TW201341398A - 與硝酸根位準有關的植物轉錄因子及其使用方法 - Google Patents

與硝酸根位準有關的植物轉錄因子及其使用方法 Download PDF

Info

Publication number
TW201341398A
TW201341398A TW102107499A TW102107499A TW201341398A TW 201341398 A TW201341398 A TW 201341398A TW 102107499 A TW102107499 A TW 102107499A TW 102107499 A TW102107499 A TW 102107499A TW 201341398 A TW201341398 A TW 201341398A
Authority
TW
Taiwan
Prior art keywords
tga1
tga4
plant
nucleic acid
sequence
Prior art date
Application number
TW102107499A
Other languages
English (en)
Inventor
Ilabaca Rodrigo A Gutierrez
Herrera Jose Miguel Alvarez
Original Assignee
Univ Pontificia Catolica Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Pontificia Catolica Chile filed Critical Univ Pontificia Catolica Chile
Publication of TW201341398A publication Critical patent/TW201341398A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Abstract

本揭示內容有關植物氮反應。具體例有關幫助植物對氮來源和/或其等之代謝物之反應之調節因子。

Description

與硝酸根位準有關的植物轉錄因子及其使用方法 優先權
本申請案請求2012年3月5日提申之美國臨時專利申請案第61/606,852號之申請日之權益,標題“TRANSCRIPTION FACTORS IN PLANTS RELATED TO LEVELS OF NITRATE AND METHODS OF USING THE SAME”。
發明領域
本揭示內容有關氮位準在植物之基因表達上之影響。具體例有關會幫助植物對環境中含氮分子之反應之基因以及其編碼之調節因子。
發明背景
氮(N)是植物之基本主要營養物,其之可利用性是植物成長以及作物生產之主要限制因子。硝酸根(NO3)是好氧土壤中,植物之無機氮的主要來源。見,如,Crawford and Glass(1998)Trends Plant Sci.3:389 95;Hirsch and Sussman(1999)Trends Biotechnol.17:356 61。植物根部會透過特定之轉運蛋白吸收硝酸根,諸如AtNRT1.1(Tsay et al. (1993)Cell 72:705 13);AtNRT1.2(Huang et al.(1999)Plant Cell 11:1381 92);AtNRT2.1(Little et al.(2005)Proc.Natl.Acad.Sci.USA 102:13693 8);以及AtNRT2.2(Li et al.(2007)Plant Physiol.143:425 33)。一旦在根細胞裡,硝酸根可分別經由硝酸根還原酶(NR)以及亞硝酸根還原酶(NIR)之作用,被還原成亞硝酸根(NO2 -),之後成為銨離子(NH4 +)。如上之Crawford and Glass(1998)。所產生之銨離子之後經麩醯胺酸合成酶(GS)以及麩胺酸合成酶(GOGAT)周期之作用,同化成麩胺酸以及麩醯胺酸。Stitt(1999)Curr.Opin.Plant Biol.2:178 86。
在擬南芥(Arabidopsis)中,硝酸根作為營養物,亦作為用於控制基因表達以及發育反應之強訊號。Vidal and Gutierrez(2008)Curr.Opin.Plant Biol.11:521 9;Krouk et al.(2010a)Curr.Opin.Plant Biol.13:266 73;Tsay et al.(2011)Annu.Rev.Plant Biol.62:207 26。硝酸根,以及亞硝酸根,可作為用於調節擬南芥中整個基因表達之訊號。Wang et al.(2007)Plant Physiol.145:1735 45。有關亞硝酸根之訊號作用的了解非常的少,且沒有與亞硝酸根反應性基因有關聯之特別的功能。然而,已有人提出擬南芥根部之硝酸根感應系統,會辨識亞硝酸根以及硝酸根,因為二個訊號均具有廣泛的重疊反應。
擬南芥中之硝酸根反應性基因有很多樣且多變,包括硝酸根轉運蛋白、NR以及NIR、轉錄因子、壓力反應性基因、涉及N/C平衡之碳(C)同化酵素以及其產物參與訊號傳導途徑之基因。如上之Vidal and Gutierrez (2008);如上之Krouk et al.(2010a);如上之Tsay et al.(2010)。轉錄體學分析已鑑定出許多擬南芥之硝酸根反應性基因。Wang et al.(2003)Plant Physiol.132:556 7;Scheible et al.(2004)Plant Physiol.136:2483 99;Wang et al.(2004)Plant Physiol.136:2512 22;Gutierrez et al.(2007)Genome Biol.8:R7。然而,僅鑑定出少數涉及喚起硝酸根反應之調節因子。
已有人提出硝酸根轉運蛋白,NRT1.1,為擬南芥之硝酸根感應子。Ho et al.(2009)Cell 138:1184 94。此外,已有NIN樣蛋白7轉錄因子涉及硝酸根同化之調節之敘述(Castaings et al.(2009)Plant J.57:426 35),而ANR1 MADS盒基因已被鑑定為因應外部硝酸根之側根生長之調節子(Zhang and Forde(1998)Science 279:407 9)。再者,發現鈣調磷酸酶B樣(CBL)交互反應蛋白激酶(CIPK)基因,CIPK8,會參與硝酸根感應。Hu et al.(2009)Plant J.57:264 78。亦發現,硝酸根之攝取以及同化,需要會抑制N反應性基因之LBD37/38/39轉錄因子。Rubin et al.(2009)Plant Cell 21:3567 84。更近來發現,硝酸根反應性miR393/AFB3模組,會因應外在以及擬南芥中內在之N的可利用性,控制根系統結構(Vidal et al.(2010b)Proc.Natl.Acad.Sci.USA 107:4477 82),以及在根中,負責控制側根結構之麩醯胺酸的細胞專一性調節,屬於miR167/ARF8模組(Gifford et al.(2008)Proc.Natl.Acad.Sci.USA 105:803 8)。
發明之揭示內容
在此敘述的是一種新穎的氮反應性調節因子,TGA1以及TGA4。TGA1以及TGA4會介導氮調節涉及氮之攝取以及還原之基因的表達。在具體例中,此等轉錄因子可用於修飾氮的吸收以及同化、影響根組織之生長和/或影響植物的生長以及產率。
據觀察,主根以及側根之生長會受tga1/tga4雙突變之影響,證明在硝酸根之存在下,有促進根生長之正性作用。因此,在一些具體例中,例如,在氮有限之情況下,可利用TGA1和/或TGA4來促進植物中之主和/或側根之生長。
tga1/tga4雙突變之植物中,幾乎所有(97%)鑑定為在TGA1以及TGA4之調節控制下之基因,均是由氮調節的。因此,在一些具體例中,可利用TGA1和/或TGA4來表達對氮產生反應之基因(如,圖5中鑑定之基因)。例如,在特別具體例中,可利用TGA1和/或TGA4來影響硝酸根轉運蛋白NRT2.1、NRT2.2和/或硝酸根還原酶,NIR,之表達。在特別具體例中,可利用TGA1和/或TGA4來表達操作上連接至TGA1或TGA4結合模體之基因。
在一些具體例中,於在此所述之方法中使用之TGA1多肽,可包含擇自於由下列所構成之群組之胺基酸序列:序列辨識編號1-10,或與序列辨識編號1-10中一個或多個一致之同源分享序列。在一些具體例中,於在此所述之方法中使用之TGA4多肽,可包含擇自於由下列所構成之群 組之胺基酸序列:序列辨識編號11-14,或與序列辨識編號11-14中之一或多個一致之同源分享序列。於一些具體例中,於在此所述之方法中使用之核酸,可包含編碼TGA1或TGA4多肽之核苷酸。
一些具體例包括轉基因植物或其後代,其包含異源性TGA1多肽和/或編碼TGA1之核酸,和/或異源性TGA4多肽和/或編碼TGA4之核酸。在特別具體例中,異源性編碼TGA1和/或TGA4之核酸,係在轉基因植物或其後代中表達。在某些具體例中,其中表達異源性編碼TGA1和/或TGA4之核酸之組織係根。根據一些具體例之方法,包括在氮源有限之環境條件下,種植前述轉基因植物或其後代。在一些範例中,包含異源性TGA1和/或TGA4多肽和/或異源性編碼TGA1和/或TGA4之核酸之轉基因植物或後代,在氮有限之條件下(如,低氮條件下),展現提高的生長和/或耐性。
一些具體例包括用於產生其中主和/或側根生長經促進之植物之方法。此等方法可包含,例如,但非限制性的,將編碼TGA1和/或TGA4之核酸(如,在載體中),導入植物或其細胞或組織中;任擇地培養該細胞或組織以產生植物;以及選擇主和/或側根之生長經促進之植物。於一些範例中,於氮有限之條件下,培養所選定的植物。
在一些具體例中,於在此所述之方法中使用之植物可為擬南芥屬。於一些具體例中,該植物可擇自於由下列所構成之群組:十字花科(Brassicaceae);豆科 (Fabaceae);禾本科(Poaceae);茄科(Solanaceae);葡萄科(Vitaceae);大戟科(Euphorbiaceae);楊柳科(Salicaceae);以及桃金娘科(Myrtaceae)。以上所述方法中任一個所獲得之植物、植物材料、植物細胞以及種子,亦為特別具體例之特徵。
圖1包括TGA1以及TGA4對硝酸根,以及對硝酸根還原之下游訊號之反應之圖例說明。圖1A包括野生型“Col-0”植株中,TGA1之硝酸根反應。圖1B包括該Col-0植株中,TGA4之硝酸根反應。圖1C包括NR消失突變植株中,TGA1之硝酸根反應。圖1D包括NR消失突變植株中,TGA4之硝酸根反應。TGA1(E)以及TGA4(F)基因之亞硝酸根反應。TGA1(G)以及TGA4(H)基因之銨離子反應。星號(*)意指對照組以及處理條件組之間具顯著差異(P<0.05)。
圖2包括TGA1以及TGA4之亞硝酸根反應,與銨離子相比之圖例說明。圖2A包括TGA1之亞硝酸根反應。圖2B包括TGA4之亞硝酸根反應。圖2C顯示TGA1對銨離子沒有反應。圖2D顯示TGA4對銨離子沒有反應。星號(*)意指對照組以及處理條件之間具顯著差異(P<0.05)。
圖3包括TGA1以及TGA4因應硝酸根,在主以及側根之生長上之影響之圖例說明。圖3A包括tga1/tga4以及Col-0植株之起始以及初發側根之數目。圖3B包括以KNO3或KCl處理時,於第15天,從Col-0、tga1tga4以及tga1/tga4植株上測得之主根長度。條線代表標準差。不同的字母指統計 學上具差異之意思(P<0.05)。
圖4包括在中柱鞘細胞中,TGA1以及TGA4之硝酸根調節的圖例說明。圖4A包括在經KNO3或KCl處理2個小時之幼苗而來之中柱鞘細胞中,用RT-qPCR測得之TGA1 mRNA之相對數目。圖4B包括在經KNO3或KCl處理2個小時之幼苗而來之中柱鞘細胞中,用RT-qPCR測得之TGA4 mRNA之相對數目。標繪之值是三個複本±標準差之平均值。星號(*)意指處理之間具顯著差異(P<0.05)。
圖5包括受TGA1/TGA4控制之硝酸根反應性基因網路圖,包括涉及N代謝之基因。個別的基因以三角形(轉錄因子)以及正方形(標的基因)表示。綠線指示預測的轉錄活化,而紅線指示預測的轉錄抑制。細線指示對應基因之上游區中一個轉錄因子結合位置,而粗線指示過多個結合位置。箭頭指示正向調節,而在終端上之邊緣垂直線指示負向調節。結節是依照功能用顏色編碼的:訊號(紫色);未知基因(白色);壓力反應(青色);氮代謝(黃色);以及其它功能(灰色)。
圖6包括TGA1以及TGA4在硝酸根依賴性上調NIR、NRT2.1以及NRT2.2基因上之作用的圖例說明。圖6A包括在用KNO3或KCl處理一預定時間之Col-0以及tga1/tga4植株中之NRT2.1 mRNA之轉錄位準。圖6B包括在用KNO3或KCl處理一預定時間之Col-0以及tga1/tga4植株中之NRT2.2 mRNA之轉錄位準。圖6C包括在用KNO3或KCl處理一預定時間之Col-0以及tga1/tga4植株中之NIR mRNA之轉錄位 準。
圖7包括TGA1以硝酸根依賴性之方式,結合至NRT2.1以及NRT2.2啟動子區域之圖例說明。使用抗TGA1,免疫沈澱包含NRT2.1以及NRT2.2啟動子之DNA。非專一性IgG作為陰性對照組。使用設定用於對抗NRT2.1以及NRT2.2啟動子區域之引子,以定量PCR量化免疫沈澱下來之啟動子DNA。
圖8例示說明在chl1-5以及chl1-9突變體中,因應硝酸根之TGA1以及TGA4之表達會受影響。使Col-0、chl1-5、chl1-9以及T101D植株,在具有1mM銨離子作為唯一氮源之水耕法中生長。在第15天光照期開始時,用5mM KNO3或5mM KCl(作為對照組)處理該等植株,歷時一預定的時間。分離出RNA,然後用RT-qPCR測量mRNA位準。網格蛋白(Clathrin)基因(At4g24550)用作為正規化參考。(A)TGA1轉錄位準,(B)TGA4轉錄位準。所標繪之值對應於三個獨立的生物複本±標準差之平均值。星號意指突變體以及野生型植株之間具顯著差異(P<0.05)。
圖9例示說明在側根以及主根之維管組織中表達之TGA1以及TGA4。使pTGA1:GUS以及pTGA4:GUS株,在具有1mM銨離子作為唯一氮源之水耕法中生長二周,然後用5mM KNO3或5mM KCl處理2個小時,然後染色評估GUS活性。5mM KNO3處理的pTGA1:GUS(A)、5mM KCl處理的pTGA1:GUS(B)、5mM KNO3處理的pTGA4:GUS(C)以及5mM KCl處理的pTGA4:GUS(D)。用硝酸根處理 之pTGA1:GUS之主根之成熟部分的橫截面圖(E)以及從主根長出之側根的縱向截面圖(G)。用硝酸根處理之pTGA4:GUS植株之主根之成熟部分的橫截面圖(F)以及側根以及主根之縱向截面圖(H)。(比例尺:0.1mm)。(E)以及(F)上之數字1:中軸,2:內皮。在各基因型之8個獨立的轉基因株中,觀察到相似的局部圖案。
圖10例示說明在具有1mM銨離子作為唯一氮源之水耕法中生長2周之表皮(Epi)、皮層、內皮(Endo)、中柱鞘(Peri)以及中柱GFP標記株之TGA1以及TGA4的轉錄位準,其中在第15天時,幼苗經5mM KNO3或5mM KCl處理2個小時。
圖11例示說明硝酸根細胞專一性調節NTR2.1NRT2.2以及NIR基因。使表皮(Epi)、皮層、內皮(Endo)、中柱鞘(Peri)以及中柱GFP標記株,在具有1mM銨離子作為唯一氮源之水耕法中生長2周。在第15天破曉時,用5mM KNO3或5mM KCl處理幼苗2個小時。分離出全部的RNA,然後使用RT-qPCR測量NRT2.1NRT2.2以及NIR之mRNA位準。例示說明的是(A)NRT2.1轉錄位準;(B)NRT2.2轉錄位準;以及(C)NIR轉錄位準。
圖12例示說明TGA1以及TGA4,在低硝酸根濃度之處理下,會調節NRT2.1以及NRT2.2之表達。使Col-0以及tga1/tga4植株在具有1mM銨離子作為唯一氮源之水耕法中生長。在第15天光照期開始時,用250μM KNO3或5μM KCl(作為對照組)處理植株2個小時。分離出RNA,然後使用RT-qPCR測量mRNA位準。例示說明的是:(A)NRT2.1轉 錄位準;(B)NRT2.2轉錄位準;以及(C)Col-0以及tga1/tga4植株之淨硝酸根攝取。
圖13例示說明TGA家族成員曝露於5mM KNO3或5mM KCl一段預定時間後之硝酸根反應。
圖14例示說明GDH2在曝露於5mM NH4Cl或5mM KCl一段預定時間之植株上之作用。
圖15例示說明曝露於5mM KNO3或5mM KCl一段預定時間後之chl1-5以及T101D突變體中,因應硝酸根之NRT2.1的表達。
圖16例示說明用5mM KNO3或5mM KCl處理之Col-0以及tga1/tga4植株中,硝酸根依賴性上調NIA1基因之mRNA位準。
實施本發明之樣式 1.數個具體例之綜述
硝酸根攝取以及同化基因之轉錄調節對植物非常的重要,因為硝酸根之同化係能量消耗很大的過程,其必須正確地與其它代謝以及生理過程協調,以利在變化的環境中,提供最理想的植物生長。在此揭露的是有關植物對硝酸根之反應之轉錄因子之新穎角色,TGA1以及TGA4。
使用整合式生物資訊方法,TGA1以及TGA4在擬南芥(Arabidopsis thaliana)根中,被鑑定為介導氮反應之調節因子。硝酸根以及亞硝酸根處理之後,TGA1以及TGA4 mRNAs二者在根器官中均快速地累積。TGA1以及TGA4涉 及硝酸根調節的主以側根生長,而利用硝酸根處理正常的誘導NRT2.1NRT2.2以及NIR基因,需要TGA1以及TGA4。tga1/tga4雙突變植株之表型分析指出,硝酸根依賴性主根生長以及硝酸根依賴性側根生長,均需要TGA1以及TGA4。全面的基因表達分析顯示,tga1/tga4雙突變體中,97%表達改變之基因,會受硝酸根處理之調節,指出TGA1以及TGA4轉錄因子在根中硝酸根反應方面,具專一性作用。
在依賴TGA1以及TGA4以進行基因表達之正常的氮調節之硝酸根反應性基因中,鑑定出硝酸根轉運蛋白基因,NRT2.1NRT2.2以及亞硝酸根還原酶(NIR)基因。經由核染質免疫沈澱分析法,確認了TGA1專一性結合至此等標的基因之啟動子上之其同源DNA序列。
TGA因子在植物對抗病原菌攻擊、壓力反應(Kesarwani et al.(2007)Plant Physiol.144:336-46)以及花粉囊發展(Murmu et al.(2010)Plant Physiol.154:1492-1504)方面,具有關聯性。然而,TGA轉錄因子之前並沒有與硝酸根反應或任何營養反應有關聯。因此,此揭示內容例示說明一種新的且未預見到之氮與涉及TGA1以及TGA4轉錄因子之防禦訊號間之交互反應。
根據在此範例中所述之轉錄體數據之網路分析,之前所述涉及硝酸根反應之調節之基因中,沒有一個是TGA1以及TGA4之下游。見Vidal et al.(2010a)Wiley Interdiscip.Rev.Syst.Biol.Med.2:683-93。且,依照之前全 面基因表達分析,CIPK8、NLP7以及LDB37/38/39位準之改變,在因應硝酸根之TGA1TGA4表達上,沒有影響。見如上之Castaings et al.(2009);如上之Hu et al.(2009);如上之Rubin et al.(2009)。因此,TGA1以及TGA4似乎是作用在用於調節硝酸根和/或亞硝酸根反應之途徑上,其與該等之前所描述的不同以及無關。
II.縮寫
ANOVA 變異數分析
bZIP 鹼性白胺酸拉鍊結構域
BLAST® 序列局部比對查詢工具
ChIP 核染質免疫沈澱分析法
ELISA 酵素連結免疫吸附法
EMSA 電泳遷移率變動分析法
FACS 螢光激活細胞分選
FDR 錯誤發現率
NCBI 美國國家生技資訊中心
PCR 聚合酶鏈反應
qPCR 定量聚合酶鏈反應
RMA 強大多陣列分析法
RT-PCR 逆轉錄聚合酶鏈反應
III.術語
為了幫助審視本揭示內容之各種具體例,提供下列專有術語之解釋:內源性:在此使用之術語“內源性”,意指源自 於特別有機體、組織或細胞內之物質(如,核酸分子以及多肽)。例如,植物細胞中表達之“內源性”多肽,可意指在相同品種之非基因工程植物之相同類型細胞中,正常表達之多肽。相似的,植物細胞中包含之“內源性”核酸,可意指在相同品種之非基因工程植物之相同類型細胞中,正常發現之核酸(如,基因體DNA)。例如,“原生”或“內源性”核酸,是一種核酸(如,基因),其不含除了該等正常出現在染色體以外,或在其上可正常發現之其它遺傳材料以外之核酸元素。內源性基因轉錄物係由其自然染色體位址上之核苷酸序列編碼,不是人工提供至該細胞的。
相反地,“外源性”或“異源性”分子,是一種分子,其在多核苷酸之核苷酸序列和/或基因體位置,以及多肽之胺基酸序列和/或細胞位置之特定系統(如,種質、變種、優良品種和/或植物)方面,為非原生的。在具體例中,外源性或異源性多核苷酸或多肽,可為已經過人工方式提供給生物系統(如,植物細胞、植物基因、特別植物品種或變種,和/或植物染色體),且非特定生物系統原生之分子。因此,命名為“外源性”之核酸,可意指源自除了天然發生來源以外之來源的核酸,或其可意指該核酸具有非天然構形、基因位置或元素排列。
表達:在此使用之編碼序列(例如,基因或轉基因)之“表達”,意指核酸轉錄單元(包括,如,基因體DNA或cDNA)之編碼資訊,轉換成細胞之操作性、非操作性或結構部分(如,蛋白)之過程。基因表達可受外在訊號之影 響:例如,細胞、組織或器官曝露於會增加或減少包含於其中之基因的表達之試劑。在從DNA至RNA至蛋白質之途徑中之任何地方,亦可調節基因之表達。基因表達之調節之發生係透過,例如,作用在轉錄、轉譯、RNA轉運蛋白以及過程上之控制子;降解諸如mRNA之中間分子;和/或透過活化、去活化、區隔或降解已經製成之特定蛋白分子;或利用前述任何之組合方式。基因表達之測量,可用業界此知之方法測量RNA位準或蛋白質位準,包括,但不限於,北方墨點法、RT-PCR、西方墨點法以及試管中、原位或活體內蛋白活性分析法。
增加表達:在此使用之術語“增加表達”,意指起始一個表達,以及在數量上增加從樣版結構體產生之表達產物之量。在一些具體例中,可提供給另外包含內源性相同基因之複本之細胞或有機體,至少一種異源性基因,以便增加由該基因編碼之多肽之表達。在此具體例中,表達增加之測定,可藉由比較在包含異源以及內源性基因之細胞中產生之多肽,與在僅包含內源性基因之細胞中產生之數量。在一些具體例中,可提供給細胞或有機體,會影響轉錄之第一多肽(如,TGA1和/或TGA4),以便增加在該第一多肽控制下之基因編碼的第二多肽之表達。在此具體例中,表達之增加之測定,可藉由比較存在該第一多肽之基因產生之多肽的數量,以及缺少該第一多肽之基因產生之多肽之數量。在一些具體例中,調節序列可操作地連接至基因,如此增加該基因之表達。在此具體例中,表達之 增加之測定,可藉由比較在可操作的連接調節序列於其上之後之基因產生之多肽的數量,以及在可操作的連接或引入調節序列於其上之前之基因產生之多肽的數量。
異源性:在此使用之術語“異源性”,意指不是源自特別有機體、組織或細胞內之物質(如,核酸分子以及多肽)。例如,植物細胞中表達之“異源性”多肽,可意指不是在相同品種之非基因工程植物而來之相同類型之細胞中,正常表達之多肽(如,在相同有機體之不同細胞或不同有機體之細胞中表達之多肽)。
分離的:“分離的”生物組份(諸如核酸或多肽),已實際上與該組份自然發生之有機體細胞中之其它生物組份(如,其它染色體以及染色體外DNA以及RNA以及蛋白質)分開,分開產生或純化出來,同時影響該組份之化學或功能改變。例如,打斷染色體中,連接核酸至剩餘的DNA之化學鏈,可將核酸從染色體中分離出來。已經“分離的”核酸分子以及蛋白質,可包括用標準純化方法純化之核酸分子以及蛋白質。該術語包含在宿主細胞中重組表達製得之核酸以及蛋白質,以及化學合成的核酸分子、蛋白質以及胜肽。
氮有限之條件:在此使用之術語“氮有限之條件”,意指土壤或培養基中,氮源(如,硝酸根以及銨離子)之數量有限之條件。一些範例中,“有限”之數量係氮濃度之範圍從0.0至0.2mM;如,從0至0.1mM、從0至0.03mM以及從0至0.05mM。
核酸分子:在此使用之術語“核酸分子”可意指聚合形式之核苷酸,其可包括RNA、cDNA、基因組DNA之訊息以及反訊息鏈二者,以及合成形式以及以上之混合聚合物。核苷酸可意指核糖核苷酸、去氧核糖核苷酸或核苷酸之各類型之修飾形式。在此使用之“核酸分子”與“核酸”以及“多核苷酸”同義。核酸分子之長度通常是至少10個鹼基,除非有特別指示。該術語包括單以及雙鏈形式之DNA。核酸分子可包括自然發生之核苷酸,以及藉由自然發生和/或非自然發生核苷酸聯繫物連接一起之修飾核苷酸,或二者。熟悉此技藝之人士可輕易地知道,核酸分子可經化學或生化修飾,或可含有非自然或衍生的核苷酸鹼基。
一些具體例使用特別形式之核酸、寡核苷酸(如,“引子”寡核苷酸)。寡核苷酸係相對短的核酸分子,典型地包含50或更少的核鹼基(雖然一些寡核苷酸可包含超過50個)。寡核苷酸可由打斷(如,限制消化)包含該寡核苷酸序列之較長的核酸形成,或其可由個別核苷酸亞磷醯胺,以特定順序之方式經化學合成。
寡核苷酸可用作為,用於檢測包含特別核苷酸序列之核酸分子之探針序列。按照以上,寡核苷酸探針可用合成或選殖方式製得。適合的選殖載體係熟悉此技藝之人士公知的。寡核苷酸探針可為標記或未標記的。存在有各式各樣標記核酸分子之技術,包括,例如,但非限制性的,利用缺口平移法之放射標記;隨機引物法;以及尾端具有去氧轉移酶,在此所使用之核苷酸是標記與,例如, 放射活性32P。可使用之其它標記物包括,例如,但非限制性的:螢光團;酵素;酵素基質;酵素輔因子以及酵素抑制物。選擇性地,藉由本身或與其它反應劑結合而提供可檢測訊號之標籤的使用,可以受體結合之配位子取代,在此,該受體經標記(例如,用以上所指之標籤),而經由其等本身或結合其它試劑,提供可檢測之訊號。見,如Leary et al.(1983)Proc.Natl.Acad.Sci.USA 80:4045-9。
本發明之一些具體例包括“可專一性雜交”或“專一性互補”至核苷酸標的序列之多核苷酸。“可專一性雜交”以及“專一性互補”指的是足夠程度的互補,以致在多核苷酸以及包含特別核苷酸標的序列之核酸分子之間,發生安定以及專一結合之術語。核酸分子不需要100%互補於其可專一性雜交的標的序列。在需要專一性結合之條件下,例如,在嚴苛雜交條件下,有足夠程度之互補,避免非專一性結合核酸至非標的序列時,核酸分子為專一性雜交的。
產生特別嚴苛程度之雜交條件,會隨著選擇之雜交方法的本質以及雜交核酸序列之組成與長度而不同。一般而言,雜交之溫度以及雜交緩衝液之離子強度(特別是Na+和/或Mg++濃度)會促成雜交之嚴苛度,雖然清洗數次亦會影響嚴苛度。有關需要達到特別嚴苛度之雜交條件之計算方法,係熟悉此技藝之人士熟悉的,且,例如。Sambrook et al.(ed.)Molecular Cloning:A Laboratory Manual,2nd ed.,vol.1-3,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY,1989,chapters 9 and 11;以及Hames and Higgins(eds.)Nucleic Acid Hybridization,IRL Press,Oxford,1985中有討論。另外有關核酸之雜交之詳細的說明以及指導,可在,例如,Tijssen,“Overview of principles of hybridization and the strategy of nucleic acid probe assays,”in Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes,Part I,Chapter 2,Elsevier,NY,1993;以及Ausubel et al.,Eds.,Current Protocols in Molecular Biology,Chapter 2,Greene Publishing and Wiley-Interscience,NY,1995中找到。
在此使用之“嚴苛條件”包含雜交僅發生在雜交分子與DNA標的之間小於25%錯配之條件。“嚴苛條件”包括另外特別程度之嚴苛度。因此,在此使用之“中度嚴苛”之條件,係該等超過25%錯配之分子不會雜交之條件;而“高度嚴苛”之條件是超過10%錯配之分子不會雜交之條件。“非常高度嚴苛”之條件是該等超過6%錯配之分子不會雜交之條件。
在特別具體例下,嚴苛條件是在65℃雜交緩衝液(如,6x食鹽水-檸檬酸鈉(SSC)緩衝液、5xDenhardt’s溶液、0.5% SDS以及100μg已剪切鮭測試DNA)中,雜交一整夜,接著在65℃下0.1X SSC/0.1% SDS中,連續清洗40分鐘。
可操作地連接核苷酸序列:當第一核苷酸序列與第二核苷酸序列係功能相關時,該第一核苷酸序列是“可操作地連接”與或至該第二核苷酸序列。例如,假如啟動子會影響編碼序列之轉錄或表達時,該啟動子是可操作地連 接至該編碼序列。當以重組方式產生時,可操作地連接之核苷酸序列,一般而言是連續的,且在此需要在相同的讀取框連結二個蛋白編碼區域。然而,核苷酸序列不需是連續的才可操作地連接。
術語“可操作地連接”當使用於基因調節序列以及編碼序列時,意指該調節序列會影響連接之編碼序列之表達。“調節序列”或“控制元素”意指,會影響可操作地連接之編碼序列之轉錄時程以及位準/數量、RNA加工或安定性或轉譯之核苷酸序列。習知調節序列包括,例如,但不限於,5’未轉譯區域;啟動子;轉譯前導序列;內含子;增強子;莖環結構;阻遏物結合序列;終止序列;以及多腺苷酸化辨識序列。特別的調節序列可位於其可操作地連接之編碼序列之上游和/或下游。且,可操作地連接至編碼序列之特別調節序列,可位於雙鏈核酸分子之相關的互補鏈上。
可“可操作地連接”至編碼序列之元素,不限於啟動子或其它習知調節序列。例如,在一些具體例中,轉錄因子多肽(如,TGA1或TGA4)可結合至編碼序列之上游或下游之核苷酸序列,以影響該編碼序列之轉錄。在此範例中,轉錄因子多肽結合之核苷酸序列,係“可操作地連接”至該編碼序列,即使該核苷酸序列在缺少轉錄因子之任何情況下,不會影響該編碼序列之轉錄。
調節元素:在此使用之術語“調節元素”意指具有基因調節活性之核酸分子;即,一種具有影響可操作地連 接之可轉錄的核酸分子之轉錄或轉譯之能力者。諸如啟動子、前導子、內含子以及轉錄終止區域之調節元素,是具有基因調節活性之非編碼核酸分子,其在活細胞之基因之整個表達中,扮演主要部分。作用在植物之分離的調節元素,因此可透過分子工程技術,用於修飾植物表型。因此,“調節元素”,可為一系列核苷酸,其會決定是否,何時以及多少位準的特別基因要表達。在一些範例中,調節元素是DNA序列,其與調節蛋白,諸如TGA1和/或TGA4,專一性交互反應。
在此使用之術語“基因調節活性”意指,核酸分子或多肽在可操作地連接之核酸分子之轉錄或轉譯上所發揮之作用。具有基因調節活性之分離的核酸分子,可提供可操作地連接之核酸分子暫時或空間的表達,和/或調整表達之位準以及速率。在此所述之一些範例中,TGA1和/或TGA4以具有基因調節活性之多肽形式提供,其會增加至少一種可操作地連接至會專一性結合該調節TGA1和/或TGA4多肽之DNA元素之核苷酸序列之表達。
啟動子:在此使用之術語“啟動子”意指一DNA區域,其可在轉錄起始之上游,且其可涉及RNA聚合酶以及其它蛋白之辨識以及結合,以便影響轉錄。啟動子可操作地連接至在細胞中表達之編碼序列,或啟動子可操作地連接至編碼訊號序列之核苷酸序列(其可操作地連接至在細胞中表達之編碼序列)。“植物啟動子”可為能夠起始植物細胞中之轉錄之啟動子。
在發育控制下之啟動子之例子包括,優先起始某些組織之轉錄之啟動子,例如,但不限於,葉子、根、種子、纖維、木質維管、管胞或厚壁組織。此等啟動子稱作“組織優先的”。僅在某些組織中啟始轉錄之啟動子,稱作“組織專一性的”。“細胞類型專一性的”啟動子主要影響一或多種器官中,某些細胞類型之轉錄,例如,但不限於,根或葉子中之維管細胞。組織專一性或組織優先的啟動子之例子,包括,例如,但不限於,根優先的啟動子(如,菜豆基因啟動子);葉專一性以及光誘導的啟動子,諸如從cabrubisco而來的;花粉囊專一性啟動子,諸如從LAT52而來的;花粉專一性啟動子,諸如Zm13而來的;以及小孢子優先的啟動子,諸如從apg而來的。
“誘導性”啟動子,可為在環境控制下之啟動子。見,Ward et al.(1993)Plant Mol.Biol.22:361-366。可藉由誘導性啟動子起始轉錄之環境條件之例子包括,例如,但不限於,厭氧條件以及光。使用誘導性啟動子,轉錄之速率會因應誘導劑而增加。誘導性啟動之例子包括,但不限於,從會因應銅之ACEI系統而來之啟動子;從會因應苯磺醯胺除草劑安全劑之玉米而來之In2基因啟動子;從Tn10而來之Tet抑制子;以及從類固醇荷爾蒙基因而來之誘導性啟動子,其之轉錄活性可由糖皮質激素荷爾蒙誘導(Schena et al.(1991)Proc.Natl.Acad.Sci.USA 88:0421)。
組織專一性、組織優先的、細胞類型專一性以及誘導性啟動子,構成“非結構型”啟動子種類。“結構型” 啟動子是在大部份環境條件下具活性之啟動子。結構型啟動子之例子包括,例如,但不限於,植物病毒啟動子(如,從花椰菜崁紋病毒(CaMV)而來之35S啟動子;從米肌動蛋白基因而來之啟動子;泛素啟動子;pEMU;MAS;玉米H3組織蛋白啟動子;以及ALS啟動子、Xba1/NcoI片段5'至Brassica napus ALS3結構基因(或與Xba1/NcoI片段相似之核苷酸序列)(PCT國際專利公開案WO 96/30530)。
任何前述結構型以及非結構型啟動子,可應用於特別具體例。例如,可於植物細胞中,提供在該植物細胞中,可由硝酸根或亞硝酸根調節之基因,其中該基因係可操作地連接至會專一性結合該TGA1和/或TGA4多肽以及啟動子之調節DNA元素。經由另外的範例,可於細胞中提供TGA1TGA4基因,其中該基因係可操作地連接至結構或非結構型啟動子,以便提供TGA1TGA4基因之表達,以及在該啟動子之控制環境下,給予擬南芥硝酸根反應之屬性。
序列一致:在此使用有關二個核酸或多肽序列之術語“序列一致”(或“一致”),意指二序列中之殘基,透過特定比較窗達最相符的對齊時,係相同的。
