JP5302642B2 - Method for measuring the amount of source material in a chemical vapor deposition process - Google Patents

Method for measuring the amount of source material in a chemical vapor deposition process Download PDF

Info

Publication number
JP5302642B2
JP5302642B2 JP2008303514A JP2008303514A JP5302642B2 JP 5302642 B2 JP5302642 B2 JP 5302642B2 JP 2008303514 A JP2008303514 A JP 2008303514A JP 2008303514 A JP2008303514 A JP 2008303514A JP 5302642 B2 JP5302642 B2 JP 5302642B2
Authority
JP
Japan
Prior art keywords
source material
evaporation unit
pressure
gas
material evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008303514A
Other languages
Japanese (ja)
Other versions
JP2009138269A (en
Inventor
澤龍 張
炳一 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tera Semicon Corp
Original Assignee
Tera Semicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tera Semicon Corp filed Critical Tera Semicon Corp
Publication of JP2009138269A publication Critical patent/JP2009138269A/en
Application granted granted Critical
Publication of JP5302642B2 publication Critical patent/JP5302642B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、化学気相蒸着工程におけるソース物質の量の測定方法に関し、より詳細には、ソース物質蒸発部に貯蔵されているソース物質を蒸発させて生成したソースガスを蒸着チャンバーに供給して薄膜蒸着を行う化学気相蒸着工程において、ソース物質蒸発部に存在するソース物質の量を測定する方法に関するものである。   The present invention relates to a method for measuring the amount of a source material in a chemical vapor deposition process, and more particularly, supplies a source gas generated by evaporating a source material stored in a source material evaporation unit to a deposition chamber. The present invention relates to a method for measuring the amount of a source material present in a source material evaporation section in a chemical vapor deposition process for performing thin film deposition.

化学気相蒸着法(Chemical Vapor Deposition:CVD)による薄膜蒸着は、半導体素子の絶縁層と能動層、液晶表示素子の透明電極、電気発光表示素子の発光層及び保護層などの様々な用途に使用される非常に重要な技術である。一般的に、CVDにより蒸着させた薄膜の性質は、蒸着圧力、蒸着温度、蒸着時間などのCVD工程条件に非常に敏感に影響を受ける。例えば、蒸着圧力によって、蒸着された薄膜の組成、密度、接着力、蒸着速度などが変化する。   Thin film deposition by chemical vapor deposition (CVD) is used for various applications such as insulating and active layers of semiconductor elements, transparent electrodes of liquid crystal display elements, light emitting layers and protective layers of electroluminescent display elements. Is a very important technology to be played. Generally, the properties of thin films deposited by CVD are very sensitively affected by CVD process conditions such as deposition pressure, deposition temperature, and deposition time. For example, the composition, density, adhesive force, deposition rate, etc. of the deposited thin film change depending on the deposition pressure.

CVDの場合、蒸着圧力は、蒸着させる薄膜物質の原料を供給するソースガス供給装置から供給されるソースガスの流量(すなわち、ソースガスの圧力)に直接的に影響を受ける。したがって、CVDにおいて蒸着圧力を適切に制御するためには、なによりもソースガス供給装置におけるソースガスの圧力を正確に調節しなければならない。ソースガスの圧力の調節は、蒸着速度を高精度で一定に保つ必要がある場合は、特に重要である。   In the case of CVD, the deposition pressure is directly affected by the flow rate of the source gas supplied from the source gas supply device that supplies the raw material of the thin film material to be deposited (that is, the pressure of the source gas). Therefore, in order to appropriately control the deposition pressure in CVD, the source gas pressure in the source gas supply apparatus must be accurately adjusted. Control of the pressure of the source gas is particularly important when the deposition rate needs to be kept constant with high accuracy.

図1は、従来のソースガス供給装置10の構成を示す図面である。従来のソースガス供給装置10は、ソース物質12を貯蔵しているソース物質蒸発部11、ヒーター13、搬送ガス供給部14及び多数の弁V1〜V5から構成される。一般的に、ソース物質12は、常温では固体状態で存在するので、ソース物質をソースガス化させるためには、ソース物質を常温以上に加熱しなければならない。そのために、ヒーター13がソース物質を加熱する役割を果す。   FIG. 1 is a diagram showing a configuration of a conventional source gas supply apparatus 10. A conventional source gas supply apparatus 10 includes a source material evaporation unit 11 that stores a source material 12, a heater 13, a carrier gas supply unit 14, and a number of valves V1 to V5. In general, since the source material 12 exists in a solid state at room temperature, in order to convert the source material into a source gas, the source material must be heated to room temperature or higher. Therefore, the heater 13 plays a role of heating the source material.

通常、ソースガスは、比重が大きいため移動度が小さい。そこで、ソースガスを蒸着チャンバー内へ円滑に運搬するために、搬送ガスが使用される。弁V1〜V5は、状況に応じて開閉され、ソースガス及び搬送ガスの流量を調節する。例えば、搬送ガスを使用しない場合は、弁V1、V3は閉鎖する。搬送ガスを使用する場合は、弁V1の開閉によって、搬送ガス供給部14からソース物質蒸発部11への搬送ガスの供給の有無を制御する。   Usually, the source gas has a low mobility because of its large specific gravity. Therefore, a carrier gas is used to smoothly carry the source gas into the deposition chamber. The valves V1 to V5 are opened and closed according to the situation, and adjust the flow rates of the source gas and the carrier gas. For example, when the carrier gas is not used, the valves V1 and V3 are closed. When the carrier gas is used, whether the carrier gas is supplied from the carrier gas supply unit 14 to the source material evaporation unit 11 is controlled by opening and closing the valve V1.

化学気相蒸着過程においては、ソース物質蒸発部11内に存在するソース物質12の量によってソース物質12の蒸発量が変わる。そのため、ソース物質蒸発部11内に存在するソース物質の量を正確に把握しなければ、次回の蒸着工程を行う際に、ソース物質蒸発部11にソース物質を新たに供給する必要があるのか否かを判断することができない。ソース物質蒸発部11内のソース物質12の量が不十分な状態で蒸着工程を行うと、薄膜蒸着を正常に行うことができない。   In the chemical vapor deposition process, the evaporation amount of the source material 12 varies depending on the amount of the source material 12 present in the source material evaporation unit 11. Therefore, if the amount of the source material existing in the source material evaporation unit 11 is not accurately grasped, whether or not the source material needs to be newly supplied to the source material evaporation unit 11 when performing the next vapor deposition process. I can't judge. If the deposition process is performed in a state where the amount of the source material 12 in the source material evaporation unit 11 is insufficient, the thin film deposition cannot be performed normally.

しかしながら、従来のソースガス供給装置10は、薄膜蒸着工程においてソース物質蒸発部11内に存在するソース物質12の量を正確に把握することができないという問題があった。勿論、新しい蒸着工程の前にソース物質蒸発部11を開けて見ることにより存在するソース物質12の量を肉眼で測定する方法もあるが、ソース物質蒸発部11を一度開けてしまうと、ソース物質12が使用できなくなるおそれがある。つまり、ソース物質12が存在する場合は、ソース物質蒸発部11を開いた際に高価なソース物質12が浪費されるおそれがある。   However, the conventional source gas supply apparatus 10 has a problem that the amount of the source material 12 present in the source material evaporation unit 11 cannot be accurately grasped in the thin film deposition process. Of course, there is a method of measuring the amount of the source material 12 present with the naked eye by opening the source material evaporation unit 11 before a new vapor deposition process, but once the source material evaporation unit 11 is opened, the source material 12 may become unusable. That is, when the source material 12 exists, the expensive source material 12 may be wasted when the source material evaporation unit 11 is opened.

そこで、本発明は、ソース物質蒸発部に貯蔵されているソース物質を蒸発させて生成したソースガスを蒸着チャンバーに供給して薄膜蒸着を行う化学気相蒸着工程において、工程開始前にソース物質蒸発部内に存在するソース物質の量を測定する方法を提供することを目的とする。   Accordingly, the present invention provides a chemical vapor deposition process in which a source gas generated by evaporating a source material stored in a source material evaporation unit is supplied to a deposition chamber to perform thin film deposition. It is an object of the present invention to provide a method for measuring the amount of source material present in a section.

上記目的を達成するために、本発明に係る方法は、ソース物質蒸発部に貯蔵されているソース物質を蒸発させて生成したソースガスを蒸着チャンバーに供給して薄膜蒸着を行う化学気相蒸着工程において、工程開始前に前記ソース物質蒸発部内に存在する前記ソース物質の量を測定する方法であって、(a)前記ソース物質蒸発部内のガス圧力を第1の圧力にするステップと、(b)前記ソース物質蒸発部内に測定ガスを供給して、前記ソース物質蒸発部内のガス圧力を第2の圧力にするステップとを含み、前記ソース物質蒸発部内のガス圧力が前記第1の圧力から前記第2の圧力に到達するまでに要する前記測定ガスの供給量に基づいて(前記測定ガスの供給流量が一定の場合は供給時間に基づいて)、前記ソース物質蒸発部内に存在する前記ソース物質の量を測定するようにしたことを特徴とする。   In order to achieve the above object, the method according to the present invention includes a chemical vapor deposition process in which a source gas generated by evaporating a source material stored in a source material evaporation unit is supplied to a deposition chamber to perform thin film deposition. In the method, the amount of the source material existing in the source material evaporation unit before the start of the process is measured, wherein (a) the gas pressure in the source material evaporation unit is set to a first pressure, and (b) ) Supplying a measurement gas into the source material evaporating unit to set the gas pressure in the source material evaporating unit to a second pressure, and the gas pressure in the source material evaporating unit is changed from the first pressure to the Based on the supply amount of the measurement gas required to reach the second pressure (based on the supply time when the supply flow rate of the measurement gas is constant), it exists in the source material evaporation unit. Characterized by being adapted to measure the amount of serial source material.

前記ソース物質蒸発部には、前記ソース物質蒸発部のガス圧力を測定する手段が連結されていることが好ましい。   It is preferable that a means for measuring a gas pressure of the source material evaporation unit is connected to the source material evaporation unit.

前記測定ガスは、アルゴン(Ar)を含むことが好ましい。   The measurement gas preferably contains argon (Ar).

前記ソース物質蒸発部には、前記ソース物質蒸発部に流入する測定ガスの量を制御する手段が連結されていることが好ましい。   It is preferable that a means for controlling the amount of measurement gas flowing into the source material evaporation unit is connected to the source material evaporation unit.

本発明によれば、化学気相蒸着工程において、ソース物質蒸発部内に存在するソース物質の量を正確に測定することができる。   According to the present invention, the amount of the source material present in the source material evaporation part can be accurately measured in the chemical vapor deposition process.

また、本発明によれば、ソース物質蒸発部内に存在するソース物質の量を、ソース物質蒸発部を開放することなく測定することができるので、高価なソース物質が浪費されるおそれがなくなる。   In addition, according to the present invention, since the amount of the source material present in the source material evaporation unit can be measured without opening the source material evaporation unit, there is no possibility that expensive source material is wasted.

以下、添付図面を参照しつつ、本発明に係る化学気相蒸着工程におけるソース物質の量の測定方法を実施するための構成について詳細に説明する。   Hereinafter, a configuration for carrying out a method for measuring the amount of a source material in a chemical vapor deposition process according to the present invention will be described in detail with reference to the accompanying drawings.

図2は、本発明の一実施形態に係るソースガス供給装置100の構成を示す概略図である。   FIG. 2 is a schematic diagram showing the configuration of the source gas supply apparatus 100 according to an embodiment of the present invention.

ソース物質蒸発部110、ソース物質120、ヒーター130、搬送ガス供給部140及び弁V1〜V5については、前述した従来のソースガス供給装置10と同様である。ソースガスの移動度が十分な場合は、搬送ガスは不要なので、搬送ガス供給部104は設けなくてもよい。搬送ガスを使用する場合は、弁V1の開閉によって、搬送ガス供給部140からソース物質蒸発部110への搬送ガスの供給の有無を制御する。しかし、一般的なソースガスの移動度を考慮すると、搬送ガスをソース材料蒸発部110に供給するようにすることが好ましい。   The source material evaporation unit 110, the source material 120, the heater 130, the carrier gas supply unit 140, and the valves V1 to V5 are the same as those of the conventional source gas supply device 10 described above. When the mobility of the source gas is sufficient, the carrier gas is unnecessary, and thus the carrier gas supply unit 104 is not necessarily provided. When the carrier gas is used, whether or not the carrier gas is supplied from the carrier gas supply unit 140 to the source material evaporation unit 110 is controlled by opening and closing the valve V1. However, in consideration of general source gas mobility, it is preferable to supply the carrier gas to the source material evaporation unit 110.

本発明の一実施形態に係るソースガス供給装置100の特徴的な構成は、ソース物質蒸発部110内に存在するソース物質の量を測定するためにソース物質蒸発部110に連結された、ガス圧力測定手段及びガス流量測定手段にある。   A characteristic configuration of the source gas supply apparatus 100 according to an embodiment of the present invention is that a gas pressure connected to the source material evaporation unit 110 to measure the amount of the source material present in the source material evaporation unit 110 is shown. It exists in a measurement means and a gas flow rate measurement means.

ガス圧力測定手段は、ソース物質蒸発部110内のガス圧力を測定する圧力計200である。圧力計200は、1〜760Torrの範囲のガス圧力を測定することができる圧力ゲージを使用することが好ましい。   The gas pressure measuring means is a pressure gauge 200 that measures the gas pressure in the source material evaporation unit 110. The pressure gauge 200 preferably uses a pressure gauge capable of measuring a gas pressure in the range of 1 to 760 Torr.

ガス流量測定手段は、ソース物質蒸発部10に供給されるガスの流量を制御する流量計300である。流量計300は、ガス流量を標準cc/分(standard cc/min)単位で制御することができる流量制御装置(mass flow controller:MFC)を使用することが好ましい。   The gas flow rate measuring means is a flow meter 300 that controls the flow rate of the gas supplied to the source material evaporation unit 10. The flow meter 300 preferably uses a mass flow controller (MFC) that can control the gas flow rate in units of standard cc / min.

