TW201337531A - Voltage monitoring device and method - Google Patents

Voltage monitoring device and method Download PDF

Info

Publication number
TW201337531A
TW201337531A TW102106370A TW102106370A TW201337531A TW 201337531 A TW201337531 A TW 201337531A TW 102106370 A TW102106370 A TW 102106370A TW 102106370 A TW102106370 A TW 102106370A TW 201337531 A TW201337531 A TW 201337531A
Authority
TW
Taiwan
Prior art keywords
voltage
data
period
instantaneous
voltage drop
Prior art date
Application number
TW102106370A
Other languages
Chinese (zh)
Other versions
TWI479305B (en
Inventor
Yusuke Fukusako
Koji Yokota
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Publication of TW201337531A publication Critical patent/TW201337531A/en
Application granted granted Critical
Publication of TWI479305B publication Critical patent/TWI479305B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • G06F1/305Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations in the event of power-supply fluctuations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

This invention is to provide a voltage monitoring device and a voltage monitoring method capable of not only detecting a transient voltage drop, but also obtaining the information related to voltage change before and after the transient voltage drop. A power sensor (1) has a voltage monitoring function. The power sensor (1) comprising: a measuring unit (10) for measuring AC voltages of the site to be measured and for detecting transient voltage drop generated at the site to be measured; and a memory unit (19). The measuring unit (10) generates a first record data related to all AC voltage elapses occurred at a first time interval during the first time period up until the time point when the transient voltage drop is detected, and a second record data related to all AC voltage elapses occurred at a second time interval after the time point of detecting the transient voltage drop, and the first record data and the second record data are stored in the memory unit (19). The second time interval is shorter than the first time interval, thereby obtaining voltage-related details of the transient voltage drop.

Description

電壓監視裝置及電壓監視方法 Voltage monitoring device and voltage monitoring method

本發明涉及一種用於監視瞬間電壓下降及瞬間停電的電壓監視裝置及電壓監視方法。 The present invention relates to a voltage monitoring device and a voltage monitoring method for monitoring instantaneous voltage drop and instantaneous power failure.

瞬間電壓下降或瞬間停電會給對電源電壓的變動敏感的設備、裝置等的動作帶來很大影響。例如在半導體器件的製造中,要求精細加工,因此需要精密控制製造裝置。瞬間電壓下降或瞬間停電有對製造裝置的動作造成重大影響之可能性。因此,到目前為止,提出了用於監視瞬間電壓下降或瞬間停電的技術。 An instantaneous voltage drop or an instantaneous power failure can greatly affect the operation of equipment, devices, and the like that are sensitive to variations in the power supply voltage. For example, in the manufacture of a semiconductor device, fine processing is required, and thus it is necessary to precisely control the manufacturing apparatus. An instantaneous voltage drop or an instantaneous power outage has the potential to have a significant impact on the operation of the manufacturing device. Therefore, up to now, techniques for monitoring instantaneous voltage drop or instantaneous power failure have been proposed.

例如日本專利特開平11-51985號公報(專利文獻1)公開了一種用於檢測供給微型電腦的驅動電源的交流電源的停電及復電(恢復供電)的計算處理裝置。該裝置包括將交流電源的瞬間電壓轉換成數位值的A/D(類比/數位)轉換器、判斷該數位值是否在設定值以下的比較器、根據數位值屬於在設定值以下的期間的長度來檢測停電的檢測處理部。在檢測出停電的情況下,使CPU(中央處理器)的動作時鐘頻率下降到低於通常的頻率。在檢測出復電的情況下,使CPU的動作時鐘頻率回復到通常的頻率。 For example, Japanese Patent Publication No. Hei 11-51985 (Patent Document 1) discloses a calculation processing device for detecting power failure and re-powering (recovering power supply) of an AC power supply to a driving power supply of a microcomputer. The device includes an A/D (analog/digital) converter that converts an instantaneous voltage of an alternating current power source into a digital value, a comparator that determines whether the digital value is equal to or lower than a set value, and a length that falls within a period equal to or less than a set value according to the digital value. A detection processing unit for detecting a power failure. When a power failure is detected, the operating clock frequency of the CPU (Central Processing Unit) is lowered to a lower frequency than usual. When the re-power is detected, the operating clock frequency of the CPU is returned to the normal frequency.

[現有技術文獻] [Prior Art Literature] [專利文獻] [Patent Literature]

專利文獻1:日本專利特開平11-51985號公報 Patent Document 1: Japanese Patent Laid-Open Publication No. 11-51985

專利文獻1所揭露的計算處理裝置係其目的在於檢測停電及復電的現象。如上所述,在工廠中,在發生瞬間停電或發生不至於導致 停電的瞬間電壓下降的情況下,對生產步驟造成很大的影響。為了所謂瞬間停電及瞬間電壓下降的現象的分析及制定對策,較佳者為,取得與在發生該現象的前後的電壓的變化相關的盡可能詳細的資訊。然而,專利文獻1沒有記載用於取得這種資訊的具體的方法。 The calculation processing device disclosed in Patent Document 1 is intended to detect a phenomenon of power failure and re-power. As mentioned above, in the factory, an instantaneous power outage or occurrence does not result in In the case of a voltage drop at the moment of power failure, the production process is greatly affected. In order to analyze and formulate the phenomenon of instantaneous power failure and instantaneous voltage drop, it is preferable to obtain as much detailed information as possible about the change in voltage before and after the occurrence of the phenomenon. However, Patent Document 1 does not describe a specific method for obtaining such information.

本發明的目的在於,提供一種不僅能夠檢測瞬間電壓下降,還能夠取得與在發生瞬間電壓下降的前後的電壓變化相關的資訊的電壓監視裝置及電壓監視方法。 An object of the present invention is to provide a voltage monitoring device and a voltage monitoring method capable of acquiring not only information about a transient voltage drop but also information relating to a voltage change before and after a transient voltage drop occurs.

根據本發明的一個技術方案,電壓監視裝置係包括:計測部,其對計測部位的交流電壓進行計測,檢測在計測部位發生的瞬間電壓下降;記憶部。計測部係生成第一履歷資料及第二履歷資料,並且將第一履歷資料及第二履歷資料記憶在記憶部內,第一履歷資料係指,在直至瞬間電壓下降的檢出時間點為止的第一期間內之以第一時間間隔所出現的交流電壓的推移所相關的資料,第二履歷資料,表示在瞬間電壓下降的檢出時間點以後之以第二時間間隔所出現的交流電壓的推移。第二時間間隔係比第一時間間隔短。 According to an aspect of the present invention, a voltage monitoring device includes: a measuring unit that measures an AC voltage of a measurement portion, detects an instantaneous voltage drop occurring at a measurement portion, and a memory portion. The measurement unit generates the first history data and the second history data, and stores the first history data and the second history data in the memory unit. The first history data refers to the time until the detection time of the instantaneous voltage drop. The data related to the transition of the AC voltage appearing at the first time interval in one period, and the second history data indicating the transition of the AC voltage appearing at the second time interval after the detection time point of the instantaneous voltage drop . The second time interval is shorter than the first time interval.

根據該結構,計測部係檢測出計測部位的瞬間電壓下降。計測部係生成與在直至該瞬間電壓下降的檢出時間點為止的第一期間內的交流電壓的推移相關的第一履歷資料。計測部係更進一步在該瞬間電壓下降的檢出時間點之後,生成第二履歷資料。由於在第二履歷資料中,表示出很小時間間隔的交流電壓的推移,所以能夠取得與在檢測出瞬間電壓下降之後的電壓變動相關的詳細資料。將第一履歷資料及第二履歷資料記憶在記憶部內。 因此,能夠取得與在瞬間電壓下降的檢出時間點前後的期間內的電壓變動相關的資訊。 According to this configuration, the measurement unit detects the instantaneous voltage drop of the measurement site. The measurement unit generates first history data related to the transition of the AC voltage in the first period up to the detection time point at which the voltage is dropped. The measurement unit further generates the second history data after the detection time point of the instantaneous voltage drop. Since the transition of the AC voltage at a small time interval is indicated in the second history data, detailed information relating to the voltage fluctuation after the detection of the instantaneous voltage drop can be obtained. The first history data and the second history data are memorized in the memory unit. Therefore, it is possible to obtain information relating to voltage fluctuations in a period before and after the detection time point of the instantaneous voltage drop.

「瞬間電壓下降」包括瞬間停電以及不至於導致停電的瞬間電壓下降之兩個含義。 "Instantaneous voltage drop" includes two meanings of an instantaneous power failure and an instantaneous voltage drop that does not cause a power outage.

將第一履歷資料記憶在記憶部內的時機係,可以在檢測出瞬間電壓下降之前,也可以在檢測出瞬間電壓下降之後。在很多情況下,不能預測產生瞬間電壓下降的時間點。因此,例如,亦可將第一履歷資料記憶在記憶部內,並且以一定的時間間隔來更新該資料。或者,計測部可以事先保存第一履歷資料,在檢測出瞬間電壓下降時,將該資料寫入記憶部。 The timing system in which the first history data is stored in the memory unit may be detected before the instantaneous voltage drop is detected or after the instantaneous voltage drop is detected. In many cases, the point in time at which an instantaneous voltage drop occurs cannot be predicted. Therefore, for example, the first history data may be memorized in the memory unit, and the material may be updated at a certain time interval. Alternatively, the measurement unit may store the first history data in advance, and write the data to the memory unit when the instantaneous voltage drop is detected.

較佳地,計測部係更進一步生成在檢測出瞬間電壓下降之後的交流電壓的波形資料,並且將生成的交流電壓的波形資料記憶在記憶部內。 Preferably, the measurement unit further generates waveform data of the AC voltage after detecting the instantaneous voltage drop, and stores the waveform data of the generated AC voltage in the memory unit.

根據該結構,能夠取得與在檢測出瞬間電壓下降之後的電壓的推移相關的更加詳細的資訊。例如,能夠根據記憶於記憶部中的波形資料,來重現檢測出瞬間電壓下降之後的電壓波形。 According to this configuration, it is possible to obtain more detailed information relating to the transition of the voltage after the detection of the instantaneous voltage drop. For example, the voltage waveform after the instantaneous voltage drop can be detected based on the waveform data stored in the memory unit.

較佳地,第一履歷資料係包括:在第一期間內,針對交流電壓的每個第一週期所取得的第一資料;在直至瞬間電壓下降的檢出時間點為止的第二期間內,針對交流電壓的每個第二週期所取得的第二資料。第二履歷資料係包括:在比第一期間短的第三期間內,針對交流電壓的每個第三週期所取得的第三資料。第一時間間隔係與第一週期產生對應。第二時間間隔係與第三週期產生對應。第二週期係比第一週期短。 Preferably, the first history data includes: a first data acquired for each first period of the alternating voltage during the first period; and a second period until a detection time point of the instantaneous voltage drop The second data obtained for each second cycle of the alternating voltage. The second history data includes: a third data acquired for each third period of the alternating voltage during a third period shorter than the first period. The first time interval corresponds to the first period. The second time interval corresponds to the third period. The second period is shorter than the first period.

根據該結構,能夠根據第二資料及第三資料,取得在從即將檢測出瞬間電壓下降時到剛檢測出瞬間電壓下降不久為止的期間內的電壓的詳細資 訊。還能夠根據第一資料,取得與在檢測出瞬間電壓下降之前的電壓的概略趨勢相關的資訊。 According to this configuration, it is possible to obtain the detailed information of the voltage in the period from the time when the instantaneous voltage drop is detected immediately to the time when the instantaneous voltage drop is detected, based on the second data and the third data. News. It is also possible to obtain, based on the first data, information relating to a general trend of the voltage before the detection of the instantaneous voltage drop.

較佳地,計測部取得波形資料的期間係比第三期間短。 Preferably, the period in which the measurement unit acquires the waveform data is shorter than the third period.

根據該結構,能夠控制波形資料的大小。藉此,例如能夠節省記憶部的記憶容量。進而,能夠縮短向記憶部寫入資料的寫入時間。電壓監視裝置的電源電壓有受到瞬間電壓下降的影響的可能性。藉由縮短寫入時間,能夠提高能將波形資料保留在記憶部內的機率。 According to this configuration, the size of the waveform data can be controlled. Thereby, for example, the memory capacity of the memory unit can be saved. Further, the writing time of writing data to the memory unit can be shortened. The power supply voltage of the voltage monitoring device is likely to be affected by an instantaneous voltage drop. By shortening the writing time, it is possible to increase the probability that the waveform data can be retained in the memory.

較佳地,第一週期係與交流電壓的複數週期產生對應。第二週期及第三週期係與交流電壓的一個週期產生對應。第一資料係表示在複數週期的期間內的電壓瞬時值的平方和。第二資料及第三資料係表示在交流電壓的一個週期的期間內的電壓瞬時值的平方和。 Preferably, the first period corresponds to a complex period of the alternating voltage. The second period and the third period correspond to one cycle of the alternating voltage. The first data is the sum of the squares of the instantaneous values of the voltage during the period of the complex period. The second data and the third data represent the sum of the squares of the instantaneous values of the voltages during one cycle of the alternating voltage.

根據該結構,能夠縮短計測部生成與電壓有效值相關的資料所需的時間。通常,為了求得有效值,計算在規定的期間(例如一個週期)內的電壓瞬時值的平方和的平均值,並且計算該平均值的平方根。但是,平方根的計算有可能會花費時間。根據上述的結構,省略了平方根的計算,因此,能夠縮短資料的生成時間。 According to this configuration, it is possible to shorten the time required for the measurement unit to generate data related to the voltage effective value. Usually, in order to obtain an effective value, an average value of the sum of squares of voltage instantaneous values within a prescribed period (for example, one period) is calculated, and the square root of the average value is calculated. However, the calculation of the square root may take time. According to the above configuration, the calculation of the square root is omitted, and therefore, the generation time of the data can be shortened.

較佳地,計測部係藉由在交流電壓的半個週期的期間內生成電壓瞬時值的平方和,來生成監視資料,並對監視資料的推移與設定的模式進行比較,來檢測瞬間電壓下降。 Preferably, the measurement unit generates the monitoring data by generating a square sum of the instantaneous values of the voltages during a half cycle of the alternating voltage, and compares the transition of the monitoring data with the set mode to detect the instantaneous voltage drop. .

根據該結構,能夠縮短生成監視資料所需的時間。由此,能夠快速地檢測出瞬間電壓下降。 According to this configuration, the time required to generate the monitoring material can be shortened. Thereby, the instantaneous voltage drop can be detected quickly.

較佳地,設定的模式係從複數模式中來選擇。電壓監視裝置係更進一步 包括有警報輸出部,警報輸出部在檢測出瞬間電壓下降時,從分別與複數模式產生對應的複數警報中,輸出與設定的模式相對應的警報。 Preferably, the set mode is selected from the plural mode. Voltage monitoring device is further The alarm output unit includes an alarm corresponding to the set mode from the plurality of alarms corresponding to the complex mode when the instantaneous voltage drop is detected.

根據該結構,能夠根據瞬間電壓下降的模式的不同而使警報不同。較佳地,記憶部係非揮發性地記憶第一履歷資料及第二履歷資料。 According to this configuration, the alarm can be made different depending on the mode of the instantaneous voltage drop. Preferably, the memory unit non-volatilely memorizes the first history data and the second history data.

根據該結構,能夠防止所生成的第一履歷資料及第二履歷資料發生消失。 According to this configuration, it is possible to prevent the generated first history data and the second history data from disappearing.

根據本發明的另一個技術方案,電壓監視方法係包括:檢測之步驟,對計測部分的交流電壓進行計測,來檢測在計測部分產生的瞬間電壓下降;第一履歷資料生成之步驟,生成第一履歷資料,第一履歷資料係指,在直至瞬間電壓下降的檢出時間點為止的第一期間內之以第一時間間隔所出現的交流電壓的推移所相關的資料;生成在瞬間電壓下降的檢出時間點之後的資料之步驟;記憶之步驟,將所生成的資料記憶在記憶部內。在檢出時間點之後所生成的資料係,包括表示以第二時間間隔所出現的交流電壓的推移的第二履歷資料。第二時間間隔係比第一時間間隔短。在記憶之步驟中,記憶部係記憶第一履歷資料及第二履歷資料。 According to another aspect of the present invention, a voltage monitoring method includes: a detecting step of measuring an alternating voltage of a measuring portion to detect an instantaneous voltage drop generated in the measuring portion; and generating a first step of generating the first history data The history data, the first history data refers to data related to the transition of the AC voltage occurring at the first time interval in the first period until the detection time point of the instantaneous voltage drop; the generation of the voltage drop at the moment The step of detecting the data after the time point; the step of remembering to memorize the generated data in the memory. The data generated after the detection time point includes a second history data indicating the transition of the AC voltage appearing at the second time interval. The second time interval is shorter than the first time interval. In the step of remembering, the memory department memorizes the first resume data and the second resume data.

根據該結構,能夠取得與瞬間電壓下降的檢出時間點前後的期間內的電壓的變動相關的資訊。此外,記憶部係亦可以在瞬間電壓下降的檢出時間點之後,一併記憶第一履歷資料及第二履歷資料。或者,記憶部係亦可以在瞬間電壓下降的檢出時間點之前記憶第一履歷資料,在瞬間電壓下降的檢出時間點之後記憶第二履歷資料。 According to this configuration, it is possible to obtain information on the fluctuation of the voltage in the period before and after the detection time point of the instantaneous voltage drop. In addition, the memory unit can also memorize the first history data and the second history data after the detection time point of the instantaneous voltage drop. Alternatively, the memory unit may memorize the first history data before the detection time point of the instantaneous voltage drop, and memorize the second history data after the detection time point of the instantaneous voltage drop.

較佳地,檢出時間點之後所生成的資料係,包括在檢測出瞬間電壓下降之後的交流電壓的波形資料。在記憶之步驟中,記憶部係更進一步記憶波形資料。 Preferably, the data generated after the detection time point includes waveform data of the AC voltage after detecting the instantaneous voltage drop. In the memory step, the memory department further memorizes the waveform data.

根據該結構,能夠取得與在檢測出瞬間電壓下降之後的電壓的推移相關的更詳細的資訊。 According to this configuration, it is possible to obtain more detailed information related to the transition of the voltage after the detection of the instantaneous voltage drop.

較佳地,第一履歷資料係包括:第一資料,其是在第一期間內針對交流電壓的每個第一週期所取得的資料;第二資料,其是在直至檢測出瞬間電壓下降的時間點為止的第二期間內,針對交流電壓的每個第二週期所取得的資料。第二履歷資料係包括第三資料,該第三資料是在比第一期間短的第三期間內針對交流電壓的每個第三週期所取得的資料。第一時間間隔係與第一週期產生對應,第二時間間隔係與第三週期產生對應,第二週期比第一週期短。 Preferably, the first history data includes: first data, which is data acquired for each first period of the alternating voltage during the first period; and second data, which is until the instantaneous voltage drop is detected. The data acquired for each second cycle of the AC voltage during the second period up to the time point. The second history data includes third material, which is data acquired for each third period of the alternating voltage during a third period that is shorter than the first period. The first time interval corresponds to the first period, the second time interval corresponds to the third period, and the second period is shorter than the first period.

根據該結構,能夠根據第二資料及第三資料,取得在從即將檢測出瞬間電壓下降時到剛檢測出瞬間電壓下降不久為止的期間內的電壓的詳細資訊。更進一步,還根據第一資料,可取得與檢測出瞬間電壓下降之前的電壓的概略趨勢相關的資訊。 According to this configuration, it is possible to acquire, based on the second data and the third data, detailed information of the voltage in a period from the time when the instantaneous voltage drop is detected to the time when the instantaneous voltage drop is detected. Further, based on the first data, information relating to the general trend of detecting the voltage before the instantaneous voltage drop can be obtained.

較佳地,生成波形資料的期間係比第三期間短。 Preferably, the period during which the waveform data is generated is shorter than the third period.

根據該結構,能夠控制波形資料的大小。 According to this configuration, the size of the waveform data can be controlled.

較佳地,第一週期係與交流電壓的複數週期產生對應。第二週期及第三週期係與交流電壓的一個週期產生對應。第一資料係表示在複數週期的期間內的電壓瞬時值的平方和。第二資料及第三資料係表示在交流電壓的一個週期的期間內的電壓瞬時值的平方和。 Preferably, the first period corresponds to a complex period of the alternating voltage. The second period and the third period correspond to one cycle of the alternating voltage. The first data is the sum of the squares of the instantaneous values of the voltage during the period of the complex period. The second data and the third data represent the sum of the squares of the instantaneous values of the voltages during one cycle of the alternating voltage.

根據該結構,能夠縮短計測部生成與電壓有效值相關的資料所需的時間。 According to this configuration, it is possible to shorten the time required for the measurement unit to generate data related to the voltage effective value.

較佳地,在檢測之步驟中,藉由在交流電壓的半個週期的期間內生成電壓瞬時值的平方和,來生成監視資料,並對監視資料的推移與所設定的模 式進行比較,來檢測瞬間電壓下降。 Preferably, in the detecting step, the monitoring data is generated by generating a sum of squares of voltage instantaneous values during a half cycle of the alternating voltage, and the monitoring data is shifted and the set mode is set. Compare the equations to detect transient voltage drops.

根據該結構,能夠縮短生成監視資料所需的時間。由此,能夠快速地檢測出瞬間電壓下降。 According to this configuration, the time required to generate the monitoring material can be shortened. Thereby, the instantaneous voltage drop can be detected quickly.

較佳地,設定的模式係從複數模式中選擇出的。電壓監視方法係更包括有警報輸出之步驟,在警報輸出之步驟中,在檢測出瞬間電壓下降時,從分別與複數模式產生對應的複數警報中,輸出與設定的模式相對應的警報。 Preferably, the set mode is selected from the plural mode. The voltage monitoring method further includes a step of outputting an alarm, and in the step of outputting the alarm, when detecting an instantaneous voltage drop, an alarm corresponding to the set mode is output from the plurality of alarms respectively corresponding to the complex mode.

根據該結構,能夠根據瞬間電壓下降的模式的不同而使警報不同。較佳地,記憶部非揮發性地記憶第一履歷資料及第二履歷資料。 According to this configuration, the alarm can be made different depending on the mode of the instantaneous voltage drop. Preferably, the memory unit non-volatilely memorizes the first history data and the second history data.

根據該結構,能夠防止生成的第一及第二履歷資料發生消失。 According to this configuration, it is possible to prevent the generated first and second history data from disappearing.

根據本發明,不僅能夠檢測出瞬間電壓下降,還能夠取得與在發生該瞬間電壓下降前後的電壓變化相關的資訊。 According to the present invention, not only the instantaneous voltage drop but also the information relating to the voltage change before and after the transient voltage drop occurs can be obtained.

以下,參照附圖,對本發明的實施方式進行詳細的說明。此外,對圖中相同或相當的部分標註相同的符號,並不重複加以說明。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same or corresponding portions in the drawings are denoted by the same reference numerals and will not be repeatedly described.

圖1係表示基於本發明的電壓監視裝置的一個實施方式的圖。參照圖1,在本實施方式中,基於本發明的電壓監視裝置係,作為電量感測器1來實現。電量感測器1係計測交流電路5之計測部位的電壓及電流。 Fig. 1 is a view showing an embodiment of a voltage monitoring device according to the present invention. Referring to Fig. 1, in the present embodiment, a voltage monitoring device according to the present invention is realized as a power sensor 1. The power sensor 1 measures the voltage and current of the measurement portion of the AC circuit 5.

區域內電氣設備2係將經由輸電線2a接收的電力,輸出至交流電路5、9。區域內電氣設備2係包括輸變電設備(power substation)、分電盤、配電盤及區域內幹線。 The electric equipment 2 in the area outputs the electric power received via the power line 2a to the alternating current circuits 5, 9. The electrical equipment 2 in the area includes power substation, distribution board, switchboard and regional trunk.

交流電路5係向負載裝置6供給交流電力。負載裝置6係例如為工廠內的裝置或設備。交流電路5連接有輔助電源8。輔助電源8係為負載裝置6 的備用電源,例如適用UPS(Uninterruptible Power Supply:不間斷電源)。 The AC circuit 5 supplies AC power to the load device 6. The load device 6 is, for example, a device or device in a factory. An auxiliary power source 8 is connected to the AC circuit 5. The auxiliary power supply 8 is the load device 6 The backup power supply, for example, UPS (Uninterruptible Power Supply).

交流電路5包括電力線5a、5b、5c。圖1係表示作為交流電路5的配電方式的一個例子的三相三線式。交流電路5的配電方式係不限於三相三線式,亦可以為例如單相二線式、單相三線式或三相四線式。 The AC circuit 5 includes power lines 5a, 5b, 5c. FIG. 1 shows a three-phase three-wire type as an example of a power distribution method of the AC circuit 5. The power distribution mode of the AC circuit 5 is not limited to a three-phase three-wire type, and may be, for example, a single-phase two-wire type, a single-phase three-wire type, or a three-phase four-wire type.

電量感測器1經由交流電路9來接受電源電壓。交流電路9連接於輔助電源3。輔助電源3係為電量感測器1的備用電源,例如UPS。但是輔助電源3不是必要的設備。 The power sensor 1 receives the power supply voltage via the AC circuit 9. The AC circuit 9 is connected to the auxiliary power source 3. The auxiliary power source 3 is a backup power source of the power sensor 1, such as a UPS. However, the auxiliary power source 3 is not a necessary device.

電量感測器1的計測部位係與在交流電路5與負載裝置6之間傳遞交流電力的部分產生對應。具體來說,電量感測器1係與電力線5a、5b、5c連接,測定交流電路5的電壓。進而,變流器1a、1b與電量感測器1連接。變流器1a、1b係分別檢測在電力線5a、5b上流動的電流。電量感測器1係根據從變流器1a、1b輸出的信號,來計測計測部位的電流。 The measurement portion of the power sensor 1 is associated with a portion that transmits AC power between the AC circuit 5 and the load device 6. Specifically, the power sensor 1 is connected to the power lines 5a, 5b, and 5c, and the voltage of the AC circuit 5 is measured. Further, the current transformers 1a and 1b are connected to the power sensor 1 . The current transformers 1a, 1b detect the currents flowing on the power lines 5a, 5b, respectively. The power sensor 1 measures the current of the measurement portion based on the signals output from the current transformers 1a and 1b.

電量感測器1係基於計測出的電壓及計測出的電流,來計算計測部位的電量。藉由計算求得的電量係不限於負載裝置6的消耗電量。亦可例如負載裝置6具有馬達,在該馬達進行再生動作(regeneration)的情況下,求得馬達的發電電量。 The electricity sensor 1 calculates the amount of electricity in the measurement site based on the measured voltage and the measured current. The amount of electric power obtained by calculation is not limited to the power consumption of the load device 6. For example, the load device 6 may have a motor, and when the motor performs a regeneration operation, the amount of electric power generated by the motor is obtained.

在例如因雷擊而導致電力供給者(電力公司等)的電力設備發生事故的情況下,從電力系統切離事故設備。在這種情況下,可能會導致區域內電氣設備2及交流電路5、9的電壓在短期間內產生下降。這種電壓下降被叫做「瞬間電壓下降」。另外,在上述情況下,有可能發生瞬間的停電。這種停電被叫做「瞬間停電」。在本實施方式中,「瞬間電壓下降」的術語包括瞬間停電以及不至於導致停電的瞬間電壓下降這兩個含義。 When an electric power device of an electric power supplier (electric power company or the like) has an accident due to, for example, a lightning strike, the accident equipment is cut off from the electric power system. In this case, the voltage of the electric equipment 2 and the alternating current circuits 5, 9 in the area may be lowered in a short period of time. This voltage drop is called "instantaneous voltage drop." In addition, in the above case, an instantaneous power failure may occur. This power outage is called "instantaneous power outage." In the present embodiment, the term "instantaneous voltage drop" includes both the instantaneous power failure and the instantaneous voltage drop that does not cause a power failure.

電量感測器1係監視計測部位的交流電壓,檢測在該計測部位所發生的瞬間電壓下降。電量感測器1係藉由對計測出的電壓的推移的模式和事先設定的模式進行比較,來檢測瞬間電壓下降。在該情況下,電量感測器1係向警報裝置4輸出用於產生警報的信號(警報輸出)。警報裝置4係根據來自電量感測器1的警報輸出,發出警報。警報裝置4係為例如燈、蜂鳴器等,但不限於這些。 The power sensor 1 monitors the AC voltage of the measurement site and detects an instantaneous voltage drop occurring at the measurement site. The power sensor 1 detects an instantaneous voltage drop by comparing a mode of the measured voltage transition with a previously set mode. In this case, the power sensor 1 outputs a signal (alarm output) for generating an alarm to the alarm device 4. The alarm device 4 issues an alarm based on the alarm output from the power sensor 1. The alarm device 4 is, for example, a lamp, a buzzer, or the like, but is not limited thereto.

電量感測器1係還生成與交流電路5的交流電壓的推移相關的履歷(記錄)資料,並保存該履歷資料。若電量感測器1檢測出瞬間電壓下降,則將該履歷資料記憶在電量感測器1的內部。在恰當的時機,將記憶於電量感測器1的履歷資料發送至資料處理裝置7。電量感測器1係經由例如圖中省略的通信裝置及通信線向資料處理裝置7轉送資料。資料處理裝置7係例如藉由執行規定的程式的個人電腦來實現。 The power sensor 1 also generates history (record) data relating to the transition of the AC voltage of the AC circuit 5, and stores the history data. When the power sensor 1 detects an instantaneous voltage drop, the history data is stored in the power sensor 1 . The history data stored in the power sensor 1 is sent to the data processing device 7 at an appropriate timing. The power sensor 1 transfers data to the material processing device 7 via, for example, a communication device and a communication line omitted in the drawing. The data processing device 7 is realized by, for example, a personal computer that executes a predetermined program.

電量感測器1係不僅可以記憶與電壓的推移相關的資料,亦可記憶其他的資料,例如與電量相關的資料。另外,電量感測器1係亦可以將資料記錄在例如記憶卡之類的記錄媒體內。從電量感測器1取出該記錄媒體,並將其插入資料處理裝置7。資料處理裝置7係讀取記憶於記錄媒體中的電量資料。通過這種方法也能夠從電量感測器1向資料處理裝置7轉送資料。 The power sensor 1 not only memorizes data related to the voltage transition, but also memorizes other data such as power-related data. In addition, the power sensor 1 can also record data in a recording medium such as a memory card. The recording medium is taken out from the power sensor 1 and inserted into the material processing device 7. The data processing device 7 reads the power amount data stored in the recording medium. Data can also be transferred from the power sensor 1 to the data processing device 7 by this method.

圖2係表示本發明的實施方式的電量感測器的主要部分的構成的方塊圖。參照圖2,電量感測器1係包括計測部10、通信控制部13、連接部14、含有隔離器15a的信號路徑15、電源電路16、記憶部19、電容器20、半導體繼電器21。 Fig. 2 is a block diagram showing the configuration of a main part of a power sensor according to an embodiment of the present invention. Referring to Fig. 2, power sensor 1 includes measurement unit 10, communication control unit 13, connection unit 14, signal path 15 including isolator 15a, power supply circuit 16, memory unit 19, capacitor 20, and semiconductor relay 21.

計測部10係包括電壓計測部11、電流計測部12、計算電路18。電壓計 測部11係包括分壓電路11a、A/D變換電路11b。電流計測部12係包括變流器1a、1b、電流/電壓變換電路12a、A/D變換電路12b。亦可以將A/D變換電路11b、12b集成為一個電路。或者,還可以將A/D變換電路11b、12b及計算電路18集成為一個處理裝置(例如CPU)。另外,通信控制部13也可藉由例如CPU來實現。 The measurement unit 10 includes a voltage measurement unit 11 , a current measurement unit 12 , and a calculation circuit 18 . Voltmeter The measuring unit 11 includes a voltage dividing circuit 11a and an A/D converting circuit 11b. The current measuring unit 12 includes current transformers 1a and 1b, a current/voltage converting circuit 12a, and an A/D converting circuit 12b. It is also possible to integrate the A/D conversion circuits 11b, 12b into one circuit. Alternatively, the A/D conversion circuits 11b, 12b and the calculation circuit 18 may be integrated into one processing device (for example, a CPU). Further, the communication control unit 13 can also be realized by, for example, a CPU.

電壓計測部11係計測電力線5a、5b、5c各自的電壓Va、Vb、Vc。分壓電路11a係對輸入電壓(電壓Va、Vb、Vc)進行分壓,生成適合計測的強度的電壓。A/D變換電路11b係針對從分壓電路11a輸出的電壓執行採樣及A/D轉換。由此生成表示電壓Va、Vb、Vc各自的值的數位資料。 The voltage measuring unit 11 measures the voltages Va, Vb, and Vc of the power lines 5a, 5b, and 5c. The voltage dividing circuit 11a divides the input voltages (voltages Va, Vb, and Vc) to generate a voltage suitable for the measured strength. The A/D conversion circuit 11b performs sampling and A/D conversion on the voltage output from the voltage dividing circuit 11a. Thereby, digital data indicating the respective values of the voltages Va, Vb, and Vc is generated.

電流計測部12係計測電力線5a、5b各自的電流I1、I3。變流器1a係輸出與電流I1成正比例的電流I1a。變流器1b係輸出與電流I3成正比例的電流I3a。電流/電壓變換電路12a係將電流I1a、I3a轉換成電壓,並且對該電壓進行放大。由此,電流/電壓變換電路12a係生成適合計測的強度的電壓。A/D變換電路12b係針對從電流/電壓變換電路12a輸出的電壓執行採樣及A/D轉換。由此生成表示電流I1、I3各自的值的數位資料。 The current measuring unit 12 measures the currents I1 and I3 of the power lines 5a and 5b. The converter 1a outputs a current I1a that is proportional to the current I1. The converter 1b outputs a current I3a that is proportional to the current I3. The current/voltage conversion circuit 12a converts the currents I1a, I3a into voltages and amplifies the voltages. Thereby, the current/voltage conversion circuit 12a generates a voltage suitable for the measured strength. The A/D conversion circuit 12b performs sampling and A/D conversion on the voltage output from the current/voltage conversion circuit 12a. Digital data representing the respective values of the currents I1, I3 is thus generated.

計算電路18係根據來自電流計測部12的表示電流I1、I3各自的值的數位資料,生成表示流經電力線5c的電流I2的值的數位資料。由於電流I1、I2、I3合計為0,所以能夠根據電流I1、I3的值來計算電流I2的值。計算電路18係利用從電壓計測部11輸出的電壓Va、Vb、Vc的數位資料及電流I1~I3的數位資料,來計算計測部位的電量。計算電路18係將作為計算結果的電量資料記憶在記憶部19內。 The calculation circuit 18 generates digital data indicating the value of the current I2 flowing through the power line 5c based on the digital data from the current measurement unit 12 indicating the respective values of the currents I1 and I3. Since the currents I1, I2, and I3 are zero in total, the value of the current I2 can be calculated from the values of the currents I1 and I3. The calculation circuit 18 calculates the amount of electric power of the measurement portion by using the digital data of the voltages Va, Vb, and Vc output from the voltage measurement unit 11 and the digital data of the currents I1 to I3. The calculation circuit 18 stores the electric energy data as a calculation result in the memory unit 19.

計算電路18係更進一步生成與電壓Va、Vb、Vc各自的推移相關的履歷 資料(第一履歷資料),將該履歷資料記憶在記憶部19內。如在後面進行的詳細說明的那樣,計算電路18係將規定期間的履歷資料記憶在記憶部19內。計算電路18係根據與電壓相關的最新的資料,更新記憶於記憶部19的第一履歷資料。此外,亦也可以一直將第一履歷資料保存在計算電路18的內部(例如Cache:高速緩衝記憶體),直至檢測出瞬間電壓下降為止。 The calculation circuit 18 further generates history data (first history data) related to the transition of the voltages Va, Vb, and Vc, and stores the history data in the memory unit 19. As will be described later in detail, the calculation circuit 18 stores the history data of the predetermined period in the memory unit 19. The calculation circuit 18 updates the first history data stored in the memory unit 19 based on the latest data related to the voltage. Further, the first history data may be stored in the calculation circuit 18 (for example, Cache: cache memory) until the instantaneous voltage drop is detected.

計算電路18係更進一步生成用於監視各個電壓Va、Vb、Vc的監視資料。計算電路18係對監視資料的推移與所設定的模式進行比較,來檢測瞬間電壓下降。在檢測出瞬間電壓下降的情況下,計算電路18係生成與檢測出瞬間電壓下降之後的電壓Va、Vb、Vc的推移相關的第二履歷資料,並將第二履歷資料記憶在記憶部19內。 The calculation circuit 18 further generates monitoring data for monitoring the respective voltages Va, Vb, Vc. The calculation circuit 18 compares the transition of the monitoring data with the set mode to detect the instantaneous voltage drop. When the instantaneous voltage drop is detected, the calculation circuit 18 generates the second history data related to the detection of the transition of the voltages Va, Vb, and Vc after the instantaneous voltage drop, and stores the second history data in the memory unit 19. .

第一履歷資料係表示以第一時間間隔所出現的交流電壓的推移。與此相對,第二履歷資料係表示以第二時間間隔所出現的交流電壓的推移。第二時間間隔係比第一時間間隔短。即,在檢測出瞬間電壓下降之後,生成表示交流電壓的細微推移的資料。計算電路係將第二履歷資料記憶在記憶部19內。 The first history data indicates the transition of the alternating voltage that occurs at the first time interval. In contrast, the second history data indicates the transition of the AC voltage appearing at the second time interval. The second time interval is shorter than the first time interval. That is, after the instantaneous voltage drop is detected, data indicating the fine transition of the AC voltage is generated. The calculation circuit stores the second history data in the memory unit 19.

必要時,藉由計算電路18來讀取記憶於記憶部19中的資料,並向通信控制部13發送該資料。通信控制部13係經由連接部14向外部輸出該資料。 If necessary, the data stored in the memory unit 19 is read by the calculation circuit 18, and the data is transmitted to the communication control unit 13. The communication control unit 13 outputs the material to the outside via the connection unit 14.

在計算電路18檢測出瞬間電壓下降的情況下,計算電路18係輸出檢測信號。經由信號路徑15向通信控制部13發送該信號。通信控制部13係回應檢測信號,使半導體繼電器21產生動作。在該情況下,半導體繼電器21係向警報裝置4輸出用於產生警報的信號(警報輸出)。 When the calculation circuit 18 detects an instantaneous voltage drop, the calculation circuit 18 outputs a detection signal. This signal is transmitted to the communication control unit 13 via the signal path 15. The communication control unit 13 causes the semiconductor relay 21 to operate in response to the detection signal. In this case, the semiconductor relay 21 outputs a signal (alarm output) for generating an alarm to the alarm device 4.

信號路徑15係設置在計算電路18與通信控制部13之間。在信號路徑15 的途中設置有隔離器15a。隔離器15a係使計算電路18與通信控制部13產生絕緣。在交流電路5的電壓值及電流值很高的情況下,電壓計測部11及電流計測部12可能成為高電壓電路。為了在確保相對于高電壓部的電絕緣的同時能夠傳送信號,而設置有作為信號絕緣部的隔離器15a。隔離器15a係為例如電容式的數位隔離器。另外,信號絕緣部係亦可以藉由例如光電耦合器來實現。 The signal path 15 is provided between the calculation circuit 18 and the communication control unit 13. In signal path 15 An isolator 15a is provided on the way. The isolator 15a insulates the calculation circuit 18 from the communication control unit 13. When the voltage value and the current value of the AC circuit 5 are high, the voltage measuring unit 11 and the current measuring unit 12 may become high voltage circuits. In order to transmit a signal while ensuring electrical insulation with respect to the high voltage portion, an isolator 15a as a signal insulating portion is provided. The isolator 15a is, for example, a capacitive digital isolator. Further, the signal insulating portion can also be realized by, for example, a photocoupler.

連接部14係用於進行在電量感測器1與其他裝置之間的資料通信。雖然圖中省略,但連接部14係由用於連接例如匯流排及通信線的連接器所構成。例如電量感測器1係經由連接部來接收藉由其他電量感測器(圖中省略)計算出的電量的資料。電量感測器1可以經由連接部14來輸出藉由電量感測器1而計算求得的電量資料。 The connection portion 14 is for performing data communication between the power sensor 1 and other devices. Although omitted from the drawings, the connecting portion 14 is constituted by a connector for connecting, for example, a bus bar and a communication line. For example, the power sensor 1 receives data of the amount of electric power calculated by another power sensor (omitted from the drawing) via the connection unit. The power sensor 1 can output the calculated power amount data by the power sensor 1 via the connection portion 14.

電源電路16係將來自外部的電源電壓(交流電壓)轉換成直流電壓,並向電量感測器1的各個模組供給該直流電壓。電容器20係利用來自電源電路16的直流電壓來進行充電。在發生瞬間電壓下降時,將電容器20用作為備用電源。電容器20為例如電氣雙層電容器。亦可以取代電容器,而使用例如二次電池來作為備用電源。 The power supply circuit 16 converts a power supply voltage (AC voltage) from the outside into a DC voltage, and supplies the DC voltage to each module of the power sensor 1 . The capacitor 20 is charged by a DC voltage from the power supply circuit 16. When an instantaneous voltage drop occurs, the capacitor 20 is used as a backup power source. The capacitor 20 is, for example, an electric double layer capacitor. Instead of a capacitor, for example, a secondary battery can be used as a backup power source.

能夠向記憶部19寫入資料,並且記憶部19能夠非揮發性地記憶所寫入的資料。例如將FeRAM(Ferroelectric Random Access Memory:鐵電隨機存取記憶體)用作記憶部19。FeRAM除了具有非揮發性的特徵以外,還具有不需要刪除時間和寫入等待時間的特徵,並且還具有讀取和改寫次數多的特徵、低消耗電力的特徵等。藉由將FeRAM用作記憶部19,能夠在短時間內向記憶部19內寫入很多資料。此外,亦可以與記憶部19分開而單 獨設置用於記憶電量資料的記憶部。 The data can be written to the memory unit 19, and the memory unit 19 can memorize the written data non-volatilely. For example, FeRAM (Ferroelectric Random Access Memory) is used as the memory unit 19. In addition to non-volatile features, FeRAM has features that do not require deletion time and write latency, and also features features such as many read and rewrite times, features of low power consumption, and the like. By using the FeRAM as the memory unit 19, a lot of data can be written into the memory unit 19 in a short time. In addition, it can also be separated from the memory unit 19 A memory unit for storing power data is set uniquely.

圖3係表示藉由圖1及圖2所示的電量感測器1執行的電壓監視處理的流程圖。參照圖2及圖3,在步驟S1中,計算電路18係根據例如用戶的指示,設定檢測模式。所設定的模式的數量可以為複數,也可以為一個。 FIG. 3 is a flow chart showing the voltage monitoring process performed by the power sensor 1 shown in FIGS. 1 and 2. Referring to Fig. 2 and Fig. 3, in step S1, the calculation circuit 18 sets the detection mode based on, for example, an instruction from the user. The number of modes set can be plural or one.

檢測模式係包括用於檢測電壓下降的電壓準位(基準值)和該電壓準位所持續的時間。例如事先在記憶部19內記憶複數檢測模式,計算電路18係可以讀取該複數檢測模式中的至少一個。 The detection mode includes a voltage level (reference value) for detecting a voltage drop and a time period during which the voltage level is maintained. For example, the complex detection mode is memorized in the memory unit 19 in advance, and the calculation circuit 18 can read at least one of the complex detection modes.

在步驟S2中,例如根據用戶的指示,對計算電路18設定與有無輔助電源3(參照圖1)相關的資訊。 In step S2, information relating to the presence or absence of the auxiliary power source 3 (refer to FIG. 1) is set to the calculation circuit 18, for example, according to an instruction from the user.

在步驟S3中,計算電路18係利用基於A/D變換電路11b之藉由採樣及A/D轉換取得的電壓瞬時值(A/D值),來生成與瞬間電壓相關的資料,並且將該資料暫時記憶到記憶部19內。該資料包括第一履歷資料及監視資料。第一履歷資料係記憶在記憶部19內。 In step S3, the calculation circuit 18 generates data related to the instantaneous voltage using the instantaneous value of the voltage (A/D value) obtained by the sampling and A/D conversion by the A/D conversion circuit 11b, and The data is temporarily stored in the memory unit 19. This information includes first resume data and surveillance data. The first history data is stored in the memory unit 19.

第一履歷資料係包括第一資料及第二資料。第一資料係為在第一期間內針對交流電壓的每個第一週期所取得的資料。第二資料係為在直至瞬間電壓下降的檢出時間點為止的第二期間內,針對交流電壓的每個第二週期所取得的第二資料。 The first resume data includes the first data and the second data. The first data is the data obtained for each first cycle of the alternating voltage during the first period. The second data is the second data acquired for each second period of the alternating voltage in the second period up to the detection time point of the instantaneous voltage drop.

例如,第一資料係為在十秒鐘內針對交流的每十個週期所取得的電壓瞬時值的平方和。該平方和係為十個週期的單位週期平方和的平均值,其中,單位週期平方和是指,針對交流的每個週期求得的電壓瞬時值的平方和。因此,上述的「第一期間」為十秒鐘,「第一週期」為交流波形的十個週期。另外,「第一週期」係與第一履歷資料的「第一時間間隔」產生對應。 For example, the first data is the sum of the squares of the instantaneous values of the voltages taken for every ten cycles of the AC in ten seconds. The sum of squares is the average of the sum of the squares of the unit periods of ten cycles, wherein the sum of the squares of the unit periods is the sum of the squares of the instantaneous values of the voltages obtained for each cycle of the alternating current. Therefore, the "first period" described above is ten seconds, and the "first period" is ten cycles of the alternating current waveform. In addition, the "first cycle" corresponds to the "first time interval" of the first history data.

例如,第二資料係為在一秒鐘內針對交流的每個週期所取得的電壓瞬時值的平方和。因此,上述的「第二期間」為一秒鐘,「第二週期」為交流波形的一個週期。 For example, the second data is the sum of the squares of the instantaneous values of the voltages taken for each cycle of the exchange in one second. Therefore, the "second period" described above is one second, and the "second period" is one period of the alternating current waveform.

此外,一直對第一期間及第二期間進行更新,直至檢測出瞬間電壓下降為止。第一期間的終點及第二期間的終點係為取得最新的第一資料及第二資料的時間點。第一期間的起始點係為從取得最新的第一資料的時間點開始十秒之前的時間點,第二期間的起始點係為從取得最新的第二資料的時間點開始一秒之前的時間點。 In addition, the first period and the second period are always updated until an instantaneous voltage drop is detected. The end point of the first period and the end point of the second period are the time points for obtaining the latest first data and second data. The starting point of the first period is the time point ten seconds before the time point when the latest first data is acquired, and the starting point of the second period is one second before the time point of obtaining the latest second data. Time point.

在步驟S4中,計算電路18係利用在直至取得最新的A/D值的時間點為止的與交流波形的0.5週期相對應的期間內的A/D值,來生成平方和。該平方和的值,被用作用於檢測瞬間電壓下降的監視資料。計算電路18係對監視資料與設定模式來進行比較。 In step S4, the calculation circuit 18 generates the sum of squares by using the A/D value in the period corresponding to 0.5 cycle of the alternating current waveform until the latest A/D value is obtained. The value of this sum of squares is used as monitoring data for detecting an instantaneous voltage drop. The calculation circuit 18 compares the monitoring data with the setting mode.

在步驟S5中,計算電路18係判斷利用監視資料所表示的電壓的推移的模式是否與設定模式一致。在利用監視資料所表示的電壓的推移的模式與設定模式不一致的情況下,計算電路18係判斷為沒有發生瞬間電壓下降。在該情況(在步驟S5中判斷為「否」)中,返回到步驟S3的處理。另一方面,在利用監視資料所表示的電壓的推移的模式與設定模式一致的情況下,計算電路18係判斷為發生了瞬間電壓下降。在該情況(在步驟S5中判斷為「是」)下,前進到步驟S6的處理。 In step S5, the calculation circuit 18 determines whether or not the mode of the transition of the voltage indicated by the monitoring data matches the setting mode. When the mode of the transition of the voltage indicated by the monitoring data does not match the setting mode, the calculation circuit 18 determines that the instantaneous voltage drop has not occurred. In this case (NO in step S5), the process returns to step S3. On the other hand, when the mode of the transition of the voltage indicated by the monitoring data matches the setting mode, the calculation circuit 18 determines that the instantaneous voltage drop has occurred. In this case (YES in step S5), the process proceeds to step S6.

此外,在步驟S1中設定了複數檢測模式的情況下,在步驟S4中,監視資料係比較複數設定模式中的各個設定模式。然後,在步驟S5中,在監視資料的推移的模式與複數設定模式中的至少一個一致的情況下,前進到步 驟S6的處理。 Further, when the complex detection mode is set in step S1, in step S4, the monitoring data system compares each of the plurality of setting modes. Then, in step S5, in the case where at least one of the mode of monitoring the transition of the data coincides with at least one of the plural setting modes, proceeding to step The processing of step S6.

在步驟S6中,計算電路18係輸出表示檢測出瞬間電壓下降的檢測信號。該檢測信號因所設定的檢測模式不同而不同。例如亦可以根據檢測模式來設定不同的檢測信號的頻率。在檢測信號為脈衝信號的情況下,亦可以根據檢測模式來設定不同的信號的占空比。通信控制部13係接收檢測信號,並且回應於該檢測信號,來控制半導體繼電器21。藉此,半導體繼電器21產生警報輸出。由於檢測信號因所設定的檢測模式不同而不同,所以警報輸出也因所設定的檢測模式不同而不同。 In step S6, the calculation circuit 18 outputs a detection signal indicating that the instantaneous voltage drop is detected. This detection signal differs depending on the set detection mode. For example, the frequency of different detection signals can also be set according to the detection mode. In the case where the detection signal is a pulse signal, the duty ratio of the different signals may be set according to the detection mode. The communication control unit 13 receives the detection signal and controls the semiconductor relay 21 in response to the detection signal. Thereby, the semiconductor relay 21 generates an alarm output. Since the detection signal differs depending on the set detection mode, the alarm output differs depending on the set detection mode.

在步驟S7中,計算電路18係判斷有無輔助電源3。該判斷係基於步驟S2中的計算電路18的設定來進行的。在有輔助電源3的情況(在步驟S7中判斷為「是」)下,前進到步驟S8的處理。另一方面,在沒有輔助電源3的情況(在步驟S7中判斷為「否」)下,前進到步驟S10的處理。 In step S7, the calculation circuit 18 determines whether or not the auxiliary power source 3 is present. This determination is made based on the setting of the calculation circuit 18 in step S2. When the auxiliary power supply 3 is present (YES in step S7), the process proceeds to step S8. On the other hand, when there is no auxiliary power supply 3 (NO in step S7), the process proceeds to step S10.

在步驟S8中,計算電路18係生成第二履歷資料與表示交流波形的波形資料。在步驟S9中,計算電路18係將該第二履歷資料及波形資料保存在記憶部19內。 In step S8, the calculation circuit 18 generates second history data and waveform data indicating an alternating current waveform. In step S9, the calculation circuit 18 stores the second history data and the waveform data in the storage unit 19.

第二履歷資料係包括第三資料,該第三資料是在比第一期間更短的第三期間內針對交流電壓的每個第三週期所取得的資料。例如「第三期間」為一秒鐘,「第三週期」為交流的一個週期。具體來說,計算電路18係針對交流波形的每個週期生成電壓瞬時值的平方和。第三資料係為該平方和的值。「第三週期」係與第二履歷資料中的「第二時間間隔」產生對應。 The second resume data includes third material that is data obtained for each third period of the alternating voltage during a third period that is shorter than the first period. For example, the "third period" is one second, and the "third period" is one cycle of communication. In particular, the calculation circuit 18 generates a sum of squares of voltage instantaneous values for each cycle of the AC waveform. The third data is the value of the sum of squares. The "third period" corresponds to the "second time interval" in the second history data.

計算電路18係更進一步利用電壓瞬時值,生成在檢測出瞬間電壓下降之後的波形資料。生成交流的五個週期的波形資料。計算電路18係將第三資 料及波形資料記憶在記憶部19內。 The calculation circuit 18 further utilizes the voltage instantaneous value to generate waveform data after detecting the instantaneous voltage drop. Generate five cycles of waveform data for the exchange. Calculation circuit 18 will be the third capital The material and waveform data are stored in the memory unit 19.

上述第三期間的長度沒有特別限定。例如第三期間係亦可以是從檢測出瞬間電壓下降的時間點起經過的一定的期間。或者,第三期間係亦可以是從檢測出瞬間電壓下降的時間點到電壓恢復為止的期間。或者,將第三期間設定為上述規定的期間和電壓恢復期間中較短的一個期間。 The length of the third period described above is not particularly limited. For example, the third period may be a certain period of time from the point in time when the instantaneous voltage drop is detected. Alternatively, the third period may be a period from when the instantaneous voltage drop is detected to when the voltage is restored. Alternatively, the third period is set to a shorter one of the predetermined period and the voltage recovery period.

在沒有輔助電源的情況(在步驟S7中判斷為「否」)下,前進到步驟S10的處理。在步驟S10中,計算電路18係轉換成節能模式。在節能模式中,例如盡可能減少向除了計測部10及記憶部19以外的模組供給的電力。較佳地,停止向除了計測部10及記憶部19以外的模組供電。 When there is no auxiliary power supply (NO in step S7), the process proceeds to step S10. In step S10, the calculation circuit 18 is converted into the energy saving mode. In the energy saving mode, for example, power supplied to modules other than the measurement unit 10 and the memory unit 19 is reduced as much as possible. Preferably, power supply to the modules other than the measurement unit 10 and the memory unit 19 is stopped.

接著在步驟S11中,計算電路18係生成第二履歷資料和表示交流波形的波形資料。在步驟S12中,計算電路18係將該第二履歷資料及波形資料保存在記憶部19內。由於步驟S11、S12的處理係分別與步驟S8、S9的處理相同,所以不重複進行此後的說明。在該情況下的第三期間也可以是例如從瞬間電壓下降的檢出時間點起經過的一定的期間,或者是從檢測出瞬間電壓下降的時間點到電壓恢復為止的期間,或者為兩種中較短的一個期間。 Next, in step S11, the calculation circuit 18 generates second history data and waveform data indicating an alternating current waveform. In step S12, the calculation circuit 18 stores the second history data and the waveform data in the storage unit 19. Since the processing of steps S11 and S12 is the same as the processing of steps S8 and S9, respectively, the description will not be repeated. The third period in this case may be, for example, a certain period from the detection time point of the instantaneous voltage drop, or a period from the time when the instantaneous voltage drop is detected to the voltage recovery, or two periods. A shorter period of time.

圖4是用於說明檢測模式的一個例子的圖。參照圖4,各個模式係包括電壓準位和持續時間。模式1係與原本的電壓準位在VL1(%)以下的電壓持續t1(秒)的時間的情況相對應。在模式2中,將電壓準位規定為原本的電壓的VL2(%),將持續時間規定為t2(秒)。在模式3中,將電壓準位規定為原本的電壓的VL3(%),將持續時間規定為t3(秒)。VL1>VL2>VL3,t1>t2>t3。即,電壓下降得越多,用於將該電壓下降檢測為瞬間電壓下降的持續時間越短。 4 is a diagram for explaining an example of a detection mode. Referring to Figure 4, each mode includes voltage levels and durations. Mode 1 corresponds to the case where the voltage level of the original voltage level below VL1 (%) lasts for t1 (seconds). In mode 2, the voltage level is defined as VL2 (%) of the original voltage, and the duration is defined as t2 (second). In mode 3, the voltage level is defined as VL3 (%) of the original voltage, and the duration is defined as t3 (second). VL1>VL2>VL3, t1>t2>t3. That is, the more the voltage drops, the shorter the duration for detecting the voltage drop as the instantaneous voltage drop.

圖4所示的模式係,亦可以是以特定標準為基準來設定的,也可以是任意設定的。作為一個例子,能夠以「SEMI F47」標準為基準來設定模式。 The mode shown in FIG. 4 may be set based on a specific standard or may be arbitrarily set. As an example, the mode can be set based on the "SEMI F47" standard.

圖5是用於說明監視資料的生成方法的圖。參照圖5,首先,計算電路18係取得在二分之一個週期(T/2)的期間內的交流電壓30的A/D值V1、V2、V3、V4……Vn1,來計算出平方和(V1 2+V2 2+V3 2+V4 2+……+Vn1 2)。此外,由於採樣頻率為一定,所以能夠事先求得交流電壓的半個週期內的A/D值的個數n1。 FIG. 5 is a diagram for explaining a method of generating monitoring data. Referring to Fig. 5, first, the calculation circuit 18 obtains A/D values V 1 , V 2 , V 3 , V 4 ... V n1 of the AC voltage 30 during a period of one-half cycle (T/2). To calculate the sum of squares (V 1 2 + V 2 2 + V 3 2 + V 4 2 + ... + V n1 2 ). Further, since the sampling frequency is constant, the number n1 of A/D values in the half cycle of the AC voltage can be obtained in advance.

計算電路18係利用上述的平方和和基準值,來判斷電壓準位。藉由將電壓正常的情況下的平方和乘以圖4所示的電壓準位,能夠事先求得該基準值。 The calculation circuit 18 determines the voltage level using the square sum and the reference value described above. This reference value can be obtained in advance by multiplying the square of the case where the voltage is normal by the voltage level shown in FIG.

計算電路18係對該基準值和平方和(V1 2+V2 2+V3 2+V4 2+……+Vn1 2)進行比較。接著,每當從A/D變換電路11b取得A/D值時,計算電路18係對基準值和平方和進行比較。此時,計算電路18廢棄原本的平方和中的最早(舊)的平方值(=V1 2),而加上最新的平方值。因此,接下來求得的平方和為(V2 2+V3 2+V4 2+……+Vn1 2+Vn2 2)。計算電路18係對平方和((V2 2+V3 2+V4 2+……+Vn1 2+Vn2 2)與基準值來進行比較。 The calculation circuit 18 compares the reference value with the sum of squares (V 1 2 + V 2 2 + V 3 2 + V 4 2 + ... + V n1 2 ). Next, each time the A/D value is obtained from the A/D conversion circuit 11b, the calculation circuit 18 compares the reference value and the square sum. At this time, the calculation circuit 18 discards the earliest (old) square value (= V 1 2 ) of the original square sum, and adds the latest square value. Therefore, the square sum obtained next is (V 2 2 + V 3 2 + V 4 2 + ... + V n1 2 + V n2 2 ). The calculation circuit 18 compares the sum of squares ((V 2 2 + V 3 2 + V 4 2 + ... + V n1 2 + V n2 2 ) with a reference value.

此後,同樣地,計算電路18係對平方和(x3 2+x4 2+……+xn1 2+xn2 2+xn3 2)與基準值進行比較,接著對平方和(x4 2+……+xn1 2+xn2 2+xn3 2+xn4 2)與基準值來進行比較。以這種方式,計算電路18係總是對直至最新時間點為止的二分之一個週期的平方和與基準值來進行比較。監視瞬間電壓下降的時間間隔係基本與A/D值的採樣間隔相等。 Thereafter, likewise, the calculation circuit 18 compares the sum of squares (x 3 2 + x 4 2 + ... + x n1 2 + x n2 2 + x n3 2 ) with the reference value, followed by the sum of squares (x 4 2 +...+x n1 2 +x n2 2 +x n3 2 +x n4 2 ) Compare with the reference value. In this manner, the calculation circuit 18 always compares the sum of squares of one-half of the period up to the latest time point with the reference value. The time interval for monitoring the instantaneous voltage drop is substantially equal to the sampling interval of the A/D value.

有效值係為平方和的平均值的平方根。但是,計算平方根需要花費時間。 因此,在計算電路18計算有效值,並利用該有效值來檢測瞬間電壓下降,此時,檢測出瞬間電壓下降的時間點有可能延遲。在本實施方式中,藉由對平方和與基準值進行比較,來省略平方根的計算。由此,能夠防止檢測出瞬間電壓下降的時間點延遲。 The effective value is the square root of the mean of the sum of the squares. However, it takes time to calculate the square root. Therefore, the calculation circuit 18 calculates an effective value, and uses the effective value to detect the instantaneous voltage drop. At this time, the time point at which the instantaneous voltage drop is detected may be delayed. In the present embodiment, the calculation of the square root is omitted by comparing the square sum with the reference value. Thereby, it is possible to prevent the time point delay in detecting the instantaneous voltage drop.

在本實施方式中,還根據在交流的二分之一個週期(T/2)的期間內取得的瞬時值的平方和來計算瞬間電壓下降。通常根據在交流的一個週期的期間內取得的瞬時值來計算有效值。在交流波形的情況下,基本上正側的波形與負側的波形相同。由此,將在交流的二分之一個週期(T/2)的期間內取得的瞬時值的平方和,用作監視資料。由此,由於能夠防止監視資料的計算時間變長,所以能夠防止檢測出瞬間電壓下降的時間點延遲。 In the present embodiment, the instantaneous voltage drop is also calculated based on the sum of the squares of the instantaneous values acquired during one-half of the period (T/2) of the alternating current. The effective value is usually calculated from the instantaneous value obtained during the period of one cycle of the alternating current. In the case of an AC waveform, the waveform on the substantially positive side is the same as the waveform on the negative side. Thereby, the sum of the squares of the instantaneous values acquired in the period of one-half cycle (T/2) of the alternating current is used as the monitoring data. Thereby, since the calculation time of the monitoring data can be prevented from becoming long, it is possible to prevent the time point delay in detecting the instantaneous voltage drop.

圖6是用於說明在檢測出瞬間電壓下降之前生成及保存資料的步驟的圖。參照圖6,計算電路18,根據在交流電壓30的一個週期T的期間內的通過採樣及A/D轉換取得的電壓的瞬時值,針對每個週期生成平方和41。一個週期的平方和41係累積在記憶部19的緩衝器40內。若生成十個週期的平方和41,則計算電路18計算出平方和41的十個週期的平均值。 Fig. 6 is a view for explaining a procedure of generating and storing data before detecting an instantaneous voltage drop. Referring to Fig. 6, the calculation circuit 18 generates a square sum 41 for each cycle based on the instantaneous value of the voltage obtained by sampling and A/D conversion during one period T of the alternating current voltage 30. The sum of squares of one cycle 41 is accumulated in the buffer 40 of the memory unit 19. If a sum of squares of ten cycles is generated 41, the calculation circuit 18 calculates an average of ten cycles of the sum of squares 41.

計算電路18係將該平均值保存在例如記憶部19的緩衝器42內。緩衝器42係具有由x個緩衝器B1、B2、……、Bx-2、Bx-1、Bx所構成的環形緩衝結構。緩衝器B1、B2、……、Bx-2、Bx-1、Bx分別保存平均值A1、A2、……、Ax-2、Ax-1、Ax。將計數值C1、C2、……、Cx-2、Cx-1、Cx分別分配給緩衝器B1、B2、……、Bx-2、Bx-1、Bx。根據這些計數值,來確定保存有最新的平均值的緩衝器。例如在緩衝器B1內保存有最新的平均值的情況下,按順序從最早(舊)的平均值A2開始排列平均值,從而平均值更新為Ax-2、Ax-1、 Ax、A1的順序。 The calculation circuit 18 stores the average value in, for example, the buffer 42 of the memory unit 19. The buffer 42 has a ring buffer structure composed of x buffers B 1 , B 2 , ..., B x-2 , B x-1 , and B x . The buffers B 1 , B 2 , ..., B x-2 , B x-1 , and B x respectively hold the average values A 1 , A 2 , ..., A x-2 , A x-1 , and A x . The count values C 1 , C 2 , ..., C x-2 , C x-1 , C x are assigned to the buffers B 1 , B 2 , ..., B x-2 , B x-1 , B x , respectively. . Based on these count values, a buffer in which the latest average value is stored is determined. For example, stored in the buffer B 1 at the latest average value, the order from the earliest (old) is the average value A 2 arranged starting averaged to update the average value of A x-2, A x- 1, A The order of x and A 1 .

此後,同樣地,計算電路18係針對一個週期計算出平方和,並將該平方和保存在緩衝器40內。若將接下來的十個週期的平方和保存在緩衝器40內,則計算電路18計算出這十個週期的平方和的平均值,並將該平均值保存在緩衝器42內。在上述的例子中,最早(舊)的平均值A2保存在緩衝器B2內。因此,計算電路18將最新的平均值保存在緩衝器B2內。 Thereafter, likewise, the calculation circuit 18 calculates the sum of squares for one cycle and stores the sum of the squares in the buffer 40. If the sum of the squares of the next ten cycles is stored in the buffer 40, the calculation circuit 18 calculates the average of the sum of the squares of the ten cycles, and stores the average value in the buffer 42. In the above example, the oldest (old) average value A 2 is stored in the buffer B 2 . Therefore, the calculation circuit 18 saves the latest average value in the buffer B 2 .

緩衝器40構成為:例如至少保存一秒鐘內所有的針對每個週期的平方和(即與交流電壓30的頻率相同的數量的平方和)。藉此,將直至最新時間點為止的一秒鐘內所有的針對每個週期的平方和保存在緩衝器40內。 The buffer 40 is configured to hold, for example, at least the sum of squares for each period in one second (i.e., the sum of squares of the same number as the frequency of the alternating voltage 30). Thereby, all the square sums for each cycle in one second up to the latest time point are stored in the buffer 40.

在計算電路18檢測出瞬間電壓下降的情況下,計算電路18係將記憶於緩衝器40中的針對每個週期的平方和(一秒鐘)及記憶於緩衝器42中的十個週期的平方和的平均值(十秒鐘)記憶到記憶部19的其他的記憶區域內。 In the case where the calculation circuit 18 detects an instantaneous voltage drop, the calculation circuit 18 calculates the sum of squares for each cycle (one second) stored in the buffer 40 and the square of the ten cycles stored in the buffer 42. The average value of the sum (ten seconds) is stored in the other memory area of the memory unit 19.

此外,緩衝器40、42係不限於設置在記憶部19內。例如緩衝器40、42亦可以為計算電路18的內部的緩衝器。 Further, the buffers 40 and 42 are not limited to being disposed in the memory unit 19. For example, buffers 40, 42 may also be buffers internal to computing circuit 18.

圖7是用於說明在檢測出瞬間電壓下降之後生成及保存資料的步驟的圖。參照圖7,計算電路18係將在交流電壓30的一個週期T的期間內的通過採樣及A/D轉換取得的電壓的瞬時值,作為波形資料記憶在記憶部19內。計算電路18係更進一步計算這些瞬時值的平方和,並將該平方和記憶在記憶部19內。 Fig. 7 is a view for explaining a procedure of generating and storing data after detecting an instantaneous voltage drop. Referring to Fig. 7, calculation circuit 18 stores the instantaneous value of the voltage obtained by sampling and A/D conversion during one period T of AC voltage 30 in the memory unit 19 as waveform data. The calculation circuit 18 further calculates the sum of the squares of these instantaneous values and stores the sum of squares in the memory unit 19.

計算電路18係將從檢測出瞬間電壓下降起的五個週期的波形資料記憶在記憶部19內。此外,從檢測出瞬間電壓下降起直至經過五個週期為止,將 波形資料和與該波形資料相對應的平方和記憶在記憶部19內。在從檢測出瞬間電壓下降起的第六個週期以後,計算電路18係基於A/D值來計算針對每個週期的平方和,並將該平方和記憶在記憶部19內。例如在從檢測出瞬間電壓下降起到經過了一秒鐘為止的期間內,計算電路18係將針對每個週期的平方和記憶在記憶部19內。 The calculation circuit 18 stores the waveform data of five cycles from the detection of the instantaneous voltage drop in the memory unit 19. In addition, from the detection of the instantaneous voltage drop until five cycles have elapsed, The waveform data and the square sum corresponding to the waveform data are stored in the memory unit 19. After the sixth period from the detection of the instantaneous voltage drop, the calculation circuit 18 calculates the sum of squares for each period based on the A/D value, and stores the square sum in the memory unit 19. For example, during a period from the detection of the instantaneous voltage drop to the lapse of one second, the calculation circuit 18 stores the sum of the squares for each cycle in the memory unit 19.

如上所述,在檢測出瞬間電壓下降之前的一秒鐘及檢測出瞬間電壓下降之後的一秒鐘內,針對每個週期生成平方和,並將該平方和記憶在記憶部19內。進而,在檢測出瞬間電壓下降之後,將交流電壓的五個週期的波形資料記憶在記憶部19內。由此,能夠將與即將產生瞬間電壓下降時的電壓及剛產生瞬間電壓下降不久的電壓的細微推移相關的資料,保存在記憶部19內。進而,在檢測出瞬間電壓下降之後,取得一秒鐘內的針對每個週期的平方和,相對與此,僅獲取五個週期的波形資料。即,取得波形資料的期間比取得針對每個週期的平方和的期間短。由此,能夠控制記憶於記憶部19的資料大小。 As described above, the square sum is generated for each cycle within one second before the detection of the instantaneous voltage drop and the detection of the instantaneous voltage drop, and the sum of squares is stored in the memory unit 19. Further, after the instantaneous voltage drop is detected, the waveform data of five cycles of the AC voltage is stored in the memory unit 19. As a result, it is possible to store the data relating to the voltage immediately after the transient voltage drop and the voltage immediately after the instantaneous voltage drop, in the memory unit 19. Further, after detecting the instantaneous voltage drop, the sum of the squares for each cycle in one second is obtained, and only the waveform data of five cycles is acquired. That is, the period in which the waveform data is acquired is shorter than the period in which the square sum of each period is obtained. Thereby, the size of the data stored in the memory unit 19 can be controlled.

瞬間電壓下降有可能導致電量感測器1的電源電壓暫時下降。藉此,會中斷向記憶部19寫入資料的動作。因此,向記憶部19寫入資料的寫入時間較佳為很短的時間。根據上述結構,通過節省(減小)資料大小,能夠縮短向記憶部19寫入資料的寫入時間。由此,能夠提高將波形資料保留在記憶部19內的可能性。 An instantaneous voltage drop may cause the power supply voltage of the power sensor 1 to temporarily drop. Thereby, the operation of writing data to the memory unit 19 is interrupted. Therefore, the writing time for writing data to the memory unit 19 is preferably a short time. According to the above configuration, by saving (reducing) the data size, the writing time for writing data to the memory unit 19 can be shortened. Thereby, the possibility of retaining the waveform data in the memory unit 19 can be improved.

進而,將在發生瞬間電壓下降之前的十秒鐘內的平方和的平均值(針對每十個週期)記憶在記憶部19內。由此,能夠掌握在發生瞬間電壓下降之前的電壓的概略的推移。 Further, the average value (for every ten cycles) of the sum of the squares within ten seconds before the instantaneous voltage drop occurs is stored in the memory unit 19. Thereby, it is possible to grasp the outline transition of the voltage before the instantaneous voltage drop occurs.

此外,在上述的實施方式中,作為本發明的電壓監視裝置的一個實施方式,示出了電量感測器。然而,只要是具有在上述實施方式中說明的電壓監視功能的裝置即可,裝置的結構及其它的功能沒有特別的限定。 Further, in the above-described embodiment, as one embodiment of the voltage monitoring device of the present invention, a power sensor is shown. However, as long as it is a device having the voltage monitoring function described in the above embodiment, the configuration of the device and other functions are not particularly limited.

另外,在上述的實施方式中,作為節能模式的一個例子,示出了減少向計測部10周邊的模組供給電力的例子。例如,在節能模式中,也可以在上述控制的基礎上,或者取代上述控制,而降低計算電路18(例如CPU)的動作時鐘頻率。 Moreover, in the above-described embodiment, an example in which electric power is supplied to the module around the measurement unit 10 is shown as an example of the energy saving mode. For example, in the power saving mode, the operating clock frequency of the calculation circuit 18 (for example, the CPU) may be lowered in addition to or in place of the above control.

另外,在上述的實施方式中,作為與有效值相關的資料的計算方法,需要計算平方和。然而,還可以通過將交流電壓轉換成直流電壓,來計算有效值。 Further, in the above-described embodiment, as a method of calculating the data related to the effective value, it is necessary to calculate the sum of squares. However, it is also possible to calculate the effective value by converting the alternating voltage into a direct current voltage.

另外,在上述的實施方式中,為了檢測瞬間電壓下降,需要計算在計算交流電壓的二分之一個週期內的平方和。該時間單位例如亦可以是交流電壓的一個週期或複數週期。但是,為了快速檢測出瞬間電壓下降,較佳者為很短的時間單位。 Further, in the above embodiment, in order to detect the instantaneous voltage drop, it is necessary to calculate the sum of squares in one cycle of calculating the alternating voltage. The time unit can also be, for example, one cycle or a complex cycle of the alternating voltage. However, in order to quickly detect an instantaneous voltage drop, it is preferably a short time unit.

應該注意的是,本次公開的實施方式在所有方面只是例示性的,而非限定。本發明的範圍係不限於上述實施方式的說明,而是由專利請求的範圍來劃定,並且包括與專利請求的範圍等同的含義以及在該範圍內的所有變更的內容。 It should be noted that the embodiments disclosed herein are illustrative in all aspects and are not restrictive. The scope of the present invention is not limited to the description of the above embodiments, but is defined by the scope of the patent claims, and includes the meaning equivalent to the scope of the patent claims and the contents of all the modifications within the scope.

1‧‧‧電量感測器 1‧‧‧Power Sensor

1a、1b‧‧‧變流器 1a, 1b‧‧‧ converter

2‧‧‧區域內電氣設備 2‧‧‧Electrical equipment in the area

2a‧‧‧輸電線 2a‧‧‧Power lines

3、8‧‧‧輔助電源 3, 8‧‧‧Auxiliary power supply

4‧‧‧警報裝置 4‧‧‧Alarm device

5、9‧‧‧交流電路 5, 9‧‧‧ AC circuit

5a~5c‧‧‧電力線 5a~5c‧‧‧Power line

6‧‧‧負載裝置 6‧‧‧Load device

7‧‧‧資料處理裝置 7‧‧‧Data processing device

10‧‧‧計測部 10‧‧‧Measurement Department

11‧‧‧電壓計測部 11‧‧‧Voltage measurement department

11a‧‧‧分壓電路 11a‧‧‧voltage circuit

11b、12b‧‧‧A/D變換電路 11b, 12b‧‧‧A/D conversion circuit

12‧‧‧電流計測部 12‧‧‧Electrical Measurement Department

12a‧‧‧電流/電壓變換電路 12a‧‧‧current/voltage conversion circuit

13‧‧‧通信控制部 13‧‧‧Communication Control Department

14‧‧‧連接部 14‧‧‧Connecting Department

15‧‧‧信號路徑 15‧‧‧Signal path

15a‧‧‧隔離器(isolator) 15a‧‧‧Isolator (isolator)

16‧‧‧電源電路 16‧‧‧Power circuit

18‧‧‧計算電路 18‧‧‧Computation circuit

19‧‧‧記憶部 19‧‧‧ Memory Department

20‧‧‧電容器 20‧‧‧ capacitor

21‧‧‧半導體繼電器 21‧‧‧Semiconductor relay

30‧‧‧交流電壓 30‧‧‧AC voltage

40、42、B1~Bx‧‧‧緩衝器 40, 42, B 1 ~ B x ‧ ‧ buffer

圖1是表示根據本發明的電壓監視裝置的一個實施方式的圖。 Fig. 1 is a view showing an embodiment of a voltage monitoring device according to the present invention.

圖2是表示本發明的實施方式的電量感測器的主要部分的構成的方塊圖。 FIG. 2 is a block diagram showing a configuration of a main part of a power sensor according to an embodiment of the present invention.

圖3是表示由圖1及圖2示出的電量感測器1所執行的電壓監視處理的 流程圖。 3 is a view showing voltage monitoring processing executed by the electric quantity sensor 1 shown in FIGS. 1 and 2 flow chart.

圖4是用於說明檢測模式的一個例子的圖。 4 is a diagram for explaining an example of a detection mode.

圖5是用於說明監視資料的生成方法的圖。 FIG. 5 is a diagram for explaining a method of generating monitoring data.

圖6是用於說明在檢測出瞬間電壓下降之前的生成及保存資料的步驟的圖。 Fig. 6 is a view for explaining a procedure of generating and storing data before detecting a transient voltage drop.

圖7是用於說明在檢測出瞬間電壓下降之後的生成及保存資料的步驟的圖。 Fig. 7 is a view for explaining a procedure of generating and storing data after detecting an instantaneous voltage drop.

1‧‧‧電量感測器 1‧‧‧Power Sensor

1a、1b‧‧‧變流器 1a, 1b‧‧‧ converter

4‧‧‧警報裝置 4‧‧‧Alarm device

5‧‧‧交流電路 5‧‧‧AC circuit

5a~5c‧‧‧電力線 5a~5c‧‧‧Power line

10‧‧‧計測部 10‧‧‧Measurement Department

11‧‧‧電壓計測部 11‧‧‧Voltage measurement department

11a‧‧‧分壓電路 11a‧‧‧voltage circuit

11b、12b‧‧‧A/D變換電路 11b, 12b‧‧‧A/D conversion circuit

12‧‧‧電流計測部 12‧‧‧Electrical Measurement Department

12a‧‧‧電流/電壓變換電路 12a‧‧‧current/voltage conversion circuit

13‧‧‧通信控制部 13‧‧‧Communication Control Department

14‧‧‧連接部 14‧‧‧Connecting Department

15‧‧‧信號路徑 15‧‧‧Signal path

15a‧‧‧隔離器(isolator) 15a‧‧‧Isolator (isolator)

16‧‧‧電源電路 16‧‧‧Power circuit

18‧‧‧計算電路 18‧‧‧Computation circuit

19‧‧‧記憶部 19‧‧‧ Memory Department

20‧‧‧電容器 20‧‧‧ capacitor

21‧‧‧半導體繼電器 21‧‧‧Semiconductor relay

Claims (16)

一種電壓監視裝置,包括:計測部,其對計測部位的交流電壓進行計測,檢測在上述計測部位所產生的瞬間電壓下降,記憶部;上述記憶部係,生成第一履歷資料及第二履歷資料,並且將上述第一履歷資料及第二履歷資料記憶在上述記憶部內,上述第一履歷資料係指,在直至上述電壓下降的檢出時間點為止的第一期間內之以第一時間間隔所出現的上述交流電壓的推移所相關的資料,上述第二履歷資料係指,表示在上述瞬間電壓下降的檢出時間點以後之以第二時間間隔所出現的上述交流電壓的推移;上述第二時間間隔係比上述第一時間間隔短。 A voltage monitoring device includes: a measuring unit that measures an AC voltage of a measurement portion, detects a transient voltage drop generated at the measurement portion, and a memory unit; and the memory unit generates the first history data and the second history data And storing the first history data and the second history data in the memory unit, wherein the first history data is at a first time interval in a first period until a detection time point of the voltage drop In the data relating to the transition of the AC voltage, the second history data refers to a transition of the AC voltage occurring at a second time interval after the detection time point of the instantaneous voltage drop; the second The time interval is shorter than the first time interval described above. 如申請專利範圍第1項之電壓監視裝置,其中,上述計測部係更進一步生成在檢測出上述瞬間電壓下降之後的上述交流電壓的波形資料,並且將生成的上述波形資料記憶在上述記憶部內。 The voltage monitoring device according to claim 1, wherein the measurement unit further generates waveform data of the AC voltage after detecting the instantaneous voltage drop, and stores the generated waveform data in the memory unit. 如申請專利範圍第2項之電壓監視裝置,其中,上述第一履歷資料係包括:第一資料,其是在上述第一期間內針對上述交流電壓的每個第一週期所獲取的資料,第二資料,其是在直至檢測出上述瞬間電壓下降的時間點為止的第二期間內,針對上述交流電壓的每個第二週期所獲取的資料; 上述第二履歷資料係包括第三資料,該第三資料是在比上述第一期間短的第三期間內針對上述交流電壓的每個第三週期所獲取的資料;上述第一時間間隔係與上述第一週期產生對應,上述第二時間間隔係與上述第三週期產生對應,上述第二周期比上述第一周期短。 The voltage monitoring device of claim 2, wherein the first history data includes: first data, which is data acquired for each first cycle of the alternating voltage during the first period, a second data, which is data acquired for each second period of the alternating current voltage in a second period until a time point when the instantaneous voltage drop is detected; The second history data includes third data, which is data acquired for each third period of the alternating voltage in a third period shorter than the first period; the first time interval is The first period corresponds to the second period, wherein the second period corresponds to the third period, and the second period is shorter than the first period. 如申請專利範圍第3項之電壓監視裝置,其中,上述計測部獲取上述波形資料的期間係,比上述第三期間短。 The voltage monitoring device according to claim 3, wherein the period in which the measurement unit acquires the waveform data is shorter than the third period. 如申請專利範圍第3項之電壓監視裝置,其中,上述第一週期係,與上述交流電壓的複數週期產生對應,上述第二週期及上述第三週期係,與上述交流電壓的一個週期產生對應,上述第一資料係,表示在上述複數週期的期間內的電壓瞬時值的平方和,上述第二資料及上述第三資料係,表示在上述交流電壓的上述一個週期的期間內的電壓瞬時值的平方和。 The voltage monitoring device of claim 3, wherein the first period corresponds to a complex period of the alternating voltage, and the second period and the third period correspond to one cycle of the alternating voltage The first data system indicates a sum of squares of voltage instantaneous values during a period of the complex period, and the second data and the third data system indicate instantaneous voltage values during a period of the one cycle of the alternating current voltage. The sum of the squares. 如申請專利範圍第1至5項中任一項之電壓監視裝置,其中,上述計測部係,藉由在上述交流電壓的半個週期的期間內生成電壓瞬時值的平方和,來生成監視資料,並對上述監視資料的推移與所設定的模式進行比較,來檢測上述瞬間電壓下降。 The voltage monitoring device according to any one of claims 1 to 5, wherein the measurement unit generates a monitoring data by generating a sum of squares of voltage instantaneous values during a half cycle of the alternating current voltage And comparing the transition of the monitoring data with the set mode to detect the instantaneous voltage drop. 如申請專利範圍第6項之電壓監視裝置,其中,上述設定的模式係從複數模式中選擇出的,上述電壓監視裝置係更包括有警報輸出部,上述警報輸出部在檢測出上述瞬間電壓下降時,在分別與上述複數模式產生對應的複數警報中,輸出與上述設定的模式相對應的警報。 The voltage monitoring device of claim 6, wherein the set mode is selected from a plurality of modes, wherein the voltage monitoring device further includes an alarm output unit, wherein the alarm output unit detects the instantaneous voltage drop. At the time of each of the plurality of alarms corresponding to the above-described plural mode, an alarm corresponding to the set mode is output. 如申請專利範圍第1項之電壓監視裝置,其中,上述記憶部係非揮發性地記憶上述第一履歷資料及第二履歷資料。 The voltage monitoring device of claim 1, wherein the memory unit non-volatilely memorizes the first history data and the second history data. 一種電壓監視方法,包括:檢測之步驟,對計測部分的交流電壓進行計測,來檢測在上述計測部分所產生的瞬間電壓下降,第一履歷資料生成之步驟,生成第一履歷資料,上述第一履歷資料係指,在直至上述瞬間電壓下降的檢出時間點為止的第一期間內之以第一時間間隔所出現的上述交流電壓的推移所相關的資料,生成在上述瞬間電壓下降的檢出時間點之後的資料之步驟,記憶之步驟,將所生成的資料記憶在記憶部內;在上述檢出時間點之後所生成的資料中係包括第二履歷資料,上述第二履歷資料係表示以第二時間間隔所出現的上述交流電壓的推移,上述第二時間間隔比上述第一時間間隔短,在上述記憶之步驟中,上述記憶部係記憶上述第一履歷資料及第二履歷資料。 A voltage monitoring method includes: a detecting step of measuring an alternating voltage of a measuring portion to detect a transient voltage drop generated in the measuring portion, and generating a first history data by the step of generating a first history data, the first The history data refers to the detection of the transient voltage drop occurring in the data of the transition of the AC voltage occurring at the first time interval in the first period up to the detection time point of the transient voltage drop. The step of data after the time point, the step of remembering, storing the generated data in the memory unit; the data generated after the detection time point includes the second history data, and the second history data is indicated by The second time interval is shorter than the first time interval in the transition of the alternating voltage that occurs at two time intervals. In the memory step, the memory unit stores the first history data and the second history data. 如申請專利範圍第9項之電壓監視方法,其中,在上述檢出時間點之後所生成的資料中係,包括在檢測出上述瞬間電壓下降之後的上述交流電壓的波形資料,在上述記憶之步驟中,上述記憶部係更進一步記憶上述波形資料。 The voltage monitoring method of claim 9, wherein the data generated after the detecting time point includes waveform data of the alternating voltage after detecting the instantaneous voltage drop, in the memory step The memory unit further memorizes the waveform data. 如申請專利範圍第10項之電壓監視方法,其中,上述第一履歷資料係包括: 第一資料,其是在上述第一期間內針對上述交流電壓的每個第一週期所取得的資料,第二資料,其是在直至檢測出上述瞬間電壓下降的時間點為止的第二期間內,針對上述交流電壓的每個第二週期所取得的資料;上述第二履歷資料係包括第三資料,該第三資料是在比上述第一期間短的第三期間內針對上述交流電壓的每個第三週期所取得的資料;上述第一時間間隔係與上述第一週期產生對應,上述第二時間間隔係與上述第三週期產生對應,上述第二週期比上述第一週期短。 The voltage monitoring method of claim 10, wherein the first history data includes: The first data is data acquired for each first period of the alternating voltage in the first period, and the second data is in a second period until a time point at which the instantaneous voltage drop is detected. And the data obtained for each second period of the alternating voltage; the second history data includes a third data, wherein the third data is for each of the alternating voltages in a third period shorter than the first period The data obtained in the third period; the first time interval corresponds to the first period, the second time interval corresponds to the third period, and the second period is shorter than the first period. 如申請專利範圍第11項之電壓監視方法,其中,生成上述波形資料的期間係比上述第三期間短。 The voltage monitoring method of claim 11, wherein the period in which the waveform data is generated is shorter than the third period. 如申請專利範圍第11項之電壓監視方法,其中,上述第一週期係,與上述交流電壓的複數週期產生對應,上述第二週期及上述第三週期係,與上述交流電壓的一個週期產生對應,上述第一資料係,表示在上述複數週期的期間內的電壓瞬時值的平方和,上述第二資料及上述第三資料係,表示在上述交流電壓的上述一個週期的期間內的電壓瞬時值的平方和。 The voltage monitoring method of claim 11, wherein the first period corresponds to a complex period of the alternating voltage, and the second period and the third period correspond to one cycle of the alternating voltage The first data system indicates a sum of squares of voltage instantaneous values during a period of the complex period, and the second data and the third data system indicate instantaneous voltage values during a period of the one cycle of the alternating current voltage. The sum of the squares. 如申請專利範圍第9至13項中任一項之電壓監視方法,其中,在上述檢測之步驟中,藉由在上述交流電壓的半個週期的期間內生成電壓瞬時值的平方和,來生成監視資料,並對上述監視資料的推移與所設定的模式進行比較,來檢測上述瞬間電壓下降。 The voltage monitoring method according to any one of claims 9 to 13, wherein in the step of detecting, generating a sum of squares of voltage instantaneous values during a half cycle of the alternating voltage The data is monitored, and the transition of the monitoring data is compared with the set mode to detect the instantaneous voltage drop. 如申請專利範圍第14項之電壓監視方法,其中, 上述設定的模式係從複數模式中選擇出的,上述電壓監視方法係更包括有警報輸出之步驟,在上述警報輸出之步驟中,在檢測出上述瞬間電壓下降時,在分別與上述複數模式產生對應的複數警報中,輸出與上述設定的模式相對應的警報。 For example, the voltage monitoring method of claim 14 of the patent scope, wherein The mode set above is selected from the plurality of modes, and the voltage monitoring method further includes a step of outputting an alarm, and in the step of outputting the alarm, when detecting the instantaneous voltage drop, respectively generating the complex mode In the corresponding plural alarm, an alarm corresponding to the mode set above is output. 如申請專利範圍第9項之電壓監視方法,其中,上述記憶部係非揮發性地記憶上述第一履歷資料及第二履歷資料。 The voltage monitoring method of claim 9, wherein the memory unit non-volatilely memorizes the first history data and the second history data.
TW102106370A 2012-02-29 2013-02-23 Voltage monitoring device and method TWI479305B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012042776A JP6003091B2 (en) 2012-02-29 2012-02-29 Voltage monitoring apparatus and voltage monitoring method

Publications (2)

Publication Number Publication Date
TW201337531A true TW201337531A (en) 2013-09-16
TWI479305B TWI479305B (en) 2015-04-01

Family

ID=49094574

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102106370A TWI479305B (en) 2012-02-29 2013-02-23 Voltage monitoring device and method

Country Status (4)

Country Link
JP (1) JP6003091B2 (en)
KR (1) KR101372800B1 (en)
CN (1) CN103293356B (en)
TW (1) TWI479305B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102243310B1 (en) 2014-08-19 2021-04-23 삼성디스플레이 주식회사 Display apparatus and method of driving the same
CN106018931B (en) * 2016-05-12 2018-11-30 南方电网科学研究院有限责任公司 Rate of qualified voltage monitoring method and system
JP6825243B2 (en) * 2016-06-27 2021-02-03 アイシン精機株式会社 Grid interconnection controller
RU176831U1 (en) * 2017-04-11 2018-01-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" The device for precision stabilization of the ball in the hop-up airsoft pneumatic chamber
JP2019144084A (en) * 2018-02-20 2019-08-29 パナソニックIpマネジメント株式会社 Monitoring method and monitoring system
JP6656488B1 (en) * 2019-03-12 2020-03-04 三菱電機株式会社 Short circuit detection device and short circuit detection method
JP7343620B2 (en) * 2020-01-20 2023-09-12 ファナック株式会社 Robot control device and power outage handling method
CN114914492B (en) * 2022-05-24 2023-10-31 佛山仙湖实验室 Local voltage detection device of fuel cell system and detection analysis method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049555B2 (en) * 1981-09-16 1985-11-02 芝浦メカトロニクス株式会社 Bolt tightening method using stress point method
JP2741132B2 (en) * 1992-03-19 1998-04-15 日置電機株式会社 Power monitoring recorder
JPH0731080A (en) * 1993-07-06 1995-01-31 Toshiba Corp Waveform storage device
JPH0973322A (en) * 1995-09-04 1997-03-18 Nissin Electric Co Ltd Power unit with input/output waveform recording function
JPH1151985A (en) * 1997-08-04 1999-02-26 Mitsubishi Electric Corp Power failure detecting device, and processor
JPH1164399A (en) * 1997-08-27 1999-03-05 Nissin Electric Co Ltd Voltage drop detector and detecting method
JPH11266548A (en) * 1998-03-17 1999-09-28 Fuji Electric Co Ltd Method and device for keeping historical data of uninterruptible power unit
JPH11271366A (en) * 1998-03-19 1999-10-08 Sony Corp Apparatus for detecting voltage drop
JP2001305165A (en) * 2000-04-26 2001-10-31 Yokogawa Electric Corp Arithmetic method
JP4138204B2 (en) * 2000-04-28 2008-08-27 松下電器産業株式会社 Charge / discharge control apparatus and method
JP2002372505A (en) * 2001-06-13 2002-12-26 Rigaku Industrial Co Sample analyzer with momentary power failure protective function
JP3611316B2 (en) * 2001-10-29 2005-01-19 インターナショナル・ビジネス・マシーンズ・コーポレーション ELECTRIC DEVICE, COMPUTER DEVICE, POWER SWITCHING DEVICE, AND POWER SWITCHING METHOD
JP2003294791A (en) * 2002-04-02 2003-10-15 Tokyo Denshi Kk Voltage drop detecting circuit for three-phase line
US7323848B2 (en) * 2002-12-11 2008-01-29 Japan Storage Battery Co., Ltd. Battery charging state arithmetic operation device for calculating charging state of battery, and battery charging state arithmetic operation method
CN100526889C (en) * 2003-06-05 2009-08-12 三菱电机株式会社 Instantaneous voltage lowering detection device
JP3861874B2 (en) * 2003-12-16 2006-12-27 株式会社デンソー AD converter failure detection device
KR100816061B1 (en) * 2006-03-16 2008-03-24 엘에스산전 주식회사 Sag Detection Method Using Moving Average
JP2008151723A (en) * 2006-12-20 2008-07-03 Meidensha Corp Instantaneous voltage drop detection device
CN101571563B (en) * 2009-06-04 2011-08-17 东方博沃(北京)科技有限公司 Integrative electric energy quality monitoring terminal
CN102128972B (en) * 2011-01-12 2013-06-26 重庆市电力公司市区供电局 Sensor device for monitoring transient voltage of broadband integral type power grid
JP5714943B2 (en) 2011-03-09 2015-05-07 北海道電力株式会社 Waveform recording apparatus and fault location system

Also Published As

Publication number Publication date
JP6003091B2 (en) 2016-10-05
KR101372800B1 (en) 2014-03-12
JP2013178186A (en) 2013-09-09
CN103293356B (en) 2016-02-10
CN103293356A (en) 2013-09-11
KR20130099830A (en) 2013-09-06
TWI479305B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
TWI479305B (en) Voltage monitoring device and method
US9297859B2 (en) Battery-state monitoring system
US9099955B2 (en) Early notification of power loss in three phase meter
US20070188146A1 (en) Circuit for detecting remaining battery capacity
CN103229063A (en) Ground fault detection device, ground fault detection method, solar energy generator system, and ground fault detection program
JP6525648B2 (en) Battery capacity estimation system, battery capacity estimation method and battery capacity estimation program
CN104425850A (en) Semiconductor device, battery pack and personal data assistant
CN211208607U (en) Monitoring device for battery management system and battery management system
US20120054522A1 (en) Electronic device with sleep mode and method for awaking electronic device
CN101930056A (en) Method for predicting power backup time of battery
US9933488B2 (en) Open circuit voltage checking for a battery system
CN106950448A (en) The life detecting device and method of protective relaying device
US9276298B2 (en) Automatically determining alarm threshold settings for monitored battery system components in battery systems, and related components, systems, and methods
KR100777828B1 (en) Electronic wattmeter capable of power distribution line and the fault monitoring method thereby
KR20000025198A (en) System for automatically notifying of battery exchange time and method therefor
CN104914303A (en) Electric energy metering method
KR20150082238A (en) Device and method for early detection of power failure in an external power supply
US11680995B2 (en) In-situ testing of electric double layer capacitors in electric meters
KR20210011235A (en) Apparatus and method for diagnosing battery cell
TWI755343B (en) Smart battery device, and electronic device thereof
JP2004247319A (en) Battery fault detecting method
JP2017503287A (en) Power monitor for electronic devices
KR20180131311A (en) Power surveillance system for protecting PCS of distributed generation and method thereof
KR20180131942A (en) DC power use surveillance apparatus for protecting DC grid and method thereof
Raju et al. Smart Fault Detection in Distribution System