在此使用之術語“序列一致百分比”意指,透過比較窗,比較二個最佳對齊序列(如,核酸序列以及胺基酸序列)所測定之值,其中在比對窗中之序列部分,可包含相對於參考序列(其不含添加或缺失)之添加或缺失(即,間隔)。百分比之計算,是測定在二個序列中一致的核苷酸或胺基 酸殘基位置之數目,產生相符位置之數目,將相符位置之數目,除以在比較窗中總位置之數目,結果乘以100,產生序列一致百分比。
序列比對之方法係業界公知的。各種程式以及比對演算法述於,例如:Smith and Waterman(1981)Adv.Appl.Math.2:482;Needleman and Wunsch(1970)J.Mol.Biol.48:443;Pearson and Lipman(1988)Proc.Natl.Acad.Sci.U.S.A.85:2444;Higgins and Sharp(1988)Gene 73:237-44;Higgins and Sharp(1989)CABIOS 5:151-3;Corpet et al.(1988)Nucleic Acids Res.16:10881-90;Huang et al.(1992)Comp.Appl.Biosci.8:155-65;Pearson et al.(1994)Methods Mol.Biol.24:307-31;Tatiana et al.(1999)FEMS Microbiol.Lett.174:247-50中。序列比對方法以及相似性計算法之詳細考慮的因素,可在,例如Altschul et al.(1990)J.Mol.Biol.215:403-10中找到。
美國國家生物技術資訊中心(NCBI)Basic Local Alignment Search Tool(BLASTTM;Altschul et al.(1990))可由許多來源獲得,包括網路,用於連接許多序列分析程式。如何使用此程式來測定序列一致性之說明,可在網路上,BLASTTM之“help”中取得。在核酸序列之比較方面,可使用BLASTTM(Blastn)程式之“Blast 2 sequence”功能,使用預設的參數。用此方法分析時,與參考序列更大相似的核酸序列,會顯示增加的一致百分比。
在此使用有關核苷酸序列之術語“實質上一 致”,意指超過85%一致之序列。例如,實質上一致的核苷酸序列,可為與參考序列至少85.5%;至少86%;至少87%;至少88%;至少89%;至少90%;至少91%;至少92%;至少93%;至少94%;至少95%;至少96%;至少97%;至少98%;至少99%;或至少99.5%一致。
專一性結合:在此使用有關多肽以及蛋白結構域之術語“專一性結合”,意指該多肽或蛋白結構域與其結合伙伴(如,包含專一性核苷酸序列之核酸)間具足夠強的交互反應,如此與該結合伙伴發生安定以及專一性的結合,但不會與其它缺少可被該專一性結合多肽辨識之專一性胺基酸序列或專一性核苷酸序列之分子發生專一性的結合。安定以及專一性結合可由熟悉此技藝之人士以常規技術確定;諸如“Pulldown”分析法(如,GST pulldowns)、酵母雙雜交分析法、酵母三雜交分析法、ELISA等等。具有“專一性結合”至彼此之性質之分子,可稱作彼此“專一性結合”。
轉形:在此使用之術語“轉形”,意指將一或多種核酸分子轉移至細胞中。當核酸分子經由併入細胞基因體中,或經游離式複製,而在細胞能夠安定的複製時,該細胞因該核酸分子轉移至該細胞而被轉形。在此使用之術語“轉形”包含所有可以將核酸分子引入此細胞中之技術,例子包括,但不限於:用病毒載體轉染;用質體載體轉形;電穿孔(Fromm et al.(1986)Nature 319:791-3);脂染(Felgner et al.(1987)Proc.Natl.Acad.Sci.USA 84:7413-7);微注射(Mueller et al.(1978)Cell 15:579-85);農桿菌屬 (Agrobacterium)介導的轉移(Fraley et al.(1983)Proc.Natl.Acad.Sci.USA 80:4803-7);直接DNA攝入;以及微粒轟擊法(Klein et al.(1987)Nature 327:70)。
轉基因:外源性核酸序列。在一些範例中,轉基因可為編碼TGA1或TGA4多肽之序列。在一些範例中,轉基因可編碼有興趣的基因(如,報告基因或有助於農業重要植物特徵之基因),其可操作地連接至可專一性結合TGA1和/或TGA4之調節DNA元素。在此等以及其它範例中,轉基因可包含一或多種可操作地連接至該轉基因編碼序列之調節序列。在此揭露內容之目的方面,術語“轉基因的”,當用於有機體(如,植物)時,意指包含外源性核酸序列之有機體。在一些範例中,包含該外源性核酸序列之有機體,可為其中該核酸序列已透過分子轉形技術引入之有機體。在其它範例中,該包含外源性核酸序列之有機體,可為其中核酸序列已經由,例如,基因滲入或植物之異花授粉引入之有機體。
載體:在此使用之術語“載體”,意指一種核酸分子,其可被引入細胞,例如,產生轉形細胞。載體可包括容許其於宿主細胞中複製之核酸序列,諸如複製起點。載體之例子包括,但不限於:質體;粘性質粒;噬菌體以及攜帶外源性DNA進入細胞之病毒。載體亦可包括一或多種基因、反訊息分子和/或選擇性標記基因以及其它此技藝中已知之遺傳元素。載體可轉導、轉形或感染細胞,藉此引起該細胞表達該載體編碼之核酸分子和/或蛋白。載體任擇 地包括可幫助使核酸分子進入細胞之材料(如,微脂粒、蛋白塗層,等等)。
除非特別指示或暗示,否則在此使用之術語“一”以及“該”,意指“至少一種”。
除非特別的解釋,否則在此使用之技術以及科學術語,具有與熟悉此揭示內容所屬之技藝之人士一般了解相同之意思。在分生中一般術語之定義,可在例如Lewin B.,Genes V,Oxford University Press,1994(ISBN 0-19-854287-9);Kendrew et al.(eds.),The Encyclopedia of Molecular Biology,Blackwell Science Ltd.,1994(ISBN 0-632-02182-9);以及Meyers R.A.(ed.),Molecular Biology and Biotechnology:A Comprehensive Desk Reference,VCH Publishers,Inc.,1995(ISBN 1-56081-569-8)中找到。
IV.氮反應性調節因子,TGA1以及TGA4
此揭示內容提供利用新穎且非預期轉錄因子,TGA1以及TGA4,之組成物以及方法。在此揭示之TGA1以及TGA4係會影響許多因應環境中某些氮源之特別標的基因之表達之轉錄因子。因此,例如,TGA1和/或TGA4可用於調節植物細胞、植物材料、植物組織或植物之硝酸根和/或亞硝酸根反應。可使用在此所述之TGA1以及TGA4之特性,例如,提供具有改變的硝酸根以及亞硝酸根反應表型之轉基因植物,以及提供轉基因植物或植物細胞,其中有興趣之基因的表達,至少部分,係經該植物或植物細胞可利用(或缺少)之氮源的調節。例如,可在植物中表達或過度 表達TGA1和/或TGA4,以便起始和/或增加植物之主和/或側根之生長。
一些具體例包括TGA1鹼性白胺酸拉鍊轉錄因子多肽。就特別具體例之TGA1多肽而言,包含一與序列辨識編號1(擬南芥TGA1)比對時,顯示增加一致百分比之胺基酸序列。在此等以及其它具體例內之特定胺基酸序列,可包含,例如,與序列辨識編號1具有至少約50%、約55%、約60%、約65%、約70%、約75%、約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致之序列。例如,一些具體例包括TGA1多肽,其包含擇自於由下列所構成之群組之胺基酸序列:序列辨識編號2(小鹽芥(Thellungiella halophila));序列辨識編號3(琴葉擬南芥(Arabiaopsis lyrata));序列辨識編號4(蕪菁(Brassica rapa));序列辨識編號5(Arabidopsis arenosa);序列辨識編號6(葡萄(Vitis vinifera));序列辨識編號7(菜豆(Phaseolus vulgaris));序列辨識編號8(蒺藜狀苜蓿(Medicago truncatula));序列辨識編號9(大豆(Glycine max));以及序列辨識編號10(蓖麻(Ricinus communis))。
一些具體例包括TGA4鹼性白胺酸拉鍊轉錄因子多肽。就特定具體例之TGA4多肽而言,包含一與序列辨識編號11(擬南芥TGA4)比對時,顯示增加一致百分比之胺基酸序列。在此等以及其它具體例內之特定胺基酸序列,可包含,例如,與序列辨識編號11具有至少約50%、約55%、 約60%、約65%、約70%、約75%、約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致之序列。例如,一些具體例包括TGA4多肽,其包含擇自於由下列所構成之群組之胺基酸序列:序列辨識編號12(蒺藜狀苜蓿);序列辨識編號13(葡萄);以及序列辨識編號14(玉米(Zea mays))。
在許多具體例中,包含與序列辨識編號1(TGA1多肽)和/或序列辨識編號11(TGA4多肽)比對時,具有前述序列一致性之胺基酸序列之多肽,包含在具硝酸根以及亞硝酸根反應性調節活性之胜肽內,或此胜肽之一部分。例如,搜尋與序列辨識編號1之閾值序列一致性之多肽序列之序列資料庫,可識別出TGA1多肽。例如,搜尋與序列辨識編號11之某序列一致性之多肽序列之序列資料庫,可識別出TGA4多肽。可用任何熟悉此技藝人士已知之許多方法來搜尋有用的序列資料庫(如,使用NCBI之BLAST®工具)。透過各種公開以及私人商業來源,可得到許多植物以及其它有機體之資料庫。如熟悉此技藝之人士之了解,TGA1以及TGA4是同源蛋白,因此,經鑑定包含與序列辨識編號1或序列辨識編號11分享序列一致之胺基酸序列之特別的多肽,亦可與序列辨識編號1以及11之其它的序列分享序列一致性。
一些具體例包括一包含編碼TGA1和/或TGA4多肽之核苷酸序列之核酸,諸如以上所述者。例如,一些具 體例中之核酸序列,與序列辨識編號15(擬南芥TGA1)和/或序列辨識編號16(擬南芥TGA4)比對時,顯示增加的一致百分比。此等以及其它具體例中之特定的核酸序列,可包含具有,例如,但不限於,與序列辨識編號15和/或序列辨識編號16至少約50%、約55%、約60%、約65%、約70%、約75%、約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%一致之序列。
大量包含編碼TGA1和/或TGA4多肽之核苷酸序列之核酸,可輕昜地由熟悉此技藝人士識別出。例如,可在沒有實質上改變編碼多肽之胺基酸序列之情況下,藉由,例如,引入依照密碼子簡併之可滲透的核苷酸取代物,修飾核酸分子。因此,當然,任何具有給定之胺基酸序列之TGA1或TGA4多肽,可直接逆向工程成許多重覆的核苷酸序列之任一個。藉由另外的範例,編碼TGA1或TGA4多肽之基因,可從許多可利用植物基因體資料庫、cDNA資料庫、EST資料庫等等中選出(如,根據與序列辨識編號14或序列辨識編號15之同源性,或根據與具有序列辨識編1-14中一或多個之編碼多肽序列之相似性),或可依照分子生物學中可靠且公知之技術,從有機體中選殖出此等基因。
所有的TGA1多肽、TGA4多肽以及編碼該各相同的核酸分子,在本發明之某些具體例中發現用途。
一些具體例包括一包含專一性結合TGA1和/或TGA4多肽之調節核苷酸序列之核酸,以便當核苷酸序列可 操作地連接至該調節核苷酸序列時,給予硝酸根和/或亞硝酸根之控制。在一些範例中,專一性結合TGA1和/或TGA4多肽之調節核苷酸序列,包含於由TGA1和/或TGA4調節之基因而來之內源性擬南芥啟動子內,例如,但不限於,擇自於由下列所構成之群組之基因:NRT2.1NRT2.2以及NIR。TGA1和/或TGA4多肽與調節核苷酸序列之專一性結合,可用任何熟悉此技藝之人士已知之技術檢測,例如,核染質免疫沈澱分析法或EMSA。
在一些具體例中,本發明之核酸分子包含基因調節元素(如,啟動子)。啟動子選擇之依據是,載體建構體可被插入其中之細胞類型。能在細菌、酵母以及植物中作用之啟動子係業界公知的。啟動子選擇亦可依據其等之調節特徵。此等特徵之例子包括,提高轉錄活性、誘導性、組織專一性以及發育階段專一性。在植物中,已有人記述有關病毒或合成來源之誘導性、組成活性、暫時調節以及空間調節之啟動子。見,如,Poszkowski et al.(1989)EMBO J.3:2719;Odell et al.(1985)Nature 313:810;以及Chau et al.(1989)Science 244:174-81)。
有用之誘導性啟動子包括,例如,由水楊酸或聚丙烯酸誘導之啟動子、施用安全劑(取代的苯磺醯胺除草劑)誘導的啟動子、熱休克啟動子、由菠菜硝酸根還原酶可轉錄核苷酸分子序列衍生而來之硝酸根誘導性啟動子、荷爾蒙誘導性啟動子以及與RuBP羧化酶之小次單元以及LHCP家族相關之光誘導性啟動子。
其它有用的啟動子包括胭脂鹼合成酶、甘露鹼合成酶以及章魚鹼合成酶啟動子,其等被攜帶在農桿菌(Agrobacterium tumefaciens)之腫瘤誘導性質體上;CaMV 19S以及35S啟動子;CaMV 35S強啟動子;玄參花葉病毒35S啟動子;從核酮糖-1,5-二磷酸羧化酶(ssRUBISCO)之小次單元而來之光誘導性啟動子;從菸草而來之EIF-4A啟動子(Mandel et al.(1995)Plant Mol.Biol.29:995-1004);玉米蔗糖合成酶;玉米乙醇脫氫酶I;玉米獲光複合物;玉米熱休克蛋白;從擬南芥而來之基丁質酶啟動子;LTP(脂質轉移蛋白)啟動子;牽牛花苯基丙乙烯酮異構酶;豆富含甘胺酸蛋白1;馬鈴薯patatin;泛素啟動子;以及肌動蛋白啟動子。有用的啟動子特別是根專一性啟動子。
為獲得異源性基因較高的表達,較佳地可重新設計該基因,如此其可更有效地在表達宿主細胞(如,植物細胞,例如,芥花、米、菸草、玉米、棉以及大豆)中表達。因此,設計編碼有關植物表達之TGA1和/或TGA4多肽之基因之任擇額外的步驟(即,除了提供一或多種基因調節元素之外),包括重新設計編碼最適表達之區域之異源性基因蛋白。特別的具體例包括重新設計的擬南芥基因,其已經過最適化,從第二植物品種而來之轉基因植物細胞中之表達位準(即,產生更多蛋白),大於從經原來(即,未修飾)擬南芥基因序列轉形之第二植物品種而來之植物細胞中之表達位準。
由於基因密碼子之重覆/簡併所提供之彈性 (即,一些胺基酸由超過一種密碼子指定),基因體在不同有機體或有機種類中,已產生同義密碼子之使用差異。此“密碼子使用偏性”反映在蛋白編碼區域之平均鹼基組成。例如,具有相對低G+C含量之基因體之有機體,在同義密碼之第三個位置中利用更多具有A或T之密碼子,而該等具有較高G+C含量者,在第三位置中使用更多具有G或C之密碼子。此外,雖然mRNA內“次要”密碼子之存在,可減少該mRNA之絕對轉譯速率,特別是當對應於該次要密碼子時,帶電tRNA之相對量是低的時。此理由之延伸是,利用個別微小的密碼子減少轉譯速率,可能至少添加數個次要密碼子。因此,在特別表達宿主中,具有高相對含量次要密碼子之mRNA,可能具有相對低的轉譯速率。此速率可由相對低位準的編碼蛋白反映出。
在編碼TGA1和/或TGA4多肽之基因工程最適化基因於植物細胞(如,米、煙草、玉米、棉以及大豆)中之表達方面,假如預期的宿主植物之密碼子使用偏性已經決定是有幫助的。存在數個公開可得之DNA序列資料庫,其中可找到有關植物基因體之密碼子分佈,或各種植物基因之蛋白編碼區域。
密碼子使用偏性,是表達宿主用於編碼其蛋白之胺基酸之密碼子的統計分佈。密碼子使用偏性可計算為,相對於所有胺基酸之密碼子,單一密碼子被使用之頻率。選擇性地,密碼子使用偏性可計算為,相對於特定胺基酸(同義密碼子)之所有其它密碼子,單一密碼子被用來編碼該 胺基酸之頻率。
在針對植物表達TGA1和/或TGA4多肽,設計最適化編碼區域方面,當存在數個選擇時,應決定最適合植物之主要的(“第一選擇”)密碼子,以及第二、第三、第四等之最佳密碼子之選擇。之後可設計出編碼TGA1和/或TGA4多肽之胺基酸序列之新的DNA序列,其中該新的DNA序列與天然DNA序列(編碼該多肽)不同,其係藉由取代表達宿主最佳的(第一最佳選擇、第二最佳選擇、第三最佳選擇或第四最佳選擇等)密碼子,以確定胺基酸序列內各位置之胺基酸。之後分析該新序列中可能因修飾製得之限制酶切位點。利用下一個較佳密碼子取代此等密碼子,進一步修飾推論的限制酶切位點,以便移除該限製酶切位點。序列中會影響異源性序列之轉錄或轉譯之其它位置是外顯子:內子連接點(5'或3')、多A添加訊號和/或RNA聚合酶終止訊號。可進一步分析該序列,以及修飾以減少TA或CG二聯體之頻率。除了此等二聯體外,具有超過六個G或C核苷酸之序列團塊,同樣亦可能會嚴重地影響該序列之轉錄或轉譯。因此,最好是用下一個較佳密碼子選擇,取代第一或第二選擇等等,修飾此等團塊。
諸如以上所述之方法,使熟悉此技藝之人士能夠修飾特定植物之外源性基因,如此該基因可在植物中最佳的表達。該方法進一步述於PCT國際專利公開案WO 97/13402 A1中。因此,功能上相等於一些具體例之TGA1和/或TGA4基因之最適化的合成基因,可用於轉形宿主,包 括植物以及植物細胞。此外,亦可在電腦中,從起始胺基酸序列產生TGA1-以及TGA4-編碼核苷酸序列。有關產生合成基因之額外的指導,可在例如美國專利案第5,380,831中找到。
一旦已經以書面形式或於電腦中設計好TGA1-和/或TGA4-編碼核苷酸序列,即可在實驗室中合成精準的對應該設計的序列之包含該序列之實際的核酸分子。可選殖出此合成的DNA分子,以及就像其等從天然或自然來源衍生而來的一樣,正確地放大。
V.利用TGA1和/或TGA4介導植物氮反應
一些具體例利用在正常硝酸根調節的基因表達(如,NRT2.1NRT2.2以及NIR之表達)方面,以及在植物對硝酸根以及亞硝酸根產生反應方面,一定需要TGA1以及TGA4之發現。在特別具體例中,TGA1和/或TGA4多肽可藉由下列方法,在細胞或有機體中表達或過度表達,例如,但不限於,引入TGA1或TGA4編碼核酸進入該細胞或有機體中;引入TGA1和/或TGA4多肽進入該細胞或有機體;和/或提供足以促進TGA1和/或TGA4多肽在細胞或有機體中表達之正性或負性訊號,透過該訊號與可操作地連接至TGA1或TGA4編碼核酸之調節元素之交互反應。在另外的具體例中,TGA1和/或TGA4多肽可藉由下列方法被剔除或在細胞有機體中抑制表達,例如,但不限於,干擾、突變或去活化TGA1和/或TGA4編碼核酸(如,TGA1和/或TGA4基因);引入反訊息核酸進入該細胞或有機體,其會標靶編 碼該TGA1和/或TGA4多肽之核酸;用抗體或其它專一性結合蛋白結合TGA1和/或TGA4多肽,利用物理方法,從細胞或有機體之細胞機構中,移除TGA1和/或TGA4多肽;和/或提供足以降低或排除TGA1和/或TGA4多肽在細胞或有機體中表達之正性或負性訊號,透過該訊號與可操作地連接至TGA1或TGA4編碼核酸之調節元素之交互反應。
在一些具體例中,可在植物細胞或有機體中表達或過度表達TGA1和/或TGA4多肽,以便促進硝酸根轉運蛋白,NRT2.1以及NRT2.2,中之一者或二者之表達。在另具體例中,可在植物細胞或有機體中移除或抑制表達TGA1和/或TGA4多肽,以便減少或排除硝酸根轉運蛋白,NRT2.1以及NRT2.2,中之一者或二者之表達。
基於許多理由,需要增加NRT2.1和/或NRT2.2之表達。除了其硝酸根轉運蛋白功能之外,NRT2.1轉運蛋白提供整合側根起始以及側根生長之作用。如上之Little et al.(2005);Remans et al.(2006)Plant Physiol.140:909-21。nrt2.1/nrt2.2擬南芥突變株,在補充硝酸根之培養中,顯示出側根生長減少。如上之Li et al.(2007)。因此,藉由單獨改變TGA1和/或TGA4之表達,或伴隨改變植物之營養狀態,來操縱NRT2.1以及NRT2.2之位準,可引起植物之根生長以及發育程序改變。
在一些具體例中,可在植物細胞或有機體中表達或過度表達TGA1和/或TGA4多肽,以便促進至少一種其它氮反應性基因之表達。例如,可在植物細胞或有機體中表 達或過度表達TGA1和/或TGA4多肽,以便促進圖5所示之基因的表達。在另外具體例中,可在植物細胞或有機體中移除或抑制表達TGA1和/或TGA4多肽,以便減少或排除至少一種其它氮反應性基因之表達。例如,可在植物細胞或有機體中移除或抑制表達TGA1和/或TGA4多肽,以便減少或排除圖5中所示之基因之表達。
在一些具體例中,可操縱植物細胞或植物中TGA1和/或TGA4之表達,以便影響主和/或側根的生長(如,因應硝酸根)。例如,可在植物細胞或有機體中表達或過度表達TGA1和/或TGA4多肽,以便刺激和/或增加主和/或側根之生長。相反地,可在植物細胞或有機體中移除或抑制表達TGA1和/或TGA4多肽,以便排除和/或減少主和/或側根之生長(如,減少主和/或側根因應硝酸根之生長)。
在一些具體例中,可操縱植物細胞或植物中TGA1和/或TGA4之表達,以便影響該植物細胞或植物在氮有限之條件下之生長。例如,可在植物細胞或有機體中表達或過度表達TGA1和/或TGA4多肽,以便刺激和/或增加該植物在氮有限之條件下之生長。相反地,可移除或抑制植物細胞或有機體中TGA1和/或TGA4多肽之表達,以便排除和/或減少該植物在氮有限之條件下之生長(如,減少植物因應硝酸根之生長)。
可利用磷酸化(Popescu et al.(2009)Genes Dev.23:80-92)或S-亞硝基化(Lindermayr et al.(2010)Plant Cell 22:2894-907),後轉譯修飾TGA1。此等以及其它後轉譯修 飾可發揮調節TGA1和/或TGA4之作用。例如,近來顯示,在用生理性一氧化氮(NO)供體之S-亞硝基榖胱甘肽處理後,TGA1可為S23亞硝基化的。如上之Lindermayr et al.(2010)。此S23亞硝基化會提高TGA1之DNA結合活性。因為NO的產生與NR活性相關(Kolbert and Erdei(2008)Plant Signal Behav.3:972-3),以及亞硝酸根作為NO形成之基質(Yamasaki et al.(1999)Trends Plant Sci.4:128-9;Rockel et al.(2002)J.Exp.Bot.53:103-10;Lea et al.(2004)Planta 219:59-65;Meyer et al.(2005)Photosynth.Res.83:181-9;Planchet et al.(2005)Plant J.41:732-43),所以硝酸根衍生的代謝物(如,亞硝酸根或NO)可參與活化TGA1以及TGA4的轉錄因子活性,執行硝酸根/亞硝酸根轉錄反應。
因此,特別的具體例包括操縱或模仿後轉譯修飾TGA1和/或TGA4,以便影響TGA1和/或TGA4之活性。再者,可提供或移除與TGA1和/或TGA4表達串聯之硝酸根反應途徑之上游訊號分子,例如,以便調整作用在技術從業人員之判斷下所需之位準。
在沒有受限於特別理論之情況下,TGA1以及TGA4可為至少二個因應硝酸根處理而活化之調節機制之一部分。首先,硝酸根和/或硝酸根衍生的訊號(如,亞硝酸根NO)會活化TGA1以及TGA4轉錄因子,以容許結合TGA1以及TGA4至其等標的基因之啟動子區域。因此,增加此等硝酸根反應標的基因之表達,使該細胞(以及包含該細胞之植物)適應富含硝酸根之環境。其次,硝酸根和/或硝酸根衍 生的訊號亦可產生誘導TGA1以及TGA4基因之表達持績比較長的時間。此基因表達之誘導可為分開調節功能之一部分。此等反應之時程差異可能與調節之過程的本質有關(如,代謝相對於發展)和/或不同的空間功能(局部相對於系統)。因此,在特別具體例中,可以時間依賴方式操緃植物或細胞中之TGA1和/或TGA4,以便達到一或多種特別所欲的硝酸根反應。
VI.包含TGA1和/或TGA4之植物、植物部分以及植物材料
一些具體例是針對產生轉形細胞之方法,該轉形細胞包含一或多種TGA1和/或TGA4多肽(如上所述),或一或多種包含編碼TGA1和/或TGA4多肽之核酸序列之核酸。此核酸分子亦可包含,例如,非編碼調節元素,諸如啟動子。其它序列亦可與該非編碼調節元素以及可轉錄核酸分子序列一起被引入細胞中。此等其它序列可包括3’轉錄終結子、3’多腺苷酸化訊號、其它非轉譯序列、轉運或導向序列、選擇標記、增強子以及操作子。
轉形之方法一般而言包含下列步驟:選擇適合的宿主細胞、用重組載體轉形該宿主細胞以及獲得轉形的宿主細胞。用於將DNA引入細胞之技術,係熟悉此等技藝之人士公知的。此等方法一般而言可分成五類:(1)化學方法(Graham and Van der Eb(1973)Virology 54(2):536-9;Zatloukal et al.(1992)Ann.N.Y.Acad.Sci.660:136-53);(2)物理方法,諸如微注射(Capechi(1980)Cell 22(2):479-88)、電穿孔(Wong and Neumann(1982)Biochim.Biophys.Res. Commun.107(2):584-7;Fromm et al.(1985)Proc.Natl.Acad.Sci.USA 82(17):5824-8;美國專利案第5,384,253號)以及粒子加速法(Johnston and Tang(1994)Methods Cell Biol.43(A):353-65;Fynan et al.(1993)Proc.Natl.Acad.Sci.USA 90(24):11478-82;(3)病毒載體(Clapp(1993)Clin.Perinatol.20(1):155-68;Lu et al.(1993)J.Exp.Med.178(6):2089-96;Eglitis and Anderson(1988)Biotechniques 6(7):608-14);(4)受體介導機制(Curiel et al.(1992)Hum.Gen.Ther.3(2):147-54;Wagner et al.(1992)Proc.Natl.Acad.Sci.USA 89(13):6099-103);以及(5)細菌介導機制,諸如農桿菌。選擇性地,核酸可經由直接注射植物的生殖器官,而直接被引入花粉中。Zhou et al.(1983)Methods in Enzymology 101:433;Hess(1987)Intern.Rev.Cytol.107:367;Luo et al.(1988)Plant Mol.Biol.Reporter 6:165;Pena et al.(1987)Nature 325:274。其它轉形方法包括,例如,如美國專利案第5,508,184號所述之原生質體轉形。亦可將核酸分子注射進入免疫胚胎中。Neuhaus et al.(1987)Theor.Appl.Genet.75:30。
最常使用於植物細胞之轉形之方法為:農桿菌介導的DNA轉形方法(Fraley et al.(1983)Proc.Natl.Acad.Sci.USA 80:4803)(如美國專利案第5,824,877號;美國專利案第5,591,616號;美國專利案第5,981,840號;以及美國專利案第6,384,301號所述)以及生物彈道或微彈轟擊法(即,基因槍)(諸如美國專利案第5,550,318號;美國專利案第5,538,880 號;美國專利案第6,160,208號;美國專利案第6,399,861號;以及美國專利案第6,403,865號所述)。典型地,需要核轉形,但在此需要專一性轉形色質體,諸如葉綠素或澱粉體,植物色質體可使用微彈轟擊,傳送所欲的核酸分子於某植物種類中進行轉形,諸如,擬南芥、菸草、馬鈴薯以及甘藍。
農桿菌介導的轉形可透過使用屬於農桿菌屬之基因工程土壤細菌。許多農桿菌品種會介導稱作“T-DNA之專一性DNA的轉移,其可經遺傳工程而攜帶任何所需DNA片段進入許多植物品種中。製造T-DNA介導的致病之方法之主要事件是:誘導毒性基因以及加工以及轉移T-DNA。此方法係許多綜論文章之題目。見,如Ream(1989)Ann.Rev.Phytopathol.27:583-618;Howard and Citovsky(1990)Bioassays 12:103-8;Kado(1991)Crit.Rev.Plant Sci.10:1-32;Zambryski(1992)Annual Rev.Plant Physiol.Plant Mol.Biol.43:465-90;Gelvin(1993)in Transgenic Plants,Kung and Wu eds.,Academic Press,San Diego,CA,pp.49-87;Binns and Howitz(1994)In Bacterical Pathogenesis of Plants and Animals,Dang,ed.,Berlin:Springer Verlag.,pp.119-38;Hooykaas and Beijersbergen(1994)Ann.Rev.Phytopathol.32:157-79;Lessl and Lanka(1994)Cell 77:321-4;以及Zupan and Zambryski(1995)Annual Rev.Phytopathol.27:583-618。
為選擇或評分無關轉形方法之轉形植物細胞,引 入細胞之DNA可含有一基因,其功能為在再生植物組織中,能產生提供植物組織對抗其它毒性化合物之化合物。用作為選擇、篩選或評分標記之目的基因包括,但不限於,β-葡萄糖苷酸酶(GUS)、綠色螢光蛋白(GFP)、螢光素酶以及抗生素或除草劑抗性基因。抗生素抗性基因之例子包括提供對抗盤尼西林、卡那鰴素(kanamycin)(以及新鰴素、G418、博來鰴素(bleomycin));甲氨蝶呤(以及甲氧苄氨嘧啶);氯鰴素;以及四環黴素之基因。例如,除草劑抗性基因可提供草甘磷抗性。Della-Cioppa et al.(1987)Bio/Technology 5:579-84。亦可實施其它選擇裝置,包括,例如,但不限於,對草胺磷、雙丙胺磷以及正性選擇機制具耐受性(Joersbro et al.(1998)Mol.Breed.4:111-7),以及視為落在本發明之具體例之範疇內者。
之後,可使經選擇或篩選鑑定出來之轉形細胞,在支撐再生之適當培養基中,成熟成植物。
目前揭示之方法,可使用任何可轉形的植物細胞或組織。在此使用之可轉形的細胞以及組織,包括,但不限於,該等能夠進一步增生長成植物之細胞或組織。熟悉此技藝之人士應知道許多可轉形的植物細胞或組織,其中在插入外源性DNA以及適當的培養條件後,植物細胞或組織可形成分化植物。適合此等目的之組織可包括,但不限於,未成熟胚胎、胚盤組織、懸浮細胞培養物、未成熟花序、莖尖、結點外植體、癒傷組織、下胚軸組織、子葉、根以及葉。
從轉形植物原生質體或外植體而來之植物之再生、發育以及培養,是業界已知的。Weissbach and Weissbach(1988)Methods for Plant Molecular Biology,(Eds.)Academic Press,Inc.,San Diego,CA;Horsch et al.(1985)Science 227:1229-31。此再生以及生長過程,典型地包括選擇轉形細胞以及透過胚胎發育之一般階段以及透過生根苗階段培養該等細胞之步驟。轉基因胚胎以及種子之再生相似。在此方法中,轉形物一般係在存在可選擇成功轉形細胞以及誘導植物幼枝再生之選擇培養基中培養。Fraley et al.(1993)Proc.Natl.Acad.Sci.USA 80:4803。此等幼枝典型在二至四個月內獲得。之後,將所產生之轉基因生根幼枝種在諸如土壤之適當植物生長培養基中。可將在選擇劑下存活之細胞,或在篩選分析中評分為陽性的細胞,培養在支持植物再生之培養基中。之後,將幼枝移至含有選擇劑以及抗生素,以便防止細菌生長之適當的根誘導培養基中。許多幼枝會發展出根。之後將此等移植至土壤或其它培養基中,以容許根持續之發育。以上概述之方法通常隨著所使用之特別植株改變,以及因此,特別的方法係落在熟悉此技藝之人士之考慮內。
再生的轉基因植物可自我授粉,產生純合子轉基因植物。選擇性地,從該再生轉基因植物獲得之花粉,可與非轉基因植物,較佳地農藝重要品種之自交系,交叉授粉。相反地,從非轉基因植物而來之花粉,可用於授粉該再生轉基因植物。
該轉基因植物可隨著轉形的核酸序列進入其後代中。該轉基因植物較佳地係轉形的核酸序列純合子,然後在有性生殖時轉送該序列至其所有的後代。後代可從該轉基因植物產生之種子長成。此等額外的植物之後可自我授粉,產生純育品系植株。
評估此等植物之後代的基因表達。可用幾個常用的方法檢測基因之表達,諸如西方墨點法、北方墨點法、免疫沈澱法以及ELISA。亦可分析轉形植物中是否存在引入的DNA,以及利用本發明之核酸分子以及胺基酸分子給予之表達位準和/或脂肪酸量變曲線。熟悉此技藝之人士應知道許多可用於分析轉形植物之方法。例如,植物分析之方法包括,但不限於,南方墨點法或北方墨點法、PCR為基礎之方法、生化分析法、表型篩選方法、田野評估以及免疫診斷分析法。
轉形雙子葉植物之方法是熟悉此技藝之人士公知的。使用此等方法之轉形以及植物再生,在許多作物中已有記述,包括,但不限於,擬南芥屬、棉花(Gossypium hirsutum)、大豆(Glycine max)、花生(Arachis hypogaea)之成員以及芸苔屬之成員。轉形雙子葉植物之方法,首先使用農桿菌,然後獲得已經公開之棉花(美國專利案第5,004,863號;美國專利案第5,159,135號;美國專利案第5,518,908號);大豆(美國專利案第5,569,834號;美國專利案第5,416,011號;McCabe et al.(1988)Biotechnology 6:923;Christou et al.(1988)Plant Physiol.87:671-4);芸苔屬植物 (美國專利案第5,463,174號);花生(Cheng et al.(1996)Plant Cell Rep.15:653-7;McKently et al.(1995)Plant Cell Rep.14:699-703);木瓜;以及豌豆(Grant et al.(1995)Plant Cell Rep.15:254-8)之轉基因植物。
轉形單子葉植物之方法係業界公知的。使用此等方法之轉形以及植物再生,已有許多針對下列作物所作之記述,包括,但不限於,大麥(Hordeum vulgarae);玉米(Zea mays);燕麥(Avena sativa);野茅(Dactylis glomerata);米(Oryza sativa,包括籼稻以及蓬來米品種);高梁(Sorghum bicolor);甘蔗(Saccharum sp);高羊茅(Festuca arundinacea);草坪草品種(如,Agrostis stolonifera、Poa pratensis、Stenotaphrum secundatum);大麥(Triticum aestivum);以及苜蓿(Medicago sativa)。對熟悉此技藝之人士而言,很清楚地,可使用以及修改許多轉形方法,以產生任何標的作物之安定的轉基因植物。
可選擇任何植物,用於在此揭露之方法中。可依照本發明修飾之較佳的植物包括,但不限於,油籽植物、擬南芥屬(如,擬南芥)、琉璃苣(Borago spp.)、加拿大油菜(Brassica spp.)、蓖麻(Ricinus communis)、可可豆(Theobroma cacao)、玉米(Zea mays)、棉花(Gossypium spp)、海甘藍屬、萼距花屬、胡麻(Linum spp.)、Lesquerella以及Limnanthes屬、Linola、旱金蓮(Tropaeolum spp.)、月見草屬、橄欖(Olea spp.)、棕櫚(Elaeis spp.)、花生(Arachis spp.)、油菜子、紅花(Carthamus spp.)、大豆(Glycine and Soja spp.)、向日葵 (Helianthus spp.)、煙草(Nicotiana spp.)、斑鳩菊屬、小麥(Triticum spp.)、大麥(Hordeum spp.)、米(Oryza spp.)、燕麥(Avena spp.)、高粱(Sorghum spp.)以及黑麥(Secale spp.)或其它禾本科成員。
對熟悉此技藝之人士而言,很清楚地,可使用以及修改許多轉形方法,以從任何標的作物,產生安定的轉基因植物。
下列範例係提供以例示說明某些特別的特徵和/或具體例。不應解釋此等範例成將本發明限制至所述之特別特徵或具體例。
範例 範例I:材料以及方法
生物資訊分析以預測硝酸根調節基因:使用植物基因交互反應之網路模型,進行生物資訊之分析,鑑定硝酸根調節基因。為了增加模型之預測,使用對應於硝酸根處理之有效的微陣列表達數據。如上之Wang et al.(2003);如上之Scheible et al.(2004);如上之Wang et al.(2004);如上之Gutierrez et al.(2007)。
首先,選擇所有的擬南芥轉錄因子基因。其次,選擇該等顯著地受硝酸根調節之基因。第三,根據比較針對處理以及對照實驗組之各微陣列分析法時觀察到之大小(倍數變化),指定該等基因之排名分數。第四,根據網路模型中觀察到之連結的數目,指定該等基因之排名分數。如上之Gutierrez et al.(2007)。高度連結的基因可能是“調節中 心(hub)”。Barabasi and Oltvai(2004)Nat.Rev.Genet.5:101-13。第五,根據該基因家族之大小,指定該等基因之排名分數。基因家族大小係使用Gutierrez et al.(2004)Genome Biol.5:R53之方法,使用BLASTCLUSTTM測定。此最後的標準用於減少在對應突變體中,因為功能重疊而缺少表型之機會。最後,計算所有獨立獲得之排名分數之中位數,然後排名,藉此提供最終的基因列表。
植物材料以及生長條件:在所有實驗中使用野生型擬南芥Columbia-0(“Col-0”)。所有使用的突變體亦以Col-0為底子。tga1tga4單一突變以及tga1/tga4雙突變植株,由Dr.Xinnian Dong,Duke University,North Carolina,USA好心的提供。如上之Kesarwani et al.(2007)。硝酸根還原酶(NR)消失突變株,由Nigel Crawford,University of California San Diego,La Jolla,CA好心的提供。如上之Wang et al.(2004)。標記中柱鞘(E374)之GFP株系之來源,可從Pennsylvania大學之GFP增強子捕捉株系獲得。
使植物在無氮之情況下,使用MS31修飾的基礎鹽培養基之水耕培養中生長(Phytotechnology Laboratories)。此培養基補充有0.5mM之琥珀酸銨以及3mM之蔗糖。在22℃(在Percival培育器中),長日照條件下(16/8小時光照/暗)14天後,在第15天光照周期開始時,用5mM KNO3或5mM KCl(作為對照組)處理植物一預定時間。在因應硝酸根處理之根的表型分析方面,使幼苗如上所述生長,然後用5mM KNO3或5mM KCl(作為陰性對照組)處理3 天。在主根測量方面,使用EPSONTM Perfection V700光掃描器,擷取植物影像,以及使用IMAGEJTM程式測量根。使用在NIKONTM Eclipse 80i顯微鏡上之DIC光學元件,計數側根。
RNA分離以及RT-qPCR:使用TRIZOL®試劑,依照製造商(Invitrogen)之說明,從整個根中分離出RNA。使用ImProm-IITM逆轉錄酶,依照製造商(Promega)之說明,進行cDNA分析。使用Stratagene MX3000P qPCR系統上之Brilliant SYBR® Green QPCR試劑,進行RT-qPCR。相對於網格蛋白(Atg4g24550)正規化RNA位準。如圖13所示,所標繪之值相當於三個生物複本之平均值±標準差;沒發現統計上顯著之差異(p<0.05)。
中柱鞘細胞之原生質體之產生以及細胞收集:使標記中柱鞘之增強子捕捉株系E374幼苗,在如上所述之相同實驗條件下生長。在第15天開始時,用5mM KNO3或5mM KCl,處理在具有0.5mM琥珀酸銨作為唯一氮源之水耕法中生長之植物2個小時。收割根,然後依照Birnbaum et al.(2005)Nat.Methods 2:615-9;以及Gifford et al.(2008)Proc.Natl.Acad.Sci.USA 105:803-8之方法,用纖維素酶以及果膠酶處理,產生原生質體。使用FACS分離GFP24表達株,以及從mirVanaTM總RNA萃取套組(Ambion,1560M)之水解緩衝液中,直接收集。以如上所述之方法,進行cDNA分析以及基因表達分析。
基因表達以及網路分析:依照Affymetrix提供之 說明,進行cDNA合成、陣列雜交以及訊號強度之正規化。使用強大多陣列分析法(RMA),在R軟體(Affymetrix)中正規化數據。Irizarry et al.(2003)Biostatistics 4:249-64。用二因子ANOVA分析法處理正規化數據(P<0.05),具錯誤發現率為5%。在ANOVA分析法方面,使用考慮給定基因Y之表達之模型為: Y i =β 0 T+β 1 G+β 2 TG+ε , 方程式1
在此,β 0是整體平均;β 1β 2以及β 3分別是處理、基因型以及此等二個因子之交互反應之結果;以及ε是未解釋變異量。
可使用透過VirtualPlantTM得到之“Gene networks”工具(virtualplant.org),製造具有顯著的處理:基因型交互反應因子之基因之分子網絡。包括蛋白-DNA交互反應,其考慮至少一種在上游基因區域之轉錄因子結合位址,以及過多高於基因體之所有上游序列之平均發生之轉錄因子結合位址(二個標準差)。為改善調節交互反應之預測,過濾該蛋白-DNA交互反應,僅包括轉錄因子/標的對,其等之表達值,在微陣列實驗中顯著相關(P<0.05)之。使用CytoscapeTM軟體,可視化所產生之網路。Shannon et al.(2003)Genome Res.13:2498-504。
核染質免疫沈澱(ChIP)分析:ChIP分析法係依照Saleh et al.(2008)Nat.Protoc.3:1018-25之方法進行分析。簡言之,在第15天破曉(光照時期之開頭),用5mM KNO3或5mM KCl(作為對照組),處理在具有0.5mM琥珀酸銨之水 耕法中生長2周之植物。收集根,然後立即在真空室溫下,在1%甲醛中固定10分鐘。添加甘胺酸停止交聯,最後濃度為0.125 M。
準備細胞核進行核染質分離:使分離的核染質在超音波下振盪22次,每次一週期15秒以及40%振幅(Dr.Hielscher GmbH Bioruptor)。移除一小試樣剪切的核染質,作為對照組(輸入)。稀釋的核染質進行IP,使用抗TGA1抗體以及作為陰性對照組之非專一性IgG。利用定量PCR,使用下列引子對,擴增免疫沈澱的DNA:AtNRT2.1(正向,5’-CTATCCTGTATCACTGTATGTAACCAG(序互辨識編號17);逆向,5’-GGATGGATAGTCAACAATATGGTTGTG(序互辨識編號18))以及AtNRT2.2(正向,5’-CTCAACAGAGGGAACACCGG(序互辨識編號19);逆向,5’-CCCAAAATATATTACAATGTAGTTG(序互辨識編號20))。
排序系統開發成能整合多種數據類型,該系統鑑定出擬南芥中,TGA1以及TGA4為潛在重要的控制氮反應之調節因子。實驗證明TGA1以及TGA4作為一重要的氮反應調節者之重要性,以及進一步證明TGA1以及TGA4會介導氮調節涉及硝酸根之攝取以及還原之重要基因。亦測定TGA1以及TGA4,為主以及側根二者因應硝酸根之生長的重要調節因子。此等結果鑑定出,TGA1以及TGA4轉錄因子,為植物根之氮反應中重要的調節因子。
範例II:擬南芥中硝酸根反應調節之測定
依照範例I所述之方法,排出各實驗中,根據轉錄因子對硝酸根處理之絕對反應之順序(排名順序為,最強反應、誘導或抑制)。平均各實驗之排名,產生一個硝酸根調節之分數。分析之最佳候選者為TGA1(At5g65210),之前沒有與硝酸根反應相關之bZIP轉錄因子。在排名中亦發現較低分數之TGA4(At5g10030),其係與bZIP家族緊密相關之成員。因為其等之報導的功能重疊性(如上之Kesarwani et al.(2007)),選擇TGA1以及TG4二者進一步分析。
實驗III:硝酸根調節TGA1以及TGA4之表達
第一步驟係分析此等轉錄因子於硝酸根反應中之可能的角色,在硝酸根處理後,於時程實驗中測量TGA1以及TGA4 mRNA之位準。使野生型Col-0植物在具有0.5mM琥珀酸銨作為唯一氮源之水耕法中生長2周。在第15天光照時期開始時,使植物曝露於5mM KNO3或KCl(對照組)。之後1、2、4以及8個小時,收割根器官進行RNA分離。使用定量RT-qPCR測量TGA1以及TGA4之轉錄位準,以及使用網格蛋白基因作為參考標準。mRNA位準是相對於時間0。圖1(A-B)。如圖1A以及1B所示,TGA1以及TGA4 mRNA二者在KNO3處理後快速累積,但KCl處理後沒有,顯示出在根中,此等基因之表達是受硝酸根處理之調節。為了評估TGA1以及TGA4之硝酸根調節是否為所有TGA家族成員共通的(Jakoby et al.(2002)Trends Plant Sci.7:106-11),測量TGA2TGA3TGA5TGA6TGA7TGA9TGA10以及PAN之mRNA位準。在如以上所述之相同實驗條件下,硝酸 根處理不會影響此等其它TGA轉錄因子之表達,如圖13所示。在相同實驗條件下,硝酸根處理不會影響其它TGA轉錄因子之表達。此結果指出,硝酸根處理會專一性影響根中TGA1以及TGA4之表達。
實驗IV:硝酸根代謝物調節TGA1以及TGA4之表達
為評估所觀察到之調節是因硝酸根直接引起,或硝酸根還原產生之N代謝物所引起的,在NR消失突變體中進行相似的實驗。如上之Wang et al.(2004)。使植物在具有銨離子作為唯一氮源之水耕法培養基中生長。在第15天之光照開始時,收割根(時間0)或曝露於250mM KNO3、250mM KCl、5 mM NH4Cl或5mM KCl中,歷時指定之時間。收割根,分離全部的RNA,進行RT-qPCR分析,網格蛋白基因用於正規化RNA位準。圖1C以及1D。
NR消失突變體中缺少NR活性,會防止硝酸根還原,阻斷下游訊號之產生。如上之Wang et al.(2004)。因此,在野生型以及NR消失突變體二者中,因應硝酸根之基因直接受硝酸根之調節。在NR消失突變體中,TGA1以及TGA4 mRNA位準二者,在處理1個小時後,均受硝酸根處理之誘導。圖1C以及1D。然而相較於野生型植物,在NR消失突變體中,硝酸根處理後,TGA1以及TGA4 mRNAs之累積大幅地減少。雖然嚴重的減少,但硝酸根處理後,在NR消失突變體植物中檢測到TGA1以及TGA4 mRNA位準增加,指出此等基因之表達的調節受硝酸根以及其它N代謝物之影響。
為鑑別有助於TGA1以及TGA4調節之額外N代謝 物訊號,評估在亞硝酸根或銨離子處理後,隨著時間推進之TGA1以及TGA4 mRNA之位準。之前的研究顯示,250μM亞硝酸根,是獲得誘導亞硝酸根反應基因最高峰之最佳濃度(Wang et al.,2007)。250μM亞硝酸根處理會誘導TGA1以及TGA4二者之轉錄位準(圖1E以及1F)。使用報導之條件評估GDH2以及其它銨離子反應基因之銨離子調節(Patterson et al.,2010),在銨離子處理後,在此等基因中觀察到之mRNA位準沒有顯著改變(圖1G以及1H)。此等結果指出,在擬南芥根中,TGA1以及TGA4受硝酸根以及亞硝酸根之誘導。
範例V:亞硝酸根調節TGA1以及TGA4之表達
為鑑別有助於TGA1以及TGA4之調節之額外氮代謝訊號,在亞硝酸根或銨離子處理後,評估隨時間推進之TGA1以及TGA4 mRNA位準。亞硝酸根處理會誘導TGA1以及TGA4二者之轉錄位準。圖2(A-B)。然而,在銨離子處理後,TGA1以及TGA4之mRNA位準,沒有觀察到顯著改變。圖2(C-D)。此等結果指出,根中之TGA1以及TGA4係受硝酸根以及亞硝酸根之誘導,暗示此等轉錄因子可能涉及硝酸根攝取以及還原二者之起始N代謝步驟之調節。
範例VI:TGA1以及TGA4促進主以及側根之生長
為評估TGA1以及TGA4對根生長以及發育之衝擊,分析tga1以及tga4單一突變以及tga1/tga4雙突變植株對3天KNO3或KCl(對照組)處理之反應(如上之Kesarwani et al.(2007))。測量在與以上所述相同之條件下水耕法中生長2 週,以及5mM KNO3或KCl處理3天後之植株的主根長度。明確而言,使植株在具有0.5mM琥珀酸銨作為唯一氮源之水耕法中生長2周。在第15天破曉,用5mM KNO3或5 mM KCl處理幼苗3天。如範例I中所述,測量在此等條件下之Col-0、tga1tga4以及tga1/tga4植株之主根長度。圖3。
tga1以及tga4單一突變株二者,與在KNO3以及KCl二者之處理下之野生植株相比,顯示正常的主根生長。圖3A。單一突變株中,表型之缺少與此等二個基因間之高序列相似性(Xiang et al.(1997)Plant Mol.Biol.34:403-15)以及其等之前在病原反應調節之內容中報導的功能重疊一致(如上之Kesarwani et al.(2007))。
與該單一突變株相反,與野生型植株相比,在KNO3處理下,tga1/tga4雙突變株顯示主根生長降低,而KCl對照處理下不會。圖3A。此外,評估在相同實驗條件下,因應硝酸根之側根密度,硝酸根處理增加了包含TGA1以及TGA4對偶基因野生型(Col-0)植株之側根密度。然而,tga1/tga4雙突變植株在硝酸根處理下,顯示側根反應改變,與野生植株相比,顯示側根密度減少。圖3B。
中柱鞘是軸管(stele)之最外層部分,而側根是從中柱鞘組織開始。Dolan et al.(1993)Development 119:71-84;Malamy and Benfey(1997)Development 124:33-44。為了評估硝酸根處理是否會調節中柱鞘細胞層中TGA1以及TGA4之表達,使中柱鞘標記株在具有0.5mM琥珀酸銨作為唯一氮源之水耕法中生長2周。在第15天破曉, 用5mM KNO3或5mM KCl處理幼苗2個小時。從根製備原生質,然後用FACS收集表達GFP之中柱鞘細胞。從中柱鞘細胞中分離出全部的RNA,然後使用RT-qPCR測量TGA1以及TGA4之mRNA位準。發現,在KNO3處理後,TGA1以及TGA4 mRNA會累積在中柱鞘中,而KCl處理後不會。圖4。此結果指出,中柱鞘細胞(在此側根起始發生)中之TGA1以及TGA4表達,會受硝酸根處理之調節。此等結果指出,TGA1以及TGA4對因應硝酸根調整根系統結構很重要。
範例VII:受TGA1以及TGA4控制之硝酸根反應性基因網路
為了鑑別可在此等轉錄因子之作用下之TGA1以及TGA4標的基因,在氮的存在下,對主與側根生長之影響,使用擬南芥基因晶片(ATH1;Affymetrix),進行轉錄體分析,評估硝酸根在野生型以及tga1/tga4雙突變植株之根中的作用。使植株在具有琥珀酸銨為唯一氮源之MS培養基中生長,然後如以上所述,用5mM KNO3或KCl處理2個小時。從根器官中分離出所有的RNA,然後製備供基因晶片雜交,如範例I所述。使用RMA正規化基因表達數據,以及根據Krouk et al.(2009)PLoS Comput.Biol.5:e1000326之方法,使用二因子ANOVA決定差異基因之表達。ANOVA模型考慮之因子是植物基因型(G)、處理(T)以及基因型與處理(TG)間之交互作用,以及使用5% FDR定義基因表達顯著的改變。結果指出,在吾人之實驗條件下,827個基因受硝酸根處理(T)之調節。將在此等實驗中,受硝酸根調節之基因的數目以及本質,與之前有關擬南芥硝酸根反應之全基 因組分析報告作比較,如上之Wang et al.(2003);如上之Scheible et al.(2004);如上之Wang et al.(2004)。
鑑別出之96個基因中,TG因子具顯著性。此等96個基因相當於與野生型TGA1/TGA4植株比較之下,在tga1/tga4雙突變株中,對硝酸根之反應改變之基因。在模型中,僅4個基因顯示基因型為唯一顯著性因子,指出tga1/tga4突變之作用,在硝酸根反應方面,是最聲名狼藉的。全面地,在tga1/tga4雙突變中,15%之基因顯示因應硝酸根之表達改變。此外,在tga1/tga4雙突變中,97%基因表達改變的基因,亦受硝酸根之調節。此結果強化TGA1以及TGA4與硝酸根反應之專一態樣有關。
為了揭開其對硝酸根之反應依賴TGA1以及TGA4之基因之調節交互反應,使用透過VirtualPlantTM網站獲得之Gene Networks工具,產生存在顯著TG因子之基因之網路視圖。Katari et al.(2010)Plant Physiol.152:500-15。使用CytoscapeTM具體表示結果網路,在此,基因以結點表示,由邊綠連接顯示調節交互反應。圖5。依照該網路,TGA1以及TGA4二者均正向調節硝酸根轉運蛋白,NRT2.2,之表達。NRT2.2對擬南芥中硝酸根之攝取很重要。如上之Li et al.(2007)。此外,在該網路中觀察到涉及其它訊號途徑之基因,例如,絲胺酸/蘇胺酸蛋白磷酸酶2A(PP2A,At5g25510);蛋白磷酸酶2C(PP2C,At4g38520);CBL交互反應蛋白激酶3(CIPK3,At2g26980);以及生長素/吲哚-3-醋酸7(IAA7,At3g23050)轉錄因子。一些參與壓力反應之基 因,諸如過氧化酶,亦發現會受TGA1以及TGA4之調節。
此等結果指出,因應硝酸根之處理,TGA1以及TGA4會調節涉及硝酸根攝取以及細胞訊號以及壓力反應之標的基因的表達。tga1/tga4雙突變株中,此標的基因因應硝酸根處理之表達的調節改變,可解釋所觀察到之表型的改變。
範例VIII:TGA1以及TGA4在硝酸根反應中之調節角色
吾人之數據指出,直接參與硝酸根攝取之基因,是硝酸根反應中TGA1以及TGA4之標的。為了決定tga1/tga4雙突變株中,參與硝酸根之攝取以及還原之基因的表達是否受影響,在硝酸根處理後,使用RT-qPCR測量野生型以及tga1/tga4突變植株中,已知的硝酸根反應性基因NRT2.1NRT2.2NIA1以及NIR之mRNA位準。明確而言,使Col-0以及tga1/tga4植株在具有銨離子為唯一氮源之水耕系統中生長。在第15天光照時期之開始,用5mM KNO3或5mM KCl(對照組)處理植株一指定時間。分離出RNA,用RT-qPCR測量mRNA位準,在此網格蛋白基因用於正規化。
在野生型植株中,全部四種基因,NRT2.1NRT2.2NIA1以及NIR,均受硝酸根處理高度的誘導。然而,在tga1/tga4 m突變株中,NRT2.1NRT2.2以及NIR基因之硝酸根誘導顯著較低。圖6A-B(處理後2個小時,對NRT2.1以及NRT2.2之誘導分別低於野生型25%以及48%);圖6C(處理後1個小時,對NIR之誘導低於野生型41%)。在野生型以及tga1/tga4突變植株之間,觀察到NIA1之表達沒 有差異。此等結果指出,因應硝酸根之處理,NRT2.1NRT2.2以及NIRTGA1以及TGA4之調節。
為了決定參與硝酸根還原之基因之表達是否受TGA1以及TGA4之調節,吾人評估在相同實驗條件下NIA1以及NIR之表達。在野生型以及tga1/tga4突變植株之間,觀察到NIA1之表達沒有差異(圖16)。然而,硝酸根處理後1個小時,在tga1/tga4突變中,NIR基因之硝酸根誘導顯著較低(41%)(圖6C)。此等結果指出,NRT2.1、NRT2.2以及NIR是TGA1以及TGA4之標的基因。
因為TGA1以及TGA4係以組織專一性方式進行調節,因此吾人評估TGA1/TGA4標的基因,因應硝酸根處理之根細胞專一性表達。圖11A以及11B顯示,表皮層、內皮中柱鞘以及中柱中,NRT2.1以及NRT2.2會受硝酸根之調節。相反地,在所有細胞類型中,NIR會受硝酸根之調節。雖然TGA1/TGA4表達結構域以及其等標的基因之間有重疊,但需要額外的調節因子來調整NRT2.1、NRT2.2以及NIR因應硝酸根之組織專一性模型。
範例IX:TGA1NRT2.1以及NRT2.2表達上之作用
網路模型亦預測TGA1NRT2.2之表達上直接的作用。之前的報告顯示,NRT2.1以及NRT2.2在擬南芥基因體內位置非常接近。Orsel et al.(2002)Plant Physiol.129:886-96。另一研究提出,相似的轉錄機制涉及NRT2.1以及NRT2.2之硝酸根反應。Girin et al.(2007)Plant Cell Environ.30:1366-80。為了決定NRT2.1是否為TGA1之直接 標的,手工檢查NRT2.1之啟動子區域,發現從該轉錄起始位址之位置-309以及-304之間之TGA1結合模體(Schindler et al.(1992)Plant Cell 4:1309-19)殘基。此等發現顯示,NRT2.1以及NRT2.2之表達直接受TGA1之調節。
為確認NRT2.1以及NRT2.2之表達係直接受TGA1之調節,使用TGA1專一性抗體以及作為陰性對照組之非專一性IgG,進行核染質免疫沈澱法(ChIP)分析。在第15天破曉,用5mM KNO3或5mM KCl處理植株20、60或120分鐘。利用qPCR,使用設計對抗含有TGA1結合模體之NRT2.1NRT2.2啟動子區域之專一性引子,定量免疫沈澱的DNA。TGA1以硝酸根依賴方式結合至NRT2.1以及NRT2.2啟動子。圖7。在使用非專一性IgG之免疫沈澱中,或在KCl處理之植株樣本中,沒有觀察到此等專一性占據。因此,TGA1是因應硝酸根處理,直接調節NRT2.1以及NRT2.2基因之表達之轉錄因子。再者,就在硝酸根處理20分鐘後,在此標的基因之啟動子區域中檢測到TGA1,表示TGA1以及TGA4參與對硝酸根/亞硝酸根之早期反應。
範例X:TGA1/TGA4表型之原因不是硝酸根攝取不足
NRT2.1以及NRT2.2是高親和力轉運蛋白系統(HATS)之一部分,其是低硝酸根濃度下硝酸根攝取所必須的(Li et al.,2007)。Hu et al證實,NRT2.1會受廣範圍的硝酸根濃度之誘導,而NRT2.1硝酸根反應包含低以及高親和力階段(Hu et al.,2009)。如圖6A以及6B所示,在5mM KNO3(濃度在低親和力範圍內)下,NRT2.1以及NRT2.2之硝酸根 誘導需要TGA1。為了探討TGA1以及TGA4是否涉及高親和力階段中NRT2.1以及NRT2.2之硝酸根誘導,吾人評估在250μM KNO3或250μM KCl處理後2個小時之NRT2.1以及NRT2.2基因表達。圖12A以及12B顯示,在250μM KNO3處理下,NRT2.1以及NRT2.2之硝酸根誘導需要TGA1以及TGA4。此等結果指出,在低以及高親和力階段中,TGA1以及TGA4係NRT2.1以及NRT2.2基因表達之正向調節子。
為決定tga1/tga4雙突變中,NRT2.1以及NRT2.2之表達減少,是否會衝擊硝酸根之攝取,吾人使用15NO3 -同位素標籤,進行淨硝酸根攝取實驗。使植株在以上所述之水耕條件中生長,以及用富含10% 15NO3 -之250 μM或5mM NO3 -處理一指定時間。發現,淨硝酸根攝取在野生型以及tga1/tga4雙突變植株中相似(圖12C)。因為吾人沒有觀察野生型以及tga1/tga4在長時間15NO3 -曝露(8小時)之硝酸根攝取的差異(圖12C),所以在圖3A以及3B中所觀察到之tga1/tga4表型之原因不像是硝酸根吸收不足。此結果顯示,tga1/tga4中,在因應硝酸根之基因表達上之作用之原因,像是訊號途徑之缺失。
範例XI:TGA1以硝酸根依賴之方式結合至NRT2.1以及NRT2.2啟動子
網路模型(圖5)預測TGA1/TGA4直接作用在NRT2.2之表達上。為了決定是否NRT2.1亦為TGA1/TGA4之直接標的,吾人手工檢查NRT2.1之啟動子區域,從其轉譯起始位址之位置-1338至-1333以及-371至-266之間,發現二 個之前所述之TGA1結合模體(Schindler et al.,1992)。有趣地,Girin et al.,2007製造NRT2.1啟動子之缺失,用以鑑別會控制硝酸根誘導之區域,且他們觀察到,當-456以及-245之間之區域被刪除時,因應硝酸根之基因表達大量的減少。(Girin et al.,2007)。因此,TGA1結合位址是含在NRT2.1啟動子之區域中,其對硝酸根誘導的基因表達很重要。吾人使用核染質免疫沈澱(ChIP)分析法,使用TGA1專一性抗體以及非專一性IgG(作為陰性對照組)來評估是否NRT2.1以及NRT2.2為TGA1之直接標的基因。如以上所進行的,在第15天破曉,用5mM KNO3或5mM KCl(作為陰性對照組)處理植株20、60以及120分鐘。
利用qPCR,使用設計對抗在位置-371以及-366中含有TGA1結合模體之NRT2.1啟動子區域,或在位置-1287以及-1282以及-1194以及-1189中含有二個TGA1結合模體之NRT2.2啟動子區域之專一性引子,定量免疫沈澱的DNA。如圖7A以及7B所示,TGA1會以硝酸根依賴方法結合至NRT2.1以及NRT2.2啟動子。此結合對NRT2.1以及NRT2.2啟動子區域具專一性,而對該基因之其它區域沒有專一性,因為當吾人使用設計對抗NRT2.1以及NRT2.2編碼序列之引子時,沒有觀察到擴增(圖7)。因應硝酸根之NRT2.1表達位準,大於NRT2.2 3倍(圖6),據此TGA1被吸收至NRT2.1啟動子區域之程度大於NRT2.2。當吾人擴增NIA1啟動子區域時,沒有觀察到占據,此硝酸根反應性基因不受TGA1以及TGA4之調節(圖7)。在用非專一性IgG之免疫沈 澱,或用KCL之對照條件中,沒有觀察到TGA1占據。此結果指出,TGA1在硝酸根處理時被吸收至NRT2.1以及NRT2.2之啟動子區域,用以調節其等之表達。
範例XII:chl1-5以及T101D突變株中,NRT2.1因應硝酸根之表達會受影響
使Col-0、chl1-5chl1-9以及T101D植株,在使用材料以及方法中所述之實驗條件之水耕法中生長。在第15天之光照時期開始時,用5mM KNO3或5mM KCl(作為對照組)處理植株一指定時間。分離RNA,用RT-qPCR測量NRT2.1 mRNA位準。使用網格蛋白基因(At4g24550)作為正規化參考。標繪之值,對應於三個獨立生物複本±標準差之平均值(圖15)。星號指出突變株以及col-0間具顯著差異(P<0.05)。
範例XII:pTGA1:GUS以及pTGA4:GUS基因融合體之建構以及GUS活性分析
在嵌合pTGA1:GUS以及pTGA4:GUS基因融合方面,從擬南芥生態型Col-0之基因體DNA中,擴增TGA1以及TGA4轉譯起始密碼子上游2000bp片段。使用下列引子來擴增TGA1以及TGA4啟動子,以及設計用引入BamHI以及NcoI位址:TGA1啟動子(正向,5’-TTGGATCCTTACTACGTCACCAGAATC(序列辨識編號21)以及逆向,5’-AACCATGGTTTTCCTCAACTGAAAACAAAG(序列辨識編號22))以及TGA4啟動子(正向, 5’-TTGGATCCAGAAGTTGTGGTCACC(序列辨識編號23)以及逆向,5’-AACCATGGATTTCTTCAACTAGCAAC(序列辨識編號24))。用BamHI以及NcoI消化重組質體,將DNA片段連至pCAMBIA 1381(CAMBIA,Canberra,Australia)中。利用DNA定序,確定建構體之結構。之後利用電穿孔,將該建構體引入農桿菌GV3101。擬南芥植株中農桿菌介導的轉形,係使用花序浸漬法(Clough and Bent,1998)進行。選擇對潮鰴素具抗性之T1世代之種子。每一建構體獲得至少8個獨立的轉基因株,利用PCR確認轉基因之存在。在GUS活性之組織化學分析方面,在GUS反應緩衝液(100mM磷酸鈉緩衝液,pH 7.0,0.5mM鐵氰化鉀、0.5mM亞鐵氰化鉀、0.1%(vol/vol)Triton X-100、0.1%(wt/vol)十二烷基肌胺酸鈉)加上1mM 5-溴-4-氯-3-吲哚基-β-D-葡萄糖苷酸(X-Gluc)中,37℃下,培育幼苗。染色後,藉由用配製在20%甲醇中之0.24 N HCl,在57℃下培育15分鐘,清洗樣本。用配製於60%乙醇中之7% NaOH、7%羥胺-HCl取代此溶液,然後在室溫下培育15分鐘。之後使幼苗各在40%、20%以及10%乙醇中脫水5分鐘,然後在5%乙醇、25%甘油中滲透15分鐘。將樣本封在顯微鏡玻片上50%甘油中,使用Nikon Eclipse 80i顯微鏡上之DIC光學儀器顯像。針對每標記株以及處理,分析至少15個植株。
<110> 智利天主教大學
<120> 與硝酸根位準有關的植物轉錄因子及其使用方法
<130> 2971.05-P10968.1US
<160> 24
<170> PatentIn版本3.5
<210> 1
<211> 368
<212> PRT
<213> 擬南芥(Arabidopsis thaliana)
<400> 1
<210> 2
<211> 365
<212> PRT
<213> 小鹽芥(Thellungiella halophila)
<400> 2
<210> 3
<211> 364
<212> PRT
<213> 琴葉擬南芥(Arabidopsis lyrata)
<400> 3
<210> 4
<211> 364
<212> PRT
<213> 蕪菁(Brassica rapa)
<400> 4
<210> 5
<211> 390
<212> PRT
<213> Arabidopsis arenosa
<400> 5
<210> 6
<211> 362
<212> PRT
<213> 葡萄(Vitis vinifera)
<400> 6
<210> 7
<211> 362
<212> PRT
<213> 菜豆(Phaseolus vulgaris)
<400> 7
<210> 8
<211> 363
<212> PRT
<213> 蒺藜狀苜蓿(Medicago truncatula)
<400> 8
<210> 9
<211> 374
<212> PRT
<213> 大豆(Glycine max)
<400> 9
<210> 10
<211> 354
<212> PRT
<213> 蓖麻(Ricinus communis)
<400> 10
<210> 11
<211> 364
<212> PRT
<213> 擬南芥(Arabidopsis thaliana)
<400> 11
<210> 12
<211> 332
<212> PRT
<213> 蒺藜狀苜蓿(Medicago truncatula)
<400> 12
<210> 13
<211> 361
<212> PRT
<213> 葡萄(Vitis vinifera)
<400> 13
<210> 14
<211> 371
<212> PRT
<213> 玉米(Zea mays)
<400> 14
<210> 15
<211> 1107
<212> DNA
<213> 擬南芥(Arabidopsis thaliana)
<400> 15
<210> 16
<211> 1092
<212> DNA
<213> 擬南芥(Arabidopsis thaliana)
<400> 16
<210> 17
<211> 27
<212> DNA
<213> 人工合成
<220>
<223> AtNRT2.1正向引子
<400> 17
<210> 18
<211> 27
<212> DNA
<213> 人工合成
<220>
<223> AtNRT2.1反向引子
<400> 18
<210> 19
<211> 20
<212> DNA
<213> 人工合成
<220>
<223> AtNRT2.2正向引子
<400> 19
<210> 20
<211> 25
<212> DNA
<213> 人工合成
<220>
<223> AtNRT2.2反向引子
<400> 20
<210> 21
<211> 27
<212> DNA
<213> 人工合成
<220>
<223> TGA1正向引子
<400> 21
<210> 22
<211> 30
<212> DNA
<213> 人工合成
<220>
<223> TGA1反向引子
<400> 22
<210> 23
<211> 24
<212> DNA
<213> 人工合成
<220>
<223> TGA4正向引子
<400> 23
<210> 24
<211> 26
<212> DNA
<213> 人工合成
<220>
<223> TGA4反向引子
<400> 24

Claims (26)

  1. 一種用於增加植物之養分效率之方法,該方法包含:於該植物之根組織中,引入至少一種異源性多肽,其中該異源性多肽係擇自於由TGA1、TGA4以及其組合所構成之群組。
  2. 如申請專利範圍第1項之方法,其中假如該異源性多肽是TGA1,則該異源性多肽係擇自於由序列辨識編號:1所構成之群組。
  3. 如申請專利範圍第1項之方法,其中假如該異源性多肽是TGA4,則該異源性多肽係擇自於由序列辨識編號:11所構成之群組。
  4. 如申請專利範圍第1項之方法,其中,與相同品種之植物相比,該增加的養分使用效率包含增加的調節硝酸根之效率。
  5. 一種用於增加植物之根生長之方法,該方法包含:於該植物之根組織中引入異源性TGA1及/或TGA4多肽,藉此產生一包含該異源性TGA1和/或TGA4多肽之改造植物,其中與不含該異源性TGA1和/或TGA4多肽之相同品種之植物相比,該改造植物包含增高的根生長。
  6. 如申請專利範圍第5項之方法,其中該根生長係主或側根生長。
  7. 如申請專利範圍第5項之方法,其中引入該異源性TGA1和/或TGA4多肽,包含於該根組織中引入核酸,其中該 核酸包含編碼該異源性TGA1和/或TGA4多肽之核苷酸序列。
  8. 如申請專利範圍第5項之方法,其中該方法包含於氮有限之條件下,種植該改造植物。
  9. 如申請專利範圍第5項之方法,其中該異源性多肽是TGA1轉錄因子。
  10. 如申請專利範圍第9項之方法,其中該TGA1轉錄因子包含與序列辨識編號:1具有至少90%一致之胺基酸序列。
  11. 如申請專利範圍第5項之方法,其中該異源性多肽是TGA4轉錄因子。
  12. 如申請專利範圍第11項之方法,其中該TGA4轉錄因子包含與序列辨識編號:11具有至少90%一致之胺基酸序列。
  13. 如申請專利範圍第7項之方法,其中該TGA1轉錄因子核苷酸序列包含與序列辨識編號:15具有至少90%一致之核苷酸序列,或會與序列辨識編號:15所構成之核酸雜交之核酸序列。
  14. 如申請專利範圍第7項之方法,其中該TGA4轉錄因子核苷酸序列包含與序列辨識編號:16具有至少90%一致之核苷酸序列,或會與序列辨識編號:16所構成之核酸雜交之核酸序列。
  15. 如申請專利範圍第1項之方法,其中該根組織是根細胞。
  16. 如申請專利範圍第7項之方法,其中該編碼該異源性TGA1和/或TGA4多肽之核苷酸序列,可操作地連接至 根組織專一性啟動子。
  17. 一種如申請專利範圍第1項之方法產生之改造植物。
  18. 一種從如申請專利範圍第17項之改造植物產生之種子。
  19. 一種核酸分子,其包含具有農業功能之核酸序列,其中該核酸序列係擇自於由下列所構成之群組:與序列辨識編號:15具有至少90%一致之核苷酸序列、會與序列辨識編號:15所構成之核酸雜交之核酸序列、與序列辨識編號:16具有至少90%一致之核苷酸序列以及會與序列辨識編號:16所構成之核酸雜交之核酸序列,其中該核酸序列係可操作地連接至異源性可轉錄多核苷酸分子。
  20. 一種轉基因植物細胞,其可被如申請專利範圍第19項之核酸分子安定的轉形。
  21. 一種用於產生轉基因植物之方法,該方法包含:於該植物之根組織中引入核酸,其中該核酸包含編碼異源性TGA1和/或TGA4多肽之核苷酸序列,藉此產生轉基因植物。
  22. 一種如申請專利範圍第21項之方法產生之轉基因植物。
  23. 一種從如申請專利範圍第22項之轉基因植物產生之種子。
  24. 如申請專利範圍第22項之轉基因植物,其中與具相同品種之野生型植物相比,該植物包含增加的表達如圖5所述之基因。
  25. 如申請專利範圍第22項之轉基因植物,其中該基因係硝酸根轉運蛋白NRT2.1、硝酸根轉運蛋白NRT2.2或亞硝酸 根還原酶(NIR)。
  26. 如申請專利範圍第22項之轉基因植物,其中與具相同品種之野生型植物相比,該轉基因植物包含增加的主及/或側根生長。
TW102107499A 2012-03-05 2013-03-04 與硝酸根位準有關的植物轉錄因子及其使用方法 TW201341398A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261606852P 2012-03-05 2012-03-05

Publications (1)

Publication Number Publication Date
TW201341398A true TW201341398A (zh) 2013-10-16

Family

ID=49116002

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102107499A TW201341398A (zh) 2012-03-05 2013-03-04 與硝酸根位準有關的植物轉錄因子及其使用方法

Country Status (16)

Country Link
US (1) US20130247248A1 (zh)
EP (1) EP2822377A4 (zh)
JP (1) JP2015511486A (zh)
KR (1) KR20140143376A (zh)
CN (1) CN104411157A (zh)
AR (1) AR090250A1 (zh)
AU (1) AU2013229207A1 (zh)
BR (1) BR112014021404A2 (zh)
CA (1) CA2867684A1 (zh)
CL (1) CL2014002336A1 (zh)
HK (1) HK1204862A1 (zh)
IN (1) IN2014DN08003A (zh)
MX (1) MX2014010709A (zh)
TW (1) TW201341398A (zh)
UY (1) UY34655A (zh)
WO (1) WO2013132326A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468146A (zh) * 2018-05-11 2019-11-19 中国科学院上海生命科学研究院 调控豆科植物根瘤固氮能力的方法
CN108812266B (zh) * 2018-06-07 2020-11-03 中国农业大学 一种降低水培生菜硝酸盐含量的方法
CN113336835A (zh) * 2020-03-02 2021-09-03 中国科学院分子植物科学卓越创新中心 参与硝酸根转运的蛋白、其编码基因和用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955651A (en) * 1989-05-03 1999-09-21 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
US7345217B2 (en) * 1998-09-22 2008-03-18 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
US20070067865A1 (en) * 2000-09-05 2007-03-22 Kovalic David K Annotated plant genes
MX2009005524A (es) * 2006-12-21 2009-06-08 Basf Plant Science Gmbh Plantas con rasgos relacionados con un rendimiento mejorado y un metodo para producirlas.
WO2008118394A1 (en) * 2007-03-23 2008-10-02 New York University Methods of affecting nitrogen assimilation in plants

Also Published As

Publication number Publication date
IN2014DN08003A (zh) 2015-05-01
AU2013229207A1 (en) 2014-09-25
CN104411157A (zh) 2015-03-11
US20130247248A1 (en) 2013-09-19
CL2014002336A1 (es) 2015-01-16
UY34655A (es) 2013-09-30
EP2822377A1 (en) 2015-01-14
WO2013132326A1 (en) 2013-09-12
EP2822377A4 (en) 2015-10-21
CA2867684A1 (en) 2013-09-12
AR090250A1 (es) 2014-10-29
JP2015511486A (ja) 2015-04-20
MX2014010709A (es) 2016-03-17
KR20140143376A (ko) 2014-12-16
HK1204862A1 (zh) 2016-01-22
BR112014021404A2 (pt) 2017-06-27

Similar Documents

Publication Publication Date Title
US10538781B2 (en) Mate family genes and uses for plant improvement
US10093943B2 (en) Genes and uses for plant improvement
Wang et al. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis
US20220251593A1 (en) Genes and uses for plant enhancement
US11130958B2 (en) Plants having increased tolerance to heat stress
US9290773B2 (en) Transgenic plants with enhanced agronomic traits
US8088975B2 (en) Phenylpropanoid related regulatory protein-regulatory region associations
EP2912938B1 (en) Improved yield and stress tolerance in transgenic plants
US20090265813A1 (en) Stress tolerance in plants
EP3060665A1 (en) Modified plants
CA2700981C (en) Plants having increased biomass
WO2017197322A1 (en) Drought tolerant plants
TW201341398A (zh) 與硝酸根位準有關的植物轉錄因子及其使用方法
US20180153124A1 (en) Fusarium head blight resistance in plants
US9758790B2 (en) Modulating the level of components within plants