TW201346049A - Vacuum deposition apparatus - Google Patents

Vacuum deposition apparatus Download PDF

Info

Publication number
TW201346049A
TW201346049A TW102102884A TW102102884A TW201346049A TW 201346049 A TW201346049 A TW 201346049A TW 102102884 A TW102102884 A TW 102102884A TW 102102884 A TW102102884 A TW 102102884A TW 201346049 A TW201346049 A TW 201346049A
Authority
TW
Taiwan
Prior art keywords
vapor deposition
evaporation
film thickness
evaporation source
rates
Prior art date
Application number
TW102102884A
Other languages
Chinese (zh)
Inventor
Kazuki Kitamura
Nobuyuki Miyagawa
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Publication of TW201346049A publication Critical patent/TW201346049A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A vacuum deposition apparatus 1 comprises a first evaporation source 3 wherein deposition material 30 is evaporated, a second evaporation source 4 wherein deposition material 40 is evaporated, a deposition rate control section 81 controlling respective motions of the first and the second evaporation sources, setting deposition rate memory sections 82a and 82b, respectively, memorizing the setting deposition rates A1, A2 of the first and the second evaporation sources which are preset, and a first and a second film thickness meters 7a, 7b for measuring mixed deposition rates Y1, Y2 of respective deposition materials. A measuring section 85 calculates the respective deposition rates X1, X2 of the first and the second evaporation sources based on a reaching quantity ratio B1 of the second film thickness meter 7b to the first film thickness meter 7a regarding one deposition material, a reaching quantity ratio B2 of the first film thickness meter 7a to the second film thickness meter 7b regarding the other deposition material, and the mixed deposition rates Y1, Y2. The deposition rate control section 81 controls the first and the second evaporation sources 3 and 4 so as to make the calculated value and the setting value.

Description

真空蒸鍍裝置 Vacuum evaporation device

本發明關於一種真空蒸鍍裝置,係將蒸鍍材料蒸鍍至基板等多種被蒸鍍體而形成薄膜。 The present invention relates to a vacuum vapor deposition apparatus which deposits a vapor deposition material onto a plurality of vapor-deposited bodies such as a substrate to form a thin film.

真空蒸鍍裝置係於真空腔室內配置包含蒸鍍材料的蒸發源、及基板等被蒸鍍體,在對於真空腔室內進行減壓的狀態下,加熱蒸發源,使蒸發源氣化,並使此經氣化的蒸鍍材料沉積於被蒸鍍體的表面,形成薄膜。但是,有些情況下,從蒸發源氣化的蒸鍍材料的一部分不朝向被蒸鍍體前進,而不附著於被蒸鍍體的表面。如此不附著於被蒸鍍體的蒸鍍材料變多時,成為材料使用效率降低及蒸鍍速度降低的原因。所以,已知有一種真空蒸鍍裝置,利用筒狀體圍繞蒸發源與多蒸鍍體相向的空間,以蒸鍍材料再蒸發的溫度加熱此筒狀體,使經氣化的蒸鍍材料通過筒狀體內而蒸鍍至被蒸鍍體的表面(例如參照專利文獻1)。 In the vacuum vapor deposition apparatus, an evaporation source including a vapor deposition material, a vapor-deposited body such as a substrate, and the like are disposed in a vacuum chamber, and the evaporation source is heated in a state where the pressure is reduced in the vacuum chamber to vaporize the evaporation source. This vaporized vapor deposition material is deposited on the surface of the vapor-deposited body to form a film. However, in some cases, a part of the vapor deposition material vaporized from the evaporation source does not advance toward the vapor-deposited body, and does not adhere to the surface of the vapor-deposited body. When the amount of the vapor deposition material that does not adhere to the vapor-deposited body increases, the material use efficiency is lowered and the vapor deposition rate is lowered. Therefore, there is known a vacuum vapor deposition apparatus which uses a cylindrical body to surround a space in which an evaporation source and a plurality of vapor deposition bodies face each other, and heats the cylindrical body at a temperature at which the vapor deposition material re-evaporates, so that the vaporized vapor deposition material passes. The inside of the cylindrical body is vapor-deposited to the surface of the vapor-deposited body (see, for example, Patent Document 1).

但是,例如於有機EL元件等製造中,利用真空蒸鍍裝置製作有機半導體層時,必須在1個筒狀體內混合多種蒸鍍材料,將混合膜蒸鍍至被蒸鍍體的表面。但是,此時,即使在筒狀體內配置1個膜厚計來監控蒸鍍材料的蒸鍍率,也因為蒸鍍材料係在各蒸鍍材料混合的狀態附著至膜厚計,所以無法個別監控各蒸鍍材料的蒸鍍率。 However, in the production of an organic EL device, for example, when an organic semiconductor layer is formed by a vacuum vapor deposition apparatus, it is necessary to mix a plurality of vapor deposition materials in one cylindrical body, and to vapor-deposit the mixed film onto the surface of the vapor-deposited body. However, in this case, even if one film thickness meter is placed in the cylindrical body to monitor the vapor deposition rate of the vapor deposition material, the vapor deposition material adheres to the film thickness meter in a state in which the respective vapor deposition materials are mixed, and thus cannot be individually monitored. The vapor deposition rate of each vapor deposition material.

所以,已知有一種薄膜形成裝置,對於蒸鍍至被蒸鍍體的混合薄膜照射2種波長的光線,從反射光中的各波長之衰減率來計算混合覆膜中的材料組成,並將該值迴授至蒸發源的蒸鍍速度控制(例如,專利文獻2參照)。 Therefore, there is known a thin film forming apparatus that irradiates a mixed film vapor-deposited to a vapor-deposited body with light of two kinds of wavelengths, and calculates a material composition in the mixed film from the attenuation rate of each wavelength in the reflected light, and This value is fed back to the evaporation rate control of the evaporation source (for example, refer to Patent Document 2).

【先前技術文獻】 [Previous Technical Literature] 【專利文獻】 [Patent Literature]

專利文獻1:日本特開2003-129224號公報 Patent Document 1: Japanese Laid-Open Patent Publication No. 2003-129224

專利文獻2:日本特開2011-195871號公報 Patent Document 2: Japanese Laid-Open Patent Publication No. 2011-195871

但是,上述專利文獻2記載的薄膜形成裝置,實際上係計算蒸鍍至被蒸鍍體的薄膜之中的材料組成,無法線性地監控各蒸發源中的蒸鍍材料之蒸發量。因此,蒸鍍時無法適當地修正蒸鍍率,又,另外須要輸出光線的雷射裝置或偵測反射光的光電二極體等構成。 However, in the thin film forming apparatus described in Patent Document 2, the material composition of the thin film deposited into the vapor-deposited body is actually calculated, and the evaporation amount of the vapor deposition material in each evaporation source cannot be linearly monitored. Therefore, it is not possible to appropriately correct the vapor deposition rate during vapor deposition, and it is also required to provide a laser device that outputs light or a photodiode that detects reflected light.

本發明係解決上述問題,目的在於提供一種真空蒸鍍裝置,將多種蒸鍍材料蒸鍍至被蒸鍍體時,能利用簡易的構成個別地監控使各蒸鍍材料蒸發的蒸發源之蒸鍍率,而能正確地控制薄膜之膜厚及混合濃度比。 The present invention has been made in view of the above problems, and an object of the invention is to provide a vacuum vapor deposition apparatus capable of individually performing vapor deposition of an evaporation source for evaporating each vapor deposition material by a simple configuration when a plurality of vapor deposition materials are vapor-deposited to a vapor deposition material. Rate, and can correctly control the film thickness and mixing concentration ratio of the film.

為解決上述問題,本發明係一種真空蒸鍍裝置,將多數之蒸鍍材料蒸鍍至被蒸鍍體的,其特徵在於包含:第1蒸發源,使一種蒸鍍材料蒸發;第2蒸發源,使另一種蒸鍍材料蒸發;蒸鍍速度控制部,分別控制該第1及第2蒸發源之動作;設定蒸鍍速度記憶部,分別記憶預先設定的該第1及第2蒸發源之設定蒸鍍速度A1、A2;第1膜厚計與第2膜厚計,使分別從該第1及第2蒸發源蒸發的蒸鍍材料附著而從其膜厚量測各蒸鍍材料之混合蒸鍍速度Y1、Y2,且該第1膜厚計配置於比靠近該第2蒸發源更靠近該第1蒸發源的位置、該第2膜厚計配置於比靠近該第1蒸發源更靠近該 第2蒸發源的位置;混合蒸鍍速度記憶部,分別記憶該2個膜厚計所量測的混合蒸鍍速度Y1、Y2;到達量比記憶部,記憶從該第1蒸發源分別到達至該2個膜厚計的每單位時間之該一種蒸鍍材料之中該第2膜厚計相對於該第1膜厚計的一種蒸鍍材料之到達量比B1,與從該第2蒸發源到達至該2個膜厚計的每單位時間之該另一種蒸鍍材料之中該第1膜厚計相對於該第2膜厚計的另一種蒸鍍材料之到達量比B2;及量測部,從記憶於該混合蒸鍍速度記憶部的混合蒸鍍速度Y1、Y2,與記憶於該到達量比記憶部的到達量比B1、B2,分別計算第1及第2蒸發源之蒸鍍速度X1、X2;且該蒸鍍速度控制部係分別控制該第1及第2蒸發源的其中至少一者,而使藉由該量測部所計算的第1及第2蒸發源之蒸鍍速度X1、X2的其中至少一者分別與記憶於該設定蒸鍍速度記憶部之設定蒸鍍速度A1、A2的其中至少一者一致。 In order to solve the above problems, the present invention is a vacuum vapor deposition apparatus which deposits a plurality of vapor deposition materials onto a vapor-deposited body, and is characterized by comprising: a first evaporation source for evaporating a vapor deposition material; and a second evaporation source And evaporating another vapor deposition material; the vapor deposition rate control unit controls the operations of the first and second evaporation sources, and sets the vapor deposition rate storage unit to store the preset settings of the first and second evaporation sources respectively. The vapor deposition rates A1 and A2; the first film thickness gauge and the second film thickness gauge are used to adhere the vapor deposition materials evaporated from the first and second evaporation sources, and measure the vapor deposition of each vapor deposition material from the film thickness thereof. The plating speeds Y1 and Y2 are arranged such that the first film thickness gauge is disposed closer to the first evaporation source than the second evaporation source, and the second film thickness gauge is disposed closer to the first evaporation source than to the first evaporation source. a position of the second evaporation source; a mixed vapor deposition rate memory unit that memorizes the mixed vapor deposition rates Y1 and Y2 measured by the two film thickness meters; and the arrival amount ratio memory portion, and the memory reaches from the first evaporation source to the respective Among the vapor deposition materials per unit time of the two film thickness gauges, the amount of arrival of the second film thickness with respect to the vapor deposition material of the first film thickness B1, and the second evaporation source The ratio of the arrival amount of the first film thickness gauge to the other vapor deposition material of the second film thickness to the other vapor deposition material of the two film thickness gauges per unit time; and the measurement The first and second evaporation sources are calculated from the mixed vapor deposition rates Y1 and Y2 stored in the mixed vapor deposition rate memory unit and the arrival amount ratios B1 and B2 stored in the memory amount. Speed X1, X2; and the vapor deposition rate control unit controls at least one of the first and second evaporation sources, and vapor-deposits the first and second evaporation sources calculated by the measuring unit At least one of the speeds X1 and X2 is respectively stored in the set vapor deposition speeds A1 and A2 of the set vapor deposition speed memory unit. The same one.

宜使上述真空蒸鍍裝置中,該量測部從記憶於該混合蒸鍍速度記憶部的混合蒸鍍速度Y1、Y2,分別減去從記憶於該設定蒸鍍速度記憶部的設定蒸鍍速度A2、A1分別乘上述憶於該到達量比記憶部的到達量比B2、B1之值,來分別計算第1及第2蒸發源之蒸鍍速度X1、X2。 Preferably, in the vacuum vapor deposition apparatus, the measuring unit subtracts the set vapor deposition speed stored in the set vapor deposition rate memory unit from the mixed vapor deposition rates Y1 and Y2 stored in the mixed vapor deposition rate memory unit. A2 and A1 respectively calculate the vapor deposition rates X1 and X2 of the first and second evaporation sources by multiplying the values of the arrival amount ratios B2 and B1 of the arrival amount ratio memory unit.

宜使上述真空蒸鍍裝置中,預先將僅使該第1蒸發源動作時該第1及第2膜厚計分別量測的第1蒸鍍速度C1、C2,分別加上預先僅使該第2蒸發源動作時該第1及第2膜厚計分別量測的第2蒸鍍速度D1、D2後之值,定為第1假想混合蒸鍍速度E1、E2,預先將使該第1及第2蒸發源雙方動作時該第1及第2膜厚計分別量測之值定為第2假想混合蒸鍍速度F1、F2,該量測部,將該混合蒸鍍速度Y1、Y2分別乘上蒸鍍速度修正係數K1、K2來計算修正後混合蒸鍍速度Y'1,Y'2,並分別使用該修正後混合蒸鍍速度Y'1、Y'2取代該混合蒸鍍速度Y1、Y2,該修正係數K1、K2係將該第1假想混合蒸鍍速度E1、E2分別除以該第2假想混合蒸鍍速度F1、F2後之值。 In the above-described vacuum vapor deposition apparatus, it is preferable to add only the first vapor deposition rates C1 and C2 measured by the first and second film thickness gauges when the first evaporation source is operated. (2) The values of the second vapor deposition rates D1 and D2 measured by the first and second film thickness gauges when the evaporation source is operated are determined as the first virtual mixed vapor deposition rates E1 and E2, and the first and the first When the second evaporation source is operated, the first and second film thickness gauges are respectively measured at the second virtual mixed vapor deposition rates F1 and F2, and the measurement unit multiplies the mixed vapor deposition rates Y1 and Y2. The vapor deposition rate correction coefficients K1 and K2 are used to calculate the corrected mixed vapor deposition speeds Y'1, Y'2, and the mixed vapor deposition speeds Y'1, Y'2 are used instead of the mixed vapor deposition speed Y1, respectively. Y2, the correction coefficients K1 and K2 are values obtained by dividing the first virtual mixed vapor deposition rates E1 and E2 by the second virtual mixed vapor deposition rates F1 and F2, respectively.

宜使上述真空蒸鍍裝置中,該到達量比記憶部預先記憶有該到達量比B1、B2,該量測部預先設定有該蒸鍍速度修正係數K1、K2。 In the vacuum vapor deposition apparatus described above, the amount of arrival is stored in the memory unit in advance in the amount of arrival ratios B1 and B2, and the vapor deposition rate correction coefficients K1 and K2 are set in advance in the measurement unit.

宜使上述真空蒸鍍裝置中更具有:顯示部,顯示該量測部所計算的第1及第2蒸發源之蒸鍍速度X1、X2。 Preferably, the vacuum vapor deposition apparatus further includes a display unit that displays vapor deposition speeds X1 and X2 of the first and second evaporation sources calculated by the measurement unit.

宜使上述真空蒸鍍裝置中,該蒸鍍速度控制部係分別控制該第1及第2蒸發源之溫度。 Preferably, in the vacuum vapor deposition apparatus, the vapor deposition rate control unit controls the temperatures of the first and second evaporation sources, respectively.

宜使上述真空蒸鍍裝置中,該蒸鍍速度控制部係分別控制閥之開啟度,以改變該第1及第2蒸發源各自的蒸發開口部之開口面積。 In the vacuum vapor deposition apparatus described above, the vapor deposition rate control unit controls the opening degree of the valve to change the opening area of each of the evaporation openings of the first and second evaporation sources.

宜使上述真空蒸鍍裝置中,該第2蒸發源與該第2膜厚計之相隔距離短於該第1蒸發源與該第1膜厚計之相隔距離。 Preferably, in the vacuum vapor deposition apparatus, the distance between the second evaporation source and the second film thickness gauge is shorter than the distance between the first evaporation source and the first film thickness.

宜使上述真空蒸鍍裝置中設有:筒狀流道,分別於該第2蒸發源之蒸發開口部附近與該第2膜厚計附近具有開口。 Preferably, the vacuum vapor deposition apparatus is provided with a cylindrical flow path having openings in the vicinity of the evaporation opening of the second evaporation source and in the vicinity of the second film thickness meter.

宜使上述真空蒸鍍裝置中設有:筒狀流道,分別於該第1蒸發源之蒸發開口部附近與該第1膜厚計附近具有開口。 Preferably, the vacuum vapor deposition apparatus is provided with a cylindrical flow path having openings in the vicinity of the evaporation opening of the first evaporation source and in the vicinity of the first film thickness gauge.

宜使上述真空蒸鍍裝置中更具有:筒狀體,圍繞該第1及第2蒸發源與該被蒸鍍體之間的空間,並於該被蒸鍍體側具有開口面。 It is preferable that the vacuum vapor deposition apparatus further includes a cylindrical body surrounding a space between the first and second evaporation sources and the vapor-deposited body, and having an opening surface on the vapor-deposited body side.

依據本發明,預先量測到達量比B1、B2,並且量測2個膜厚計的混合蒸鍍速度Y1、Y2,而能個別地監控來自第1、第2蒸發源之各蒸鍍材料的蒸鍍速度X1、X2(蒸鍍率)。又,藉由使蒸鍍速度X1、X2分別與設定蒸鍍速度A1、A2一致,可使實際從第1、第2蒸發源蒸發的蒸鍍材料之蒸鍍速度如同設定值,而能正確地控制薄膜之膜厚及混合濃度比。 According to the present invention, the amount of arrival ratios B1 and B2 are measured in advance, and the mixed vapor deposition rates Y1 and Y2 of the two film thickness meters are measured, and the vapor deposition materials from the first and second evaporation sources can be individually monitored. The deposition rate X1, X2 (vapor deposition rate). Further, by making the vapor deposition rates X1 and X2 match the set vapor deposition rates A1 and A2, the vapor deposition rate of the vapor deposition material actually evaporating from the first and second evaporation sources can be set as a set value, and can be accurately Control the film thickness and mixing concentration ratio of the film.

1‧‧‧真空蒸鍍裝置 1‧‧‧Vacuum evaporation device

2‧‧‧被蒸鍍體 2‧‧‧Extruded body

3‧‧‧第1蒸發源 3‧‧‧1st evaporation source

4‧‧‧第2蒸發源 4‧‧‧2nd evaporation source

5‧‧‧筒狀體 5‧‧‧Cylinder

6‧‧‧真空腔室 6‧‧‧vacuum chamber

7a‧‧‧第1膜厚計 7a‧‧‧1st film thickness meter

7b‧‧‧第2膜厚計 7b‧‧‧2nd film thickness meter

8‧‧‧控制裝置 8‧‧‧Control device

30‧‧‧一種蒸鍍材料 30‧‧‧A vapor deposition material

31、41‧‧‧加熱容器 31, 41‧‧‧ heating container

32、42‧‧‧蒸發源加熱器 32, 42‧‧‧ evaporation source heater

33、43‧‧‧電源 33, 43‧‧‧ power supply

34、44‧‧‧溫度計 34, 44‧‧‧ thermometer

35、45‧‧‧蒸發源溫度控制器 35, 45‧‧‧ Evaporation source temperature controller

40‧‧‧另一種蒸鍍材料 40‧‧‧Another evaporation material

51‧‧‧開口面 51‧‧‧Open face

52‧‧‧底部 52‧‧‧ bottom

53‧‧‧加熱器 53‧‧‧heater

54‧‧‧電源 54‧‧‧Power supply

55‧‧‧溫度感測器 55‧‧‧Temperature Sensor

56‧‧‧筒狀體溫度控制器 56‧‧‧Cylinder temperature controller

61‧‧‧真空泵 61‧‧‧Vacuum pump

81‧‧‧蒸鍍速度控制部 81‧‧‧Deposition rate control department

82a、82b‧‧‧蒸鍍速度記憶部 82a, 82b‧‧‧ evaporation rate memory

83a、83b‧‧‧混合蒸鍍速度記憶部 83a, 83b‧‧‧ Mixed evaporation speed memory

84a、84b‧‧‧到達量比記憶部 84a, 84b‧‧‧ reach ratio memory department

85、85a、85b‧‧‧量測部 85, 85a, 85b‧‧‧Measurement Department

86‧‧‧顯示部 86‧‧‧Display Department

91、92‧‧‧筒狀流道 91, 92‧‧‧ cylindrical flow passage

A1‧‧‧第1蒸發源之設定蒸鍍速度 A1‧‧‧Set evaporation rate of the first evaporation source

A2‧‧‧第2蒸發源之設定蒸鍍速度 A2‧‧‧Set evaporation rate of the second evaporation source

B1‧‧‧第2膜厚計的一種蒸鍍材料之到達量比 The ratio of the amount of vapor deposition material of a B1‧‧‧2nd film thickness meter

B2‧‧‧第1膜厚計的另一種蒸鍍材料之到達量比 B2‧‧‧1st thickness gauge of another vapor deposition material

X1‧‧‧第1蒸發源之蒸鍍速度 X1‧‧‧ evaporation rate of the first evaporation source

X2‧‧‧第2蒸發源之蒸鍍速度 X2‧‧‧ evaporation rate of the second evaporation source

Y1‧‧‧第1膜厚計所量測的混合蒸鍍速度 Hybrid evaporation rate measured by Y1‧‧‧1st film thickness meter

Y2‧‧‧第2膜厚計所量測的混合蒸鍍速度 Mixed vapor deposition rate measured by Y2‧‧‧2nd film thickness meter

C1‧‧‧第1膜厚計所量測的僅第1蒸發源之蒸鍍速度 The evaporation rate of the first evaporation source measured by the C1‧‧‧ first film thickness meter

C2‧‧‧第2膜厚計所量測的僅第1蒸發源之蒸鍍速度 The vapor deposition rate of the first evaporation source measured by the C2‧‧‧ the second film thickness meter

D1‧‧‧第1膜厚計所量測的僅第2蒸發源之蒸鍍速度 The evaporation rate of only the second evaporation source measured by the D1‧‧‧1st film thickness meter

D2‧‧‧第2膜厚計所量測的僅第2蒸發源之蒸鍍速度 The vapor deposition rate of only the second evaporation source measured by the D2‧‧‧ the second film thickness meter

E1‧‧‧第1膜厚計所量測的第1假想混合蒸鍍速度 The first hypothetical mixed evaporation rate measured by the E1‧‧‧1st film thickness meter

E2‧‧‧第2膜厚計所量測的第1假想混合蒸鍍速度 The first hypothetical mixed evaporation rate measured by the E2‧‧‧ the second film thickness meter

F1‧‧‧第1膜厚計所量測的第2假想混合蒸鍍速度 The second hypothetical mixed evaporation rate measured by the F1‧‧‧1st film thickness meter

F2‧‧‧第2膜厚計所量測的第2假想混合蒸鍍速度 The second hypothetical mixed evaporation rate measured by the F2‧‧‧2nd film thickness meter

K1‧‧‧第1膜厚計中的蒸鍍速度修正係數 Correction rate of evaporation rate in K1‧‧‧1st film thickness meter

K2‧‧‧第2膜厚計中的蒸鍍速度修正係數 Curing speed correction factor in K2‧‧‧2nd film thickness meter

Y'1‧‧‧第1膜厚計中的混合蒸鍍速度 Mixed vapor deposition rate in Y'1‧‧‧1st film thickness meter

Y'2‧‧‧第2膜厚計中的混合蒸鍍速度 Mixed vapor deposition rate in Y'2‧‧‧2nd film thickness meter

圖1係顯示本發明第1實施形態之真空蒸鍍裝置的側剖面與控制裝置之方塊構成。 Fig. 1 is a block diagram showing a side cross section of a vacuum vapor deposition device according to a first embodiment of the present invention and a control device.

圖2係顯示上述實施形態的變形例之真空蒸鍍裝置的側剖面與控制部裝置之方塊構成。 Fig. 2 is a block diagram showing a side cross section of a vacuum vapor deposition device according to a modification of the above embodiment and a control unit device.

圖3係顯示上述實施形態的其他變形例之真空蒸鍍裝置的側剖面與控制部裝置之方塊構成。 Fig. 3 is a block diagram showing a side cross section of a vacuum vapor deposition device and a control unit device according to another modification of the above embodiment.

圖4係顯示上述實施形態之另一其他變形例之真空蒸鍍裝置的側剖面與控制部裝置之方塊構成。 Fig. 4 is a block diagram showing a side cross section of a vacuum vapor deposition device and a control unit device according to still another modification of the embodiment.

圖5係顯示本發明第2實施形態之真空蒸鍍裝置的側剖面與控制裝置之方塊構成。 Fig. 5 is a block diagram showing a side cross section of a vacuum vapor deposition device according to a second embodiment of the present invention and a control device.

[實施發明之最佳形態] [Best Mode for Carrying Out the Invention]

以下參照圖1說明本發明第1實施形態之真空蒸鍍裝置。本實施形態之真空蒸鍍裝置1係將多數(在本例中係2種)之蒸鍍材料蒸鍍至被蒸鍍體2,包含:第1蒸發源3,使一種蒸鍍材料30蒸發;及第2蒸發源4,使另一種蒸鍍材料40蒸發。又,真空蒸鍍裝置1包含:筒狀體5,圍繞第1、第2蒸發源3、4及被蒸鍍體2之間的空間,並於被蒸鍍體2側具有開口面;及真空腔室6,使配置有被蒸鍍體2、第1、第2蒸發源3、4及筒狀體5的空間成為真空狀態。真空腔室6構成為可利用真空泵61使其內部減壓成真空狀態。 Hereinafter, a vacuum vapor deposition apparatus according to a first embodiment of the present invention will be described with reference to Fig. 1 . In the vacuum vapor deposition apparatus 1 of the present embodiment, a plurality of vapor deposition materials (in this example, two types) are vapor-deposited to the vapor-deposited body 2, and the first evaporation source 3 is included to evaporate one vapor deposition material 30. And the second evaporation source 4 evaporates the other vapor deposition material 40. Further, the vacuum vapor deposition apparatus 1 includes a cylindrical body 5 that surrounds a space between the first and second evaporation sources 3 and 4 and the vapor-deposited body 2, and has an opening surface on the side of the vapor-deposited body 2; In the chamber 6, the space in which the vapor-deposited body 2, the first and second evaporation sources 3 and 4, and the cylindrical body 5 are disposed is in a vacuum state. The vacuum chamber 6 is configured such that the inside of the vacuum chamber 61 can be depressurized to a vacuum state.

筒狀體5,其一端具有開口面51,並將基板等被蒸鍍體2配置成相向於此開口面51。例如,被蒸鍍體2藉由搬運機構(未圖示)從圖式面前方向往深處方向搬運。筒狀體5的另一端於不同位置分別配置有第1、第2蒸發源3、4,未配置有第1、第2蒸發源3、4的部分藉由底部52而連接。筒狀體5的外周環繞有從護套式加熱器等構成的筒狀體加熱器(以下稱加熱器53)。此加熱器53藉由連接至電源54來接受供電而將筒狀體5內加 熱。又,筒狀體5的底部52設有用來測量筒狀體5內之溫度的溫度感測器55,溫度感測器55之測量資訊係輸出至由CPU及記憶體等所構成的筒狀體溫度控制器56。筒狀體溫度控制器56接受溫度感測器55之測量資訊而控制從電源54供給至加熱器53的電力量,而可調節筒狀體5內的溫度。藉由此筒狀體5,可使來自第1、第2蒸發源3、4的蒸鍍材料30、40朝向被蒸鍍體2而有效率地前進。另,開口面51亦可設有修正板(未圖示),該修正板(未圖示)具有自由開關的多數之開口,以控制從筒狀體5往被蒸鍍體2的氣化蒸鍍材料之流量。 The cylindrical body 5 has an opening surface 51 at one end thereof, and the vapor-deposited body 2 such as a substrate is disposed to face the opening surface 51. For example, the vapor-deposited body 2 is conveyed in a deep direction from the front direction of the drawing by a transport mechanism (not shown). The other ends of the cylindrical body 5 are respectively provided with the first and second evaporation sources 3 and 4 at different positions, and the portions where the first and second evaporation sources 3 and 4 are not disposed are connected by the bottom portion 52. A cylindrical heater (hereinafter referred to as a heater 53) composed of a sheath heater or the like is surrounded by the outer circumference of the cylindrical body 5. The heater 53 receives the power supply by connecting to the power source 54 to add the cylindrical body 5 heat. Further, the bottom portion 52 of the cylindrical body 5 is provided with a temperature sensor 55 for measuring the temperature in the cylindrical body 5. The measurement information of the temperature sensor 55 is output to a cylindrical body temperature composed of a CPU and a memory. Degree controller 56. The cylindrical body temperature controller 56 receives the measurement information of the temperature sensor 55 and controls the amount of electric power supplied from the power source 54 to the heater 53, and the temperature in the cylindrical body 5 can be adjusted. By the cylindrical body 5, the vapor deposition materials 30 and 40 from the first and second evaporation sources 3 and 4 can be efficiently advanced toward the vapor-deposited body 2. Further, the opening surface 51 may be provided with a correction plate (not shown) having a plurality of openings for freely switching to control vaporization from the cylindrical body 5 to the vapor-deposited body 2. The flow rate of the plating material.

筒狀體5安裝有第1膜厚計7a及第2膜厚計7b,面向設於其側壁的側面開口部(未圖示)。此等2個膜厚計7a、7b由石英振盪器膜厚計等所構成,利用偵測藉由蒸鍍而附著於此等表面的每單位時間之蒸鍍材料30、40的膜厚來量測蒸鍍速度。第1膜厚計7a配置於相對上比第2膜厚計7b更靠近第1蒸發源3的位置,第2膜厚計7b配置於相對上比第1膜厚計7a更靠近第2蒸發源4的位置。膜厚計7a、7b無論蒸鍍材料30、40之種類或組成,例如分別在第1蒸發源3動作中量測蒸鍍材料30之蒸鍍速度,在第2蒸發源4動作中量測蒸鍍材料40之蒸鍍速度,在雙方動作中量測蒸鍍材料30、40之混合蒸鍍速度Y1、Y2。膜厚計7a、7b分別量測之關於蒸鍍速度的資料,輸出至控制真空蒸鍍裝置1之動作的控制裝置8。 The cylindrical body 5 is attached with a first film thickness gauge 7a and a second film thickness gauge 7b, and faces a side opening portion (not shown) provided on a side wall thereof. These two film thickness gauges 7a and 7b are composed of a quartz oscillator film thickness gauge or the like, and are used to measure the film thickness of the vapor deposition materials 30 and 40 per unit time which are adhered to the surface by vapor deposition. Measure the evaporation rate. The first film thickness gauge 7a is disposed closer to the first evaporation source 3 than the second film thickness gauge 7b, and the second film thickness gauge 7b is disposed closer to the second evaporation source than the first film thickness gauge 7a. 4 location. The film thickness gauges 7a and 7b measure the vapor deposition rate of the vapor deposition material 30 during the operation of the first evaporation source 3, for example, regardless of the type or composition of the vapor deposition materials 30 and 40, and measure the vaporization during the operation of the second evaporation source 4, respectively. The vapor deposition rate of the plating material 40 measures the mixed vapor deposition rates Y1 and Y2 of the vapor deposition materials 30 and 40 during both operations. The data on the vapor deposition rate measured by the film thickness gauges 7a and 7b are output to the control device 8 that controls the operation of the vacuum vapor deposition apparatus 1.

第1、第2蒸發源3、4係將蒸鍍材料30、40保持於堆塙等加熱容器31、41內。加熱容器31、41以其開口側與筒狀體5的底部52相同高度的方式埋入於筒狀體5。此等第1、第2蒸發源3、4分別配置於筒狀體5底部52的不同位置。 The first and second evaporation sources 3 and 4 hold the vapor deposition materials 30 and 40 in the heating containers 31 and 41 such as stacks. The heating containers 31 and 41 are embedded in the tubular body 5 such that the opening side thereof has the same height as the bottom portion 52 of the tubular body 5. These first and second evaporation sources 3 and 4 are disposed at different positions of the bottom portion 52 of the tubular body 5, respectively.

蒸鍍材料30、40係使用任意材料,但適合使用用於例如有機電致發光元件的有機半導體材料等有機材料。本實施形態中定為如下,充填於第1蒸發源3的蒸鍍材料30係構成蒸鍍膜之主體的主體材料,充填於第2蒸發源4的蒸鍍材料40係摻雜至上述主體材料的摻雜材料。加熱容器31、41的周邊部,分別配設有蒸發源加熱器32、42。此等蒸發源加熱器32、 42藉由連接至電源33、43來供電,將加熱容器31、41及蒸鍍材料30、40分別予以加熱。加熱容器31、41設有用來測量此等溫度之溫度計34、44,溫度計34、44之測量資訊輸出至蒸發源溫度控制器35、45。此蒸發源溫度控制器35、45連接至控制裝置8的蒸鍍速度控制部81。蒸鍍速度控制部81接受溫度計34、44之測量資訊,藉由控制從電源33、43供給至蒸發源加熱器32、42的電力量來調節加熱容器31、41內的溫度,而分別控制第1及第2蒸發源3、4之蒸發速度。藉此來控制蒸鍍至被蒸鍍體2的實際之蒸鍍材料30、40的蒸鍍速度。 The vapor deposition materials 30 and 40 are made of any material, but an organic material such as an organic semiconductor material used for, for example, an organic electroluminescence device is suitably used. In the present embodiment, the vapor deposition material 30 filled in the first evaporation source 3 constitutes a main material of the main body of the vapor deposition film, and the vapor deposition material 40 filled in the second evaporation source 4 is doped to the main material. Doped material. The evaporation source heaters 32 and 42 are disposed in the peripheral portions of the heating vessels 31 and 41, respectively. These evaporation source heaters 32, The power is supplied to the power supplies 33 and 43 by heating, and the heating vessels 31 and 41 and the vapor deposition materials 30 and 40 are respectively heated. The heating vessels 31, 41 are provided with thermometers 34, 44 for measuring such temperatures, and the measurement information of the thermometers 34, 44 is output to the evaporation source temperature controllers 35, 45. The evaporation source temperature controllers 35, 45 are connected to the vapor deposition rate control portion 81 of the control device 8. The vapor deposition rate control unit 81 receives the measurement information of the thermometers 34 and 44, and controls the temperature in the heating containers 31 and 41 by controlling the amount of electric power supplied from the power sources 33 and 43 to the evaporation source heaters 32 and 42, and controls the respective temperatures. The evaporation rate of 1 and the second evaporation sources 3, 4. Thereby, the vapor deposition rate of the actual vapor deposition materials 30 and 40 vapor-deposited to the vapor-deposited body 2 is controlled.

控制裝置8包含:設定蒸鍍速度記憶部82a、82b,分別記憶預先設定的第1、第2蒸發源3、4之設定蒸鍍速度A1、A2;及混合蒸鍍速度記憶部83a、83b,分別記憶膜厚計7a、7b所量測的混合蒸鍍速度Y1、Y2。 The control device 8 includes setting the vapor deposition rate storage units 82a and 82b, and storing the preset vapor deposition rates A1 and A2 of the first and second evaporation sources 3 and 4 set in advance, and the mixed vapor deposition rate storage units 83a and 83b. The mixed vapor deposition rates Y1 and Y2 measured by the film thickness gauges 7a and 7b are respectively stored.

又,控制裝置8包含:到達量比記憶部84a、84b,分別記憶到達至各膜厚計7a、7b的每單位時間之蒸鍍材料30、40之到達量比B1、B2。一邊的到達量比記憶部84a記憶從第1蒸發源3到達至各膜厚計7a、7b的每單位時間之一種蒸鍍材料30之中,第2膜厚計7b所相對於第1膜厚計7a的蒸鍍材料30之到達量比B1。亦即,到達量比B1係指將每單位時間到達至第1膜厚計7a的蒸鍍材料30之膜厚定為「1」時,每單位時間到達至第2膜厚計7b的蒸鍍材料30之膜厚。因為第2膜厚計7b離第1蒸發源3較遠,相較於第1膜厚計7a附近而言,第2膜厚計7b附近的蒸鍍材料30之濃度較薄,到達量比B1之值通常在「1」以下。又,另一邊的到達量比記憶部84b記憶從第2蒸發源4到達至膜厚計7a、7b的每單位時間之另一種蒸鍍材料40之中第1膜厚計7a所相對於第2膜厚計7b的另一種蒸鍍材料40之到達量比B2。到達量比B2與到達量比B1相反地係指將每單位時間到達至第2膜厚計7b的另一種蒸鍍材料40之膜厚定為「1」時,每單位時間到達至第1膜厚計7a的另一種蒸鍍材料40之膜厚。到達量比B1、B2係在對於被蒸鍍體2的真空蒸鍍開始之前,藉由預先使第1、第2蒸發源3、4分別個別地動作來量測,只要應用於真空蒸鍍裝置1的筒狀體5或膜厚計7a、7b之配置等未變更,即給定作為常數。 Further, the control device 8 includes the arrival amount ratio memory units 84a and 84b, and stores the arrival amount ratios B1 and B2 of the vapor deposition materials 30 and 40 reaching the respective film thickness gauges 7a and 7b, respectively. The amount of arrival on one side is greater than the memory thickness of the first film thickness per unit time 7a, 7b from the first evaporation source 3, and the second film thickness 7b is relatively thicker than the first film thickness. The amount of arrival of the vapor deposition material 30 of the gauge 7a is B1. In other words, when the film thickness of the vapor deposition material 30 reaching the first film thickness gauge 7a per unit time is "1", the amount of arrival reaches the vapor deposition material 7b per unit time. The film thickness of the material 30. Since the second film thickness gauge 7b is far from the first evaporation source 3, the concentration of the vapor deposition material 30 in the vicinity of the second film thickness gauge 7b is thinner than the vicinity of the first film thickness gauge 7a, and the amount of arrival ratio B1 is small. The value is usually below "1". Further, the amount of arrival on the other side is greater than the first film thickness gauge 7a of the other vapor deposition material 40 that is stored in the vapor deposition material 40 per unit time from the second evaporation source 4 to the film thickness gauges 7a and 7b. The other amount of vapor deposition material 40 of the film thickness meter 7b reaches the amount B2. When the amount of arrival ratio B2 and the amount of arrival ratio B1 are opposite to each other, the film thickness of the other vapor deposition material 40 reaching the second film thickness gauge 7b per unit time is set to "1", and reaches the first film per unit time. The film thickness of the other vapor deposition material 40 of the thickness gauge 7a. The amount of arrival ratios B1 and B2 are measured by individually operating the first and second evaporation sources 3 and 4 before the vacuum deposition of the vapor-deposited body 2 is started, as long as it is applied to a vacuum evaporation apparatus. The arrangement of the cylindrical body 5 or the film thickness gauges 7a and 7b of 1 is not changed, that is, it is given as a constant.

再者,控制裝置1包含:從量測部85,記憶於混合蒸鍍速度記憶部83a、83b的混合蒸鍍速度Y1、Y2及記憶於到達量比記憶部84a、84b的到達量比B1、B2分別計算第1及第2蒸發源之蒸鍍速度X1、X2。在此,混合蒸鍍速度Y1、Y2,到達量比B1、B2及第1及第2蒸發源的蒸鍍速度X1、X2之間成立有以下關係式。 Further, the control device 1 includes the mixed vapor deposition speeds Y1 and Y2 stored in the mixed vapor deposition rate storage units 83a and 83b from the measuring unit 85, and the arrival amount ratio B1 stored in the arrival amount ratio memory units 84a and 84b. B2 calculates the vapor deposition rates X1 and X2 of the first and second evaporation sources, respectively. Here, the following relationship is established between the mixed vapor deposition rates Y1 and Y2, the arrival amount ratios B1 and B2, and the vapor deposition rates X1 and X2 of the first and second evaporation sources.

Y1=X1+B2.X2...(算式1) Y1=X1+B2. X2... (Formula 1)

Y2=B1.X1+X2...(算式2) Y2=B1. X1+X2... (Formula 2)

因為到達量比B1、B2係預先給定作為常數,所以只要藉由2個膜厚計7a、7b來量測混合蒸鍍速度Y1、Y2,量測部85即可藉由解上述算式1、2之聯立方程式來分別計算第1、第2蒸發源3、4之蒸鍍速度X1、X2。 Since the arrival amount ratios B1 and B2 are predetermined as constants, the measurement vaporization speeds Y1 and Y2 are measured by the two film thickness gauges 7a and 7b, and the measurement unit 85 can solve the above formula 1. The vapor deposition speeds X1 and X2 of the first and second evaporation sources 3 and 4 are calculated by the two-cube equation.

又,控制裝置8包含:顯示部86,顯示藉由量測部85所量測的第1、第2蒸發源3、4之蒸鍍速度X1、X2。此顯示部86可使用設於控制裝置8本身的液晶顯示器等,亦可將既定顯示信號輸出至裝置外部之顯示用終端。 Further, the control device 8 includes a display unit 86 that displays the vapor deposition speeds X1 and X2 of the first and second evaporation sources 3 and 4 measured by the measuring unit 85. The display unit 86 can use a liquid crystal display or the like provided in the control device 8 itself, or can output a predetermined display signal to a display terminal outside the device.

蒸鍍速度控制部81將控制信號輸出至蒸發源溫度控制器35、45,以使量測部85所量測的第1、第2蒸發源3、4之蒸鍍速度X1、X2,分別與記憶於設定蒸鍍速度記憶部82a、82b的設定蒸鍍速度A1、A2一致。並且,蒸發源溫度控制器35、45控制從電源33、43供給至蒸發源加熱器32、42的電力量來調節加熱容器31、41內之溫度,以控制來自第1及第2蒸發源3、4的蒸鍍材料30、40之蒸發量。又,膜厚計7a、7b分別持續量測混合蒸鍍速度Y1、Y2,量測部85接受後,計算第1、第2蒸發源3、4之蒸鍍速度X1、X2。藉此,線性地監控第1、第2蒸發源3、4之蒸鍍速度X1、X2。 The vapor deposition rate control unit 81 outputs a control signal to the evaporation source temperature controllers 35 and 45 so that the vapor deposition rates X1 and X2 of the first and second evaporation sources 3 and 4 measured by the measurement unit 85 are respectively The set vapor deposition rates A1 and A2 stored in the vapor deposition rate storage sections 82a and 82b are set to match. Further, the evaporation source temperature controllers 35, 45 control the amounts of electric power supplied from the power sources 33, 43 to the evaporation source heaters 32, 42 to adjust the temperatures in the heating vessels 31, 41 to control the first and second evaporation sources 3 The evaporation amount of the vapor deposition materials 30 and 40 of 4. Further, the film thickness gauges 7a and 7b continuously measure the mixed vapor deposition rates Y1 and Y2, and after receiving the measurement unit 85, the vapor deposition rates X1 and X2 of the first and second evaporation sources 3 and 4 are calculated. Thereby, the vapor deposition speeds X1 and X2 of the first and second evaporation sources 3 and 4 are linearly monitored.

依據如此構成的真空蒸鍍裝置1,預先量測到達量比B1、B2,並且量測2個膜厚計7a、7b之混合蒸鍍速度Y1、Y2,而能個別地監控來自第1、第2蒸發源3、4的各蒸鍍材料30、40之蒸鍍速度X1、X2(蒸鍍率)。並且,藉由使蒸鍍速度X1、X2分別與設定蒸鍍速度A1、A2一致,能如設定值地修正實際從第1、第2蒸發源3、4蒸發的蒸鍍材料30、40之蒸鍍速度。其結果,能適恰地管理蒸鍍材料30、40對於被蒸鍍體2的實際蒸鍍速度,而正確控制形成的薄膜之膜厚或混合濃度比。 According to the vacuum vapor deposition apparatus 1 configured as above, the amount of arrival ratios B1 and B2 are measured in advance, and the mixed vapor deposition rates Y1 and Y2 of the two film thickness gauges 7a and 7b are measured, and the first and the third can be individually monitored. 2 The vapor deposition rates X1 and X2 (vapor deposition rates) of the vapor deposition materials 30 and 40 of the evaporation sources 3 and 4. By matching the vapor deposition rates X1 and X2 with the set vapor deposition rates A1 and A2, the vapor deposition materials 30 and 40 which are actually evaporated from the first and second evaporation sources 3 and 4 can be corrected as set values. Plating speed. As a result, the actual vapor deposition rate of the vapor deposition materials 30 and 40 with respect to the vapor-deposited body 2 can be appropriately controlled, and the film thickness or the mixed concentration ratio of the formed film can be accurately controlled.

又,有些情況下由於製造的元件構造而使得膜厚對於發光特性影響大於蒸鍍膜中的蒸鍍材料之濃度。此時只要控制上述蒸鍍速度X1、X2的其中任一者即可。又,例如,第1蒸發源3之蒸鍍速度X1微小時,此蒸鍍速度X1之測量精度變差。此時,第2蒸發源4之蒸鍍速度X2較大,與其控制上述蒸鍍速度X1、X2雙方,不如僅控制第2蒸發源4之蒸鍍速度X2為佳。通常,主體材料之蒸鍍速度大於摻雜材料之蒸鍍速度,所以宜控制主體材料之蒸鍍速度。 Further, in some cases, the film thickness has a greater influence on the light-emitting characteristics than the vapor-deposited material in the vapor-deposited film due to the fabricated element structure. In this case, any of the vapor deposition rates X1 and X2 may be controlled. Further, for example, when the vapor deposition rate X1 of the first evaporation source 3 is small, the measurement accuracy of the vapor deposition rate X1 is deteriorated. At this time, the vapor deposition rate X2 of the second evaporation source 4 is large, and it is preferable to control only the vapor deposition rate X2 of the second evaporation source 4 while controlling the vapor deposition rates X1 and X2. Generally, the vapor deposition rate of the host material is greater than the vapor deposition rate of the dopant material, so it is desirable to control the vapor deposition rate of the host material.

又,控制裝置8包含:操作部(未圖示),用於以手動來分別控制第1、第2蒸發源3、4之蒸鍍速度。所以,操作者可參照顯示於顯示部86的蒸鍍速度X1、X2,並且操作上述操作部,而適當調整第1、第2蒸發源3、4之蒸鍍速度。 Further, the control device 8 includes an operation unit (not shown) for manually controlling the vapor deposition speeds of the first and second evaporation sources 3 and 4 manually. Therefore, the operator can adjust the vapor deposition speeds of the first and second evaporation sources 3 and 4 by referring to the vapor deposition speeds X1 and X2 displayed on the display unit 86 and operating the operation unit.

另,使第1、第2蒸發源3、4個別動作時,與使該等雙方同時動作時,第1及第2膜厚計7a、7b分別量測的膜厚可能有若干不同。所以,可藉由分別預先量測此等蒸鍍速度來修正上述混合蒸鍍速度Y1、Y2。 Further, when the first and second evaporation sources 3 and 4 are individually operated, the film thicknesses measured by the first and second film thickness gauges 7a and 7b may be slightly different when the two are operated simultaneously. Therefore, the mixed vapor deposition rates Y1 and Y2 can be corrected by measuring these vapor deposition rates in advance.

具體而言,預先將僅使第1蒸發源3動作時第1及第2膜厚計7a、7b分別量測之值定為第1蒸鍍速度C1、C2。又,預先將僅使第2蒸發源4動作時第1及第2膜厚計7a、7b分別量測之值定為第2蒸鍍速度D1、D2。此時,將上述第1蒸鍍速度C1、C2及第2蒸鍍速度D1、D2如下述算式(3)(4)方式分別加總之值,定為第1假想混合蒸鍍速度E1、E2。 Specifically, the values measured by the first and second film thickness gauges 7a and 7b when the first evaporation source 3 is operated are set as the first vapor deposition rates C1 and C2, respectively. In addition, the values measured by the first and second film thickness gauges 7a and 7b when the second evaporation source 4 is operated are determined as the second vapor deposition rates D1 and D2, respectively. At this time, the first vapor deposition rates C1 and C2 and the second vapor deposition rates D1 and D2 are respectively added to the first virtual mixed vapor deposition rates E1 and E2 by the following equations (3) and (4).

E1=C1+D1...(算式3) E1=C1+D1... (Equation 3)

E2=C2+D2...(算式4) E2=C2+D2... (Equation 4)

又,預先將使第1及第2蒸發源3、4雙方動作時第1及第2膜厚計7a、7b分別量測之值定為第2假想混合蒸鍍速度F1、F2。此時,量測部85如下述算式5、6所示計算蒸鍍速度修正係數K1、K2,亦即將第1假想混合蒸鍍速度E1、E2分別除以第2假想混合蒸鍍速度F1、F2後之值。在此,量測部85預先設定有蒸鍍速度修正係數K1、K2。 In addition, the values measured by the first and second film thickness gauges 7a and 7b when the first and second evaporation sources 3 and 4 are operated are set to the second virtual mixed vapor deposition rates F1 and F2, respectively. At this time, the measuring unit 85 calculates the vapor deposition rate correction coefficients K1 and K2 as shown in the following formulas 5 and 6, that is, the first virtual mixed vapor deposition rates E1 and E2 are respectively divided by the second virtual mixed vapor deposition speeds F1 and F2. After the value. Here, the measuring unit 85 sets the vapor deposition rate correction coefficients K1 and K2 in advance.

K1=E1/F1...(算式5) K1=E1/F1... (Equation 5)

K2=E2/F2...(算式6) K2=E2/F2... (Equation 6)

並且,量測部85如下述算式7、8所示,分別乘入至上述混合蒸鍍速度Y1、Y2來計算修正後混合蒸鍍速度Y'1、Y'2,並將此等修正後混合蒸鍍速度Y'1,Y'2分別用來取代上述算式(1)(2)所示的混合蒸鍍速度Y1、Y2。 Then, the measuring unit 85 calculates the corrected mixed vapor deposition rates Y'1 and Y'2 by multiplying the mixed vapor deposition rates Y1 and Y2 as shown in the following Equations 7 and 8, and corrects and mixes them. The vapor deposition rates Y'1, Y'2 are used in place of the mixed vapor deposition rates Y1, Y2 shown in the above formulas (1) and (2), respectively.

Y1.K1=Y1'=X1+B2.X2...(算式7) Y1. K1=Y1'=X1+B2. X2... (Formula 7)

Y2.K2=Y2'=B1.X1+X2...(算式8) Y2. K2=Y2'=B1. X1+X2... (Equation 8)

因為到達量比B1、B2及蒸鍍速度修正係數K1、K2係預先給定作為常數,所以只要藉由2個膜厚計7a、7b來量測混合蒸鍍速度Y1、Y2,量測部85即可藉由解上述算式1、2之聯立方程式來個別地計算第1、第2蒸發源3、4之蒸鍍速度X1、X2。其結果,能更加適恰地管理蒸鍍材料30、40實際對於被蒸鍍體2的蒸鍍速度。 Since the arrival amount ratios B1 and B2 and the vapor deposition rate correction coefficients K1 and K2 are predetermined as constants, the measurement vaporization speeds Y1 and Y2 are measured by the two film thickness gauges 7a and 7b, and the measurement unit 85 is used. The vapor deposition rates X1 and X2 of the first and second evaporation sources 3 and 4 can be individually calculated by solving the simultaneous equations of the above formulas 1 and 2. As a result, the vapor deposition rate of the vapor deposition materials 30 and 40 to the vapor-deposited body 2 can be more appropriately managed.

其次,參照圖2至圖4說明上述實施形態之變形例之真空蒸鍍裝置。 此等變形例之真空蒸鍍裝置1,定為在下列條件下製造薄膜:來自第2蒸發源4的蒸鍍材料40之蒸發量少於來自第1蒸發源3的蒸鍍材料30之蒸發量的。在此條件中,圖2所示的變形例之真空蒸鍍裝置1以第2蒸發源4與第2膜厚計7b之相隔距離短於第1蒸發源3與第1膜厚計7a之相隔距離的方式來設定此等設備之位置關係。其他構成係與上述實施形態同樣。 Next, a vacuum vapor deposition apparatus according to a modification of the above embodiment will be described with reference to Figs. 2 to 4 . The vacuum vapor deposition apparatus 1 of these modifications is designed to produce a film under the following conditions: the evaporation amount of the vapor deposition material 40 from the second evaporation source 4 is smaller than the evaporation amount of the vapor deposition material 30 from the first evaporation source 3. of. In this condition, the vacuum vapor deposition apparatus 1 according to the modification shown in Fig. 2 is separated from the first evaporation source 3 by the second evaporation source 4 and the second film thickness gauge 7b by a distance shorter than the first evaporation source 3 and the first film thickness gauge 7a. The way to set the location of these devices. The other configuration is the same as that of the above embodiment.

依據圖2所示的變形例之真空蒸鍍裝置1,第2蒸發源4與第2膜厚計7b之相隔距離越短,從第2蒸發源4蒸發的蒸鍍材料40之濃度在第2膜厚計7b附近越高。因此,容易在第2膜厚計7b偵測來自第2蒸發源4的蒸鍍材料40之附著,而能提昇製造低摻雜濃度之薄膜時的蒸鍍速度之控制精度。 According to the vacuum vapor deposition apparatus 1 of the modification shown in FIG. 2, the distance between the second evaporation source 4 and the second thickness gauge 7b is shorter, and the concentration of the vapor deposition material 40 evaporated from the second evaporation source 4 is second. The vicinity of the film thickness meter 7b is higher. Therefore, it is easy to detect the adhesion of the vapor deposition material 40 from the second evaporation source 4 in the second film thickness meter 7b, and it is possible to improve the control precision of the vapor deposition rate when the film having a low doping concentration is produced.

圖3所示的變形例之真空蒸鍍裝置1,設置:筒狀流道91,分別於第2蒸發源4的蒸發開口部附近與第2膜厚計7b附近具有開口。其他構成係與上述實施形態相同。在此變形例之真空蒸鍍裝置1中,亦使從第2蒸發源4蒸發的蒸鍍材料40通過筒狀流道91而流至第2膜厚計7b附近。因此,第2膜厚計7b中,容易偵測來自第2蒸發源4的蒸鍍材料40之附著,能提昇製造低摻雜濃度之薄膜時的蒸鍍速度之控制精度。 The vacuum vapor deposition apparatus 1 according to the modification shown in FIG. 3 is provided with a cylindrical flow path 91 having openings in the vicinity of the evaporation opening of the second evaporation source 4 and in the vicinity of the second film thickness gauge 7b. The other configurations are the same as those of the above embodiment. In the vacuum vapor deposition apparatus 1 of this modification, the vapor deposition material 40 evaporated from the second evaporation source 4 is also passed through the cylindrical flow path 91 to the vicinity of the second film thickness gauge 7b. Therefore, in the second film thickness meter 7b, adhesion of the vapor deposition material 40 from the second evaporation source 4 can be easily detected, and the control accuracy of the vapor deposition rate when producing a film having a low doping concentration can be improved.

圖4所示的變形例之真空蒸鍍裝置1在圖3所示的變形例之構成加上設置:筒狀流道92,分別於第1蒸發源3的蒸發開口部附近與第1膜厚計7a附近具有開口。在此變形例之真空蒸鍍裝置1中,從第1蒸發源3蒸發的蒸鍍材料30通過筒狀流道92而流至第1膜厚計7a附近,所以蒸鍍材料30之偵測能力上昇,而能提昇蒸鍍速度之控制精度。 The vacuum vapor deposition apparatus 1 of the modification shown in FIG. 4 is provided with a cylindrical flow path 92 in the vicinity of the evaporation opening of the first evaporation source 3 and the first film thickness in the configuration of the modification shown in FIG. There is an opening near the meter 7a. In the vacuum vapor deposition apparatus 1 of the modification, the vapor deposition material 30 evaporated from the first evaporation source 3 flows into the vicinity of the first film thickness gauge 7a through the cylindrical flow path 92, so that the vapor deposition material 30 is capable of detecting Rising, and can improve the control accuracy of the evaporation rate.

以下參照圖5說明本發明第2實施形態之真空蒸鍍裝置。本實施形態之真空蒸鍍裝置1係量測部85中的量測方法與上述第1實施形態不同。又,第1、第2蒸發源3、4各自之蒸發開口部設有改變各自之開口面積的閥36、46。並且,蒸鍍速度控制部81藉由分別控制此等閥36、46的開啟 度來控制第1、第2蒸發源3、4之蒸鍍速度。另,蒸鍍速度控制部81亦可係如上述第1實施形態所示,一併進行第1、第2蒸發源3、4之溫度控制。 Next, a vacuum vapor deposition apparatus according to a second embodiment of the present invention will be described with reference to Fig. 5 . The vacuum vapor deposition apparatus 1 of the present embodiment is different in the measurement method in the measuring unit 85 from the first embodiment. Further, the evaporation openings of the first and second evaporation sources 3 and 4 are provided with valves 36 and 46 that change the respective opening areas. Further, the vapor deposition rate control unit 81 controls the opening of the valves 36 and 46, respectively. The vapor deposition rate of the first and second evaporation sources 3, 4 is controlled in degrees. Further, the vapor deposition rate control unit 81 may perform temperature control of the first and second evaporation sources 3 and 4 as described above in the first embodiment.

因為第1膜厚計7a離第2蒸發源4較遠,所以在第1膜厚計7a量測混合蒸鍍速度Y1時,第2蒸發源4之蒸鍍速度X2的影響少,第2蒸發源4之蒸鍍速度X2與預先設定的設定蒸鍍速度A2幾乎沒有差異。又,第2膜厚計7b離第1蒸發源3較遠,所以第2膜厚計7b在量測混合蒸鍍速度Y2之外,第1蒸發源3之蒸鍍速度X1的影響少,第1蒸發源3的蒸鍍速度X1與預先設定的設定蒸鍍速度A1幾乎沒有差異。所以,混合蒸鍍速度Y1、Y2、到達量比B1、B2、第1及第2蒸發源之蒸鍍速度X1、X2、及設定蒸鍍速度A1、A2之間成立有以下的關係式。 Since the first film thickness gauge 7a is far from the second evaporation source 4, when the first vapor deposition rate 7a measures the mixed vapor deposition rate Y1, the influence of the vapor deposition rate X2 of the second evaporation source 4 is small, and the second evaporation is small. There is almost no difference between the vapor deposition rate X2 of the source 4 and the preset vapor deposition rate A2. Further, since the second film thickness gauge 7b is far from the first evaporation source 3, the second film thickness gauge 7b has a small influence on the vapor deposition rate X1 of the first evaporation source 3, in addition to measuring the mixed vapor deposition rate Y2. 1 The vapor deposition rate X1 of the evaporation source 3 is almost the same as the preset vapor deposition rate A1 set in advance. Therefore, the following relational expression is established between the mixed vapor deposition rates Y1, Y2, the arrival amount ratios B1, B2, the vapor deposition rates X1, X2 of the first and second evaporation sources, and the set vapor deposition speeds A1, A2.

Y1=X1+B2.A2...(算式9) Y1=X1+B2. A2... (Formula 9)

Y2=B1.A1+X2...(算式10) Y2=B1. A1+X2... (Formula 10)

因為到達量比B1、B2係預先給定作為常數,設定蒸鍍速度A1、A2係設定值,若藉由2個膜厚計7a、7b量測混合蒸鍍速度Y1、Y2,只要分別量測上述算式9、算式10,即可個別地計算第1、第2蒸發源3、4之蒸鍍速度X1、X2。亦即,設於控制裝置8的量測部85a、85b能分別從混合蒸鍍速度Y1、Y2,減去分別將設定蒸鍍速度A2、A1乘上到達量比B2、B1後之值,來分別計算第1、第2蒸發源3、4之蒸鍍速度X1、X2。亦即,並非去解第1實施形態所示的聯立方程式,只要分別計算上述算式9、算式10,即能計算第1、第2蒸發源3、4之蒸鍍速度X1、X2。 Since the arrival amount ratios B1 and B2 are predetermined as constants, the vapor deposition rates A1 and A2 are set, and if the mixed vapor deposition speeds Y1 and Y2 are measured by the two film thickness gauges 7a and 7b, they are measured separately. In the above formulas 9 and 10, the vapor deposition rates X1 and X2 of the first and second evaporation sources 3 and 4 can be calculated individually. In other words, the measuring units 85a and 85b provided in the control unit 8 can subtract the values of the set vapor deposition speeds A2 and A1 by the arrival amount ratios B2 and B1 from the mixed vapor deposition speeds Y1 and Y2, respectively. The vapor deposition rates X1 and X2 of the first and second evaporation sources 3 and 4 are calculated, respectively. In other words, the vapor deposition rates X1 and X2 of the first and second evaporation sources 3 and 4 can be calculated by calculating the above-described Equations 9 and 10, respectively, without solving the simultaneous equation shown in the first embodiment.

依據此構成,只要藉由第1膜厚計7a來量測混合蒸鍍速度Y1,即能計算第1蒸發源3之蒸鍍速度X1,只要藉由第2膜厚計7b來量測混合蒸鍍速度Y2,即能計算第2蒸發源4之蒸鍍速度X2。所以,本實施形態之真空蒸鍍裝置1有助於個別地計算第1、第2蒸發源3、4之蒸鍍速度X1、 X2其中任一者,能因應於所製薄膜所要求的材料組成來正確地控制各材料之蒸鍍速度。 According to this configuration, the vapor deposition rate Y1 of the first evaporation source 3 can be calculated by measuring the mixed vapor deposition rate Y1 by the first film thickness gauge 7a, and the mixed vaporization can be measured by the second film thickness gauge 7b. The plating rate Y2, that is, the vapor deposition rate X2 of the second evaporation source 4 can be calculated. Therefore, the vacuum vapor deposition apparatus 1 of the present embodiment contributes to the individual calculation of the vapor deposition rate X1 of the first and second evaporation sources 3, 4. In either of X2, the vapor deposition rate of each material can be properly controlled in accordance with the material composition required for the film to be produced.

又,依據本實施形態之真空蒸鍍裝置1,因為分別控制設於第1、第2蒸發源3、4的閥36、46之開啟度,能比控制此等溫度時更迅速地調整第1、第2蒸發源3、4之蒸鍍速度。 Further, according to the vacuum vapor deposition apparatus 1 of the present embodiment, since the opening degrees of the valves 36 and 46 provided in the first and second evaporation sources 3 and 4 are respectively controlled, the first adjustment can be made more quickly than when the temperatures are controlled. And the vapor deposition rate of the second evaporation sources 3 and 4.

另,本發明不限於上述實施形態,可進行各種變形,上述實施形態中係說明利用2個蒸發源使2種蒸鍍材料蒸發之例,但亦可係例如利用3個蒸發源使3種蒸鍍材料蒸發。此時只要使用第3個膜厚計來量測混合蒸鍍速度,並求取3個算式之聯立方程式之解,即能個別地計算各蒸發源之蒸鍍速度。 Further, the present invention is not limited to the above embodiment, and various modifications can be made. In the above embodiment, an example in which two types of vapor deposition materials are evaporated by two evaporation sources will be described. However, for example, three types of evaporation may be used to make three types of evaporation. The plating material evaporates. At this time, the vapor deposition rate of each evaporation source can be calculated individually by measuring the mixed vapor deposition rate using the third film thickness meter and obtaining the solution of the cubic equations of the three equations.

本案係依據日本專利申請案特願2012-013969號案主張優先權,並引用其內容說明書及圖式。 This case claims priority based on Japanese Patent Application No. 2012-013969, and its contents and drawings are cited.

1‧‧‧真空蒸鍍裝置 1‧‧‧Vacuum evaporation device

2‧‧‧被蒸鍍體 2‧‧‧Extruded body

3‧‧‧第1蒸發源 3‧‧‧1st evaporation source

4‧‧‧第2蒸發源 4‧‧‧2nd evaporation source

5‧‧‧筒狀體 5‧‧‧Cylinder

6‧‧‧真空腔室 6‧‧‧vacuum chamber

7a‧‧‧第1膜厚計 7a‧‧‧1st film thickness meter

7b‧‧‧第2膜厚計 7b‧‧‧2nd film thickness meter

8‧‧‧控制裝置 8‧‧‧Control device

30‧‧‧一種蒸鍍材料 30‧‧‧A vapor deposition material

31、41‧‧‧加熱容器 31, 41‧‧‧ heating container

32、42‧‧‧蒸發源加熱器 32, 42‧‧‧ evaporation source heater

33、43‧‧‧電源 33, 43‧‧‧ power supply

34、44‧‧‧溫度計 34, 44‧‧‧ thermometer

35、45‧‧‧蒸發源溫度控制器 35, 45‧‧‧ Evaporation source temperature controller

40‧‧‧另一種蒸鍍材料 40‧‧‧Another evaporation material

51‧‧‧開口面 51‧‧‧Open face

52‧‧‧底部 52‧‧‧ bottom

53‧‧‧加熱器 53‧‧‧heater

54‧‧‧電源 54‧‧‧Power supply

55‧‧‧溫度感測器 55‧‧‧Temperature Sensor

56‧‧‧筒狀體溫度控制器 56‧‧‧Cylinder temperature controller

61‧‧‧真空泵 61‧‧‧Vacuum pump

81‧‧‧蒸鍍速度控制部 81‧‧‧Deposition rate control department

82a、82b‧‧‧蒸鍍速度記憶部 82a, 82b‧‧‧ evaporation rate memory

83a、83b‧‧‧混合蒸鍍速度記憶部 83a, 83b‧‧‧ Mixed evaporation speed memory

84a、84b‧‧‧到達量比記憶部 84a, 84b‧‧‧ reach ratio memory department

85、85a、85b‧‧‧量測部 85, 85a, 85b‧‧‧Measurement Department

86‧‧‧顯示部 86‧‧‧Display Department

A1‧‧‧第1蒸發源之設定蒸鍍速度 A1‧‧‧Set evaporation rate of the first evaporation source

A2‧‧‧第2蒸發源之設定蒸鍍速度 A2‧‧‧Set evaporation rate of the second evaporation source

B1‧‧‧第2膜厚計的一種蒸鍍材料之到達量比 The ratio of the amount of vapor deposition material of a B1‧‧‧2nd film thickness meter

B2‧‧‧第1膜厚計的另一種蒸鍍材料之到達量比 B2‧‧‧1st thickness gauge of another vapor deposition material

X1‧‧‧第1蒸發源之蒸鍍速度 X1‧‧‧ evaporation rate of the first evaporation source

X2‧‧‧第2蒸發源之蒸鍍速度 X2‧‧‧ evaporation rate of the second evaporation source

Y1‧‧‧第1膜厚計所量測的混合蒸鍍速度 Hybrid evaporation rate measured by Y1‧‧‧1st film thickness meter

Y2‧‧‧第2膜厚計所量測的混合蒸鍍速度 Mixed vapor deposition rate measured by Y2‧‧‧2nd film thickness meter

Claims (11)

一種真空蒸鍍裝置,係將多數之蒸鍍材料蒸鍍至被蒸鍍體,其特徵在於包含:第1蒸發源,使一種蒸鍍材料蒸發;第2蒸發源,使另一種蒸鍍材料蒸發;蒸鍍速度控制部,分別控制該第1及第2蒸發源之動作;設定蒸鍍速度記憶部,分別記憶預先設定的該第1及第2蒸發源之設定蒸鍍速度A1、A2;第1膜厚計與第2膜厚計,使分別從該第1及第2蒸發源蒸發的蒸鍍材料附著而從其膜厚量測各蒸鍍材料之混合蒸鍍速度Y1、Y2,且該第1膜厚計配置於比靠近該第2蒸發源更靠近該第1蒸發源的位置、該第2膜厚計配置於比靠近該第1蒸發源更靠近該第2蒸發源的位置;混合蒸鍍速度記憶部,分別記憶該2個膜厚計所量測的混合蒸鍍速度Y1、Y2;到達量比記憶部,記憶每單位時間從該第1蒸發源分別到達至該2個膜厚計之該一種蒸鍍材料中該第2膜厚計相對於該第1膜厚計的該一種蒸鍍材料之到達量比B1,與每單位時間從該第2蒸發源到達至該2個膜厚計之該另一種蒸鍍材料之中該第1膜厚計相對於該第2膜厚計的該另一種蒸鍍材料之到達量比B2;及量測部,從記憶於該混合蒸鍍速度記憶部的混合蒸鍍速度Y1、Y2,及記憶於該到達量比記憶部的到達量比B1、B2,分別計算第1及第2蒸發源之蒸鍍速度X1、X2;且該蒸鍍速度控制部分別控制該第1及第2蒸發源的其中至少一者,而使藉由該量測部所計算的第1及第2蒸發源之蒸鍍速度X1、X2的其中至少一者分別與記憶於該設定蒸鍍速度記憶部之設定蒸鍍速度A1、A2的其中至少一者一致。 A vacuum evaporation apparatus for vapor-depositing a plurality of vapor deposition materials to a vapor-deposited body, comprising: a first evaporation source to evaporate one evaporation material; and a second evaporation source to evaporate another evaporation material a vapor deposition rate control unit that controls the operation of the first and second evaporation sources, and a vapor deposition rate storage unit that stores the preset vapor deposition rates A1 and A2 of the first and second evaporation sources set in advance; a film thickness gauge and a second film thickness meter, wherein the vapor deposition materials evaporated from the first and second evaporation sources are adhered, and the vapor deposition rates Y1 and Y2 of the vapor deposition materials are measured from the film thickness, and the film thickness is measured. The first film thickness gauge is disposed at a position closer to the first evaporation source than to the second evaporation source, and the second film thickness is disposed closer to the second evaporation source than to the first evaporation source; The vapor deposition rate memory unit stores the mixed vapor deposition rates Y1 and Y2 measured by the two film thickness gauges; the arrival amount ratio memory unit stores the memory from the first evaporation source to the two film thicknesses per unit time. In the vapor deposition material, the second film thickness gauge is the vapor deposition material based on the first film thickness. The arrival amount ratio B1 and the other vapor deposition material from the second evaporation source to the two film thicknesses per unit time are the first film thickness relative to the second film thickness meter a ratio of arrival amount of the vapor deposition material B2; and a measuring portion, from the mixed vapor deposition speeds Y1 and Y2 stored in the mixed vapor deposition speed memory portion, and the ratio of the arrival amount of the arrival amount to the memory portion B1, B2 Calculating the vapor deposition rates X1 and X2 of the first and second evaporation sources, respectively; and the vapor deposition rate control unit controls at least one of the first and second evaporation sources, respectively, and the measurement unit At least one of the calculated vapor deposition rates X1 and X2 of the first and second evaporation sources coincides with at least one of the set vapor deposition rates A1 and A2 stored in the set vapor deposition rate storage unit. 如申請專利範圍第1項之真空蒸鍍裝置,其中,該量測部從記憶於該混合蒸鍍速度記憶部的混合蒸鍍速度Y1、Y2,分別減去從記憶於該設定蒸鍍速度記憶部的設定蒸鍍速度A2、A1各自乘以上述記憶於該到達量比 記憶部的到達量比B2、B1所得之值,來分別計算第1及第2蒸發源之蒸鍍速度X1、X2。 The vacuum vapor deposition device of claim 1, wherein the measuring portion is subtracted from the mixed vapor deposition speeds Y1 and Y2 stored in the mixed vapor deposition rate storage unit, and is memorized from the memory at the set evaporation rate. The set vapor deposition rates A2 and A1 are multiplied by the above-mentioned memory in the arrival amount ratio. The amount of arrival of the memory unit is calculated from the values obtained by B2 and B1, and the vapor deposition rates X1 and X2 of the first and second evaporation sources are calculated, respectively. 如申請專利範圍第1或2項之真空蒸鍍裝置,其中,預先將僅使該第1蒸發源動作時該第1及第2膜厚計分別量測的第1蒸鍍速度C1、C2,分別加上預先僅使該第2蒸發源動作時該第1及第2膜厚計分別量測的第2蒸鍍速度D1、D2後所得之值,定為第1假想混合蒸鍍速度E1、E2,預先將使該第1及第2蒸發源雙方動作時該第1及第2膜厚計分別量測之值定為第2假想混合蒸鍍速度F1、F2,該量測部,將該混合蒸鍍速度Y1、Y2分別乘上蒸鍍速度修正係數K1、K2來計算修正後混合蒸鍍速度Y'1,Y'2,並分別使用該修正後混合蒸鍍速度Y'1、Y'2取代該混合蒸鍍速度Y1、Y2,而該修正係數K1、K2係將該第1假想混合蒸鍍速度E1、E2分別除以該第2假想混合蒸鍍速度F1、F2而得之值。 The vacuum vapor deposition apparatus according to claim 1 or 2, wherein the first vapor deposition rates C1 and C2 measured by the first and second film thickness gauges when the first evaporation source is operated are used in advance, The value obtained by first measuring the second vapor deposition rates D1 and D2 of the first and second film thickness gauges when the second evaporation source is operated in advance is determined as the first virtual mixed vapor deposition rate E1. E2, in advance, when the first and second evaporation sources are operated, the first and second thickness gauges are respectively measured as the second virtual mixed vapor deposition rates F1 and F2, and the measuring unit The mixed vapor deposition rates Y1 and Y2 are multiplied by the vapor deposition rate correction coefficients K1 and K2, respectively, to calculate the corrected mixed vapor deposition speeds Y'1, Y'2, and the corrected mixed vapor deposition speeds Y'1, Y' are respectively used. 2, the mixed vapor deposition rates Y1 and Y2 are replaced, and the correction coefficients K1 and K2 are values obtained by dividing the first virtual mixed vapor deposition rates E1 and E2 by the second virtual mixed vapor deposition rates F1 and F2, respectively. 如申請專利範圍第3項之真空蒸鍍裝置,其中,該到達量比記憶部預先記憶有該到達量比B1、B2,該量測部預先設定有該蒸鍍速度修正係數K1、K2。 The vacuum vapor deposition apparatus according to claim 3, wherein the amount of arrival is stored in advance in the memory unit in the amount of arrival ratios B1 and B2, and the measurement unit sets the vapor deposition rate correction coefficients K1 and K2 in advance. 如申請專利範圍第1或2項之真空蒸鍍裝置,其更具有:顯示部,顯示該量測部所計算的第1及第2蒸發源之蒸鍍速度X1、X2。 A vacuum vapor deposition apparatus according to claim 1 or 2, further comprising: a display unit that displays vapor deposition rates X1 and X2 of the first and second evaporation sources calculated by the measurement unit. 如申請專利範圍第1或2項之真空蒸鍍裝置,其中,該蒸鍍速度控制部係分別控制該第1及第2蒸發源之溫度。 The vacuum vapor deposition apparatus according to claim 1 or 2, wherein the vapor deposition rate control unit controls the temperatures of the first and second evaporation sources, respectively. 如申請專利範圍第1或2項之真空蒸鍍裝置,其中,該蒸鍍速度控制部係分別控制閥之開啟度,以改變該第1及第2蒸發源各自的蒸發開口部之開口面積。 The vacuum vapor deposition apparatus according to claim 1 or 2, wherein the vapor deposition rate control unit controls the opening degree of the valve to change an opening area of each of the evaporation openings of the first and second evaporation sources. 如申請專利範圍第1或2項之真空蒸鍍裝置,其中,該第2蒸發源與該第2膜厚計之相隔距離短於該第1蒸發源與該第1膜厚計之相隔距離。 The vacuum vapor deposition apparatus according to claim 1 or 2, wherein the distance between the second evaporation source and the second film thickness gauge is shorter than a distance between the first evaporation source and the first film thickness. 如申請專利範圍第1或2項之真空蒸鍍裝置,其設有:筒狀流道,分別於該第2蒸發源之蒸發開口部附近與該第2膜厚計附近具有開口。 The vacuum vapor deposition apparatus according to claim 1 or 2, further comprising: a cylindrical flow path having an opening in the vicinity of the evaporation opening of the second evaporation source and in the vicinity of the second film thickness meter. 如申請專利範圍第9項之真空蒸鍍裝置,其設有筒狀流道,分別於該第1蒸發源之蒸發開口部附近與該第1膜厚計附近具有開口。 A vacuum vapor deposition apparatus according to claim 9 is characterized in that a cylindrical flow path is provided, and an opening is formed in the vicinity of the evaporation opening of the first evaporation source and in the vicinity of the first film thickness gauge. 如申請專利範圍第1或2項之真空蒸鍍裝置,其更具有:筒狀體, 圍繞該第1及第2蒸發源與該被蒸鍍體之間的空間,並於該被蒸鍍體側具有開口面。 A vacuum evaporation apparatus according to claim 1 or 2, further comprising: a cylindrical body, A space surrounding the first and second evaporation sources and the vapor-deposited body has an opening surface on the vapor-deposited body side.
TW102102884A 2012-01-26 2013-01-25 Vacuum deposition apparatus TW201346049A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013969 2012-01-26

Publications (1)

Publication Number Publication Date
TW201346049A true TW201346049A (en) 2013-11-16

Family

ID=48873324

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102102884A TW201346049A (en) 2012-01-26 2013-01-25 Vacuum deposition apparatus

Country Status (5)

Country Link
JP (1) JPWO2013111599A1 (en)
KR (1) KR20140110082A (en)
CN (1) CN104066865A (en)
TW (1) TW201346049A (en)
WO (1) WO2013111599A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102084707B1 (en) * 2012-12-03 2020-04-16 삼성디스플레이 주식회사 Deposition source, deposition apparatus and deposition method using the same
JP2018070896A (en) * 2015-01-14 2018-05-10 日東電工株式会社 Method for manufacturing organic vapor deposition film and organic electroluminescent device
CN112912533B (en) * 2018-11-28 2023-10-24 应用材料公司 Deposition source, deposition apparatus and method for depositing vaporized material
CN114250443B (en) * 2021-11-30 2024-01-05 天津津航技术物理研究所 Doping method of infrared transparent conductive film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3662874B2 (en) * 2001-10-26 2005-06-22 松下電工株式会社 Vacuum deposition apparatus and vacuum deposition method
JP2005206896A (en) * 2004-01-23 2005-08-04 Tokki Corp Film thickness monitor, and vapor deposition device
TWI299758B (en) * 2004-03-03 2008-08-11 Sanyo Electric Co Method and apparatus for measuring the thickness of deposited film, method and apparatus for forming material layer
JP2011195871A (en) * 2010-03-18 2011-10-06 National Institute Of Advanced Industrial Science & Technology Mixture film forming device with device for measuring film thickness and composition

Also Published As

Publication number Publication date
CN104066865A (en) 2014-09-24
JPWO2013111599A1 (en) 2015-05-11
WO2013111599A1 (en) 2013-08-01
KR20140110082A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
TWI638063B (en) Vapor delivery apparatus
TWI458843B (en) Evaporation apparatus and method of forminf organic film
JP5280542B2 (en) Vapor deposition apparatus and vapor deposition method using the same
TW201346049A (en) Vacuum deposition apparatus
JP5936394B2 (en) Vapor deposition equipment
TWI445058B (en) A gasification supply device for a raw material
US20190284684A1 (en) Sublimated gas supply system and sublimated gas supply method
JP4611884B2 (en) Vapor deposition film thickness measuring method and vapor deposition system
US20170016859A1 (en) Device and method for determining the concentration of a vapor by means of an oscillating body sensor
CN102560364A (en) Vacuum vapor deposition system and method of manufacturing organic electroluminescent device
JP6116290B2 (en) Vapor deposition apparatus and vapor deposition method
KR101488203B1 (en) Film formation apparatus and film formation method
CN103924195A (en) Vacuum Evaporating Device
JP2004059982A (en) Vacuum vapor deposition method
CN103518001A (en) Vacuum deposition device
JP6207319B2 (en) Vacuum deposition equipment
CN105296928A (en) Line source and thin film evaporation device comprising the same
KR20150114097A (en) Real Time Deposit Thickness Monitoring System and Monitoring Method Thereof
JP2013173965A (en) Vapor deposition apparatus
KR20210085415A (en) Thin film deposition apparatus and method
JP2015069859A (en) Organic el manufacturing device and organic el manufacturing method
KR20190060272A (en) Vaporization device for parylene deposition apparatus enable to control dischare of vaporized parylene, method for operating the same, and parylene deposition apparatus having the same
JP5302642B2 (en) Method for measuring the amount of source material in a chemical vapor deposition process
JP2014055335A (en) Vacuum film deposition apparatus, and temperature control method and apparatus for evaporation source therefor
KR20090083250A (en) Apparatus for supplying source gas