation and etching effect of the object is better.

繼續參考圖18和圖19,所述等離子體刻蝕的射頻功率源功率為0~2000瓦,射頻頻率為60~120兆赫茲,偏置功率源的功率為100~4000瓦,偏置頻率為2~15兆赫茲,刻蝕腔壓力為20~200毫托,所述射頻功率源打開和關閉的頻率小於等於50千赫茲,在進行等離子體刻蝕時,在提高刻蝕效率的同時,在第一掩膜層403表面形成足量的聚合物,使得第一掩膜層403不會被損傷,提高介質層402相對於第一掩膜層403的刻蝕選擇比。With continued reference to FIG. 18 and FIG. 19, the plasma etched RF power source has a power of 0 to 2000 watts, an RF frequency of 60 to 120 megahertz, and a bias power source of 100 to 4,000 watts. 2~15 MHz, the etching chamber pressure is 20~200 mTorr, and the frequency of opening and closing the RF power source is less than or equal to 50 kHz. When performing plasma etching, while improving the etching efficiency, A sufficient amount of polymer is formed on the surface of the first mask layer 403 such that the first mask layer 403 is not damaged, and the etching selectivity ratio of the dielectric layer 402 to the first mask layer 403 is increased.

所述等離子體刻蝕採用的氣體為CF4、C4F8、C4F6、CHF3、CH2F2、CO中的一種或幾種,所述刻蝕採用的氣體還包括O2和Ar。CF4、C4F8、C4F6用於提供氟碳反應物,CHF3、CH2F2用於提高聚合物的濃度,O2用於控制聚合物的量,Ar用於形成正離子,CO用於控制氟碳的比例,Ar用於提供反應的能量。The gas used in the plasma etching is one or more of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , CO, and the gas used for the etching further includes O 2 . And Ar. CF 4 , C 4 F 8 , C 4 F 6 are used to provide a fluorocarbon reactant, CHF 3 , CH 2 F 2 are used to increase the concentration of the polymer, O 2 is used to control the amount of the polymer, and Ar is used to form a positive Ions, CO are used to control the proportion of fluorocarbon, and Ar is used to provide the energy of the reaction.

本實施例中所述等離子體刻蝕採用的氣體為CF4、C4F8、C4F6、CHF3、CH2F2、O2、CO和Ar的混合氣體,以保證等離子體刻蝕過程中,在掩膜層403表面形成足夠的聚合物。在刻蝕步驟,當射頻功率源打開,偏置功率源也打開時,CF4、C4F8、C4F6、CHF3、CH2F2等會被射頻功率解離生成F自由基、中性的CF2等分子碎片,同時也會生成一些正離子如:CF3 +等,Ar也會失去電子生成Ar+正離子,正離子經過等離子體鞘層(plasma sheath)和偏置功率的加速,會轟擊介質層材料,去除部分介質層,同時F自由基也會和介質層材料發生化學反應,去除部分介質層材料,在刻蝕步驟的後部分,由於偏置功率源提前關閉,部分聚合物會沉積在第一掩膜層403表面;刻蝕步驟後,進行聚合物形成步驟,射頻功率源關閉,偏置功率源也關閉,此時腔室內還存在活性成分,而中性的活性成分如CF2等會複合生成氟碳聚合物,沉積在第一掩膜層403的表面,由於不存在加速電場,正離子不會轟擊形成的聚合物,使形成的聚合物全部或部分得以保存,由於刻蝕步驟後部分有部分聚合物已形成在第一掩膜層403表面,加上聚合物形成步驟形成的聚合物,使聚合物404的厚度更厚,後續繼續刻蝕時,從而更好的保護第一掩膜層403不會受到損害或者受損害的速率減小。The gas used in the plasma etching in this embodiment is a mixed gas of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , O 2 , CO and Ar to ensure plasma engraving. During the etching process, sufficient polymer is formed on the surface of the mask layer 403. In the etching step, when the RF power source is turned on and the bias power source is also turned on, CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , etc. are dissociated by RF power to generate F radicals. Neutral molecular fragments such as CF 2 will also generate some positive ions such as CF 3 +, etc. Ar will also lose electrons to form Ar + positive ions, and positive ions pass through the plasma sheath and bias power. Acceleration will bombard the dielectric layer material and remove part of the dielectric layer. At the same time, the F radical will chemically react with the dielectric layer material to remove part of the dielectric layer material. In the latter part of the etching step, the bias power source is turned off in advance. The polymer is deposited on the surface of the first mask layer 403; after the etching step, the polymer forming step is performed, the RF power source is turned off, and the bias power source is also turned off. At this time, the active component is still present in the chamber, and the neutral activity is present. A component such as CF 2 or the like is compounded to form a fluorocarbon polymer deposited on the surface of the first mask layer 403. Since there is no accelerating electric field, the positive ions do not bombard the formed polymer, so that all or part of the formed polymer is preserved. ,by After the etching step, a part of the polymer is formed on the surface of the first mask layer 403, and the polymer formed by the polymer forming step is added to make the thickness of the polymer 404 thicker, and then further etching is performed, thereby being better. The rate at which the first mask layer 403 is protected from damage or damage is reduced.

參考圖20,重複上述刻蝕步驟和聚合物形成步驟,沿刻蝕凹槽403刻蝕所述介質層402,直至形成凹槽。Referring to FIG. 20, the above etching step and polymer forming step are repeated, and the dielectric layer 402 is etched along the etching recess 403 until a recess is formed.

進行等離子體刻蝕時,射頻功率源和偏置功率源以脈衝的方式輸出射頻功率和脈衝功率,射頻功率源和偏置功率源脈衝的輸出頻率相等,相位相同,偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比,重複刻蝕步驟和聚合物的形成步驟,使得聚合物404始終能保持一定的厚度,從而在整個刻蝕過程中,保護第一掩膜層403不會受到損傷或者被損傷的速率減小,提高介質層402相對於第一掩膜層403的刻蝕選擇比,使得介質層402相對於第一掩膜層403的刻蝕選擇比大於15:1。When plasma etching is performed, the RF power source and the bias power source output the RF power and the pulse power in a pulse manner, and the output frequencies of the RF power source and the bias power source pulse are equal, the phases are the same, and the bias power source outputs the pulse. The first duty ratio is less than the second duty ratio of the RF power source output pulse, and the etching step and the polymer forming step are repeated, so that the polymer 404 can always maintain a certain thickness, thereby protecting the entire etching process. The mask layer 403 is not damaged or the rate of damage is reduced, and the etching selectivity of the dielectric layer 402 relative to the first mask layer 403 is increased, so that the dielectric layer 402 is etched relative to the first mask layer 403. The selection ratio is greater than 15:1.

參考圖22,圖22為本發明第四實施例半導體結構的形成方法的流程示意圖,包括:Referring to FIG. 22, FIG. 22 is a schematic flowchart diagram of a method for forming a semiconductor structure according to a fourth embodiment of the present invention, including:

步驟S51,提供基底,在所述基底上形成介質層;Step S51, providing a substrate on which a dielectric layer is formed;

步驟S52,在所述介質層上形成第一掩膜層,所述第一掩膜層具有暴露介質層表面的開口;Step S52, forming a first mask layer on the dielectric layer, the first mask layer having an opening exposing a surface of the dielectric layer;

步驟S53,以所述第一掩膜層為掩膜,對所述介質層進行等離子體刻蝕,射頻功率源和偏置功率源以脈衝的方式輸出射頻功率和脈衝功率,射頻功率源和偏置功率源脈衝的輸出頻率相等,偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,所述偏置功率源滯後射頻功率源一段時間打開。Step S53, using the first mask layer as a mask, performing plasma etching on the dielectric layer, and the RF power source and the bias power source output the RF power and the pulse power in a pulse manner, and the RF power source and the bias voltage The output frequency of the power source pulse is equal, and the first duty ratio of the output pulse of the bias power source is smaller than the second duty ratio of the output pulse of the RF power source. When the plasma etching is performed, when the RF power source is turned on, the ionization is performed. Etching the gas, the bias power source lags the RF power source for a period of time.

圖23~圖26為本發明第四實施例半導體結構的形成過程的剖面結構示意圖;圖27為本發明第四實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖。23 to FIG. 26 are schematic cross-sectional structural views showing a process of forming a semiconductor structure according to a fourth embodiment of the present invention; FIG. 27 is a diagram showing a bias power signal outputted by a radio frequency power source and a bias power source output according to a fourth embodiment of the present invention; .

參考圖23,提供基底500,在所述基底500上形成介質層502;在所述介質層502表面形成第一掩膜層503,所述第一掩膜層503具有暴露介質層502表面的開口505。Referring to FIG. 23, a substrate 500 is provided on which a dielectric layer 502 is formed; a first mask layer 503 is formed on a surface of the dielectric layer 502, the first mask layer 503 having an opening exposing a surface of the dielectric layer 502 505.

所述基底500為矽襯底、鍺襯底、矽鍺襯底、碳化矽襯底、氮化鎵襯底其中的一種。所述基底500內形成有離子摻雜區、矽通孔等(圖中未示出);所述基底500上還可以形成電晶體、電阻、電容、記憶體等半導體器件(圖中未示出)。The substrate 500 is one of a germanium substrate, a germanium substrate, a germanium substrate, a tantalum carbide substrate, and a gallium nitride substrate. An ion doping region, a germanium via hole, or the like (not shown) is formed in the substrate 500; a semiconductor device such as a transistor, a resistor, a capacitor, or a memory may be formed on the substrate 500 (not shown in the drawing) ).

在本發明的其他實施例中,所述基底500上還形成有一層或多層層間介質層(圖中未示出),所述層間介質層的材料為氧化矽、低K介電材料或超低K介電材料,所述介質層中形成有金屬互連線、導電插塞等半導體結構。In other embodiments of the present invention, the substrate 500 is further formed with one or more interlayer dielectric layers (not shown), and the interlayer dielectric layer is made of yttria, low-k dielectric material or ultra-low a K dielectric material in which a semiconductor structure such as a metal interconnection or a conductive plug is formed.

所述介質層502的材料為低K介電材料或超低K介電材料,所述介質層的厚度大於200納米,所述第一掩膜層503的材料為氮化鈦,後續採用等離子體刻蝕所述介質層502,形成具有凹槽和通孔的雙大馬士革結構,等離子體刻蝕過程中,會在所述第一掩膜層503表面形成聚合物,保護第一掩膜層503不會被刻蝕,從而提高介質層材料與第一掩膜層材料的刻蝕選擇比。由於刻蝕過程中會在第一掩膜層503形成聚合物,刻蝕過程中第一掩膜層503的損耗會減小,所述第一掩膜層503的厚度小於60納米,以減小施加在介質層502上的應力。The material of the dielectric layer 502 is a low-k dielectric material or an ultra-low-K dielectric material, the dielectric layer has a thickness greater than 200 nm, and the material of the first mask layer 503 is titanium nitride, followed by plasma. The dielectric layer 502 is etched to form a double damascene structure having grooves and through holes. During the plasma etching process, a polymer is formed on the surface of the first mask layer 503 to protect the first mask layer 503. It will be etched to increase the etch selectivity of the dielectric layer material to the first mask layer material. Since the polymer is formed in the first mask layer 503 during the etching process, the loss of the first mask layer 503 is reduced during the etching process, and the thickness of the first mask layer 503 is less than 60 nm to reduce The stress applied to the dielectric layer 502.

所述雙大馬士革結構的形成過程為:刻蝕所述第一掩膜層,形成暴露介質層表面的第一子開口;在第一掩膜層上形成光刻膠層,光刻膠層填充滿所述第一子開口,圖形化所述光刻膠層,形成第二子開口,第二子開口的位置與第一子開口的位置相對應,第二子開口暴露介質層表面,第二子開口的寬度小於第一子開口的寬度;沿第二子開口,採用等離子體刻蝕所述介質層,形成貫穿所述介質層的第一子通孔;去除所述圖形化的光刻膠層;沿第二子開口,採用等離子體刻蝕部分所述介質層,形成第一子凹槽,所述第一子通孔和第一子凹槽構成雙大馬士革結構。等離子體刻蝕所述介質層時,會相應的在光刻膠層或第一掩膜層表面形成聚合物,從而提高介質層材料與第一掩膜層材料或光刻膠材料的刻蝕選擇比。The double damascene structure is formed by etching the first mask layer to form a first sub-opening exposing a surface of the dielectric layer; forming a photoresist layer on the first mask layer, and filling the photoresist layer The first sub-opening, patterning the photoresist layer to form a second sub-opening, the position of the second sub-opening corresponding to the position of the first sub-opening, the second sub-opening exposing the surface of the dielectric layer, the second sub- The width of the opening is smaller than the width of the first sub-opening; along the second sub-opening, the dielectric layer is etched by plasma to form a first sub-via through the dielectric layer; and the patterned photoresist layer is removed And along the second sub-opening, the dielectric layer is partially etched by plasma to form a first sub-groove, and the first sub-via and the first sub-groove constitute a double damascene structure. When the dielectric layer is plasma etched, a polymer is formed on the surface of the photoresist layer or the first mask layer, thereby improving etching selection of the dielectric layer material and the first mask layer material or the photoresist material. ratio.

在本發明的其他實施例中,所述介質層為多層堆疊結構,包括:第一介質層、位於第一介質層表面的第二掩膜層、位於第二掩膜層表面的第二介質層,所述第二掩膜層中具有暴露第一介質層表面的第三子開口,第二介質層填充滿所述第三子開口。所述第一介質層和第二介質層的材料為低K介電材料、超低K介電材料或氧化矽,所述第二掩膜層的材料為氮化矽、氮氧化矽、碳化矽或碳氮化矽,所述第一掩膜層的材料為光刻膠或無定形碳。後續刻蝕所述堆疊結構,形成雙大馬士革結構,所述雙大馬士革結構的形成方法為:以第一掩膜層為掩膜,採用等離子體刻蝕所述第一介質層,形成第二子凹槽,第二子凹槽暴露第二掩膜層表面,第二子凹槽的位置與第三子開口的位置相對應,第一子凹槽的寬度大於第三子開口的寬度;沿第三子開口,採用等離子體刻蝕所述第二介質層,形成貫穿所述第二介質層的第二子通孔,所述第二子凹槽和第二子通孔構成雙大馬士革結構。等離子體刻蝕所述第一介質層和第二介質層時,會相應的在第一掩膜層和第二掩膜層表面形成聚合物,從而提高第一介質層相對於第一掩膜層的刻蝕選擇比,以及第二介質層相對於第一掩膜層和第二掩膜層的刻蝕選擇比。In other embodiments of the present invention, the dielectric layer is a multi-layer stacked structure, including: a first dielectric layer, a second mask layer on a surface of the first dielectric layer, and a second dielectric layer on a surface of the second mask layer. The second mask layer has a third sub-opening exposing the surface of the first dielectric layer, and the second dielectric layer fills the third sub-opening. The material of the first dielectric layer and the second dielectric layer is a low-k dielectric material, an ultra-low-K dielectric material or yttrium oxide, and the material of the second mask layer is tantalum nitride, niobium oxynitride, niobium carbide Or bismuth carbonitride, the material of the first mask layer is photoresist or amorphous carbon. Subsequently, the stacked structure is etched to form a double damascene structure, and the double damascene structure is formed by: using a first mask layer as a mask, plasma etching the first dielectric layer to form a second sub-concave a second sub-groove exposing a surface of the second mask layer, the position of the second sub-groove corresponding to the position of the third sub-opening, the width of the first sub-groove being greater than the width of the third sub-opening; a sub-opening, the second dielectric layer is etched by plasma to form a second sub-via through the second dielectric layer, and the second sub-groove and the second sub-via form a dual damascene structure. When the first dielectric layer and the second dielectric layer are plasma etched, a polymer is formed on the surfaces of the first mask layer and the second mask layer, thereby increasing the first dielectric layer relative to the first mask layer. The etch selectivity ratio and the etch selectivity ratio of the second dielectric layer to the first mask layer and the second mask layer.

參考圖24和圖25,以所述第一掩膜層503為掩膜,對所述介質層502進行等離子體刻蝕,射頻功率源和偏置功率源以脈衝的方式輸出射頻功率和脈衝功率,射頻功率源和偏置功率源脈衝的輸出頻率相等,偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比,所述等離子體刻蝕包括刻蝕步驟和聚合物形成步驟,開始進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,形成等離子體,所述偏置功率源滯後射頻功率源一段時間打開,即此時偏置功率源關閉,進行聚合物形成步驟,在第一掩膜層503表面形成聚合物;射頻功率源保持打開,接著偏置功率源打開,進行刻蝕步驟,沿開口505刻蝕所述介質層502,形成刻蝕凹槽506。Referring to FIG. 24 and FIG. 25, the dielectric layer 502 is plasma etched by using the first mask layer 503 as a mask, and the RF power source and the bias power source output the RF power and the pulse power in a pulse manner. The output frequency of the RF power source and the bias power source pulse are equal, the first duty ratio of the bias power source output pulse is smaller than the second duty ratio of the RF power source output pulse, and the plasma etching includes an etching step And a polymer forming step, when the plasma etching is started, when the RF power source is turned on, ionizing the etching gas to form a plasma, and the bias power source lags the RF power source for a period of time, that is, the bias power source at this time Closing, performing a polymer forming step, forming a polymer on the surface of the first mask layer 503; maintaining the RF power source on, then turning on the bias power source, performing an etching step, etching the dielectric layer 502 along the opening 505, forming The groove 506 is etched.

參考圖27,圖27為本實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖,射頻功率源以脈衝的方式的輸出射頻功率,偏置功率源以脈衝的方式輸出脈衝功率,射頻功率源和偏置功率源輸出脈衝的頻率相等,所述偏置功率源滯後射頻功率源一段時間打開,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,相對應的所述偏置功率源滯後射頻功率源一段時間△T2打開,即△T2時間內,偏置功率源是關閉的,此時進行聚合物形成步驟;在△T2後,偏置功率源打開,偏置功率源以正常的脈衝的方式輸出偏置功率。偏置功率源輸出的一個脈衝週期C1內,偏置功率源打開的時間為第一時間T1,偏置功率源關閉的時間為第二時間T2,第一時間T1與第一時間T1和第二時間T2之和的比值為第一占空比,射頻功率源輸出的一個脈衝週期C2內,射頻功率源打開的時間為第三時間T3,射頻功率源關閉的時間為第四時間T4,第三時間T3與第三時間T3和第四時間T4之和的比值為第二占空比,第一占空比小於第二占空比,所述第一占空比範圍為10%~80%,所述第二占空比範圍為30%~90%,比如:第一占空比為40%,第二占空比為60%,在提高刻蝕效率同時,又能在第一掩膜層表面形成足夠的聚合物。Referring to FIG. 27, FIG. 27 is a diagram of a bias power signal outputted by a radio frequency power source and a bias power source output of the RF power source according to the embodiment. The RF power source outputs the RF power in a pulsed manner, and the bias power source is pulsed. Outputting pulse power, the frequency of the output voltage of the RF power source and the bias power source are equal, the bias power source lags behind the RF power source for a period of time, and when the plasma etching is performed, when the RF power source is turned on, ionization etching The gas, the corresponding bias power source lags the RF power source for a period of time ΔT2 is turned on, that is, the ΔT2 time, the bias power source is turned off, and the polymer forming step is performed; after ΔT2, the bias is The power source is turned on and the bias power source outputs the bias power in a normal pulse. During one pulse period C1 of the bias power source output, the bias power source is turned on for the first time T1, and the bias power source is turned off for the second time T2, the first time T1 and the first time T1 and the second time. The ratio of the sum of the times T2 is the first duty ratio, and within one pulse period C2 of the output of the RF power source, the time when the RF power source is turned on is the third time T3, and the time when the RF power source is turned off is the fourth time T4, the third time The ratio of the time T3 to the sum of the third time T3 and the fourth time T4 is a second duty ratio, the first duty ratio is less than the second duty ratio, and the first duty ratio ranges from 10% to 80%. The second duty ratio ranges from 30% to 90%, for example, the first duty ratio is 40%, and the second duty ratio is 60%, and the etching efficiency is improved while being in the first mask layer. The surface forms enough polymer.

