TW201350908A - Multi-focal optical alignment apparatus and alignment method for multiple stacking substrates - Google Patents

Multi-focal optical alignment apparatus and alignment method for multiple stacking substrates Download PDF

Info

Publication number
TW201350908A
TW201350908A TW101119990A TW101119990A TW201350908A TW 201350908 A TW201350908 A TW 201350908A TW 101119990 A TW101119990 A TW 101119990A TW 101119990 A TW101119990 A TW 101119990A TW 201350908 A TW201350908 A TW 201350908A
Authority
TW
Taiwan
Prior art keywords
alignment
image sensing
substrates
focus
image
Prior art date
Application number
TW101119990A
Other languages
Chinese (zh)
Inventor
Chong-Yang Fang
Chia-Hung Yeh
Original Assignee
Wintek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wintek Corp filed Critical Wintek Corp
Priority to TW101119990A priority Critical patent/TW201350908A/en
Publication of TW201350908A publication Critical patent/TW201350908A/en

Links

Abstract

A multi-focal optical alignment apparatus for aligning multiple stacking substrates is provided. Each of the substrates has an alignment mark. The multi-focal optical alignment apparatus includes a plurality of image sensors for receiving an alignment image of the alignment mark of each substrate, and a beam splitter for transmitting the alignment image of each alignment mark to each image sensor, respectively. Each image sensor has a different focus. The beam splitter has a light incident surface and a plurality of light exiting surfaces, where the substrates face the light incident surface of the beam splitter, and each image sensor faces the light exiting surface of the beam splitter, respectively.

Description

多焦距光學對位裝置及複數片堆疊的基板的對位方法 Multi-focus optical alignment device and alignment method of multiple stacked substrates

本發明係關於一種光學對位裝置及其對位方法,尤指一種多焦距光學對位裝置及利用多焦距光學對位裝置對複數片堆疊的基板進行對位之方法。 The invention relates to an optical alignment device and a aligning method thereof, in particular to a multi-focus optical alignment device and a method for aligning a plurality of stacked substrates by using a multi-focus optical alignment device.

顯示面板主要係由兩片基板與設置在其中的顯示介質層所構成。舉例而言,液晶顯示面板主要係由陣列基板、彩色濾光片基板與液晶層所構成。此外,在現行的顯示技術發展上,立體顯示與觸控輸入為兩大趨勢。為了賦予顯示面板立體顯示功能或是觸控輸入功能,顯示面板必須與立體顯示基板或是觸控基板結合。由上述可知,不論是顯示面板、立體顯示面板或是觸控顯示面板,在組裝過程中都必須面臨到兩片或更多片基板之間的對位問題。一般而言,各基板的對位係藉由預先製作在各基板上的對位記號來進行,也就是說,利用影像感測元件接收基板的對位記號的對位影像,再調整基板之間的相對位置以完成對位。在進行高精度的對位貼合時,需使用高倍率透鏡產生對位影像,然而由於高倍率透鏡具有淺景深的特性,而無法同時觀測到不同基板的對位記號,使得對位精度無法提高。 The display panel is mainly composed of two substrates and a display medium layer disposed therein. For example, the liquid crystal display panel is mainly composed of an array substrate, a color filter substrate, and a liquid crystal layer. In addition, in the current development of display technology, stereoscopic display and touch input have two major trends. In order to provide a stereoscopic display function or a touch input function of the display panel, the display panel must be combined with the stereoscopic display substrate or the touch substrate. It can be seen from the above that whether it is a display panel, a stereoscopic display panel or a touch display panel, it is necessary to face the alignment problem between two or more substrates during the assembly process. In general, the alignment of each substrate is performed by pre-aligning the alignment marks on the respective substrates, that is, the image sensing elements are used to receive the alignment images of the alignment marks of the substrate, and then the substrates are adjusted. The relative position to complete the alignment. When performing high-precision alignment, it is necessary to use a high-magnification lens to generate a aligning image. However, since the high-magnification lens has a shallow depth of field, it is impossible to simultaneously observe the alignment marks of different substrates, so that the alignment accuracy cannot be improved. .

本發明之目的之一在於提供一種多焦距光學對位裝置及複數片堆疊的基板的對位方法,以提升基板的對位精度。 One of the objects of the present invention is to provide a multi-focal optical alignment device and a method for aligning a plurality of stacked substrates to improve the alignment accuracy of the substrate.

本發明之一較佳實施例提供一種多焦距光學對位裝置,用以對複數片堆疊的基板進行對位,各基板分別具有一對位記號。多焦距光學對位裝置包括複數個影像感測單元,分別用以接收各基板上之對位記號之一對位影像,以及一分光器用以將各對位記號之對位影像分別傳送至各影像感測單元。各影像感測單元具有不同的焦距。分光器具有一入光面以及複數個出光面,基板係面對分光器之入光面,各影像感測單元係分別面對分光器之出光面。 A preferred embodiment of the present invention provides a multifocal optical alignment device for aligning a plurality of stacked substrates, each having a pair of bit marks. The multi-focus optical alignment device includes a plurality of image sensing units for receiving a pair of alignment images of the alignment marks on the substrates, and a beam splitter for transmitting the alignment images of the alignment marks to the respective images. Sensing unit. Each image sensing unit has a different focal length. The beam splitter has a light-incident surface and a plurality of light-emitting surfaces, and the substrate faces the light-incident surface of the beam splitter, and each of the image sensing units respectively faces the light-emitting surface of the beam splitter.

本發明之另一較佳實施例提供一種複數片堆疊的基板的對位方法,包括下列步驟。提供上述多焦距光學對位裝置。將基板置放於分光器之入光面前。使基板之對位記號分別位於對應之影像感測單元之一焦點上。依據影像感測單元接收到之對位影像調整基板之相對位置以進行對位。 Another preferred embodiment of the present invention provides a method for aligning a plurality of stacked substrates, comprising the following steps. The multifocal optical alignment device described above is provided. Place the substrate in front of the light entering the splitter. The alignment marks of the substrate are respectively located at a focus of the corresponding image sensing unit. The relative position of the substrate is adjusted according to the image received by the image sensing unit to perform alignment.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

請參考第1圖。第1圖繪示了本發明之第一較佳實施例之多焦距 光學對位裝置的示意圖。如第1圖所示,本實施例之多焦距光學對位裝置10係用以對複數片堆疊的基板進行對位,且本實施例係以兩個堆疊的基板1、2為例,但基板的數目並不以此為限。基板1、2分別具有一對位記號1A、2A,且對位記號1A、2A位於不同平面上。多焦距光學對位裝置10包括複數個影像感測單元11、12,以及一分光器20。影像感測單元的數目與待進行對位的基板的數目相同,因此本實施例中係使用兩個影像感測單元11、12。影像感測單元11、12係分別用以接收基板1、2上之對位記號1A、2A之對位影像1M、2M,且影像感測單元11、12具有不同的焦距。分光器20係用以將對位記號1A、2A之對位影像1M、2M分別傳送至影像感測單元11、12。在本實施例中,分光器20係為一偏振光分光器(polarization beam splitter,PBS),其可依據光的偏振方向不同進行分光,例如S偏振光與P偏振光會被區分出朝向不同方向出光。分光器20並不限於偏振光分光器而可為其它各種類型的分光器。分光器20具有一入光面20S以及複數個出光面20A、20B,其中基板1、2係面對分光器20之入光面20S,且基板1較靠近分光器20,而基板2較遠離分光器20。此外,影像感測單元11、12係分別面對分光器20之出光面20A、20B。 Please refer to Figure 1. Figure 1 is a diagram showing the multiple focal lengths of the first preferred embodiment of the present invention. Schematic diagram of an optical alignment device. As shown in FIG. 1 , the multi-focus optical alignment device 10 of the present embodiment is used for aligning a plurality of stacked substrates, and the embodiment is based on two stacked substrates 1 and 2, but the substrate is The number is not limited to this. The substrates 1, 2 have a pair of bit marks 1A, 2A, respectively, and the alignment marks 1A, 2A are located on different planes. The multifocal optical alignment device 10 includes a plurality of image sensing units 11, 12, and a beam splitter 20. The number of image sensing units is the same as the number of substrates to be aligned, so two image sensing units 11, 12 are used in this embodiment. The image sensing units 11 and 12 are respectively configured to receive the alignment images 1M and 2M of the alignment marks 1A and 2A on the substrates 1 and 2, and the image sensing units 11 and 12 have different focal lengths. The beam splitter 20 is configured to transmit the alignment images 1M, 2M of the alignment marks 1A, 2A to the image sensing units 11, 12, respectively. In this embodiment, the beam splitter 20 is a polarization beam splitter (PBS), which can be split according to the polarization direction of the light. For example, the S-polarized light and the P-polarized light are distinguished in different directions. sold out. The beam splitter 20 is not limited to a polarizing beam splitter but may be other various types of beamsplitters. The beam splitter 20 has a light incident surface 20S and a plurality of light emitting surfaces 20A and 20B. The substrates 1 and 2 face the light incident surface 20S of the optical splitter 20, and the substrate 1 is closer to the optical splitter 20, and the substrate 2 is farther away from the splitting light. 20. In addition, the image sensing units 11 and 12 face the light emitting surfaces 20A and 20B of the beam splitter 20, respectively.

在本實施例中,影像感測單元11包括一影像感測元件11A用以接收對應之基板1之對位記號1A之對位影像1M,以及一焦距調整元件11F用以提供一焦距而使對應之對位影像1M成像於影像感測元件11A;影像感測單元12包括一影像感測元件12A用以接收對 應之基板2之對位記號2A之對位影像2M,以及一焦距調整元件12F用以提供另一不同的焦距而使對應之對位影像2M成像於影像感測元件12A。影像感測元件11A與影像感測元件12A可分別包括一互補式金屬氧化物半導體感測元件(CMOS sensor)或一電荷耦合感測元件(CCD sensor),但不以此為限而可為其它各種類型之感測元件。焦距調整元件11F、12F可為高倍率透鏡,且焦距調整元件11F、12F可分別包括一光學定焦透鏡,或是一變焦透鏡例如一光學變焦透鏡或一液晶透鏡。 In this embodiment, the image sensing unit 11 includes an image sensing component 11A for receiving the alignment image 1M of the corresponding alignment mark 1A of the substrate 1 , and a focal length adjusting component 11F for providing a focal length to correspond to The alignment image 1M is imaged on the image sensing component 11A; the image sensing unit 12 includes an image sensing component 12A for receiving the pair The alignment image 2M of the alignment mark 2A of the substrate 2 and a focal length adjustment component 12F are used to provide another different focal length to image the corresponding alignment image 2M to the image sensing element 12A. The image sensing element 11A and the image sensing element 12A may respectively include a complementary metal oxide semiconductor sensing element (CMOS sensor) or a charge coupled sensing element (CCD sensor), but not limited thereto. Various types of sensing elements. The focus adjusting elements 11F, 12F may be high-magnification lenses, and the focus adjusting elements 11F, 12F may respectively include an optical fixed focus lens, or a zoom lens such as an optical zoom lens or a liquid crystal lens.

請再參考第2圖,並一併參考第1圖。第2圖繪示了本發明之一較佳實施例之複數片堆疊的基板的對位方法的流程圖。如第2圖所示,本發明之複數片堆疊的基板的對位方法包括下列步驟:步驟30:提供第1圖之多焦距光學對位裝置10;步驟32:將基板1、2置放於分光器20之入光面20S前;步驟34:使基板1、2之對位記號1A、2A分別位於對應之影像感測單元11、12之焦點上;以及步驟36:依據影像感測單元11、12接收到之對位影像1M、2M調整基板1、2之相對位置以進行對位。 Please refer to Figure 2 again and refer to Figure 1 together. 2 is a flow chart showing a method of aligning a plurality of stacked substrates of a preferred embodiment of the present invention. As shown in FIG. 2, the alignment method of the plurality of stacked substrates of the present invention includes the following steps: Step 30: providing the multifocal optical alignment device 10 of FIG. 1; Step 32: placing the substrates 1 and 2 on Step 34: aligning the alignment marks 1A and 2A of the substrates 1 and 2 at the focal points of the corresponding image sensing units 11 and 12; and step 36: according to the image sensing unit 11 The received images 1M and 2M are adjusted to the relative positions of the substrates 1 and 2 for alignment.

在本實施例之複數片堆疊的基板的對位方法中,步驟34所述之使基板1、2之對位記號1A、2A分別位於對應之影像感測單元11、12之焦點上可利用不同方式加以達成。舉例而言,若焦距調整元件11F、12F為光學定焦透鏡,則可利用調整基板1、2之位置的方式 使基板1、2之對位記號1A、2A分別位於對應之影像感測單元11、12之焦點上。若焦距調整元件11F、12F為變焦透鏡,則亦可以利用調整影像感測單元11、12之焦距的方式使基板1、2之對位記號1A、2A分別位於對應之影像感測單元11、12之焦點上。 In the aligning method of the plurality of stacked substrates, in the step 34, the alignment marks 1A and 2A of the substrates 1 and 2 are respectively located at the focal points of the corresponding image sensing units 11 and 12. The way to achieve it. For example, if the focus adjustment elements 11F, 12F are optical fixed focus lenses, the position of the substrates 1 and 2 can be adjusted. The alignment marks 1A, 2A of the substrates 1, 2 are respectively placed at the focal points of the corresponding image sensing units 11, 12. If the focus adjustment elements 11F and 12F are zoom lenses, the alignment marks 1A and 2A of the substrates 1 and 2 can be respectively located in the corresponding image sensing units 11 and 12 by adjusting the focal lengths of the image sensing units 11 and 12. Focus on it.

如第1圖所示,當基板1、2之對位記號1A、2A分別位於對應之影像感測單元11、12之焦點上後,對位記號1A的光線在經過分光器20後產生兩個對位影像1M、1M’,而由於基板1之對位記號1A係位於影像感測單元11的焦點上,因此對位記號1A之對位影像1M會成像在影像感測單元11,而由於基板1之對位記號1A不位於影像感測單元12的焦點上,因此對位記號1A之對位影像1M’不會成像在影像感測單元12;同理,對位記號2A的光線在經過分光器20後會產生兩個對位影像2M、2M’,而由於基板2之對位記號2A係位於影像感測單元12的焦點上,因此對位記號2A之對位影像2M會成像在影像感測單元12,而由於基板2之對位記號2A不位於影像感測單元11的焦點上,因此對位記號2A之對位影像2M’不會成像在影像感測單元11。在確定基板1、2的位置後,即可調整基板1、2之相對位置使得基板1、2可以精確對位。 As shown in FIG. 1 , when the alignment marks 1A and 2A of the substrates 1 and 2 are respectively located at the focal points of the corresponding image sensing units 11 and 12, the light of the alignment mark 1A is generated after passing through the beam splitter 20. The alignment image 1M, 1M', and since the alignment mark 1A of the substrate 1 is located at the focus of the image sensing unit 11, the alignment image 1M of the alignment mark 1A is imaged on the image sensing unit 11, and the substrate is The alignment mark 1A of 1 is not located at the focus of the image sensing unit 12, so the alignment image 1M' of the registration mark 1A is not imaged in the image sensing unit 12; similarly, the light of the alignment mark 2A is split. After the device 20, two alignment images 2M, 2M' are generated, and since the alignment mark 2A of the substrate 2 is located at the focus of the image sensing unit 12, the alignment image 2M of the alignment mark 2A is imaged in the image sense. The unit 12 is measured, and since the alignment mark 2A of the substrate 2 is not located at the focus of the image sensing unit 11, the alignment image 2M' of the registration mark 2A is not imaged in the image sensing unit 11. After determining the positions of the substrates 1, 2, the relative positions of the substrates 1, 2 can be adjusted so that the substrates 1, 2 can be accurately aligned.

本發明之多焦距光學對位裝置並不以上述實施例為限。下文將依序介紹本發明之其它較佳實施例之多焦距光學對位裝置,且為了便於比較各實施例之相異處並簡化說明,在下文之各實施例中使用相同的符號標注相同的元件,且主要針對各實施例之相異處進行說 明,而不再對重覆部分進行贅述。 The multifocal optical alignment device of the present invention is not limited to the above embodiment. The multi-focus optical alignment device of other preferred embodiments of the present invention will be sequentially described below, and the same symbols are used to mark the same in the following embodiments in order to facilitate the comparison of the differences of the embodiments and simplify the description. Components, and mainly for the differences between the various embodiments Ming, and no longer repeat the repetitive part.

請參考第3圖。第3圖繪示了本發明之第二較佳實施例之多焦距光學對位裝置的示意圖。如第3圖所示,不同於第一較佳實施例,本實施例之多焦距光學對位裝置50包括三個影像感測單元11、12、13,以及一分光器20,用以對三片基板進行對位。影像感測單元11、12、13分別包括一影像感測元件11A、12A、13A用以接收對應之基板之對位記號之對位影像,以及一焦距調整元件11F、12F、13F用以提供一焦距而使對應之對位影像成像於影像感測元件11A、12A、13A。分光器20係用以將不同的基板的對位記號之對位影像分別傳送至影像感測單元11、12、13。分光器20可為一分光稜鏡,其可分別將三片基板(圖未示)上的對位記號的對位影像傳遞至對應的影像感測單元11、12、13。例如在本實施側中,分光器20係為一X稜鏡(X cube),但不以此為限而可為其它各種類型的分光器。分光器20具有一入光面20S以及三個出光面20A、20B、20C,其中基板係彼此堆疊並面對分光器20之入光面20S。此外,影像感測單元11、12、13係分別面對分光器20之出光面20A、20B、20C。由於不同的基板的對位記號係分別位於影像感測單元11、12、13的焦點上,因此於進行對位時,影像感測單元11、12、13僅會接收到對應的基板的對位記號之對位影像,藉此確定三片基板之相對位置。在確定三片基板的位置後,即可調整三片基板之相對位置而進行精確對位。 Please refer to Figure 3. FIG. 3 is a schematic view showing a multifocal optical alignment device according to a second preferred embodiment of the present invention. As shown in FIG. 3, unlike the first preferred embodiment, the multifocal optical alignment device 50 of the present embodiment includes three image sensing units 11, 12, 13, and a beam splitter 20 for The substrate is aligned. The image sensing units 11, 12, 13 respectively include an image sensing component 11A, 12A, 13A for receiving a registration image of the alignment mark of the corresponding substrate, and a focus adjustment component 11F, 12F, 13F for providing a The focal length causes the corresponding alignment image to be imaged on the image sensing elements 11A, 12A, 13A. The beam splitter 20 is configured to transmit the alignment images of the alignment marks of different substrates to the image sensing units 11, 12, and 13, respectively. The beam splitter 20 can be a splitter, which can respectively transmit the alignment images of the alignment marks on the three substrates (not shown) to the corresponding image sensing units 11, 12, 13. For example, in the implementation side, the beam splitter 20 is an X cube, but not limited thereto can be other various types of beamsplitters. The beam splitter 20 has a light incident surface 20S and three light exiting surfaces 20A, 20B, 20C, wherein the substrates are stacked on each other and face the light incident surface 20S of the beam splitter 20. Further, the image sensing units 11, 12, and 13 face the light-emitting surfaces 20A, 20B, and 20C of the beam splitter 20, respectively. Since the alignment marks of different substrates are respectively located at the focus of the image sensing units 11, 12, 13, when the alignment is performed, the image sensing units 11, 12, 13 only receive the alignment of the corresponding substrates. The alignment image of the mark, thereby determining the relative position of the three substrates. After determining the position of the three substrates, the relative positions of the three substrates can be adjusted for precise alignment.

請參考第4圖。第4圖繪示了本發明之第三較佳實施例之多焦距光學對位裝置的示意圖。如第4圖所示,不同於第一、第二較佳實施例,本實施例之多焦距光學對位裝置60包括五個影像感測單元11、12、13、14、15,以及一分光器20,用以對五片基板(圖未示)進行對位。影像感測單元11、12、13、14、15分別包括一影像感測元件11A、12A、13A、14A、15A用以接收對應之基板之對位記號之對位影像,以及一焦距調整元件11F、12F、13F、14F、15F用以提供一焦距而使對應之對位影像成像於影像感測元件11A、12A、13A、14A、15A。分光器20係用以將不同的基板的對位記號之對位影像分別傳送至影像感測單元11、12、13、14、15。分光器20可為一分光稜鏡,其可分別將五片基板上的對位記號的對位影像傳遞至對應的影像感測單元11、12、13、14、15。例如在本實施側中,分光器20可為一六邊形偏振光分光器,但不以此為限而可為其它各種類型的分光器。分光器20具有一入光面20S以及五個出光面20A、20B、20C、20D、20E,其中基板係彼此堆疊並面對分光器20之入光面20S。此外,影像感測單元11、12、13、14、15係分別面對分光器20之出光面20A、20B、20C、20D、20E。由於不同的基板的對位記號係分別位於影像感測單元11、12、13、14、15的焦點上,因此於進行對位時,影像感測單元11、12、13、14、15僅會接收到對應的基板的對位記號之對位影像,藉此確定五片基板之相對位置。在確定五片基板的位置後,即可調整五片基板之相對位置而進行精確對位。 Please refer to Figure 4. FIG. 4 is a schematic view showing a multifocal optical alignment device according to a third preferred embodiment of the present invention. As shown in FIG. 4, unlike the first and second preferred embodiments, the multifocal optical alignment device 60 of the present embodiment includes five image sensing units 11, 12, 13, 14, 15 and a split light. The device 20 is for aligning five substrates (not shown). The image sensing units 11, 12, 13, 14, 15 respectively include an image sensing component 11A, 12A, 13A, 14A, 15A for receiving a registration image of the alignment mark of the corresponding substrate, and a focal length adjusting component 11F 12F, 13F, 14F, 15F are used to provide a focal length to image the corresponding alignment image to the image sensing elements 11A, 12A, 13A, 14A, 15A. The beam splitter 20 is configured to transmit the alignment images of the alignment marks of different substrates to the image sensing units 11, 12, 13, 14, and 15, respectively. The beam splitter 20 can be a splitter that can respectively transmit the alignment images of the alignment marks on the five substrates to the corresponding image sensing units 11, 12, 13, 14, 15. For example, in the implementation side, the beam splitter 20 can be a hexagonal polarized light splitter, but not limited thereto can be other various types of splitters. The beam splitter 20 has a light incident surface 20S and five light exiting surfaces 20A, 20B, 20C, 20D, and 20E, wherein the substrates are stacked on each other and face the light incident surface 20S of the optical splitter 20. Further, the image sensing units 11, 12, 13, 14, 15 face the light-emitting surfaces 20A, 20B, 20C, 20D, 20E of the beam splitter 20, respectively. Since the alignment marks of different substrates are respectively located at the focus of the image sensing units 11, 12, 13, 14, 15, the image sensing units 11, 12, 13, 14, 15 only The alignment image of the alignment mark of the corresponding substrate is received, thereby determining the relative positions of the five substrates. After determining the position of the five substrates, the relative positions of the five substrates can be adjusted for precise alignment.

本發明之多焦距光學對位裝置係用以對複數片堆疊的基板進行對位,其可應用在各類型具有堆疊基板結構的面板,例如顯示面板、立體顯示面板與觸控顯示面板等。值得說明的是多焦距光學對位裝置之影像感測單元的數目與分光器的出光面的數目可視待對位的基板數目而調整,而不以上述實施例所揭示者為限。 The multifocal optical alignment device of the present invention is used for aligning a plurality of stacked substrates, and can be applied to various types of panels having a stacked substrate structure, such as a display panel, a stereoscopic display panel, and a touch display panel. It should be noted that the number of image sensing units of the multi-focus optical alignment device and the number of light-emitting surfaces of the optical splitter can be adjusted according to the number of substrates to be aligned, and are not limited to those disclosed in the above embodiments.

綜上所述,本發明之多焦距光學對位裝置使用複數個影像感測單元並搭配分光器對複數片基板進行對位,由於各影像感測單元的焦距不同,因此可接受到對應之基板的對位記號的對位影像以進行精確對位。 In summary, the multi-focus optical alignment device of the present invention uses a plurality of image sensing units and aligns the plurality of substrates with the optical splitter. Since the focal lengths of the image sensing units are different, the corresponding substrate can be accepted. The alignment image of the alignment mark for accurate alignment.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧多焦距光學對位裝置 10‧‧‧Multifocal optical alignment device

1、2‧‧‧基板 1, 2‧‧‧ substrate

1A、2A‧‧‧對位記號 1A, 2A‧‧‧ alignment mark

11、12‧‧‧影像感測單元 11, 12‧‧‧ image sensing unit

1M、2M‧‧‧對位影像 1M, 2M‧‧‧ alignment image

1M’、2M’‧‧‧對位影像 1M’, 2M’‧‧‧ alignment image

20‧‧‧分光器 20‧‧‧Distributor

20S‧‧‧入光面 20S‧‧‧Glossy

20A、20B‧‧‧出光面 20A, 20B‧‧‧ shiny surface

11F、12F‧‧‧焦距調整元件 11F, 12F‧‧‧focal length adjustment components

11A、12A‧‧‧影像感測元件 11A, 12A‧‧‧ image sensing components

50‧‧‧多焦距光學對位裝置 50‧‧‧Multifocal optical alignment device

13‧‧‧影像感測單元 13‧‧‧Image sensing unit

13A‧‧‧影像感測元件 13A‧‧‧Image sensing components

13F‧‧‧焦距調整元件 13F‧‧•focal length adjustment component

20C‧‧‧出光面 20C‧‧‧Glossy

60‧‧‧多焦距光學對位裝置 60‧‧‧Multifocal optical alignment device

14、15‧‧‧影像感測單元 14, 15‧‧‧ image sensing unit

14A、15A‧‧‧影像感測元件 14A, 15A‧‧‧ image sensing components

14F、15F‧‧‧焦距調整元件 14F, 15F‧‧‧focal length adjustment components

20D、20E‧‧‧出光面 20D, 20E‧‧‧ shiny surface

30‧‧‧步驟 30‧‧‧Steps

32‧‧‧步驟 32‧‧‧Steps

34‧‧‧步驟 34‧‧‧Steps

36‧‧‧步驟 36‧‧‧Steps

第1圖繪示了本發明之第一較佳實施例之多焦距光學對位裝置的示意圖。 1 is a schematic view of a multifocal optical alignment device according to a first preferred embodiment of the present invention.

第2圖繪示了本發明之一較佳實施例之複數片堆疊的基板的對位方法的流程圖。 2 is a flow chart showing a method of aligning a plurality of stacked substrates of a preferred embodiment of the present invention.

