TW201325862A - An apparatus and a method for controlling temperature of a heating element in a thermocompression bonding process - Google Patents
An apparatus and a method for controlling temperature of a heating element in a thermocompression bonding process Download PDFInfo
- Publication number
- TW201325862A TW201325862A TW101132700A TW101132700A TW201325862A TW 201325862 A TW201325862 A TW 201325862A TW 101132700 A TW101132700 A TW 101132700A TW 101132700 A TW101132700 A TW 101132700A TW 201325862 A TW201325862 A TW 201325862A
- Authority
- TW
- Taiwan
- Prior art keywords
- temperature
- series
- heating element
- input
- controller
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/06—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B41/00—Arrangements for controlling or monitoring lamination processes; Safety arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
Landscapes
- Wire Bonding (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
本發明係關於熱壓接合中間薄膜層以連接不同材料的領域。詳言之,本發明係關於一種用於在一用於接合基板之熱壓接合製程中控制加熱元件之溫度的裝置及方法。 The present invention relates to the field of thermocompression bonding of intermediate film layers to join different materials. More particularly, the present invention relates to an apparatus and method for controlling the temperature of a heating element in a thermocompression bonding process for bonding substrates.
熱壓接合機及製程常常用以製造包括以下各者之消費型電子器件:手機、筆記型電腦、觸控板、電子機件、顯示模組、觸控式面板、液晶顯示器(LCD)面板,及其類似者。 Thermocompression bonding machines and processes are often used to manufacture consumer electronic devices including: mobile phones, notebook computers, touch panels, electronic components, display modules, touch panels, liquid crystal display (LCD) panels, And similar.
習知熱壓接合機具有加熱元件(時常稱為熱電極),該加熱元件用於施加熱及壓力以使在兩個基板中間之接合層固化以便接合該等基板,從而形成基板組合體。基板可包括偏光器薄膜材料、薄膜材料、印刷電路板材料、玻璃材料,或適合於滿足熱壓接合製程中之要求的任何材料。用於熱壓接合中之接合層材料可包括焊料材料、各向異性導電薄膜(ACF),或適用於基板之互連的任何黏性薄膜層。 Conventional thermocompression bonding machines have heating elements (often referred to as hot electrodes) for applying heat and pressure to cure the bonding layer between the two substrates to bond the substrates to form a substrate assembly. The substrate may comprise a polarizer film material, a film material, a printed circuit board material, a glass material, or any material suitable for meeting the requirements in a thermocompression bonding process. The bonding layer material used in the thermocompression bonding may include a solder material, an anisotropic conductive film (ACF), or any viscous film layer suitable for interconnection of substrates.
為了達成並獲得基板之間的最佳接合,通常推薦:用於固化接合層之溫度曲線(時常稱為「接合線溫度曲線」)係基於由接合材料供應商指定的目標接合線溫度曲線。然而,此情形因為熱壓接合製程中之熱損耗而時常在實務上難以達成。此等熱損耗可係歸因於(例如)待接合之接合層或/及基板的熱阻及熱壓接合機之零件中的熱損耗。由於接合製程期間 的熱損耗,接合層可能未按指定接合線溫度曲線固化,且此情形可導致缺陷,諸如空隙或接合的不足之黏著強度。 In order to achieve and achieve optimal bonding between the substrates, it is generally recommended that the temperature profile for curing the bonding layer (often referred to as "bonding wire temperature profile") is based on the target bonding wire temperature profile specified by the bonding material supplier. However, this situation is often difficult to achieve in practice due to heat loss in the thermocompression bonding process. Such heat loss can be attributed, for example, to the thermal resistance of the bonding layer or/and substrate to be bonded and the heat loss in the parts of the thermocompression bonding machine. Due to the bonding process The heat loss, the bonding layer may not be cured according to the specified bond wire temperature profile, and this situation may result in defects such as voids or insufficient adhesion strength of the bond.
當前,在製造使用具有接合線溫度曲線之接合層材料的諸如玻璃軟板(flex-on-glass)基板組合體之新產品之前,有必要判定用於使熱壓接合機中之熱電極加熱的輸入溫度曲線。 Currently, before manufacturing a new product such as a flex-on-glass substrate assembly using a bonding layer material having a bonding wire temperature profile, it is necessary to determine the heating of the hot electrode in the thermocompression bonding machine. Enter the temperature curve.
為了判定輸入溫度曲線,使用者時常必須量測待接合之基板組合體之接合線中的實際溫度(「接合線溫度」)。 In order to determine the input temperature profile, the user must often measure the actual temperature ("bonding wire temperature") in the bond wires of the substrate assembly to be bonded.
為了補償上文中解釋之熱損耗,操作者必須調整待施加至熱電極的輸入溫度曲線。然而,判定應調整輸入溫度曲線之量為困難的,此係因為調整量取決於操作者的經驗。圖1說明供操作者判定輸入溫度曲線的方法21。參看圖1,在用於判定熱電極溫度之第一試驗接合中,將熱電偶固定22於接合線中,且藉由基於待用於生產基板組合體的接合層之指定接合線溫度曲線(「目標溫度曲線」)的輸入溫度曲線來加熱23熱電極。通常,在第一試驗接合中,在接合線中量測24之接合線溫度曲線歸因於上文中解釋之熱損耗而低於指定接合線溫度曲線。因而,在步驟25中,若所量測接合線溫度曲線不等於目標溫度曲線,則使用者必須在步驟26中調整輸入溫度曲線並在步驟23處應用經調整之輸入溫度曲線。為了達成目標接合線溫度曲線,在接合線處進行溫度量測,且調整輸入溫度曲線,直至在接合線處達成目標溫度曲線。 To compensate for the heat loss explained above, the operator must adjust the input temperature profile to be applied to the hot electrode. However, it is difficult to determine the amount by which the input temperature profile should be adjusted, since the amount of adjustment depends on the experience of the operator. Figure 1 illustrates a method 21 for an operator to determine an input temperature profile. Referring to Figure 1, in a first test joint for determining the temperature of the hot electrode, the thermocouple is fixed 22 in the bond wire and by a specified bond wire temperature profile based on the bond layer to be used to produce the substrate assembly (" The input temperature profile of the target temperature curve ") is used to heat the 23 hot electrode. Typically, in the first trial joint, the bond line temperature profile measured in the bond line is below the specified bond line temperature profile due to the heat loss explained above. Thus, in step 25, if the measured bond line temperature profile is not equal to the target temperature profile, the user must adjust the input temperature profile in step 26 and apply the adjusted input temperature profile at step 23. To achieve the target bond line temperature profile, a temperature measurement is taken at the bond line and the input temperature profile is adjusted until a target temperature profile is reached at the bond line.
取決於操作者之經驗,一般操作者時常必須執行一系列試驗接合,之後才能在步驟27中判定用於生產中之熱電極溫度曲線。 Depending on the experience of the operator, a typical operator must often perform a series of test joints before the hot electrode temperature profile for production can be determined in step 27.
然而,上文中描述之方法21之缺點係嚴重依賴於使用者關注及使用者決策。使用者決策可受諸如使用者訓練、經驗及產品知識之因素影響。另外,與此等方法相關聯之高的使用者相依性位準通常添加顯著時間成本。在大量生產製造環境中,時間成本顯著影響產品產率。 However, the shortcomings of the method 21 described above are heavily dependent on user attention and user decision making. User decisions can be influenced by factors such as user training, experience, and product knowledge. In addition, the high user dependency levels associated with such methods typically add significant time cost. In a mass production manufacturing environment, time cost significantly affects product yield.
根據本發明之一第一態樣,提供一種在一熱壓接合製程中控制一熱壓接合機中之一加熱元件的溫度以補償熱損耗的方法,該熱壓接合製程包括將一輸入溫度曲線應用至該加熱元件以將熱施加至一待接合之基板組合體,該方法包括:a)在一控制器中接收對應於該加熱元件之一溫度的一加熱元件溫度信號;b)基於該加熱元件溫度信號及一對應於該輸入溫度曲線的輸入溫度信號而在該控制器中產生一溫度補償曲線;及c)基於該溫度補償曲線來控制輸入至該加熱元件的功率輸入;其中該輸入溫度曲線係基於該基板組合體中的一接合線的一目標溫度曲線。 According to a first aspect of the present invention, there is provided a method of controlling the temperature of a heating element in a thermocompression bonding machine to compensate for heat loss during a thermocompression bonding process, the thermocompression bonding process comprising an input temperature profile Applied to the heating element to apply heat to a substrate assembly to be joined, the method comprising: a) receiving a heating element temperature signal corresponding to a temperature of one of the heating elements in a controller; b) based on the heating a component temperature signal and an input temperature signal corresponding to the input temperature profile to generate a temperature compensation curve in the controller; and c) controlling a power input to the heating element based on the temperature compensation curve; wherein the input temperature The curve is based on a target temperature profile of a bond line in the substrate assembly.
該產生該溫度補償曲線之步驟可包括: 在該控制器中應用針對一系列時刻的第一系列接合線溫度差分值;自對應於該加熱元件之溫度資料的一系列加熱元件溫度值及在一系列時刻處的對應於該輸入溫度曲線的一系列輸入溫度值來計算一系列加熱元件溫度差分值;基於該系列加熱元件溫度差分值及一系列時刻處的該第一系列接合線溫度差分值來導出一系列溫度補償值。 The step of generating the temperature compensation curve may include: Applying a first series of bond line temperature differential values for a series of times in the controller; a series of heating element temperature values from temperature data corresponding to the heating element and corresponding to the input temperature profile at a series of times A series of input temperature values are used to calculate a series of heating element temperature differential values; a series of temperature compensation values are derived based on the series of heating element temperature differential values and the first series of bonding wire temperature differential values at a series of times.
該控制該功率輸入之步驟可包括比較該溫度補償曲線與用於將熱施加至該加熱元件的預定系列之功率設定值;基於來自該預定系列之功率設定值的一功率設定值而產生一經溫度補償之功率信號。 The step of controlling the power input can include comparing the temperature compensation curve with a predetermined series of power settings for applying heat to the heating element; generating a temperature based on a power setting from the predetermined series of power settings The compensated power signal.
根據本發明之一第二態樣,提供一種編碼於一電腦可讀記錄媒體中之程式,該程式使得一電腦執行本方法。 According to a second aspect of the present invention, there is provided a program encoded in a computer readable recording medium, the program causing a computer to execute the method.
根據本發明之一第三態樣,提供一種以一電腦可讀形式記錄一程式的電腦可讀記錄媒體,該程式使得一電腦執行本方法。 According to a third aspect of the present invention, there is provided a computer readable recording medium recording a program in a computer readable form, the program causing a computer to execute the method.
該應用該第一系列接合線溫度差分值的步驟可包括:a)在該熱壓接合機中量測一系列時刻的對應於該基板組合體之一接合線中之一溫度的一系列接合線溫度值;b)自一系列時刻處之該系列接合線溫度值及該系列輸入溫度值計算一系列接合線溫度差分值以在該熱壓接合機之一控制器中產生一接合線溫度差分曲線;c)將該接合線溫度差分曲線儲存於一記憶體器件中。 The step of applying the first series of bond wire temperature differential values may include: a) measuring a series of bond wires at a series of times corresponding to one of the bond wires of one of the substrate assemblies in the thermocompression bonding machine a temperature value; b) calculating a series of bond wire temperature differential values from the series of bond wire temperature values at the series of times and the series of input temperature values to generate a bond wire temperature differential curve in one of the thermocompression bonding machines ; c) storing the bond wire temperature differential curve in a memory device.
該記憶體器件可為該控制器的一記憶體。 The memory device can be a memory of the controller.
該方法可進一步包括:在該控制器中接收一對應於該接合線之一接合線溫度的接合線溫度信號;在該控制器中比較該接合線溫度信號與該輸入溫度信號;在該控制器中基於該接合線溫度信號與該輸入溫度信號的一比較來補償該第一系列接合線溫度差分值;及在該控制器中導出第二系列經補償接合線溫度差分值。 The method can further include: receiving, in the controller, a bond wire temperature signal corresponding to a bond wire temperature of the bond wire; comparing the bond wire temperature signal to the input temperature signal in the controller; at the controller The first series of bond wire temperature differential values are compensated based on a comparison of the bond wire temperature signal to the input temperature signal; and the second series of compensated bond wire temperature differential values are derived in the controller.
該補償該第一系列接合線溫度差分值的步驟可包括將一倍增器增益應用至該第一系列接合線溫度差分值。 The step of compensating for the first series of bond wire temperature differential values can include applying a multiplier gain to the first series of bond wire temperature differential values.
根據本發明之一第四態樣,提供一種用於在一熱壓接合製程中補償熱損耗的熱壓接合機,該熱壓接合製程包括將一輸入溫度曲線應用至一加熱元件以將熱施加至一待接合的基板組合體,該接合機包括:一第一輸入介面,其用於接收該加熱元件之一加熱元件溫度曲線;一第二輸入介面,其用於接收該待接合之基板組合體的一接合線溫度曲線;一控制器,其經組態以:a)接收對應於該加熱元件之該加熱元件溫度曲線的一加熱元件溫度信號;b)基於該加熱元件溫度信號及一對應於該輸入溫度曲線的輸入溫度信號產生一溫度補償曲線;及 c)基於該溫度補償曲線來控制輸入至該加熱元件的功率輸入。 According to a fourth aspect of the present invention, there is provided a thermocompression bonding machine for compensating for heat loss in a thermocompression bonding process, the thermocompression bonding process comprising applying an input temperature profile to a heating element to apply heat To a substrate assembly to be joined, the bonding machine includes: a first input interface for receiving a heating element temperature profile of the heating element; and a second input interface for receiving the substrate combination to be bonded a bonding wire temperature profile of the body; a controller configured to: a) receive a heating element temperature signal corresponding to the heating element temperature profile of the heating element; b) based on the heating element temperature signal and a corresponding Generating a temperature compensation curve for the input temperature signal of the input temperature profile; and c) controlling the power input to the heating element based on the temperature compensation curve.
該記憶體可為該控制器的一記憶體。 The memory can be a memory of the controller.
該接合機可進一步包括一輸入介面,該輸入介面經調適以使得該控制器能夠將該溫度差分曲線記錄於一記錄媒體上。 The bonding machine can further include an input interface adapted to enable the controller to record the temperature differential profile on a recording medium.
該接合機可進一步包括一連接至一第一類比數位轉換器的第一放大器,該第一類比數位轉換器用於將該加熱元件溫度曲線及一接合線溫度曲線中之一者轉換成一數位信號;及一連接至一第二類比數位轉換器的第二放大器,該第二類比數位轉換器用於將該加熱元件溫度曲線及一接合線溫度曲線中之一者轉換成一數位信號。 The bonding machine can further include a first amplifier coupled to a first analog-to-digital converter, the first analog-to-digital converter configured to convert one of the heating element temperature profile and a bonding line temperature profile into a digital signal; And a second amplifier coupled to a second analog-to-digital converter, the second analog-to-digital converter for converting one of the heating element temperature profile and a bond line temperature profile into a digital signal.
根據本發明之一第五態樣,提供一種用於在一熱壓接合製程中控制一熱壓接合機中之一加熱元件的溫度以補償熱損耗的裝置,該熱壓接合製程包括將一輸入溫度曲線應用至一熱電極以將熱施加至一具有一接合線的基板組合體,該裝置具有:一處理器;及一記憶體;該裝置經組態以在該處理器控制下針對一系列時刻執行儲存於該記憶體中的指令:a)在一控制器中接收對應於該加熱元件之一溫度的一加熱元件溫度信號;b)基於該加熱元件溫度信號及一對應於該輸入溫度曲線的輸入溫度信號而在該控制器中產生一溫度補償曲線;及 c)基於該溫度補償曲線來控制輸入至該加熱元件的功率輸入。 According to a fifth aspect of the present invention, there is provided a device for controlling the temperature of a heating element in a thermocompression bonding machine to compensate for heat loss in a thermocompression bonding process, the thermocompression bonding process comprising an input The temperature profile is applied to a hot electrode to apply heat to a substrate assembly having a bond line, the device having: a processor; and a memory; the device is configured to target a series of Exchanging instructions stored in the memory: a) receiving a heating element temperature signal corresponding to a temperature of one of the heating elements in a controller; b) based on the heating element temperature signal and a corresponding to the input temperature profile Input temperature signal to generate a temperature compensation curve in the controller; and c) controlling the power input to the heating element based on the temperature compensation curve.
該裝置可經組態以儲存對應於該加熱元件在該系列時刻處之該溫度的一系列輸入溫度值。 The apparatus can be configured to store a series of input temperature values corresponding to the temperature of the heating element at the series of times.
該裝置可經組態以:a)在該控制器中接收針對一系列時刻的第一系列接合線溫度差分值;b)自對應於該加熱元件之溫度資料的一系列加熱元件溫度值及一系列時刻處的對應於該輸入溫度曲線的一系列輸入溫度值來計算一系列加熱元件溫度差分值;c)基於該系列加熱元件溫度差分值及一系列時刻處的該第一系列接合線溫度差分值來導出一系列溫度補償值。 The apparatus can be configured to: a) receive a first series of bond line temperature differential values for a series of times in the controller; b) a series of heating element temperature values from a temperature profile corresponding to the heating element and a Calculating a series of heating element temperature differential values at a series of input temperature values corresponding to the input temperature profile; c) based on the series of heating element temperature differential values and the first series of bonding wire temperature differences at a series of times The value is used to derive a series of temperature compensation values.
該裝置可經組態以:a)接收一對應於該接合線之一接合線溫度的接合線溫度信號;b)比較該接合線溫度信號與該輸入溫度信號;c)基於該接合線溫度信號與該輸入溫度信號的一比較來補償該第一系列接合線溫度差分值;及d)導出第二系列經補償接合線溫度差分值。 The apparatus can be configured to: a) receive a bond wire temperature signal corresponding to a bond wire temperature of the bond wire; b) compare the bond wire temperature signal to the input temperature signal; c) based on the bond wire temperature signal Compensating for the first series of bond line temperature differential values as compared to the input temperature signal; and d) deriving the second series of compensated bond line temperature differential values.
該裝置可經組態以將一倍增器增益應用至該第一系列接合線溫度差分值以獲得該第二系列經補償接合線溫度差分值。 The apparatus can be configured to apply a multiplier gain to the first series of bond wire temperature differential values to obtain the second series of compensated bond wire temperature differential values.
該裝置可經組態以: 比較該溫度補償曲線與用於將熱施加至該加熱元件的預定系列之功率設定值;及基於來自該預定系列之功率設定值的一功率設定值而產生一經溫度補償之功率信號。 The device can be configured to: Comparing the temperature compensation curve with a predetermined series of power settings for applying heat to the heating element; and generating a temperature compensated power signal based on a power setting from the predetermined series of power settings.
在該控制器中產生該溫度補償曲線的一優點為,可在一熱壓接合製程期間在該熱壓接合機中同步化溫度控制。 An advantage of generating the temperature compensation curve in the controller is that the temperature control can be synchronized in the thermocompression bonding machine during a thermocompression bonding process.
基於該溫度補償曲線控制該功率輸入的一優點為,用於補償熱損耗的一方法可經自動化,且存在對操作者之關於如何調整待應用至該加熱元件之輸入溫度的知識之較少依賴。 One advantage of controlling the power input based on the temperature compensation curve is that a method for compensating for heat loss can be automated and there is less reliance on the operator's knowledge of how to adjust the input temperature to be applied to the heating element. .
控制該功率輸入之另一優點為,可基於經溫度補償之功率信號來控制並補償該加熱元件之溫度。 Another advantage of controlling the power input is that the temperature of the heating element can be controlled and compensated based on the temperature compensated power signal.
現將僅作為實例且參看隨附圖式來描述本發明的各種具體例。 Various specific examples of the invention will now be described by way of example only and with reference to the accompanying drawings.
圖2為可用於熱壓接合製程中之熱壓接合機30的等角視圖,該熱壓接合製程用於製造諸如觸控式面板顯示器、玻璃上撓性電路組合體或由不同基板材料組成之組合體的項目。圖2,熱壓接合機30在組裝加熱元件33之前具有熱電極組合體31(通稱為熱電極),該加熱元件33用於施加熱從而接合基板組合體。熱壓接合機30具有用於在接合製程期間支撐基板組合體的平台14。接合機30亦包括用於接收輸入溫度曲線的輸入單元32。輸入單元32可為(例如)觸控式 面板顯示器,或可包括用於接收來自操作者之輸入的指標器件。熱壓接合機30可具有用於接收對應於接合線溫度量測之第一溫度輸入的第一輸入介面,及用於接收對應於熱電極溫度量測之第二溫度輸入的第二輸入介面。基於熱電極溫度量測,熱壓接合機具有控制器35,該控制器35可執行溫度補償並基於溫度補償來控制至加熱元件33的功率輸入,以便在基板組合體之接合線中獲得目標接合線溫度。將在圖3及圖4中描述加熱元件33及控制器35的細節。 2 is an isometric view of a thermocompression bonding machine 30 that can be used in a thermocompression bonding process for fabricating, for example, a touch panel display, a glass-on-flex circuit assembly, or a different substrate material. The project of the assembly. 2, the thermocompression bonding machine 30 has a hot electrode assembly 31 (generally referred to as a hot electrode) for applying heat to bond the substrate assembly before assembling the heating element 33. The thermocompression bonding machine 30 has a platform 14 for supporting the substrate assembly during the bonding process. Bonding machine 30 also includes an input unit 32 for receiving an input temperature profile. The input unit 32 can be, for example, a touch type A panel display, or may include an indicator device for receiving input from an operator. The thermocompression bonding machine 30 can have a first input interface for receiving a first temperature input corresponding to the bond wire temperature measurement and a second input interface for receiving a second temperature input corresponding to the hot electrode temperature measurement. Based on the hot electrode temperature measurement, the thermocompression bonding machine has a controller 35 that can perform temperature compensation and control the power input to the heating element 33 based on temperature compensation to achieve target engagement in the bond wires of the substrate assembly Line temperature. Details of the heating element 33 and the controller 35 will be described in FIGS. 3 and 4.
熱壓接合機30之第一輸入介面及第二輸入介面可為或包括插座插頭、溫度讀取器連接器或其類似者,其經組態以使得控制器35能夠接收經由溫度量測器件(諸如,連接至溫度量測器具的熱電偶)量測之溫度值。在一具體例中,熱壓接合機亦可經組態以包括第三輸入介面,該第三輸入介面可偵測並接收來自諸如快閃記憶體器件、硬碟機、光碟機及其類似者之儲存媒體的程式。更進一步,控制器35可經由資料纜線讀取程式,該資料纜線可連接至執行程式所在的外部電腦。第一輸入介面及第二輸入介面可為適用於接收熱電偶輸入或其類似者的連接器。 The first input interface and the second input interface of the thermocompression bonding machine 30 can be or include a socket plug, a temperature reader connector, or the like, configured to enable the controller 35 to receive via the temperature measuring device ( The temperature value measured, for example, by a thermocouple connected to a temperature measuring instrument. In one embodiment, the thermocompression bonding machine can also be configured to include a third input interface that can detect and receive from, for example, flash memory devices, hard disk drives, optical drives, and the like. The program for storing media. Further, the controller 35 can read the program via a data cable that can be connected to an external computer where the execution program is located. The first input interface and the second input interface can be connectors suitable for receiving a thermocouple input or the like.
圖3為熱壓接合機30中之係關於加熱元件33之溫度控制的組件之示意性方塊圖。控制器35經組態以經由輸入器件32自使用者或操作者接收輸入溫度曲線45。控制器35藉由發送信號41來與諸如點火機構之點火單元34通信,以控制 加熱元件33的操作狀態及/或控制加熱元件33的溫度。須瞭解,諸如伺服馬達之一系列驅動組件可操作地連接於控制器35與加熱元件33之間,以促進加熱元件33的移動或定位。 3 is a schematic block diagram of an assembly of the thermocompression bonding machine 30 with respect to temperature control of the heating element 33. Controller 35 is configured to receive input temperature profile 45 from a user or operator via input device 32. The controller 35 communicates with the ignition unit 34, such as an ignition mechanism, by transmitting a signal 41 to control The operating state of the heating element 33 and/or the temperature of the heating element 33 are controlled. It will be appreciated that a series of drive assemblies, such as servo motors, are operatively coupled between the controller 35 and the heating element 33 to facilitate movement or positioning of the heating element 33.
另外,熱壓接合機30可包括連接至第一類比數位轉換器50(ADC 50)之第一放大器49(AMP 49),及連接至第二類比數位轉換器52(ADC 52)的第二放大器51(AMP 51)。AMP 49可放大經由第一輸入介面接收之第一溫度輸入43,且ADC 50可將經放大之溫度輸入43轉換成經由輸入端40傳遞至控制器35的數位信號53。舉例而言,若第一溫度輸入43係一系列時刻處的一系列接合線溫度量測值,則可將溫度值中之每一者轉換成一可被認為是接合線溫度曲線的信號53。類似地,第二溫度輸入44可為在一系列時刻於加熱元件33上量測的一系列溫度量測值。AMP 51可放大第二溫度輸入44以獲得被傳遞至第二類比數位轉換器52(ADC 52)的經放大之溫度輸入44。第二ADC 52將經放大之溫度輸入44轉換成可經由輸入端39傳遞至控制器35的數位信號54。數位信號54可被認為是加熱元件溫度曲線。控制器35可經組態以處理數位信號53及54以控制或調節至點火單元34的功率輸入信號41。基於來自控制器35之功率輸入信號41,點火單元34施加點火信號42以加熱熱電極33從而在接合線中獲得所要求的溫度。 Additionally, the thermo-bonding machine 30 can include a first amplifier 49 (AMP 49) coupled to a first analog-to-digital converter 50 (ADC 50) and a second amplifier coupled to a second analog-to-digital converter 52 (ADC 52). 51 (AMP 51). The AMP 49 amplifies the first temperature input 43 received via the first input interface, and the ADC 50 can convert the amplified temperature input 43 into a digital signal 53 that is communicated to the controller 35 via the input 40. For example, if the first temperature input 43 is a series of bond line temperature measurements at a series of times, each of the temperature values can be converted to a signal 53 that can be considered a bond line temperature profile. Similarly, the second temperature input 44 can be a series of temperature measurements measured on the heating element 33 at a series of times. The AMP 51 can amplify the second temperature input 44 to obtain an amplified temperature input 44 that is passed to the second analog to digital converter 52 (ADC 52). The second ADC 52 converts the amplified temperature input 44 into a digital signal 54 that can be passed to the controller 35 via the input 39. Digital signal 54 can be considered a heating element temperature profile. Controller 35 can be configured to process digital signals 53 and 54 to control or adjust power input signal 41 to firing unit 34. Based on the power input signal 41 from the controller 35, the firing unit 34 applies an ignition signal 42 to heat the hot electrode 33 to achieve the desired temperature in the bond wire.
參看圖4,控制器35可包括經組態以處理對應於接合線溫度曲線及加熱元件溫度曲線之信號的處理器55。處理器55可經組態以:對於一系列時刻,儲存對應於在該系列時刻處加熱元件之溫度的一系列輸入溫度值;儲存對應於在該系列時刻處在接合線處感測到之溫度的各別系列所感測溫度值;自該系列輸入溫度值及該系列所感測溫度值計算一系列溫度差分值;及自該系列溫度差分值導出經補償溫度曲線。 Referring to FIG. 4, controller 35 can include a processor 55 configured to process signals corresponding to bond wire temperature profiles and heating element temperature profiles. The processor 55 can be configured to: for a series of moments, store a series of input temperature values corresponding to the temperature of the heating element at the series of times; store corresponding to the temperature sensed at the bonding line at the series of times The temperature values sensed by the respective series; a series of temperature difference values are calculated from the series of input temperature values and the sensed temperature values of the series; and the compensated temperature profile is derived from the series of temperature differential values.
控制器35可具有記憶體58,該記憶體58用於儲存可由控制器35執行之程式。處理器55亦可將信號56儲存於記憶體58中,或自記憶體58擷取對應於所儲存資料的信號57。或者,控制器35可具有經調適以用於自諸如快閃記憶卡之記錄媒體讀取程式的讀取器介面電路(在圖4中未繪示)。作為實例,控制器35可為印刷電路板(PCB)組合體。儘管在圖4中自處理器55發送一信號41以執行功能,但須瞭解,處理器55可根據待由控制器執行的所要功能來發送數個信號。 The controller 35 can have a memory 58 for storing programs executable by the controller 35. The processor 55 can also store the signal 56 in the memory 58 or retrieve the signal 57 from the memory 58 corresponding to the stored data. Alternatively, controller 35 may have a reader interface circuit (not shown in FIG. 4) adapted for reading from a recording medium such as a flash memory card. As an example, controller 35 can be a printed circuit board (PCB) assembly. Although a signal 41 is sent from processor 55 to perform the function in FIG. 4, it will be appreciated that processor 55 can transmit a number of signals depending on the desired function to be performed by the controller.
圖5為基於圖2中之熱壓機30的熱壓接合機設置60之示意性方塊圖。在開始熱壓接合製程中生產基板組合體之前,將設置60用於判定待接合之基板組合體66的接合線溫度差分曲線。基板組合體66可由中間接合層、撓性電路基板67及玻璃基板68組成。或者,基板組合體66可由撓性電路基 板67及印刷電路板基板68組成。在設置60中,不包括中間接合層。可將基於接合層之指定接合線溫度曲線(「目標溫度曲線」)的輸入溫度曲線應用至加熱元件33。輸入溫度曲線61由操作者提供,且可經程式化或儲存於控制器35的記憶體中。 FIG. 5 is a schematic block diagram of a thermocompression bonding machine arrangement 60 based on the hot press 30 of FIG. The provision 60 is used to determine the bond line temperature differential curve of the substrate assembly 66 to be bonded prior to initiating the substrate assembly in the thermocompression bonding process. The substrate assembly 66 may be composed of an intermediate bonding layer, a flexible circuit substrate 67, and a glass substrate 68. Alternatively, the substrate assembly 66 may be a flexible circuit base The board 67 and the printed circuit board substrate 68 are composed. In setting 60, the intermediate bonding layer is not included. An input temperature profile based on a specified bond line temperature profile ("target temperature profile") of the bond layer can be applied to the heating element 33. The input temperature profile 61 is provided by the operator and can be programmed or stored in the memory of the controller 35.
熱電偶64固定於基板組合體66之接合線65中,以在一系列時刻處量測接合線65中的一系列接合線溫度值從而獲得所量測接合線溫度曲線。所量測接合線溫度曲線經放大並由ADC轉換成數位信號以便被控制器35經由輸入介面39接收。控制器35根據等式(等式1)自輸入溫度曲線61及接合線溫度曲線來計算一系列溫度差分值:D(x)=TTBL-TMBL,---(等式1) The thermocouple 64 is fixed in the bonding wire 65 of the substrate assembly 66 to measure a series of bonding wire temperature values in the bonding wire 65 at a series of times to obtain the measured bonding wire temperature profile. The measured bond wire temperature profile is amplified and converted by the ADC into a digital signal for receipt by controller 35 via input interface 39. The controller 35 calculates a series of temperature difference values from the input temperature curve 61 and the bonding wire temperature curve according to the equation (Equation 1): D(x)=T TBL -T MBL , --- (Equation 1)
其中D(x)為對應於一系列時刻處的一系列溫度差分值的溫度差分曲線,TTBL為一系列時刻處的一系列目標接合線溫度值,且TMBL為一系列時刻處之一系列所量測接合線溫度值。該系列目標接合線溫度值可形成目標接合線溫度曲線,且輸入溫度曲線61可係基於目標接合線溫度。下表(表1)說明自設置60獲得之一系列溫度差分值的實施例。 Where D(x) is a temperature difference curve corresponding to a series of temperature difference values at a series of times, T TBL is a series of target wire temperature values at a series of times, and T MBL is a series of time series The bond wire temperature value is measured. The series of target bond line temperature values may form a target bond line temperature profile, and the input temperature profile 61 may be based on the target bond wire temperature. The following table (Table 1) illustrates an embodiment in which one series of temperature differential values are obtained from setting 60.
以下曲線圖(曲線圖1)為基於表1中之值的溫度對時間之曲線的實施例,從而繪示一系列時刻處之所量測接合線溫度及目標接合線溫度。 The following graph (graph 1) is an example of a temperature vs. time curve based on the values in Table 1, plotting the measured bond wire temperature and target bond wire temperature at a series of times.
溫度差分曲線D(x)可儲存於控制器35中之記憶體或記憶體器件中。須瞭解,D(x)視接合層及形成基板組合體之基板而定。因此,針對D(x)之等式(等式1)可類似地應用於不同基板材料及不同接合層材料。 The temperature differential curve D(x) can be stored in a memory or memory device in the controller 35. It should be understood that D(x) depends on the bonding layer and the substrate on which the substrate assembly is formed. Therefore, the equation for D(x) (Equation 1) can be similarly applied to different substrate materials and different bonding layer materials.
藉由基於待接合之基板組合體來計算溫度差分曲線,可認 為圖7之程序使得熱壓接合機30能夠基於不同基板組合體組態及材料快速地執行自動化接合線補償。在熱壓接合機中量測接合線溫度之溫度的優點為,溫度量測程序可與熱壓接合機同步化。同步化之優點為,操作者可在單一設置中判定溫度差分曲線D(x)而不需要外部溫度量測器具。另外,接合線溫度差分曲線可儲存於記憶體器件或控制器35的記憶體中。在一情境中,操作者可設定執行熱壓接合設置程序以判定基板組合體之接合線溫度差分曲線所需的次數。舉例而言,熱壓接合機之輸入單元可經組態以允許操作者鍵入執行熱壓接合設置程序的次數。 By calculating the temperature difference curve based on the substrate assembly to be bonded, it is recognized The procedure of Figure 7 enables the thermocompression bonding machine 30 to quickly perform automated bond line compensation based on different substrate assembly configurations and materials. An advantage of measuring the temperature of the bond wire temperature in a thermocompression bonding machine is that the temperature measurement procedure can be synchronized with the thermocompression bonding machine. The advantage of synchronization is that the operator can determine the temperature differential curve D(x) in a single setting without the need for an external temperature measuring instrument. Additionally, the bond line temperature differential curve can be stored in the memory of the memory device or controller 35. In one scenario, the operator can set the number of times required to perform a thermocompression bonding setup procedure to determine the bond line temperature differential curve for the substrate assembly. For example, the input unit of the thermocompression bonding machine can be configured to allow an operator to enter the number of times the thermocompression bonding setup procedure is performed.
圖6為用於在熱壓接合製程中接合基板組合體70之熱壓接合機設置80的示意性方塊圖。基板組合體70由中間接合層71、撓性電路基板72及玻璃基板73組成。在基板組合體70之熱壓接合製程中,熱電偶84安裝至加熱元件或熱電極33,以量測在一系列時刻處之一系列加熱元件溫度值,其構成所量測加熱元件溫度曲線。熱電偶84可位於加熱元件33之中心處,使得加熱元件之溫度可為一致的。控制器35可經組態以經由第二輸入介面40接收針對一系列時刻量測的加熱元件之一系列加熱元件溫度值。在控制器35中,可根據等式(等式2)基於加熱元件溫度曲線來產生溫度補償曲線。 FIG. 6 is a schematic block diagram of a thermocompression bonding machine arrangement 80 for bonding a substrate assembly 70 in a thermocompression bonding process. The substrate assembly 70 is composed of an intermediate bonding layer 71, a flexible circuit substrate 72, and a glass substrate 73. In the thermocompression bonding process of the substrate assembly 70, a thermocouple 84 is mounted to the heating element or the hot electrode 33 to measure a series of heating element temperature values at a series of times which constitute the measured heating element temperature profile. The thermocouple 84 can be located at the center of the heating element 33 such that the temperature of the heating element can be uniform. Controller 35 can be configured to receive a series of heating element temperature values for a series of time-measured heating elements via second input interface 40. In the controller 35, a temperature compensation curve can be generated based on the heating element temperature profile according to the equation (Equation 2).
A=TTBL-TMT+D(x)---(等式2) A=T TBL -T MT +D(x)---(Equation 2)
其中對於一系列時刻而言,A為該系列時刻處之一系列溫度補償值,TTBL為該系列時刻處之一系列目標接合線溫度值,且TMT為該系列時刻處的一系列所量測加熱元件溫度值。TTBL可由使用者作為輸入溫度曲線而鍵入至控制器。下表(表2)說明依賴於設置80且基於等式2獲得之一系列溫度補償值的實施例。 For a series of moments, A is a series of temperature compensation values at the time of the series, T TBL is a series of target bonding wire temperature values at the time of the series, and T MT is a series of quantities at the time of the series. Measure the heating element temperature value. The T TBL can be typed into the controller by the user as an input temperature profile. The following table (Table 2) illustrates an embodiment that relies on setting 80 and obtains a series of temperature compensation values based on Equation 2.
基於該基於等式2產生的溫度補償曲線,控制器35可接著經組態以控制至加熱元件之功率輸入從而補償接合線的溫度曲線。在一具體例中,A之每一條件係與功率輸入相關聯,該功率輸入涉及功率設定及與點火單元相關聯的持續時間設定。持續時間設定可以毫秒為單位來進行量測,而功率設定可以伏特數或瓦特數來進行量測。具體而言,表3說明 由對應於至加熱元件之功率輸入及施加至加熱元件之功率的持續時間(時間)的一系列溫度補償曲線條件組成的查找表。溫度補償曲線條件可經導出並儲存於控制器中。 Based on the temperature compensation curve generated based on Equation 2, controller 35 can then be configured to control the power input to the heating element to compensate for the temperature profile of the bond wire. In one embodiment, each condition of A is associated with a power input that relates to a power setting and a duration setting associated with the firing unit. The duration setting can be measured in milliseconds, and the power setting can be measured in volts or watts. Specifically, Table 3 illustrates A look-up table consisting of a series of temperature compensation curve conditions corresponding to the power input to the heating element and the duration (time) of the power applied to the heating element. Temperature compensation curve conditions can be derived and stored in the controller.
藉由比較溫度補償曲線A之值與在表3中列出之一系列功率輸入,控制器35可控制至加熱元件之功率輸入,以根據功率及持續時間來使加熱元件之溫度增加或斜線上升(ramp)。較高之功率及較長之持續時間將意謂:加熱元件之溫度的斜線上升將為較高的。須瞭解,接合之品質亦可取決於材料之熱膨脹係數。在一情境中,在應用等式2以導出溫度補償值,且應用基於溫度補償值之功率輸入後,所量測接合線溫度可等於目標接合線溫度,亦即,如下之條件。 By comparing the value of the temperature compensation curve A with one of the series of power inputs listed in Table 3, the controller 35 can control the power input to the heating element to increase or ramp the temperature of the heating element based on power and duration. (ramp). Higher power and longer duration will mean that the ramp of the temperature of the heating element will be higher. It should be understood that the quality of the joint may also depend on the coefficient of thermal expansion of the material. In one scenario, after applying Equation 2 to derive the temperature compensation value and applying the power input based on the temperature compensation value, the measured bonding wire temperature may be equal to the target bonding wire temperature, that is, the following conditions.
TMBL=TTBL---(條件1) T MBL =T TBL ---(Condition 1)
然而,對於邊界條件可發生變化之暫態系統中(諸如,熱壓接合製程中)的傳熱而言,熱壓接合製程中之熱損耗並非線性的。舉例而言,當加熱元件係處於較高溫度時,存在更多熱損耗,使得熱損耗導致所量測接合線溫度低於目標接合線溫度,如在以下條件中所描述:TMBL<TTBL---(條件2) However, for heat transfer in transient systems where boundary conditions can vary, such as in a thermocompression bonding process, the heat loss in the thermocompression bonding process is non-linear. For example, when the heating element is at a higher temperature, there is more heat loss such that the heat loss causes the measured bond wire temperature to be below the target bond wire temperature, as described in the following conditions: T MBL <T TBL ---(Condition 2)
在以上條件2存在的情況下,可實施一功能以補償較高溫度下的損耗。在一具體例中,可修改D(x)以藉由將倍增器增益G應用至D(x)來獲得經補償之D'(x)[亦即,在此狀況下,D'(x)=G*D(x)],從而根據等式(等式3)補償熱損耗,A'=TTBL-TMT+G*D(x)---(等式3),其中A'為溫度補償曲線,且G為倍增器增益。 In the case where the above condition 2 exists, a function can be implemented to compensate for the loss at a higher temperature. In a specific example, D(x) may be modified to obtain compensated D'(x) by applying multiplier gain G to D(x) [ie, in this case, D'(x) =G * D(x)], thereby compensating for heat loss according to the equation (Equation 3), A'=T TBL -T MT +G * D(x)---(Equation 3), where A' is Temperature compensation curve, and G is the multiplier gain.
可基於反覆(亦即,對熱壓接合機進行試驗接合測試)來獲得G。為了在熱壓接合製程中使接合線溫度最佳化,較佳條件係如下:G=1.2---(條件3) G can be obtained based on the reversal (i.e., the test bonding test on the thermocompression bonding machine). In order to optimize the bonding wire temperature in the thermocompression bonding process, the preferred conditions are as follows: G = 1.2 - (- condition 3)
更進一步,在一具體例中,可修改D(x)以藉由調整TTBL並重複基於圖5中之設置60判定接合線溫度差分曲線的程序來獲得經補償D'(x)。 Still further, in a specific example, D(x) may be modified to obtain compensated D'(x) by adjusting T TBL and repeating the procedure for determining the bond line temperature differential curve based on setting 60 in FIG.
圖7為由圖4C之控制器35執行的用於判定溫度差分曲線以補償熱損耗之方法90的流程圖。將參看圖5之熱壓接 合機設置來描述用於判定溫度差分曲線的流程。當在步驟91中將目標溫度曲線應用至加熱元件33時,可在步驟92中量測接合線溫度之溫度,並記錄於控制器35的記憶體中。在步驟93中,可由控制器35基於目標溫度曲線及所量測接合線溫度曲線來計算溫度差分曲線。在步驟94中,溫度差分曲線可儲存於記憶體器件中。記憶體器件可為控制器35中之記憶體,或諸如快閃記憶卡的可記錄媒體。 7 is a flow diagram of a method 90 performed by controller 35 of FIG. 4C for determining a temperature differential curve to compensate for heat loss. Will refer to the thermal crimping of Figure 5 The setup is used to describe the flow for determining the temperature differential curve. When the target temperature profile is applied to the heating element 33 in step 91, the temperature of the bonding wire temperature can be measured in step 92 and recorded in the memory of the controller 35. In step 93, the temperature difference curve can be calculated by controller 35 based on the target temperature profile and the measured bond line temperature profile. In step 94, the temperature differential curve can be stored in the memory device. The memory device can be a memory in the controller 35, or a recordable medium such as a flash memory card.
圖8為用於在熱壓接合製程中補償熱損耗之方法100的流程圖。在步驟101中,將目標溫度曲線應用至加熱元件33。在步驟102中,可量測加熱元件33之溫度並記錄於控制器35的記憶體中。在步驟103中,可使用上文所描述之等式2來計算溫度補償曲線A,且在步驟104中控制器35可使用溫度補償曲線A以控制至加熱元件33的功率輸入從而補償熱損耗。在一情境中,可量測基板組合體之接合線溫度以判定接合線溫度是否等於在基板組合體中達成最佳接合品質所需要的目標接合線溫度。 FIG. 8 is a flow diagram of a method 100 for compensating for heat loss during a thermocompression bonding process. In step 101, a target temperature profile is applied to the heating element 33. In step 102, the temperature of the heating element 33 can be measured and recorded in the memory of the controller 35. In step 103, temperature compensation curve A can be calculated using Equation 2 described above, and controller 35 can use temperature compensation curve A to control the power input to heating element 33 to compensate for heat loss in step 104. In one scenario, the bond wire temperature of the substrate assembly can be measured to determine if the bond wire temperature is equal to the target bond wire temperature required to achieve optimum bond quality in the substrate assembly.
圖9為用於在熱壓接合製程中補償熱損耗之另一方法200的流程圖。圖9之方法200中的步驟201、202、203在操作上類似於圖8之方法100中的步驟101、102及103。在步驟204中,控制器基於步驟203中之溫度補償值來控制至加熱元件33的功率輸入,且在步驟205中量測接合線溫度。在步驟206中,檢查所量測接合線溫度以發現是否滿足條件 1,亦即,是否滿足TMBL=TTBL。若不滿足條件1(對應於否條件),亦即,TMBL<TTBL,則在步驟208中計算經補償之接合線溫度差分曲線D'(x),並重複步驟201及202以在步驟203中獲得第二補償值A'。根據等式在步驟208中計算溫度補償值A':A'=TTBL-TMT+D(x),其中D(x)=D'(x),該D'(x)對應於根據圖7中之方法90獲得的經補償接合線溫度差分曲線。在第一生產運作時間中,將G值設定為1。然而,視所量測接合線溫度而定,可將G值調整為1.2。基於溫度補償值A',至加熱元件之功率輸入可受到控制,且當滿足條件TMBL=TTBL(亦即,對應於209中的是條件)時,程序結束。 9 is a flow chart of another method 200 for compensating for heat loss during a thermocompression bonding process. Steps 201, 202, 203 in method 200 of FIG. 9 are similar in operation to steps 101, 102, and 103 in method 100 of FIG. In step 204, the controller controls the power input to the heating element 33 based on the temperature compensation value in step 203, and measures the bonding wire temperature in step 205. In step 206, the measured bond wire temperature is checked to see if condition 1 is satisfied, that is, whether T MBL = T TBL is satisfied. If condition 1 (corresponding to no condition) is not satisfied, that is, T MBL <T TBL , then the compensated bond line temperature differential curve D'(x) is calculated in step 208, and steps 201 and 202 are repeated to be in steps A second compensation value A' is obtained in 203. Calculating the temperature compensation value A' according to the equation in step 208: A'=T TBL -T MT +D(x), where D(x)=D'(x), the D'(x) corresponding to the map The compensated bond line temperature differential curve obtained by method 90 of 7. In the first production operation time, the G value is set to 1. However, depending on the measured bonding wire temperature, the G value can be adjusted to 1.2. Based on the temperature compensation value A', the power input to the heating element can be controlled, and when the condition T MBL = T TBL is satisfied (ie, corresponding to the condition in 209), the routine ends.
圖10A為繪示判定經補償接合線溫度差分曲線D'(x)之另一方法210的流程圖。在步驟211中,將第二輸入溫度曲線T'(x)應用至加熱元件。根據以下等式計算T'(x):T'(x)=TTBL+D(x),其中D(x)對應於根據圖7中之方法90獲得的溫度差分曲線。類似於方法90之步驟92,在步驟212中,量測接合線溫度T'MBL,並將其記錄於控制器35的記憶體中。在步驟213中,控制器35可基於第二輸入溫度曲線及所量測接合線溫度曲線來計算經補償溫度差分曲線D'(x)。在一情境中,方法210可用於如下應用中:待接合之基板組合體由撓 性電路基板及具有諸如銅電路圖案之導電金屬電路圖案的印刷電路板組成。 FIG. 10A is a flow chart showing another method 210 of determining a compensated bond line temperature differential curve D'(x). In step 211, a second input temperature profile T'(x) is applied to the heating element. T'(x) is calculated according to the following equation: T'(x) = T TBL + D(x), where D(x) corresponds to the temperature difference curve obtained according to the method 90 in FIG. Similar to step 92 of method 90, in step 212, the bond wire temperature T'MBL is measured and recorded in the memory of controller 35. In step 213, controller 35 may calculate compensated temperature differential curve D'(x) based on the second input temperature profile and the measured bond line temperature profile. In one scenario, method 210 can be used in applications where the substrate assembly to be bonded is comprised of a flexible circuit substrate and a printed circuit board having a conductive metal circuit pattern such as a copper circuit pattern.
圖10B為繪示判定經補償接合線溫度差分曲線D'(x)之另一方法215的流程圖。類似於圖7中之方法90的步驟91,可將目標溫度曲線TTBL應用至熱電極。類似於方法90之步驟92,在步驟217中,量測接合線溫度TMBL,並將其記錄於控制器35的記憶體中。在步驟218中,控制器35可根據以下等式來計算經補償溫度差分曲線D'(x):D'(x)=G*(TTBL-TMBL),其中G為基於熱壓機而導出的倍增器增益。在第一生產運作時間中,將G值設定為1。然而,視所量測接合線溫度而定,可將G值調整為1.2。基於溫度補償值A',可控制至加熱元件之功率輸入,且當滿足條件TMBL=TTBL(亦即對應於209中的是條件)時,程序結束。在一情境中,方法215可用於待接合之基板組合體由撓性電路基板及玻璃基板組成的應用中。 FIG. 10B is a flow chart showing another method 215 of determining a compensated bond line temperature differential curve D'(x). Similar to step 91 of method 90 in Figure 7, the target temperature profile T TBL can be applied to the hot electrode. Similar to step 92 of method 90, in step 217, the bond wire temperature T MBL is measured and recorded in the memory of controller 35. In step 218, the controller 35 may calculate the compensated temperature differential curve D'(x) according to the following equation: D'(x)=G * (T TBL -T MBL ), where G is based on the hot press The derived multiplier gain. In the first production operation time, the G value is set to 1. However, depending on the measured bonding wire temperature, the G value can be adjusted to 1.2. Based on the temperature compensation value A', the power input to the heating element can be controlled, and when the condition T MBL = T TBL is satisfied (ie, corresponding to the condition in 209), the routine ends. In one scenario, method 215 can be used in applications where the substrate assembly to be bonded is comprised of a flexible circuit substrate and a glass substrate.
圖11為繪示用於基於圖8及圖9之步驟104中的溫度補償值A或A'來控制至加熱元件之功率輸入的程序400之流程圖。當在步驟401中開始對至加熱元件33之功率輸入的控制時,在步驟402中比較溫度補償值A或A'與對應於A或A'之一系列條件的一系列預定功率輸入設定。舉例而言,功率輸入設定可包括功率設定(以伏特數來量測)及點火單 元34中的點火電路的持續時間設定,且A或A'之條件可與預定之功率設定相關聯。舉例而言,參看表3,若A或A'之值小於0.1,則功率設定為1且持續時間設定為1,因此在步驟403中基於A之條件來選擇一組預定之功率輸入設定。持續時間設定可為以毫秒為單位來量測的時間設定。因而,在步驟404中,基於所選擇功率輸入設定來將功率施加至熱電極33從而將熱施加至基板組合體。 11 is a flow chart showing a routine 400 for controlling power input to a heating element based on the temperature compensation value A or A' in step 104 of FIGS. 8 and 9. When control of the power input to the heating element 33 is initiated in step 401, the temperature compensation value A or A' is compared in step 402 with a series of predetermined power input settings corresponding to a series of conditions of A or A'. For example, power input settings can include power settings (measured in volts) and ignition orders The duration of the ignition circuit in element 34 is set and the condition of A or A' can be associated with a predetermined power setting. For example, referring to Table 3, if the value of A or A' is less than 0.1, the power is set to 1 and the duration is set to 1, so a set of predetermined power input settings are selected based on the condition of A in step 403. The duration setting can be a time setting measured in milliseconds. Thus, in step 404, power is applied to the hot electrode 33 based on the selected power input setting to apply heat to the substrate assembly.
上述溫度補償方法之優點為,可基於同一基板組合體針對每一類型之產品的熱壓接合執行一次性設置。須理解,為了將加熱元件加熱至所要溫度以補償接合線中的熱損耗,可相應地組態點火單元或點火電路。舉例而言,溫度曲線中之點的數目可發生變化,諸如溫度接近設定溫度,點火之持續時間將為較小的。當持續時間較小時,點火頻率可能較大。因而,點之數目在整個溫度曲線中發生變化。須瞭解,上述方法可用於熟習熱壓接合領域者已知的標準點火單元中。舉例而言,點火單元可包括高電流或高電壓器件,該高電流或高電壓器件可操作地耦接至點火繼電器電路,該點火繼電器電路用於由控制器控制高電流器件。點火繼電器電路可包括用於開關高電流器件的器件,諸如電力繼電器開關、半導體開關或其類似者。高電流器件可為可用以基於溫度補償曲線使接合線溫度達到目標接合線溫度的不同瓦特數(功率大小)之加熱器匣或變壓器(具有不同額定值)。可快速地使每一新 基板組合體之溫度補償循環最佳化。 An advantage of the above temperature compensation method is that a one-time setting can be performed for the thermocompression bonding of each type of product based on the same substrate assembly. It will be appreciated that in order to heat the heating element to the desired temperature to compensate for heat loss in the bond wire, the ignition unit or ignition circuit can be configured accordingly. For example, the number of points in the temperature profile can vary, such as the temperature approaching the set temperature, and the duration of the ignition will be small. When the duration is small, the ignition frequency may be large. Thus, the number of points changes throughout the temperature profile. It should be understood that the above method can be used in standard ignition units known to those skilled in the art of thermocompression bonding. For example, the firing unit can include a high current or high voltage device operatively coupled to an ignition relay circuit for controlling the high current device by the controller. The ignition relay circuit can include a device for switching a high current device, such as a power relay switch, a semiconductor switch, or the like. The high current device can be a heater or transformer (having a different rating) that can be used to achieve a different wattage (power level) of the bond wire temperature to the target bond wire temperature based on the temperature compensation curve. Can make every new quickly The temperature compensation cycle of the substrate assembly is optimized.
根據具體例之上述方法的優點為,接合製程之溫度補償較少地取決於操作者之技藝,此係因為操作者不需要調整輸入溫度以便補償熱壓接合製程中基板組合體之接合線中的熱損耗。 An advantage of the above method according to a specific example is that the temperature compensation of the bonding process is less dependent on the skill of the operator, since the operator does not need to adjust the input temperature in order to compensate for the bonding line in the substrate assembly in the thermocompression bonding process. Heat loss.
雖然已參看具體具體例特定地繪示並描述了本發明之具體例,但熟習本技藝者應理解,在不偏離本發明的如由附加申請專利範圍所界定之精神及範疇的情況下,可在其中進行形式及細節的各種改變。本發明之範疇因此由附加申請專利範圍來指示,且因此希望涵蓋屬於申請專利範圍之等效含義及範圍內的所有改變。 Although the specific examples of the present invention have been particularly shown and described with reference to the specific embodiments, it is understood by those skilled in the art Various changes in form and detail are made therein. The scope of the invention is therefore indicated by the scope of the appended claims.
14‧‧‧平台 14‧‧‧ platform
21‧‧‧供操作者判定輸入溫度曲線的方法 21‧‧‧Method for the operator to determine the input temperature curve
30‧‧‧熱壓接合機 30‧‧‧Hot press bonding machine
31‧‧‧熱電極組合體 31‧‧‧Thermal electrode assembly
32‧‧‧輸入單元/輸入器件 32‧‧‧Input unit/input device
33‧‧‧加熱元件 33‧‧‧ heating elements
34‧‧‧點火單元 34‧‧‧Ignition unit
35‧‧‧控制器 35‧‧‧ Controller
39‧‧‧輸入端 39‧‧‧ input
40‧‧‧輸入端/第二輸入介面 40‧‧‧Input/second input interface
41‧‧‧信號/功率輸入信號 41‧‧‧Signal/power input signal
42‧‧‧點火信號 42‧‧‧Ignition signal
43‧‧‧第一溫度輸入/經放大之溫度輸入 43‧‧‧First temperature input / amplified temperature input
44‧‧‧第二溫度輸入/經放大之溫度輸入 44‧‧‧Second temperature input/amplified temperature input
45‧‧‧輸入溫度曲線 45‧‧‧Input temperature curve
49‧‧‧第一放大器/AMP 49‧‧‧First Amplifier/AMP
50‧‧‧第一類比數位轉換器/ADC 50‧‧‧First analog-to-digital converter/ADC
51‧‧‧第二放大器/AMP 51‧‧‧Second amplifier/AMP
52‧‧‧第二類比數位轉換器/ADC 52‧‧‧Second analog-to-digital converter/ADC
53‧‧‧數位信號 53‧‧‧ digital signal
54‧‧‧數位信號 54‧‧‧ digital signal
55‧‧‧處理器 55‧‧‧Processor
56‧‧‧信號 56‧‧‧ signal
57‧‧‧信號 57‧‧‧ signal
58‧‧‧記憶體 58‧‧‧ memory
60‧‧‧熱壓接合機設置 60‧‧‧ thermocompression bonding machine settings
61‧‧‧輸入溫度曲線 61‧‧‧ Input temperature curve
64‧‧‧熱電偶 64‧‧‧ thermocouple
65‧‧‧接合線 65‧‧‧bonding line
66‧‧‧基板組合體 66‧‧‧Substrate assembly
67‧‧‧撓性電路基板 67‧‧‧Flexible circuit substrate
68‧‧‧玻璃基板 68‧‧‧ glass substrate
70‧‧‧基板組合體 70‧‧‧Substrate assembly
71‧‧‧中間接合層 71‧‧‧Intermediate bonding layer
72‧‧‧撓性電路基板 72‧‧‧Flexible circuit substrate
73‧‧‧玻璃基板 73‧‧‧ glass substrate
80‧‧‧熱壓接合機設置 80‧‧‧ thermocompression bonding machine settings
84‧‧‧熱電偶 84‧‧‧ thermocouple
90‧‧‧用於判定溫度差分曲線以補償熱損耗之方法 90‧‧‧Method for determining the temperature difference curve to compensate for heat loss
100‧‧‧用於在熱壓接合製程中補償熱損耗之方法 100‧‧‧Methods for compensating for heat loss in a thermocompression bonding process
200‧‧‧用於在熱壓接合製程中補償熱損耗之另一方法 200‧‧‧Another method for compensating for heat loss in a thermocompression bonding process
210‧‧‧判定經補償接合線溫度差分曲線D'(x)之另一方法 210‧‧‧Another method for determining the compensated bond line temperature differential curve D'(x)
215‧‧‧判定經補償接合線溫度差分曲線D'(x)之另一方法 215‧‧‧An alternative method for determining the compensated bond line temperature differential curve D'(x)
400‧‧‧控制至加熱元件之功率輸入的程序 400‧‧‧Procedure for controlling the power input to the heating element
圖1為用於判定待應用至熱壓機中之加熱元件的輸入溫度曲線之已知程序的流程圖;圖2為根據一具體例之熱壓接合機的等角視圖;圖3為熱壓接合機中之組件的示意性方塊圖;圖4為熱壓接合機中之控制器的示意性方塊圖;圖5為熱壓接合機設置的示意性方塊圖;圖6為用於熱壓接合製程之熱壓接合機設置的示意性方塊圖;圖7為用於判定溫度差分曲線之方法的流程圖;圖8為在熱壓接合製程中控制加熱元件之溫度以補償熱 損耗之方法的流程圖;圖9為在熱壓接合製程中控制加熱元件之溫度以補償熱損耗之方法的流程圖;圖10A為根據一具體例之判定經補償接合線溫度差分曲線之方法的流程圖;圖10B為判定經補償接合線溫度差分曲線之方法的流程圖;及圖11為用於基於溫度補償曲線控制至加熱元件之功率輸入的方法之流程圖。 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a known procedure for determining an input temperature profile of a heating element to be applied to a hot press; Fig. 2 is an isometric view of a thermocompression bonding machine according to a specific example; Figure 4 is a schematic block diagram of a controller in a thermocompression bonding machine; Figure 5 is a schematic block diagram of a thermocompression bonding machine; Figure 6 is a thermocompression bonding Schematic block diagram of the process of thermocompression bonding machine setup; Figure 7 is a flow chart of a method for determining a temperature differential curve; Figure 8 is a temperature control of the heating element during the thermocompression bonding process to compensate for heat FIG. 9 is a flow chart of a method for controlling the temperature of a heating element to compensate for heat loss in a thermocompression bonding process; FIG. 10A is a method for determining a compensated bonding line temperature differential curve according to a specific example; Flowchart; FIG. 10B is a flow chart of a method of determining a compensated bond line temperature differential curve; and FIG. 11 is a flow chart of a method for controlling power input to a heating element based on a temperature compensation curve.
100‧‧‧用於在熱壓接合製程中補償熱損耗之方法 100‧‧‧Methods for compensating for heat loss in a thermocompression bonding process
Claims (21)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG2011065141A SG188677A1 (en) | 2011-09-09 | 2011-09-09 | An apparatus and a method for controlling temperature of a heating element in a thermocompression bonding process |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201325862A true TW201325862A (en) | 2013-07-01 |
Family
ID=47832452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101132700A TW201325862A (en) | 2011-09-09 | 2012-09-07 | An apparatus and a method for controlling temperature of a heating element in a thermocompression bonding process |
Country Status (5)
Country | Link |
---|---|
KR (1) | KR20140091673A (en) |
CN (1) | CN103782378A (en) |
SG (1) | SG188677A1 (en) |
TW (1) | TW201325862A (en) |
WO (1) | WO2013036206A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3813099B1 (en) * | 2016-06-15 | 2022-08-03 | Watlow Electric Manufacturing Company | Power converter for a thermal system |
CN117112981B (en) * | 2023-10-23 | 2024-01-09 | 北京华力兴科技发展有限责任公司 | Optimal acquisition method for steel plate thickness measurement data |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3282559B2 (en) * | 1997-10-09 | 2002-05-13 | 松下電器産業株式会社 | Heater temperature control device and heater temperature control method in thermocompression bonding device for work |
JP3324468B2 (en) * | 1997-10-09 | 2002-09-17 | 松下電器産業株式会社 | Thermocompression device and thermocompression method for work |
JP3497356B2 (en) * | 1997-10-13 | 2004-02-16 | 松下電器産業株式会社 | Thermo-compression device and thermo-compression method for work |
JP3365275B2 (en) * | 1997-10-15 | 2003-01-08 | 松下電器産業株式会社 | Work thermocompression bonding |
JP4153342B2 (en) * | 2003-03-27 | 2008-09-24 | 日本サーボ株式会社 | Double-sided laminator device |
CN102009498B (en) * | 2010-11-01 | 2012-05-30 | 杭州珂瑞特机械制造有限公司 | Insert type hot-press welding equipment and hot-press welding method |
-
2011
- 2011-09-09 SG SG2011065141A patent/SG188677A1/en unknown
-
2012
- 2012-09-07 KR KR1020147009314A patent/KR20140091673A/en not_active Application Discontinuation
- 2012-09-07 TW TW101132700A patent/TW201325862A/en unknown
- 2012-09-07 CN CN201280043984.0A patent/CN103782378A/en active Pending
- 2012-09-07 WO PCT/SG2012/000326 patent/WO2013036206A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
KR20140091673A (en) | 2014-07-22 |
WO2013036206A1 (en) | 2013-03-14 |
SG188677A1 (en) | 2013-04-30 |
CN103782378A (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101976103B1 (en) | Thermocompression bonding apparatus | |
US10959339B2 (en) | Manufacturing a product using a soldering process | |
TW201325862A (en) | An apparatus and a method for controlling temperature of a heating element in a thermocompression bonding process | |
JP6682895B2 (en) | Inspection jig, inspection jig set, and board inspection device | |
WO2014101705A1 (en) | Temperature control method for reflow soldering machine | |
JP6188117B2 (en) | System and method used to determine the thickness of a layer of interest in a multilayer structure | |
WO2009090808A1 (en) | Reduced-pressure heater, its heating method, and electronic product manufacturing method | |
CN104160793A (en) | Soldering method and corresponding soldering device | |
TWI705120B (en) | Method for setting heating conditions of semiconductor wafer during bonding, method for measuring viscosity of non-conductive film, and bonding device | |
KR101659671B1 (en) | Rework system | |
CN105873424A (en) | Assembling system and method for mobile terminal equipment | |
CN104096667A (en) | Rubber drying equipment | |
TW200416756A (en) | Testing method for electronic part and testing device | |
JP6758201B2 (en) | Inspection jig and semiconductor device inspection method | |
Esfandyari et al. | Energy efficiency analysis of vapor phase soldering technology through exergy-based metric | |
CN104731128A (en) | Measuring device with temperature control function | |
US20150226487A1 (en) | Substrate heating device and method | |
SE1100923A1 (en) | Simplified and more robust method for determining process parameters suitable for flexible jointing of high voltage power cables | |
US9757932B2 (en) | Device for hardening an electrically conductive adhesive | |
Ha et al. | Versatile temperature control system for strain gage curing | |
JP2011121355A (en) | Lamination method and lamination device | |
WO2016046937A1 (en) | Surface temperature sensor calibration device | |
CN105158038A (en) | Method for temperature rise of sample before dynamic loading process | |
JP2008244250A (en) | Electronic component compression bonding method | |
TW202121623A (en) | Inspection assembly and method for inspectiing laminated conductive product |