所述滯後的時間△T2小於或等於射頻功率源打開的第三時間T3,在不影響刻蝕效率的情況下,形成一定厚度的聚合物。由於偏置功率源滯後射頻功率源一段時間打開,因此在刻蝕步驟開始前,會在第一掩膜層503表面先形成聚合物,從而在刻蝕一開始,保護第一掩膜層503不會被刻蝕損傷。The hysteresis time ΔT2 is less than or equal to the third time T3 when the radio frequency power source is turned on, and a certain thickness of the polymer is formed without affecting the etching efficiency. Since the bias power source lags the RF power source for a period of time, a polymer is first formed on the surface of the first mask layer 503 before the etching step starts, so that the first mask layer 503 is not protected at the beginning of the etching. Will be etched and damaged.

繼續參考圖24和圖25,所述等離子體刻蝕的射頻功率源功率為0~2000瓦,射頻頻率為60~120兆赫茲,偏置功率源的功率為100~4000瓦,偏置頻率為2~15兆赫茲,刻蝕腔壓力為20~200毫托,所述射頻功率源打開和關閉的頻率小於等於50千赫茲,在進行等離子體刻蝕時,在提高刻蝕效率的同時,在第一掩膜層503表面形成足量的聚合物,使得第一掩膜層503不會被損傷,提高介質層502相對於第一掩膜層503的刻蝕選擇比。Continuing to refer to FIG. 24 and FIG. 25, the plasma etched RF power source has a power of 0 to 2000 watts, an RF frequency of 60 to 120 megahertz, and a bias power source of 100 to 4000 watts, and the bias frequency is 2~15 MHz, the etching chamber pressure is 20~200 mTorr, and the frequency of opening and closing the RF power source is less than or equal to 50 kHz. When performing plasma etching, while improving the etching efficiency, A sufficient amount of polymer is formed on the surface of the first mask layer 503 such that the first mask layer 503 is not damaged, and the etching selectivity ratio of the dielectric layer 502 to the first mask layer 503 is increased.

所述等離子體刻蝕採用的氣體為CF4、C4F8、C4F6、CHF3、CH2F2、CO中的一種或幾種,所述刻蝕採用的氣體還包括O2和Ar。CF4、C4F8、C4F6用於提供氟碳反應物,CHF3、CH2F2用於提高聚合物的濃度,O2用於控制聚合物的量,Ar用於形成正離子,CO用於控制氟碳的比例,Ar用於提供反應的能量。The gas used in the plasma etching is one or more of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , CO, and the gas used for the etching further includes O 2 . And Ar. CF 4 , C 4 F 8 , C 4 F 6 are used to provide a fluorocarbon reactant, CHF 3 , CH 2 F 2 are used to increase the concentration of the polymer, O 2 is used to control the amount of the polymer, and Ar is used to form a positive Ions, CO are used to control the proportion of fluorocarbon, and Ar is used to provide the energy of the reaction.

本實施例中所述等離子體刻蝕採用的氣體為CF4、C4F8、C4F6、CHF3、CH2F2、O2、CO和Ar的混合氣體,以保證等離子體刻蝕過程中,在掩膜層503表面形成足夠的聚合物。當射頻功率源打開,偏置功率源也打開時,CF4、C4F8、C4F6、CHF3、CH2F2等會被射頻功率解離生成F自由基、中性的CF2等分子碎片,同時也會生成一些正離子如:CF3 +等,Ar也會失去電子生成Ar+正離子,正離子經過等離子體鞘層(plasma sheath)和偏置功率的加速,會轟擊介質層材料,去除部分介質層,同時F自由基也會和介質層材料發生化學反應,去除部分介質層材料;射頻功率源打開或關閉,偏置功率源關閉時,此時腔室內還存在活性成分,而中性的活性成分如CF2等會複合生成氟碳聚合物,沉積在第一掩膜層503的表面,由於不存在加速電場,正離子不會轟擊形成的聚合物,使形成的聚合物全部或部分得以保存,從而的保護第一掩膜層503不會受到損害或者受損害的速率減小。本實施例中,由於偏置功率源滯後射頻功率源一段時間打開,因此在刻蝕步驟開始前,會在第一掩膜層503表面先形成聚合物,從而在刻蝕一開始,保護第一掩膜層503不會被刻蝕損傷。The gas used in the plasma etching in this embodiment is a mixed gas of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , O 2 , CO and Ar to ensure plasma engraving. During the etching process, sufficient polymer is formed on the surface of the mask layer 503. When the RF power source is turned on and the bias power source is also turned on, CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 etc. will be dissociated by RF power to generate F radicals, neutral CF 2 . When the molecular fragments are generated, some positive ions such as CF 3 + are also generated. Ar also loses electrons to form Ar + positive ions. The positive ions are accelerated by the plasma sheath and the bias power, which will bombard the medium. The layer material removes part of the dielectric layer, and the F radical also chemically reacts with the dielectric layer material to remove part of the dielectric layer material; when the RF power source is turned on or off, and the bias power source is turned off, the active component is still present in the chamber. And a neutral active ingredient such as CF 2 will be combined to form a fluorocarbon polymer deposited on the surface of the first mask layer 503. Since there is no accelerating electric field, the positive ions do not bombard the formed polymer, so that the formed polymerization All or part of the material is preserved, thereby protecting the first mask layer 503 from damage or a reduced rate of damage. In this embodiment, since the bias power source lags the RF power source for a period of time, a polymer is formed on the surface of the first mask layer 503 before the etching step begins, thereby protecting the first at the beginning of the etching. The mask layer 503 is not damaged by etching.

參考圖26,重複上述刻蝕步驟和聚合物形成步驟,沿刻蝕凹槽503刻蝕所述介質層502,直至形成凹槽。Referring to FIG. 26, the above etching step and polymer forming step are repeated, and the dielectric layer 502 is etched along the etching recess 503 until a groove is formed.

進行等離子體刻蝕時,射頻功率源和偏置功率源以脈衝的方式輸出射頻功率和脈衝功率,射頻功率源和偏置功率源脈衝的輸出頻率相等,偏置功率源滯後射頻功率源一段時間打開,偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比,重複刻蝕步驟和聚合物的形成步驟,使得聚合物504始終能保持一定的厚度,從而在整個刻蝕過程中,保護第一掩膜層503不會受到損傷或者被損傷的速率減小,提高介質層502相對於第一掩膜層503的刻蝕選擇比,使得介質層502相對於第一掩膜層503的刻蝕選擇比大於15:1。When performing plasma etching, the RF power source and the bias power source output the RF power and the pulse power in a pulse manner, and the output frequencies of the RF power source and the bias power source pulse are equal, and the bias power source lags the RF power source for a period of time. Turning on, the first duty cycle of the bias power source output pulse is less than the second duty cycle of the RF power source output pulse, repeating the etching step and the polymer forming step, so that the polymer 504 can always maintain a certain thickness, thereby During the entire etching process, the first mask layer 503 is protected from damage or the rate of damage is reduced, and the etching selectivity ratio of the dielectric layer 502 relative to the first mask layer 503 is increased, so that the dielectric layer 502 is opposite to the dielectric layer 502. The first mask layer 503 has an etch selectivity ratio greater than 15:1.

綜上,本發明實施例提供的半導體結構的形成方法,等離子體刻蝕時,射頻功率源打開電離刻蝕氣體,形成等離子體,偏置功率源以脈衝的方式輸出偏置功率,當偏置功率源打開時,刻蝕部分所述介質層,當偏置功率源關閉時,在第一掩膜層表面形成聚合物,聚合物在後續刻蝕時,保護第一掩膜層不會受到損傷或者減小第一掩膜層損傷的速率,提高了介質層相對於第一掩膜層的刻蝕選擇比。In summary, the method for forming a semiconductor structure provided by the embodiment of the present invention, when plasma etching, the RF power source turns on the ionizing etching gas to form a plasma, and the bias power source outputs the bias power in a pulse manner. When the power source is turned on, the dielectric layer is etched, and when the bias power source is turned off, a polymer is formed on the surface of the first mask layer, and the first mask layer is protected from damage during subsequent etching of the polymer. Or reducing the rate of damage of the first mask layer and increasing the etching selectivity of the dielectric layer relative to the first mask layer.

射頻功率源連續的輸出射頻功率,偏置功率源以脈衝的方式輸出脈衝功率,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,相對應的所述偏置功率源滯後射頻功率源一段時間打開,即滯後的一段時間內,偏置功率源是關閉的,此時進行聚合物形成步驟;在一段時間後,偏置功率源打開,偏置功率源以正常的脈衝的方式輸出偏置功率,在刻蝕步驟開始前,會先進行聚合物形成步驟,在第一掩膜層表面形成聚合物,從而在刻蝕一開始,保護第一掩膜層不會被刻蝕損傷。The RF power source continuously outputs the RF power, and the bias power source outputs the pulse power in a pulse manner. When the plasma etching is performed, when the RF power source is turned on, the etching gas is ionized, and the corresponding bias power source is The lag RF power source is turned on for a period of time, that is, the lag power source is turned off for a period of time, and the polymer forming step is performed; after a period of time, the bias power source is turned on, and the bias power source is turned to a normal pulse. In the manner of outputting the bias power, a polymer formation step is performed before the etching step begins, and a polymer is formed on the surface of the first mask layer, so that the first mask layer is not engraved at the beginning of the etching. Corrosion damage.

進行等離子體刻蝕時,射頻功率源和偏置功率源以脈衝的方式輸出射頻功率和脈衝功率,射頻功率源和偏置功率源脈衝的輸出頻率相等,相位相同,偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比,在進行刻蝕步驟後部分,射頻功率源是打開的,而偏置功率源提前關閉,因此部分聚合物會沉積在掩膜層表面,刻蝕步驟後,射頻功率源和偏置功率源均關閉,進行聚合物形成步驟,在第一掩膜層表面形成聚合物,加上刻蝕步驟中形成部分聚合物,使聚合物的厚度更厚,從而更好的保護第一掩膜層不會受到損害或被損害的速率減小,提高介質層相對於第一掩膜層的刻蝕選擇比,並且聚合物的形成和刻蝕效果更佳。第一占空比小於第二占空比,所述第一占空比範圍為10%~80%,所述第二占空比範圍為30%~90%,在提高刻蝕效率同時,又能在第一掩膜層表面形成足夠的聚合物。When plasma etching is performed, the RF power source and the bias power source output the RF power and the pulse power in a pulse manner, and the output frequencies of the RF power source and the bias power source pulse are equal, the phases are the same, and the bias power source outputs the pulse. The first duty ratio is less than the second duty cycle of the output pulse of the RF power source. After the etching step, the RF power source is turned on, and the bias power source is turned off early, so part of the polymer is deposited on the mask. After the etching step, the RF power source and the bias power source are both turned off, the polymer forming step is performed, a polymer is formed on the surface of the first mask layer, and a part of the polymer is formed in the etching step to make the polymer The thickness is thicker, thereby better protecting the first mask layer from being damaged or damaged, reducing the etching selectivity of the dielectric layer relative to the first mask layer, and forming and engraving the polymer The eclipse effect is better. The first duty ratio is less than the second duty ratio, the first duty ratio ranges from 10% to 80%, and the second duty ratio ranges from 30% to 90%, while improving the etching efficiency, A sufficient amount of polymer can be formed on the surface of the first mask layer.

以上之敘述僅為本發明之較佳實施例說明,凡精於此項技藝者當可依據上述之說明而作其它種種之改良,惟這些改變仍屬於本發明之發明精神及以下所界定之專利範圍中。The above description is only for the preferred embodiment of the present invention, and those skilled in the art can make other improvements according to the above description, but these changes still belong to the inventive spirit of the present invention and the patents defined below. In the scope.

200、300、400、500...基底200, 300, 400, 500. . . Base

202、302、402、502...介質層202, 302, 402, 502. . . Dielectric layer

203、303、403、503...第一掩膜層203, 303, 403, 503. . . First mask layer

204、304、404、504...聚合物204, 304, 404, 504. . . polymer

205、305、405、505...開口205, 305, 405, 505. . . Opening

206、306、406、506...刻蝕凹槽206, 306, 406, 506. . . Etched groove

C1...脈衝週期C1. . . Pulse period

T1...第一時間T1. . . first timing

T2...第二時間T2. . . Second time

T3...第三時間T3. . . Third time

T4...第四時間T4. . . Fourth time

△T1...一段時間△T1. . . a period of time

S21、S31、S41、S51...提供基底,在所述基底上形成介質層S21, S31, S41, S51. . . Providing a substrate on which a dielectric layer is formed

S22、S32、S42、S52...在所述介質層上形成第一掩膜層S22, S32, S42, S52. . . Forming a first mask layer on the dielectric layer

S23、S33、S43、S53...對所述介質層進行等離子體刻蝕S23, S33, S43, S53. . . Plasma etching the dielectric layer

圖1~圖3為現有凹槽形成過程的結構示意圖;圖4為本發明第一實施例半導體結構的形成方法的流程示意圖;圖5~圖8為本發明第一實施例半導體結構的形成過程的剖面結構示意圖;圖9為本發明第一實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖;圖10為本發明第二實施例半導體結構的形成方法的流程示意圖;圖11~圖14為本發明第二實施例半導體結構的形成過程的剖面結構示意圖;圖15為本發明第二實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖;圖16為本發明第三實施例半導體結構的形成方法的流程示意圖;圖17~圖20為本發明第三實施例半導體結構的形成過程的剖面結構示意圖;圖21為本發明第三實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖;圖22為本發明第四實施例半導體結構的形成方法的流程示意圖;圖23~圖26為本發明第四實施例半導體結構的形成過程的剖面結構示意圖;圖27為本發明第四實施例射頻功率源輸出的射頻功率和偏置功率源輸出的偏置功率信號圖。1 to 3 are schematic structural views of a conventional recess forming process; FIG. 4 is a schematic flow chart of a method for forming a semiconductor structure according to a first embodiment of the present invention; and FIGS. 5 to 8 are diagrams showing a semiconductor structure forming process according to a first embodiment of the present invention; FIG. 9 is a schematic diagram of a bias power signal outputted by a radio frequency power source and a bias power source output according to a first embodiment of the present invention; FIG. 10 is a flowchart of a method for forming a semiconductor structure according to a second embodiment of the present invention; 1 to FIG. 14 are schematic cross-sectional structural views showing a process of forming a semiconductor structure according to a second embodiment of the present invention; FIG. 15 is a diagram showing a bias power of a radio frequency power source output and a bias power source output according to a second embodiment of the present invention; FIG. 16 is a schematic flow chart of a method for forming a semiconductor structure according to a third embodiment of the present invention; and FIGS. 17 to 20 are schematic cross-sectional structural views showing a process of forming a semiconductor structure according to a third embodiment of the present invention; Embodiment RF power source output RF power and bias power source output bias power signal diagram; FIG. 22 is a fourth embodiment of the present invention FIG. 23 is a cross-sectional structural view showing a process of forming a semiconductor structure according to a fourth embodiment of the present invention; FIG. 27 is a diagram showing an output of a radio frequency power source and a bias power source outputted by a radio frequency power source according to a fourth embodiment of the present invention; Bias power signal diagram.

S51...提供基底,在所述基底上形成介質層S51. . . Providing a substrate on which a dielectric layer is formed

S52...在所述介質層上形成掩膜層S52. . . Forming a mask layer on the dielectric layer

S53...對所述介質層進行等離子體刻蝕S53. . . Plasma etching the dielectric layer

Claims (22)

一種半導體結構的形成方法,包含:提供基底,在所述基底上形成介質層;在所述介質層上形成第一掩膜層,所述第一掩膜層具有暴露介質層表面的開口;以所述第一掩膜層為掩膜,對所述介質層進行等離子體刻蝕,偏置功率源以脈衝的方式輸出偏置功率,當偏置功率源打開時,刻蝕部分所述介質層,當偏置功率源關閉時,在第一掩膜層表面形成聚合物,重複偏置功率源打開和偏置功率源關閉的過程,直至形成具有凹槽和通孔的雙大馬士革結構。A method of forming a semiconductor structure, comprising: providing a substrate, forming a dielectric layer on the substrate; forming a first mask layer on the dielectric layer, the first mask layer having an opening exposing a surface of the dielectric layer; The first mask layer is a mask, the dielectric layer is plasma etched, the bias power source outputs a bias power in a pulse manner, and when the bias power source is turned on, the dielectric layer is etched. When the bias power source is turned off, a polymer is formed on the surface of the first mask layer, and the process of biasing the power source to turn on and biasing the power source off is repeated until a double damascene structure having grooves and via holes is formed. 如請求項1所述的半導體結構的形成方法,其中所述等離子體刻蝕採用的氣體為CF4、C4F8、C4F6、CHF3、CH2F2、CO中的一種或幾種。The method for forming a semiconductor structure according to claim 1, wherein the gas used in the plasma etching is one of CF 4 , C 4 F 8 , C 4 F 6 , CHF 3 , CH 2 F 2 , CO or Several. 如請求項2所述的半導體結構的形成方法,其中所述等離子體刻蝕採用的氣體還包括O2和Ar。The method of forming a semiconductor structure according to claim 2, wherein the gas used in the plasma etching further comprises O 2 and Ar. 如請求項2所述的半導體結構的形成方法,其中所述等離子體刻蝕的射頻功率源功率為0~2000瓦,射頻頻率為60~120兆赫茲,偏置功率源的功率為100~4000瓦,偏置頻率為2~15兆赫茲,刻蝕腔壓力為20~200毫托。The method for forming a semiconductor structure according to claim 2, wherein the plasma etched RF power source has a power of 0 to 2000 watts, the RF frequency is 60 to 120 MHz, and the bias power source has a power of 100 to 4000. Tile, the bias frequency is 2~15 MHz, and the etching chamber pressure is 20~200 mTorr. 如請求項2所述的半導體結構的形成方法,其中所述偏置功率源輸出的一個脈衝週期內,所述偏置功率源打開的時間為第一時間,所述偏置功率源關閉的時間為第二時間,第一時間與第一時間和第二時間之和的比值為第一占空比,等離子體刻蝕過程中,所述第一占空比保持不變。The method of forming a semiconductor structure according to claim 2, wherein a time during which the bias power source is turned on is a first time and a time when the bias power source is turned off in one pulse period of the output of the bias power source For the second time, the ratio of the first time to the sum of the first time and the second time is the first duty cycle, and the first duty cycle remains unchanged during the plasma etching process. 如請求項5所述的半導體結構的形成方法,其中所述第一占空比的範圍為10%~90%。The method of forming a semiconductor structure according to claim 5, wherein the first duty ratio ranges from 10% to 90%. 如請求項5所述的半導體結構的形成方法,其中所述射頻功率源以連續的方式輸出射頻功率,所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,所述偏置功率源滯後射頻功率源一段時間打開。The method for forming a semiconductor structure according to claim 5, wherein the RF power source outputs RF power in a continuous manner, and when the plasma etching is performed, when the RF power source is turned on, ionizing the etching gas, the bias Set the power source to lag the RF power source for a while. 如請求項7所述的半導體結構的形成方法,其中所述偏置功率源滯後打開的時間小於等於所述偏置功率源關閉的第二時間。The method of forming a semiconductor structure according to claim 7, wherein the bias power source is delayed to open for a second time or less than a second time when the bias power source is turned off. 如請求項5所述的半導體結構的形成方法,其中所述射頻功率源以脈衝的方式輸出射頻功率,所述射頻功率源輸出的一個脈衝週期內,所述射頻功率源打開的時間為第三時間,所述射頻功率源關閉的時間為第四時間,第三時間與第三時間和第四時間之和的比值為第二占空比,等離子體刻蝕過程中,所述第二占空比保持不變。The method for forming a semiconductor structure according to claim 5, wherein the RF power source outputs RF power in a pulsed manner, and the RF power source is turned on for a pulse period of the RF power source output. Time, the time when the RF power source is turned off is a fourth time, and the ratio of the third time to the sum of the third time and the fourth time is the second duty ratio, and the second duty is during the plasma etching process The ratio remains the same. 如請求項9所述的半導體結構的形成方法,其中所述射頻功率源輸出脈衝的頻率等於偏置功率源輸出脈衝的頻率。A method of forming a semiconductor structure according to claim 9, wherein the frequency of the RF power source output pulse is equal to the frequency of the bias power source output pulse. 如請求項10所述的半導體結構的形成方法,其中所述射頻功率源輸出脈衝的頻率和偏置功率源輸出脈衝的頻率小於等於50千赫茲。The method of forming a semiconductor structure according to claim 10, wherein the frequency of the RF power source output pulse and the frequency of the bias power source output pulse are less than or equal to 50 kHz. 如請求項10所述的半導體結構的形成方法,其中所述偏置功率源輸出脈衝的第一占空比小於射頻功率源輸出脈衝的第二占空比。A method of forming a semiconductor structure according to claim 10, wherein the first duty cycle of the bias power source output pulse is less than the second duty cycle of the RF power source output pulse. 如請求項12所述的半導體結構的形成方法,其中所述第一占空比範圍為10%~80%,所述第二占空比範圍為30%~90%。The method of forming a semiconductor structure according to claim 12, wherein the first duty ratio ranges from 10% to 80%, and the second duty ratio ranges from 30% to 90%. 如請求項12所述的半導體結構的形成方法,其中所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,相對應的所述偏置功率源也打開。The method of forming a semiconductor structure according to claim 12, wherein when the plasma etching is performed, when the RF power source is turned on, the etching gas is ionized, and the corresponding bias power source is also turned on. 如請求項12所述的半導體結構的形成方法,其中所述進行等離子體刻蝕時,當射頻功率源打開,電離刻蝕氣體,所述偏置功率源滯後射頻功率源一段時間打開。The method of forming a semiconductor structure according to claim 12, wherein when the plasma etching is performed, when the RF power source is turned on to ionize the etching gas, the bias power source lags the RF power source for a period of time. 如請求項15所述的半導體結構的形成方法,其中所述偏置功率源滯後打開的時間小於等於所述射頻功率源打開的第三時間。The method of forming a semiconductor structure according to claim 15, wherein the bias power source is delayed to open for a third time or less than a third time that the RF power source is turned on. 如請求項1所述的半導體結構的形成方法,其中所述介質層的材料為低K介電材料或超低K介電材料,所述第一掩膜層的材料為氮化鈦。The method of forming a semiconductor structure according to claim 1, wherein the material of the dielectric layer is a low-k dielectric material or an ultra-low-K dielectric material, and the material of the first mask layer is titanium nitride. 如請求項17所述的半導體結構的形成方法,其中所述介質層的厚度大於200納米,所述第一掩膜層的厚度小於60納米。The method of forming a semiconductor structure according to claim 17, wherein the dielectric layer has a thickness greater than 200 nm, and the first mask layer has a thickness less than 60 nm. 如請求項18所述的半導體結構的形成方法,其中所述雙大馬士革結構的形成過程為:刻蝕所述第一掩膜層,形成暴露介質層表面的第一子開口;在第一掩膜層上形成光刻膠層,光刻膠層填充滿所述第一子開口,圖形化所述光刻膠層,形成第二子開口,第二子開口的位置與第一子開口的位置相對應,第二子開口暴露介質層表面,第二子開口的寬度小於第一子開口的寬度;沿第二子開口,採用等離子體刻蝕所述介質層,形成貫穿所述介質層的第一子通孔;去除所述圖形化的光刻膠層;沿第二子開口,採用等離子體刻蝕部分所述介質層,形成第一子凹槽,所述第一子通孔和第一子凹槽構成雙大馬士革結構。The method of forming a semiconductor structure according to claim 18, wherein the forming process of the dual damascene structure is: etching the first mask layer to form a first sub-opening exposing a surface of the dielectric layer; Forming a photoresist layer on the layer, the photoresist layer filling the first sub-opening, patterning the photoresist layer to form a second sub-opening, and the position of the second sub-opening is opposite to the position of the first sub-opening Correspondingly, the second sub-opening exposes the surface of the dielectric layer, the width of the second sub-opening is smaller than the width of the first sub-opening; along the second sub-opening, the dielectric layer is etched by plasma to form a first through the dielectric layer Sub-via; removing the patterned photoresist layer; etching a portion of the dielectric layer along the second sub-opening to form a first sub-groove, the first sub-via and the first sub-port The grooves form a double damascene structure. 如請求項1所述的半導體結構的形成方法,其中所述介質層為多層堆疊結構,包括:第一介質層、位於第一介質層表面的第二掩膜層、位於第二掩膜層表面的第二介質層,所述第二掩膜層中具有暴露第一介質層表面的第三子開口,第二介質層填充滿所述第三子開口。The method of forming a semiconductor structure according to claim 1, wherein the dielectric layer is a multi-layer stacked structure, comprising: a first dielectric layer, a second mask layer on a surface of the first dielectric layer, and a surface of the second mask layer a second dielectric layer having a third sub-opening in the second mask layer exposing the surface of the first dielectric layer, the second dielectric layer filling the third sub-opening. 如請求項20所述的半導體結構的形成方法,其中所述第一介質層和第二介質層的材料為低K介電材料、超低K介電材料或氧化矽,所述第二掩膜層的材料為氮化矽、氮氧化矽、碳化矽或碳氮化矽,所述第一掩膜層的材料為光刻膠或無定形碳。The method of forming a semiconductor structure according to claim 20, wherein the material of the first dielectric layer and the second dielectric layer is a low-k dielectric material, an ultra-low-k dielectric material or yttrium oxide, the second mask The material of the layer is tantalum nitride, tantalum oxynitride, tantalum carbide or tantalum carbonitride, and the material of the first mask layer is photoresist or amorphous carbon. 如請求項21所述的半導體結構的形成方法,其中所述雙大馬士革結構的形成過程為:以第一掩膜層為掩膜,採用等離子體刻蝕所述第一介質層,形成第二子凹槽,第二子凹槽暴露第二掩膜層表面,第二子凹槽的位置與第三子開口的位置相對應,第一子凹槽的寬度大於第三子開口的寬度;沿第三子開口,採用等離子體刻蝕所述第二介質層,形成貫穿所述第二介質層的第二子通孔,所述第二子凹槽和第二子通孔構成凹槽。The method for forming a semiconductor structure according to claim 21, wherein the forming process of the double damascene structure is: using a first mask layer as a mask, plasma etching the first dielectric layer to form a second sub-layer a groove, the second sub-groove exposing a surface of the second mask layer, the position of the second sub-groove corresponding to the position of the third sub-opening, the width of the first sub-groove being greater than the width of the third sub-opening; a three sub-opening, the second dielectric layer is etched by plasma to form a second sub-via through the second dielectric layer, and the second sub-groove and the second sub-via form a recess.
TW101151256A 2012-07-06 2012-12-28 Semiconductor structure formation method TW201403753A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210234307.9A CN102737984B (en) 2012-07-06 2012-07-06 The formation method of semiconductor structure

Publications (2)

Publication Number Publication Date
TW201403753A true TW201403753A (en) 2014-01-16
TWI514515B TWI514515B (en) 2015-12-21

Family

ID=46993249

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101151256A TW201403753A (en) 2012-07-06 2012-12-28 Semiconductor structure formation method

Country Status (2)

Country Link
CN (1) CN102737984B (en)
TW (1) TW201403753A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681406B (en) * 2013-11-29 2020-03-31 中微半导体设备(上海)股份有限公司 Plasma etching method
CN107507772B (en) * 2017-08-31 2021-03-19 长江存储科技有限责任公司 Method for etching bottom of channel hole
CN111952286B (en) * 2019-05-16 2022-11-22 芯恩(青岛)集成电路有限公司 Manufacturing method and structure of capacitor
CN111508929B (en) 2020-04-17 2022-02-22 北京北方华创微电子装备有限公司 Pattern sheet and semiconductor intermediate product

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918892B2 (en) * 1988-10-14 1999-07-12 株式会社日立製作所 Plasma etching method
US6365504B1 (en) * 1999-10-15 2002-04-02 Tsmc-Acer Semiconductor Manufacturing Corporation Self aligned dual damascene method
US6638871B2 (en) * 2002-01-10 2003-10-28 United Microlectronics Corp. Method for forming openings in low dielectric constant material layer
JP4065213B2 (en) * 2003-03-25 2008-03-19 住友精密工業株式会社 Silicon substrate etching method and etching apparatus
US20060264054A1 (en) * 2005-04-06 2006-11-23 Gutsche Martin U Method for etching a trench in a semiconductor substrate
JP4512533B2 (en) * 2005-07-27 2010-07-28 住友精密工業株式会社 Etching method and etching apparatus
US8049327B2 (en) * 2009-01-05 2011-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Through-silicon via with scalloped sidewalls
WO2011001779A1 (en) * 2009-07-01 2011-01-06 住友精密工業株式会社 Method for manufacturing silicon structure, device for manufacturing same, and program for manufacturing same
CN101958244A (en) * 2009-07-21 2011-01-26 中微半导体设备(上海)有限公司 Deep reactive ion etching method and gas flow control device thereof

Also Published As

Publication number Publication date
CN102737984B (en) 2015-08-05
CN102737984A (en) 2012-10-17
TWI514515B (en) 2015-12-21

Similar Documents

Publication Publication Date Title
TW201403752A (en) Method for forming semiconductor structure
TWI761345B (en) Etching method
TW201403704A (en) Method for forming semiconductor structure
JP5192209B2 (en) Plasma etching apparatus, plasma etching method, and computer-readable storage medium
KR101476435B1 (en) Method for multi-layer resist plasma etch
JP4849881B2 (en) Plasma etching method
KR102358732B1 (en) Plasma etching method and plasma etching apparatus
WO2014185351A1 (en) Plasma etching method and plasma etching device
TWI555080B (en) Dry etching method
JP5764186B2 (en) Plasma etching apparatus and plasma etching method
JP5323306B2 (en) Plasma etching method and computer-readable storage medium
JPH09148314A (en) Etching process of silicified titanium
KR20160127891A (en) Methods for forming vertical patterns using cyclic process
WO2014116736A1 (en) Silicon dioxide-polysilicon multi-layered stack etching with plasma etch chamber employing non-corrosive etchants
TW201705265A (en) Etching method
TW201724252A (en) Etching method
JP4351806B2 (en) Improved technique for etching using a photoresist mask.
TW201403753A (en) Semiconductor structure formation method
US6227211B1 (en) Uniformity improvement of high aspect ratio contact by stop layer
JP2001068461A (en) Method of raising etching selectivity of metal silicide film to polysilicon film and method of etching laminate film of polysilicon film and metal silicide film, using the same
JP4827567B2 (en) Plasma etching method and computer-readable storage medium
US5968278A (en) High aspect ratio contact
JP6415636B2 (en) Plasma etching method and plasma etching apparatus
JPWO2020008703A1 (en) Plasma processing method
JP4577328B2 (en) Manufacturing method of semiconductor device