第3圖繪示了本發明之第二較佳實施例之多焦距光學對位裝置的示意圖。 FIG. 3 is a schematic view showing a multifocal optical alignment device according to a second preferred embodiment of the present invention.

第4圖繪示了本發明之第三較佳實施例之多焦距光學對位裝置的示意圖。 FIG. 4 is a schematic view showing a multifocal optical alignment device according to a third preferred embodiment of the present invention.

10‧‧‧多焦距光學對位裝置 10‧‧‧Multifocal optical alignment device

1、2‧‧‧基板 1, 2‧‧‧ substrate

1A、2A‧‧‧對位記號 1A, 2A‧‧‧ alignment mark

11、12‧‧‧影像感測單元 11, 12‧‧‧ image sensing unit

1M、2M‧‧‧對位影像 1M, 2M‧‧‧ alignment image

1M’、2M’‧‧‧對位影像 1M’, 2M’‧‧‧ alignment image

20‧‧‧分光器 20‧‧‧Distributor

20S‧‧‧入光面 20S‧‧‧Glossy

20A、20B‧‧‧出光面 20A, 20B‧‧‧ shiny surface

11F、12F‧‧‧焦距調整元件 11F, 12F‧‧‧focal length adjustment components

11A、12A‧‧‧影像感測元件 11A, 12A‧‧‧ image sensing components

Claims (10)

一種多焦距光學對位裝置,用以對複數片堆疊的基板進行對位,各該基板分別具有一對位記號,該多焦距光學對位裝置包括:複數個影像感測單元,分別用以接收各該基板上之該對位記號之一對位影像,其中各該影像感測單元具有不同的焦距;以及一分光器,用以將各該對位記號之該對位影像分別傳送至各該影像感測單元,其中該分光器具有一入光面以及複數個出光面,該等基板係面對該分光器之該入光面,各該影像感測單元係分別面對該分光器之該出光面。 A multi-focus optical alignment device for aligning a plurality of stacked substrates, each of the substrates having a pair of bit marks, the multi-focus optical alignment device comprising: a plurality of image sensing units for receiving One of the alignment marks on the substrate, wherein each of the image sensing units has a different focal length; and a beam splitter for transmitting the alignment images of the alignment marks to the respective ones An image sensing unit, wherein the beam splitter has a light incident surface and a plurality of light emitting surfaces, wherein the substrate faces the light incident surface of the light splitter, and each of the image sensing units respectively faces the light output of the light splitter surface. 如請求項1所述之多焦距光學對位裝置,其中各該影像感測單元包括一影像感測元件用以接收對應之該基板之該對位記號之該對位影像,以及一焦距調整元件用以提供該焦距而使對應之該對位影像成像於該影像感測元件。 The multi-focus optical alignment device of claim 1, wherein each of the image sensing units includes an image sensing component for receiving the alignment image of the alignment mark corresponding to the substrate, and a focus adjustment component The focal length is used to image the corresponding alignment image to the image sensing element. 如請求項2所述之多焦距光學對位裝置,其中各該焦距調整元件包括一光學定焦透鏡。 The multifocal optical alignment device of claim 2, wherein each of the focus adjustment elements comprises an optical focus lens. 如請求項2所述之多焦距光學對位裝置,其中各該焦距調整元件包括一變焦透鏡。 The multifocal optical alignment device of claim 2, wherein each of the focus adjustment elements comprises a zoom lens. 如請求項4所述之多焦距光學對位裝置,其中各該焦距調整元件包括一光學變焦透鏡或一液晶透鏡。 The multifocal optical alignment device of claim 4, wherein each of the focus adjustment elements comprises an optical zoom lens or a liquid crystal lens. 如請求項1所述之多焦距光學對位裝置,其中該分光器包括一偏振光分光器或一分光稜鏡。 The multifocal optical alignment device of claim 1, wherein the beam splitter comprises a polarizing beam splitter or a beam splitter. 如請求項2所述之多焦距光學對位裝置,其中各該影像感測元件包括一互補式金屬氧化物半導體感測元件或一電荷耦合感測元件。 The multifocal optical alignment device of claim 2, wherein each of the image sensing elements comprises a complementary metal oxide semiconductor sensing element or a charge coupled sensing element. 一種複數片堆疊的基板的對位方法,包括:提供請求項1所述之該多焦距光學對位裝置;將該等基板置放於該分光器之該入光面前;使各該基板之該對位記號分別位於對應之該影像感測單元之一焦點上;以及依據該等影像感測單元接收到之該等對位影像調整該等基板之相對位置以進行對位。 A method for aligning a plurality of stacked substrates, comprising: providing the multi-focus optical alignment device of claim 1; placing the substrates in front of the light entering the optical splitter; The alignment marks are respectively located at a focus of the corresponding image sensing unit; and the relative positions of the substrates are adjusted according to the alignment images received by the image sensing units for alignment. 如請求項8所述之複數片堆疊的基板的對位方法,其中使各該基板之該對位記號分別位於對應之該影像感測單元之該焦點上之步驟包括調整該等基板之位置。 The method for aligning a plurality of stacked substrates according to claim 8, wherein the step of respectively positioning the alignment marks of the respective substrates on the focus of the corresponding image sensing unit comprises adjusting positions of the substrates. 如請求項8所述之複數片堆疊的基板的對位方法,其中使各該基板之該對位記號分別位於對應之該影像感測單元之該焦點上之步驟包括調整該等影像感測單元之該焦距。 The method for aligning a plurality of stacked substrates according to claim 8, wherein the step of respectively positioning the alignment marks of the respective substrates on the focus of the corresponding image sensing unit comprises adjusting the image sensing units The focal length.
TW101119990A 2012-06-04 2012-06-04 Multi-focal optical alignment apparatus and alignment method for multiple stacking substrates TW201350908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101119990A TW201350908A (en) 2012-06-04 2012-06-04 Multi-focal optical alignment apparatus and alignment method for multiple stacking substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101119990A TW201350908A (en) 2012-06-04 2012-06-04 Multi-focal optical alignment apparatus and alignment method for multiple stacking substrates

Publications (1)

Publication Number Publication Date
TW201350908A true TW201350908A (en) 2013-12-16

Family

ID=50157977

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101119990A TW201350908A (en) 2012-06-04 2012-06-04 Multi-focal optical alignment apparatus and alignment method for multiple stacking substrates

Country Status (1)

Country Link
TW (1) TW201350908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623775B (en) * 2017-09-12 2018-05-11 財團法人金屬工業研究發展中心 Optical alignment apparatus and optical alignment method
CN109597178A (en) * 2017-09-30 2019-04-09 财团法人金属工业研究发展中心 Optical registration equipment and optical registration method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623775B (en) * 2017-09-12 2018-05-11 財團法人金屬工業研究發展中心 Optical alignment apparatus and optical alignment method
CN109597178A (en) * 2017-09-30 2019-04-09 财团法人金属工业研究发展中心 Optical registration equipment and optical registration method
CN109597178B (en) * 2017-09-30 2021-08-10 财团法人金属工业研究发展中心 Optical alignment equipment and optical alignment method

Similar Documents

Publication Publication Date Title
CN104061873B (en) distortion measurement imaging system
CN108598032B (en) Wafer bonding alignment system and alignment method
JP2008167395A5 (en)
US20120224176A1 (en) Parallel Acquisition Of Spectra For Diffraction Based Overlay
JP5958837B2 (en) Depth estimation imaging device
JP2015127798A (en) Liquid crystal lens image formation device and liquid crystal lens image formation method
CN101382743A (en) Coaxial double face position aligning system and position aligning method
JPWO2012070208A1 (en) Imaging apparatus, imaging method, program, and integrated circuit
TW201350908A (en) Multi-focal optical alignment apparatus and alignment method for multiple stacking substrates
JPWO2016157291A1 (en) Measuring head and eccentricity measuring apparatus having the same
JP2021179609A (en) System and method for aligning multiple lens elements
US9869806B2 (en) Incident beam polarization dependent optical device with variable focusing beam pattern
CN106483777A (en) A kind of with focusing function to Barebone and alignment methods
TWI580930B (en) Tilt angle and distance measurement method
EP4028722A1 (en) Measurement system and grating pattern array
TWI357973B (en) Apparatus and method for simulataneous confocal fu
TW201200974A (en) Lithographic apparatus
US20220003910A1 (en) Aligning a polarization device using a spatially variant polarization element
WO2013179539A1 (en) Image processing device, imaging device, image processing method, and program
CN114112131A (en) Stress measuring device for tempered glass, stress measuring method for tempered glass, and tempered glass
JP6146006B2 (en) Imaging device and stereo camera
WO2016199468A1 (en) Image capturing device, image capturing method, and method for using liquid crystal lens
KR20170024768A (en) Apparatus for measuring mask error and method for measuring mask error
이상선 et al. Developed an In-Line System of Measuring MTF for Automating the Assembly Process of Lens-Module in a Smartphone Camera
CN103515275A (en) Multi-focal length optical alignment apparatus and alignment method of multiple stacked substrates