TW201322334A - Method for forming air gap interconnection structure - Google Patents
Method for forming air gap interconnection structure Download PDFInfo
- Publication number
- TW201322334A TW201322334A TW101102572A TW101102572A TW201322334A TW 201322334 A TW201322334 A TW 201322334A TW 101102572 A TW101102572 A TW 101102572A TW 101102572 A TW101102572 A TW 101102572A TW 201322334 A TW201322334 A TW 201322334A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- dielectric layer
- forming
- air gap
- structure according
- Prior art date
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
本發明係關於半導體積體電路之製造方法,尤其關於一種用以降低半導體積體電路中之電容值的空氣隙互聯結構之形成方法。The present invention relates to a method of fabricating a semiconductor integrated circuit, and more particularly to a method of forming an air gap interconnect structure for reducing a capacitance value in a semiconductor integrated circuit.
按,隨著半導體工業之發展,極大型積體電路(VLSI)以及超大型積體電路(ULSI)已經被廣泛應用。相比以往之積體電路,極大型積體電路和超大型積體電路具有更複雜之多層結構,更小之特徵尺寸。眾所周知,在阻容電路中,電路電阻和電路電容決定了電路之阻容遲滯(RC delay),以及電路之能量消耗(E=CV2f)。所以積體電路之電阻值和電容值直接決定了積體電路之性能,尤其是超微細特徵尺寸積體電路。現有極大和超大型積體電路之性能發展受限於電路中之阻容遲滯和能量消耗。為了降低電路中之阻容遲滯和能量消耗,銅(Cu)由於其更高之電導率,已經逐步取代了鋁(Al)來構成積體電路中之金屬結構,低介電常數材料(low-k material,k<2.5),例如aromatic,hydrocarbon thermosetting polymer(SILK),也被用來代替傳統之介質材料如SiO2(k>4.0)。According to the development of the semiconductor industry, very large integrated circuits (VLSI) and ultra large integrated circuits (ULSI) have been widely used. Compared with the conventional integrated circuit, the maximal integrated circuit and the ultra-large integrated circuit have a more complicated multi-layer structure and a smaller feature size. It is well known that in a RC circuit, the circuit resistance and circuit capacitance determine the RC delay of the circuit and the energy consumption of the circuit (E = CV2 f ). Therefore, the resistance value and capacitance value of the integrated circuit directly determine the performance of the integrated circuit, especially the ultra-fine feature size integrated circuit. The performance development of existing very large and very large integrated circuits is limited by the resistance delay and energy consumption in the circuit. In order to reduce the RC hysteresis and energy consumption in the circuit, copper (Cu) has gradually replaced aluminum (Al) to form the metal structure in the integrated circuit due to its higher conductivity, low dielectric constant material (low- k material, k < 2.5), such as aromatic, hydrocarbon thermosetting polymer (SILK), is also used to replace traditional dielectric materials such as SiO2 (k>4.0).
但是由於low-k介質材料之機械強度很弱,相對于銅之楊氏模量差異巨大,且銅互聯結構之機械強度與其線寬成正比(如第一圖所示),當使用化學機械平坦化(CMP)工藝對多餘之銅結構進行平坦化至阻擋層時,其下壓力會破壞low-k介質材料之介質層結構,造成銅線短路或者斷路,使積體電路失效,low-k介質材料之機械性能缺陷阻礙了其在積體電路中之廣泛使用。However, due to the weak mechanical strength of the low-k dielectric material, the Young's modulus is quite different from that of copper, and the mechanical strength of the copper interconnect structure is proportional to its line width (as shown in the first figure) when using chemical mechanical flatness. When the (CMP) process planarizes the excess copper structure to the barrier layer, the downforce will destroy the dielectric layer structure of the low-k dielectric material, causing the copper wire to be short-circuited or broken, causing the integrated circuit to fail, low-k medium. Defects in the mechanical properties of materials hinder their widespread use in integrated circuits.
為了克服low-k介質材料存在之缺陷,空氣隙(air-gap)互聯技術被引入積體電路互聯結構中。空氣隙技術,準確而言空氣隙內的空間是沒有空氣的真空,因為普通之空氣必然包含濕氣,可能會導致周圍銅導線的腐蝕和退化。空氣隙技術恰好能在不改變現有介質層材料,不改變現有工藝技術和設備之前提下,利用真空介電常數為1之特性,來顯著降低介質層之介電常數,間接的達到了low-k介質材料之功能,含有空氣隙的介質層結構可以被認為是含有多孔結構的介電質材料結構。但是目前的空氣隙技術如美國專利號為US 7,501,347、US 7,629,268和US 7,361,991等所公開的,只能應用於特徵尺寸為90nm以上的積體電路中,當積體電路之特徵尺寸降低時,傳統的大馬士革工藝(damascene process)也面臨著對銅互聯結構平坦化時機械應力對銅互聯結構造成損傷之技術瓶頸,如何突破平坦化工藝中的應力損傷瓶頸成為形成空氣隙技術之關鍵。In order to overcome the shortcomings of low-k dielectric materials, air-gap interconnect technology has been introduced into integrated circuit interconnect structures. Air gap technology, precisely the space inside the air gap is a vacuum without air, because ordinary air must contain moisture, which may cause corrosion and degradation of the surrounding copper wire. The air gap technology can precisely reduce the dielectric constant of the dielectric layer by indirectly changing the dielectric constant of the dielectric layer without changing the existing dielectric layer material without changing the existing process technology and equipment, and indirectly achieves low- The function of the k dielectric material, the dielectric layer structure containing the air gap can be considered as a dielectric material structure containing a porous structure. However, the current air gap technology, as disclosed in U.S. Patent Nos. 7,501,347, US 7,629,268, and US 7,361,991, can only be applied to an integrated circuit having a feature size of 90 nm or more. When the feature size of the integrated circuit is reduced, the conventional The damascene process also faces the technical bottleneck of mechanical stress on the copper interconnect structure when the copper interconnect structure is flattened. How to break through the stress damage bottleneck in the planarization process becomes the key to form the air gap technology.
為了解決化學機械平坦化工藝中的機械應力對介質層結構的破壞,在現有空氣隙的形成工藝中,通常會在犧牲層上澱積一層硬遮擋膜用來保護犧牲層材料,利用硬遮擋膜具有很高之機械強度來抵抗化學機械平坦化工藝帶來的機械應力,隨後硬遮擋膜被去除。此種工藝增加了空氣隙之形成步驟,使得空氣隙之形成工藝變得複雜。In order to solve the damage of the dielectric layer structure caused by the mechanical stress in the chemical mechanical planarization process, in the formation process of the existing air gap, a hard shielding film is usually deposited on the sacrificial layer to protect the sacrificial layer material, and the hard shielding film is utilized. It has a high mechanical strength to withstand the mechanical stresses caused by the chemical mechanical planarization process, and then the hard mask film is removed. This process increases the step of forming the air gap, complicating the formation process of the air gap.
同時,為了避免化學機械平坦化工藝對銅線造成潛在之傷害,一部分介質材料會被保留下來以保護銅線之兩翼。因此導致空氣隙無法在狹窄的銅線間距區域內形成,或者只能在狹窄的銅線間距區域內形成體積較小之空氣隙。基於此原因,現有之空氣隙互聯結構形成工藝無法運用在極小特徵尺寸的積體電路中,然而積體電路之特徵尺寸越小,介電常數對電路之電學性能影響越為顯著,例如互聯結構中最下層的第一金屬互聯結構,因此,該技術難題需要迫切解決。At the same time, in order to avoid potential damage to the copper wire caused by the chemical mechanical planarization process, a portion of the dielectric material is retained to protect the two wings of the copper wire. As a result, the air gap cannot be formed in the narrow copper line spacing region, or a small volume air gap can be formed only in the narrow copper line spacing region. For this reason, the existing air gap interconnect structure forming process cannot be applied to an integrated circuit of extremely small feature size. However, the smaller the feature size of the integrated circuit, the more significant the influence of the dielectric constant on the electrical performance of the circuit, such as the interconnect structure. The first metal interconnect structure in the lowermost layer, therefore, this technical problem needs to be urgently solved.
本發明之目的係針對上述習知技術之不足,而提供一種可以在具有超微細特徵尺寸結構之半導體積體電路中形成空氣隙互聯結構的方法。SUMMARY OF THE INVENTION The object of the present invention is to provide a method of forming an air gap interconnect structure in a semiconductor integrated circuit having an ultrafine feature size structure in view of the above-described deficiencies of the prior art.
為達成上述目的,本發明所提供之空氣隙互聯結構的形成方法,包括如下步驟:在半導體積體電路之基底層上澱積第一介質層;在第一介質層上澱積第二介質層;在第二介質層上形成溝槽,相鄰兩溝槽由第二介質層隔離開;在第二介質層之表面和溝槽內依次澱積阻擋層和主導電層;對主導電層進行表面平坦化,並保留一定厚度之主導電層;採用無應力拋光工藝去除除溝槽內的主導電層以外的所有主導電層;採用無應力去除阻擋層工藝去除裸露於溝槽外的所有阻擋層;去除第二介質層,在相鄰兩溝槽之間形成一凹槽;在凹槽壁和裸露的主導電層及阻擋層上澱積第三介質層;在第三介質層和凹槽內澱積第四介質層,空氣隙被形成於凹槽內。To achieve the above object, a method for forming an air gap interconnection structure according to the present invention includes the steps of: depositing a first dielectric layer on a base layer of a semiconductor integrated circuit; and depositing a second dielectric layer on the first dielectric layer Forming a trench on the second dielectric layer, the adjacent two trenches being separated by the second dielectric layer; sequentially depositing a barrier layer and a main conductive layer on the surface of the second dielectric layer and the trench; performing the main conductive layer The surface is flattened, and a main conductive layer of a certain thickness is retained; all main conductive layers except the main conductive layer in the trench are removed by a stress-free polishing process; and all barriers exposed outside the trench are removed by a stress-free removal barrier process a layer; a second dielectric layer is removed, a recess is formed between adjacent trenches; a third dielectric layer is deposited on the trench walls and the exposed main conductive layer and the barrier layer; and the third dielectric layer and the recess are formed A fourth dielectric layer is deposited therein, and an air gap is formed in the recess.
較佳者,其中所述第一介質層可以由SiCN、SiC、SiN和SiOC之一或者它們的混合物構成。Preferably, the first dielectric layer may be composed of one of SiCN, SiC, SiN and SiOC or a mixture thereof.
較佳者,其中所述第二介質層可以由超低K介質材料或者低K介質材料或者介質材料構成。Preferably, the second dielectric layer may be composed of an ultra-low K dielectric material or a low-k dielectric material or a dielectric material.
較佳者,其中所述介質材料可以是有機材料。Preferably, the dielectric material may be an organic material.
較佳者,其中所述有機材料可以是SiLK。Preferably, the organic material may be SiLK.
較佳者,其中所述阻擋層可以由鉭、氮化鉭、鈦、氮化鈦之一或者它們的混合物構成。Preferably, the barrier layer may be composed of one of tantalum, tantalum nitride, titanium, titanium nitride or a mixture thereof.
較佳者,其中所述阻擋層是採用濺射工藝被澱積在第二介質層之表面和溝槽內壁上。Preferably, the barrier layer is deposited on the surface of the second dielectric layer and the inner wall of the trench by a sputtering process.
較佳者,其中所述主導電層是由銅構成。Preferably, wherein the main conductive layer is composed of copper.
較佳者,在其中所述阻擋層上採用化學氣相澱積法澱積一層薄種子層,再採用電化學鍍銅工藝將銅層澱積在所述薄種子層上及溝槽內。Preferably, a thin seed layer is deposited on the barrier layer by chemical vapor deposition, and a copper layer is deposited on the thin seed layer and in the trench by an electrochemical copper plating process.
較佳者,其中所述採用低下壓力的化學機械拋光平坦化工藝對主導電層進行表面平坦化,並保留100nm至200nm厚度的主導電層。Preferably, the chemical mechanical polishing planarization process using a low downforce planarizes the surface of the main conductive layer and retains the main conductive layer having a thickness of 100 nm to 200 nm.
較佳者,其中所述採用XeF2氣相蝕刻工藝去除裸露於溝槽外的所有阻擋層。Preferably, wherein the XeF2 vapor phase etching process is used to remove all barrier layers exposed outside the trench.
較佳者,其中所述採用等離子蝕刻工藝去除第二介質層以形成所述凹槽,所述第一介質層作為蝕刻停止層。Preferably, wherein the second dielectric layer is removed by a plasma etching process to form the recess, and the first dielectric layer serves as an etch stop layer.
較佳者,其中所述凹槽之特徵尺寸在10nm至250nm之間。Preferably, wherein the groove has a feature size between 10 nm and 250 nm.
較佳者,其中所述第三介質層可以由SiCN、SiC、SiN、SiOC之一或者它們的混合物構成。Preferably, the third dielectric layer may be composed of one of SiCN, SiC, SiN, SiOC or a mixture thereof.
較佳者,其中所述採用非共形化學氣相澱積工藝澱積第四介質層。Preferably, the fourth dielectric layer is deposited by a non-conformal chemical vapor deposition process.
較佳者,其中所述第四介質層可以由SiOF、SiOC之一或者它們的混合物構成。Preferably, the fourth dielectric layer may be composed of one of SiOF, SiOC or a mixture thereof.
如上所述,本發明空氣隙互聯結構的形成方法透過採用無應力拋光去除多餘之主導電層和無應力去除多餘之阻擋層,由於均無機械應力產生,因而不會對半導體積體電路尤其是半導體積體電路中剩餘之主導電層、阻擋層和介質層造成任何損傷,因此,所述空氣隙互聯結構可以形成於具有超微細特徵尺寸結構的半導體積體電路中,例如特徵尺寸小於65nm及以下的半導體積體電路中。透過形成相對較大之所述空氣隙,進一步降低半導體積體電路中介質層之介電常數,進而降低半導體積體電路中的電容值,以提高半導體積體電路之性能。相對于現有工藝而言,本發明工藝簡單,不需要開發新材料,而且透過澱積第四介質層,使得半導體積體電路之整體結構具有很好的機械強度,可以承受後續封裝之壓力。As described above, the method for forming the air gap interconnection structure of the present invention removes the excess main conductive layer by using stress-free polishing and removes the excess barrier layer without stress, since no mechanical stress is generated, and thus the semiconductor integrated circuit is not particularly The main conductive layer, the barrier layer and the dielectric layer remaining in the semiconductor integrated circuit cause any damage, and therefore, the air gap interconnection structure can be formed in a semiconductor integrated circuit having an ultrafine feature size structure, for example, a feature size of less than 65 nm and In the following semiconductor integrated circuits. By forming a relatively large air gap, the dielectric constant of the dielectric layer in the semiconductor integrated circuit is further reduced, thereby reducing the capacitance value in the semiconductor integrated circuit to improve the performance of the semiconductor integrated circuit. Compared with the prior art, the process of the invention is simple, no need to develop new materials, and by depositing the fourth dielectric layer, the overall structure of the semiconductor integrated circuit has good mechanical strength and can withstand the pressure of subsequent packaging.
為詳細說明本發明之技術內容、構造特徵、所達成目的及功效,以下茲舉例並配合圖式詳予說明。In order to explain the technical content, structural features, objectives and effects of the present invention in detail, the following detailed description is given by way of example.
請依次參閱第二圖至第十圖,本發明空氣隙互聯結構的形成方法包括如下步驟:Referring to FIG. 2 to FIG. 10 in sequence, the method for forming an air gap interconnection structure of the present invention includes the following steps:
步驟1:在半導體積體電路之基底層301上澱積第一介質層302。所述第一介質層302可以由SiCN、SiC、SiN和SiOC之一或者它們的混合物構成。Step 1: Depositing a first dielectric layer 302 on the base layer 301 of the semiconductor integrated circuit. The first dielectric layer 302 may be composed of one of SiCN, SiC, SiN, and SiOC or a mixture thereof.
步驟2:在所述第一介質層302上澱積第二介質層303作為犧牲層。所述第二介質層303可以由超低K介質材料或者低K介質材料或者介質材料構成,所述介質材料可以是有機材料,例如SiLK材料。Step 2: depositing a second dielectric layer 303 as a sacrificial layer on the first dielectric layer 302. The second dielectric layer 303 may be composed of an ultra-low K dielectric material or a low-K dielectric material or a dielectric material, which may be an organic material such as a SiLK material.
步驟3:在所述第二介質層303上澱積防反射膜304。Step 3: depositing an anti-reflection film 304 on the second dielectric layer 303.
步驟4:在所述防反射膜304上澱積光刻阻擋掩膜305。Step 4: depositing a lithography blocking mask 305 on the anti-reflection film 304.
步驟5:對所述光刻阻擋掩膜305進行圖形曝光,形成有圖形的光刻阻擋掩膜,再採用乾法蝕刻工藝將所述防反射膜304選擇性去除,使圖形形成於防反射膜304上(如第三圖所示)。Step 5: performing pattern exposure on the lithography barrier mask 305 to form a patterned lithography blocking mask, and then selectively removing the anti-reflection film 304 by a dry etching process to form a pattern on the anti-reflection film. On 304 (as shown in the third figure).
步驟6:將具有圖形之光刻阻擋掩膜305作為蝕刻掩膜,採用乾法蝕刻工藝選擇性去除所述第二介質層303,在第二介質層303上形成溝槽100,相鄰兩溝槽100由所述第二介質層303隔離開,然後將所述光刻阻擋掩膜305和所述防反射膜304全部去除(如第四圖所示)。Step 6: using the patterned lithography barrier mask 305 as an etch mask, selectively removing the second dielectric layer 303 by a dry etching process, forming a trench 100 on the second dielectric layer 303, adjacent to the two trenches The trench 100 is isolated by the second dielectric layer 303, and then the lithography blocking mask 305 and the anti-reflective film 304 are all removed (as shown in the fourth figure).
步驟7:在所述第二介質層303之表面及溝槽100內壁上濺射澱積阻擋層306,所述阻擋層306可以由鉭、氮化鉭、鈦、氮化鈦之一或者它們的混合物構成,然後在所述阻擋層306上及溝槽100內澱積主導電層307(如第五圖所示),所述主導電層307可以由銅構成,當選擇金屬銅作為主導電層307時,需要先在所述阻擋層306上採用化學氣相澱積法澱積一層薄種子層,再採用電化學鍍銅工藝將銅層澱積在所述薄種子層上及溝槽100內。Step 7: sputter depositing a barrier layer 306 on the surface of the second dielectric layer 303 and the inner wall of the trench 100, and the barrier layer 306 may be one of tantalum, tantalum nitride, titanium, titanium nitride or The mixture is formed, and then a main conductive layer 307 is deposited on the barrier layer 306 and in the trench 100 (as shown in FIG. 5). The main conductive layer 307 may be composed of copper when metal copper is selected as the main conductive In the case of layer 307, a thin seed layer is first deposited on the barrier layer 306 by chemical vapor deposition, and a copper layer is deposited on the thin seed layer and the trench 100 by an electrochemical copper plating process. Inside.
步驟8:採用低下壓力的化學機械拋光平坦化工藝對所述主導電層307進行拋光,使主導電層307部分平坦化,並保留一定厚度之主導電層307(如第六圖所示),在本實施例中,較佳之主導電層307為銅層,相應的,保留的銅層之厚度為100nm-200nm為最佳。Step 8: polishing the main conductive layer 307 by a low-pressure chemical mechanical polishing planarization process to partially planarize the main conductive layer 307 and retain a certain thickness of the main conductive layer 307 (as shown in FIG. 6). In the present embodiment, the preferred main conductive layer 307 is a copper layer, and correspondingly, the thickness of the remaining copper layer is preferably from 100 nm to 200 nm.
步驟9:採用無應力拋光工藝去除除溝槽100內的銅層以外的所有銅層(如第七圖所示),所述無應力拋光工藝是基於電化學拋光原理,將需被拋光的半導體積體電路表面之銅結構作為陽極,拋光液噴頭作為陰極,在陽極與陰極之間施加一電壓,拋光液噴頭將拋光液噴射至銅表面,銅溶解於拋光液中並被去除。無應力拋光工藝可以選擇性去除多餘之銅結構,並且對介質層和阻擋層不會產生侵蝕和形變,徹底避免了機械應力對銅、低k介質層和超低k介質層之損壞,從根本上解決了低K介質材料或者超低K介質材料與銅整合之工藝難題,同時,在無應力拋光系統中,由於拋光液可以被循環利用,既降低了成本又減少了環境污染。Step 9: removing all copper layers except the copper layer in the trench 100 by using a stress-free polishing process (as shown in the seventh figure), which is based on the principle of electrochemical polishing, and the semiconductor to be polished The copper structure on the surface of the integrated circuit serves as an anode, and the polishing liquid nozzle serves as a cathode. A voltage is applied between the anode and the cathode. The polishing liquid nozzle sprays the polishing liquid onto the copper surface, and the copper is dissolved in the polishing liquid and removed. The stress-free polishing process selectively removes excess copper structure and does not cause erosion and deformation of the dielectric layer and the barrier layer, completely avoiding damage of copper, low-k dielectric layer and ultra-low-k dielectric layer by mechanical stress. The process problem of integrating low-k dielectric material or ultra-low-k dielectric material with copper is solved, and in the unstressed polishing system, since the polishing liquid can be recycled, the cost is reduced and the environmental pollution is reduced.
步驟10:採用無應力去除阻擋層工藝去除裸露於溝槽100外的所有阻擋層306,而僅保留溝槽100內的阻擋層306(如第八圖所示),在本實施例中,所述阻擋層306由鉭、氮化鉭、鈦、氮化鈦之一或者它們的混合物構成,因此,本實施例採用了XeF2氣相蝕刻工藝去除裸露於溝槽100外的所有阻擋層306,XeF2能夠與由鉭、氮化鉭、鈦、氮化鈦之一或者它們的混合物構成的阻擋層306在一定溫度和壓力條件下自發的並選擇性的發生蝕刻化學反應。在本實施例中,蝕刻工藝之溫度可在0℃至300℃,25℃至200℃為最佳反應溫度,XeF2氣體壓力可在0.1Torr至100 Torr,0.5 Torr至20 Torr為最佳反應壓強。XeF2對於銅和由介質材料構成的第二介質層303具有良好的選擇性,尤其對於以Si-C-O-H作為基礎材料且介電常數為1.2至4.2,其中又以介電常數為1.3至2.4為最佳構成的第二介質層303具有更好的選擇性。在整個氣相蝕刻過程中,無機械應力施加在阻擋層306和第二介質層303上,所以對於銅膜和第二介質層303無任何傷害。並且,XeF2與阻擋層306反應後得到氣相反應物,例如Xe和在一定反應溫度和壓強下產生的揮發物氟化鉭,因此,沒有任何殘留物質附著在半導體積體電路之表面。Step 10: removing all barrier layers 306 exposed outside the trenches 100 using a stress free removal barrier process, leaving only the barrier layer 306 in the trenches 100 (as shown in the eighth figure), in this embodiment, The barrier layer 306 is composed of one of tantalum, tantalum nitride, titanium, titanium nitride or a mixture thereof. Therefore, the present embodiment employs a XeF2 vapor phase etching process to remove all barrier layers 306 exposed outside the trench 100, XeF2. The barrier layer 306, which is composed of one of tantalum, tantalum nitride, titanium, titanium nitride, or a mixture thereof, spontaneously and selectively undergoes an etch chemistry under certain temperature and pressure conditions. In this embodiment, the temperature of the etching process may be from 0 ° C to 300 ° C, 25 ° C to 200 ° C is the optimum reaction temperature, and the XeF 2 gas pressure may be from 0.1 Torr to 100 Torr, and the optimum reaction pressure is from 0.5 Torr to 20 Torr. . XeF2 has good selectivity for copper and the second dielectric layer 303 composed of a dielectric material, especially for Si-COH as a base material and a dielectric constant of 1.2 to 4.2, wherein the dielectric constant is 1.3 to 2.4. The second dielectric layer 303, which is preferably constructed, has better selectivity. No mechanical stress is applied to the barrier layer 306 and the second dielectric layer 303 throughout the vapor phase etching process, so there is no damage to the copper film and the second dielectric layer 303. Further, XeF2 reacts with the barrier layer 306 to obtain a gas phase reactant such as Xe and a volatile barium fluoride which is generated at a certain reaction temperature and pressure, and therefore, no residual substance adheres to the surface of the semiconductor integrated circuit.
步驟11:採用等離子蝕刻工藝去除第二介質層303,在所述相鄰兩溝槽100之間形成一凹槽1007,所述第一介質層302作為蝕刻停止層,所述凹槽1007之特徵尺寸可以介於10nm至250nm之間。等離子蝕刻工藝中選用的等離子還原氣體可以為NH3或者H2或者N2。在蝕刻過程中,阻擋層306和主導電層307不會受到任何損傷。接著,在整個半導體積體電路之表面澱積第三介質層308,所述第三介質層308作為密封介質層覆蓋在整個半導體積體電路之表面,所述第三介質層308可以由SiCN、SiC、SiN、SiOC之一或者它們的混合物構成(如第九圖所示)。Step 11: removing the second dielectric layer 303 by a plasma etching process, forming a recess 1007 between the adjacent trenches 100, the first dielectric layer 302 serving as an etch stop layer, and the features of the recess 1007 The size can be between 10 nm and 250 nm. The plasma reducing gas selected in the plasma etching process may be NH3 or H2 or N2. The barrier layer 306 and the main conductive layer 307 are not subjected to any damage during the etching process. Next, a third dielectric layer 308 is deposited over the surface of the entire semiconductor integrated circuit, the third dielectric layer 308 covering the surface of the entire semiconductor integrated circuit as a sealing dielectric layer, which may be made of SiCN, One of SiC, SiN, SiOC or a mixture thereof (as shown in Figure IX).
步驟12:在所述第三介質層308上採用非共形化學氣相澱積法澱積第四介質層309,在所述凹槽1007內形成空氣隙200(如第十圖所示)。所述空氣隙200之大小和形狀可以根據半導體積體電路之特徵尺寸的大小而得到優化,以降低半導體積體電路之介質層的介電常數。所述第四介質層309可以由SiOF、SiOC之一或者它們的混合物構成。Step 12: depositing a fourth dielectric layer 309 on the third dielectric layer 308 by non-conformal chemical vapor deposition, and forming an air gap 200 in the recess 1007 (as shown in FIG. 10). The size and shape of the air gap 200 can be optimized according to the size of the feature size of the semiconductor integrated circuit to reduce the dielectric constant of the dielectric layer of the semiconductor integrated circuit. The fourth dielectric layer 309 may be composed of one of SiOF, SiOC, or a mixture thereof.
由上述可知,本發明採用無應力拋光技術去除多餘銅層和無應力去除多餘阻擋層306,在實施該兩工藝步驟過程中,均無機械應力產生,因此不會對半導體積體電路尤其是半導體積體電路中剩餘的銅膜、阻擋層和介質層造成任何損傷,因此,所述空氣隙200可以形成於具有超微細特徵尺寸結構的半導體積體電路中,例如特徵尺寸小於65nm及以下的半導體積體電路中。透過形成相對較大之所述空氣隙200,進一步降低半導體積體電路中介質層之介電常數,進而降低半導體積體電路中的電容值,以提高半導體積體電路之性能。相對于現有工藝而言,本發明工藝簡單,不需要開發新材料,而且透過澱積第四介質層309,使得半導體積體電路之整體結構具有很好的機械強度,可以承受後續封裝之壓力。It can be seen from the above that the present invention uses the stress-free polishing technique to remove the excess copper layer and the stress-free removal of the excess barrier layer 306. During the implementation of the two process steps, no mechanical stress is generated, so that the semiconductor integrated circuit, especially the semiconductor, is not The remaining copper film, barrier layer and dielectric layer in the integrated circuit cause any damage, and therefore, the air gap 200 can be formed in a semiconductor integrated circuit having an ultra-fine feature size structure, such as a semiconductor having a feature size of less than 65 nm and below. In the integrated circuit. By forming the relatively large air gap 200, the dielectric constant of the dielectric layer in the semiconductor integrated circuit is further reduced, thereby reducing the capacitance value in the semiconductor integrated circuit to improve the performance of the semiconductor integrated circuit. Compared with the prior art, the process of the invention is simple, no need to develop new materials, and by depositing the fourth dielectric layer 309, the overall structure of the semiconductor integrated circuit has good mechanical strength and can withstand the pressure of subsequent packaging.
本發明空氣隙互聯結構的形成方法透過上述實施方式及相關圖式說明,己具體、詳實的揭露了相關技術,使本領域之技術人員可以據以實施。而以上所述實施例只是用來說明本發明,而不是用來限制本發明的,本發明之權利範圍,應由本發明之申請專利範圍來界定。至於本文中所述元件數目之改變或等效元件之代替等仍都應屬於本發明之權利範圍。The method for forming the air-gap interconnect structure of the present invention has been specifically and specifically disclosed by the above-described embodiments and related drawings, so that those skilled in the art can implement it. The above-mentioned embodiments are only intended to illustrate the invention, and are not intended to limit the invention, and the scope of the invention should be defined by the scope of the invention. Changes in the number of elements or substitution of equivalent elements herein are still within the scope of the invention.
301...基底層301. . . Base layer
302...第一介質層302. . . First dielectric layer
303...第二介質層303. . . Second dielectric layer
304...防反射膜304. . . Anti-reflection film
305...光刻阻擋掩膜305. . . Lithography blocking mask
306...阻擋層306. . . Barrier layer
307...主導電層307. . . Main conductive layer
308...第三介質層308. . . Third dielectric layer
309...第四介質層309. . . Fourth dielectric layer
100...溝槽100. . . Trench
1007...凹槽1007. . . Groove
200...空氣隙200. . . Air gap
第一圖所示為銅線寬度與其機械強度之關係示意圖。The first figure shows the relationship between the width of the copper wire and its mechanical strength.
第二圖所示為本發明按工序依次在半導體積體電路之基底層上澱積第一介質層、第二介質層、防反射膜和光刻阻擋掩膜後之橫切面示意圖。The second figure shows a cross-sectional view of the first dielectric layer, the second dielectric layer, the anti-reflection film and the lithographic barrier mask deposited on the underlying layer of the semiconductor integrated circuit in sequence according to the present invention.
第三圖所示為本發明按工序對光刻阻擋掩膜進行圖形曝光,並形成有圖形的防反射膜後之橫切面示意圖。The third figure shows a cross-sectional view of the etch stop mask in accordance with the process of the present invention and a patterned anti-reflection film.
第四圖所示為本發明按工序在第二介質層上形成溝槽後之橫切面示意圖。The fourth figure shows a schematic cross-sectional view of the present invention after forming a trench on the second dielectric layer in the process.
第五圖所示為本發明按工序依次澱積阻擋層和主導電層後之橫切面示意圖。The fifth figure shows a cross-sectional view of the present invention in which the barrier layer and the main conductive layer are sequentially deposited in the process.
第六圖所示為本發明按工序對主導電層表面初步平坦化後之橫切面示意圖。Fig. 6 is a schematic cross-sectional view showing the surface of the main conductive layer in a preliminary planarization process according to the present invention.
第七圖所示為本發明按工序對主導電層表面無應力拋光平坦化後之橫切面示意圖。FIG. 7 is a schematic cross-sectional view showing the surface of the main conductive layer without stress polishing and planarizing according to the process of the present invention.
第八圖所示為本發明按工序將裸露於溝槽外的阻擋層蝕刻後之橫切面示意圖。Figure 8 is a schematic cross-sectional view showing the etching of the barrier layer exposed outside the trench in accordance with the present invention.
第九圖所示為本發明按工序將第二介質層去除,並澱積第三介質層後之橫切面示意圖。Figure 9 is a cross-sectional view showing the second dielectric layer removed by a process in the present invention and after depositing a third dielectric layer.
第十圖所示為本發明按工序澱積第四介質層,並形成空氣隙後之橫切面示意圖。Figure 10 is a schematic cross-sectional view showing the fourth dielectric layer deposited in the process of the present invention and forming an air gap.
301...基底層301. . . Base layer
302...第一介質層302. . . First dielectric layer
306...阻擋層306. . . Barrier layer
307...主導電層307. . . Main conductive layer
308...第三介質層308. . . Third dielectric layer
309...第四介質層309. . . Fourth dielectric layer
200...空氣隙200. . . Air gap
Claims (16)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110365145 CN103117245A (en) | 2011-11-17 | 2011-11-17 | Formation method of air-gap interconnection structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201322334A true TW201322334A (en) | 2013-06-01 |
TWI608541B TWI608541B (en) | 2017-12-11 |
Family
ID=48415584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101102572A TWI608541B (en) | 2011-11-17 | 2012-01-20 | Method for forming air gap interconnect structure |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103117245A (en) |
TW (1) | TWI608541B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016004573A1 (en) * | 2014-07-08 | 2016-01-14 | Acm Research (Shanghai) Inc. | Method for forming metal interconnection |
TWI571999B (en) * | 2015-07-03 | 2017-02-21 | 旺宏電子股份有限公司 | Semiconductor device |
US10319734B2 (en) | 2015-08-26 | 2019-06-11 | Toshiba Memory Corporation | Semiconductor memory device having air gap |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104637862B (en) * | 2013-11-14 | 2019-10-18 | 盛美半导体设备(上海)有限公司 | Method for forming semiconductor structure |
CN103633021B (en) * | 2013-12-02 | 2015-12-30 | 上海华力微电子有限公司 | A kind of method preparing air gap copper interconnection structure |
US9449811B2 (en) * | 2014-03-12 | 2016-09-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Air-gap scheme for BEOL process |
CN105321871A (en) * | 2014-07-29 | 2016-02-10 | 盛美半导体设备(上海)有限公司 | Integration technology of copper and low K dielectric material |
CN105990131A (en) * | 2015-02-15 | 2016-10-05 | 盛美半导体设备(上海)有限公司 | Integrated processing method for semiconductor structure |
CN106340504B (en) * | 2015-07-07 | 2019-03-15 | 旺宏电子股份有限公司 | Semiconductor element |
CN108321118B (en) * | 2018-04-04 | 2023-10-13 | 长鑫存储技术有限公司 | Method for preparing dielectric cavity between conductive layers and semiconductor device |
CN114203625A (en) * | 2020-09-02 | 2022-03-18 | 长鑫存储技术有限公司 | Semiconductor device and method for manufacturing the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7544606B2 (en) * | 2005-06-01 | 2009-06-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method to implement stress free polishing |
US7560380B2 (en) * | 2006-10-27 | 2009-07-14 | Intel Corporation | Chemical dissolution of barrier and adhesion layers |
JP5329786B2 (en) * | 2007-08-31 | 2013-10-30 | 株式会社東芝 | Polishing liquid and method for manufacturing semiconductor device |
JP5412517B2 (en) * | 2008-08-20 | 2014-02-12 | エーシーエム リサーチ (シャンハイ) インコーポレーテッド | Barrier layer removal method and apparatus |
CN101882595B (en) * | 2009-05-08 | 2014-07-09 | 盛美半导体设备(上海)有限公司 | Method and device for removing barrier layer |
US7956463B2 (en) * | 2009-09-16 | 2011-06-07 | International Business Machines Corporation | Large grain size conductive structure for narrow interconnect openings |
DE102010001400B4 (en) * | 2010-01-29 | 2019-12-05 | GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG | SOI semiconductor device with reduced topography over a substrate window area |
-
2011
- 2011-11-17 CN CN 201110365145 patent/CN103117245A/en active Pending
-
2012
- 2012-01-20 TW TW101102572A patent/TWI608541B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016004573A1 (en) * | 2014-07-08 | 2016-01-14 | Acm Research (Shanghai) Inc. | Method for forming metal interconnection |
TWI571999B (en) * | 2015-07-03 | 2017-02-21 | 旺宏電子股份有限公司 | Semiconductor device |
US10319734B2 (en) | 2015-08-26 | 2019-06-11 | Toshiba Memory Corporation | Semiconductor memory device having air gap |
Also Published As
Publication number | Publication date |
---|---|
TWI608541B (en) | 2017-12-11 |
CN103117245A (en) | 2013-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI608541B (en) | Method for forming air gap interconnect structure | |
US7811924B2 (en) | Air gap formation and integration using a patterning cap | |
TWI402936B (en) | Novel structure and method for metal integration | |
US9768031B2 (en) | Semiconductor device manufacturing methods | |
KR20010098409A (en) | Protective hardmask for producing interconnect structures | |
KR101842903B1 (en) | Method for forming air gap interconnect structure | |
TW201735254A (en) | Semiconductor structure and manufacturing method thereof | |
JPWO2007091574A1 (en) | Multilayer wiring structure and method for manufacturing multilayer wiring | |
KR20080033300A (en) | Dry etchback of interconnect contacts | |
TW567530B (en) | Manufacturing method semiconductor integrated circuit including simultaneous formation of via hole reaching metal wiring and concave groove in interlayer film and semiconductor integrated circuit manufactured with the manufacturing method | |
US9911648B2 (en) | Interconnects based on subtractive etching of silver | |
US8293638B2 (en) | Method of fabricating damascene structures | |
US20140097539A1 (en) | Technique for uniform cmp | |
JP5047504B2 (en) | Method for manufacturing dual damascene wiring of semiconductor device using via capping protective film | |
CN104851835B (en) | Metal interconnection structure and forming method thereof | |
US7015149B2 (en) | Simplified dual damascene process | |
US9275873B2 (en) | Masking process and structures formed thereby | |
US7341940B2 (en) | Method for forming metal wirings of semiconductor device | |
JP2022544026A (en) | How to use ultra-thin ruthenium metal hardmasks for etch profile control | |
TWI697983B (en) | Method for forming metal interconnection structure | |
US20080122093A1 (en) | Semiconductor device and method for manufacturing the same | |
KR100641992B1 (en) | Method for fabricating copper wiring | |
CN106971973B (en) | Semiconductor device, manufacturing method thereof and electronic device | |
KR100664788B1 (en) | Method for planarizing metal layer of semiconductor device | |
TW201736646A (en) | Method for removing barrier layer and method for forming semiconductor structure problems resulting from defects generated from chemical-mechanical polishing of the cobalt layer or the ruthenium layer are overcome by using the electropolishing process and thermal etching process |