TWI697983B - Method for forming metal interconnection structure - Google Patents

Method for forming metal interconnection structure Download PDF

Info

Publication number
TWI697983B
TWI697983B TW105100198A TW105100198A TWI697983B TW I697983 B TWI697983 B TW I697983B TW 105100198 A TW105100198 A TW 105100198A TW 105100198 A TW105100198 A TW 105100198A TW I697983 B TWI697983 B TW I697983B
Authority
TW
Taiwan
Prior art keywords
barrier layer
layer
oxide film
recessed area
metal
Prior art date
Application number
TW105100198A
Other languages
Chinese (zh)
Other versions
TW201725655A (en
Inventor
王堅
賈照偉
金一諾
肖東風
楊貴璞
代迎偉
王暉
Original Assignee
大陸商盛美半導體設備(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商盛美半導體設備(上海)股份有限公司 filed Critical 大陸商盛美半導體設備(上海)股份有限公司
Priority to TW105100198A priority Critical patent/TWI697983B/en
Publication of TW201725655A publication Critical patent/TW201725655A/en
Application granted granted Critical
Publication of TWI697983B publication Critical patent/TWI697983B/en

Links

Images

Abstract

本發明提供了一種形成金屬互連結構的方法,以避免凹進區域側壁上的阻擋層被過刻蝕。該方法包括以下步驟:在硬掩膜層和介質層上形成凹進區域;在硬掩膜層上、凹進區域的側壁和凹進區域的底部沈積阻擋層;在阻擋層上沈積金屬並使凹進區域填滿金屬;使用電抛光工藝去除非凹進區域上的金屬,並將凹進區域內的金屬過抛光形成凹陷,在電抛光過程中,阻擋層上形成氧化膜;去除硬掩膜層上阻擋層上的氧化膜,並留下一定厚度的凹進區域側壁上阻擋層上的氧化膜;透過刻蝕去除阻擋層和硬掩膜層,該刻蝕對氧化膜具有高選擇比,留下來的氧化膜阻止凹進區域側壁上的阻擋層被過刻蝕。 The present invention provides a method for forming a metal interconnection structure to prevent the barrier layer on the sidewall of the recessed area from being over-etched. The method includes the following steps: forming a recessed area on the hard mask layer and the dielectric layer; depositing a barrier layer on the hard mask layer, the sidewall of the recessed area, and the bottom of the recessed area; depositing metal on the barrier layer and making The recessed area is filled with metal; the electro-polishing process is used to remove the metal on the non-recessed area, and the metal in the recessed area is over-polished to form a recess. During the electro-polishing process, an oxide film is formed on the barrier layer; the hard mask is removed The oxide film on the barrier layer on the layer, leaving a certain thickness of the oxide film on the barrier layer on the sidewall of the recessed area; the barrier layer and the hard mask layer are removed by etching, which has a high selectivity ratio to the oxide film, The remaining oxide film prevents the barrier layer on the sidewall of the recessed area from being overetched.

Description

形成金屬互連結構的方法 Method for forming metal interconnection structure

本發明關於半導體器件製造領域,尤其關於一種形成金屬互連結構的方法,以避免沈積在溝槽側壁上的阻擋層過刻蝕。 The present invention relates to the field of semiconductor device manufacturing, in particular to a method for forming a metal interconnection structure to avoid over-etching of the barrier layer deposited on the sidewall of the trench.

隨著半導體器件製造工藝的快速發展,半導體器件的集成度越來越高,兩層或兩層以上的金屬互連結構被廣泛應用。現有的金屬互連結構是鋁製成。然而,隨著半導體器件的特徵尺寸越來越小,RC延遲對半導體器件性能的影響越來越明顯。為了降低RC延遲效應,銅由於其電阻比鋁小而常用來代替鋁製作互連結構。此外,使用低k材料代替傳統的介電質材料作為互連結構中的介質層以減小寄生電容。 With the rapid development of semiconductor device manufacturing processes, the integration of semiconductor devices is getting higher and higher, and metal interconnect structures of two or more layers are widely used. The existing metal interconnect structure is made of aluminum. However, as the feature size of semiconductor devices becomes smaller and smaller, the influence of RC delay on the performance of semiconductor devices becomes more and more obvious. In order to reduce the RC delay effect, copper is often used instead of aluminum to make interconnect structures because of its lower resistance than aluminum. In addition, low-k materials are used instead of traditional dielectric materials as the dielectric layer in the interconnect structure to reduce parasitic capacitance.

如圖1(a)至圖1(c)所示,一種形成銅互連結構的方法一般包括以下步驟:提供襯底101,例如晶圓;在襯底101上沈積介質層102;在介質層102上沈積硬掩膜層103;在介質層102和硬掩膜層103上形成多個溝槽106,溝槽106如圖1(a)至圖1(c)所示;在硬掩膜層103上以及溝槽106的側壁和底部沈積阻擋層104; 在阻擋層104上以及溝槽106的側壁和底部沈積銅種子層,銅種子層沈積在阻擋層104上;在銅種子層上以及溝槽106內沈積銅105,銅105將溝槽106填滿;去除沈積在非凹進區域上的銅105,保留在凹進區域(如溝槽106)內的銅105形成銅互連結構;去除非凹進區域上的阻擋層104和介質層102上的硬掩膜層103。 As shown in FIGS. 1(a) to 1(c), a method for forming a copper interconnect structure generally includes the following steps: providing a substrate 101, such as a wafer; depositing a dielectric layer 102 on the substrate 101; A hard mask layer 103 is deposited on 102; a plurality of trenches 106 are formed on the dielectric layer 102 and the hard mask layer 103, and the trenches 106 are shown in Figure 1 (a) to Figure 1 (c); in the hard mask layer Depositing a barrier layer 104 on 103 and on the sidewalls and bottom of the trench 106; A copper seed layer is deposited on the barrier layer 104 and the sidewalls and bottom of the trench 106, and the copper seed layer is deposited on the barrier layer 104; copper 105 is deposited on the copper seed layer and in the trench 106, and the trench 106 is filled with copper 105 ; Remove the copper 105 deposited on the non-recessed area, and the copper 105 remaining in the recessed area (such as the trench 106) forms a copper interconnect structure; remove the barrier layer 104 and the dielectric layer 102 on the non-recessed area The hard mask layer 103.

傳統去除銅105、阻擋層104和硬掩膜層103的方法為CMP(化學機械抛光)。在化學機械抛光過程中,襯底101被放置在抛光墊上,用壓力將襯底101緊壓在抛光墊上。當用壓力抛光和平坦化銅105、阻擋層104和硬掩膜層103時,抛光墊和襯底101進行著相對運動。向抛光墊上提供一種常被稱之為磨料的抛光液使抛光更容易進行。雖然化學機械抛光可以獲得很好的阻擋層的去除結果,然而,由於涉及到強機械作用力,化學機械抛光會對半導體器件產生一些不良影響。強機械作用力會對低k介質造成永久損傷,並且抛光液會降低低k介質的性能。所述很好的阻擋層104的去除結果意味著非凹進區域上的阻擋層104被完全去除,而凹進區域側壁上的阻擋層沒有被刻蝕破壞,如圖1(c)所示。 The traditional method for removing the copper 105, the barrier layer 104 and the hard mask layer 103 is CMP (Chemical Mechanical Polishing). In the chemical mechanical polishing process, the substrate 101 is placed on the polishing pad, and the substrate 101 is pressed against the polishing pad with pressure. When pressure is used to polish and planarize the copper 105, the barrier layer 104, and the hard mask layer 103, the polishing pad and the substrate 101 move relative to each other. Providing a polishing fluid, often referred to as abrasive, to the polishing pad makes polishing easier. Although chemical mechanical polishing can achieve good barrier removal results, due to the strong mechanical forces involved, chemical mechanical polishing will have some adverse effects on semiconductor devices. Strong mechanical forces can cause permanent damage to low-k media, and polishing fluids can reduce the performance of low-k media. The good removal result of the barrier layer 104 means that the barrier layer 104 on the non-recessed area is completely removed, and the barrier layer on the sidewall of the recessed area is not damaged by etching, as shown in FIG. 1(c).

由於CMP方法存在的缺點,一種乾法刻蝕的方法被用來去除阻擋層104和硬掩膜層103。在使用CMP去除銅105後,採用XeF2氣相刻蝕,在高溫低壓的環境下去除阻擋層104和硬掩膜層103。阻擋層104的材料為鉭、氮化鉭、鈦或氮化鈦,硬掩膜層103的材料為氮化鈦。 使用XeF2氣相刻蝕對銅105和介質層102沒有損害,但XeF2氣相刻蝕很容易造成阻擋層104的刻蝕不足或過刻蝕。如圖2所示為阻擋層104刻蝕不足的情形,從圖2可以看出非凹進區域上的阻擋層104並沒有完全去除,一部分阻擋層104殘留在非凹進區域上。如圖3所示為阻擋層104過刻蝕的情形,從圖3可以看出儘管非凹進區域上的阻擋層104被完全去除,但是沈積在溝槽106側壁上的一部分阻擋層104也被去除。溝槽106內的阻擋層104的上表面低於溝槽106內的銅105的上表面。無論是阻擋層104刻蝕不足或是過刻蝕都將降低半導體器件的品質。 Due to the shortcomings of the CMP method, a dry etching method is used to remove the barrier layer 104 and the hard mask layer 103. After removing the copper 105 by CMP, XeF2 vapor phase etching is used to remove the barrier layer 104 and the hard mask layer 103 in a high temperature and low pressure environment. The material of the barrier layer 104 is tantalum, tantalum nitride, titanium or titanium nitride, and the material of the hard mask layer 103 is titanium nitride. The use of XeF2 vapor etching does not damage the copper 105 and the dielectric layer 102, but the XeF2 vapor etching can easily cause insufficient or over-etching of the barrier layer 104. As shown in FIG. 2, the barrier layer 104 is under-etched. It can be seen from FIG. 2 that the barrier layer 104 on the non-recessed area is not completely removed, and a part of the barrier layer 104 remains on the non-recessed area. Fig. 3 shows a situation where the barrier layer 104 is over-etched. It can be seen from Fig. 3 that although the barrier layer 104 on the non-recessed area is completely removed, a part of the barrier layer 104 deposited on the sidewall of the trench 106 is also Remove. The upper surface of the barrier layer 104 in the trench 106 is lower than the upper surface of the copper 105 in the trench 106. Either under-etching or over-etching of the barrier layer 104 will degrade the quality of the semiconductor device.

相應地,本發明提出了一種形成金屬互連結構的方法,以避免沈積在凹進區域側壁上的阻擋層被過刻蝕。 Correspondingly, the present invention proposes a method for forming a metal interconnection structure to prevent the barrier layer deposited on the sidewall of the recessed region from being over-etched.

根據本發明一示範性實施例揭示的一種形成金屬互連結構的方法包括以下步驟:在硬掩膜層和介質層上形成凹進區域;在硬掩膜層上、凹進區域的側壁以及凹進區域的底部沈積阻擋層;在阻擋層上沈積金屬並使凹進區域填滿金屬;使用電抛光工藝去除沈積在非凹進區域上的金屬,且凹進區域內的金屬被過抛光以形成凹陷,在電抛光過程中,阻擋層上形成氧化膜,凹進區域側壁上的阻擋層上的氧化膜的厚度大於硬掩膜層上的阻擋層上的氧化膜的厚度;去除硬掩膜層上的阻擋層上的氧化膜,並留下一定厚度的凹進區域側壁上的阻擋層上的氧化膜;透過刻 蝕去除阻擋層和硬掩膜層,該刻蝕對氧化膜具有高選擇比,留下來的氧化膜阻止凹進區域側壁上的阻擋層被過刻蝕。 According to an exemplary embodiment of the present invention, a method for forming a metal interconnection structure includes the following steps: forming a recessed area on a hard mask layer and a dielectric layer; on the hard mask layer, the sidewall of the recessed area, and the recess Deposit a barrier layer on the bottom of the entry area; deposit metal on the barrier layer and fill the recessed area with metal; use an electro-polishing process to remove the metal deposited on the non-recessed area, and the metal in the recessed area is over-polished to form Recess, during the electropolishing process, an oxide film is formed on the barrier layer, the thickness of the oxide film on the barrier layer on the sidewall of the recessed area is greater than the thickness of the oxide film on the barrier layer on the hard mask layer; remove the hard mask layer The oxide film on the barrier layer on the upper side, and leave a certain thickness of the oxide film on the barrier layer on the sidewall of the recessed area; The barrier layer and the hard mask layer are removed by etching, and the etching has a high selectivity to the oxide film, and the remaining oxide film prevents the barrier layer on the sidewall of the recessed region from being over-etched.

綜上所述,當使用電抛光工藝去除金屬並使金屬過抛光時,由於陽極氧化效應,在阻擋層上形成氧化膜而使暴露的阻擋層鈍化。介質層位於阻擋層和硬掩膜層之下,因此,電荷均勻分佈在導電層(即阻擋層和硬掩膜層),並聚集在介質層表面。基於非導電材料表面電位均衡理論,分佈在非導電材料表面的電荷與曲率半徑成反比,因此,聚集在阻擋層肩部的電荷比平坦處的多,以至於阻擋層肩部的氧化膜要比其他區域的氧化膜厚,這就是凹進區域側壁上的阻擋層上的氧化膜要比硬掩膜層上的阻擋層上的氧化膜厚的原因。硬掩膜層上的阻擋層上的氧化膜被去除後,凹進區域側壁上的阻擋層上留下的氧化膜在阻擋層上形成連續的薄膜,以防止凹進區域側壁上的阻擋層在去除阻擋層和硬掩膜層時被過刻蝕,有利於提高半導體器件的品質。 In summary, when the electro-polishing process is used to remove the metal and make the metal over-polished, an oxide film is formed on the barrier layer due to the anodic oxidation effect to passivate the exposed barrier layer. The dielectric layer is located under the barrier layer and the hard mask layer. Therefore, the charges are evenly distributed in the conductive layer (ie, the barrier layer and the hard mask layer) and are concentrated on the surface of the dielectric layer. Based on the theory of non-conductive material surface potential equalization, the charge distributed on the surface of the non-conductive material is inversely proportional to the radius of curvature. Therefore, the charge accumulated on the shoulder of the barrier layer is more than that on the flat area, so that the oxide film on the shoulder of the barrier layer is more The oxide film in other areas is thick, which is why the oxide film on the barrier layer on the sidewall of the recessed area is thicker than the oxide film on the barrier layer on the hard mask layer. After the oxide film on the barrier layer on the hard mask layer is removed, the oxide film left on the barrier layer on the sidewall of the recessed area forms a continuous film on the barrier layer to prevent the barrier layer on the sidewall of the recessed area from being When the barrier layer and the hard mask layer are removed, they are over-etched, which helps to improve the quality of the semiconductor device.

101‧‧‧襯底 101‧‧‧Substrate

102‧‧‧介質層 102‧‧‧Media layer

103‧‧‧硬掩膜層 103‧‧‧Hard Mask Layer

104‧‧‧阻擋層 104‧‧‧Barrier

105‧‧‧銅 105‧‧‧Copper

106‧‧‧溝槽 106‧‧‧Groove

201‧‧‧襯底 201‧‧‧Substrate

202‧‧‧介質層 202‧‧‧Media layer

203‧‧‧硬掩膜層 203‧‧‧Hard Mask Layer

204‧‧‧阻擋層 204‧‧‧Barrier

205‧‧‧金屬 205‧‧‧Metal

206‧‧‧氧化膜 206‧‧‧Oxide film

207‧‧‧凹進區域 207‧‧‧Recessed area

本領域的技術人員透過閱讀具體實施例的描述,並參考附圖,能夠清楚的理解本發明的內容,其中的附圖包括:圖1(a)至圖1(c)是現有形成金屬互連結構過程的截面圖; 圖2是阻擋層刻蝕不足的截面圖;圖3是阻擋層過刻蝕的截面圖;圖4(a)至圖4(d)是本發明的形成金屬互連結構的截面圖;圖5是本發明的形成金屬互連結構的方法的流程圖;圖6是電抛光工藝後氧元素所含重量百分比的測量結果;圖7是POST-TFE樣本的STEM截面圖,示意了良好的阻擋層去除結果;以及圖8是POST-TFE樣本的FIB/SEM截面圖,示意了阻擋層的過刻蝕。 Those skilled in the art can clearly understand the content of the present invention by reading the description of the specific embodiments and referring to the accompanying drawings. The accompanying drawings include: Figure 1 (a) to Figure 1 (c) are existing metal interconnections formed Sectional view of the structural process; Figure 2 is a cross-sectional view of the under-etched barrier layer; Figure 3 is a cross-sectional view of the over-etched barrier layer; Figure 4 (a) to Figure 4 (d) are cross-sectional views of the formation of the metal interconnect structure of the present invention; Figure 5 It is a flow chart of the method of forming a metal interconnect structure of the present invention; FIG. 6 is the measurement result of the oxygen content after the electropolishing process; FIG. 7 is a STEM cross-sectional view of the POST-TFE sample, showing a good barrier layer Removal results; and Figure 8 is a FIB/SEM cross-sectional view of the POST-TFE sample, showing the over-etching of the barrier layer.

參考圖4(a)至圖4(d)以及圖5所示,揭示了根據本發明一示範性實施例的形成金屬互連結構的方法,該方法包括下述步驟,這些步驟將在下文中進行詳細描述。 Referring to FIGS. 4(a) to 4(d) and FIG. 5, a method for forming a metal interconnection structure according to an exemplary embodiment of the present invention is disclosed. The method includes the following steps, which will be performed in the following A detailed description.

步驟301,在硬掩膜層和介質層上形成凹進區域。如圖4(a)所示,提供襯底201,如晶圓。在襯底201上沈積介質層202,介質層202的材料可以是SiO2、SiOC、SiOF、SiLK、BD、BDII、BDIII等。較佳者,介質層202選擇低k介質以減小半導體器件中互連結構間的電容。根據不同的結構需求,介質層202可以由兩層或兩層以上組成。如果介質層202由兩層組成,上層的介電常數要高於 下層的介電常數。在介質層202上沈積硬掩膜層203,硬掩膜層203的材料可以是氮化鉭或氮化鈦。使用現有技術在硬掩膜層203和介質層202上形成凹進區域,如槽、孔等,圖中舉例說明了凹進區域207。 Step 301, forming a recessed area on the hard mask layer and the dielectric layer. As shown in FIG. 4(a), a substrate 201, such as a wafer, is provided. A dielectric layer 202 is deposited on the substrate 201. The material of the dielectric layer 202 may be SiO 2 , SiOC, SiOF, SiLK, BD, BDII, BDIII, etc. Preferably, the dielectric layer 202 selects a low-k dielectric to reduce the capacitance between interconnect structures in the semiconductor device. According to different structural requirements, the dielectric layer 202 may be composed of two or more layers. If the dielectric layer 202 is composed of two layers, the dielectric constant of the upper layer is higher than the dielectric constant of the lower layer. A hard mask layer 203 is deposited on the dielectric layer 202. The material of the hard mask layer 203 may be tantalum nitride or titanium nitride. The existing technology is used to form recessed areas, such as grooves, holes, etc., on the hard mask layer 203 and the dielectric layer 202. The recessed area 207 is illustrated in the figure.

步驟302,在硬掩膜層203上、凹進區域207的側壁以及凹進區域207的底部沈積阻擋層204。仍然參考圖4(a)所示,可以採用任何適當的方法在硬掩膜層203、凹進區域207的側壁和底部上沈積阻擋層204,例如化學氣相沈積(VCD)、物理氣相沈積(PVD)、原子層沈積(ALD)等。阻擋層204可以由導電材料構成,如鉭、氮化鉭、鈦、氮化鈦、釕、鈷等。 In step 302, a barrier layer 204 is deposited on the hard mask layer 203, the sidewalls of the recessed area 207, and the bottom of the recessed area 207. Still referring to FIG. 4(a), any suitable method can be used to deposit the barrier layer 204 on the sidewalls and bottom of the hard mask layer 203 and the recessed region 207, such as chemical vapor deposition (VCD), physical vapor deposition (PVD), atomic layer deposition (ALD), etc. The barrier layer 204 may be made of conductive materials, such as tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, cobalt, and the like.

步驟303,在阻擋層204上沈積金屬205,並使凹進區域207填滿金屬205。如圖4(a)所示,使用任何適當的方法在阻擋層204上沈積金屬205並使金屬205填滿凹進區域207,例如PVD、CVD、ALD、電鍍等。此外,在某些應用中,例如,採用電鍍工藝沈積金屬205,在沈積金屬205之前,先在阻擋層204上沈積金屬種子層。為了使金屬205更容易的沈積在阻擋層204上,金屬種子層可以包含和金屬205相同的材料。金屬205填滿凹進區域並覆蓋了非凹進區域,如圖4(a)所示。金屬205較佳者為銅。 In step 303, a metal 205 is deposited on the barrier layer 204, and the recessed area 207 is filled with the metal 205. As shown in FIG. 4(a), any suitable method is used to deposit metal 205 on the barrier layer 204 and fill the recessed area 207 with the metal 205, such as PVD, CVD, ALD, electroplating, etc. In addition, in some applications, for example, the metal 205 is deposited by an electroplating process, and a metal seed layer is deposited on the barrier layer 204 before the metal 205 is deposited. In order to make the metal 205 easier to deposit on the barrier layer 204, the metal seed layer may include the same material as the metal 205. The metal 205 fills the recessed area and covers the non-recessed area, as shown in FIG. 4(a). The metal 205 is preferably copper.

步驟304,採用電抛光工藝去除沈積在非凹進區域上的金屬205,並將凹進區域207內的金屬205過抛光形成凹陷。在電抛光工藝過程中,阻擋層204上形成氧 化膜206,凹進區域側壁上的阻擋層204上的氧化膜206的厚度大於硬掩膜層203上的阻擋層204上的氧化膜206的厚度。如圖4(b)所示,當採用電抛光工藝去除並過抛光金屬205時,由於陽極氧化效應,在阻擋層204上形成氧化膜206而使暴露的阻擋層204鈍化。介質層202位於阻擋層204和硬掩膜層203之下,因此,電荷均勻的分佈在導電層(包括阻擋層204和硬掩膜層203),電荷將聚集在介質層202的表面。基於非導電材料表面電位均衡理論,非導電材料表面的電荷分佈與曲率半徑成反比,所以聚集在阻擋層肩部的電荷比平坦處的多,以至於阻擋層204肩部的氧化膜206的厚度比其他區域的氧化膜的厚度要厚,這就是凹進區域側壁(對應肩部)上阻擋層204上的氧化膜206要比硬掩膜層203(對應平坦處)上阻擋層204上的氧化膜206厚的原因。如圖6所示,實驗表明,凹進區域側壁上的阻擋層204上的氧化膜206的厚度要大於硬掩膜層203上的阻擋層204上的氧化膜206的厚度。當採用電抛光工藝將非凹進區域上的金屬205去除,且將凹進區域內的金屬205過抛光後,切下襯底201的一部分作為樣品,然後,使用型號為HELIOS 660的電子顯微鏡和型號為X-MaxN SDD的能譜儀來線掃描樣本的表面。電子束的能量為3kv,掃描長度大約為2μm,掃描點數為400點。阻擋層204的掃描長度為1μm,阻擋層204兩側的金屬結構的掃描長度為1μm。從測量結果可以看出,靠近金屬結構的阻擋層204中的氧元素的重量百分比高於其他區域, 從而證明了凹進區域側壁上的阻擋層204上的氧化膜206厚度要大於硬掩膜層203上的阻擋層204上的氧化膜206的厚度。 In step 304, an electro-polishing process is used to remove the metal 205 deposited on the non-recessed area, and the metal 205 in the recessed area 207 is over-polished to form a recess. During the electropolishing process, oxygen is formed on the barrier layer 204 The thickness of the oxide film 206 on the barrier layer 204 on the sidewall of the recessed region is greater than the thickness of the oxide film 206 on the barrier layer 204 on the hard mask layer 203. As shown in FIG. 4(b), when the metal 205 is removed and overpolished by the electro-polishing process, an oxide film 206 is formed on the barrier layer 204 due to the anodization effect, so that the exposed barrier layer 204 is passivated. The dielectric layer 202 is located under the barrier layer 204 and the hard mask layer 203. Therefore, the charges are evenly distributed in the conductive layer (including the barrier layer 204 and the hard mask layer 203), and the charges will be accumulated on the surface of the dielectric layer 202. Based on the theory of surface potential equalization of non-conductive materials, the charge distribution on the surface of non-conductive materials is inversely proportional to the radius of curvature, so the charge accumulated on the shoulder of the barrier layer is more than that in the flat area, so that the thickness of the oxide film 206 at the shoulder of the barrier layer 204 The thickness of the oxide film is thicker than that of other regions. This means that the oxide film 206 on the barrier layer 204 on the sidewall of the recessed area (corresponding to the shoulder) is larger than the oxide film 206 on the barrier layer 204 on the hard mask layer 203 (corresponding to the flat area). The reason for the thick film 206. As shown in FIG. 6, experiments show that the thickness of the oxide film 206 on the barrier layer 204 on the sidewall of the recessed region is greater than the thickness of the oxide film 206 on the barrier layer 204 on the hard mask layer 203. When the metal 205 on the non-recessed area is removed by the electro-polishing process, and the metal 205 in the recessed area is over-polished, a part of the substrate 201 is cut as a sample, and then, an electron microscope and model of HELIOS 660 are used. An energy spectrometer model X-MaxN SDD is used to line scan the surface of the sample. The energy of the electron beam is 3kV, the scan length is about 2μm, and the number of scan points is 400. The scan length of the barrier layer 204 is 1 μm, and the scan length of the metal structures on both sides of the barrier layer 204 is 1 μm. It can be seen from the measurement results that the weight percentage of oxygen in the barrier layer 204 near the metal structure is higher than that in other regions. This proves that the thickness of the oxide film 206 on the barrier layer 204 on the sidewall of the recessed region is greater than the thickness of the oxide film 206 on the barrier layer 204 on the hard mask layer 203.

在步驟304中,為了在阻擋層204的肩部形成氧化膜206,填充在凹進區域內的金屬205被過抛光形成凹陷,如圖4(b)所示。阻擋層204上形成的氧化膜206的厚度與填充在凹進區域內的金屬205過抛光的量成正比,金屬205過抛光的量等於或大於阻擋層204和硬掩膜層203的厚度。在一個具體實施方式中,金屬205過抛光的量為300-500埃。 In step 304, in order to form an oxide film 206 on the shoulder of the barrier layer 204, the metal 205 filled in the recessed area is overpolished to form a recess, as shown in FIG. 4(b). The thickness of the oxide film 206 formed on the barrier layer 204 is proportional to the overpolished amount of the metal 205 filled in the recessed area, and the overpolished amount of the metal 205 is equal to or greater than the thickness of the barrier layer 204 and the hard mask layer 203. In a specific embodiment, the amount of metal 205 over-polished is 300-500 angstroms.

步驟305,去除硬掩膜層203上的阻擋層204上的氧化膜206,並留下一定厚度的凹進區域側壁上的阻擋層204上的氧化膜206,如圖4(c)所示。阻擋層204上的氧化膜206用濕法刻蝕去除,如BHF溶液。阻擋層204上的氧化膜206也可以用乾法刻蝕去除,如HF蒸汽或HF蒸汽與乙醇、甲醇或異丙醇的混合物。留下來的凹進區域207側壁上的阻擋層204上的氧化膜206在阻擋層204上形成連續的薄膜,且留下來的氧化膜206的厚度大於5埃。如果凹進區域207側壁上的阻擋層204上的氧化膜206被刻蝕且不能在阻擋層204上形成連續的薄膜,夾在金屬205和介質層202之間的阻擋層204將被過刻蝕,如圖8所示,圖8是POST-TFE樣本的FIB/SEM截面圖,示意了阻擋層過刻蝕。 Step 305, remove the oxide film 206 on the barrier layer 204 on the hard mask layer 203, and leave a certain thickness of the oxide film 206 on the barrier layer 204 on the sidewall of the recessed area, as shown in FIG. 4(c). The oxide film 206 on the barrier layer 204 is removed by wet etching, such as BHF solution. The oxide film 206 on the barrier layer 204 can also be removed by dry etching, such as HF vapor or a mixture of HF vapor and ethanol, methanol or isopropanol. The oxide film 206 on the barrier layer 204 on the sidewall of the remaining recessed region 207 forms a continuous thin film on the barrier layer 204, and the thickness of the remaining oxide film 206 is greater than 5 angstroms. If the oxide film 206 on the barrier layer 204 on the sidewall of the recessed area 207 is etched and a continuous film cannot be formed on the barrier layer 204, the barrier layer 204 sandwiched between the metal 205 and the dielectric layer 202 will be overetched , As shown in Figure 8, Figure 8 is a FIB/SEM cross-sectional view of the POST-TFE sample, indicating that the barrier layer is over-etched.

步驟306,刻蝕去除阻擋層204和硬掩膜層 203,該刻蝕對氧化膜206具有高選擇比,留下來的氧化膜206阻止凹進區域側壁上的阻擋層204被過刻蝕,如圖4(d)所示。高選擇比意味著刻蝕阻擋層204和硬掩膜層203的速率遠高於刻蝕氧化膜206的速率。採用氣相刻蝕去除阻擋層204和硬掩膜層203,刻蝕氣體可以是XeF2、XeF4、XeF6、KrF2、BrF3等。以XeF2為例,XeF2氣體在一定的溫度和壓強下與阻擋層鉭或氮化鉭自發地發生化學反應。XeF2各向同性的選擇性刻蝕鉭或氮化鉭。XeF2氣體對銅和電介質材料都具有良好的選擇比。在刻蝕過程中,XeF2氣體的壓強在0.1-100托之間,較佳者為0.5-20托。XeF2對氧化膜206具有高選擇比,因此在刻蝕阻擋層204和硬掩膜層203的過程中,氧化膜206能阻止凹進區域側壁上的阻擋層204被過刻蝕。如圖7所示,圖7是POST-TFE樣本的STEM截面圖,示意了良好的阻擋層去除結果,即非凹進區域上的阻擋層204完全去除,而夾在金屬205和介質層202之間的阻擋層204沒有被刻蝕和損壞。當非凹進區域上的阻擋層204和硬掩膜層203完全去除後,相鄰的金屬互連結構被介質層202隔開。 In step 306, the barrier layer 204 and the hard mask layer 203 are removed by etching. The etching has a high selectivity to the oxide film 206, and the remaining oxide film 206 prevents the barrier layer 204 on the sidewall of the recessed region from being overetched, such as As shown in Figure 4(d). The high selection ratio means that the etching rate of the barrier layer 204 and the hard mask layer 203 is much higher than the etching rate of the oxide film 206. The barrier layer 204 and the hard mask layer 203 are removed by vapor etching, and the etching gas can be XeF 2 , XeF 4 , XeF 6 , KrF 2 , BrF 3, etc. Taking XeF 2 as an example, the XeF 2 gas spontaneously chemically reacts with the barrier layer of tantalum or tantalum nitride at a certain temperature and pressure. XeF 2 isotropic selective etching of tantalum or tantalum nitride. XeF 2 gas has a good selection ratio for both copper and dielectric materials. During the etching process, the pressure of the XeF 2 gas is between 0.1-100 Torr, preferably 0.5-20 Torr. XeF 2 has a high selectivity to the oxide film 206. Therefore, during the etching of the barrier layer 204 and the hard mask layer 203, the oxide film 206 can prevent the barrier layer 204 on the sidewall of the recessed region from being over-etched. As shown in Figure 7, Figure 7 is a STEM cross-sectional view of the POST-TFE sample, showing a good barrier layer removal result, that is, the barrier layer 204 on the non-recessed area is completely removed, and it is sandwiched between the metal 205 and the dielectric layer 202. The barrier layer 204 in between is not etched or damaged. When the barrier layer 204 and the hard mask layer 203 on the non-recessed area are completely removed, the adjacent metal interconnection structures are separated by the dielectric layer 202.

綜上所述,當採用電抛光工藝去除金屬205且過刻蝕金屬205時,在阻擋層204上形成氧化膜206而使暴露的阻擋層204鈍化,凹進區域側壁上阻擋層204上的氧化膜206的厚度大於硬掩膜層203上阻擋層204上的氧化膜206的厚度。硬掩膜層203上阻擋層204上的氧化膜206被去除後,凹進區域側壁上的阻擋層204上留下來的 氧化膜206在阻擋層204的表面形成連續的薄膜來防止凹進區域側壁上的阻擋層204在去除阻擋層204和硬掩膜層203時過刻蝕,提高了半導體器件的品質。 In summary, when the metal 205 is removed by an electro-polishing process and the metal 205 is over-etched, an oxide film 206 is formed on the barrier layer 204 to passivate the exposed barrier layer 204, and the oxidation on the barrier layer 204 on the sidewall of the recessed region The thickness of the film 206 is greater than the thickness of the oxide film 206 on the barrier layer 204 on the hard mask layer 203. After the oxide film 206 on the barrier layer 204 on the hard mask layer 203 is removed, the barrier layer 204 on the sidewall of the recessed area remains The oxide film 206 forms a continuous thin film on the surface of the barrier layer 204 to prevent the barrier layer 204 on the sidewall of the recessed area from being over-etched when the barrier layer 204 and the hard mask layer 203 are removed, thereby improving the quality of the semiconductor device.

本發明透過上述實施方式及相關圖式說明,己具體、詳實的揭露了相關技術,使本領域的技術人員可以據以實施。而以上所述實施例只是用來說明本發明,而不是用來限制本發明的,本發明的權利範圍,應由本發明的申請專利範圍來界定。至於本文中所述元件數目的改變或等效元件的代替等仍都應屬於本發明的權利範圍。 The present invention has been described in detail through the above-mentioned embodiments and related drawings, and the related technology has been disclosed in detail, so that those skilled in the art can implement it accordingly. The above-mentioned embodiments are only used to illustrate the present invention, not to limit the present invention. The scope of rights of the present invention should be defined by the scope of the patent application of the present invention. As for the change in the number of elements described herein or the replacement of equivalent elements, all should still belong to the scope of the present invention.

201‧‧‧襯底 201‧‧‧Substrate

202‧‧‧介質層 202‧‧‧Media layer

204‧‧‧阻擋層 204‧‧‧Barrier

205‧‧‧金屬 205‧‧‧Metal

207‧‧‧凹進區域 207‧‧‧Recessed area

Claims (17)

一種形成金屬互連結構的方法,包括:在硬掩膜層和介質層上形成凹進區域;在硬掩膜層上、凹進區域的側壁和凹進區域的底部沈積阻擋層;在阻擋層上沈積金屬並使凹進區域填滿金屬;使用電抛光工藝去除非凹進區域上的金屬,並將凹進區域內的金屬過抛光形成凹陷,在電抛光過程中,阻擋層上形成氧化膜,凹進區域側壁上阻擋層上的氧化膜的厚度大於硬掩膜層上阻擋層上的氧化膜的厚度;去除硬掩膜層上阻擋層上的氧化膜,並留下一定厚度的凹進區域側壁上阻擋層上的氧化膜;透過刻蝕去除硬掩膜層和硬掩膜層上的阻擋層和該凹陷側壁上的阻擋層,該刻蝕對氧化膜具有高選擇比,留下來的氧化膜阻止夾在凹進區域內的金屬和介質層之間的阻擋層被過刻蝕。 A method of forming a metal interconnection structure includes: forming a recessed area on a hard mask layer and a dielectric layer; depositing a barrier layer on the hard mask layer, the sidewalls of the recessed area, and the bottom of the recessed area; on the barrier layer Deposit metal on the top and fill the recessed area with metal; use an electro-polishing process to remove the metal on the non-recessed area, and over polish the metal in the recessed area to form a recess. During the electro-polishing process, an oxide film is formed on the barrier layer , The thickness of the oxide film on the barrier layer on the sidewall of the recessed area is greater than the thickness of the oxide film on the barrier layer on the hard mask layer; remove the oxide film on the barrier layer on the hard mask layer, and leave a certain thickness of recess The oxide film on the barrier layer on the sidewall of the region; the hard mask layer and the barrier layer on the hard mask layer and the barrier layer on the sidewall of the recess are removed by etching. The etching has a high selectivity ratio to the oxide film, leaving behind The oxide film prevents the barrier layer sandwiched between the metal and the dielectric layer in the recessed area from being overetched. 根據請求項1所述的方法,其特徵在於,金屬為銅。 The method according to claim 1, wherein the metal is copper. 根據請求項1所述的方法,其特徵在於,阻擋層是鉭、氮化鉭、鈦、氮化鈦、釕、鈷。 The method according to claim 1, wherein the barrier layer is tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, and cobalt. 根據請求項1所述的方法,其特徵在於,阻擋層上形成的氧化膜的厚度與凹進區域內的金屬過抛光的量成正比。 The method according to claim 1, characterized in that the thickness of the oxide film formed on the barrier layer is proportional to the amount of metal overpolishing in the recessed area. 根據請求項4所述的方法,其特徵在於,金屬過抛光的量等於或大於阻擋層和硬掩膜層的厚度。 The method according to claim 4, wherein the amount of metal overpolishing is equal to or greater than the thickness of the barrier layer and the hard mask layer. 根據請求項4所述的方法,其特徵在於,金屬過抛光的量為300-500埃。 The method according to claim 4, characterized in that the amount of metal over-polishing is 300-500 angstroms. 根據請求項1所述的方法,其特徵在於,採用濕法刻蝕去除阻擋層上的氧化膜。 The method according to claim 1, characterized in that the oxide film on the barrier layer is removed by wet etching. 根據請求項7所述的方法,其特徵在於,阻擋層上的氧化膜使用BHF溶液去除。 The method according to claim 7, wherein the oxide film on the barrier layer is removed using a BHF solution. 根據請求項1所述的方法,其特徵在於,採用乾法刻蝕去除阻擋層上的氧化膜。 The method according to claim 1, characterized in that the oxide film on the barrier layer is removed by dry etching. 根據請求項9所述的方法,其特徵在於,阻擋層上的氧化膜使用HF蒸汽或HF蒸汽與乙醇、甲醇或異丙醇的混合物去除。 The method according to claim 9, characterized in that the oxide film on the barrier layer is removed using HF steam or a mixture of HF steam and ethanol, methanol or isopropanol. 根據請求項1所述的方法,其特徵在於,留下來的氧化膜在阻擋層上形成連續的薄膜。 The method according to claim 1, wherein the remaining oxide film forms a continuous thin film on the barrier layer. 根據請求項11所述的方法,其特徵在於,留下來的氧化膜的厚度大於5埃。 The method according to claim 11, wherein the thickness of the remaining oxide film is greater than 5 angstroms. 根據請求項1所述的方法,其特徵在於,採用氣相刻蝕去除阻擋層和硬掩膜層。 The method according to claim 1, characterized in that the barrier layer and the hard mask layer are removed by vapor etching. 根據請求項13所述的方法,其特徵在於,氣相刻蝕的氣體為XeF2、XeF4、XeF6、KrF2、BrF3The method according to claim 13, characterized in that the gas for gas phase etching is XeF 2 , XeF 4 , XeF 6 , KrF 2 , BrF 3 . 根據請求項1所述的方法,其特徵在於,介質層的材料為低k介質材料。 The method according to claim 1, wherein the material of the dielectric layer is a low-k dielectric material. 根據請求項1所述的方法,其特徵在於,介質層為兩層或兩層以上。 The method according to claim 1, wherein the medium layer is two or more layers. 根據請求項16所述的方法,其特徵在於,介質層為兩層,上層的介電常數高於下層的介電常數。 The method according to claim 16, characterized in that the dielectric layer is two layers, and the dielectric constant of the upper layer is higher than the dielectric constant of the lower layer.
TW105100198A 2016-01-05 2016-01-05 Method for forming metal interconnection structure TWI697983B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105100198A TWI697983B (en) 2016-01-05 2016-01-05 Method for forming metal interconnection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105100198A TWI697983B (en) 2016-01-05 2016-01-05 Method for forming metal interconnection structure

Publications (2)

Publication Number Publication Date
TW201725655A TW201725655A (en) 2017-07-16
TWI697983B true TWI697983B (en) 2020-07-01

Family

ID=60047483

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105100198A TWI697983B (en) 2016-01-05 2016-01-05 Method for forming metal interconnection structure

Country Status (1)

Country Link
TW (1) TWI697983B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115855329A (en) * 2023-01-10 2023-03-28 无锡胜脉电子有限公司 Metal high-pressure sensor and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW267134B (en) * 1992-02-07 1996-01-01 Kimberly Clark Co
TW200607003A (en) * 2004-08-06 2006-02-16 Taiwan Semiconductor Mfg Co Ltd Metal interconnect features with a doping gradient and method for fabricating the same
TW201009912A (en) * 2008-08-21 2010-03-01 Acm Res Shanghai Inc Barrier layer removal method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW267134B (en) * 1992-02-07 1996-01-01 Kimberly Clark Co
TW200607003A (en) * 2004-08-06 2006-02-16 Taiwan Semiconductor Mfg Co Ltd Metal interconnect features with a doping gradient and method for fabricating the same
TW201009912A (en) * 2008-08-21 2010-03-01 Acm Res Shanghai Inc Barrier layer removal method and apparatus

Also Published As

Publication number Publication date
TW201725655A (en) 2017-07-16

Similar Documents

Publication Publication Date Title
US10546743B2 (en) Advanced interconnect with air gap
US9633897B2 (en) Air-gap forming techniques for interconnect structures
TWI608541B (en) Method for forming air gap interconnect structure
TWI452658B (en) Through substrate via including variable sidewall profile
US9214429B2 (en) Trench interconnect having reduced fringe capacitance
US11264328B2 (en) Capping layer for improved deposition selectivity
TWI613783B (en) Integrated circuit structure with metal crack stop and methods of forming same
KR101842903B1 (en) Method for forming air gap interconnect structure
KR102274848B1 (en) Barrier layer removal method and semiconductor structure forming method
KR102247940B1 (en) Method for forming metal interconnection
US20140097539A1 (en) Technique for uniform cmp
KR20150067748A (en) Bi-layer hard mask for robust metalization profile
TWI697983B (en) Method for forming metal interconnection structure
CN104022070B (en) The forming method of interconnection structure
CN105144363B (en) The forming method of interconnection structure
TWI705162B (en) Method for removing barrier layer and method for forming semiconductor structure
TWI704607B (en) Method of forming cobalt contact module and cobalt contact module formed thereby
KR20120050327A (en) Method for forming storage node of capacitor
TWI621234B (en) Method of forming interconnect structure
TWI717346B (en) Method for removing barrier layer and method for forming semiconductor structure
WO2016058174A1 (en) Barrier layer removal method and semiconductor structure forming method
CN102969274B (en) A kind of forming method of copper damascene structure
US20200266100A1 (en) Techniques to Improve Critical Dimension Width and Depth Uniformity Between Features with Different Layout Densities
JP2011155074A (en) Manufacturing method of semiconductor device
TW201701437A (en) Forming fence conductors using spacer etched trenches