TW201339544A - An integrated MEMS pressure sensor with mechanical electrical isolation - Google Patents

An integrated MEMS pressure sensor with mechanical electrical isolation Download PDF

Info

Publication number
TW201339544A
TW201339544A TW101110184A TW101110184A TW201339544A TW 201339544 A TW201339544 A TW 201339544A TW 101110184 A TW101110184 A TW 101110184A TW 101110184 A TW101110184 A TW 101110184A TW 201339544 A TW201339544 A TW 201339544A
Authority
TW
Taiwan
Prior art keywords
layer
cmos
doped
mems
pressure sensor
Prior art date
Application number
TW101110184A
Other languages
Chinese (zh)
Other versions
TWI475194B (en
Inventor
Kun-Lung Chen
Original Assignee
Windtop Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Windtop Technology Corp filed Critical Windtop Technology Corp
Priority to TW101110184A priority Critical patent/TWI475194B/en
Publication of TW201339544A publication Critical patent/TW201339544A/en
Application granted granted Critical
Publication of TWI475194B publication Critical patent/TWI475194B/en

Links

Landscapes

  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

An integrated MEMS pressure sensor is provided, including, a CMOS substrate layer, an N+ implant doped silicon layer, a field oxide (FOX) layer, a plurality of implant doped silicon areas forming CMOS wells, a two-tier polysilicon layer with selective ion implantation forming a membrane, further including an implant doped polysilicon layer and a non-doped polysilicon layer, a second non-doped polysilicon layer, a plurality of implant doped silicon areas 207 forming CMOS source/drain, a gate poly layer made of polysilicon to form CMOS transistor gates, said CMOS wells, said CMOS transistor sources/drains and said CMOS gates forming CMOS transistors, an oxide layer embedded with an interconnect contact layer, a plurality of metal layers interleaved with a plurality of via hole layers, a Nitride deposition layer, an under bump metal (UBM) layer and a plurality of solder spheres. N+ implant doped silicon layer and implant doped/un-doped composition polysilicon layer 206 form a sealed vacuum chamber.

Description

具機電隔離功能的微機電壓力感測器Microelectromechanical pressure sensor with electromechanical isolation

本發明係有關於一種整合性單晶片微機電系統(Micro Electro Mechanical System,MEMS)裝置,尤其是用互補金氧半(Complementary Metal Oxide Semiconductor,CMOS)製程、覆晶凸塊封裝(Flip Chip Bumping package)或晶圓級封裝(Wafer Level Package,WLP)技術建構而具機電隔離(mechanical/electrical isolation)能力的MEMS裝置。The present invention relates to an integrated single-wafer micro electro mechanical system (MEMS) device, in particular, a complementary metal oxide semiconductor (CMOS) process, flip chip bumping package (Flip Chip Bumping package) Or MEMS devices with mechanical/electrical isolation capabilities built by Wafer Level Package (WLP) technology.

由於在可攜式電子裝置的應用範圍廣大,微機電系統(MEMS)裝置已經長久被關住。例如,當作高度計的MEMS壓力感測器,最近已經因為可攜式電子裝置,比如智慧型手機,的應用而獲得注意。MEMS壓力感測器可分為電阻式或電容式。然而,大部分的MEMS壓力感測器是用分離的MEMS壓力感測器及積體電路(Application Specific Integrated Circuit,ASIC)雙晶片做成,而最終產品是藉在印刷電路板(PCB)基板的頂部上的打線連接而組裝。Due to the wide range of applications in portable electronic devices, microelectromechanical systems (MEMS) devices have long been closed. For example, MEMS pressure sensors, which are used as altimeters, have recently gained attention due to the application of portable electronic devices, such as smart phones. MEMS pressure sensors can be classified as resistive or capacitive. However, most MEMS pressure sensors are fabricated using separate MEMS pressure sensors and Application Specific Integrated Circuit (ASIC) dual-chips, and the final product is on printed circuit board (PCB) substrates. The wire on the top is connected and assembled.

圖1顯示具有雙晶片結構之MEMS壓力感測器的傳統結構示意圖。如圖1所示,MEMS壓力感測器的雙晶片結構包括當作基底用的PCB 101、複數個連接墊102、互補金氧半(CMOS)電路103、覆蓋CMOS電路103的環氧樹脂104、MEMS電路105、用以包圍整個結構的側壁106、打線墊107、上蓋108以及用於環境空氣壓力的空氣流通孔109,其中MEMS電路105進一步包括玻璃/矽電路105a以及薄膜105b。如圖1所示,傳統的雙晶片MEMS壓力感測器需要打線連接及複雜的封裝,比如側壁、上蓋及上蓋中用於環境空氣壓力的空氣流通孔。Figure 1 shows a conventional structural schematic of a MEMS pressure sensor having a dual die structure. As shown in FIG. 1, the dual-wafer structure of the MEMS pressure sensor includes a PCB 101 as a substrate, a plurality of connection pads 102, a complementary gold-oxide half (CMOS) circuit 103, and an epoxy resin 104 covering the CMOS circuit 103. The MEMS circuit 105, the side wall 106 for surrounding the entire structure, the wire pad 107, the upper cover 108, and the air flow hole 109 for ambient air pressure, wherein the MEMS circuit 105 further includes a glass/german circuit 105a and a film 105b. As shown in Figure 1, conventional two-chip MEMS pressure sensors require wire bonding and complex packaging, such as air flow holes for ambient air pressure in the side walls, upper cover, and upper cover.

使用打線連接的雙晶片解決方案的問題在於,接線基本上是導電天線,它會拾取高頻雜訊,而高頻雜訊的諧振若是在低頻帶則會干擾其頻率範圍內的信號。上述雙晶片技術的另一缺點是封裝成本太高。因此,很需要一種具有高可靠度及同時具有低成本的MEMS壓力感測器。The problem with a twin-chip solution using wire bonding is that the wiring is basically a conductive antenna that picks up high-frequency noise, and the resonance of high-frequency noise interferes with signals in its frequency range if it is in the low frequency band. Another disadvantage of the above described two-chip technology is that the packaging cost is too high. Therefore, there is a great need for a MEMS pressure sensor with high reliability and at the same time low cost.

本發明製作的MEMS壓力感測器克服上述傳統技術的缺點。本發明之主要目的在提供一種整合性單晶片MEMS裝置,並利用覆晶封裝及離子佈植技術以達成機電隔離的效果。The MEMS pressure sensor fabricated by the present invention overcomes the shortcomings of the above conventional techniques. SUMMARY OF THE INVENTION A primary object of the present invention is to provide an integrated single-wafer MEMS device that utilizes flip chip packaging and ion implantation techniques to achieve electromechanical isolation.

本發明之另一目的在提供一種整合性單晶片MEMS壓力感測器,具有高可靠度及低製作成本。Another object of the present invention is to provide an integrated single-wafer MEMS pressure sensor with high reliability and low manufacturing cost.