また、ソース物質蒸発部110内のガス圧力の測定時に、ソース物質蒸発部110の内部を所定の圧力にするために、ソース物質蒸発部110には、ソース物質蒸発部110の内部を排気するポンプなどの排気装置(図示せず)を設けることが好ましい。   In addition, when measuring the gas pressure in the source material evaporation unit 110, a pump for exhausting the inside of the source material evaporation unit 110 is provided in the source material evaporation unit 110 in order to set the inside of the source material evaporation unit 110 to a predetermined pressure. It is preferable to provide an exhaust device (not shown).

次に、図2を参照しつつ、本発明の一実施形態に係る、化学気相蒸着工程におけるソース物質蒸発部内に存在するソース物質の量を測定する方法について詳細に説明する。   Next, a method for measuring the amount of source material present in the source material evaporation unit in the chemical vapor deposition process according to an embodiment of the present invention will be described in detail with reference to FIG.

まず、ソース物質蒸発部110の周囲に設置されたヒーター130を作動させてソース物質蒸発部110内に貯蔵されているソース物質120を気化させる。ソース物質蒸発部110の温度がソース物質120の気化温度に到達するまでは、全ての弁V1〜V5を閉鎖状態にする(又は、弁V4だけを開放して他の弁を閉鎖する)。   First, the heater 130 installed around the source material evaporation unit 110 is operated to vaporize the source material 120 stored in the source material evaporation unit 110. Until the temperature of the source material evaporation unit 110 reaches the vaporization temperature of the source material 120, all the valves V1 to V5 are closed (or only the valve V4 is opened and the other valves are closed).

ソース物質120が気化してソースガスが生成されると、弁V1、V2、V4を開放して、搬送ガス供給部140に貯蔵されている搬送ガスをソース物質蒸発部110へ供給する。このとき、弁V1の開閉によって、搬送ガスのソース物質蒸発部110への供給の有無を調節することができる。一般的に、ソースガスの移動度は小さいので、搬送ガスをソース物質蒸発部110へ供給するようにすることが好ましい。   When the source material 120 is vaporized and the source gas is generated, the valves V1, V2, and V4 are opened, and the carrier gas stored in the carrier gas supply unit 140 is supplied to the source material evaporation unit 110. At this time, whether or not the carrier gas is supplied to the source material evaporation unit 110 can be adjusted by opening and closing the valve V1. In general, since the mobility of the source gas is small, it is preferable to supply the carrier gas to the source material evaporation unit 110.

ソース物質蒸発部110内でのソースガスの生成が安定化すると、弁V1、V2、V5を開放して実際の化学気相蒸着工程を進行させる。すなわち、弁V1を開放することにより搬送ガス供給部140からソース物質蒸発部110に搬送ガスを流入させ、続いて、弁V2と弁V5を開放することによりソース物質蒸発部110で気化したソースガスを搬送ガスと共に蒸着チャンバーへ流入させる。このとき、ソースガスの流れは、オン・オフで制御するのではなく、配管の開放の度合い微細に調節することによって制御することが好ましい。蒸着チャンバーに流入したソースガスが、蒸着チャンバーの内部に配置された基板上に蒸着されることによって、所定の蒸着工程が遂行される。   When the generation of the source gas in the source material evaporation unit 110 is stabilized, the valves V1, V2, and V5 are opened, and the actual chemical vapor deposition process proceeds. That is, the carrier gas flows from the carrier gas supply unit 140 into the source material evaporation unit 110 by opening the valve V1, and then the source gas vaporized in the source material evaporation unit 110 by opening the valves V2 and V5. Into the deposition chamber together with the carrier gas. At this time, the flow of the source gas is preferably controlled not by turning on / off, but by finely adjusting the degree of opening of the piping. The source gas that has flowed into the deposition chamber is deposited on a substrate disposed inside the deposition chamber, thereby performing a predetermined deposition process.

蒸着工程の完了後は、ソース物質蒸発部110内に存在するソース物質120の量を測定する。   After the vapor deposition process is completed, the amount of the source material 120 present in the source material evaporation unit 110 is measured.

このために、弁V2、V4を開放すると共に、残りの全ての弁V1、V3、V5を閉鎖し、その後、ソース物質蒸発部110の内部に残留しているソースガスを外部に排気する。このような排気過程は、ソース物質蒸発部110内のガス圧力が所定の基準圧力(第1の圧力)に到達するまで続けられる。第1の圧力は、数Torrの範囲に設定することが好ましく、第1の圧力に到達したか否かは圧力計200によってリアルタイムで測定する。ソース物質蒸発部110内のガス圧力が第1の圧力に到達したら、弁V2、V4を閉鎖する。   For this purpose, the valves V2 and V4 are opened and all the remaining valves V1, V3 and V5 are closed, and then the source gas remaining in the source material evaporation unit 110 is exhausted to the outside. Such an exhausting process is continued until the gas pressure in the source material evaporation unit 110 reaches a predetermined reference pressure (first pressure). The first pressure is preferably set in a range of several Torr, and whether or not the first pressure has been reached is measured in real time by the pressure gauge 200. When the gas pressure in the source material evaporation unit 110 reaches the first pressure, the valves V2 and V4 are closed.

次に、弁V1を開放して、搬送ガス供給部140から、内部のガス圧力が第1の圧力であるソース物質蒸発部110へ搬送ガスを供給する。このとき、ソース物質蒸発部110に供給される搬送ガスの供給流量は、流量計300によってリアルタイムで測定する。このような搬送ガスの供給過程は、ソース物質蒸発部110内のガス圧力が所定の基準圧力(第2の圧力)に到達するまで続けられる。第2の圧力は、数百Torrの範囲に設定することが好ましく、第2の圧力に到達したか否かは圧力計200によってリアルタイムで測定する。ソース物質蒸発部110内のガス圧力が第2の圧力に到達したら、弁V1を閉鎖する。   Next, the valve V1 is opened, and the carrier gas is supplied from the carrier gas supply unit 140 to the source material evaporation unit 110 whose internal gas pressure is the first pressure. At this time, the supply flow rate of the carrier gas supplied to the source material evaporation unit 110 is measured by the flow meter 300 in real time. Such a carrier gas supply process is continued until the gas pressure in the source material evaporation unit 110 reaches a predetermined reference pressure (second pressure). The second pressure is preferably set in a range of several hundred Torr, and whether or not the second pressure has been reached is measured in real time by the pressure gauge 200. When the gas pressure in the source material evaporation unit 110 reaches the second pressure, the valve V1 is closed.

流量計300は、搬送ガスの時間当りの通過量を正確に制御することができるので、ソース物質蒸発部110内のガス圧力が前記第1の圧力から前記第2の圧力に到達するまでの間にソース物質蒸発部110に供給された搬送ガスの供給量(前記測定ガスの供給流量が一定の場合は供給時間)を正確に測定することができる。したがって、流量計300の測定結果に基づいて、蒸着工程後にソース物質蒸発部110内に存在するソース物質120の量を、測定又は予測することができる。   Since the flow meter 300 can accurately control the passing amount of the carrier gas per time, the gas pressure in the source material evaporation unit 110 is from the first pressure to the second pressure. In addition, the supply amount of the carrier gas supplied to the source material evaporation unit 110 (a supply time when the supply flow rate of the measurement gas is constant) can be accurately measured. Therefore, based on the measurement result of the flow meter 300, the amount of the source material 120 present in the source material evaporation unit 110 after the vapor deposition process can be measured or predicted.

ソース物質蒸発部110内に存在するソース物質120の量が多い場合は、ソース物質蒸発部110内のガス圧力を第1の圧力から第2の圧力に到達させるのに必要な搬送ガスの供給量(供給時間)は少なくてすみ(短くてすみ)、その反対に、ソース物質蒸発部110内に存在するソース物質120の量が少ない場合は、ソース物質蒸発部110内のガス圧力を第1の圧力から第2の圧力に到達させるために必要な搬送ガスの供給量(供給時間)は多くなる(長くなる)。   When the amount of the source material 120 present in the source material evaporation unit 110 is large, the supply amount of the carrier gas necessary for causing the gas pressure in the source material evaporation unit 110 to reach the second pressure from the first pressure. If the amount of the source material 120 existing in the source material evaporation unit 110 is small, the gas pressure in the source material evaporation unit 110 is set to the first pressure. The supply amount (supply time) of the carrier gas necessary to reach the second pressure from the pressure increases (becomes longer).

このことを踏まえて、ソース物質蒸発部110の体積、ソース物質蒸発部110に貯蔵されているソース物質120の体積、及び所定圧力に到達するまでに要する搬送ガスの供給量(供給時間)などの測定値に基づいて適切な計算を行うことによって、ソース物質蒸発部110内に存在するソース物質120の量を定量化することができる。   Based on this, the volume of the source material evaporation unit 110, the volume of the source material 120 stored in the source material evaporation unit 110, and the supply amount (supply time) of the carrier gas required to reach a predetermined pressure, etc. By performing an appropriate calculation based on the measured value, the amount of the source material 120 present in the source material evaporation unit 110 can be quantified.

図3は、本発明の一実施形態に係る、化学気相蒸着工程におけるソース物質蒸発部内に貯蔵されているソース物質の量を測定する方法の一例を示すグラフである。   FIG. 3 is a graph illustrating an example of a method for measuring the amount of a source material stored in a source material evaporation unit in a chemical vapor deposition process according to an embodiment of the present invention.

図3は、図2に示したソースガス供給装置100において、弁V1を開放し、弁V2、V4を閉鎖した状態でソース物質蒸発部110内に搬送ガスを供給した際の、ソース物質蒸発部110内のガス圧力が第1の圧力から第2の圧力に到達するのに要する時間と、ソース物質蒸発部110内に存在するソース物質の量(充填量)との関係を示すグラフである。   FIG. 3 shows a source material evaporation unit when the carrier gas is supplied into the source material evaporation unit 110 with the valve V1 opened and the valves V2 and V4 closed in the source gas supply apparatus 100 shown in FIG. 10 is a graph showing the relationship between the time required for the gas pressure in 110 to reach the second pressure from the first pressure and the amount (filling amount) of the source material present in the source material evaporation unit 110.

ソース物質120は、Ni蒸着のためのNi(CP)粉末を使用した。搬送ガス(測定ガス)は、アルゴン(Ar)を使用した。ソース物質蒸発部110内に供給されるArの流量が100標準cc/分となるように、流量計300を制御した。第1の圧力は、10Torrとし、第2の圧力は、500Torr(条件A)、600Torr(条件B)、700Torr(条件C)とした。第1の圧力及び第2の圧力は、圧力計200によって測定した。ソース物質蒸発部110内に存在するNi(CP)粉末の量(充填量)は、0g、10g、30g、50g、100g、150g、200gとした。 The source material 120 was Ni (CP) 2 powder for Ni deposition. Argon (Ar) was used as the carrier gas (measurement gas). The flow meter 300 was controlled so that the flow rate of Ar supplied into the source material evaporation unit 110 was 100 standard cc / min. The first pressure was 10 Torr, and the second pressure was 500 Torr (Condition A), 600 Torr (Condition B), and 700 Torr (Condition C). The first pressure and the second pressure were measured by the pressure gauge 200. The amount (filling amount) of Ni (CP) 2 powder present in the source material evaporation unit 110 was 0 g, 10 g, 30 g, 50 g, 100 g, 150 g, and 200 g.

図3のグラフに示すように、ソース物質蒸発部110内に存在するソース物質120の量が多いほど、ソース物質蒸発部110内のガス圧力を第1の圧力(10Torr)から第2の圧力(500Torr、600Torr、700Torr)に到達させるのに要するArの供給時間は短くなる。より詳細には、充填量が増加するにつれて、供給時間は線形的に減少することが分かる。したがって、上述した本発明の一実施形態に係る方法によれば、ソース物質蒸発部110内のガス圧力が第1の圧力から第2の圧力に到達するまでに要する測定ガスの供給量又は供給時間に基づいて、化学気相蒸着工程において、ソース物質蒸発部内に存在するソース物質の量を正確かつ効率的に測定することができる。   As shown in the graph of FIG. 3, as the amount of the source material 120 existing in the source material evaporation unit 110 increases, the gas pressure in the source material evaporation unit 110 is changed from the first pressure (10 Torr) to the second pressure (10 Torr). Ar supply time required to reach 500 Torr, 600 Torr, and 700 Torr) is shortened. More specifically, it can be seen that the supply time decreases linearly as the filling amount increases. Therefore, according to the method according to the embodiment of the present invention described above, the supply amount or supply time of the measurement gas required until the gas pressure in the source material evaporation unit 110 reaches the second pressure from the first pressure. Based on the above, the amount of the source material present in the source material evaporation part can be accurately and efficiently measured in the chemical vapor deposition process.

また、上述した圧力計200、流量計300及び弁V1〜V5の全ての作動過程は、制御部(図示せず)により制御することができると共に、この制御部によりソース物質蒸発部110内に存在するソース物質120の量を測定することができる。   In addition, all the operation processes of the pressure gauge 200, the flow meter 300, and the valves V1 to V5 described above can be controlled by a control unit (not shown) and are present in the source material evaporation unit 110 by the control unit. The amount of source material 120 to be measured can be measured.

また、上述したようなソースガス供給方法によれば、化学気相蒸着法による薄膜蒸着の際に、ソース物質蒸発部110内に存在するソース物質120の量を正確に測定することができるという長所がある。したがって、ソース物質蒸発部110内に存在するソース物質120の量を肉眼で測定するためにソース物質蒸発部110を開放した際に、ソース物質120が浪費されるおそれがあるという従来技術の欠点を防止することができる。また、ソース物質蒸発部110内に存在するソース物質120の量が1バッチの蒸着工程を遂行する量以下であることに起因する工程フェイルの発生を防止することができる。   In addition, according to the source gas supply method as described above, it is possible to accurately measure the amount of the source material 120 existing in the source material evaporation unit 110 during thin film deposition by chemical vapor deposition. There is. Accordingly, there is a disadvantage of the prior art that the source material 120 may be wasted when the source material evaporation unit 110 is opened in order to measure the amount of the source material 120 present in the source material evaporation unit 110 with the naked eye. Can be prevented. In addition, it is possible to prevent the occurrence of a process failure due to the amount of the source material 120 existing in the source material evaporation unit 110 being equal to or less than the amount for performing one batch of the vapor deposition process.

以上のように、本発明では具体的な構成要素などのような特定事項と限定された実施形態及び図面により説明したが、これは本発明のより全体的な理解を助けるために提供されたものであり、本発明は前述の実施形態に限定されるものではなく、本発明が属する分野で通常的な知識を持った者であれば、このような記載から多様な修正及び変形が可能である。   As described above, the present invention has been described with reference to specific items such as specific components and limited embodiments and drawings, which are provided to assist in a more comprehensive understanding of the present invention. The present invention is not limited to the above-described embodiment, and various modifications and variations can be made from such description as long as the person has ordinary knowledge in the field to which the present invention belongs. .

したがって、本発明の思想はここに説明した実施形態に限定して定められてはならず、後述する特許請求の範囲だけでなく、この特許請求の範囲と均等又は等価の変形のある全ては本発明の思想及び範疇に属するものである。   Therefore, the idea of the present invention should not be limited to the embodiments described herein, and not only the claims described below, but also all modifications that are equivalent or equivalent to the claims. It belongs to the concept and category of the invention.

本発明によれば、化学気相蒸着工程において、ソース物質蒸発部内に存在するソース物質の量を正確に測定することができる。また、本発明によれば、ソース物質蒸発部内に存在するソース物質の量を、ソース物質蒸発部を開放することなく測定することができるので、高価なソース物質が浪費されるおそれがなくなる。従って、本発明の産業利用性は極めて高いものと言える。   According to the present invention, the amount of the source material present in the source material evaporation part can be accurately measured in the chemical vapor deposition process. In addition, according to the present invention, since the amount of the source material present in the source material evaporation unit can be measured without opening the source material evaporation unit, there is no possibility that expensive source material is wasted. Therefore, it can be said that the industrial applicability of the present invention is extremely high.

従来のソースガス供給装置の構成を示す概略図である。It is the schematic which shows the structure of the conventional source gas supply apparatus. 本発明の一実施形態に係るソースガス供給装置の構成を示す概略図である。It is the schematic which shows the structure of the source gas supply apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るソース物質の量を測定する方法の一例を示すグラフである。3 is a graph illustrating an example of a method for measuring the amount of a source material according to an embodiment of the present invention.

符号の説明Explanation of symbols

100 ソースガス供給装置
110 ソース物質蒸発部
120 ソース物質
130 ヒーター
140 搬送ガス供給部
200 圧力計
300 流量計
DESCRIPTION OF SYMBOLS 100 Source gas supply apparatus 110 Source material evaporation part 120 Source material 130 Heater 140 Carrier gas supply part 200 Pressure gauge 300 Flowmeter

Claims (4)

ソース物質蒸発部に貯蔵されているソース物質を蒸発させて生成したソースガスを蒸着チャンバーに供給して薄膜蒸着を行う化学気相蒸着工程において、工程開始前に前記ソース物質蒸発部内に存在する前記ソース物質の量を測定する方法であって、
(a)前記ソース物質蒸発部内のガス圧力を第1の圧力にするステップと、
(b)前記ソース物質蒸発部内に測定ガスを供給して、前記ソース物質蒸発部内のガス圧力を第2の圧力にするステップとを含み、
前記ソース物質蒸発部内のガス圧力が前記第1の圧力から前記第2の圧力に到達するまでに要する前記測定ガスの供給量に基づいて、前記ソース物質蒸発部内に存在する前記ソース物質の量を測定するようにしたことを特徴とする方法。
In a chemical vapor deposition process in which a source gas generated by evaporating a source material stored in a source material evaporation unit is supplied to a deposition chamber to perform thin film deposition, the source material exists in the source material evaporation unit before the process starts. A method for measuring the amount of source material,
(A) setting the gas pressure in the source material evaporation section to a first pressure;
(B) supplying a measurement gas into the source material evaporating unit to set the gas pressure in the source material evaporating unit to a second pressure;
Based on the supply amount of the measurement gas required for the gas pressure in the source material evaporation unit to reach the second pressure from the first pressure, the amount of the source material present in the source material evaporation unit is determined. A method characterized by measuring.
請求項1に記載の方法であって、
前記ソース物質蒸発部には、前記ソース物質蒸発部内のガス圧力を測定する手段が連結されていることを特徴とする方法。
The method of claim 1, comprising:
A method for measuring gas pressure in the source material evaporation unit is connected to the source material evaporation unit.
請求項1に記載の方法であって、
前記測定ガスは、アルゴン(Ar)を含むことを特徴とする方法。
The method of claim 1, comprising:
The measurement gas includes argon (Ar).
請求項1に記載の方法であって、
前記ソース物質蒸発部には、前記ソース物質蒸発部に流入する測定ガスの量を制御する手段が連結されていることを特徴とする方法。
The method of claim 1, comprising:
A method for controlling the amount of measurement gas flowing into the source material evaporation unit is connected to the source material evaporation unit.
JP2008303514A 2007-12-10 2008-11-28 Method for measuring the amount of source material in a chemical vapor deposition process Expired - Fee Related JP5302642B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070127860A KR100951683B1 (en) 2007-12-10 2007-12-10 Method For Supplying Source Gas
KR10-2007-0127860 2007-12-10

Publications (2)

Publication Number Publication Date
JP2009138269A JP2009138269A (en) 2009-06-25
JP5302642B2 true JP5302642B2 (en) 2013-10-02

Family

ID=40768467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303514A Expired - Fee Related JP5302642B2 (en) 2007-12-10 2008-11-28 Method for measuring the amount of source material in a chemical vapor deposition process

Country Status (4)

Country Link
JP (1) JP5302642B2 (en)
KR (1) KR100951683B1 (en)
CN (1) CN101457352B (en)
TW (1) TW200930828A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200460716Y1 (en) * 2009-12-23 2012-05-31 주식회사 테라세미콘 Apparatus For Supplying Source Gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100253089B1 (en) * 1997-10-29 2000-05-01 윤종용 Chemical vapor deposition apparatus
EP1399789A1 (en) * 2001-05-24 2004-03-24 Unit Instruments, Inc. Method and apparatus for providing a determined ratio of process fluids
JP2004111787A (en) * 2002-09-20 2004-04-08 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2005079141A (en) * 2003-08-28 2005-03-24 Asm Japan Kk Plasma cvd system
JP4626956B2 (en) * 2004-10-18 2011-02-09 東京エレクトロン株式会社 Semiconductor manufacturing apparatus, liquid quantity monitoring apparatus, liquid material monitoring method for semiconductor manufacturing apparatus, and liquid quantity monitoring method
KR100599058B1 (en) * 2005-03-15 2006-07-12 삼성전자주식회사 Method and apparatus for measuring level of liquid, and apparatus for manufacturing a semiconductor device having the same

Also Published As

Publication number Publication date
CN101457352A (en) 2009-06-17
JP2009138269A (en) 2009-06-25
KR100951683B1 (en) 2010-04-07
CN101457352B (en) 2012-10-03
TW200930828A (en) 2009-07-16
KR20090060883A (en) 2009-06-15

Similar Documents

Publication Publication Date Title
US10385457B2 (en) Raw material gas supply apparatus, raw material gas supply method and storage medium
CN101235487B (en) Material gas supply device
JP5949586B2 (en) Raw material gas supply apparatus, film forming apparatus, raw material supply method, and storage medium
JP6698153B2 (en) Precursor supply system and precursor supply method
US10113235B2 (en) Source gas supply unit, film forming apparatus and source gas supply method
TWI511184B (en) Control device for material gas, control method, control program and control system thereof
US9777377B2 (en) Film forming method and film forming device
JP2015099881A (en) Gas supply device, film forming divice, gas supply method and storage medium
US10047436B2 (en) Raw material supply method, raw material supply apparatus, and storage medium
TWI568872B (en) Evaporation apparatus
JP2014145115A (en) Raw gas supply apparatus, film deposition apparatus, flow rate measuring method, and memory medium
JP2019104974A (en) Substrate processing method, memory medium, and raw material gas supply apparatus
CN110965050A (en) Semiconductor device and gas supply system thereof
JP6116290B2 (en) Vapor deposition apparatus and vapor deposition method
JP2013076113A (en) Gas supply device and film deposition apparatus
JP5302642B2 (en) Method for measuring the amount of source material in a chemical vapor deposition process
JP2005307233A (en) Film deposition apparatus, film deposition method and method for feeding process gas
TWI383065B (en) Apparatus and method for supplying source gas
KR20090024356A (en) Apparatus for supplying source gas
JP7376959B2 (en) Gas supply amount measurement method and gas supply amount control method
WO2024195439A1 (en) Vaporizer and method for supplying material gas to semiconductor manufacturing device
KR200460716Y1 (en) Apparatus For Supplying Source Gas
KR20100105975A (en) Method for supplying source gas
JP2017053039A (en) Raw material gas supply apparatus, film deposition apparatus, method for measuring flow rate, and storage medium
KR20090083250A (en) Apparatus for supplying source gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Ref document number: 5302642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees