TWI621234B - Method of forming interconnect structure - Google Patents

Method of forming interconnect structure Download PDF

Info

Publication number
TWI621234B
TWI621234B TW103117335A TW103117335A TWI621234B TW I621234 B TWI621234 B TW I621234B TW 103117335 A TW103117335 A TW 103117335A TW 103117335 A TW103117335 A TW 103117335A TW I621234 B TWI621234 B TW I621234B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
forming
recessed region
interconnect structure
Prior art date
Application number
TW103117335A
Other languages
Chinese (zh)
Other versions
TW201545299A (en
Inventor
Jian Wang
Zhaowei Jia
David Wang
Original Assignee
Acm Res Shanghai Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acm Res Shanghai Inc filed Critical Acm Res Shanghai Inc
Priority to TW103117335A priority Critical patent/TWI621234B/en
Publication of TW201545299A publication Critical patent/TW201545299A/en
Application granted granted Critical
Publication of TWI621234B publication Critical patent/TWI621234B/en

Links

Abstract

本發明揭示了一種互連結構的形成方法,包括:提供具有介質層的矽片;在介質層上形成第一凹槽區,第一凹槽區用於形成互連結構;在介質層上形成第二凹槽區,第二凹槽區用於形成虛擬結構;在介質層上沈積阻擋層,阻擋層覆蓋介質層的第一凹槽區、第二凹槽區和介質層的非凹槽區;在阻擋層上沈積金屬層,金屬層填滿第一凹槽區和第二凹槽區並覆蓋在非凹槽區上;將非凹槽區上的金屬層去除;將非凹槽區上的阻擋層去除。本發明透過在矽片的介質層上形成虛擬結構,當對非凹槽區上的金屬層進行過度抛光時,電流將更多的從虛擬結構傳導,避免阻擋層被氧化,從而能夠均勻地、完全地去除非凹槽區上的阻擋層。 The present invention discloses a method of forming an interconnect structure, comprising: providing a germanium having a dielectric layer; forming a first recessed region on the dielectric layer, the first recessed region for forming an interconnect structure; forming on the dielectric layer a second recessed region, wherein the second recessed region is used to form a dummy structure; a barrier layer is deposited on the dielectric layer, the barrier layer covering the first recessed region, the second recessed region of the dielectric layer, and the non-recessed region of the dielectric layer Depositing a metal layer on the barrier layer, the metal layer filling the first recessed region and the second recessed region and covering the non-recessed region; removing the metal layer on the non-recessed region; The barrier is removed. The present invention forms a virtual structure on the dielectric layer of the cymbal. When the metal layer on the non-groove area is over-polished, the current will be more transmitted from the dummy structure, and the barrier layer is prevented from being oxidized, thereby enabling uniform, The barrier layer on the non-recessed area is completely removed.

Description

互連結構的形成方法 Method of forming interconnect structure

本發明關於半導體工藝技術領域,尤其關於一種互連結構的形成方法。 The present invention relates to the field of semiconductor process technology, and more particularly to a method of forming an interconnect structure.

半導體器件通常是由半導體材料,例如矽片,經過一系列工藝加工製作而成。矽片可能經過,例如掩模、刻蝕、沈積等工藝以形成半導體器件的電路。隨著半導體器件的集成度不斷提高,金屬互連結構快速發展並應用在半導體器件中。多次掩模和刻蝕工藝能夠在矽片上的介質層中形成凹槽區。然後,進行沈積工藝,在介質層的凹槽區和非凹槽區沈積金屬層。沈積在介質層的非凹槽區上的金屬層需要去除以隔離凹槽區的圖形並形成互連結構。為了防止金屬層擴散或侵入到介質層內,通常會在介質層上沈積金屬層之前,先在介質層上沈積阻擋層,然後金屬層沈積在阻擋層上。 Semiconductor devices are typically fabricated from a semiconductor material, such as a ruthenium, through a series of processes. The ruthenium may be subjected to processes such as masking, etching, deposition, etc. to form a circuit of the semiconductor device. As the integration of semiconductor devices continues to increase, metal interconnect structures are rapidly evolving and used in semiconductor devices. Multiple masking and etching processes enable the formation of recessed regions in the dielectric layer on the wafer. Then, a deposition process is performed to deposit a metal layer in the recessed region and the non-groove region of the dielectric layer. The metal layer deposited on the non-groove area of the dielectric layer needs to be removed to isolate the pattern of the recessed regions and form an interconnect structure. In order to prevent the metal layer from diffusing or intruding into the dielectric layer, a barrier layer is usually deposited on the dielectric layer before depositing the metal layer on the dielectric layer, and then the metal layer is deposited on the barrier layer.

去除介質層的非凹槽區上的金屬層和阻擋層的常規方法,包括例如化學機械抛光(CMP)。CMP方法廣泛應用在半導體工業中以抛光和平坦化介質層的非凹槽區上的金屬層,以形成互連結構。在CMP工藝中,矽片放在 位於抛光盤上的抛光墊上,然後向矽片施加壓力使矽片壓向抛光墊,矽片和抛光墊彼此相對運動,同時施加壓力抛光和平坦化矽片表面。在抛光過程中,將抛光液分配到抛光墊上,以利於抛光。CMP方法雖然能夠達成矽片表面全局平坦化,但是,由於CMP存在較強的機械力,CMP方法對半導體結構具有有害的影響,尤其是當半導體結構的特徵尺寸變的越來越小,銅和低k/超低k介質層用於半導體結構時,較強的機械力可能在半導體結構上引起與應力相關的缺陷。 Conventional methods of removing metal and barrier layers on non-recessed regions of a dielectric layer include, for example, chemical mechanical polishing (CMP). CMP methods are widely used in the semiconductor industry to polish and planarize metal layers on non-recessed regions of dielectric layers to form interconnect structures. In the CMP process, the cymbals are placed Located on the polishing pad on the polishing pad, pressure is applied to the die to press the die against the polishing pad, and the die and polishing pad move relative to each other while pressure is applied to polish and planarize the surface of the blade. During the polishing process, the polishing liquid is dispensed onto the polishing pad to facilitate polishing. Although the CMP method can achieve global planarization of the surface of the ruthenium, the CMP method has a detrimental effect on the semiconductor structure due to the strong mechanical force of the CMP, especially when the feature size of the semiconductor structure becomes smaller and smaller, copper and When a low-k/ultra-k dielectric layer is used in a semiconductor structure, strong mechanical forces may cause stress-related defects in the semiconductor structure.

去除介質層的非凹槽區上的金屬層的另一種方法是電化學抛光工藝。電化學抛光工藝去除金屬層具有很高的均勻性,同時對阻擋層的選擇比也很高,電化學抛光工藝是一種無應力抛光工藝。然而,在電化學抛光工藝中,為了保證介質層的非凹槽區上的金屬層全部去除,通常會有一個過度抛光過程。過度抛光之後,發現一些區域,比如,場區(field area)、相鄰兩金屬線之間比較寬廣的區域或者孤立的金屬線的兩邊區域,在過度抛光階段,這些區域非凹槽區上的金屬層全部去除,使得阻擋層裸露出來,電流透過阻擋層傳導,導致在這些區域,阻擋層的上表面被氧化形成一層氧化物薄膜。換言之,在那些金屬互連線密度較低的區域的阻擋層表面形成的氧化物薄膜的厚度會比在金屬互連線密度較高的區域的阻擋層表面形成的氧化物薄膜的厚度為厚,這是因為金屬互連線,比如銅線,的電阻要比阻擋層的電阻小很多,在銅線密度較高的區域 電流更多地從銅線傳導。形成在阻擋層表面的氧化物薄膜會阻礙阻擋層的去除,如果阻擋層不能被均勻地去除,就會導致半導體器件的失效。 Another method of removing the metal layer on the non-recessed regions of the dielectric layer is an electrochemical polishing process. The electrochemical polishing process removes the metal layer with high uniformity and high selectivity to the barrier layer. The electrochemical polishing process is a stress-free polishing process. However, in the electrochemical polishing process, in order to ensure that all of the metal layers on the non-recessed regions of the dielectric layer are removed, there is usually an over-polishing process. After over-polishing, some areas are found, such as a field area, a relatively wide area between two adjacent metal lines, or both sides of an isolated metal line. In the over-polishing stage, these areas are not recessed. The metal layers are all removed such that the barrier layer is exposed and current is conducted through the barrier layer, resulting in the upper surface of the barrier layer being oxidized to form an oxide film in these regions. In other words, the thickness of the oxide film formed on the surface of the barrier layer in the region where the metal interconnect density is low may be thicker than the thickness of the oxide film formed on the surface of the barrier layer in the region where the metal interconnect density is higher. This is because metal interconnects, such as copper, have a much lower resistance than the barrier, in areas with high copper density. The current is conducted more from the copper wire. The oxide film formed on the surface of the barrier layer hinders the removal of the barrier layer, and if the barrier layer cannot be uniformly removed, it causes failure of the semiconductor device.

本發明的目的是提供一種互連結構的形成方法,該方法能夠在過度抛光介質層非凹槽區上的金屬層時,阻擋層不會被氧化,從而使後續去除介質層非凹槽區上的阻擋層時,非凹槽區上的阻擋層能夠被均勻地、完全地去除。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of forming an interconnect structure capable of not oxidizing a barrier layer when over-polishing a metal layer on a non-recessed region of the dielectric layer, thereby subsequently removing the non-recessed region of the dielectric layer The barrier layer on the non-recessed area can be removed uniformly and completely.

為達成上述目的,本發明提出的互連結構的形成方法,包括:提供具有介質層的矽片;在介質層上形成第一凹槽區,第一凹槽區用於形成互連結構;在介質層上形成第二凹槽區,第二凹槽區用於形成虛擬結構;在介質層上沈積阻擋層,阻擋層覆蓋介質層的第一凹槽區、第二凹槽區和介質層的非凹槽區;在阻擋層上沈積金屬層,金屬層填滿第一凹槽區和第二凹槽區並覆蓋在非凹槽區上;將非凹槽區上的金屬層去除;將非凹槽區上的阻擋層去除。 In order to achieve the above object, a method for forming an interconnect structure according to the present invention includes: providing a germanium having a dielectric layer; forming a first recessed region on the dielectric layer, wherein the first recessed region is used to form an interconnect structure; Forming a second recessed region on the dielectric layer, the second recessed region is for forming a dummy structure; depositing a barrier layer on the dielectric layer, the barrier layer covering the first recessed region, the second recessed region and the dielectric layer of the dielectric layer a non-recessed region; a metal layer is deposited on the barrier layer, the metal layer fills the first recessed region and the second recessed region and covers the non-recessed region; and the metal layer on the non-recessed region is removed; The barrier layer on the recessed area is removed.

綜上所述,本發明透過在矽片的介質層上形成虛擬結構,當對非凹槽區上的金屬層進行過度抛光時,電流將更多的從虛擬結構傳導,避免阻擋層被氧化,從而能夠均勻地、完全地去除非凹槽區上的阻擋層。 In summary, the present invention forms a virtual structure on the dielectric layer of the cymbal. When the metal layer on the non-groove area is overpolished, the current will be more transmitted from the dummy structure to prevent the barrier layer from being oxidized. Thereby, the barrier layer on the non-groove area can be uniformly and completely removed.

200‧‧‧虛擬結構 200‧‧‧Virtual structure

201‧‧‧矽片 201‧‧‧ Picture

202‧‧‧介質層 202‧‧‧ dielectric layer

203‧‧‧阻擋層 203‧‧‧Block

204‧‧‧金屬層 204‧‧‧metal layer

205‧‧‧氧化物薄膜 205‧‧‧Oxide film

300‧‧‧虛擬結構 300‧‧‧Virtual structure

400‧‧‧虛擬結構 400‧‧‧Virtual Structure

圖1揭示了一實施例的大馬士革工藝的流程圖。 Figure 1 discloses a flow chart of a damascene process of an embodiment.

圖2揭示了一實施例的大馬士革工藝的剖面結構示意圖。 Figure 2 is a schematic cross-sectional view showing the damascene process of an embodiment.

圖3揭示了另一實施例的大馬士革工藝的流程圖。 Figure 3 discloses a flow chart of another embodiment of the damascene process.

圖4揭示了在矽片上的場區形成虛擬結構的頂視圖,其中,非凹槽區上的阻擋層未去除。 Figure 4 discloses a top view of the formation of a virtual structure on the field of the cymbal, wherein the barrier layer on the non-recessed area is not removed.

圖4(a)是圖4沿A-A的剖視圖。 Figure 4 (a) is a cross-sectional view taken along line A-A of Figure 4;

圖4(b)是圖4沿B-B的剖視圖。 Figure 4 (b) is a cross-sectional view of Figure 4 taken along line B-B.

圖5揭示了在矽片上的場區形成虛擬結構的頂視圖,其中,非凹槽區上的阻擋層已去除。 Figure 5 discloses a top view of the formation of a virtual structure on the field of the cymbal, wherein the barrier layer on the non-recessed area has been removed.

圖5(a)是圖5沿A-A的剖視圖。 Figure 5 (a) is a cross-sectional view taken along line A-A of Figure 5.

圖5(b)是圖5沿B-B的剖視圖。 Figure 5 (b) is a cross-sectional view of Figure 5 taken along line B-B.

圖6揭示了在矽片上相鄰兩金屬線之間比較寬廣的區域形成虛擬結構的頂視圖,其中,非凹槽區上的阻擋層已去除。 Figure 6 discloses a top view of a relatively wide area between two adjacent metal lines on a hapten to form a virtual structure in which the barrier layer on the non-recessed area has been removed.

圖7揭示了在矽片上孤立的金屬線的兩邊區域形成虛擬結構的頂視圖,其中,非凹槽區上的阻擋層已去除。 Figure 7 discloses a top view of the virtual structure formed on both sides of the isolated metal line on the cymbal, wherein the barrier layer on the non-recessed area has been removed.

圖8(a)至圖8(i)列舉了虛擬結構的各種形狀示意圖。 Figures 8(a) through 8(i) illustrate various shapes of the virtual structure.

圖9(a)揭示了未設置虛擬結構的矽片在去除阻擋層後的掃描電子顯微鏡(SEM)的頂視圖。 Figure 9 (a) shows a top view of a scanning electron microscope (SEM) of a ruthenium without a dummy structure after removal of the barrier layer.

圖9(b)揭示了形成有虛擬結構的矽片在去除阻擋層後的掃描電子顯微鏡(SEM)的頂視圖。 Figure 9(b) shows a top view of a scanning electron microscope (SEM) of a ruthenium formed with a virtual structure after removal of the barrier layer.

為詳細說明本發明的技術內容、所達成目的及效果,下面將結合實施例並配合圖式予以詳細說明。 The details of the technical contents, the objects and effects achieved by the present invention will be described in detail below with reference to the embodiments.

參考圖1和圖2所示,揭示了在半導體器件中形成互連結構的一實施例的大馬士革工藝。圖1揭示了一實施例的大馬士革工藝的流程圖。圖2揭示了一實施例的大馬士革工藝的剖面結構示意圖。結合圖1和圖2所示,在步驟110中,提供一矽片201或其他類似基板,矽片201具有金屬層間介質層(IMD)202,以下簡稱介質層。介質層202的材料可以是二氧化矽或者類似於二氧化矽的材料,或者其他比二氧化矽的介電常數還要低的介質材料以降低互連結構之間的寄生電容。在步驟120中,在介質層202上形成凹槽區。在步驟130中,在介質層202上沈積阻擋層203。可以採用,例如,化學氣相沈積(CVD)、物理氣相沈積(PVD)或原子層沈積(ALD)等方法在介質層202上沈積阻擋層203。阻擋層203覆蓋介質層202的凹槽區和非凹槽區。考慮到介質層202也可以具有孔狀結構,因此,阻擋層203可以由能夠阻止後續工藝中沈積的金屬層204擴散到介質層202內的材料構成,阻擋層203對介質層202和金屬層204具有很好的粘附性。通常,阻擋層203可以由以下材料構成,比如,鈦、鉭、氮化鈦、氮化鉭、鎢、氮化鎢、氮化矽鉭(TaSiN)以及氮化矽鎢(WSiN)等。 Referring to Figures 1 and 2, a damascene process for forming an embodiment of an interconnect structure in a semiconductor device is disclosed. Figure 1 discloses a flow chart of a damascene process of an embodiment. Figure 2 is a schematic cross-sectional view showing the damascene process of an embodiment. 1 and 2, in step 110, a die 201 or other similar substrate is provided. The die 201 has an inter-metal dielectric layer (IMD) 202, hereinafter referred to as a dielectric layer. The material of the dielectric layer 202 may be cerium oxide or a material similar to cerium oxide, or other dielectric material having a lower dielectric constant than cerium oxide to reduce parasitic capacitance between interconnect structures. In step 120, a recessed region is formed on the dielectric layer 202. In step 130, a barrier layer 203 is deposited over the dielectric layer 202. The barrier layer 203 may be deposited on the dielectric layer 202 using, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD). The barrier layer 203 covers the recessed and non-recessed regions of the dielectric layer 202. Considering that the dielectric layer 202 may also have a hole-like structure, the barrier layer 203 may be composed of a material capable of preventing the metal layer 204 deposited in a subsequent process from diffusing into the dielectric layer 202, the barrier layer 203 to the dielectric layer 202 and the metal layer 204. Has good adhesion. Generally, the barrier layer 203 may be composed of, for example, titanium, tantalum, titanium nitride, tantalum nitride, tungsten, tungsten nitride, tantalum nitride (TaSiN), and tantalum nitride (WSiN).

在步驟140中,在阻擋層203上沈積金屬層204。可以採用,例如,化學氣相沈積(CVD)、物理氣相沈 積(PVD)、原子層沈積(ALD)或電鍍等方法在阻擋層203上沈積金屬層204。較佳地,在沈積金屬層204之前,可以先在阻擋層203上沈積種子層。種子層的材料與金屬層204一致,其目的在於便於金屬層204沈積並粘附在阻擋層203上。金屬層204填滿凹槽區並覆蓋在非凹槽區上。金屬層204可以由各種導電材料構成,例如,銅、鋁、鎳、鋅、銀、金、錫、鉻、超導材料等。較佳地,金屬層204的材料為銅。 In step 140, a metal layer 204 is deposited over the barrier layer 203. Can be used, for example, chemical vapor deposition (CVD), physical vapor deposition A metal layer 204 is deposited on the barrier layer 203 by methods such as PVD, atomic layer deposition (ALD), or electroplating. Preferably, the seed layer may be deposited on the barrier layer 203 prior to depositing the metal layer 204. The material of the seed layer is identical to the metal layer 204 for the purpose of facilitating deposition and adhesion of the metal layer 204 to the barrier layer 203. The metal layer 204 fills the recessed area and covers the non-recessed area. The metal layer 204 may be composed of various conductive materials such as copper, aluminum, nickel, zinc, silver, gold, tin, chromium, superconducting materials, and the like. Preferably, the material of the metal layer 204 is copper.

在步驟150中,將介質層202的非凹槽區上的金屬層204去除。可以採用電抛光將介質層202的非凹槽區上的金屬層204去除。關於電抛光的詳細描述,可以參見美國專利申請號09/497,894,該專利所揭示的電抛光工藝適用於此。 In step 150, the metal layer 204 on the non-recessed region of the dielectric layer 202 is removed. The metal layer 204 on the non-recessed regions of the dielectric layer 202 can be removed by electropolishing. For a detailed description of electropolishing, reference is made to U.S. Patent Application Serial No. 09/497,894, the disclosure of which is incorporated herein by reference.

在步驟160中,將介質層202的非凹槽區上的阻擋層203去除。可以採用,例如濕法刻蝕、乾法化學刻蝕、乾法等離子刻蝕等將介質層202的非凹槽區上的阻擋層203去除。較佳地,使用XeF2氣相刻蝕的方法去除介質層202的非凹槽區上的阻擋層203。如圖2所示,為了將介質層202的非凹槽區上的金屬層204全部去除,在去除介質層202的非凹槽區上的金屬層204時,實施過度抛光。過度抛光之後,介質層202的非凹槽區上的金屬層204全部去除,介質層202的非凹槽區上的阻擋層203暴露出來。電流透過阻擋層203傳導,導致位於介質層202的非凹槽區上的一些區域,例如,場區(field area)、相鄰兩金屬線 之間比較寬廣的區域或者孤立的金屬線的兩邊區域,的阻擋層203被氧化,從而在阻擋層203的表面形成一層氧化物薄膜205。要想去除介質層202的非凹槽區上的阻擋層203,需要先將阻擋層203表面的氧化物薄膜205去除。此外,氧化物薄膜205的厚度與互連結構的密度有關。也就是說,在金屬互連線密度較低的區域的阻擋層表面形成的氧化物薄膜的厚度比在金屬互連線密度較高的區域的阻擋層表面形成的氧化物薄膜的厚度為厚,這是因為金屬層204,比如銅層,的電阻要比阻擋層203的電阻小很多,在銅線密度較高的區域電流更多地從銅線傳導。形成在阻擋層203表面的氧化物薄膜205會阻礙阻擋層203的去除,如果阻擋層203不能被均勻地去除,就會導致半導體器件的失效。 In step 160, the barrier layer 203 on the non-recessed region of the dielectric layer 202 is removed. The barrier layer 203 on the non-recessed region of the dielectric layer 202 can be removed by, for example, wet etching, dry chemical etching, dry plasma etching, or the like. Preferably, the barrier layer 203 on the non-recessed region of the dielectric layer 202 is removed using a XeF 2 vapor phase etch. As shown in FIG. 2, in order to remove all of the metal layer 204 on the non-groove area of the dielectric layer 202, over-polishing is performed when the metal layer 204 on the non-groove area of the dielectric layer 202 is removed. After over-polishing, the metal layer 204 on the non-recessed regions of the dielectric layer 202 is completely removed, and the barrier layer 203 on the non-groove regions of the dielectric layer 202 is exposed. Current is conducted through the barrier layer 203, resulting in regions located on the non-recessed regions of the dielectric layer 202, such as a field area, a relatively wide area between adjacent two metal lines, or both sides of an isolated metal line. The barrier layer 203 is oxidized to form an oxide film 205 on the surface of the barrier layer 203. In order to remove the barrier layer 203 on the non-groove area of the dielectric layer 202, the oxide film 205 on the surface of the barrier layer 203 needs to be removed first. Further, the thickness of the oxide film 205 is related to the density of the interconnect structure. That is, the thickness of the oxide film formed on the surface of the barrier layer in the region where the metal interconnect density is low is thicker than the thickness of the oxide film formed on the surface of the barrier layer in the region where the metal interconnect density is higher. This is because the metal layer 204, such as a copper layer, has a much lower electrical resistance than the barrier layer 203, and conducts more current from the copper wire in areas where the copper wire density is higher. The oxide film 205 formed on the surface of the barrier layer 203 hinders the removal of the barrier layer 203, and if the barrier layer 203 cannot be uniformly removed, it causes failure of the semiconductor device.

為了解決上述技術問題,參考圖3至圖5(b)所示,揭示了另一實施例的大馬士革工藝。與前述的實施例所揭示的大馬士革工藝相比,本實施例的大馬士革工藝在介質層的場區(field area)形成虛擬結構200,以避免實施過度抛光金屬層204時在阻擋層203表面產生氧化物薄膜205。如圖3所示,本實施例的大馬士革工藝包括如下步驟。 In order to solve the above technical problems, a damascene process of another embodiment is disclosed with reference to FIGS. 3 to 5(b). Compared with the damascene process disclosed in the foregoing embodiments, the damascene process of the present embodiment forms the dummy structure 200 in the field area of the dielectric layer to avoid oxidation on the surface of the barrier layer 203 when the over-polished metal layer 204 is applied. Film 205. As shown in FIG. 3, the damascene process of this embodiment includes the following steps.

在步驟210中,提供一具有金屬層間介質層(IMD)202,以下簡稱介質層的矽片201或其他類似基板。介質層202的材料可以是二氧化矽或者類似於二氧化矽的材料,或者其他比二氧化矽的介電常數還要低的介質材料 以降低互連結構之間的寄生電容。 In step 210, a ruthenium 201 or other similar substrate having a metal interlayer dielectric layer (IMD) 202, hereinafter referred to as a dielectric layer, is provided. The material of the dielectric layer 202 may be cerium oxide or a material similar to cerium oxide, or other dielectric material having a lower dielectric constant than cerium oxide. To reduce the parasitic capacitance between the interconnect structures.

在步驟220中,在介質層202上形成第一凹槽區,第一凹槽區用於形成互連結構。 In step 220, a first recessed region is formed on dielectric layer 202, the first recessed region being used to form an interconnect structure.

在步驟230中,在介質層202上形成第二凹槽區,第二凹槽區用於形成虛擬結構200。在一個實施例中,虛擬結構200形成在介質層202的場區。在一個實施例中,互連結構和虛擬結構200可以同時形成在介質層202上。虛擬結構200的深度和寬度與互連結構的深度和寬度一致。本領域的技術人員可以理解的是,虛擬結構200也可以單獨地形成在介質層202上,且虛擬結構200的深度和寬度也可以不同於互連結構的深度和寬度。虛擬結構200的材料可以與互連結構的材料相同或不同。 In step 230, a second recessed region is formed on the dielectric layer 202, and the second recessed region is used to form the dummy structure 200. In one embodiment, the virtual structure 200 is formed in a field region of the dielectric layer 202. In one embodiment, the interconnect structure and dummy structure 200 can be formed simultaneously on the dielectric layer 202. The depth and width of the virtual structure 200 are consistent with the depth and width of the interconnect structure. It will be understood by those skilled in the art that the dummy structure 200 may also be separately formed on the dielectric layer 202, and the depth and width of the dummy structure 200 may also be different from the depth and width of the interconnect structure. The material of the dummy structure 200 may be the same as or different from the material of the interconnect structure.

在步驟240中,在介質層202上沈積阻擋層203,阻擋層203覆蓋介質層202的第一凹槽區、第二凹槽區和介質層202的非凹槽區。 In step 240, a barrier layer 203 is deposited over the dielectric layer 202, the barrier layer 203 covering the first recessed regions of the dielectric layer 202, the second recessed regions, and the non-recessed regions of the dielectric layer 202.

在步驟250中,在阻擋層203上沈積金屬層204,金屬層204填滿第一凹槽區和第二凹槽區並覆蓋在非凹槽區上。較佳地,在沈積金屬層204之前,可以先在阻擋層203上沈積種子層。種子層的材料與金屬層204一致,其目的在於便於金屬層204沈積並粘附在阻擋層203上。 In step 250, a metal layer 204 is deposited over the barrier layer 203, and the metal layer 204 fills the first recessed region and the second recessed region and overlies the non-recessed region. Preferably, the seed layer may be deposited on the barrier layer 203 prior to depositing the metal layer 204. The material of the seed layer is identical to the metal layer 204 for the purpose of facilitating deposition and adhesion of the metal layer 204 to the barrier layer 203.

在步驟260中,將介質層202的非凹槽區上的金屬層204去除。較佳地,非凹槽區上的金屬層204的去除工藝包括兩步,第一步採用化學機械抛光的方法將部分金屬層204去除以獲得更好的表面平整度,第二步採用電 化學抛光的方法將非凹槽區上餘下的金屬層204去除,以防止器件受到破壞。 In step 260, the metal layer 204 on the non-recessed region of the dielectric layer 202 is removed. Preferably, the removal process of the metal layer 204 on the non-groove area comprises two steps. The first step uses chemical mechanical polishing to remove part of the metal layer 204 to obtain better surface flatness, and the second step uses electricity. The chemical polishing method removes the remaining metal layer 204 on the non-recessed regions to prevent damage to the device.

在步驟270中,將介質層202的非凹槽區上的阻擋層203去除。較佳地,使用XeF2氣相刻蝕的方法去除介質層202的非凹槽區上的阻擋層203。保留在第一凹槽區的金屬層204形成互連結構。保留在第二凹槽區的金屬層204形成虛擬結構200。如圖5至圖5(b)所示,由於在矽片上的場區形成有虛擬結構200,即使金屬層204被過度抛光,由於虛擬結構200的電阻比阻擋層203的電阻小很多,電流更多的從虛擬結構200傳導,因此,阻擋層203不會被氧化,從而能夠均勻地去除非凹槽區上的阻擋層203。 In step 270, the barrier layer 203 on the non-recessed region of the dielectric layer 202 is removed. Preferably, the barrier layer 203 on the non-recessed region of the dielectric layer 202 is removed using a XeF 2 vapor phase etch. The metal layer 204 remaining in the first recess region forms an interconnect structure. The metal layer 204 remaining in the second recess region forms the dummy structure 200. As shown in FIGS. 5 to 5(b), since the dummy structure 200 is formed in the field region on the cymbal, even if the metal layer 204 is excessively polished, since the resistance of the dummy structure 200 is much smaller than that of the barrier layer 203, the current More is conducted from the dummy structure 200, and therefore, the barrier layer 203 is not oxidized, so that the barrier layer 203 on the non-groove area can be uniformly removed.

如圖3至圖5(b)所示,形成在介質層場區的虛擬結構200的密度是矽片上互連結構密度的50%-100%。兩相鄰近的互連結構和虛擬結構200間的間距W1為20nm-5000nm。虛擬結構200的尺寸為20nm-5000nm,具體的,虛擬結構200的寬度Dw為20nm-5000nm,虛擬結構200的長度D1為20nm-5000nm。 As shown in FIGS. 3 to 5(b), the density of the dummy structure 200 formed in the dielectric layer field region is 50% to 100% of the density of the interconnect structure on the cymbal. The pitch W1 between the two adjacent interconnect structures and the dummy structure 200 is 20 nm to 5000 nm. The size of the dummy structure 200 is 20 nm to 5000 nm. Specifically, the width Dw of the dummy structure 200 is 20 nm to 5000 nm, and the length D1 of the dummy structure 200 is 20 nm to 5000 nm.

在一個實施例中,如果相鄰兩金屬線,也就是相鄰兩互連結構之間的間距太寬,在實施過度抛光金屬層204時,阻擋層203的表面也容易被氧化產生氧化物薄膜205。因此,在矽片的介質層上相鄰兩金屬線之間較寬廣的區域同樣可以形成虛擬結構300,以避免實施過度抛光金屬層204時在阻擋層203表面產生氧化物薄膜205,如圖6所示。相鄰兩金屬線之間的間距W3為60nm或更寬。虛擬結 構300的大小可以與虛擬結構200的大小相同。 In one embodiment, if the spacing between adjacent two metal lines, that is, between adjacent two interconnect structures is too wide, the surface of the barrier layer 203 is also easily oxidized to form an oxide film when the over-polished metal layer 204 is implemented. 205. Therefore, the dummy structure 300 can also be formed on a wider area between adjacent metal lines on the dielectric layer of the cymbal to avoid the formation of the oxide film 205 on the surface of the barrier layer 203 when the metal layer 204 is excessively polished, as shown in FIG. 6. Shown. The pitch W3 between adjacent two metal lines is 60 nm or more. Virtual knot The size of the structure 300 can be the same as the size of the virtual structure 200.

在一個實施例中,如果矽片上孤立的金屬線的兩邊區域較寬廣,在實施過度抛光金屬層204時,阻擋層203的表面也容易被氧化產生氧化物薄膜205。因此,在矽片的介質層上孤立的金屬線的兩邊區域同樣可以形成虛擬結構400,以避免實施過度抛光金屬層204時在阻擋層203表面產生氧化物薄膜205,如圖7所示。虛擬結構400的密度是矽片上互連結構密度的20%-80%。虛擬結構400的大小可以與虛擬結構200的大小相同。 In one embodiment, if the two sides of the isolated metal wire on the die are wider, the surface of the barrier layer 203 is also easily oxidized to form the oxide film 205 when the over-polished metal layer 204 is applied. Therefore, the dummy structure 400 can also be formed on both sides of the isolated metal line on the dielectric layer of the cymbal to avoid the formation of the oxide film 205 on the surface of the barrier layer 203 when the over-polishing metal layer 204 is applied, as shown in FIG. The density of the dummy structure 400 is between 20% and 80% of the density of the interconnect structure on the cymbal. The size of the virtual structure 400 can be the same as the size of the virtual structure 200.

參考圖8(a)至圖8(i)所示,列舉了虛擬結構的各種形狀。虛擬結構200、300、400的形狀可以為正方形、長方形、圓形、橢圓形、十字形、三角形、圓環等。雖然列舉了一系列形狀如上,但是本領域的技術人員可以理解的是,虛擬結構的形狀並不局限於上述形狀,虛擬結構形狀的選用取決於工藝實際需求。 Referring to Figures 8(a) through 8(i), various shapes of the virtual structure are listed. The shape of the virtual structures 200, 300, 400 may be square, rectangular, circular, elliptical, cruciform, triangular, circular, or the like. Although a series of shapes are listed above, it will be understood by those skilled in the art that the shape of the virtual structure is not limited to the above shape, and the selection of the shape of the virtual structure depends on the actual needs of the process.

參考圖9(a)和圖9(b)所示,將未設置虛擬結構的矽片在去除阻擋層後的SEM頂視圖與形成有虛擬結構的矽片在去除阻擋層後的SEM頂視圖進行對比,可以看到,未設置虛擬結構的矽片,靠近互連結構處的阻擋層可以全部去除,但是在矽片場區的阻擋層沒有完全去除,有部分殘餘的阻擋層存在。而在矽片場區形成有虛擬結構的矽片,矽片上所有阻擋層都能夠全部去除。 Referring to FIG. 9(a) and FIG. 9(b), the SEM top view after removing the barrier layer and the SEM top view after removing the barrier layer are performed on the ruthenium without the dummy structure after removing the barrier layer. In contrast, it can be seen that the ruthenium of the dummy structure is not disposed, and the barrier layer near the interconnect structure can be completely removed, but the barrier layer in the smear field is not completely removed, and a part of the residual barrier layer exists. In the cymbal field, a virtual structure of the cymbal is formed, and all the barrier layers on the cymbal can be completely removed.

由上述可知,本發明透過在矽片的場區、相鄰兩金屬線之間比較寬廣的區域或者孤立的金屬線的兩邊區 域形成虛擬結構,在實施過度抛光金屬層時,電流更多的從虛擬結構傳導,避免阻擋層被氧化,從而能夠均勻地、完全地去除非凹槽區上的阻擋層。本發明的虛擬結構並不局限于形成在矽片的場區、相鄰兩金屬線之間比較寬廣的區域或者孤立的金屬線的兩邊區域,只要矽片上圖形密度較小的區域均可以形成虛擬結構。 As can be seen from the above, the present invention transmits a relatively wide area between the field regions of the cymbal, the adjacent two metal wires, or both sides of the isolated metal wire. The domains form a virtual structure, and when the over-polished metal layer is implemented, current is more transmitted from the dummy structure, and the barrier layer is prevented from being oxidized, so that the barrier layer on the non-groove region can be uniformly and completely removed. The virtual structure of the present invention is not limited to the field region formed on the cymbal, the relatively wide region between adjacent two metal lines, or the two sides of the isolated metal line, as long as the area of the ruthenium having a lower pattern density can be formed. Virtual structure.

綜上所述,本發明透過上述實施方式及相關圖式說明,己具體、詳實的揭露了相關技術,使本領域的技術人員可以據以實施。而以上所述實施例只是用來說明本發明,而不是用來限制本發明的,本發明的權利範圍,應由本發明的申請專利範圍來界定。 In view of the above, the present invention has been specifically and specifically disclosed by the above-described embodiments and related drawings, and can be implemented by those skilled in the art. The above-mentioned embodiments are only intended to illustrate the invention, and are not intended to limit the invention. The scope of the invention should be defined by the scope of the invention.

Claims (14)

一種互連結構的形成方法,其特徵在於,包括:提供具有介質層的矽片;在介質層上形成第一凹槽區,第一凹槽區用於形成互連結構;在介質層上形成第二凹槽區,第二凹槽區用於形成虛擬結構;在介質層上沈積阻擋層,阻擋層覆蓋介質層的第一凹槽區、第二凹槽區和介質層的非凹槽區;在阻擋層上沈積金屬層,金屬層填滿第一凹槽區和第二凹槽區並覆蓋在非凹槽區上;將非凹槽區上的金屬層去除;將非凹槽區上的阻擋層去除。 A method of forming an interconnect structure, comprising: providing a germanium having a dielectric layer; forming a first recessed region on the dielectric layer, the first recessed region for forming an interconnect structure; forming on the dielectric layer a second recessed region, wherein the second recessed region is used to form a dummy structure; a barrier layer is deposited on the dielectric layer, the barrier layer covering the first recessed region, the second recessed region of the dielectric layer, and the non-recessed region of the dielectric layer Depositing a metal layer on the barrier layer, the metal layer filling the first recessed region and the second recessed region and covering the non-recessed region; removing the metal layer on the non-recessed region; The barrier is removed. 根據請求項1所述的互連結構的形成方法,其特徵在於,所述虛擬結構形成在介質層的場區。 A method of forming an interconnect structure according to claim 1, wherein the dummy structure is formed in a field region of the dielectric layer. 根據請求項2所述的互連結構的形成方法,其特徵在於,所述虛擬結構的密度是矽片上互連結構密度的50%-100%。 A method of forming an interconnect structure according to claim 2, wherein the density of the dummy structure is 50% to 100% of the density of the interconnect structure on the cymbal. 根據請求項2所述的互連結構的形成方法,其特徵在於,所述矽片上兩相鄰近的互連結構和虛擬結構間的間距W1為20nm-5000nm。 The method for forming an interconnect structure according to claim 2, wherein a pitch W1 between the adjacent interconnected structure and the dummy structure on the germanium is 20 nm to 5000 nm. 根據請求項1所述的互連結構的形成方法,其特徵在於,所述虛擬結構的尺寸為20nm-5000nm,其中,虛擬結構的寬度Dw為20nm-5000nm,虛擬結構的長度D1為20nm-5000nm。 The method for forming an interconnect structure according to claim 1, wherein the size of the dummy structure is 20 nm to 5000 nm, wherein a width Dw of the dummy structure is 20 nm to 5000 nm, and a length D1 of the dummy structure is 20 nm to 5000 nm. . 根據請求項1所述的互連結構的形成方法,其特徵在於,所述虛擬結構形成在介質層上相鄰兩互連結構之間較寬廣的區域。 A method of forming an interconnect structure according to claim 1, wherein the dummy structure is formed in a wider area between adjacent two interconnect structures on the dielectric layer. 根據請求項6所述的互連結構的形成方法,其特徵在於,所述相鄰兩互連結構之間的間距W3大於或等於60nm。 A method of forming an interconnect structure according to claim 6, wherein a pitch W3 between the adjacent two interconnect structures is greater than or equal to 60 nm. 根據請求項1所述的互連結構的形成方法,其特徵在於,所述虛擬結構形成在介質層上孤立的互連結構的兩邊區域。 A method of forming an interconnect structure according to claim 1, wherein the dummy structure is formed on both sides of an isolated interconnect structure on the dielectric layer. 根據請求項8所述的互連結構的形成方法,其特徵在於,所述虛擬結構的密度是矽片上互連結構密度的20%-80%。 A method of forming an interconnect structure according to claim 8, wherein the density of the dummy structure is 20% to 80% of the density of the interconnect structure on the cymbal. 根據請求項1所述的互連結構的形成方法,其特徵在於,所述虛擬結構具有一種或多種不同形狀。 A method of forming an interconnect structure according to claim 1, wherein the virtual structure has one or more different shapes. 根據請求項1所述的互連結構的形成方法,其特徵在於,所述互連結構和虛擬結構同時形成在介質層上。 A method of forming an interconnect structure according to claim 1, wherein the interconnect structure and the dummy structure are simultaneously formed on the dielectric layer. 根據請求項1所述的互連結構的形成方法,其特徵在於,所述虛擬結構的材料與互連結構的材料相同。 A method of forming an interconnect structure according to claim 1, wherein the material of the dummy structure is the same as the material of the interconnect structure. 根據請求項1所述的互連結構的形成方法,其特徵在於,所述將非凹槽區上的金屬層去除的步驟進一步包括採用化學機械抛光的方法將部分金屬層去除,然後,再採用電化學抛光的方法將餘下的金屬層去除。 The method of forming an interconnect structure according to claim 1, wherein the step of removing the metal layer on the non-groove area further comprises removing a portion of the metal layer by chemical mechanical polishing, and then employing The electrochemical polishing method removes the remaining metal layer. 根據請求項1所述的互連結構的形成方法,其特徵在於,所述將非凹槽區上的阻擋層去除的步驟進一步包括使用XeF2氣相刻蝕的方法去除介質層的非凹槽區上的阻擋層。 The method of forming an interconnect structure according to claim 1, wherein the step of removing the barrier layer on the non-groove region further comprises removing the non-groove of the dielectric layer by using a method of XeF 2 vapor phase etching. The barrier on the area.
TW103117335A 2014-05-16 2014-05-16 Method of forming interconnect structure TWI621234B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103117335A TWI621234B (en) 2014-05-16 2014-05-16 Method of forming interconnect structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103117335A TWI621234B (en) 2014-05-16 2014-05-16 Method of forming interconnect structure

Publications (2)

Publication Number Publication Date
TW201545299A TW201545299A (en) 2015-12-01
TWI621234B true TWI621234B (en) 2018-04-11

Family

ID=55407192

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103117335A TWI621234B (en) 2014-05-16 2014-05-16 Method of forming interconnect structure

Country Status (1)

Country Link
TW (1) TWI621234B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200400986A (en) * 2002-06-20 2004-01-16 Infineon Technologies Ag Method for sealing porous materials during chip production and compounds therefor
TW200408060A (en) * 2001-12-28 2004-05-16 Hynix Semiconductor Inc Method for forming ruthenium storage node of semiconductor device
TW201125048A (en) * 2009-12-09 2011-07-16 Semiconductor Components Ind Method of forming an insulated gate field effect transistor device having a shield electrode structure
TW201242018A (en) * 2011-04-07 2012-10-16 United Microelectronics Corp Metal gate structure and manufacturing method thereof
TW201340326A (en) * 2012-03-02 2013-10-01 Alpha & Omega Semiconductor Method of forming an asymmetric poly gate for optimum termination design in trench power MOSFETs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200408060A (en) * 2001-12-28 2004-05-16 Hynix Semiconductor Inc Method for forming ruthenium storage node of semiconductor device
TW200400986A (en) * 2002-06-20 2004-01-16 Infineon Technologies Ag Method for sealing porous materials during chip production and compounds therefor
TW201125048A (en) * 2009-12-09 2011-07-16 Semiconductor Components Ind Method of forming an insulated gate field effect transistor device having a shield electrode structure
TW201242018A (en) * 2011-04-07 2012-10-16 United Microelectronics Corp Metal gate structure and manufacturing method thereof
TW201340326A (en) * 2012-03-02 2013-10-01 Alpha & Omega Semiconductor Method of forming an asymmetric poly gate for optimum termination design in trench power MOSFETs

Also Published As

Publication number Publication date
TW201545299A (en) 2015-12-01

Similar Documents

Publication Publication Date Title
US9768031B2 (en) Semiconductor device manufacturing methods
KR101130557B1 (en) Interconnect structure and process of making the same
JPH10178096A (en) Method for manufacturing aluminum contact
US8956974B2 (en) Devices, systems, and methods related to planarizing semiconductor devices after forming openings
TW201709465A (en) Integrated circuit structure with metal crack stop and methods of forming same
KR102274848B1 (en) Barrier layer removal method and semiconductor structure forming method
CN104701143B (en) Dual layer hardmask for robust metallization profile
US20140097539A1 (en) Technique for uniform cmp
KR102247940B1 (en) Method for forming metal interconnection
US9496172B2 (en) Method for forming interconnection structures
JP4536809B2 (en) Copper plated high aspect ratio vias and methods of manufacturing the same
US20070049008A1 (en) Method for forming a capping layer on a semiconductor device
TWI621234B (en) Method of forming interconnect structure
KR100538380B1 (en) Method of forming metal wiring in semiconductor device
KR101168507B1 (en) Semiconductor device and method for forming the same
TWI697983B (en) Method for forming metal interconnection structure
JP2010165760A (en) Semiconductor device and method for manufacturing the semiconductor device
KR100834283B1 (en) The making method of metal line
TWI717346B (en) Method for removing barrier layer and method for forming semiconductor structure
KR100602091B1 (en) Method for fabricating copper wire
TWI550713B (en) Method for manufacturing damascene structure
WO2016058174A1 (en) Barrier layer removal method and semiconductor structure forming method
KR20040088917A (en) Method for forming metal wire in a semiconductor device
JP2005175055A (en) Semiconductor device and method for manufacturing same
JP2006173390A (en) Method of manufacturing semiconductor device