為達成上述目的,本發明提供一種整合性單晶片MEMS壓力感測器,具有覆晶凸塊封裝或晶圓級封裝(WLP)能力。本發明的整合性單晶片MEMS壓力感測器係結合特殊應用積體電路(ASIC)CMOS及MEMS及覆晶封裝技術製作完成。由下而上,本發明整合性單晶片MEMS壓力感測器的結構包括一CMOS基層、一N+佈植摻雜矽層、一場氧化矽(field oxide,FOX)層、複數個形成多個CMOS阱的佈植摻雜矽區、一雙結多晶矽層、一第二未摻雜多晶矽層、複數個形成CMOS源極/汲極的佈植摻雜矽區、一閘極多晶矽層、一氧化矽層、複數個金屬層、一氮化物沉積層、一下凸金屬(Under Bump Metal,UBM)層以及複數個錫球,其中雙結多晶矽層進一步包括佈植摻雜矽層及未摻雜矽層,該閘極多晶矽層是用多晶矽構成,藉以形成多個CMOS電晶體閘極,該氧化矽層是被互連接觸層嵌入,該等金屬層是與複數個接觸孔洞層交錯,金屬層以及交錯的接觸孔洞層的數目可依據ASIC設計而調節,該UBM層及該等錫球形成覆晶凸塊層。也值得注意的是,該N+佈植摻雜矽層與佈植摻雜/未佈植摻雜組合多晶矽層係形成密封真空腔室。To achieve the above objectives, the present invention provides an integrated single wafer MEMS pressure sensor having a flip chip bump or wafer level package (WLP) capability. The integrated single-wafer MEMS pressure sensor of the present invention is fabricated in conjunction with special application integrated circuit (ASIC) CMOS and MEMS and flip chip packaging techniques. From bottom to top, the structure of the integrated single-wafer MEMS pressure sensor of the present invention comprises a CMOS substrate, an N+ implant doped germanium layer, a field oxide (FOX) layer, and a plurality of CMOS wells. The implanted doped germanium region, a double junction polysilicon layer, a second undoped polysilicon layer, a plurality of implanted germanium source/drain electrodes, a gate polysilicon layer, and a hafnium oxide layer a plurality of metal layers, a nitride deposited layer, an under bump metal (UBM) layer, and a plurality of solder balls, wherein the double junction polysilicon layer further comprises an implanted doped germanium layer and an undoped germanium layer, The gate polysilicon layer is formed of polysilicon, thereby forming a plurality of CMOS transistor gates, which are embedded by interconnecting contact layers, which are interlaced with a plurality of contact hole layers, metal layers and staggered contacts. The number of hole layers can be adjusted according to the ASIC design, and the UBM layer and the solder balls form a flip chip layer. It is also worth noting that the N+ implanted doped germanium layer and the implanted doped/undimated doped combined polycrystalline germanium layer form a sealed vacuum chamber.

本發明的上述及其他目的、特性、特點及優點將由小心閱讀在此所提供之詳細說明及適當參考所附圖式而變得更佳了解。The above and other objects, features, aspects and advantages of the present invention will become apparent from

以下配合圖式及元件符號對本發明之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。The embodiments of the present invention will be described in more detail below with reference to the drawings and the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

圖2顯示依據本發明製作成具MEMS壓力感測器功能的具單晶片結構之MEMS裝置的示範性實例剖示圖。如圖2所示,本發明的整合性單晶片MEMS壓力感測器係結合ASIC CMOS及MEMS及覆晶封裝技術製作完成。由下而上,本發明整合性單晶片MEMS壓力感測器的結構係包括一CMOS基層201、一N+佈植摻雜矽層202、一場氧化矽(FOX)層203、複數個形成多個CMOS阱的佈植摻雜矽區204、一雙結多晶矽層(two-tier polysilicon layer)205、一第二未摻雜多晶矽層206、複數個形成CMOS電晶體源極/汲極的佈植摻雜矽區207、一閘極多晶矽層208、一氧化矽層217、複數個金屬層、一氮化物沉積層218、一下凸金屬(UBM)層219以及複數個錫球220,其中雙結多晶矽層205進一步包括一佈植摻雜矽層205a及一未摻雜矽層205b,該閘極多晶矽層208係用多晶矽構成,藉以形成多個CMOS電晶體閘極,互連接觸孔層209嵌入在氧化矽層217內,該等金屬層是與複數個接觸孔洞層交錯,該UBM層219及該等錫球220形成一覆晶凸塊層,本示範性實施例顯示四金屬及三接觸孔洞層,包括第一金屬層210、第一接觸孔洞層211、第二金屬層212、第二接觸孔洞層213、第三金屬層214、第三接觸孔洞層215以及第四金屬層216。也值得注意的是,N+佈植摻雜矽層202及第二未摻雜多晶矽層206形成一密封真空腔室206a。2 shows an exemplary cross-sectional view of a MEMS device having a single wafer structure fabricated with MEMS pressure sensor functionality in accordance with the present invention. As shown in FIG. 2, the integrated single-wafer MEMS pressure sensor of the present invention is fabricated in combination with ASIC CMOS and MEMS and flip chip packaging techniques. From bottom to top, the structure of the integrated single-wafer MEMS pressure sensor of the present invention comprises a CMOS base layer 201, an N+ implant doped germanium layer 202, a field oxide germanium (FOX) layer 203, and a plurality of CMOS layers. The implanted doped germanium region 204, a two-tier polysilicon layer 205, a second undoped polysilicon layer 206, and a plurality of implant dopings forming a CMOS transistor source/drain a germanium region 207, a gate polysilicon layer 208, a hafnium oxide layer 217, a plurality of metal layers, a nitride deposited layer 218, a bump metal (UBM) layer 219, and a plurality of solder balls 220, wherein the double junction polysilicon layer 205 Further comprising an implanted germanium layer 205a and an undoped germanium layer 205b, the gate polysilicon layer 208 is formed of polysilicon, thereby forming a plurality of CMOS transistor gates, and the interconnect contact hole layer 209 is embedded in the germanium oxide layer. In the layer 217, the metal layers are interlaced with a plurality of contact hole layers, and the UBM layer 219 and the solder balls 220 form a flip chip layer. The exemplary embodiment shows a four metal and three contact hole layer, including a first metal layer 210, a first contact hole layer 211, a second metal layer 212, Two of the contact hole layer 213, third metal layer 214, the third contact hole 215 and a fourth layer of metal layer 216. It is also worth noting that the N+ implant doped germanium layer 202 and the second undoped polysilicon layer 206 form a sealed vacuum chamber 206a.

每一層均可使用複數個較佳材料。以下說明只是解釋性的目的,而非限定性。相對等的材料也可用以取代所說明的材料。例如,CMOS基層201是P摻雜CMOS基層。場氧化矽(FOX)層203可由氧化矽SiO2做成,而複數個佈植摻雜矽區207形成CMOS電晶體源極/汲極。該等CMOS阱、該CMOS電晶體源極/汲極以及該等CMOS閘極(亦即閘極多晶矽層208)形成多個CMOS電晶體。互連接觸層209、第一接觸孔洞層211、第二接觸孔洞層213及第三接觸孔洞層215係較佳的由比如Ti/TiN/CVD-W做成。第一金屬層210、第二金屬層212、第三金屬層214以及第四金屬層216是由CMOS金屬做成,比如TiN/Cu/TiN或TiN/AlSi/TiN。值得注意的是,該等金屬層及交錯的該等接觸孔洞層的數目可依據ASIC設計而調節,且與該等接觸孔洞層交錯的該等金屬層係一起形成切刻密封(scribe seal)。氮化物沉積層218可由比如氮化矽(Si3N4)做成。UBM層219係較佳的為Al/NiV/Cu,而該等錫球220可由比如錫(Sn)做成。A plurality of preferred materials can be used for each layer. The following description is for illustrative purposes only and is not limiting. Relative materials can also be used in place of the materials illustrated. For example, the CMOS base layer 201 is a P-doped CMOS base layer. The field yttrium oxide (FOX) layer 203 may be made of yttria SiO 2 , and a plurality of implanted germanium regions 207 form a CMOS transistor source/drain. The CMOS wells, the CMOS transistor source/drain electrodes, and the CMOS gates (ie, the gate polysilicon layer 208) form a plurality of CMOS transistors. The interconnect contact layer 209, the first contact hole layer 211, the second contact hole layer 213, and the third contact hole layer 215 are preferably made of, for example, Ti/TiN/CVD-W. The first metal layer 210, the second metal layer 212, the third metal layer 214, and the fourth metal layer 216 are made of CMOS metal, such as TiN/Cu/TiN or TiN/AlSi/TiN. It should be noted that the number of the metal layers and the interlaced contact hole layers can be adjusted according to the ASIC design, and the metal layers interlaced with the contact hole layers together form a scribe seal. The nitride deposited layer 218 may be made of, for example, tantalum nitride (Si 3 N 4 ). The UBM layer 219 is preferably Al/NiV/Cu, and the solder balls 220 may be made of, for example, tin (Sn).

圖3A至3R顯示製作本發明整合性單晶片MEMS壓力感測器結構的製作製程之實施例的示意圖。然而,圖3A至3R中的製程及構成步驟只是解釋性,而非限定性。以其他製程所製作的整合性單晶片MEMS壓力感測器也是在本發明整合性單晶片MEMS壓力感測器結構的範圍內。3A through 3R show schematic views of an embodiment of a fabrication process for fabricating an integrated single wafer MEMS pressure sensor structure of the present invention. However, the processes and construction steps in Figures 3A through 3R are merely illustrative and not limiting. Integrated single wafer MEMS pressure sensors fabricated in other processes are also within the scope of the integrated single wafer MEMS pressure sensor architecture of the present invention.

圖3A顯示MEMS區中濕式矽蝕刻後的CMOS基層201,是MEMS深溝槽氧化矽(Deep Trench Oxide,DTO)製程的第一步驟。矽蝕刻的深度定義出依據本發明MEMS電容性壓力感測器裝置的二電容器平板之間的間隙。矽蝕刻的深度係較佳的為大約1-3um。圖3B的示意圖係顯示光阻圖案201a接著用於選擇性N+離子佈植摻雜以形成N+佈植摻雜矽層202,且然後形成對P-基層201的N+P接面。N+佈植摻雜矽層202當作MEMS裝置的底部平板電極。圖3B顯示N+佈植摻雜矽層202係偏離凹陷矽區202a。該偏離的目的是要隔離機械MEMS功能及電氣MEMS功能,以使得電氣功能被最佳化,而不受MEMS裝置的機械目的所限制,其目的在後續說明中將變得更為清楚。如圖3C所示,進行約1-3um的低壓化學氣相沈積(LPCVD)厚氧化矽沉積以及之後氧化矽的化學機械研磨(Chemical Mechanical Polish,CMP)製程以將晶圓表面平坦化。在圖3C的結束時,MEMS DTO製程也完成。N+離子可為砷或磷,或二者之結合。FIG. 3A shows the wet 矽 etched CMOS substrate 201 in the MEMS region, which is the first step of the MEMS Deep Trench Oxide (DTO) process. The depth of the erbium etch defines the gap between the two capacitor plates of the MEMS capacitive pressure sensor device in accordance with the present invention. The depth of the etch is preferably about 1-3 um. The schematic of FIG. 3B shows that the photoresist pattern 201a is then used for selective N+ ion implantation doping to form an N+ implant doped germanium layer 202, and then forms an N+P junction to the P-base layer 201. The N+ implanted doped germanium layer 202 acts as the bottom plate electrode of the MEMS device. Figure 3B shows that the N+ implant doped germanium layer 202 is offset from the recessed germanium region 202a. The purpose of this deviation is to isolate the mechanical MEMS function and the electrical MEMS function so that the electrical function is optimized without being limited by the mechanical purpose of the MEMS device, the purpose of which will become more apparent in the following description. As shown in FIG. 3C, a low-pressure chemical vapor deposition (LPCVD) thick yttria deposition of about 1-3 um and a chemical mechanical polishing (CMP) process of yttrium oxide were performed to planarize the wafer surface. At the end of Figure 3C, the MEMS DTO process is also completed. The N+ ion can be arsenic or phosphorus, or a combination of the two.

在圖3D中,晶圓經過標準CMOS淺溝槽隔離(Shallow Trench Isolation,STI)製程,藉以在CMOS區中形成場氧化矽(FOX)層203。在本發明中,上述的MEMS DTO製程是在MEMS區中形成深溝槽氧化矽,而STI製程是在CMOS區中形成淺溝槽氧化矽隔離。在圖3E中,進行具高能離子佈植的CMOS阱光阻圖案203a。圖3F顯示在移除光阻圖案203a之後,接著沉積未摻雜矽層205b,用以形成MEMS薄膜,其較佳的厚度是0.3-0.6um,緊接著是選擇性離子佈植(佈植摻雜多晶矽層205a),藉以摻雜用於機電隔離的薄膜。佈植摻雜多晶矽層205a及未摻雜多晶矽層205b一起形成雙結多晶矽層205。圖3G顯示MEMS薄膜在用光阻圖案蝕刻後緊接著移除光阻的示意圖。在圖3H中,進行CMOS高溫阱驅入製程,通常是1000-1100℃,3-4小時,藉以形成多個CMOS阱204。既然多晶矽薄膜已是沉積在DTO的頂部上,且離子佈植的雜質是在CMOS高溫阱驅入之前已形成,所以CMOS阱驅入製程的高溫將對佈植摻雜多晶矽薄膜進行退火。因為高溫退火也會大幅降低多晶矽的機械應力,所以本發明使用CMOS高溫阱驅入製程以獲得低機械應力薄膜。低機械應力薄膜是MEMS應用的較佳選擇。相同的高溫也對圖3B中的佈植N+離子進行退火,藉以用當作電容器之底部平板的N+佈植摻雜矽層202,形成對P-基層的N+接面。DTO製程因此提供三個關鍵目的:(a)定義出電容器平板間的距離及電容值,(b)藉將佈植薄膜安置於氧化矽表面頂部,而借由CMOS高溫阱驅入製程退火以減輕薄膜機械應力,以及(c)形成用於薄膜移動的密封腔室,此將在稍後說明中變成更為清楚。In FIG. 3D, the wafer is subjected to a standard CMOS Shallow Trench Isolation (STI) process to form a field oxide germanium (FOX) layer 203 in the CMOS region. In the present invention, the MEMS DTO process described above forms deep trench yttrium oxide in the MEMS region, and the STI process forms shallow trench yttrium oxide isolation in the CMOS region. In FIG. 3E, a CMOS well photoresist pattern 203a with high energy ion implantation is performed. FIG. 3F shows that after removing the photoresist pattern 203a, an undoped germanium layer 205b is subsequently deposited to form a MEMS film, preferably having a thickness of 0.3-0.6 um, followed by selective ion implantation (planting The heteropolysilicon layer 205a) is doped to dope the film for electromechanical isolation. The implant doped polysilicon layer 205a and the undoped polysilicon layer 205b together form a double junction polysilicon layer 205. Figure 3G shows a schematic of the MEMS film immediately after etching with a photoresist pattern to remove the photoresist. In FIG. 3H, a CMOS high temperature well drive-in process, typically 1000-1100 ° C, for 3-4 hours, is performed to form a plurality of CMOS wells 204. Since the polysilicon film has been deposited on top of the DTO and the ion implanted impurities have been formed before the CMOS high temperature well is driven in, the high temperature of the CMOS well drive process will anneal the implanted doped polysilicon film. Since high temperature annealing also greatly reduces the mechanical stress of the polysilicon, the present invention uses a CMOS high temperature well drive process to obtain a low mechanical stress film. Low mechanical stress films are a better choice for MEMS applications. The same high temperature also anneals the implanted N+ ions in Figure 3B, whereby the doped germanium layer 202 is implanted with N+ as the bottom plate of the capacitor to form an N+ junction to the P-base layer. The DTO process therefore provides three key objectives: (a) defining the distance between the capacitor plates and the capacitance value, and (b) by placing the implant film on top of the yttrium oxide surface and driving the process anneal by CMOS high temperature wells to mitigate The mechanical stress of the film, and (c) the formation of a sealed chamber for film movement, will become more apparent in later description.

如上述圖3F所示,薄膜上的離子佈植是偏離DTO區。偏離離子佈植的目的是要降低電容器平板的寄生電容值。電容器平板的未摻雜區是非導電,並具有介電質的特性。選擇性離子佈植摻雜係調節頂部及底部電容器平板的導電區在水平方向上之距離,以使得寄生電容值被極小化,且導電平板的有效主動電容值被極大化。利用佈植層的適當佈局以摻雜MEMS電容器平板的電極,二電極之間的寄生耦合電容值可大幅降低至接近零,且有效的主動移動薄膜電容值會變成整個MEMS電容器的主導電容值。因此,圖3H所示,藉對薄膜進行離子佈植,在邊緣撐住薄膜的機械目的達成後同時也將電容電極間的寄生電容降到趨近於零值。值得注意的是,N+佈植摻雜多晶矽是用以當作薄膜的實例,然而,當多晶矽薄膜的機械特性被認為有必要或其他考慮時也可使用P+硼摻雜多晶矽。如圖3I所示,製程然後進行多晶矽圖案及蝕刻步驟,藉以在薄膜區中形成多個氧化矽釋放開口205c。然後進行氧化矽釋放光阻圖案205d及氧化矽釋放步驟,如圖3J所示。在光阻圖案205d被移除後,晶圓接著經過等向共形LPCVD非摻雜多晶矽沉積,藉以形成非摻雜多晶矽層。由於沉積的等向本性,空腔室的底部及側壁是被填充非摻雜LPCVD多晶矽(第二未摻雜多晶矽層206),直到多晶矽所穿過的孔洞被完全填滿並密封為止,如圖3K所示。在孔洞直徑D等於二倍的沉積多晶矽厚度T時,D=2T,該等開口被密封。圖3L顯示在CMOS區上的第二未摻雜多晶矽層206被圖案化及蝕刻掉之結構的示意圖。形成電容性壓力感測器的二電容器平板之間的寄生電容值係藉偏離底部平板(N+佈植摻雜矽層202)及頂部平板(雙結多晶矽層205)中的佈植區而被大幅降低。N+佈植摻雜矽層202與雙結多晶矽層內佈植摻雜多晶矽層205a的重疊區域是有效的主動電容器平板。因為在機械錨區的重疊區域是未摻雜,且因而為非導電性,所以寄生電容值被極小化。製程繼續將在CMOS區域內表面殘餘的氧化矽被圖案化及蝕刻移除。緊接著熱生長高品質閘極氧化矽,然後利用多晶矽沉積以形成閘極多晶矽層208。閘極多晶矽層208然後被圖案化及蝕刻而形成複數個CMOS電晶體閘極,緊接著電晶體源極/汲極佈植並退火,藉以形成多個CMOS電晶體,如圖3M所示。CMOS電晶體源極/汲極退火製程步驟也對第二未摻雜多晶矽層206進行退火,其機械應力因之減輕。由此產生的晶圓然後沉積CMOS內層間氧化矽(Inter-Level-Oxide,ILD),及平坦化CMOS ILD如圖3N所示。然後接着形成接觸孔層209及第一金屬層210。As shown in Figure 3F above, the ion implantation on the film is off the DTO region. The purpose of deviating from ion implantation is to reduce the parasitic capacitance of the capacitor plate. The undoped regions of the capacitor plates are non-conductive and have dielectric properties. The selective ion implantation doping adjusts the distance of the conductive regions of the top and bottom capacitor plates in the horizontal direction such that the parasitic capacitance value is minimized and the effective active capacitance value of the conductive plate is maximized. By using the appropriate layout of the implant layer to dope the electrodes of the MEMS capacitor plate, the parasitic coupling capacitance between the two electrodes can be greatly reduced to near zero, and the effective active moving film capacitance value becomes the dominant capacitance value of the entire MEMS capacitor. Therefore, as shown in FIG. 3H, by ion implantation of the film, the parasitic capacitance between the capacitor electrodes is reduced to a value close to zero after the mechanical purpose of holding the film at the edge is achieved. It is worth noting that N+ implanted doped polysilicon is used as an example of a thin film, however, P+ boron doped polysilicon can also be used when the mechanical properties of the polycrystalline germanium film are considered necessary or otherwise considered. As shown in FIG. 3I, the process then performs a polysilicon pattern and an etching step to form a plurality of ytterbium oxide release openings 205c in the film region. Then, a ruthenium oxide release resist pattern 205d and a ruthenium oxide release step are performed as shown in FIG. 3J. After the photoresist pattern 205d is removed, the wafer is then deposited by isotropic conformal LPCVD undoped polysilicon to form an undoped polysilicon layer. Due to the isotropic nature of the deposition, the bottom and sidewalls of the cavity are filled with undoped LPCVD polysilicon (second undoped polysilicon layer 206) until the hole through which the polysilicon is passed is completely filled and sealed, as shown in the figure. Shown in 3K. When the hole diameter D is equal to twice the deposited polysilicon thickness T, D = 2T, the openings are sealed. 3L shows a schematic diagram of a structure in which a second undoped polysilicon layer 206 on a CMOS region is patterned and etched away. The parasitic capacitance between the two capacitor plates forming the capacitive pressure sensor is greatly deviated from the implanted area in the bottom plate (N+ implanted doped layer 202) and the top plate (double junction polysilicon layer 205). reduce. The overlap region of the N+ implanted doped germanium layer 202 and the doped polysilicon layer 205a in the double junction polysilicon layer is an effective active capacitor plate. Since the overlap region in the mechanical anchor region is undoped and thus non-conductive, the parasitic capacitance value is minimized. The process continues to pattern and etch away residual yttrium oxide on the surface of the CMOS region. A high quality gate yttrium oxide is then thermally grown and then deposited using polysilicon to form a gate polysilicon layer 208. The gate polysilicon layer 208 is then patterned and etched to form a plurality of CMOS transistor gates, followed by the transistor source/drain electrodes implanted and annealed to form a plurality of CMOS transistors, as shown in FIG. 3M. The CMOS transistor source/drain annealing process also anneals the second undoped polysilicon layer 206, which reduces mechanical stress. The resulting wafer is then deposited with CMOS Inter-Level-Oxide (ILD), and the planarized CMOS ILD is shown in Figure 3N. Contact hole layer 209 and first metal layer 210 are then formed.

圖30顯示頂部平板摻雜多晶矽(佈植摻雜多晶矽層205a)電極及底部平板N+電極(N+佈植摻雜矽層202)係經由互連接觸孔層209而與第一金屬層210接觸。在圖3P中,該晶圓然後進行CMOS互連線製程。在金屬層之間的CMOS多層氧化矽(Multi-Level-Oxide,MLD)內包含了第一接觸孔洞層211、第二接觸孔洞層213及第三接觸孔洞層215,及從第二金屬層212到第四金屬層216。二電容器平板(N+佈植摻雜矽層202以及佈植摻雜多晶矽層205a)之間的差額電容值係經由第一金屬層210至第四金屬層216連接設計穿過交錯的接觸孔洞層而饋入ASIC輸入端。當外部壓力增加時,電容器電極之間的間隙變小,因而電容值增加。增加的電容值變化將被晶片上的ASIC電路放大,因而壓力變化被轉換成電氣信號,並進一步作信號處理以顯示成絕對壓力或海平面以上的高度,此乃係典型壓力感測器的功能及目的。在本步驟結束時,多個金屬層及多個接觸孔洞層係嵌入在氧化矽層217之內部。30 shows that the top plate doped polysilicon (planted doped polysilicon layer 205a) electrode and the bottom plate N+ electrode (N+ implanted doped layer 202) are in contact with the first metal layer 210 via the interconnect contact layer 209. In FIG. 3P, the wafer is then subjected to a CMOS interconnect process. The first contact hole layer 211, the second contact hole layer 213 and the third contact hole layer 215, and the second metal layer 212 are included in the CMOS multi-level-Oxide (MLD) between the metal layers. To the fourth metal layer 216. The difference capacitance between the two capacitor plates (N+ implanted doped germanium layer 202 and implanted doped polysilicon layer 205a) is connected through the first metal layer 210 to the fourth metal layer 216 through the interleaved contact hole layer. Feed into the ASIC input. When the external pressure increases, the gap between the capacitor electrodes becomes small, and thus the capacitance value increases. The increased capacitance value change will be amplified by the ASIC circuit on the wafer, so the pressure change is converted into an electrical signal and further signal processed to display absolute pressure or altitude above sea level, which is the function of a typical pressure sensor. And purpose. At the end of this step, a plurality of metal layers and a plurality of contact hole layers are embedded inside the yttrium oxide layer 217.

在圖3Q中,MEMS區域大面積氧化矽被圖案化及蝕刻,此蝕刻停止在第二未摻雜多晶矽層206。在本階段,為了相容於CMOS製程,在保護外層(protective overcoat,PO)氮化矽沉積之前,亦可選擇性的沉積簿層氧化矽。在圖3R中,PO氮化矽層218接著沉積,緊接著製作下凸金屬(UBM)層219及錫球220的覆晶凸塊製程,此乃完整的具晶圓級封裝(WLP)能力的CMOS電路。至此,一個整合性單晶片MEMS電容性壓力感測器具有覆晶凸塊及WLP能力,在MEMS裝置利用選擇性離子佈植摻雜技術以達到機電隔離效果及CMOS製程中利用深溝槽氧化矽DTO(Deep Trench Oxide)技術因此而形成並完成。In FIG. 3Q, a large area of yttrium oxide is patterned and etched in the MEMS region, and the etching stops at the second undoped polysilicon layer 206. At this stage, in order to be compatible with the CMOS process, the layer of yttrium oxide may be selectively deposited before the protective overcoat (PO) tantalum nitride deposition. In FIG. 3R, a PO tantalum nitride layer 218 is subsequently deposited, followed by a flip chip bump process for the under bump metal (UBM) layer 219 and the solder ball 220, which is a complete wafer level package (WLP) capability. CMOS circuit. At this point, an integrated single-chip MEMS capacitive pressure sensor with flip-chip bumps and WLP capability utilizes selective ion implantation doping technology to achieve electromechanical isolation in MEMS devices and deep trench yttrium oxide DTO in CMOS processes (Deep Trench Oxide) technology is thus formed and completed.

圖4顯示製作本發明整合性單晶片MEMS壓力感測器的示範性製程之流程圖。如圖4所示,步驟401係在MEMS基層上執行MEMS深溝槽氧化矽(DTO)製程,進一步包括:矽凹陷濕蝕刻;用於選擇性N+離子佈植的光阻圖案,藉以形成對P-基層的接面,形成底部平板電極及機電隔離;以及LPCVD氧化矽沉積藉以填滿MEMS矽凹陷區及化學機械研磨(oxide Chemical Mechanical Polish,CMP)將晶圓表面平坦化,。步驟402係執行淺溝槽隔離(Shallow Trench Isolation,STI)製程,藉以形成場氧化矽。步驟403係形成CMOS阱高能離子佈植。步驟404係進行用於MEMS薄膜的多晶矽沉積、薄膜圖案蝕刻及薄膜離子佈植,藉以摻雜該薄膜,用於電氣連接及機電隔離。步驟405係進行CMOS阱高溫驅入,藉以形成深阱。值得注意的是,高溫也將對佈植摻雜多晶矽薄膜進行退火,用以減輕機械應力;因此,可獲得低機械應力薄膜。步驟406係進行多晶矽圖案及蝕刻與進行氧化矽釋放。步驟407等向共形LPCVD非摻雜多晶矽沉積。步驟408係進行CMOS ILD平坦化。步驟409係進行CMOS接觸孔及第一金屬製程。步驟410係執行其餘金屬層及交錯接觸孔洞層的互連層形成,比如第二金屬層、第三金屬層、第四金屬層及圖2的接觸孔洞層。步驟411係進行MEMS區域頂部大面積ILD與MLD氧化矽顯影與蝕刻。步驟412係進行用於具多個微坑的氮化矽沉積的CMOS保護外層(PO)製程。步驟413係進行CMOS後段凸塊製程,藉以形成整合性單晶片MEMS壓力感測器的最終結構。4 shows a flow chart of an exemplary process for making an integrated single wafer MEMS pressure sensor of the present invention. As shown in FIG. 4, step 401 performs a MEMS deep trench germanium oxide (DTO) process on the MEMS substrate, further comprising: a germanium recess wet etching; a photoresist pattern for selective N+ ion implantation, thereby forming a pair of P- The junction of the base layer forms the bottom plate electrode and the electromechanical isolation; and the LPCVD yttrium oxide deposition fills the MEMS defect region and the oxide chemical mechanical polishing (CMP) planarizes the wafer surface. Step 402 is performed by a Shallow Trench Isolation (STI) process to form field yttrium oxide. Step 403 forms a CMOS well high energy ion implant. Step 404 performs polycrystalline germanium deposition, thin film pattern etching, and thin film ion implantation for the MEMS film, thereby doping the film for electrical connection and electromechanical isolation. Step 405 is to perform high temperature driving of the CMOS well to form a deep well. It is worth noting that the high temperature will also anneal the implanted doped polysilicon film to reduce mechanical stress; therefore, a low mechanical stress film can be obtained. Step 406 is performed by performing a polysilicon pattern and etching and performing cerium oxide release. Step 407 and the like are deposited onto the conformal LPCVD undoped polysilicon. Step 408 is to perform CMOS ILD planarization. Step 409 is to perform a CMOS contact hole and a first metal process. Step 410 is to form an interconnect layer of the remaining metal layers and the staggered contact hole layers, such as the second metal layer, the third metal layer, the fourth metal layer, and the contact hole layer of FIG. Step 411 is to perform large area ILD and MLD yttrium yttrium development and etching on the top of the MEMS region. Step 412 is a CMOS protective outer layer (PO) process for tantalum nitride deposition with multiple micropits. Step 413 is a CMOS back-end bump process to form the final structure of the integrated single-wafer MEMS pressure sensor.

以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據以對本發明做任何形式上之限制,是以,凡有在相同之發明精神下所作有關本發明之任何修飾或變更,皆仍應包括在本發明意圖保護之範疇。The above is only a preferred embodiment for explaining the present invention, and is not intended to limit the present invention in any way, and any modifications or alterations to the present invention made in the spirit of the same invention. All should still be included in the scope of the intention of the present invention.

101...印刷電路板(PCB)101. . . Printed circuit board (PCB)

102...連接墊102. . . Connection pad

103...CMOS電路103. . . CMOS circuit

104...環氧樹脂104. . . Epoxy resin

105...MEMS電路105. . . MEMS circuit

105a...玻璃/矽電路105a. . . Glass/矽 circuit

105b...薄膜105b. . . film

106...側壁106. . . Side wall

107...打線墊107. . . Line mat

108...上蓋108. . . Upper cover

109...空氣流通孔109. . . Air circulation hole

201...CMOS基層201. . . CMOS base layer

201a...光阻圖案201a. . . Resistive pattern

202...N+佈植摻雜矽層202. . . N+ implanted doped layer

202a...凹陷矽區202a. . . Sag area

203...場氧化矽(FOX)層203. . . Field yttrium oxide (FOX) layer

203a...光阻圖案203a. . . Resistive pattern

204...佈植摻雜矽區(CMOS阱)204. . . Buried doped germanium (CMOS well)

205...雙結多晶矽層205. . . Double junction polycrystalline layer

205a...佈植摻雜(多晶)矽層205a. . . Buried doped (polycrystalline) layer

205b...未摻雜(多晶)矽層205b. . . Undoped (polycrystalline) germanium layer

205c...開口205c. . . Opening

205d...光阻圖案205d. . . Resistive pattern

206...第二未摻雜多晶矽層206. . . Second undoped polysilicon layer

206a...密封真空腔室206a. . . Sealed vacuum chamber

207...佈植摻雜矽區207. . . Planting doped area

208...閘極多晶矽層208. . . Gate polysilicon layer

209...互連接觸層209. . . Interconnect contact layer

210...第一金屬層210. . . First metal layer

211...第一接觸孔洞層211. . . First contact hole layer

212...第二金屬層212. . . Second metal layer

213...第二接觸孔洞層213. . . Second contact hole layer

214...第三金屬層214. . . Third metal layer

215...第三接觸孔洞層215. . . Third contact hole layer

216...第四金屬層216. . . Fourth metal layer

217...氧化矽層217. . . Cerium oxide layer

218...氮化物沉積層(氮化矽層)218. . . Nitride deposit layer (tantalum nitride layer)

219...下凸金屬(UBM)層219. . . Lower convex metal (UBM) layer

220...錫球220. . . Solder balls

401~413...步驟401~413. . . step

本發明可藉讀取上述的詳細說明,結合實例及參考所附圖式而被更加詳細了解,其中:The present invention can be understood in more detail by reading the above detailed description, in conjunction with the examples and the referenced drawings, wherein:

圖1顯示具有雙晶片結構之MEMS壓力感測器的傳統結構的示意圖;Figure 1 shows a schematic view of a conventional structure of a MEMS pressure sensor having a dual wafer structure;

圖2顯示依據本發明具單一晶片之MEMS電容性壓力感測器的剖示圖;2 shows a cross-sectional view of a MEMS capacitive pressure sensor with a single wafer in accordance with the present invention;

圖3A至3R顯示製作本發明整合性單晶片MEMS壓力感測器結構的製作製程之示範性實施例示意圖;以及3A through 3R are diagrams showing an exemplary embodiment of a fabrication process for fabricating an integrated single wafer MEMS pressure sensor structure of the present invention;

圖4顯示製作本發明整合性單晶片MEMS壓力感測器的示範性製程之流程圖。4 shows a flow chart of an exemplary process for making an integrated single wafer MEMS pressure sensor of the present invention.

201...CMOS基層201. . . CMOS base layer

202...N+佈植摻雜矽層202. . . N+ implanted doped layer

203...場氧化矽(FOX)層203. . . Field yttrium oxide (FOX) layer

204...佈植摻雜矽區204. . . Planting doped area

205...雙結多晶矽層205. . . Double junction polycrystalline layer

205a...佈植摻雜矽層205a. . . Implanted doped layer

205b...未摻雜矽層205b. . . Undoped layer

206...第二未摻雜多晶矽層206. . . Second undoped polysilicon layer

206a...密封真空腔室206a. . . Sealed vacuum chamber

207...佈植摻雜矽區207. . . Planting doped area

208...閘極多晶矽層208. . . Gate polysilicon layer

209...互連接觸層209. . . Interconnect contact layer

210...第一金屬層210. . . First metal layer

211...第一接觸孔洞層211. . . First contact hole layer

212...第二金屬層212. . . Second metal layer

213...第二接觸孔洞層213. . . Second contact hole layer

214...第三金屬層214. . . Third metal layer

215...第三接觸孔洞層215. . . Third contact hole layer

216...第四金屬層216. . . Fourth metal layer

217...氧化矽層217. . . Cerium oxide layer

218...氮化物沉積層218. . . Nitride deposit

219...下凸金屬(UBM)層219. . . Lower convex metal (UBM) layer

220...錫球220. . . Solder balls

Claims (13)

一種具機電隔離功能的微機電(Micro Electro Mechanical System,MEMS)壓力感測器,係由下而上包括:一互補金氧半(Complementary Metal Oxide Semiconductor,CMOS)基層;一N+佈植摻雜矽層;一場氧化矽(field oxide,FOX)層;複數個佈植摻雜矽區,係形成多個CMOS阱;一第二離子佈植摻雜矽層,係形成CMOS源極/汲極;一雙結多晶矽層,進一步包括一佈植摻雜矽層及一未摻雜矽層;一佈植摻雜/未佈植摻雜組合多晶矽層,係用該N+佈植摻雜矽層以形成一密封真空腔室;一閘極多晶矽層,係用多晶矽構成以形成多個CMOS電晶體閘極,而該等CMOS阱、該CMOS電晶體源極/汲極以及該等CMOS閘極係形成多個CMOS電晶體;一氧化矽層,係被一互連接觸層所嵌入,複數個金屬層,係與複數個接觸孔洞層交錯,該互連接觸層提供接觸至該等CMOS電晶體;一氮化物沉積層;一下凸金屬(UBM)層;以及複數個錫球,該UBM層及該等錫球形成一覆晶凸塊層,其中該CMOS基層具有一凹陷矽區,該N+佈植摻雜矽層是當作一電容器的一底部平板,而該佈植摻雜/未佈植摻雜組合多晶矽層是當作該電容器的一頂部平板。A micro electro mechanical system (MEMS) pressure sensor with electromechanical isolation function includes: a complementary metal oxide semiconductor (CMOS) base layer; an N+ implant doped germanium layer from bottom to top; a layer of field oxide (FOX) layer; a plurality of implanted germanium regions forming a plurality of CMOS wells; and a second ion implanted doped germanium layer to form a CMOS source/drain; The double junction polysilicon layer further comprises an implanted doped germanium layer and an undoped germanium layer; a implanted doped/undimated doped combined polycrystalline germanium layer, the N+ implanted doped germanium layer is used to form a Sealing the vacuum chamber; a gate polysilicon layer is formed by using polysilicon to form a plurality of CMOS transistor gates, and the CMOS wells, the CMOS transistor source/drain electrodes, and the CMOS gates are formed in plurality a CMOS transistor; a ruthenium oxide layer embedded in an interconnect contact layer, a plurality of metal layers interleaved with a plurality of contact hole layers, the interconnect contact layer providing contact to the CMOS transistors; a nitride Deposited layer; a convex metal (UBM) layer; and a plurality of tin a ball, the UBM layer and the solder balls form a flip chip layer, wherein the CMOS substrate has a recessed germanium layer, and the N+ implant doped germanium layer serves as a bottom plate of a capacitor, and the implant The doped/unlaid doped combined polysilicon layer is used as a top plate for the capacitor. 依據申請專利範圍第1項所述之具機電隔離功能的微機電壓力感測器,其中該等金屬層的數以及交錯的該等接觸孔洞層的數量係為可調節。A microelectromechanical pressure sensor having an electromechanical isolation function according to claim 1, wherein the number of the metal layers and the number of staggered contact hole layers are adjustable. 依據申請專利範圍第1項所述之具機電隔離功能的微機電壓力感測器,其中該密封真空腔室形成用於該等電容器平板的一間隙,並決定該電容器的電容值。A microelectromechanical pressure sensor having an electromechanical isolation function according to claim 1, wherein the sealed vacuum chamber forms a gap for the capacitor plates and determines a capacitance value of the capacitor. 依據申請專利範圍第3項所述之具機電隔離功能的微機電壓力感測器,其中該CMOS基層上該凹陷矽區的深度係決定該密封真空腔室的間隙。A microelectromechanical pressure sensor having an electromechanical isolation function according to claim 3, wherein a depth of the recessed region on the CMOS substrate determines a gap of the sealed vacuum chamber. 依據申請專利範圍第1項所述之具機電隔離功能的微機電壓力感測器,其中該等電容器平板包含用於電氣導電率的離子佈植。A microelectromechanical pressure sensor having an electromechanical isolation function according to claim 1, wherein the capacitor plates comprise ion implantation for electrical conductivity. 依據申請專利範圍第1項所述之具機電隔離功能的微機電壓力感測器,其中該佈植摻雜/未佈植摻雜組合多晶矽層係一組合多晶矽層,包括一佈植摻雜層及一未佈植摻雜層,係用於電氣功能的選擇性離子佈植所形成。The microelectromechanical pressure sensor with electromechanical isolation function according to claim 1, wherein the implanted doped/unplanted doped polycrystalline germanium layer is a combined polycrystalline germanium layer, including a implanted doped layer And an unimplanted doped layer is formed by selective ion implantation for electrical functions. 依據申請專利範圍第1項所述之具機電隔離功能的微機電壓力感測器,其中一隔絕N+P接面係藉選擇性離子佈植於該CMOS基層之凹陷矽區所形成。According to the microelectromechanical pressure sensor with electromechanical isolation function according to claim 1, the isolated N+P junction is formed by selective ion implantation on the depressed region of the CMOS substrate. 依據申請專利範圍第1項所述之具機電隔離功能的微機電壓力感測器,其中該MEMS的頂部上之氧化矽區係被蝕刻,藉以將低MEMS薄膜厚度,並增加敏感度。According to the microelectromechanical pressure sensor with electromechanical isolation function according to claim 1, wherein the yttrium oxide region on the top of the MEMS is etched, thereby lowering the thickness of the MEMS film and increasing the sensitivity. 依據申請專利範圍第1項所述之具機電隔離功能的微機電壓力感測器,其中該MEMS壓力感測器的機電隔離係由具選擇性離子佈植的多個MEMS層所達成。A microelectromechanical pressure sensor having an electromechanical isolation function according to claim 1, wherein the electromechanical isolation of the MEMS pressure sensor is achieved by a plurality of MEMS layers with selective ion implantation. 一種用以形成一具機電隔離功能的微機電壓力感測器的製作製程,係包括以下步驟:在一MEMS基層上,執行一MEMS深溝槽氧化矽(deep trench oxide,DTO)製程;執行一CMOS淺溝槽隔離(shallow trench isolation,STI)製程,藉以形成場氧化矽;藉高能離子佈植以形成CMOS阱;進行用於MEMS薄膜的多晶矽沉積、薄膜圖案蝕刻及薄膜離子佈植,藉以摻雜用於電氣連接及機電隔離的薄膜;進行CMOS阱高溫驅入,藉以形成深阱;進行多晶矽薄膜圖案及蝕刻與進行氧化矽釋放;進行等向共形LPCVD非摻雜多晶矽沉積;進行CMOS內層氧化矽(Inter-Level-Oxide,ILD)平坦化;進行CMOS接觸及第一金屬製程;執行多個殘留金屬層及多個交錯接觸孔洞層的互連層形成;進行MEMS區域頂部大面積ILD與MLD氧化矽顯影與蝕刻進行用於具多個微坑的氮化矽沉積的CMOS保護外層(protective overcoat,PO)製程;以及進行一CMOS後段凸塊製程,藉以形成該整合性單晶片MEMS壓力感測器的最終結構。A fabrication process for forming a microelectromechanical pressure sensor having an electromechanical isolation function includes the steps of: performing a MEMS deep trench oxide (DTO) process on a MEMS substrate; performing a CMOS Shallow trench isolation (STI) process to form field yttrium oxide; high energy ion implantation to form CMOS wells; polycrystalline germanium deposition for MEMS films, thin film pattern etching and thin film ion implantation for doping Thin film for electrical connection and electromechanical isolation; high temperature drive in CMOS well to form deep well; polycrystalline germanium film pattern and etching and yttrium oxide release; isotropic conformal LPCVD undoped polysilicon deposition; CMOS inner layer Inter-level-Oxide (ILD) planarization; CMOS contact and first metal process; formation of interconnect layers of a plurality of residual metal layers and a plurality of staggered contact holes; performing large-area ILD at the top of the MEMS region MLD yttrium oxide development and etching for a CMOS protective overcoat (PO) process for tantalum nitride deposition with multiple micropits; and performing a CMOS The back bump process forms the final structure of the integrated single wafer MEMS pressure sensor. 依據申請專利範圍第10項所述之製作製程,其中該DTO製程進一步包括以下步驟:進行矽凹陷蝕刻;用於選擇性N+離子佈植的光阻圖案,藉以形成具P型基層的接面,係用於底部平板電極及機電隔離;以及LPCVD氧化矽沉積藉以填滿該MEMS矽凹陷區及化學機械研磨(Chemical Mechanical Polish,CMP)將晶圓表面平坦化。According to the manufacturing process described in claim 10, wherein the DTO process further comprises the steps of: performing a germanium depression etching; a photoresist pattern for selective N+ ion implantation, thereby forming a junction with a P-type base layer, It is used for the bottom plate electrode and electromechanical isolation; and LPCVD yttrium oxide deposition fills the MEMS 矽 recessed area and chemical mechanical polishing (CMP) to planarize the wafer surface. 依據申請專利範圍第10項所述之製作製程,其中覆晶凸塊封裝(Flip Chip Bumping package)及晶圓級封裝(Wafer Level Package,WLP)係被採用。According to the manufacturing process described in claim 10, a Flip Chip Bumping package and a Wafer Level Package (WLP) are employed. 依據申請專利範圍第10項所述之製作製程,其中該CMOS阱高溫驅入也對佈植摻雜多晶矽薄膜進行退火,藉以獲得一低機械應力薄膜。According to the manufacturing process described in claim 10, the CMOS well high temperature drive also anneals the implanted doped polysilicon film to obtain a low mechanical stress film.
TW101110184A 2012-03-23 2012-03-23 An integrated mems pressure sensor with mechanical electrical isolation TWI475194B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101110184A TWI475194B (en) 2012-03-23 2012-03-23 An integrated mems pressure sensor with mechanical electrical isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101110184A TWI475194B (en) 2012-03-23 2012-03-23 An integrated mems pressure sensor with mechanical electrical isolation

Publications (2)

Publication Number Publication Date
TW201339544A true TW201339544A (en) 2013-10-01
TWI475194B TWI475194B (en) 2015-03-01

Family

ID=49770856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101110184A TWI475194B (en) 2012-03-23 2012-03-23 An integrated mems pressure sensor with mechanical electrical isolation

Country Status (1)

Country Link
TW (1) TWI475194B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217560A (en) * 2014-06-26 2016-01-06 英飞凌技术德累斯顿有限责任公司 Micro mechanical system and the method for the manufacture of micro mechanical system
CN108975263A (en) * 2017-07-19 2018-12-11 迈瑞迪创新科技有限公司 The thermoelectric (al) type infrared detector integrated with high CMOS
CN109052306A (en) * 2017-07-12 2018-12-21 迈瑞迪创新科技有限公司 Expansible thermoelectric (al) type infrared detector
TWI668419B (en) * 2018-03-26 2019-08-11 創為精密材料股份有限公司 Pressure sensing module having multiple air chambers inside
US10923525B2 (en) 2017-07-12 2021-02-16 Meridian Innovation Pte Ltd CMOS cap for MEMS devices
CN114577371A (en) * 2020-11-30 2022-06-03 新唐科技股份有限公司 Capacitive pressure sensor and method for manufacturing the same
TWI780876B (en) * 2021-08-25 2022-10-11 旭德科技股份有限公司 Package carrier and package structure
US11845653B2 (en) 2019-04-01 2023-12-19 Meridian Innovation Pte Ltd Heterogenous integration of complementary metal-oxide-semiconductor and MEMS sensors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI224190B (en) * 2003-05-28 2004-11-21 Au Optronics Corp Semiconductor pressure sensor
JP2005201818A (en) * 2004-01-16 2005-07-28 Alps Electric Co Ltd Pressure sensor
JP2011158317A (en) * 2010-01-29 2011-08-18 Panasonic Electric Works Co Ltd Pressure sensor
US8536671B2 (en) * 2010-06-07 2013-09-17 Tsang-Yu Liu Chip package

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217560A (en) * 2014-06-26 2016-01-06 英飞凌技术德累斯顿有限责任公司 Micro mechanical system and the method for the manufacture of micro mechanical system
US11848348B2 (en) 2017-07-12 2023-12-19 Meridian Innovation Pte Ltd Scalable thermoelectric-based infrared detector
CN109052306A (en) * 2017-07-12 2018-12-21 迈瑞迪创新科技有限公司 Expansible thermoelectric (al) type infrared detector
EP3428592A3 (en) * 2017-07-12 2019-05-22 Meridian Innovation Pte Ltd Scalable thermoelectric-based infrared detector
US10403674B2 (en) 2017-07-12 2019-09-03 Meridian Innovation Pte Ltd Scalable thermoelectric-based infrared detector
US10903262B2 (en) 2017-07-12 2021-01-26 Meridian Innovation Pte Ltd Scalable thermoelectric-based infrared detector
US10923525B2 (en) 2017-07-12 2021-02-16 Meridian Innovation Pte Ltd CMOS cap for MEMS devices
US11990498B2 (en) 2017-07-12 2024-05-21 Meridian Innovation Pte Ltd CMOS cap for MEMS devices
CN108975263A (en) * 2017-07-19 2018-12-11 迈瑞迪创新科技有限公司 The thermoelectric (al) type infrared detector integrated with high CMOS
EP3505890A3 (en) * 2017-07-19 2019-10-09 Meridian Innovation Pte Ltd Thermoelectric-based infrared detector with high cmos integration
US10937824B2 (en) 2017-07-19 2021-03-02 Meridian Innovation Pte Ltd Method for manufacturing a thermoelectric-based infrared detector having a MEMS structure above a hybrid component
TWI668419B (en) * 2018-03-26 2019-08-11 創為精密材料股份有限公司 Pressure sensing module having multiple air chambers inside
US11845653B2 (en) 2019-04-01 2023-12-19 Meridian Innovation Pte Ltd Heterogenous integration of complementary metal-oxide-semiconductor and MEMS sensors
CN114577371B (en) * 2020-11-30 2023-05-16 新唐科技股份有限公司 Capacitive pressure sensor and method for manufacturing the same
TWI775227B (en) * 2020-11-30 2022-08-21 新唐科技股份有限公司 Capacitive pressure sensor and method of manufacturing the same
CN114577371A (en) * 2020-11-30 2022-06-03 新唐科技股份有限公司 Capacitive pressure sensor and method for manufacturing the same
TWI780876B (en) * 2021-08-25 2022-10-11 旭德科技股份有限公司 Package carrier and package structure

Also Published As

Publication number Publication date
TWI475194B (en) 2015-03-01

Similar Documents

Publication Publication Date Title
TWI475194B (en) An integrated mems pressure sensor with mechanical electrical isolation
US20150060956A1 (en) Integrated mems pressure sensor with mechanical electrical isolation
US20150060955A1 (en) Integrated mems microphone with mechanical electrical isolation
US8587077B2 (en) Integrated compact MEMS device with deep trench contacts
US9145292B2 (en) Cavity structures for MEMS devices
US20180374751A1 (en) Novel 3D Integration Method Using SOI Substrates and Structures Produced Thereby
JP4825778B2 (en) Semiconductor device and manufacturing method thereof
US8815701B2 (en) Method for manufacturing semiconductor device having SOI substrate
US7671430B2 (en) MEMS resonator and manufacturing method of the same
US20150368095A1 (en) Double-side process silicon mos and passive devices for rf front-end modules
TWI592030B (en) MEMS microphone and its formation method
TWI664755B (en) Integration of ain ultrasonic transducer on a cmos substrate using fusion bonding process
US20140106555A1 (en) Method for forming a semiconductor device
US9865747B2 (en) Etch stop region based fabrication of bonded semiconductor structures
US9466573B2 (en) RF SOI switch with backside cavity and the method to form it
US10160640B2 (en) Mechanisms for forming micro-electro mechanical system device
WO2009149222A1 (en) Delamination and crack resistant image sensor structures and methods
US8865500B2 (en) Method of fabricating a MEMS microphone with trenches serving as vent pattern
WO2018226718A1 (en) Single mask level forming both top-side-contact and isolation trenches
US20140357050A1 (en) Method of forming isolating structure and through silicon via
JP4835082B2 (en) Semiconductor device and manufacturing method thereof
TW201340734A (en) An integrated single chip MEMS microphone with mechanical electrical isolation
CN105092111A (en) Capacitive pressure sensor and manufacturing method thereof
CN208429862U (en) MEMS structure, MEMS component
JP2008100325A (en) Mems and semiconductor composite circuit, and method of manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees