TW201329541A - Manufacturing system of optical component pasted material, manufacturing method and computer-readable recording medium - Google Patents

Manufacturing system of optical component pasted material, manufacturing method and computer-readable recording medium Download PDF

Info

Publication number
TW201329541A
TW201329541A TW101143431A TW101143431A TW201329541A TW 201329541 A TW201329541 A TW 201329541A TW 101143431 A TW101143431 A TW 101143431A TW 101143431 A TW101143431 A TW 101143431A TW 201329541 A TW201329541 A TW 201329541A
Authority
TW
Taiwan
Prior art keywords
optical
optical component
component layer
bonding
region
Prior art date
Application number
TW101143431A
Other languages
Chinese (zh)
Other versions
TWI425260B (en
Inventor
Mikio Fujii
Tatsuya Tsuchioka
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201329541A publication Critical patent/TW201329541A/en
Application granted granted Critical
Publication of TWI425260B publication Critical patent/TWI425260B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133322Mechanical guidance or alignment of LCD panel support components

Abstract

A manufacturing system of an optical component pasted material includes a control device configured to determine a relative pasting position of an optical display component and an optical component sheet, wherein the determination is made based on test data indicating optical axis direction of the optical component sheet, and the optical component sheet is larger than a display region of the optical display component. The manufacturing system includes an alignment device configured to perform alignment of the optical display component for the optical component sheet, wherein the alignment is made based on the relative pasting position determined by the control device. The manufacturing system includes a pasting device configured to paste the optical display component performed alignment by the alignment device and the optical component sheet. The manufacturing system includes a cutting device configured to cut off a first region of the optical component sheet pasted by the pasting device from a second region of the optical component, wherein the first region is opposite to the display region of the optical display component, and the second region is outside of the first region.

Description

光學組件貼合體之製造系統、製造方法及記錄媒體 Manufacturing system, manufacturing method and recording medium of optical component bonding body

本發明係關於一種將光學組件貼合至光學顯示部件的光學組件貼合體之製造系統、製造方法及記錄媒體。 The present invention relates to a manufacturing system, a manufacturing method, and a recording medium of an optical component bonding body in which an optical component is bonded to an optical display component.

傳統上,已知液晶顯示器等光學顯示設備的生產系統。該生產系統係將貼合至液晶面板(光學顯示部件)的偏光板等光學組件,從長條薄膜切割出符合液晶面板之顯示區域尺寸的層片。其後,將光學組件貼合至液晶面板(例如,參考專利文獻1)。 Conventionally, a production system of an optical display device such as a liquid crystal display is known. This production system is an optical component such as a polarizing plate that is bonded to a liquid crystal panel (optical display member), and cuts a laminate that conforms to the size of the display region of the liquid crystal panel from the long film. Thereafter, the optical component is attached to the liquid crystal panel (for example, refer to Patent Document 1).

【先前技術文獻】 [Previous Technical Literature] 【專利文獻】 [Patent Literature]

專利文獻1:日本專利特開第2003-255132號公報。 Patent Document 1: Japanese Patent Laid-Open No. 2003-255132.

【發明概要】 [Summary of the Invention]

一般而言,上述長條薄膜(光學薄膜)係將浸含有二色性(dichroism)染料之樹脂薄膜朝一方向延伸所製造。該長條薄膜之光軸方向與該樹脂薄膜之延伸方向概略一致。因此,傳統上係以該延伸方向為基準來設計 長條薄膜的切斷角度。 In general, the above-mentioned long film (optical film) is produced by extending a resin film impregnated with a dichroism dye in one direction. The optical axis direction of the long film is substantially the same as the extending direction of the resin film. Therefore, it is traditionally designed based on the extension direction. The cutting angle of the long film.

但是,關於長條薄膜之光軸,於長條薄膜整體並非相同,於長條薄膜面內具有若干差異。因此,從長條薄膜切割出偏光板(光學組件)的情況,因該長條薄膜面內之光軸差異的影響,所切割出的偏光板之光軸將產生偏差。 However, regarding the optical axis of the long film, the entire length of the long film is not the same, and there are some differences in the surface of the long film. Therefore, in the case where the polarizing plate (optical module) is cut out from the long film, the optical axis of the cut polarizing plate is deviated due to the influence of the difference in the optical axis in the surface of the long film.

將薄膜狀光學組件貼合至光學顯示部件的情況亦同樣會生產上述光軸差異。因此,需要提升相對光學顯示部件的光學組件之光軸方向的精度。 The above optical axis difference is also produced in the case where the film-shaped optical component is bonded to the optical display component. Therefore, there is a need to improve the accuracy of the optical axis direction of the optical component of the optical display member.

本發明有鑑於上述事項,係提供一種可提升貼合至光學顯示部件的光學薄膜之光軸方向精度的光學組件貼合體之製造系統、製造方法及記錄媒體。 In view of the above, the present invention provides a manufacturing system, a manufacturing method, and a recording medium for an optical component bonding body which can improve the optical axis direction accuracy of an optical film bonded to an optical display member.

本發明之第一態樣為一種光學組件貼合體之製造系統,係具備:控制裝置,係根據較光學顯示部件之顯示區域更大的光學組件層(sheet)之光軸方向所示之檢查資料,決定該光學顯示部件與該光學組件層的相對貼合位置;校準裝置,係根據該控制裝置所決定之相對貼合位置,相對該光學組件層進行該光學顯示部件的校準(alignment);貼合裝置,係將該光學組件層貼合至由該校準裝置校準好之光學顯示部件;以及切斷裝置,係將該貼合裝置所貼合好之光學組件層的區域中的對向該光學顯示部件之顯示區域的第一區域與該光學組件層之第一區域外側區域的第二區域進行切斷。 A first aspect of the present invention is a manufacturing system of an optical component bonding body, comprising: a control device for inspecting data according to an optical axis direction of an optical component sheet larger than a display area of the optical display component; Determining a relative position of the optical display member and the optical component layer; the calibration device performs alignment of the optical display component with respect to the optical component layer according to the relative bonding position determined by the control device; a device for attaching the optical component layer to an optical display component calibrated by the calibration device; and a cutting device for opposing the optical component in the region of the optical component layer to which the bonding device is attached A first region of the display area of the display member is cut from a second region of the outer region of the first region of the optical component layer.

不過,上述結構中的「第一區域(與顯示區域的對向部分)」係指較顯示區域大並較光學顯示部件的外形小之區域,且為避開了電子部件安裝部等功能部分的區域。即,上述結構係包含沿光學顯示部件外周緣以雷射切斷剩餘部分的情況。 However, the "first region (opposing portion with the display region)" in the above structure means a region which is larger than the display region and smaller than the outer shape of the optical display member, and avoids the functional portion such as the electronic component mounting portion. region. That is, the above structure includes a case where the remaining portion is cut by laser along the outer periphery of the optical display member.

於本發明之第一態樣中,該切斷裝置係可從該光學組件層切割出對應於該顯示區域大小的光學組件層,藉以切割出包含該光學顯示部件及該光學組件層的光學組件貼合體。 In a first aspect of the present invention, the cutting device can cut an optical component layer corresponding to the size of the display area from the optical component layer, thereby cutting the optical component including the optical display component and the optical component layer. Fit the body.

於本發明之第一態樣中,該控制裝置係可讓該光學顯示部件之基準軸與該檢查資料所示之光學組件層的光軸方向呈平行,決定該相對貼合位置。 In a first aspect of the invention, the control device is configured such that a reference axis of the optical display member is parallel to an optical axis direction of the optical component layer indicated by the inspection material to determine the relative bonding position.

於本發明之第一態樣中,該控制裝置係可使用通過該光學顯示部件之平面中心的長邊方向軸來作為該基準軸。 In the first aspect of the invention, the control device can use the long-axis direction axis passing through the center of the plane of the optical display member as the reference axis.

於本發明之第一態樣中,該校準裝置係可讓該光學組件層與該光學顯示部件配置到該控制裝置所決定的相對貼合位置,進行該光學顯示部件的校準。 In a first aspect of the invention, the calibration device allows the optical component layer and the optical display component to be disposed at a relative bonding position determined by the control device for calibration of the optical display component.

於本發明之第一態樣中,該校準裝置係可由該第一輸送裝置朝該光學顯示部件的輸送方向之垂直方向移動、及由該第一輸送裝置繞該光學顯示部件的輸送方向之垂直軸迴轉,藉以將該光學顯示部件輸送至該相對貼合位置。 In a first aspect of the invention, the calibration device is vertically movable from the first transport device toward the transport direction of the optical display member and perpendicular to the transport direction of the optical display member by the first transport device The shaft is rotated to deliver the optical display member to the relative abutment position.

於本發明之第一態樣中,該校準裝置係可於將該光學顯示部件反轉後,根據該控制裝置所決定之相對貼合位置,對該光學組件層進行該光學顯示部件之校準。 In a first aspect of the invention, the calibration device is capable of calibrating the optical display component to the optical component layer after inverting the optical display component and determining the relative bonding position determined by the control device.

於本發明之第一態樣中,該貼合裝置係能以較該顯示區域大且較該光學顯示部件的外形小的區域來作為該第一區域。 In a first aspect of the invention, the bonding apparatus can be used as the first area in a region that is larger than the display area and smaller than the outer shape of the optical display member.

於本發明之第一態樣中,該切斷裝置係可使用雷射來將該光學組件層切斷。 In a first aspect of the invention, the cutting device can use a laser to sever the optical component layer.

於本發明之第一態樣中,係可更具備拍攝該光學顯示部件之位置的攝影裝置,其中,該控制裝置係根據該檢查資料與該攝影裝置所拍攝之光學顯示部件的位置,決定該相對貼合位置。 In a first aspect of the present invention, the photographing device for photographing the position of the optical display member may be further provided, wherein the control device determines the position based on the inspection data and the position of the optical display member captured by the photographing device. Relatively fitting position.

於本發明之第一態樣中,係可更具備將該光學顯示部件以該校準裝置、該貼合裝置、及該切斷裝置之順序進行輸送的第一輸送裝置。 In the first aspect of the present invention, the first transport device that transports the optical display member in the order of the calibration device, the bonding device, and the cutting device may be further provided.

於本發明之第一態樣中,可更具備將該光學組件層輸送至該貼合裝置的第二輸送裝置。 In a first aspect of the invention, a second delivery device for transporting the optical component layer to the bonding device can be further provided.

於本發明之第一態樣中,該第二輸送裝置係可具備將該切斷裝置所切斷之剩餘部分回收的回收部。 In a first aspect of the present invention, the second conveying device may include a collecting portion that recovers the remaining portion cut by the cutting device.

本發明之第二態樣為一種光學組件貼合體的製造方法,係根據較光學顯示部件之顯示區域更大的光學組件層之光軸方向所示之檢查資料,決定該光學顯示部件與該光學組件層的相對貼合位置;根據決定之相對貼合位置,相對該光學組件層進行該光學顯示部件的校準;將該光學組件層貼合至校準好之光學顯示部件;以及將貼合好之光學組件層的區域中的對向該光學顯示部件之顯示區域的第一區域與該光學組件層之第一區域外側區域的第二區域進行切斷。 A second aspect of the present invention is a method of manufacturing an optical component bonding body, wherein the optical display component and the optical are determined according to inspection data indicated by an optical axis direction of a larger optical component layer than a display area of the optical display component. a relative bonding position of the component layer; performing calibration of the optical display component relative to the optical component layer according to the determined relative bonding position; bonding the optical component layer to the calibrated optical display component; and fitting the optical component A first region of the region of the optical component layer that faces the display region of the optical display component is cut from a second region of the outer region of the first region of the optical component layer.

本發明之第三態樣為一種電腦可讀式記錄媒體,係記錄有執行下述動作的程式:根據較光學顯示部件之顯示區域更大的光學組件層之光軸方向所示之檢查資料,決定該光學顯示部件與該光學組件層的相對貼合位置;根據決定之相對貼合位置,相對該光學組件層進行該光學顯示部件的校準;將該光學組件層貼合至校準好之光學顯示部件;以及將貼合好之光學組件層的區域中的對向該光學顯示部件之顯示區域的第一區域與該光學組件層之第一區域外 側區域的第二區域進行切斷。 A third aspect of the present invention is a computer-readable recording medium recording a program for performing an operation of displaying an inspection material according to an optical axis direction of an optical component layer larger than a display area of an optical display member, Determining a relative bonding position of the optical display member and the optical component layer; performing calibration of the optical display component relative to the optical component layer according to the determined relative bonding position; bonding the optical component layer to the calibrated optical display a component; and a first region of the region of the optical component that is to be bonded to the display region of the optical display component and the first region of the optical component layer The second area of the side area is cut.

又,本發明為一種將光學組件貼合至光學顯示部件的光學組件貼合體之製造方法,係包含:將較光學顯示部件之顯示區域更大的光學組件層貼合至該光學顯示部件,作為貼合層之步驟;將該光學組件層貼合至該光學顯示部件之前,根據該光學組件層之光軸方向的檢查資料,決定該光學顯示部件與該光學組件層的相對貼合位置之步驟;將該光學組件層貼合至該光學顯示部件之前,根據該控制裝置所決定之相對貼合位置,相對該光學組件層進行該光學顯示部件的校準之步驟;以及將該光學組件層貼合至該光學顯示部件之後,將該光學組件層之顯示區域的對向部分及該光學組件層外側之剩餘部分切斷,從該光學組件層切割出對應於該顯示區域大小的光學組件,藉以從該貼合層切割出包含單一個光學顯示部件及與其重疊之光學組件的光學組件貼合體之步驟。 Moreover, the present invention provides a method of manufacturing an optical component bonding body in which an optical component is bonded to an optical display component, comprising: bonding an optical component layer larger than a display area of the optical display component to the optical display component as a step of bonding the layer; before bonding the optical component layer to the optical display component, the step of determining the relative bonding position of the optical display component and the optical component layer according to the inspection data of the optical axis direction of the optical component layer Before the optical component layer is attached to the optical display component, the step of aligning the optical display component with respect to the optical component layer according to the relative bonding position determined by the control device; and bonding the optical component layer After the optical display member, the opposite portion of the display region of the optical component layer and the remaining portion of the outer side of the optical component layer are cut, and an optical component corresponding to the size of the display region is cut out from the optical component layer, thereby The step of cutting the optical component assembly comprising a single optical display component and an optical component overlapping the same

從本發明可知,根據光學組件層之光軸方向所示之檢查資料而進行校準之後,將光學組件層貼合至光學顯示部件。藉此,即使是光軸方向因光學組件層之位置而改變的情況,可配合該光軸方向來校準光學顯示部件,並貼合至光學組件層。藉此,可提升相對於光學顯示部件的光學組件之光軸方向的精度。又,可改善光學顯示設備的色彩度及對比度。又,亦可對應具任意光軸方向的光學組件貼合體之製造。 According to the present invention, after the calibration is performed based on the inspection data indicated by the optical axis direction of the optical module layer, the optical component layer is bonded to the optical display member. Thereby, even if the optical axis direction changes due to the position of the optical component layer, the optical display member can be aligned with the optical axis direction and bonded to the optical component layer. Thereby, the accuracy with respect to the optical axis direction of the optical component of the optical display member can be improved. Moreover, the color and contrast of the optical display device can be improved. Further, it is also possible to manufacture an optical component bonding body having an arbitrary optical axis direction.

5‧‧‧滾筒輸送機 5‧‧‧Roller conveyor

11‧‧‧第一校準裝置 11‧‧‧First calibration device

12、12’‧‧‧第一貼合裝置 12, 12'‧‧‧ first bonding device

12a、12a’‧‧‧輸送裝置 12a, 12a’‧‧‧ delivery device

12b‧‧‧夾壓滾筒 12b‧‧‧ pinch roller

12c‧‧‧滾筒保持部 12c‧‧‧Roller Keeping Department

12d‧‧‧保護薄膜回收部 12d‧‧‧Protective film recycling department

12e‧‧‧第一回收部 12e‧‧‧First Recycling Department

13、13’‧‧‧第一切斷裝置 13, 13'‧‧‧ first cutting device

14‧‧‧第二校準裝置 14‧‧‧Second calibration device

15‧‧‧第二貼合裝置 15‧‧‧Second laminating device

15a‧‧‧輸送裝置 15a‧‧‧Conveyor

15b‧‧‧夾壓滾筒 15b‧‧‧ pinch roller

15c‧‧‧滾筒保持部 15c‧‧‧Roller Keeping Department

15d‧‧‧第二回收部 15d‧‧‧Second Recycling Department

16‧‧‧第二切斷裝置 16‧‧‧Second cutting device

C、16a‧‧‧攝影機 C, 16a‧‧‧ camera

17、17’‧‧‧第三校準裝置 17, 17' ‧ ‧ third calibration device

18、18’‧‧‧第三貼合裝置 18, 18'‧‧‧ Third bonding device

18a‧‧‧輸送裝置 18a‧‧‧Transportation device

18b‧‧‧夾壓滾筒 18b‧‧‧ pinch roller

18c‧‧‧滾筒保持部 18c‧‧‧Roller Keeping Department

18d‧‧‧第三回收部 18d‧‧‧ Third Recycling Department

19‧‧‧第三切斷裝置 19‧‧‧ Third cutting device

20‧‧‧控制裝置 20‧‧‧Control device

F1‧‧‧第一光學組件層 F1‧‧‧First optical component layer

F1S‧‧‧層片 F1S‧‧‧ layer

F11‧‧‧第一光學組件 F11‧‧‧First optical component

F12‧‧‧第二光學組件 F12‧‧‧Second optical component

F13‧‧‧第三光學組件 F13‧‧‧ Third optical component

F2‧‧‧第二光學組件層 F2‧‧‧Second optical component layer

F21‧‧‧第一貼合層 F21‧‧‧ first bonding layer

F22‧‧‧第二貼合層 F22‧‧‧Second bonding layer

F23‧‧‧第三貼合層 F23‧‧‧ third bonding layer

F3‧‧‧第三光學組件層 F3‧‧‧ third optical component layer

FX‧‧‧光學組件層 FX‧‧‧ optical component layer

G‧‧‧邊框部 G‧‧‧Border Department

R1‧‧‧第一料捲滾筒 R1‧‧‧First roll drum

R2‧‧‧第二料捲滾筒 R2‧‧‧second roll drum

R3‧‧‧第三料捲滾筒 R3‧‧‧ third roll

t‧‧‧切斷端 T‧‧‧ cut end

P‧‧‧液晶面板 P‧‧‧ LCD panel

P1‧‧‧第一基板 P1‧‧‧ first substrate

P2‧‧‧第二基板 P2‧‧‧second substrate

P3‧‧‧液晶層 P3‧‧‧ liquid crystal layer

P4‧‧‧顯示區域 P4‧‧‧ display area

P5‧‧‧電子部件安裝部 P5‧‧‧Electronic Component Installation Department

P11‧‧‧第一單面貼合面板 P11‧‧‧First single-sided fitting panel

P12‧‧‧第二單面貼合面板 P12‧‧‧Second single-sided fitting panel

P13‧‧‧雙面貼合面板 P13‧‧‧ double-sided fitting panel

pf‧‧‧保護薄膜 Pf‧‧‧protective film

pt1‧‧‧起點 Starting point of pt1‧‧

pt2‧‧‧終點 End point of pt2‧‧

PX‧‧‧光學顯示組件 PX‧‧‧Optical display components

第1圖係本發明之實施形態中光學顯示設備之薄膜貼合系統的示意結構圖。 Fig. 1 is a schematic configuration diagram of a film bonding system of an optical display device in an embodiment of the present invention.

第2圖係上述薄膜貼合系統之第二貼合裝置周邊的立體圖。 Fig. 2 is a perspective view showing the periphery of a second bonding apparatus of the above film bonding system.

第3圖係顯示上述薄膜貼合系統之光學組件層的光軸方向與光學組件層貼合之光學顯示部件的立體圖。 Fig. 3 is a perspective view showing an optical display member in which an optical axis direction of an optical component layer of the film bonding system is bonded to an optical component layer.

第4圖係上述薄膜貼合系統中之第一貼合層的剖面圖。 Figure 4 is a cross-sectional view of the first bonding layer in the above film bonding system.

第5圖係上述薄膜貼合系統之第二切斷裝置中第二貼合層的剖面圖。 Fig. 5 is a cross-sectional view showing a second bonding layer in the second cutting device of the film bonding system.

第6圖係上述薄膜貼合系統之第三切斷裝置中第三貼合層的平面圖。 Fig. 6 is a plan view showing a third bonding layer in the third cutting device of the above film bonding system.

第7圖係第6圖之A-A線的剖面圖。 Figure 7 is a cross-sectional view taken along line A-A of Figure 6.

第8圖係通過上述薄膜貼合系統之雙面貼合面板的剖面圖。 Figure 8 is a cross-sectional view of the double-sided bonding panel through the above film bonding system.

第9圖係顯示已貼合至液晶面板的光學組件層之雷射切斷端的剖面圖。 Fig. 9 is a cross-sectional view showing the laser cut end of the optical component layer which has been bonded to the liquid crystal panel.

第10圖係顯示光學組件層單體之雷射切斷端的剖面圖。 Figure 10 is a cross-sectional view showing the laser cut end of the optical component layer unit.

第11圖係顯示上述薄膜貼合系統之第一貼合裝置周邊變形例的示意結構圖。 Fig. 11 is a schematic structural view showing a modification of the periphery of the first bonding apparatus of the above film bonding system.

第12圖係顯示上述薄膜貼合系統之第三貼合裝置周邊變形例的示意結構圖。 Fig. 12 is a schematic structural view showing a modification of the periphery of the third bonding apparatus of the above film bonding system.

【用以實施發明的態樣】 [The aspect used to implement the invention]

以下,參考圖面說明本發明之實施形態。本實施形態中,係說明包含光學組件貼合體之製造裝置的薄膜貼合系統。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a film bonding system including a manufacturing apparatus of an optical component bonding body will be described.

第1圖係顯示本實施形態之薄膜貼合系統1的示意結構。薄膜貼合系統1係將偏光薄膜或相位差薄膜、輝度增加薄膜等薄膜狀光學組件貼合至例如液晶面板或有機電致發光(OEL,Organic Electro-Luminescence)面板等面板狀光學顯示部件。薄膜貼合系統1係製造包含該光學顯示部件及光學組件的光學組件貼合體。薄膜貼合系統1中,使用液晶面板P作為該光學顯示部件。薄膜貼合系統1之各部位係透過作為電子控制裝置的控制裝置20進行整體控 制。 Fig. 1 is a view showing a schematic configuration of a film bonding system 1 of the present embodiment. In the film bonding system 1 , a film-shaped optical component such as a polarizing film, a retardation film, or a brightness-increasing film is bonded to a panel-shaped optical display member such as a liquid crystal panel or an organic electroluminescence (OEL) panel. The film bonding system 1 manufactures an optical component bonding body including the optical display member and the optical component. In the film bonding system 1, a liquid crystal panel P is used as the optical display member. Each part of the film bonding system 1 is integrally controlled by a control device 20 as an electronic control device system.

薄膜貼合系統1係從貼合步驟之起始位置到最終位置為止,使用例如驅動式之滾筒輸送機5來輸送液晶面板P,同時對液晶面板P依序施以特定處理。液晶面板P係以其正/反面呈水平狀態下於滾筒輸送機5上進行輸送。不過,第1圖之紙面左側係顯示液晶面板P的輸送方向上游側(以下,稱作面板輸送上游側)。第1圖之紙面右側則顯示液晶面板P的輸送方向下游側(以下,稱作面板輸送下游側)。 The film bonding system 1 transports the liquid crystal panel P using, for example, a driving type roller conveyor 5 from the initial position to the final position of the bonding step, and sequentially applies specific processing to the liquid crystal panel P. The liquid crystal panel P is conveyed on the roller conveyor 5 with its front/reverse surface in a horizontal state. However, the left side of the paper surface of Fig. 1 shows the upstream side in the transport direction of the liquid crystal panel P (hereinafter referred to as the upstream side of the panel transport). The right side of the paper surface of Fig. 1 shows the downstream side in the transport direction of the liquid crystal panel P (hereinafter referred to as the downstream side of the panel transport).

一併參考第6圖至第8圖進行說明。不過,第7圖以及第8圖中,液晶面板P之紙面上方側係為顯示側,紙面下方側則為背光側。液晶面板P之平面視圖呈長方形(參考第6圖)。從液晶面板P外周緣距特定寬度之內側處,形成具有沿該外周緣形狀的顯示區域P4(參考第6圖)。於後述第二校準裝置14的面板輸送上游側時,使得顯示區域P4之短邊約略沿著輸送方向之座向來輸送液晶面板P。於該第二校準裝置14的面板輸送下游側時,則使得顯示區域P4之長邊約略沿著輸送方向之座向來輸送液晶面板P。 The description will be made with reference to Figs. 6 to 8. However, in the seventh and eighth figures, the upper side of the paper surface of the liquid crystal panel P is the display side, and the lower side of the paper surface is the backlight side. The plan view of the liquid crystal panel P is rectangular (refer to Fig. 6). A display region P4 having a shape along the outer periphery is formed from the inner periphery of the liquid crystal panel P at a certain width from the outer periphery (refer to FIG. 6). When the panel of the second calibration device 14 is transported to the upstream side as will be described later, the short side of the display region P4 is caused to convey the liquid crystal panel P approximately in the direction of the transport direction. When the panel of the second calibration device 14 conveys the downstream side, the long side of the display region P4 is caused to convey the liquid crystal panel P approximately in the direction of the conveyance direction.

針對該液晶面板P之正/反面,將長條形之第一光學組件層F1、第二光學組件層F2及第三光學組件層F3所切割出的第一光學組件F11、第二光學組件F12及第三光學組件F13適當地貼合至液晶面板P(參考第8圖)。本實施形態中,液晶面板P之背光側及顯示側的雙面係各自貼合有作為偏光薄膜之第一光學組件F11及第三光學組件F13(參考第8圖)。液晶面板P之背光側一面進一步貼合有重疊於第一光學組件F11之作為輝度增加薄膜之第二光學組件F12(參考第8圖)。 The first optical component F11 and the second optical component F12 cut out by the elongated first optical component layer F1, the second optical component layer F2, and the third optical component layer F3 for the front/back surface of the liquid crystal panel P And the third optical component F13 is appropriately attached to the liquid crystal panel P (refer to FIG. 8). In the present embodiment, the first optical component F11 and the third optical component F13 which are polarizing films are bonded to each other on the backlight side and the display side of the liquid crystal panel P (refer to FIG. 8). On the side of the backlight side of the liquid crystal panel P, a second optical component F12 as a luminance increasing film which is overlapped with the first optical component F11 is further bonded (refer to FIG. 8).

如第1圖所示,薄膜貼合系統1係具備第一校準裝置11、第一 貼合裝置12、第一切斷裝置13及第二校準裝置14。 As shown in FIG. 1, the film bonding system 1 includes a first calibration device 11 and a first The bonding device 12, the first cutting device 13, and the second calibration device 14.

第一校準裝置11係將液晶面板P從上游製程輸送至滾筒輸送機5之面板輸送上游側上,同時進行液晶面板P的校準。第一貼合裝置12係設置於第一校準裝置11的面板輸送下游側。第一切斷裝置13係設置於接近第一貼合裝置12處。第二校準裝置14係設置於第一貼合裝置12及第一切斷裝置13的面板輸送下游側。 The first calibration device 11 transports the liquid crystal panel P from the upstream process to the upstream side of the panel conveyance of the roller conveyor 5 while performing calibration of the liquid crystal panel P. The first bonding device 12 is disposed on the downstream side of the panel conveyance of the first calibration device 11. The first cutting device 13 is disposed adjacent to the first bonding device 12. The second calibration device 14 is disposed on the downstream side of the panel transport of the first bonding device 12 and the first cutting device 13.

又,薄膜貼合系統1係具備第二貼合裝置15、第二切斷裝置16、第三校準裝置17、第三貼合裝置18及第三切斷裝置19。 Further, the film bonding system 1 includes a second bonding device 15, a second cutting device 16, a third calibration device 17, a third bonding device 18, and a third cutting device 19.

第二貼合裝置15係設置於第二校準裝置14的面板輸送下游側。第二切斷裝置16係設置於接近第二貼合裝置15處。第三校準裝置17係設置於第二貼合裝置15及第二切斷裝置16的面板輸送下游側。第三貼合裝置18係設置於第三校準裝置17的面板輸送下游側。第三切斷裝置19係設置於接近第三貼合裝置18處。 The second bonding device 15 is disposed on the downstream side of the panel conveyance of the second calibration device 14. The second cutting device 16 is disposed adjacent to the second bonding device 15. The third calibration device 17 is provided on the downstream side of the panel transport of the second bonding device 15 and the second cutting device 16. The third bonding device 18 is disposed on the downstream side of the panel conveyance of the third calibration device 17. The third cutting device 19 is disposed adjacent to the third bonding device 18.

第一校準裝置11可保持液晶面板P並自由地朝垂直方向及水平方向進行輸送。又,第一校準裝置11具有拍攝液晶面板P之面板輸送上游側及下游側之端部的一對攝影機C(參考第3圖)。攝影機C的攝影資料係傳送至控制裝置20。 The first calibration device 11 can hold the liquid crystal panel P and freely transport it in the vertical direction and the horizontal direction. Further, the first calibration device 11 has a pair of cameras C that capture the end portions of the upstream and downstream sides of the panel transport of the liquid crystal panel P (refer to FIG. 3). The photographic data of the camera C is transmitted to the control device 20.

控制裝置20係根據該攝影資料與預先儲存之光軸方向的檢查資料,以啟動第一校準裝置11。不過,後述第二校準裝置14及第三校準裝置17亦同樣地具有該攝影機C,並將該攝影機C之攝影資料用以進行校準。 The control device 20 activates the first calibration device 11 based on the photographic data and the inspection data in the optical axis direction stored in advance. However, the second calibration device 14 and the third calibration device 17 described later also have the camera C, and the photographic data of the camera C is used for calibration.

第一校準裝置11係受控制裝置20之控制,相對第一貼合裝置12進行液晶面板P的校準。此時,決定液晶面板P於垂直輸送方向之水平方向 (以下,稱作部件寬度方向)上的位置及繞垂直軸之迴轉方向(以下,稱作迴轉方向)上的位置。在該狀態下,將液晶面板P引導至第一貼合裝置12之貼合位置。 The first calibration device 11 is controlled by the control device 20 to calibrate the liquid crystal panel P with respect to the first bonding device 12. At this time, the horizontal direction of the liquid crystal panel P in the vertical conveying direction is determined. (hereinafter, referred to as a member width direction) and a position in a rotation direction about a vertical axis (hereinafter referred to as a rotation direction). In this state, the liquid crystal panel P is guided to the bonding position of the first bonding apparatus 12.

第一貼合裝置12係針對被引導至貼合位置之長條狀第一光學組件層F1的上側面,將沿其上方輸送之液晶面板P的下側面(背光側)進行貼合。第一貼合裝置12係具備輸送裝置12a、夾壓滾筒12b。 The first bonding apparatus 12 is attached to the lower side surface (backlight side) of the liquid crystal panel P that is transported along the upper side of the long first optical component layer F1 that is guided to the bonding position. The first bonding apparatus 12 is provided with a conveying device 12a and a nip roller 12b.

輸送裝置12a係從捲繞有第一光學組件層F1之第一料捲滾筒R1將第一光學組件層F1捲出,並沿其長邊方向輸送第一光學組件層F1。夾壓滾筒12b係將滾筒輸送機5所輸送之液晶面板P的下側面貼合至輸送裝置12a所輸送之第一光學組件層F1的上側面。 The conveying device 12a winds up the first optical component layer F1 from the first roll drum R1 around which the first optical component layer F1 is wound, and conveys the first optical component layer F1 in the longitudinal direction thereof. The nip roller 12b bonds the lower side surface of the liquid crystal panel P conveyed by the roller conveyor 5 to the upper side surface of the first optical component layer F1 conveyed by the conveyance device 12a.

輸送裝置12a係具備滾筒保持部12c、保護薄膜回收部12d。滾筒保持部12c係支撐著捲繞有第一光學組件層F1之第一料捲滾筒R1,並沿其長邊方向捲出第一光學組件層F1。保護薄膜回收部12d係將重疊於第一光學組件層F1下側面而與第一光學組件層F1一併捲出的保護薄膜pf,在第一貼合裝置12之面板輸送下游側進行回收。 The transport device 12a includes a roller holding portion 12c and a protective film collecting portion 12d. The roller holding portion 12c supports the first roll drum R1 around which the first optical component layer F1 is wound, and winds up the first optical component layer F1 in the longitudinal direction thereof. The protective film collecting portion 12d collects the protective film pf which is superposed on the lower side surface of the first optical component layer F1 and is unwound with the first optical component layer F1, and is collected on the downstream side of the panel transport of the first bonding apparatus 12.

夾壓滾筒12b具有於軸線方向相互平行配置的一對貼合滾筒。一對貼合滾筒之間形成有指定間隙,該間隙內即為第一貼合裝置12的貼合位置。將液晶面板P及第一光學組件層F1重合導入該間隙內。該等液晶面板P及第一光學組件層F1係於該貼合滾筒之間受夾壓,並送往面板輸送下游側。藉此,便可形成將複數個液晶面板P相距特定間隔而連續貼合至長條狀第一光學組件層F1上側面的第一貼合層F21。 The nip roller 12b has a pair of bonding drums arranged in parallel with each other in the axial direction. A predetermined gap is formed between the pair of bonding rollers, and the gap is the bonding position of the first bonding device 12. The liquid crystal panel P and the first optical component layer F1 are superposed into the gap. The liquid crystal panel P and the first optical component layer F1 are pinched between the bonding rollers and sent to the downstream side of the panel conveying. Thereby, the first bonding layer F21 in which a plurality of liquid crystal panels P are continuously bonded to the upper surface of the elongated first optical component layer F1 at a predetermined interval can be formed.

一併參考第4圖以及第5圖進行說明。不過,第4圖以及第5 圖中,液晶面板P之紙面上方側係為背光側,紙面下方側係為顯示側。第一切斷裝置13係位於保護薄膜回收部12d的面板輸送下游側。第一切斷裝置13係於第一光學組件層F1之指定部位(沿輸送方向並列的液晶面板P之間)處,沿該部件寬度方向將整個寬度切斷。藉此,第一切斷裝置13係切斷第一貼合層F21之第一光學組件層F1,而形成較顯示區域P4更大(本實施形態中較液晶面板P更大)的層片F1S。不過,第一切斷裝置13可使用切割刀片,亦可使用雷射切割機。透過該切斷步驟,形成於液晶面板P下側面貼合有較顯示區域P4更大之層片F1S的第一單面貼合面板P11。 The description will be made with reference to Fig. 4 and Fig. 5 together. However, Figure 4 and Figure 5 In the figure, the upper side of the paper surface of the liquid crystal panel P is the backlight side, and the lower side of the paper surface is the display side. The first cutting device 13 is located on the downstream side of the panel conveyance of the protective film collecting portion 12d. The first cutting device 13 is cut at a designated portion of the first optical component layer F1 (between the liquid crystal panels P arranged in the transport direction), and the entire width is cut along the width direction of the member. Thereby, the first cutting device 13 cuts the first optical component layer F1 of the first bonding layer F21 to form a layer F1S larger than the display region P4 (more in the present embodiment than the liquid crystal panel P). . However, the first cutting device 13 may use a cutting blade or a laser cutting machine. Through the cutting step, the first single-sided bonding panel P11 having the layer F1S larger than the display region P4 is bonded to the lower surface of the liquid crystal panel P.

參考第1圖進行說明。第二校準裝置14係例如可夾持滾筒輸送機5上的第一單面貼合面板P11並繞垂直軸迴轉90°。藉此,與顯示區域P4之短邊略呈平行所輸送的第一單面貼合面板P11係轉換方向成與顯示區域P4之長邊略呈平行進行輸送。不過,前述迴轉步驟係當貼合至液晶面板P的其它光學組件層之光軸方向相對第一光學組件層F1之光軸方向配置呈直角的情況。 This will be described with reference to Fig. 1. The second calibration device 14 is, for example, capable of gripping the first single-sided conforming panel P11 on the roller conveyor 5 and rotating 90° about the vertical axis. Thereby, the first single-sided bonding panel P11 conveyed in a direction slightly parallel to the short side of the display region P4 is conveyed in a direction slightly parallel to the long side of the display region P4. However, the above-described turning step is a case where the optical axis direction of the other optical component layers bonded to the liquid crystal panel P is disposed at a right angle with respect to the optical axis direction of the first optical component layer F1.

第二校準裝置14係進行與該第一校準裝置11相同的校準。即,第二校準裝置14係根據儲存於控制裝置20之光軸方向檢查資料及該攝影機C的攝影資料,以決定相對第二貼合裝置15的第一單面貼合面板P11之部件寬度方向及迴轉方向上的位置。在該狀態中,第一單面貼合面板P11被引導至第二貼合裝置15之貼合位置。 The second calibration device 14 performs the same calibration as the first calibration device 11. That is, the second calibration device 14 determines the component width direction of the first single-sided bonding panel P11 with respect to the second bonding device 15 based on the inspection data stored in the optical axis direction of the control device 20 and the imaging data of the camera C. And the position in the direction of rotation. In this state, the first single-sided bonding panel P11 is guided to the bonding position of the second bonding apparatus 15.

第二貼合裝置15係針對被引導至貼合位置的長條狀第二光學組件層F2上側面,將沿其上方輸送之第一單面貼合面板P11下側面(液晶面板P之背光側)進行貼合。第二貼合裝置15係具備輸送裝置15a、夾壓滾筒15b。 The second bonding device 15 is directed to the upper side of the elongated second optical component layer F2 that is guided to the bonding position, and the first single-sided bonding panel P11 is transported along the upper side thereof (the backlight side of the liquid crystal panel P) ) to make a fit. The second bonding apparatus 15 is provided with a conveying device 15a and a nip roller 15b.

輸送裝置15a係從捲繞有第二光學組件層F2之第二料捲滾筒R2將第二光 學組件層F2捲出,並沿其長邊方向輸送第二光學組件層F2。夾壓滾筒15b係將滾筒輸送機5所輸送之第一單面貼合面板P11的下側面貼合至輸送裝置15a所輸送之第二光學組件層F2的上側面。 The conveying device 15a is to take the second light from the second roll drum R2 around which the second optical component layer F2 is wound. The component layer F2 is rolled out and transports the second optical component layer F2 along its longitudinal direction. The nip roller 15b bonds the lower side surface of the first single-sided bonding panel P11 conveyed by the roller conveyor 5 to the upper side surface of the second optical component layer F2 conveyed by the conveying device 15a.

輸送裝置15a係具備滾筒保持部15c、第二回收部15d。 The conveying device 15a includes a drum holding portion 15c and a second collecting portion 15d.

滾筒保持部15c係支撐著捲繞有第二光學組件層F2之第二料捲滾筒R2,並沿其長邊方向捲出第二光學組件層F2。第二回收部15d係將通過位於夾壓滾筒15b的面板輸送下游側之第二切斷裝置16後的第二光學組件層F2之剩餘部分回收。 The roller holding portion 15c supports the second roll drum R2 around which the second optical component layer F2 is wound, and winds up the second optical component layer F2 in the longitudinal direction thereof. The second recovery portion 15d collects the remaining portion of the second optical module layer F2 after passing through the second cutting device 16 on the downstream side of the panel of the nip roller 15b.

夾壓滾筒15b具有沿軸線方向相互平行配置的一對貼合滾筒。一對貼合滾筒之間形成有指定間隙,該間隙內即為第二貼合裝置15的貼合位置。將第一單面貼合面板P11及第二光學組件層F2重合導入該間隙內。該等第一單面貼合面板P11及第二光學組件層F2係於該貼合滾筒之間受夾壓,並送往面板輸送下游側。藉此,便可形成將複數個第一單面貼合面板P11相距特定間隔而連續貼合至長條狀第二光學組件層F2上側面的第二貼合層F22。 The nip roller 15b has a pair of bonding drums arranged in parallel with each other in the axial direction. A predetermined gap is formed between the pair of bonding rollers, and the gap is the bonding position of the second bonding device 15. The first single-sided bonding panel P11 and the second optical component layer F2 are superposed and introduced into the gap. The first single-sided bonding panel P11 and the second optical component layer F2 are pinched between the bonding rollers and sent to the downstream side of the panel conveying. Thereby, the second bonding layer F22 in which the plurality of first single-sided bonding panels P11 are continuously bonded to the upper surface of the long second optical component layer F2 at a predetermined interval can be formed.

一併參考第2圖以及第5圖進行說明。第二切斷裝置16係位於夾壓滾筒15b的面板輸送下游側。第二切斷裝置16係同時切斷第二光學組件層F2與貼合於其上側面的第一單面貼合面板P11之第一光學組件層F1之層片F1S。第二切斷裝置16例如為二氧化碳(CO2)雷射切割機。第二切斷裝置16係沿顯示區域P4之外周緣(本實施形態中係沿液晶面板P之外周緣)不間斷地切斷第二光學組件層F2與第一光學組件層F1之層片F1S。將各光學組件層(第一光學組件層F1、第二光學組件層F2)貼合至液晶面板P後再一同進行切割,可提高各光學組件層(第一光學組件層F1、第二光學組件層F2)的光軸方向之精 度。又,可消除各光學組件層(第一光學組件層F1、第二光學組件層F2)間的光軸方向之偏差。而且,可簡化第一切斷裝置13中的切斷步驟。 The description will be made with reference to Fig. 2 and Fig. 5 together. The second cutting device 16 is located on the downstream side of the panel conveyance of the nip roller 15b. The second cutting device 16 simultaneously cuts the second optical component layer F2 and the layer F1S of the first optical component layer F1 of the first single-sided bonding panel P11 attached to the upper side thereof. The second cutting device 16 is, for example, a carbon dioxide (CO 2 ) laser cutting machine. The second cutting device 16 cuts the second optical component layer F2 and the layer F1S of the first optical component layer F1 without interruption along the outer periphery of the display region P4 (in the present embodiment, along the outer periphery of the liquid crystal panel P). . After the optical component layers (the first optical component layer F1 and the second optical component layer F2) are bonded to the liquid crystal panel P and then cut together, the optical component layers (the first optical component layer F1 and the second optical component) can be improved. The accuracy of the optical axis direction of layer F2). Moreover, the deviation of the optical axis direction between the optical component layers (the first optical component layer F1 and the second optical component layer F2) can be eliminated. Moreover, the cutting step in the first cutting device 13 can be simplified.

透過第二切斷裝置16的切斷步驟,形成於液晶面板P之下側面重疊貼合有第一光學組件F11及第二光學組件F12的第二單面貼合面板P12(參考第7圖)。此時,使第二單面貼合面板P12能與切除顯示區域P4之對向部分(第一光學組件F11、第二光學組件F12)後殘餘呈框狀的各光學組件層(第一光學組件層F1、第二光學組件層F2)之剩餘部分能相互分離。第二光學組件層F2之剩餘部分會成為複數相連的梯子狀。該剩餘部分係與第一光學組件層F1之剩餘部分共同捲取至第二回收部15d。 The second single-sided bonding panel P12 in which the first optical component F11 and the second optical component F12 are bonded to the lower surface of the liquid crystal panel P is formed by the cutting step of the second cutting device 16 (refer to FIG. 7). . At this time, the optical component layer (the first optical component) in which the second single-sided bonding panel P12 can be removed from the opposite portion (the first optical component F11 and the second optical component F12) of the display region P4 The remaining portions of the layer F1 and the second optical component layer F2) can be separated from each other. The remaining portion of the second optical component layer F2 may be in the form of a plurality of ladders connected. The remaining portion is taken up to the second recovery portion 15d together with the remaining portion of the first optical component layer F1.

此處,該「與顯示區域P4之對向部分」係指,較顯示區域P4大並較液晶面板P的外形小之區域,且為避開了電子部件安裝部等功能部分的區域。本實施形態中,於平面視圖為矩狀外形之液晶面板P中除了該功能部分之外的三個側邊處,沿液晶面板P之外周緣以雷射切斷剩餘部分,而相當於該功能部分的一側邊,則從液晶面板P之外周緣朝顯示區域P4側適當深入的位置處以雷射切斷剩餘部分。 Here, the "opposing portion with the display region P4" refers to a region that is larger than the display region P4 and smaller than the outer shape of the liquid crystal panel P, and is a region that avoids a functional portion such as an electronic component mounting portion. In the present embodiment, in the liquid crystal panel P having a rectangular outer shape in plan view, the remaining portions are cut off by laser along the outer periphery of the liquid crystal panel P at three sides except the functional portion, which is equivalent to the function. On one side of the portion, the remaining portion is cut by laser from a position outside the outer periphery of the liquid crystal panel P toward the display region P4 side.

參考第1圖進行說明。第三校準裝置17將液晶面板P顯示側朝向上側面的第二單面貼合面板P12進行正/反反轉,使得液晶面板P之背光側朝向上側面。第三校準裝置17係進行與該第一校準裝置11及第二校準裝置14相同的校準。即,第三校準裝置17係根據儲存於控制裝置20之光軸方向檢查資料及該攝影機C的攝影資料,決定相對於第三貼合裝置18的第二單面貼合面板P12之部件寬度方向及迴轉方向上的位置。在該狀態中,第二單面貼合面板P12被引導至第三貼合裝置18之貼合位置。 This will be described with reference to Fig. 1. The third calibration device 17 performs forward/reverse inversion of the second single-sided bonding panel P12 on the display side of the liquid crystal panel P toward the upper side such that the backlight side of the liquid crystal panel P faces the upper side. The third calibration device 17 performs the same calibration as the first calibration device 11 and the second calibration device 14. That is, the third calibration device 17 determines the component width direction of the second single-sided bonding panel P12 with respect to the third bonding device 18 based on the optical axis direction inspection data stored in the control device 20 and the imaging data of the camera C. And the position in the direction of rotation. In this state, the second single-sided bonding panel P12 is guided to the bonding position of the third bonding device 18.

第三貼合裝置18係針對被引導至貼合位置的長條狀第三光學組件層F3上側面,將沿其上方輸送之第二單面貼合面板P12下側面(液晶面板P之顯示側)進行貼合。第三貼合裝置18係具備輸送裝置18a、夾壓滾筒18b。 The third bonding device 18 is directed to the upper side of the elongated third optical component layer F3 that is guided to the bonding position, and the second single-sided bonding panel P12 that is transported along the upper side thereof is attached to the lower side of the panel P12 (the display side of the liquid crystal panel P) ) to make a fit. The third bonding apparatus 18 is provided with a conveying device 18a and a nip roller 18b.

輸送裝置18a係從捲繞有第三光學組件層F3之第三料捲滾筒R3將第三光學組件層F3捲出,並沿其長邊方向輸送第三光學組件層F3。夾壓滾筒18b係將滾筒輸送機5所輸送之第二單面貼合面板P12的下側面貼合至輸送裝置18a所輸送之第三光學組件層F3的上側面。 The conveying device 18a winds up the third optical component layer F3 from the third roll drum R3 around which the third optical component layer F3 is wound, and conveys the third optical component layer F3 in the longitudinal direction thereof. The nip roller 18b bonds the lower side surface of the second single-sided bonding panel P12 conveyed by the roller conveyor 5 to the upper side surface of the third optical component layer F3 conveyed by the conveying device 18a.

輸送裝置18a係具備滾筒保持部18c、第三回收部18d。 The conveying device 18a includes a drum holding portion 18c and a third collecting portion 18d.

滾筒保持部18c係支撐著捲繞有第三光學組件層F3之第三料捲滾筒R3,並沿其長邊方向捲出第三光學組件層F3。第三回收部18d係將通過位於夾壓滾筒18b之面板輸送下游側之第三切斷裝置19後的第三光學組件層F3之剩餘部分回收。 The roller holding portion 18c supports the third roll drum R3 around which the third optical component layer F3 is wound, and winds up the third optical component layer F3 in the longitudinal direction thereof. The third recovery portion 18d collects the remaining portion of the third optical module layer F3 after passing through the third cutting device 19 on the downstream side of the panel conveyance roller 18b.

夾壓滾筒18b具有沿軸線方向相互平行配置的一對貼合滾筒。一對貼合滾筒之間形成有指定間隙,該間隙內即為第三貼合裝置18的貼合位置。將第二單面貼合面板P12及第三光學組件層F3重合導入該間隙內。該等第二單面貼合面板P12及第三光學組件層F3係於該貼合滾筒之間受夾壓,並送往面板輸送下游側。藉此,便可形成將複數個第二單面貼合面板P12相距特定間隔而連續貼合至長條狀第三光學組件層F3上側面的第三貼合層F23。 The nip roller 18b has a pair of bonding rollers arranged parallel to each other in the axial direction. A predetermined gap is formed between the pair of bonding rollers, and the gap is the bonding position of the third bonding device 18. The second single-sided bonding panel P12 and the third optical component layer F3 are superposed into the gap. The second single-sided bonding panel P12 and the third optical component layer F3 are pinched between the bonding rollers and sent to the downstream side of the panel conveying. Thereby, the third bonding layer F23 in which the plurality of second single-sided bonding panels P12 are continuously bonded to the upper surface of the elongated third optical component layer F3 at a predetermined interval can be formed.

第三切斷裝置19係位於夾壓滾筒18b之面板輸送下游側,用以切斷第三光學組件層F3。第三切斷裝置19具有與第二切斷裝置16相同的雷射加工機,沿顯示區域P4之外周緣(例如,沿液晶面板P之外周緣)不間斷地切斷第三光學組件層F3。 The third cutting device 19 is located on the downstream side of the panel conveyance of the nip roller 18b for cutting the third optical component layer F3. The third cutting device 19 has the same laser processing machine as the second cutting device 16, and cuts the third optical component layer F3 continuously along the outer periphery of the display region P4 (for example, along the outer periphery of the liquid crystal panel P). .

藉由第三切斷裝置19的切斷步驟,形成於第二單面貼合面板P12之下側面貼合有第三光學組件F13的雙面貼合面板P13(參考第8圖)。此時,使雙面貼合面板P13能與切除顯示區域P4之對向部分(第三光學組件F13)後殘餘呈框狀的第三光學組件層F3之剩餘部分相互分離。與第二光學組件層F2之剩餘部分相同,第三光學組件層F3之剩餘部分會成為複數相連的梯子狀(參考第2圖)。該剩餘部分係捲取至第三回收部18d。 The double-sided bonding panel P13 in which the third optical component F13 is bonded to the lower surface of the second single-sided bonding panel P12 is formed by the cutting step of the third cutting device 19 (refer to FIG. 8). At this time, the double-sided bonding panel P13 can be separated from the remaining portion of the third optical component layer F3 which remains in a frame shape after the opposite portion (third optical component F13) of the cut-off display region P4. Like the rest of the second optical component layer F2, the remaining portion of the third optical component layer F3 may be in the form of a plurality of ladders (refer to Fig. 2). This remaining portion is taken up to the third recovery portion 18d.

雙面貼合面板P13通過圖中未顯示之缺陷檢查裝置,以檢查是否有缺陷(貼合不良等)後,輸送至下游步驟進行其它處理。 The double-sided bonding panel P13 passes through the defect inspection device not shown in the drawing to check whether there is a defect (poor bonding or the like), and then conveys it to the downstream step for other processing.

此處,一般長條狀光學薄膜(相當於第一光學組件層F1、第二光學組件層F2、第三光學組件層F3)係將經二色性染料進行染色之樹脂薄膜朝一軸延伸般所製造,光學薄膜之光軸方向與樹脂薄膜之延伸方向概略一致。但是,關於光學薄膜之光軸,光學薄膜全體並非相同,於光學薄膜之寬度方向上略有差異。 Here, the general elongated optical film (corresponding to the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3) is a resin film which is dyed by a dichroic dye and extends toward one axis. In the manufacturing, the optical axis direction of the optical film is substantially the same as the extending direction of the resin film. However, regarding the optical axis of the optical film, the entire optical film is not the same, and there is a slight difference in the width direction of the optical film.

因此,欲沿其寬度方向將複數個光學顯示部件貼合至光學薄膜的情況中,較佳地應依據光學薄膜之光軸方向進行光學顯示部件的校準。 Therefore, in the case where a plurality of optical display members are to be bonded to the optical film in the width direction thereof, the alignment of the optical display member should preferably be performed in accordance with the optical axis direction of the optical film.

這對於抑制光學顯示設備單元之光軸偏差,改善色彩度及對比度是有效的。 This is effective for suppressing the optical axis deviation of the optical display device unit, improving the color and contrast.

作為偏光薄膜之光學薄膜,為了遮斷沿一方向上振動之光線以外的光線,係以例如碘或二色性染料等進行染色。不過,光學薄膜處亦可進一步層積有剝離薄膜或保護薄膜。 The optical film as a polarizing film is dyed with, for example, iodine or a dichroic dye in order to block light other than the light that vibrates in one direction. However, a peeling film or a protective film may be further laminated on the optical film.

檢查光學薄膜之光軸方向的檢查裝置係具備光源、分析儀。 The inspection device for inspecting the optical axis direction of the optical film includes a light source and an analyzer.

光源係配置於光學薄膜之正/反面的一側。分析儀則配置於光學薄膜之正/反面的另一側。分析儀會接收自光源照射並透射光學薄膜的光線,檢測該光線強 度,藉以檢測出光學薄膜之光軸。分析儀例如可於光學薄膜之寬度方向上移動。檢查裝置係使分析儀於光學薄膜之寬度方向上移動的同時,透過該分析儀檢測出光學薄膜之光軸。藉此,檢查裝置可於光學薄膜之寬度方向上的複數個檢查位置進行光學薄膜之光軸的檢查。不過,除了可讓該分析儀在光學薄膜之寬度方向上移動的結構之外,亦可為在光學薄膜之寬度方向上具備有複數個分析儀的結構。 The light source is disposed on one side of the front/back side of the optical film. The analyzer is placed on the other side of the front/back of the optical film. The analyzer receives light that is illuminated from the light source and transmitted through the optical film to detect the light. Degree, in order to detect the optical axis of the optical film. The analyzer can be moved, for example, in the width direction of the optical film. The inspection device detects the optical axis of the optical film through the analyzer while moving the analyzer in the width direction of the optical film. Thereby, the inspection device can perform inspection of the optical axis of the optical film at a plurality of inspection positions in the width direction of the optical film. However, in addition to the structure which allows the analyzer to move in the width direction of the optical film, a structure in which a plurality of analyzers are provided in the width direction of the optical film may be employed.

該光學薄膜之寬度方向上設計有複數個檢查點,該分析儀可沿該等複數個檢查點之排列方向移動。檢查裝置係輸送光學薄膜,同時移動分析儀,以於該各檢查點檢測出光軸方向。檢查裝置所檢測出的光學薄膜之光軸資料係與光學薄膜的位置(光學薄膜之長邊方向的位置以及寬度方向的位置)資料連結地儲存於儲存裝置。經檢查裝置檢查後的光學薄膜係捲取成滾筒狀,以形成料捲滾筒。 The optical film is designed with a plurality of check points in the width direction, and the analyzer is movable along the arrangement direction of the plurality of check points. The inspection device transports the optical film while moving the analyzer to detect the optical axis direction at each of the inspection points. The optical axis data of the optical film detected by the inspection device is stored in the storage device in association with the position of the optical film (the position in the longitudinal direction of the optical film and the position in the width direction). The optical film after inspection by the inspection device is wound into a roll shape to form a roll drum.

本實施形態的情況中,該檢查裝置所獲得之各光學組件層(第一光學組件層F1、第二光學組件層F2及第三光學組件層F3)之光軸方向的檢查資料係與各光學組件層(第一光學組件層F1、第二光學組件層F2及第三光學組件層F3)之長邊方向位置與寬度方向位置資料連結地儲存於控制裝置20之記憶體。該檢查之後,各自捲取各光學組件層(第一光學組件層F1、第二光學組件層F2及第三光學組件層F3),以形成各料捲滾筒(第一料捲滾筒R1、第二料捲滾筒R2及第三料捲滾筒R3)。以下,各光學組件層(第一光學組件層F1、第二光學組件層F2及第三光學組件層F3)可統稱為光學組件層FX,貼合至各光學組件層(第一光學組件層F1、第二光學組件層F2及第三光學組件層F3)的液晶面板P、第一單面貼合面板P11及第二單面貼合面板P12可統稱為光學顯示組件PX。 In the case of the present embodiment, the inspection data of each optical component layer (the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3) obtained by the inspection apparatus is optical and axial. The longitudinal direction position and the width direction position of the component layers (the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3) are stored in the memory of the control device 20 in association with each other. After the inspection, each of the optical component layers (the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3) is taken up to form each of the roll rolls (the first roll roll R1, the second roll) Roller drum R2 and third roll drum R3). Hereinafter, each of the optical component layers (the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3) may be collectively referred to as an optical component layer FX, and is bonded to each optical component layer (first optical component layer F1) The liquid crystal panel P, the first single-sided bonding panel P11, and the second single-sided bonding panel P12 of the second optical component layer F2 and the third optical component layer F3) may be collectively referred to as an optical display component PX.

此處,構成光學組件層FX之偏光薄膜係例如經二色性染料進行染色之PVA薄膜(聚乙烯醇薄膜),並朝一軸延伸所形成。由於偏光薄膜於延伸時會有PVA薄膜厚度之不均勻或二色性染料染色不均勻等問題,易造成光學組件層FX之寬度方向內側與寬度方向外側之光軸方向相異的問題。 Here, the polarizing film constituting the optical component layer FX is, for example, a PVA film (polyvinyl alcohol film) dyed with a dichroic dye, and is formed to extend toward one axis. The problem that the thickness of the PVA film is uneven or the dyeing of the dichroic dye is uneven during the stretching of the polarizing film may cause a problem in which the optical axis direction of the optical component layer FX in the width direction and the width direction are different.

該處,本實施形態中,根據預先儲存於控制裝置20之光學組件層FX各部位中的光軸面內分布檢查資料,以決定相對於光學組件層FX的光學顯示部件PX之貼合位置(相對貼合位置)。接著,本實施形態中,依據該貼合位置,相對光學組件層FX進行光學顯示部件PX的校準後,將光學顯示部件PX貼合至光學組件層FX。 In this embodiment, the inspection data is distributed in accordance with the optical axis plane stored in each of the optical component layers FX of the control device 20 to determine the bonding position with respect to the optical display member PX of the optical component layer FX ( Relatively fitting position). Next, in the present embodiment, the optical display member PX is aligned with the optical component layer FX in accordance with the bonding position, and then the optical display member PX is bonded to the optical component layer FX.

具體而言,首先,求得沿光學組件層FX之部件寬度方向上並列的光學顯示部件PX之基準軸(例如通過平面視圖之形狀中心位置的長邊方向軸等)。 Specifically, first, the reference axis of the optical display member PX juxtaposed in the member width direction of the optical module layer FX (for example, the longitudinal direction axis of the shape center position in the plan view, etc.) is obtained.

其次,根據該面內分布資料經適當校正處理等,以估計出與光學組件層FX中光學顯示部件PX之基準軸重疊位置的光軸方向。 Then, the optical axis direction at a position overlapping with the reference axis of the optical display member PX in the optical component layer FX is estimated based on the in-plane distribution data by appropriate correction processing or the like.

接著,根據所估計出之光軸方向,修正光學顯示部件PX之貼合位置,決定光學顯示部件PX與光學組件層FX的相對貼合位置。其後,進行光學顯示部件PX的校準。 Next, the bonding position of the optical display member PX is corrected based on the estimated optical axis direction, and the relative bonding position between the optical display member PX and the optical component layer FX is determined. Thereafter, the calibration of the optical display unit PX is performed.

藉此,即使是在光學組件層FX之寬度方向上相異位置處貼合光學顯示部件PX的情況,可抑制相對光學顯示部件PX之基準位置的光學組件層FX之光軸方向偏差。根據本實施形態,光軸公差可幾乎為0°(容許公差為±0.25°)。 Thereby, even when the optical display member PX is bonded to the position different from the width direction of the optical component layer FX, the optical axis direction deviation of the optical component layer FX with respect to the reference position of the optical display component PX can be suppressed. According to the present embodiment, the optical axis tolerance can be almost 0 (the tolerance is ±0.25).

不過,亦可於捲出光學組件層FX的同時檢測出光軸方向,並根 據該檢測資料進行光學顯示部件PX的校準。又,前述各種校準方式不限於光學組件層FX之光軸方向為0°及90°的情況,亦可適用於任意角度的情況。 However, it is also possible to detect the optical axis direction while winding out the optical component layer FX, and root The calibration of the optical display unit PX is performed based on the detection data. Further, the above various calibration methods are not limited to the case where the optical axis direction of the optical component layer FX is 0° and 90°, and may be applied to any angle.

第3圖係於相對較寬的光學組件層FX之寬度方向上並列貼合有三個光學顯示部件PX的範例。但是,本發明並不限於此,亦可於光學組件層FX之寬度方向上並列貼合有二個以下或四個以上的光學顯示部件PX。又,亦可將相對較窄的光學組件層FX沿寬度方向排列複數個,並各自貼合光學顯示部件PX。 Fig. 3 is an example in which three optical display members PX are juxtaposed in the width direction of the relatively wide optical component layer FX. However, the present invention is not limited thereto, and two or less or four or more optical display members PX may be laminated in parallel in the width direction of the optical module layer FX. Further, a plurality of relatively narrow optical component layers FX may be arranged in the width direction and bonded to the optical display member PX.

參考第4圖進行說明。液晶面板P係具備第一基板P1、第二基板P2及液晶層P3。 This will be explained with reference to Fig. 4. The liquid crystal panel P includes a first substrate P1, a second substrate P2, and a liquid crystal layer P3.

第一基板P1係例如TFT基板所構成的長方形基板。第二基板P2係對向第一基板P1配置的長方形基板。液晶層P3係封入第一基板P1與第二基板P2之間。不過,為了圖示方便起見,省略剖面圖中的各層剖面線。 The first substrate P1 is a rectangular substrate made of, for example, a TFT substrate. The second substrate P2 is a rectangular substrate that is disposed on the first substrate P1. The liquid crystal layer P3 is sealed between the first substrate P1 and the second substrate P2. However, for convenience of illustration, the cross-sectional lines of the respective layers in the cross-sectional view are omitted.

參考第6圖以及第7圖進行說明。第一基板P1係使其外周緣之三個側邊沿第二基板P2相對應之三個側邊配置,且其外周緣剩餘之一側邊則延伸至第二基板P2相對應之一側邊的外側。藉此,於第一基板P1之一側邊處設置延伸至第二基板P2外側的電子部件安裝部P5。 Description will be made with reference to Fig. 6 and Fig. 7. The first substrate P1 is configured such that three sides of the outer periphery thereof are disposed along three sides corresponding to the second substrate P2, and one of the remaining sides of the outer periphery extends to one side of the corresponding side of the second substrate P2. The outside. Thereby, the electronic component mounting portion P5 extending to the outside of the second substrate P2 is provided at one side of the first substrate P1.

參考第5圖以及第7圖進行說明。第二切斷裝置16以攝影機16a等檢測工具檢測顯示區域P4之外周緣,並沿顯示區域P4之外周緣等切斷第一光學組件層F1及第二光學組件層F2。又,第三切斷裝置19以攝影機16a等檢測工具檢測顯示區域P4之外周緣,並沿顯示區域P4之外周緣等切斷第三光學組件層F3。顯示區域P4之外側處係設置有將第一基板P1及第二基板P2接合之密封劑等設置用特定寬度的邊框部G。於該邊框部G之寬度內以第二切斷裝 置16及第三切斷裝置19進行雷射切割。 Description will be made with reference to Fig. 5 and Fig. 7. The second cutting device 16 detects the outer periphery of the display region P4 by a detecting tool such as the camera 16a, and cuts the first optical component layer F1 and the second optical component layer F2 along the outer periphery of the display region P4 or the like. Further, the third cutting device 19 detects the outer periphery of the display region P4 by the detecting means such as the camera 16a, and cuts the third optical component layer F3 along the outer periphery of the display region P4 or the like. A frame portion G having a specific width for providing a sealant or the like that joins the first substrate P1 and the second substrate P2 is provided on the outer side of the display region P4. In the width of the frame portion G, the second cutting device The 16 and third cutting devices 19 perform laser cutting.

如第10圖所示,單獨對樹脂製的光學組件層FX進行雷射切割時,其切斷端t可能因熱變形而膨脹或呈波浪形。因此,將雷射切割後之光學組件層FX貼合至光學顯示部件PX的情況,光學組件層FX處易產生空氣混入或變形等貼合不良問題。 As shown in Fig. 10, when the optical component layer FX made of resin is subjected to laser cutting alone, the cut end t may be expanded or wavy due to thermal deformation. Therefore, in the case where the laser-cut optical component layer FX is bonded to the optical display member PX, the optical component layer FX is liable to cause a problem of poor adhesion such as air incorporation or deformation.

另一方面,本實施形態中,如第9圖所示,於液晶面板P貼合好光學組件層FX之後,以雷射切斷光學組件層FX。本實施形態中,光學組件層FX之切斷端t會受到液晶面板P之玻璃表面支撐。因此,光學組件層FX之切斷端t不會產生膨脹或波浪形,且於液晶面板P之貼合後進行故不會有前述貼合不良問題。 On the other hand, in the present embodiment, as shown in FIG. 9, after the optical component layer FX is bonded to the liquid crystal panel P, the optical component layer FX is cut by laser. In the present embodiment, the cut end t of the optical component layer FX is supported by the glass surface of the liquid crystal panel P. Therefore, the cut end t of the optical component layer FX does not swell or wavy, and after the bonding of the liquid crystal panel P is performed, there is no problem of the above-described poor bonding.

雷射加工機之切割線的振動幅度(公差)係較切割刀片之公差更小。因此本實施形態中,與使用切割刀片切斷光學組件層FX的情況相比,可使得該邊框部G的寬度更窄。又,可達到液晶面板P的小型化及(或)顯示區域P4的大型化。這可應用於近年來之智慧型手機或平板電腦終端等,需要在機殼尺寸之限制下將顯示畫面放大的高機能行動裝置。 The vibration amplitude (tolerance) of the cutting line of the laser processing machine is smaller than that of the cutting blade. Therefore, in the present embodiment, the width of the frame portion G can be made narrower than in the case where the optical module layer FX is cut by the dicing blade. Moreover, the size of the liquid crystal panel P and/or the enlargement of the display area P4 can be achieved. This can be applied to a high-performance mobile device that needs to enlarge a display screen under the limitation of the size of the casing, such as a smart phone or a tablet terminal in recent years.

又,對將光學組件層FX整合於液晶面板P之顯示區域P4的層片進行切割之後,貼合至液晶面板P的情況中,該層片及液晶面板P各自的尺寸公差,以及該等之相對貼合位置的尺寸公差會疊加。因此,難以縮小液晶面板P之邊框部G的寬度。換言之,難以使得顯示區域擴大。 Moreover, in the case where the optical component layer FX is integrated into the display region P4 of the liquid crystal panel P and then bonded to the liquid crystal panel P, the dimensional tolerances of the laminate and the liquid crystal panel P, and the like The dimensional tolerances of the relative fit positions are superimposed. Therefore, it is difficult to reduce the width of the frame portion G of the liquid crystal panel P. In other words, it is difficult to enlarge the display area.

另一方面,將光學組件層FX貼合至液晶面板P之後,依據顯示區域P4進行切割的情況中,只需考慮切割線的振動公差。因此,可降低邊框部G之寬度的公差(±0.1mm以下)。此特點亦可使得液晶面板P之邊框部G的寬 度變窄(可使得顯示區域擴大)。 On the other hand, in the case where the optical component layer FX is bonded to the liquid crystal panel P and the cutting is performed in accordance with the display region P4, only the vibration tolerance of the cutting line is considered. Therefore, the tolerance (±0.1 mm or less) of the width of the frame portion G can be reduced. This feature can also make the width of the frame portion G of the liquid crystal panel P The degree is narrowed (the display area can be enlarged).

再者,以非利刃的雷射來切斷光學組件層FX,切斷時不會有作用力施加至液晶面板P,因此液晶面板P之基板端緣部不易產生裂痕或破裂,提升對於熱循環等的耐久性。同樣地,由於不接觸液晶面板P,對於電子部件安裝部P5的損傷亦較少。 In addition, the optical component layer FX is cut by a non-profit laser, and no force is applied to the liquid crystal panel P during the cutting, so that the edge of the substrate of the liquid crystal panel P is less likely to be cracked or broken, and the thermal cycle is improved. Durability. Similarly, since the liquid crystal panel P is not touched, damage to the electronic component mounting portion P5 is also small.

不過,以雷射切斷光學組件層FX的情況,雷射照射之每單位長度的能量較佳地需考慮液晶面板P或光學組件層FX的厚度或結構來決定。 However, in the case where the optical component layer FX is cut by laser, the energy per unit length of the laser irradiation is preferably determined in consideration of the thickness or structure of the liquid crystal panel P or the optical component layer FX.

本實施形態中,以雷射切斷光學組件層FX的情況,每單位長度的能量較佳地在0.01~0.11(J/mm)的範圍內進行雷射照射。於雷射照射中,每單位長度的能量過大時,以雷射切斷光學組件層FX的情況,光學組件層FX將有受到損傷之虞。但是,因為每單位長度的能量在0.01~0.11(J/mm)範圍內進行雷射照射,可防止光學組件層FX受到損傷。 In the present embodiment, in the case where the optical component layer FX is cut by laser, the energy per unit length is preferably laser-irradiated in the range of 0.01 to 0.11 (J/mm). In the case of laser irradiation, when the energy per unit length is excessively large, the optical component layer FX is damaged by the laser, and the optical component layer FX is damaged. However, since the energy per unit length is laser-irradiated in the range of 0.01 to 0.11 (J/mm), the optical component layer FX can be prevented from being damaged.

如第6圖所示,以雷射切斷光學組件層FX(第6圖中之第三光學組件層F3)的情況,例如將顯示區域P4之一長邊的延長線上設定為雷射切割的起點pt1。接著,從該起點pt1先開始進行該一長邊的切斷動作。雷射切割之終點pt2係設計於雷射環繞顯示區域P4一圈後,到達顯示區域P4之起點側短邊的延長線上之位置。起點pt1及終點pt2係設計使得光學組件層FX之剩餘部分仍會剩餘特定接續部分,而能承受捲取光學組件層FX時的張力。 As shown in Fig. 6, in the case where the optical component layer FX (the third optical component layer F3 in Fig. 6) is cut by laser, for example, the extension line of one of the long sides of the display region P4 is set to be laser cut. Starting point pt1. Next, the cutting operation of the long side is started from the starting point pt1. The end point of the laser cutting pt2 is designed to reach the position on the extension line of the short side of the starting side of the display area P4 after the laser surrounds the display area P4. The starting point pt1 and the end point pt2 are designed such that the remaining portion of the optical component layer FX still retains a specific splicing portion and can withstand the tension when the optical component layer FX is taken up.

如以上說明,上述實施形態中光學組件貼合體之製造系統,於將光學組件(第一光學組件F11、第二光學組件F12)貼合至液晶面板P的第二單面貼合面板P12之製造系統中,係具備:控制裝置20,係根據較該液晶面板P(光學顯示部件)之顯示區域P4更大的光學組件層(第一光學組件層F1、第二 光學組件層F2)之光軸方向所示之檢查資料,決定該液晶顯示面板P與該光學組件層(第一光學組件層F1、第二光學組件層F2)的相對貼合位置;校準裝置(第一校準裝置11、第二校準裝置14),係根據該控制裝置20所決定之相對貼合位置,相對該光學組件層(第一光學組件層F1、第二光學組件層F2)進行該液晶面板P的校準;貼合裝置(第一貼合裝置12、第二貼合裝置15),係將該光學組件層(第一光學組件層F1、第二光學組件層F2)依序貼合至由該校準裝置(第一校準裝置11、第二校準裝置14)校準好之光學顯示部件,以作為第二貼合層F22;以及第二切斷裝置16,係將該貼合裝置(第一貼合裝置12、第二貼合裝置15)貼合好之光學組件層(第一光學組件層F1、第二光學組件層F2)的區域中的對向該液晶面板P之顯示區域P4的第一區域(與顯示區域P4的對向部分)與該光學組件層(第一光學組件層F1、第二光學組件層F2)之第一區域外側區域的第二區域進行切斷。 As described above, in the manufacturing system of the optical component bonding body in the above embodiment, the second single-sided bonding panel P12 in which the optical component (the first optical component F11 and the second optical component F12) is bonded to the liquid crystal panel P is manufactured. In the system, the control device 20 is provided with an optical component layer (first optical component layer F1, second) that is larger than the display region P4 of the liquid crystal panel P (optical display member). The inspection data indicated by the optical axis direction of the optical component layer F2) determines the relative bonding position of the liquid crystal display panel P and the optical component layer (the first optical component layer F1 and the second optical component layer F2); The first calibration device 11 and the second calibration device 14) perform the liquid crystal on the optical component layer (the first optical component layer F1 and the second optical component layer F2) according to the relative bonding position determined by the control device 20. The calibration of the panel P; the bonding device (the first bonding device 12 and the second bonding device 15) sequentially attaches the optical component layer (the first optical component layer F1 and the second optical component layer F2) to The optical display member calibrated by the calibration device (the first calibration device 11 and the second calibration device 14) as the second bonding layer F22; and the second cutting device 16 is the bonding device (first The bonding device 12 and the second bonding device 15) are in the region of the optical component layer (the first optical component layer F1 and the second optical component layer F2) that are bonded to the display region P4 of the liquid crystal panel P. a region (opposite portion with display region P4) and the optical component layer (first optical group) Layer F1, a second region of the second optical element layer F2) of a first region of the outer region is cut.

同樣地,上述實施形態中光學組件貼合體之製造系統,於將第三光學組件F13貼合至第二單面貼合面板P12的雙面貼合面板P13之製造系統中,係具備:貼合裝置,係將較該液晶面板P之顯示區域P4更大的第三光學組件層F3貼合至該第二單面貼合面板P12之光學組件(第一光學組件F11、第二光學組件F12)的相反側之面,來作為第三貼合層F23;控制裝置20,將該第三光學組件層F3貼合至該第二單面貼合面板P12之前,根據該第三光學組件層F3之光軸方向的檢查資料,決定該液晶面板P與該第二單面貼合面板P12的相對貼合位置;第三校準裝置17,將該第三光學組件層F3貼合至該第二單面貼合面板P12之前,根據該控制裝置20所決定之相對貼合位置,相對該第三光學組件層F3進行該第二單面貼合面板P12的校準;以及第三切斷裝置19,係在將該第 三光學組件層F3貼合至該第二單面貼合面板P12之後,將該第三光學組件層F3之顯示區域P4的對向部分,與其外側之剩餘部分切斷,從該第三光學組件層F3切割出對應於該顯示區域P4大小的第三光學組件F13,藉以從該第三貼合層F23切割出包含單一個該液晶面板P及與其重疊之第三光學組件F13的雙面貼合面板P13。 Similarly, in the manufacturing system of the optical component bonding body in the above-described embodiment, in the manufacturing system of the double-sided bonding panel P13 in which the third optical component F13 is bonded to the second single-sided bonding panel P12, the manufacturing system includes: bonding The third optical component layer F3 that is larger than the display area P4 of the liquid crystal panel P is attached to the optical component (the first optical component F11 and the second optical component F12) of the second single-sided bonding panel P12. The opposite side of the surface serves as the third bonding layer F23; the control device 20, before the third optical component layer F3 is attached to the second single-sided bonding panel P12, according to the third optical component layer F3 The inspection information in the optical axis direction determines the relative bonding position of the liquid crystal panel P and the second single-sided bonding panel P12; and the third calibration device 17 attaches the third optical component layer F3 to the second single surface. Before the panel P12 is bonded, the second single-sided bonding panel P12 is aligned with respect to the third optical component layer F3 according to the relative bonding position determined by the control device 20; and the third cutting device 19 is attached to The first After the third optical component layer F3 is attached to the second single-sided bonding panel P12, the opposite portion of the display region P4 of the third optical component layer F3 is cut off from the remaining portion of the third optical component layer F3. The layer F3 cuts out the third optical component F13 corresponding to the size of the display area P4, thereby cutting out the double-sided bonding comprising the single liquid crystal panel P and the third optical component F13 overlapping the same from the third bonding layer F23. Panel P13.

本實施形態中,如上所述,較佳的第二切斷裝置16係從該光學組件層(第一光學組件層F1、第二光學組件層F2)切割出對應於該顯示區域P4大小的光學組件層(第一光學組件層F1、第二光學組件層F2),藉以切割出包含該液晶顯示面板P、該第一光學組件層F1及該第二光學組件層F2的第二貼合層F22(光學組件貼合體)。 In the present embodiment, as described above, the preferred second cutting device 16 cuts the optical size corresponding to the display area P4 from the optical component layer (the first optical component layer F1 and the second optical component layer F2). a component layer (a first optical component layer F1 and a second optical component layer F2) for cutting a second bonding layer F22 including the liquid crystal display panel P, the first optical component layer F1 and the second optical component layer F2 (optical component bonding body).

又,本實施形態中,較佳的控制裝置20係讓該液晶顯示面板P之基準軸與由該檢查資料所示之光學組件層(第一光學組件層F1、第二光學組件層F2)的光軸方向呈平行,決定該相對貼合位置。 Further, in the present embodiment, the preferred control device 20 is such that the reference axis of the liquid crystal display panel P and the optical component layer (the first optical component layer F1 and the second optical component layer F2) indicated by the inspection material are The direction of the optical axis is parallel, which determines the relative bonding position.

又,本實施形態中,如上所述,較佳的控制裝置20係使用通過該液晶顯示面板P之平面中心的長邊方向軸來作為該基準軸。 Further, in the present embodiment, as described above, the preferred control device 20 uses the longitudinal axis of the center of the plane of the liquid crystal display panel P as the reference axis.

又,本實施形態中,較佳的校準裝置(第一校準裝置11、第二校準裝置14)係讓該光學組件層(第一光學組件層F1、第二光學組件層F2)與該液晶顯示面板P配置到該控制裝置20所決定的相對貼合位置,進行該液晶顯示面板P的校準。 Moreover, in the present embodiment, the preferred calibration device (the first calibration device 11 and the second calibration device 14) allows the optical component layer (the first optical component layer F1 and the second optical component layer F2) to be displayed with the liquid crystal display. The panel P is placed at a relative bonding position determined by the control device 20, and the liquid crystal display panel P is calibrated.

又,本實施形態中,如上所述,較佳的校準裝置(第一校準裝置11、第二校準裝置14)係由該滾筒輸送機5(第一輸送裝置)朝該液晶顯示面板P輸送方向之垂直方向移動、及由該滾筒輸送機5繞該液晶顯示面板P輸送方向之垂直軸迴轉,藉以將該液晶顯示面板P輸送至該相對貼合位置。 Further, in the present embodiment, as described above, the preferred calibration device (the first calibration device 11 and the second calibration device 14) is conveyed toward the liquid crystal display panel P by the roller conveyor 5 (first conveying device). The liquid crystal display panel P is transported to the relative bonding position by the vertical direction of the roller conveyor 5 rotating around the vertical direction of the liquid crystal display panel P.

又,本實施形態中,如上所述,較佳的校準裝置(第一校準裝置11、第二校準裝置14)係於將該液晶顯示面板P反轉後,根據該控制裝置20所決定之相對貼合位置,相對該光學組件層(第一光學組件層F1及第二光學組件層F2)進行該液晶顯示面板P的校準。 Further, in the present embodiment, as described above, the preferred calibration device (the first calibration device 11 and the second calibration device 14) is based on the relative determination of the control device 20 after inverting the liquid crystal display panel P. At the bonding position, the alignment of the liquid crystal display panel P is performed with respect to the optical component layer (the first optical component layer F1 and the second optical component layer F2).

又,本實施形態中,如上所述,較佳的貼合裝置(第一貼合裝置12、第二貼合裝置15)係以較該顯示區域大且較該液晶顯示面板P的外形小的區域來作為該第一區域。 Further, in the present embodiment, as described above, the preferred bonding apparatus (the first bonding apparatus 12 and the second bonding apparatus 15) is larger than the display area and smaller than the outer shape of the liquid crystal display panel P. The area comes as the first area.

又,本實施形態中,如上所述,較佳的第二切斷裝置16係使用雷射來將該光學組件層(第一光學組件層F1、第二光學組件層F2)切斷。 Further, in the present embodiment, as described above, the preferred second cutting device 16 cuts the optical component layer (the first optical component layer F1 and the second optical component layer F2) by using a laser.

又,本實施形態中,如上所述,較佳地係更具備拍攝該液晶顯示面板P之位置的攝影機C(攝影裝置),其中,該控制裝置20係根據該檢查資料與該攝影機C所拍攝之液晶顯示面板P位置,決定該相對貼合位置。 Further, in the present embodiment, as described above, it is preferable to further include a camera C (photographing device) that captures the position of the liquid crystal display panel P, wherein the control device 20 photographs the camera C based on the inspection data. The position of the liquid crystal display panel P determines the relative bonding position.

又,本實施形態中,如上所述,較佳地係更具備將該液晶顯示面板P以該第一校準裝置11、第二校準裝置14、該第一貼合裝置12、第二貼合裝置15、及該第二切斷裝置16之順序進行輸送的滾筒輸送機5(第一輸送裝置)。 Further, in the present embodiment, as described above, it is preferable to further include the liquid crystal display panel P as the first calibration device 11, the second calibration device 14, the first bonding device 12, and the second bonding device. 15. A roller conveyor 5 (first conveying device) that transports the second cutting device 16 in sequence.

又,本實施形態中,如上所述,較佳地更具備將該光學組件層(第一光學組件層F1、第二光學組件層F2)輸送至該貼合裝置(第一貼合裝置12、第二貼合裝置15)的輸送裝置12a(第二輸送裝置)。 Further, in the present embodiment, as described above, it is preferable to further convey the optical component layer (the first optical component layer F1 and the second optical component layer F2) to the bonding apparatus (the first bonding apparatus 12, The conveying device 12a (second conveying device) of the second bonding device 15).

又,本實施形態中,如上所述,較佳的輸送裝置12a係具備第二回收部15d,其係將由該第二切斷裝置16所切斷之第一光學組件層F1、第二光學組件層F2的第二區域回收。 Further, in the present embodiment, as described above, the preferred transport device 12a includes the second recovery portion 15d, which is the first optical component layer F1 and the second optical component that are cut by the second cutting device 16. The second region of layer F2 is recycled.

該結構中,係根據光學組件層(第一光學組件層F1、第二光學組 件層F2、第三光學組件層F3)之光軸方向檢查資料進行校準之後貼合至液晶面板P。藉此,即使是因光學組件層(第一光學組件層F1、第二光學組件層F2、第三光學組件層F3)之位置而其光軸方向有改變的情況,可依據該光軸方向校準液晶面板P並貼合。藉此,可提升相對於液晶面板P的光學組件(第一光學組件F11、第二光學組件F12、第三光學組件F13)之光軸方向的精度,可改善光學顯示設備的色彩度及對比度。又,亦可對應具有任意之光軸方向的光學組件貼合體之製造。 In this structure, according to the optical component layer (first optical component layer F1, second optical group) The optical axis direction inspection data of the layer F2 and the third optical component layer F3) are calibrated and bonded to the liquid crystal panel P. Thereby, even if the optical axis direction changes due to the position of the optical component layer (the first optical component layer F1, the second optical component layer F2, and the third optical component layer F3), the optical axis direction can be calibrated. The liquid crystal panel P is attached. Thereby, the accuracy of the optical axis direction of the optical components (the first optical component F11, the second optical component F12, and the third optical component F13) with respect to the liquid crystal panel P can be improved, and the color degree and contrast of the optical display device can be improved. Further, it is also possible to manufacture an optical component bonding body having an arbitrary optical axis direction.

此處,上述實施形態中光學組件貼合體之製造方法,係根據較該液晶面板P(光學顯示部件)之顯示區域P4更大的光學組件層(第一光學組件層F1、第二光學組件層F2)之光軸方向所示之檢查資料,決定該液晶顯示面板P與該光學組件層(第一光學組件層F1、第二光學組件層F2)的相對貼合位置;根據所決定之相對貼合位置,相對該光學組件層(第一光學組件層F1、第二光學組件層F2)進行該液晶面板P的校準;將該光學組件層(第一光學組件層F1、第二光學組件層F2)依序貼合至校準好之光學顯示部件,來作為第二貼合層F22;將貼合好之光學組件層(第一光學組件層F1、第二光學組件層F2)的區域中的對向該液晶面板P之顯示區域P4的第一區域(與顯示區域P4的對向部分)與該光學組件層(第一光學組件層F1、第二光學組件層F2)之第一區域外側區域的第二區域進行切斷。 Here, the optical component bonding body manufacturing method according to the above embodiment is based on an optical component layer (first optical component layer F1, second optical component layer) which is larger than the display region P4 of the liquid crystal panel P (optical display member). The inspection data indicated by the optical axis direction of F2) determines the relative bonding position of the liquid crystal display panel P and the optical component layer (the first optical component layer F1 and the second optical component layer F2); Positioning, aligning the liquid crystal panel P with respect to the optical component layer (first optical component layer F1, second optical component layer F2); the optical component layer (first optical component layer F1, second optical component layer F2) And sequentially bonding to the calibrated optical display member as the second bonding layer F22; the pair in the region of the optical component layer (the first optical component layer F1 and the second optical component layer F2) to be bonded together a first region (opposite portion with the display region P4) of the display region P4 of the liquid crystal panel P and an outer region of the first region of the optical component layer (the first optical component layer F1, the second optical component layer F2) The second area is cut.

同樣地,上述實施形態中光學組件貼合體之製造方法,係包含:在與該第二單面貼合面板P12之光學組件(第一光學組件F11、第二光學組件F12)的相反側之面,貼合較該第二單面貼合面板P12之顯示區域P4更大的第三光學組件層F3,以作為第三貼合層F23之步驟;將該第三光學組件層F3貼合至該第 二單面貼合面板P12之前,根據該第三光學組件層F3之光軸方向的檢查資料,決定該液晶面板P與該第二單面貼合面板P12的相對貼合位置之步驟;將該第三光學組件層F3貼合至該第二單面貼合面板P12之前,根據該控制裝置20所決定之相對貼合位置,相對該第三光學組件層F3進行該第二單面貼合面板P12的校準之步驟;以及將該第三光學組件層F3貼合至該第二單面貼合面板P12之後,將該第三光學組件層F3之顯示區域P4的對向部分,與其外側之剩餘部分切斷,從該第三光學組件層F3切割出對應於該顯示區域P4大小的第三光學組件F13,藉以從該第三貼合層F23切割出包含單一個該液晶面板P及與其重疊之第三光學組件F13的雙面貼合面板P13之步驟。 Similarly, the manufacturing method of the optical component bonding body in the above embodiment includes the opposite side of the optical component (the first optical component F11 and the second optical component F12) of the second single-sided bonding panel P12. And attaching a third optical component layer F3 larger than the display area P4 of the second single-sided bonding panel P12 as a third bonding layer F23; bonding the third optical component layer F3 to the First Before the single-sided bonding panel P12, the step of determining the relative bonding position of the liquid crystal panel P and the second single-sided bonding panel P12 is determined according to the inspection data of the optical axis direction of the third optical component layer F3; Before the third optical component layer F3 is bonded to the second single-sided bonding panel P12, the second single-sided bonding panel is performed on the third optical component layer F3 according to the relative bonding position determined by the control device 20. a step of calibrating P12; and after attaching the third optical component layer F3 to the second single-sided bonding panel P12, the opposite portion of the display region P4 of the third optical component layer F3, and the remaining portion thereof Partially cutting, cutting the third optical component F13 corresponding to the size of the display area P4 from the third optical component layer F3, thereby cutting out and overlapping the single liquid crystal panel P from the third bonding layer F23. The step of the double-sided bonding panel P13 of the third optical component F13.

另外,第11圖係顯示薄膜貼合系統1的變形例。相較於第1圖的結構,具有以第一貼合裝置12’代替前述第一貼合裝置12,和以第一切斷裝置13’代替前述第一切斷裝置13的相異點。其它部分,與前述實施形態相同結構者則賦予相同元件符號並省略詳細說明。 In addition, Fig. 11 shows a modification of the film bonding system 1. In contrast to the configuration of Fig. 1, there is a difference between the first bonding device 12' in place of the first bonding device 12 and the first cutting device 13' in place of the first cutting device 13. In the other portions, the same components as those in the above-described embodiments are denoted by the same reference numerals, and their detailed description is omitted.

第一貼合裝置12’係具備輸送裝置12a’以代替前述輸送裝置12a。輸送裝置12a’與前述輸送裝置12a相比,除了滾筒保持部12c及保護薄膜回收部12d之外,更具有第一回收部12e。第一回收部12e係捲取通過第一切斷裝置13’而被切割殘餘呈梯子狀的第一光學組件層F1之剩餘部分。 The first bonding device 12' is provided with a conveying device 12a' instead of the conveying device 12a. The conveying device 12a' has a first collecting portion 12e in addition to the roller holding portion 12c and the protective film collecting portion 12d as compared with the above-described conveying device 12a. The first collecting portion 12e winds up the remaining portion of the first optical component layer F1 which is cut by the first cutting device 13' and which is cut into a ladder shape.

第一切斷裝置13’係位於保護薄膜回收部12d之面板輸送下游側,和第一回收部12e之面板輸送上游側。第一切斷裝置13’應從第一光學組件層F1切割出較顯示區域P4更大的層片,以切斷第一光學組件層F1。第一切斷裝置13’具有與該第二切斷裝置16及第三切斷裝置19相同的雷射加工機。第一切斷裝置13’係沿顯示區域P4外側之指定邊線不間斷地切斷第一光學組件層 F1。 The first cutting device 13' is located on the downstream side of the panel conveyance of the protective film collecting portion 12d, and on the upstream side of the panel conveying of the first collecting portion 12e. The first cutting device 13' should cut a larger layer from the first optical component layer F1 than the display region P4 to cut the first optical component layer F1. The first cutting device 13' has the same laser processing machine as the second cutting device 16 and the third cutting device 19. The first cutting device 13' cuts the first optical component layer uninterrupted along a specified side line outside the display region P4. F1.

藉由第一切斷裝置13’的切斷步驟,形成將較顯示區域P4更大的第一光學組件層F1之層片貼合於液晶面板P之下側面的第一單面貼合面板P11’。此時,第一單面貼合面板P11’與切割殘餘呈梯子狀的第一光學組件層F1之剩餘部分相互分離,第一光學組件層F1之剩餘部分被捲取至第一回收部12e。 By the cutting step of the first cutting device 13', the first single-sided bonding panel P11 in which the layer of the first optical component layer F1 larger than the display region P4 is bonded to the lower side of the liquid crystal panel P is formed. '. At this time, the first single-sided bonding panel P11' is separated from the remaining portion of the first optical component layer F1 in which the cutting residual is ladder-shaped, and the remaining portion of the first optical component layer F1 is taken up to the first collecting portion 12e.

第12圖係顯示薄膜貼合系統1的其它變形例。相較於第1圖的結構,具有以第三校準裝置17’及第三貼合裝置18’代替前述第三校準裝置17及第三貼合裝置18的相異點。其它部分,與前述實施形態相同結構者則賦予相同元件符號並省略詳細說明。 Fig. 12 shows another modification of the film bonding system 1. In contrast to the configuration of Fig. 1, there is a difference between the third calibration device 17' and the third bonding device 18' in place of the third calibration device 17 and the third bonding device 18. In the other portions, the same components as those in the above-described embodiments are denoted by the same reference numerals, and their detailed description is omitted.

第三校準裝置17’與前述第三校準裝置17相比,為較簡單的結構,沒有將面板正/反反轉功能,僅具有與該第一校準裝置11及第二校準裝置14相同的校準功能。即,第三校準裝置17’係根據儲存於控制裝置20的光軸方向檢查資料及該攝影機C之攝影資料,決定相對於第三貼合裝置18’的第二單面貼合面板P12之部件寬度方向及迴轉方向上的位置。在該狀態中,第二單面貼合面板P12被引導至第三貼合裝置18’之貼合位置。 The third calibration device 17' has a simpler structure than the third calibration device 17, and does not have the panel forward/reverse rotation function, and has only the same calibration as the first calibration device 11 and the second calibration device 14. Features. That is, the third calibration device 17' determines the components of the second single-sided bonding panel P12 with respect to the third bonding device 18' based on the optical axis direction inspection data stored in the control device 20 and the photographic data of the camera C. Position in the width direction and the direction of rotation. In this state, the second single-sided bonding panel P12 is guided to the bonding position of the third bonding device 18'.

第三貼合裝置18’與前述第三貼合裝置18相比,係針對被引導至貼合位置的長條狀第三光學組件層F3下側面,將沿其下方輸送之第二單面貼合面板P12上側面(液晶面板P之顯示面側)進行貼合。第三貼合裝置18’係將前述輸送裝置18a及夾壓滾筒18b上下顛倒的結構。藉此,第三光學組件層F3之貼合面變成朝下貼合,可抑制對該貼合面的刮痕或灰塵等異物之附著。 The third bonding device 18' is compared with the third bonding device 18, and is applied to the lower side of the elongated third optical component layer F3 that is guided to the bonding position, and the second single-sided sticker is conveyed along the lower side thereof. The upper side of the panel P12 (the display surface side of the liquid crystal panel P) is bonded. The third bonding device 18' has a structure in which the conveying device 18a and the nip roller 18b are turned upside down. Thereby, the bonding surface of the third optical component layer F3 is bonded downward, and adhesion of foreign matter such as scratches or dust on the bonding surface can be suppressed.

不過,本發明不限於上述實施形態及變形例,例如與該第三貼合裝置18’相同般,第一貼合裝置12及第二貼合裝置15亦可上下顛倒。又,亦 可將該等上下顛倒之各貼合裝置與該第一貼合裝置12’及第一切斷裝置13’進行適當組合。 However, the present invention is not limited to the above-described embodiments and modifications. For example, like the third bonding device 18', the first bonding device 12 and the second bonding device 15 may be turned upside down. Also Each of the above-described bonding devices can be appropriately combined with the first bonding device 12' and the first cutting device 13'.

又,除了將光學顯示部件貼合至從料捲滾筒捲出之光學組件層的結構之外,亦可將複數個光學顯示部件適當地貼合至大尺寸光學組件層的結構。 Further, in addition to the structure in which the optical display member is bonded to the optical component layer which is wound out from the take-up reel, a plurality of optical display members may be appropriately bonded to the structure of the large-sized optical component layer.

接著,上述實施形態及變形例中之結構僅為本發明之一例,於不偏離該發明之要旨的範圍內各種變化皆為可能。 The configurations of the above-described embodiments and modifications are merely examples of the invention, and various changes are possible without departing from the scope of the invention.

上述控制裝置20係於內部具有電腦系統。接著,上述各裝置之動作係以程式形式儲存於電腦可讀取的記錄媒體,以電腦執行讀出的程式,以進行上述處理。此處,電腦可讀取的記錄媒體係指磁碟、磁光碟、CD-ROM、DVD-ROM、半導體記憶體等。又,亦可藉由通訊線路將該電腦程式傳送至電腦,由接受到該傳送資料的電腦執行該程式。 The control device 20 described above has a computer system inside. Next, the operation of each of the above devices is stored in a computer-readable recording medium in a program format, and the read program is executed by the computer to perform the above processing. Here, the computer readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program can be transmitted to the computer via the communication line, and the program can be executed by the computer that receives the data.

又,上述程式,亦可為用以實現前述一部分功能者。再者,亦可藉由將已儲存於電腦系統中的程式進行組合以達成前述功能,即所謂的差別檔案(difference file;差別程式)。 Moreover, the above program may be used to implement some of the aforementioned functions. Furthermore, the aforementioned functions can also be achieved by combining programs already stored in the computer system, so-called difference files (difference files).

【產業上的利用性】 [Industrial use]

本發明係可適用於,一種可提升貼合至光學顯示部件的光學薄膜之光軸方向精度的光學組件貼合體之製造系統、製造方法及記錄媒體等。 The present invention is applicable to a manufacturing system, a manufacturing method, a recording medium, and the like of an optical component bonding body which can improve the optical axis direction accuracy of an optical film bonded to an optical display member.

5‧‧‧滾筒輸送機 5‧‧‧Roller conveyor

11‧‧‧第一校準裝置 11‧‧‧First calibration device

12‧‧‧第一貼合裝置 12‧‧‧First bonding device

12a‧‧‧輸送裝置 12a‧‧‧Transporting device

12b‧‧‧夾壓滾筒 12b‧‧‧ pinch roller

12c‧‧‧滾筒保持部 12c‧‧‧Roller Keeping Department

12d‧‧‧保護薄膜回收部 12d‧‧‧Protective film recycling department

13‧‧‧第一切斷裝置 13‧‧‧First cutting device

14‧‧‧第二校準裝置 14‧‧‧Second calibration device

15‧‧‧第二貼合裝置 15‧‧‧Second laminating device

15a‧‧‧輸送裝置 15a‧‧‧Conveyor

15b‧‧‧夾壓滾筒 15b‧‧‧ pinch roller

15c‧‧‧滾筒保持部 15c‧‧‧Roller Keeping Department

15d‧‧‧第二回收部 15d‧‧‧Second Recycling Department

16‧‧‧第二切斷裝置 16‧‧‧Second cutting device

17‧‧‧第三校準裝置 17‧‧‧ Third calibration device

18‧‧‧第三貼合裝置 18‧‧‧ Third bonding device

18a‧‧‧輸送裝置 18a‧‧‧Transportation device

18b‧‧‧夾壓滾筒 18b‧‧‧ pinch roller

18c‧‧‧滾筒保持部 18c‧‧‧Roller Keeping Department

18d‧‧‧第三回收部 18d‧‧‧ Third Recycling Department

19‧‧‧第三切斷裝置 19‧‧‧ Third cutting device

20‧‧‧控制裝置 20‧‧‧Control device

F1‧‧‧第一光學組件層 F1‧‧‧First optical component layer

F2‧‧‧第二光學組件層 F2‧‧‧Second optical component layer

F3‧‧‧第三光學組件層 F3‧‧‧ third optical component layer

F21‧‧‧第一貼合層 F21‧‧‧ first bonding layer

F22‧‧‧第二貼合層 F22‧‧‧Second bonding layer

F23‧‧‧第三貼合層 F23‧‧‧ third bonding layer

R1‧‧‧第一料捲滾筒 R1‧‧‧First roll drum

R2‧‧‧第二料捲滾筒 R2‧‧‧second roll drum

R3‧‧‧第三料捲滾筒 R3‧‧‧ third roll

P‧‧‧液晶面板 P‧‧‧ LCD panel

P11‧‧‧第一單面貼合面板 P11‧‧‧First single-sided fitting panel

P12‧‧‧第二單面貼合面板 P12‧‧‧Second single-sided fitting panel

P13‧‧‧雙面貼合面板 P13‧‧‧ double-sided fitting panel

pf‧‧‧保護薄膜 Pf‧‧‧protective film

Claims (15)

一種光學組件貼合體之製造系統,係具備:控制裝置,係根據較光學顯示部件之顯示區域更大的光學組件層之光軸方向所示之檢查資料,決定該光學顯示部件與該光學組件層的相對貼合位置;校準裝置,係根據該控制裝置所決定之相對貼合位置,相對該光學組件層進行該光學顯示部件的校準;貼合裝置,係將該光學組件層貼合至由該校準裝置校準好之光學顯示部件;以及切斷裝置,係將該貼合裝置所貼合好之光學組件層的區域中的對向該光學顯示部件之顯示區域的第一區域與該光學組件層之第一區域外側區域的第二區域進行切斷。 A manufacturing system for an optical component bonding body, comprising: a control device for determining an optical display component and the optical component layer according to inspection data indicated by an optical axis direction of a larger optical component layer than a display area of the optical display component; a relative bonding position; the calibration device performs calibration of the optical display member with respect to the optical component layer according to the relative bonding position determined by the control device; and the bonding device attaches the optical component layer to the a calibration device calibrated optical display member; and a cutting device, wherein the first region of the display region of the optical display member in the region of the optical component layer to which the bonding device is attached and the optical component layer The second region of the outer region of the first region is cut. 如申請專利範圍第1項所述之製造系統,其中該切斷裝置係從該光學組件層切割出對應於該顯示區域大小的光學組件層,藉以切割出包含該光學顯示部件及該光學組件層的光學組件貼合體。 The manufacturing system of claim 1, wherein the cutting device cuts an optical component layer corresponding to the size of the display area from the optical component layer, thereby cutting the optical display component and the optical component layer. The optical components fit together. 如申請專利範圍第1項所述之製造系統,其中該控制裝置係讓該光學顯示部件之基準軸與該檢查資料所示之光學組件層的光軸方向呈平行,決定該相對貼合位置。 The manufacturing system according to claim 1, wherein the control device determines the relative bonding position by making a reference axis of the optical display member parallel to an optical axis direction of the optical component layer indicated by the inspection material. 如申請專利範圍第3項所述之製造系統,其中該控制裝置係使用通過該光學顯示部件之平面中心的長邊方向軸來作為該基準軸。 The manufacturing system according to claim 3, wherein the control device uses the long-axis direction axis passing through the center of the plane of the optical display member as the reference axis. 如申請專利範圍第1項所述之製造系統,其中該校準裝置係讓該光學組件層與該光學顯示部件配置到該控制裝置所決定的相對貼合位置,進行該光學顯示部件的校準。 The manufacturing system of claim 1, wherein the calibration device performs calibration of the optical display component by disposing the optical component layer and the optical display component to a relative bonding position determined by the control device. 如申請專利範圍第1項所述之製造系統,其中該校準裝置係由該第一輸送裝置朝該光學顯示部件的輸送方向之垂直方向移動、及由該第一輸送裝置繞該光學顯示部件的輸送方向之垂直軸迴轉,藉以將該光學顯示部件輸送至該相對貼合位置。 The manufacturing system of claim 1, wherein the calibration device is moved by the first conveying device in a direction perpendicular to a conveying direction of the optical display member, and the first conveying device is wound around the optical display member. The vertical axis of the conveying direction is swiveled to convey the optical display member to the relative bonding position. 如申請專利範圍第1項所述之製造系統,其中該校準裝置係於將該光學顯示部件反轉後,根據該控制裝置所決定之相對貼合位置,對該光學組件層進行該光學顯示部件之校準。 The manufacturing system of claim 1, wherein the calibration device performs the optical display component on the optical component layer according to a relative bonding position determined by the control device after the optical display component is reversed. Calibration. 如申請專利範圍第1項所述之製造系統,其中該貼合裝置係以較該顯示區域大且較該光學顯示部件的外形小之區域來作為該第一區域。 The manufacturing system of claim 1, wherein the bonding device is the first region in a region that is larger than the display region and smaller than an outer shape of the optical display member. 如申請專利範圍第1項所述之製造系統,其中該切斷裝置係使用雷射來將該光學組件層切斷。 The manufacturing system of claim 1, wherein the cutting device uses a laser to cut the optical component layer. 如申請專利範圍第1項所述之製造系統,係更具備拍攝該光學顯示部件之位置的攝影裝置,其中,該控制裝置係根據該檢查資料與該攝影裝置所拍攝之光學顯示部件的位置,決定該相對貼合位置。 The manufacturing system according to claim 1, further comprising a photographing device for photographing a position of the optical display member, wherein the control device is based on the inspection data and a position of the optical display member photographed by the photographing device. Determine the relative fit position. 如申請專利範圍第1項所述之製造系統,係更具備將該光學顯示部件以該校準裝置、該貼合裝置、及該切斷裝置之順序進行輸送的第一輸送裝置。 The manufacturing system according to claim 1, further comprising a first conveying device that transports the optical display member in the order of the calibration device, the bonding device, and the cutting device. 如申請專利範圍第1項所述之製造系統,其中更具備將該光學組件層輸送至該貼合裝置的第二輸送裝置。 The manufacturing system of claim 1, further comprising a second conveying device that conveys the optical component layer to the bonding device. 如申請專利範圍第12項所述之製造系統,其中該第二輸送裝置係具備將該切斷裝置所切斷之剩餘部分回收的回收部。 The manufacturing system according to claim 12, wherein the second conveying device includes a collecting portion that recovers the remaining portion cut by the cutting device. 一種光學組件貼合體的製造方法,係包含:根據較光學顯示部件之顯示區域更大的光學組件層之光軸方向所示之檢 查資料,決定該光學顯示部件與該光學組件層的相對貼合位置;根據決定之相對貼合位置,相對該光學組件層進行該光學顯示部件的校準;將該光學組件層貼合至校準好之光學顯示部件;以及將貼合好之光學組件層的區域中的對向該光學顯示部件之顯示區域的第一區域與該光學組件層之第一區域外側區域的第二區域進行切斷。 A method for manufacturing an optical component bonding body, comprising: detecting according to an optical axis direction of an optical component layer larger than a display area of the optical display component Detecting data, determining a relative bonding position of the optical display component and the optical component layer; performing calibration of the optical display component relative to the optical component layer according to the determined relative bonding position; bonding the optical component layer to the calibration And an optical display member; and a first region of the region of the optical component that is bonded to the first region of the first region of the optical component layer. 一種電腦可讀式記錄媒體,係記錄有執行下述動作的程式:根據較光學顯示部件之顯示區域更大的光學組件層之光軸方向所示之檢查資料,決定該光學顯示部件與該光學組件層的相對貼合位置;根據決定之相對貼合位置,相對該光學組件層進行該光學顯示部件的校準;將該光學組件層貼合至校準好之光學顯示部件;以及將貼合好之光學組件層的區域中的對向該光學顯示部件之顯示區域的第一區域與該光學組件層之第一區域外側區域的第二區域進行切斷。 A computer-readable recording medium recording a program for performing an operation of determining an optical display member and the optical according to inspection data indicated by an optical axis direction of a larger optical component layer than a display region of the optical display member a relative bonding position of the component layer; performing calibration of the optical display component relative to the optical component layer according to the determined relative bonding position; bonding the optical component layer to the calibrated optical display component; and fitting the optical component A first region of the region of the optical component layer that faces the display region of the optical display component is cut from a second region of the outer region of the first region of the optical component layer.
TW101143431A 2011-11-21 2012-11-21 Manufacturing system of optical component pasted material, manufacturing method and computer-readable recording medium TWI425260B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253888 2011-11-21

Publications (2)

Publication Number Publication Date
TW201329541A true TW201329541A (en) 2013-07-16
TWI425260B TWI425260B (en) 2014-02-01

Family

ID=48469790

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101143431A TWI425260B (en) 2011-11-21 2012-11-21 Manufacturing system of optical component pasted material, manufacturing method and computer-readable recording medium

Country Status (5)

Country Link
JP (1) JP5280581B2 (en)
KR (1) KR101493187B1 (en)
CN (1) CN103460268B (en)
TW (1) TWI425260B (en)
WO (1) WO2013077348A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647090B (en) * 2014-07-18 2019-01-11 日商日東電工股份有限公司 Method for attaching an optical film to an optical display unit
TWI700676B (en) * 2015-06-02 2020-08-01 日商三菱化學股份有限公司 Manufacturing method of laminated body for image display device
TWI742295B (en) * 2017-09-28 2021-10-11 日商日東電工股份有限公司 Resin film pasting system for pasting on shaped panels

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129219A1 (en) * 2012-02-29 2013-09-06 住友化学株式会社 Optical display device production system and optical display device production method
JP6526940B2 (en) * 2013-08-20 2019-06-05 住友化学株式会社 Apparatus and method for manufacturing optical member bonding body
CN106556947A (en) * 2015-09-24 2017-04-05 宇龙计算机通信科技(深圳)有限公司 A kind of polarizer sheet sticking method and device
WO2018193975A1 (en) * 2017-04-20 2018-10-25 シャープ株式会社 Method for manufacturing display panel
CN108776406B (en) * 2018-05-29 2021-06-01 武汉华星光电技术有限公司 Preparation substrate of color filter and manufacturing method of color filter substrate
CN108845439A (en) * 2018-06-08 2018-11-20 信利半导体有限公司 The polarizer sheet sticking and cutting integral method and equipment of liquid crystal display panel
CN113568198A (en) * 2021-07-08 2021-10-29 业成科技(成都)有限公司 Laminating method of polaroid and display thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08262384A (en) * 1995-03-18 1996-10-11 New Oji Paper Co Ltd Optically anisotropic sheet supplying device
JP3616866B2 (en) * 1997-09-19 2005-02-02 住友化学株式会社 Manufacturing method of optical film bonded substrate
JP2003107452A (en) * 2001-09-17 2003-04-09 Internatl Business Mach Corp <Ibm> Method of manufacturing liquid crystal display panel, method of manufacturing liquid crystal display device, and device for manufacturing the liquid crystal display device
JP4342851B2 (en) * 2002-07-04 2009-10-14 富士フイルム株式会社 Polarizing plate bonding method and apparatus
JP4376558B2 (en) * 2002-07-04 2009-12-02 富士フイルム株式会社 Polarizing plate bonding method and apparatus
JP4371709B2 (en) * 2003-06-05 2009-11-25 富士フイルム株式会社 Optical film sticking apparatus and method
JP2007212690A (en) * 2006-02-08 2007-08-23 Toshiba Matsushita Display Technology Co Ltd Inspection apparatus for liquid crystal panel and its inspection method
JP5015824B2 (en) 2008-02-29 2012-08-29 日東電工株式会社 Adhesive film position detector and adhesive film sticking device
JP4855493B2 (en) * 2008-04-14 2012-01-18 日東電工株式会社 Optical display device manufacturing system and optical display device manufacturing method
JP2010113109A (en) * 2008-11-06 2010-05-20 Seiko Epson Corp Method for manufacturing electrooptical device
KR101004775B1 (en) * 2009-03-12 2011-01-04 한동희 Automatic attaching apparatus of protect film and attaching method thereof
JP5407527B2 (en) * 2009-04-28 2014-02-05 住友化学株式会社 Manufacturing method of optical display panel
JP4503693B1 (en) * 2009-10-13 2010-07-14 日東電工株式会社 Continuous roll of cut-lined optical film laminate in the form of a continuous web, its manufacturing method and manufacturing apparatus
JP4644755B1 (en) * 2010-06-10 2011-03-02 日東電工株式会社 Method for aligning film sheet and rectangular panel in display panel manufacturing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647090B (en) * 2014-07-18 2019-01-11 日商日東電工股份有限公司 Method for attaching an optical film to an optical display unit
TWI700676B (en) * 2015-06-02 2020-08-01 日商三菱化學股份有限公司 Manufacturing method of laminated body for image display device
TWI742295B (en) * 2017-09-28 2021-10-11 日商日東電工股份有限公司 Resin film pasting system for pasting on shaped panels

Also Published As

Publication number Publication date
CN103460268B (en) 2015-10-07
WO2013077348A1 (en) 2013-05-30
JP2013130868A (en) 2013-07-04
KR101493187B1 (en) 2015-02-12
JP5280581B2 (en) 2013-09-04
CN103460268A (en) 2013-12-18
TWI425260B (en) 2014-02-01
KR20130115396A (en) 2013-10-21

Similar Documents

Publication Publication Date Title
TWI425260B (en) Manufacturing system of optical component pasted material, manufacturing method and computer-readable recording medium
TWI441703B (en) Manufacturing system of optical component pasted material, manufacturing method and computer-readable recording medium
US8016965B2 (en) Information storing, readout and calculation system for use in a system for continuously manufacturing liquid-crystal display elements, and method for producing the same
JP6127707B2 (en) Optical display device production system and production method
TWI614200B (en) Production system and production method of optical display device
TW201328855A (en) Manufacturing system and manufacturing method of optical display device
TW201518811A (en) Optical member affixed body production method
JP5924726B2 (en) Manufacturing apparatus and manufacturing method of optical member bonded body
TW201522932A (en) Optical member affixed body production method
TW201512711A (en) Apparatus and method of manufacturing optical-member-attached body
JP6227279B2 (en) Manufacturing apparatus and manufacturing method of optical member bonded body
TWI599823B (en) Manufacturing system, manufacturing method and recording medium for optical member laminated body
JP5328970B2 (en) Optical display device production system and production method
TW201518812A (en) Optical member affixed body production method
WO2014185092A1 (en) Bonded optical member manufacturing system, manufacturing method, and recording medium
JP2014224912A (en) Optical display device production system, and production method
TW201516447A (en) Optical member affixed body production method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees