TW201316718A - Encoding method, encoding apparatus, decoding method, decoding apparatus, data transmitting apparatus and data receiving apparatus - Google Patents

Encoding method, encoding apparatus, decoding method, decoding apparatus, data transmitting apparatus and data receiving apparatus Download PDF

Info

Publication number
TW201316718A
TW201316718A TW100136678A TW100136678A TW201316718A TW 201316718 A TW201316718 A TW 201316718A TW 100136678 A TW100136678 A TW 100136678A TW 100136678 A TW100136678 A TW 100136678A TW 201316718 A TW201316718 A TW 201316718A
Authority
TW
Taiwan
Prior art keywords
bit stream
bit
bits
detection result
stream
Prior art date
Application number
TW100136678A
Other languages
Chinese (zh)
Other versions
TWI489814B (en
Inventor
Chun-Fan Chung
Rong-Yuan Chang
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW100136678A priority Critical patent/TWI489814B/en
Priority to CN201110396499.9A priority patent/CN102497249B/en
Publication of TW201316718A publication Critical patent/TW201316718A/en
Application granted granted Critical
Publication of TWI489814B publication Critical patent/TWI489814B/en

Links

Abstract

An encoding method includes: detecting a first bitstream to obtain a first detection result; and inserting an identifier bit to the first bitstream according to the first detection result, and accordingly forming a second bitstream, wherein difference between a number of bits in the first bitstream and that in the second bitstream is 1. A decoding method includes: generating a first detection result by detecting a specific bit set in a first bitstream, wherein the specific bit set includes at least one bit; and converting the first bitstream into the second bitstream according to the first detection result, wherein difference between a number of bits in the first bitstream and that in the second bitstream is 1.

Description

編碼方法、編碼裝置、解碼方法、解碼裝置、資料傳送裝置及資料接收裝置Encoding method, encoding device, decoding method, decoding device, data transmitting device, and data receiving device

本發明係關於資料編碼與解碼,尤指一種利用插入一辨識位元至一未編碼資料來進行編碼的方法與裝置及其相關解碼方法、解碼裝置、資料傳送裝置與資料接收裝置。The present invention relates to data encoding and decoding, and more particularly to a method and apparatus for encoding by inserting a recognized bit to an uncoded data, and a related decoding method, decoding device, data transmitting device and data receiving device.

一般來說,傳送端(Transmitter,TX)與接收端(Receiver,RX)彼此之間在傳輸資料時,除了需要有傳送/接收資料的機制之外,也需要有傳送/接收時脈(Clock)資訊的機制。在高速介面傳輸資料時,為了要提高訊號傳輸品質、降低電磁干擾(Electromagnetic interference,EMI)、提供除錯機制(Error correction)以及節省時脈電路,一般會利用將欲傳輸的資料加以編碼來滿足以上需求。傳統上會使用4B5B以及8B10B的編碼方式,然而,上述兩種編碼方式皆需利用編碼表(Coding table),亦即以查表的方式來直接參照資料編碼前後的對應關係,進而將資料加以編碼/解碼,因此,收發端(亦即,傳送端及接收端)皆需要提供額外電路來儲存編碼表,造成收發端電路尺寸的增加。In general, when transmitting data between the Transmitter (TX) and the Receiver (RX), in addition to the mechanism for transmitting/receiving data, a transmission/reception clock is required. Information mechanism. When transmitting data in the high-speed interface, in order to improve the signal transmission quality, reduce electromagnetic interference (EMI), provide error correction (Error Correction), and save clock circuits, the data to be transmitted is generally encoded to satisfy Above needs. Traditionally, 4B5B and 8B10B coding methods are used. However, both coding methods need to use a coding table (Coding table), that is, directly refer to the correspondence before and after data coding in a table lookup manner, and then encode the data. /Decoding, therefore, the transceiver (ie, the transmitting end and the receiving end) need to provide additional circuitry to store the encoding table, resulting in an increase in the size of the transceiver circuit.

4B5B的編碼方式需要5位元的頻寬(Bandwidth)來傳送4位元的資料,以及8B10B的編碼方式需要10位元的頻寬來傳送8位元的資料,以上兩種編碼方式所犧牲的頻寬比例皆為百分之二十五(亦即,傳送4位元會犧牲1位元)。一旦所犧牲的頻寬越多,收發端便需要以更快的傳輸速度來傳輸相同的資料量,然而,當傳輸速度提高時(亦即,提高操作頻率(Operation frequency)),收發端電路額外消耗的電流也會增加,進而增加能量的損耗。再者,由於接收端在接收資料時,必須要透過資料中位元的轉換次數來取得資料的相位(Phase)或頻率,所以如果資料中具有同一邏輯值的位元連續出現的次數太多時,接收端便會不易正確取得資料的相位或頻率,舉例來說,利用4B5B的編碼方式來傳輸8位元的資料,可能會出現連續8個邏輯0或邏輯1,因而降低編碼品質。The encoding method of 4B5B requires a 5-bit bandwidth (Bandwidth) to transmit 4-bit data, and the 8B10B encoding method requires 10-bit bandwidth to transmit 8-bit data. The above two encoding methods are sacrificed. The bandwidth ratio is 25% (that is, the transmission of 4 bits will sacrifice 1 bit). Once the bandwidth is sacrificed, the transceiver needs to transmit the same amount of data at a faster transmission speed. However, when the transmission speed is increased (that is, the operation frequency is increased), the transceiver circuit is extra. The current consumed also increases, which in turn increases the loss of energy. Furthermore, since the receiving end must obtain the phase or frequency of the data through the number of conversions of the bits in the data when receiving the data, if the number of bits having the same logical value in the data occurs continuously for too many times The receiving end will not be able to correctly obtain the phase or frequency of the data. For example, by using the 4B5B encoding method to transmit 8-bit data, there may be 8 consecutive logic 0s or logic 1s, thus reducing the encoding quality.

此外,由於資料傳輸介面包含鎖相迴路(Phase-locked loop,PLL)類型以及延遲鎖相迴路(Delay-locked loop,DLL)類型,而4B5B及8B10B僅支援鎖相迴路類型的資料傳輸介面(亦即,編碼彈性低),因此當資料傳輸介面為延遲鎖相迴路類型時,收發端會需要額外的電路機制來提供編碼/解碼,進而增加收發端電路的尺寸。In addition, since the data transmission interface includes a phase-locked loop (PLL) type and a delay-locked loop (DLL) type, the 4B5B and 8B10B only support the data transmission interface of the phase-locked loop type (also That is, the coding elasticity is low), so when the data transmission interface is a delay phase-locked loop type, the transceiver terminal needs an additional circuit mechanism to provide encoding/decoding, thereby increasing the size of the transceiver circuit.

因此,需要一種可降低於資料傳輸時所犧牲的頻寬、減少能量損耗、提升編碼品質、增加編碼彈性及/或節省收發端電路尺寸的創新編碼方法。Therefore, there is a need for an innovative coding method that can reduce the bandwidth sacrificed during data transmission, reduce energy loss, improve coding quality, increase coding flexibility, and/or save transceiver circuit size.

有鑑於此,本發明的目的之一在於提供一種將一辨識位元插入至一未編碼資料的編碼方法及編碼裝置及其相關解碼方法、解碼裝置、資料傳送裝置與資料接收裝置,來解決上述問題。In view of the above, an object of the present invention is to provide an encoding method and an encoding apparatus for inserting an identification bit into an uncoded material, an associated decoding method, a decoding apparatus, a data transmission apparatus, and a data receiving apparatus, to solve the above problem. problem.

依據本發明之一實施例,其揭示一種編碼方法,該編碼方法包含:偵測一第一位元流以取得一第一偵測結果;以及依據該第一偵測結果來將一辨識位元插入至該第一位元流,並據以形成一第二位元流,其中該第一位元流的位元數與該第二位元流的位元數相差1。According to an embodiment of the present invention, an encoding method includes: detecting a first bit stream to obtain a first detection result; and determining a recognition bit according to the first detection result. Inserting into the first bit stream, and forming a second bit stream, wherein the number of bits of the first bit stream is different from the number of bits of the second bit stream by one.

依據本發明之一實施例,其另揭示一種編碼方法,該編碼方法包含:偵測一第一位元流之最低有效位元以取得一第一偵測結果;以及依據該第一偵測結果來將一辨識位元插入至該第一位元流之最低有效位元之後,並據以形成一第二位元流。According to an embodiment of the present invention, an encoding method includes: detecting a least significant bit of a first bit stream to obtain a first detection result; and determining, according to the first detection result, An identification bit is inserted after the least significant bit of the first bit stream, and a second bit stream is formed accordingly.

依據本發明之一實施例,其另揭示一種編碼方法,該編碼方法包含:偵測一第一位元流之最高有效位元以取得一第一偵測結果;以及依據該第一偵測結果來將一辨識位元插入至該第一位元流之最高有效位元之前,並據以形成一第二位元流。According to an embodiment of the present invention, an encoding method includes: detecting a most significant bit of a first bit stream to obtain a first detection result; and determining, according to the first detection result, A recognition bit is inserted before the most significant bit of the first bit stream, and a second bit stream is formed accordingly.

依據本發明之一實施例,其另揭示一種編碼方法,該編碼方法包含:將至少一辨識位元插入至一第一位元流,並據以形成一第二位元流;判斷該第二位元流的一訊號品質;當該訊號品質滿足一判斷準則時,輸出該第二位元流;以及當該訊號品質並未滿足該判斷準則時,調整該第二位元流來產生並輸出一第三位元流。According to an embodiment of the present invention, an encoding method includes: inserting at least one identification bit into a first bit stream, and forming a second bit stream; determining the second a signal quality of the bit stream; when the signal quality satisfies a criterion, the second bit stream is output; and when the signal quality does not satisfy the criterion, the second bit stream is adjusted to generate and output A third bit stream.

依據本發明之一實施例,其揭示一種解碼方法,該解碼方法包含:偵測一第一位元流中的一特定位元集以產生一第一偵測結果,其中該特定位元集包含有至少一位元;以及依據該第一偵測結果來將該第一位元流轉換為一第二位元流,其中該第一位元流的位元數與該第二位元流的位元數相差1。According to an embodiment of the present invention, a decoding method is disclosed. The decoding method includes: detecting a specific bit set in a first bit stream to generate a first detection result, where the specific bit set includes Having at least one bit; and converting the first bit stream into a second bit stream according to the first detection result, wherein the number of bits of the first bit stream and the second bit stream The number of bits differs by 1.

依據本發明之一實施例,其揭示一種編碼裝置,該編碼裝置包含:一偵測單元以及一處理單元。該偵測單元係用以偵測一第一位元流以取得一第一偵測結果。該處理單元係耦接於該偵測單元,用以依據該第一偵測結果來將一辨識位元插入至該第一位元流,並據以形成一第二位元流,其中該第一位元流的位元數與該第二位元流的位元數相差1。According to an embodiment of the invention, an encoding apparatus is disclosed, the encoding apparatus comprising: a detecting unit and a processing unit. The detecting unit is configured to detect a first bit stream to obtain a first detection result. The processing unit is coupled to the detecting unit, configured to insert a recognition bit into the first bit stream according to the first detection result, and form a second bit stream, wherein the The number of bits in a bit stream differs from the number of bits in the second bit stream by one.

依據本發明之一實施例,其另揭示一種編碼裝置,該編碼裝置包含:一偵測單元以及一處理單元。該偵測單元係用以偵測一第一位元流之最低有效位元以取得一第一偵測結果。該處理單元係耦接於該偵測單元,用以依據該第一偵測結果來將一辨識位元插入至該第一位元流之最低有效位元之後,並據以形成一第二位元流。According to an embodiment of the present invention, an encoding apparatus is further disclosed. The encoding apparatus includes: a detecting unit and a processing unit. The detecting unit is configured to detect a least significant bit of a first bit stream to obtain a first detection result. The processing unit is coupled to the detecting unit, configured to insert a recognition bit into the least significant bit of the first bit stream according to the first detection result, and form a second bit accordingly Yuan stream.

依據本發明之一實施例,其另揭示一種編碼裝置,該編碼裝置包含:一偵測單元以及一處理單元。該偵測單元係用以偵測一第一位元流之最高有效位元以取得一第一偵測結果。該處理單元係耦接於該偵測單元,用以依據該第一偵測結果來將一辨識位元插入至該第一位元流之最高有效位元之前,並據以形成一第二位元流。According to an embodiment of the present invention, an encoding apparatus is further disclosed. The encoding apparatus includes: a detecting unit and a processing unit. The detecting unit is configured to detect the most significant bit of the first bit stream to obtain a first detection result. The processing unit is coupled to the detecting unit, configured to insert a recognition bit before the most significant bit of the first bit stream according to the first detection result, and form a second bit according to the first detection result. Yuan stream.

依據本發明之一實施例,其另揭示一種編碼裝置,該編碼裝置包含:一第一處理單元以及一第二處理單元。該第一處理單元係用以將至少一辨識位元插入至一第一位元流,並據以形成一第二位元流。該第二處理單元係耦接於該第一處理單元,用以判斷該第二位元流的一訊號品質。其中當該訊號品質滿足一判斷準則時,輸出該第二位元流,以及當該訊號品質並未滿足該判斷準則時,調整該第二位元流來產生並輸出一第三位元流。According to an embodiment of the invention, an encoding apparatus is further disclosed, the encoding apparatus comprising: a first processing unit and a second processing unit. The first processing unit is configured to insert at least one identification bit into a first bit stream and form a second bit stream accordingly. The second processing unit is coupled to the first processing unit for determining a signal quality of the second bit stream. When the signal quality satisfies a criterion, the second bit stream is output, and when the signal quality does not satisfy the criterion, the second bit stream is adjusted to generate and output a third bit stream.

依據本發明之一實施例,其揭示一種解碼裝置,該編碼裝置包含:一偵測單元以及一處理單元。該偵測單元係用以偵測一第一位元流中的一特定位元集以產生一偵測結果,其中該特定位元集包含有至少一位元。該處理單元係耦接於該偵測單元,用以依據該偵測結果來將該第一位元流轉換為一第二位元流,其中該第一位元流的位元數與該第二位元流的位元數相差1。According to an embodiment of the present invention, a decoding apparatus is disclosed. The encoding apparatus includes: a detecting unit and a processing unit. The detecting unit is configured to detect a specific bit set in a first bit stream to generate a detection result, wherein the specific bit set includes at least one bit. The processing unit is coupled to the detecting unit, configured to convert the first bit stream into a second bit stream according to the detection result, where the number of bits of the first bit stream and the first The number of bits in the binary stream differs by one.

依據本發明之一實施例,其揭示一種資料傳送裝置,該資料傳送裝置包含:鎖相迴路單元、並列至串列轉換單元、編碼單元以及驅動單元。該鎖相迴路單元係用以依據時脈訊號以產生第一控制訊號以及第二控制訊號。該並列至串列轉換單元係用以依據該第一控制訊號來將並列資料轉換為串列資料。該編碼單元係用以依據該第二控制訊號來將一位元插入至該串列資料,並據以形成已編碼資料,其中該串列資料的位元數與該已編碼資料的位元數相差1。該驅動單元係用以將該已編碼資料輸出為已編碼訊號。According to an embodiment of the present invention, a data transfer apparatus is disclosed. The data transfer apparatus includes: a phase locked loop unit, a parallel to serial conversion unit, an encoding unit, and a driving unit. The phase locked loop unit is configured to generate the first control signal and the second control signal according to the clock signal. The parallel to serial conversion unit is configured to convert the parallel data into the serial data according to the first control signal. The coding unit is configured to insert a bit into the serial data according to the second control signal, and form an encoded data, wherein the number of bits of the serial data and the number of bits of the encoded data The difference is 1. The driving unit is configured to output the encoded data as an encoded signal.

依據本發明之一實施例,其揭示一種資料接收裝置,該資料接收裝置包含:比較單元、時脈回復單元、解碼單元以及串列至並列轉換單元。該比較單元係用以依據已編碼資料來產生一輸入資料。該時脈回復單元係用以依據該輸入資料來產生一第一控制訊號、一第二控制訊號,以及一時脈訊號。該解碼單元係用以依據該第一控制訊號來將該輸入資料轉換為一已解碼資料,其中該輸入資料的位元數與該已解碼資料的位元數相差1。該串列至並列轉換單元係用以依據該第一控制訊號來將該已解碼資料轉換為一並列資料。According to an embodiment of the present invention, a data receiving apparatus is disclosed. The data receiving apparatus includes: a comparing unit, a clock recovery unit, a decoding unit, and a serial-to-parallel conversion unit. The comparison unit is configured to generate an input data based on the encoded data. The clock recovery unit is configured to generate a first control signal, a second control signal, and a clock signal according to the input data. The decoding unit is configured to convert the input data into a decoded data according to the first control signal, wherein the number of bits of the input data is different from the number of bits of the decoded data by one. The serial to parallel conversion unit is configured to convert the decoded data into a parallel data according to the first control signal.

首先,請參閱第1圖,第1圖係為本發明編碼方法之一實施例的廣義流程圖。在步驟110中,首先會偵測一第一位元流以取得一第一偵測結果,其中第一位元流係為一未編碼資料,接著,在步驟120中,會依據步驟110所獲得的第一偵測結果來將一辨識位元插入至該第一位元流,並據以形成一第二位元流,其中該第一位元流的位元數與該第二位元流的位元數相差1。請一併參閱第1圖與第2圖,第2圖係為本發明編碼方法之一實施例的流程圖,其中第2圖所示之流程係基於第1圖所示之廣義流程。在第2圖中,第1圖所示之步驟110可包含偵測該第一位元流中位於特定位元位置之一特定位元集的一型式,以做為該第一偵測結果(如步驟210所示),其中該特定位元集包含位於該第一位元流中的至少一位元。此外,第1圖所示之步驟120可包含當該特定位元集的該型式係為一第一型式時,將具有一第一邏輯值之該辨識位元插入至該第一位元流(如步驟220中的步驟224及226所示),並據以形成該第二位元流,以及當該特定位元集的該型式係為不同於該第一型式之一第二型式時,將具有一第二邏輯值之該辨識位元插入至該第一位元流(如步驟220中的步驟224及228所示),並據以形成第二位元流。First, please refer to FIG. 1. FIG. 1 is a generalized flowchart of an embodiment of an encoding method of the present invention. In step 110, a first bit stream is first detected to obtain a first detection result, where the first bit stream is an uncoded material, and then, in step 120, it is obtained according to step 110. The first detection result inserts a recognition bit into the first bit stream, and accordingly forms a second bit stream, wherein the number of bits of the first bit stream and the second bit stream The number of bits differs by 1. Please refer to FIG. 1 and FIG. 2 together. FIG. 2 is a flowchart of an embodiment of the encoding method of the present invention. The flow shown in FIG. 2 is based on the generalized flow shown in FIG. In FIG. 2, the step 110 shown in FIG. 1 may include detecting a type of a specific bit set in the first bit stream at a specific bit position as the first detection result ( As shown in step 210), the particular set of bits includes at least one bit located in the first bitstream. In addition, the step 120 shown in FIG. 1 may include inserting the identification bit having a first logic value into the first bit stream when the pattern of the specific bit set is a first type ( As shown in steps 224 and 226 in step 220, and according to the second bit stream, and when the pattern of the particular bit set is different from the second version of the first type, The identification bit having a second logic value is inserted into the first bit stream (as indicated by steps 224 and 228 in step 220) and a second bit stream is formed accordingly.

在步驟220中,可將該辨識位元插入至與該特定位元集緊鄰之一相鄰位元以及該特定位元集之間,然而,當在該第一位元流中所偵測之特定位元位置係為該第一位元流之最高有效位元(Most significant bit,MSB)或是最低有效位元(Least significant bit,LSB)時(亦即,該特定位元集係為最高有效位元或是最低有效位元),除了將該辨識位元插入至與該第一位元流之最高有效位元/最低有效位元緊鄰的一相鄰位元之間以外,也可以將該辨識位元插入至該第一位元流之最高有效位元之前,或是將該辨識位元插入至該第一位元流之最低有效位元之後。因此,在一實施例中,可偵測一第一位元流BS1之最高有效位元以取得一第一偵測結果DR1,接著,依據第一偵測結果DR1來將辨識位元IB插入至第一位元流BS1之最高有效位元之前,並據以形成一第二位元流BS2。而在另一實施例中,也可以偵測一第一位元流BS1之最低有效位元以取得一第一偵測結果DR1,接著,依據第一偵測結果DR1來將一辨識位元IB插入至第一位元流BS1之最低有效位元之後,並據以形成一第二位元流BS2。In step 220, the identification bit can be inserted between one of the adjacent bits immediately adjacent to the particular set of bits and the particular set of bits, however, when detected in the first bitstream When the specific bit position is the most significant bit (MSB) or the least significant bit (LSB) of the first bit stream (that is, the specific bit set is the highest) a valid bit or a least significant bit), except that the identifying bit is inserted between an adjacent bit immediately adjacent to the most significant bit/least significant bit of the first bit stream, The identification bit is inserted before the most significant bit of the first bit stream, or the identification bit is inserted after the least significant bit of the first bit stream. Therefore, in an embodiment, the most significant bit of the first bit stream BS1 can be detected to obtain a first detection result DR1, and then the identification bit IB is inserted according to the first detection result DR1. Before the most significant bit of the first bit stream BS1, a second bit stream BS2 is formed accordingly. In another embodiment, the least significant bit of the first bit stream BS1 may be detected to obtain a first detection result DR1, and then an identification bit IB is obtained according to the first detection result DR1. After being inserted into the least significant bit of the first bit stream BS1, a second bit stream BS2 is formed accordingly.

請連同第2圖來參閱第3A圖,其中第3A圖係為將一辨識位元IB插入至具有位元數為N的一第一位元流BS1(亦即,具有N個位元之一未編碼資料)的示意圖。在第3A圖中,第一位元流BS1之特定位置係為最低有效位元的位元位置,其所對應的一特定位元集SB為「0」(亦即,上述之第一偵測結果)。如上所述,除了可將辨識位元IB插入與特定位元集SB緊鄰之一相鄰位元(亦即,位元NB)以及特定位元集SB之間(如第3A圖所示之位置P1),也可以將辨識位元IB插入至最低有效位元之後(如第3A圖所示之位置P2)。此外,由於特定位元集SB之型式為「0」,因此,可依不同的設計需求/考量,來插入具有不同邏輯值的辨識位元IB。舉例來說,當特定位元集SB之型式為「0」(例如,上述之第一型式)時,將具有邏輯值「1」(例如,上述之第一邏輯值)的辨識位元IB插入至位置P2;反之,當特定位元集SB之型式為「1」(例如,上述之第二型式)時,則將具有邏輯值「0」(例如,上述之第二邏輯值)的辨識位元IB插入至位置P2。因此,於此實施例中,具有邏輯值「1」的辨識位元IB會插入至第一位元流BS1之最低有效位元的右側位置P2,因而形成具有位元數為N+1的一第二位元流BS2(亦即,具有N+1個位元之一已編碼資料)。Please refer to FIG. 3A together with FIG. 2, wherein FIG. 3A is for inserting a recognition bit IB into a first bit stream BS1 having a bit number N (ie, having one of N bits). Schematic diagram of uncoded data). In FIG. 3A, the specific location of the first bit stream BS1 is the bit position of the least significant bit, and the corresponding specific bit set SB is “0” (ie, the first detection described above). result). As described above, in addition to the insertion of the identification bit IB between one of the adjacent bits (i.e., the bit NB) immediately adjacent to the specific bit set SB and the specific bit set SB (as shown in FIG. 3A) P1), it is also possible to insert the identification bit IB after the least significant bit (as in the position P2 shown in Fig. 3A). In addition, since the pattern of the specific bit set SB is “0”, the identification bit IB having different logic values can be inserted according to different design requirements/measurements. For example, when the pattern of the specific bit set SB is "0" (for example, the first type described above), the identification bit IB having the logical value "1" (for example, the first logical value described above) is inserted. To position P2; conversely, when the pattern of the specific bit set SB is "1" (for example, the second pattern described above), the identification bit having the logical value "0" (for example, the second logical value described above) The element IB is inserted to position P2. Therefore, in this embodiment, the identification bit IB having the logical value "1" is inserted into the right position P2 of the least significant bit of the first bit stream BS1, thereby forming a one having the number of bits N+1. The second bit stream BS2 (i.e., has one of N+1 bits of encoded material).

在一設計變化中,第2圖所示之步驟220另包含當該特定位元集的該型式係為該第一型式時,將該特定位元集轉換為該第二型式。請參閱第4圖,第4圖係為本發明編碼方法之另一實施例的流程圖,其中第4圖所示之步驟係基於第2圖所示之流程。步驟420包含當該特定位元集之型式係為一第一型式時,將具有一第一邏輯值之該辨識位元插入至該第一位元流(如步驟224及226所示)以及將該特定位元集轉換為一第二型式(如步驟425所示),並據以形成一第二位元流,以及當該特定位元集之型式係為不同於該第一型式之該第二型式時,將具有一第二邏輯值之該辨識位元插入至該第一位元流(如步驟224及228所示),並據以形成一第二位元流。值得注意的是,假若所得到的結果實質上是相同的,步驟425及步驟226的順序可互相對調。In a design change, step 220 shown in FIG. 2 further includes converting the particular set of bits to the second pattern when the pattern of the particular set of bits is the first pattern. Please refer to FIG. 4, which is a flow chart of another embodiment of the encoding method of the present invention, wherein the steps shown in FIG. 4 are based on the flow shown in FIG. Step 420 includes inserting the identification bit having a first logic value into the first bit stream (as shown in steps 224 and 226) and when the pattern of the particular bit set is a first pattern Converting the particular set of bits into a second pattern (as shown in step 425), and thereby forming a second bit stream, and when the pattern of the particular bit set is different from the first type In the case of the second type, the identification bit having a second logic value is inserted into the first bit stream (as shown in steps 224 and 228), and a second bit stream is formed accordingly. It is worth noting that if the results obtained are substantially the same, the order of steps 425 and 226 can be reversed.

請連同第4圖來參閱第3B圖,其中第3B圖係為將一辨識位元IB插入至具有位元數為N的一第一位元流BS1(亦即,具有N個位元之一未編碼資料)的示意圖。如第3B圖所示,該第一位元流BS1的特定位置係為由最高有效位元算起的前兩個位元的位元位置,其所對應的一特定位元集SB之型式為「00」(亦即,上述之第一偵測結果),而辨識位元IB所插入的位置為最低有效位元之後(亦即,位置P3)。值得注意的是,在將辨識位元IB插入於第一位元流BS1之後,辨識位元IB並不一定要與特定位元集SB緊鄰,也就是說,辨識位元IB可插入至第一位元流BS1中的任兩個位元之間、最高有效位元之前或最低有效位元之後。Please refer to FIG. 3B together with FIG. 4, wherein FIG. 3B is to insert a recognition bit IB into a first bit stream BS1 having a bit number N (ie, having one of N bits). Schematic diagram of uncoded data). As shown in FIG. 3B, the specific location of the first bit stream BS1 is the bit position of the first two bits calculated by the most significant bit, and the corresponding specific bit set SB is of the type "00" (that is, the first detection result described above), and the position at which the recognition bit IB is inserted is after the least significant bit (ie, position P3). It should be noted that after inserting the identification bit IB into the first bit stream BS1, the identification bit IB does not have to be in close proximity to the specific bit set SB, that is, the identification bit IB can be inserted into the first Between any two bits in the bit stream BS1, before the most significant bit or after the least significant bit.

於此實施例中(但本發明並不侷限於此),當特定位元集SB之型式為「00」或「11」(例如,上述之第一型式)時,將具有邏輯值「1」(例如,上述之第一邏輯值)的辨識位元IB插入至位置P3;反之,當特定位元集SB之型式為「01」或「10」(例如,上述之第二型式)時,則將具有邏輯值「0」(例如,上述之第二邏輯值)的辨識位元IB插入至位置P3。此外,當特定位元集SB之型式為「00」或「11」時,則將特定位元集SB之型式轉換為「01」或「10」。因此,於此實施例中,具有邏輯值「1」的辨識位元IB會插入至第一位元流BS1之最低有效位元的右側位置P3,因而形成具有位元數為N+1的一第二位元流BS2(亦即,具有N+1個位元之一已編碼資料)。In this embodiment (but the invention is not limited thereto), when the type of the specific bit set SB is "00" or "11" (for example, the first type described above), it will have a logical value of "1". The identification bit IB of (for example, the first logical value described above) is inserted to the position P3; conversely, when the pattern of the specific bit set SB is "01" or "10" (for example, the second type described above), then The identification bit IB having a logical value of "0" (e.g., the second logical value described above) is inserted into the position P3. Further, when the type of the specific bit set SB is "00" or "11", the pattern of the specific bit set SB is converted to "01" or "10". Therefore, in this embodiment, the identification bit IB having the logical value "1" is inserted into the right position P3 of the least significant bit of the first bit stream BS1, thereby forming a one having the number of bits N+1. The second bit stream BS2 (i.e., has one of N+1 bits of encoded material).

請注意,以上所述僅供說明之需,並非用來做為本發明的限制,也就是說,特定位元集的位置、特定位元集所包含的位元數、辨識位元於未編碼資料中所插入的位置及/或對應於特定位元集之不同型式的辨識位元之邏輯值,皆可視實際上的設計需求/考量來加以適當調整。Please note that the above description is for illustrative purposes only and is not intended to be a limitation of the present invention, that is, the location of a particular set of bits, the number of bits contained in a particular set of bits, and the identified bits are uncoded. The position of the data inserted and/or the logical value of the identified bit corresponding to a different type of particular bit set can be appropriately adjusted depending on actual design requirements/measurements.

當將上述之本發明編碼方法之實施例應用至一種不需要考量所傳輸之資料中具有同一邏輯值之連續位元數的多寡的傳輸介面(例如,延遲鎖相迴路類型(DLL-based)的傳輸介面)時,於第2圖(或第4圖)所示之流程圖中,步驟226或步驟228所產生之第二位元流BS2係直接輸出為所要的編碼資料。然而,當上述之本發明編碼方法之實施例應用至一種需要考量所傳輸之資料中具有同一邏輯值之連續位元數的多寡的傳輸介面(例如,鎖相迴路類型(PLL-based)的傳輸介面)時,則對於第2圖(或第4圖)所示之步驟226或步驟228中所產生之第二位元流BS2而言,可能需要基於訊號品質來進行適當調整,以便滿足編碼品質之要求。When the embodiment of the above-described encoding method of the present invention is applied to a transmission interface that does not need to consider the number of consecutive bits having the same logical value in the transmitted data (for example, a delay-locked loop type (DLL-based) In the case of the transmission interface, in the flowchart shown in FIG. 2 (or FIG. 4), the second bit stream BS2 generated in step 226 or step 228 is directly output as the desired coded data. However, when the above-described embodiment of the encoding method of the present invention is applied to a transmission interface (e.g., phase-locked loop type (PLL-based) transmission) that requires consideration of the number of consecutive bits having the same logical value in the transmitted data. In the case of the interface, the second bit stream BS2 generated in step 226 or step 228 shown in FIG. 2 (or FIG. 4) may need to be appropriately adjusted based on the signal quality to satisfy the coding quality. Requirements.

請參閱第5圖,第5圖係為本發明編碼方法之另一實施例的流程圖。在步驟510中,將至少一辨識位元插入至一第一位元流,並據以形成一第二位元流,接下來,會在步驟520中判斷該第二位元流的一訊號品質。當該訊號品質滿足一判斷準則時,輸出該第二位元流(如步驟530所示),以及當該訊號品質並未滿足該判斷準則時,調整該第二位元流來產生並輸出一第三位元流(如步驟540所示)。舉例來說,當訊號品質達到編碼品質要求時,則直接輸出該第二位元流以做為一已編碼資料,然而,當訊號品質未達到編碼品質要求時,則調整該第二位元流之訊號品質,來產生並輸出一第三位元流以做為一已編碼資料。此外,上述之判斷準則包含同一邏輯值連續出現於該第二位元流的次數不超過一預定連續次數,及/或一第一邏輯值與一第二邏輯值於該第二位元流中的轉換次數不低於一預定轉換次數。舉例來說(但本發明並不侷限於此),當邏輯「0」或邏輯「1」連續出現在該第二位元流的次數超過6個位元時,則需調整該第二位元流,或者當邏輯「0」與邏輯「1」於該第二位元流中的轉換次數低於3次時,則需調整該第二位元流。此外,步驟510可利用(但本發明並不侷限於此)第1圖所示之步驟110及步驟120來加以實作。Please refer to FIG. 5, which is a flow chart of another embodiment of the encoding method of the present invention. In step 510, at least one identification bit is inserted into a first bit stream, and a second bit stream is formed, and then, in step 520, a signal quality of the second bit stream is determined. . When the signal quality satisfies a criterion, the second bit stream is output (as shown in step 530), and when the signal quality does not satisfy the criterion, the second bit stream is adjusted to generate and output a The third bit stream (as shown in step 540). For example, when the signal quality meets the encoding quality requirement, the second bit stream is directly outputted as an encoded data. However, when the signal quality does not meet the encoding quality requirement, the second bit stream is adjusted. The signal quality is used to generate and output a third bit stream as an encoded material. In addition, the above criterion includes that the same logical value continuously appears in the second bit stream does not exceed a predetermined number of consecutive times, and/or a first logic value and a second logic value are in the second bit stream. The number of conversions is not less than a predetermined number of conversions. For example (but the invention is not limited thereto), when the logic "0" or the logic "1" continuously appears in the second bit stream more than 6 bits, the second bit needs to be adjusted. The stream, or when the number of transitions of logic "0" and logic "1" in the second bit stream is less than 3 times, the second bit stream needs to be adjusted. Moreover, step 510 can be implemented using steps 110 and 120 shown in FIG. 1 (but the invention is not limited thereto).

在一實施例中,步驟540可包含針對該第二位元流中的複數個位元進行邏輯運算,以產生該第三位元流。請參閱第6圖,第6圖係為第5圖所示之步驟540的一實作方式的範例流程圖。在步驟652中,反轉該第二位元流中的至少一第一位元以滿足該判斷準則;在步驟654中,偵測該第二位元流中的複數個位元以產生一第二偵測結果;以及在步驟656中,依據該第二偵測結果反轉該第二位元流中的至少一第二位元以產生該第三位元流。舉例來說,步驟652係用以中斷上述之同一邏輯值連續出現於該第二位元流的次數超過該預定連續次數的情形,然而,在反轉該第二位元流中的至少該第一位元之後,此時的該第二位元流可能會與直接經由第5圖所示之步驟540所輸出之第二位元流重複,因此,步驟654及步驟656係用來針對該第二位元流進行偵測並反轉至少該第二位元,以避免出現重複的編碼資料。In an embodiment, step 540 can include performing a logical operation on a plurality of bits in the second bit stream to generate the third bit stream. Please refer to FIG. 6. FIG. 6 is an exemplary flow chart of an implementation of the step 540 shown in FIG. 5. In step 652, at least one first bit in the second bit stream is inverted to satisfy the determination criterion; in step 654, a plurality of bits in the second bit stream are detected to generate a first And detecting, in step 656, inverting at least one second bit in the second bit stream according to the second detection result to generate the third bit stream. For example, step 652 is for interrupting the case where the same logical value continuously appears in the second bit stream exceeds the predetermined number of consecutive times, however, at least the second bit stream is inverted. After a bit, the second bit stream at this time may be repeated with the second bit stream output directly via step 540 shown in FIG. 5, so step 654 and step 656 are used for the first bit stream. The binary stream detects and inverts at least the second bit to avoid duplicate encoded data.

請參閱第7圖,第7圖係為本發明編碼方法應用至鎖相迴路類型之傳輸介面之一實施例的流程圖。於此實施例中,上述之步驟654可包含針對該複數個位元進行一邏輯互斥(XOR)運算來產生該第二偵測結果。舉例來說(但本發明並不侷限於此),第一位元流BS1係為「00000001」,其特定位元集SB為最低有效位元「1」,接下來,將辨識位元IB「0」插入至第一位元流BS1之最低有效位元之後,形成第二位元流BS2「000000010」(亦即,第5圖所示之步驟510)。由於第二位元流BS2「000000010」中邏輯「0」連續出現的次數超過5次(亦即,上述之預定連續次數),因此,第二位元流BS2的訊號品質並未滿足判斷準則,故需調整第二位元流BS2來產生並輸出第三位元流BS3(亦即,第5圖所示之步驟530及步驟540)。首先,反轉第二位元流BS2中由最高有效位元算起的第4個位元,此時,第二位元流BS2變成「000100010」(亦即,第6圖之步驟652),接下來,針對第二位元流BS2之中由最低有效位元算起的第2個及第3個位元,進行一邏輯互斥運算來產生該第二偵測結果(亦即,第6圖之步驟654)。於此實施例中,當該邏輯互斥運算為1時,反轉由最高有效位元算起的第3個位元以及最低有效位元,以及當該邏輯互斥運算為0時,反轉由最低有效位元算起的第2個位元,如此一來,第二位元流BS2便會由「000100010」轉換為第三位元流BS3「001100011」(亦即,第6圖之步驟656)。值得注意的是,以上述實作方式來編碼時,所有滿足該判斷準則的複數個第二位元流之最後兩個位元(亦即,由最低有效位元算起的前兩個位元)之型式,經由編碼處理之後皆為「01」或「10」,以及所有未滿足該判斷準則的複數個第二位元流之最後兩個位元,經由編碼處理之後皆為「00」或「11」,因此,後續之解碼處理可藉此輕易地得知待處理之一已編碼資料於編碼過程中是否有經過提升訊號品質的轉換處理。Please refer to FIG. 7. FIG. 7 is a flow chart showing an embodiment of the transmission method applied to the phase-locked loop type of the coding method of the present invention. In this embodiment, the step 654 may include performing a logical exclusive exclusion (XOR) operation on the plurality of bits to generate the second detection result. For example (but the invention is not limited thereto), the first bit stream BS1 is "00000001", and the specific bit set SB is the least significant bit "1", and then the bit IB is recognized. After being inserted into the least significant bit of the first bit stream BS1, the second bit stream BS2 "000000010" is formed (that is, step 510 shown in FIG. 5). Since the number of consecutive occurrences of logic "0" in the second bit stream BS2 "000000010" exceeds 5 times (that is, the predetermined number of consecutive times), the signal quality of the second bit stream BS2 does not satisfy the criterion. Therefore, the second bit stream BS2 needs to be adjusted to generate and output the third bit stream BS3 (that is, step 530 and step 540 shown in FIG. 5). First, the fourth bit from the most significant bit in the second bit stream BS2 is inverted. At this time, the second bit stream BS2 becomes "000100010" (that is, step 652 of FIG. 6). Next, for the second and third bits of the second bit stream BS2 calculated by the least significant bit, a logical mutual exclusion operation is performed to generate the second detection result (ie, the sixth Step 654). In this embodiment, when the logical mutual exclusion operation is 1, the third bit and the least significant bit calculated by the most significant bit are inverted, and when the logical mutually exclusive operation is 0, the inversion is performed. The second bit from the least significant bit, so that the second bit stream BS2 is converted from "000100010" to the third bit stream BS3 "001100011" (ie, the steps of Figure 6) 656). It is worth noting that when encoding in the above implementation manner, all the last two bits of the plurality of second bit streams satisfying the criterion (that is, the first two bits from the least significant bit) The type of the code is "01" or "10" after the encoding process, and all the last two bits of the plurality of second bit streams that do not satisfy the criterion are "00" after the encoding process. "11", therefore, the subsequent decoding process can easily know whether or not one of the encoded data to be processed has a conversion process of the enhanced signal quality in the encoding process.

請注意,以上僅供說明之需,並非用來做為本發明之限制,也就是說,針對訊號品質所執行的調整操作,並不侷限於上述之方式。只要是將至少一辨識位元插入至一第一位元流以形成一第二位元流、利用判斷一位元流之訊號品質來將該位元流直接輸出或調整處理後再輸出,及/或利用所執行的調整操作來區分一已編碼資料是否經過提升訊號品質的轉換處理之編碼方法,皆遵循本發明之發明精神並落入本發明之範疇。Please note that the above description is for illustrative purposes only and is not intended to be a limitation of the present invention. That is, the adjustment operation performed for the signal quality is not limited to the above. As long as at least one identification bit is inserted into a first bit stream to form a second bit stream, and the signal quality of the bit stream is determined to directly output or adjust the bit stream, and then output, and And the encoding method for distinguishing whether or not an encoded material has been subjected to the conversion processing of the enhanced signal quality by using the adjustment operation performed is in accordance with the inventive spirit of the present invention and falls within the scope of the present invention.

請參閱第8A圖,第8A圖係為第5圖所示之步驟540的另一實作方式的範例流程圖。在步驟852中,反轉該第二位元流中的至少一第一位元以滿足該判斷準則;在步驟854中,至少偵測該第二位元流之一前一位元流之中最後的至少一位元,以產生一第二偵測結果;以及在步驟856中,依據該第二偵測結果反轉該第二位元流中的至少一第二位元以產生該第三位元流。舉例來說,步驟852可用來中斷上述之同一邏輯值連續出現於該第二位元流的次數超過該預定連續次數的情形,而步驟854及步驟856則可用來針對該第二位元流進行偵測並反轉至少該第二位元,以避免出現重複的編碼資料。請參閱第8B圖,第8B圖係為第5圖所示之步驟540的又一實作方式的範例流程圖。在此實施例中,上述產生該第二偵測結果的實作方式,可包含偵測該前一位元流之中最後的至少一位元與該第二位元流之中一開始的複數個位元,來產生該第二偵測結果(如步驟855所示)。簡言之,於此實施例中,係考量欲編碼之位元流的前一位元流與該欲編碼之位元流相鄰的位元,據以進行動態編碼。Please refer to FIG. 8A, which is an example flow diagram of another implementation of step 540 shown in FIG. 5. In step 852, at least one first bit in the second bit stream is inverted to satisfy the criterion; in step 854, at least one of the first bit streams is detected in the first bit stream a last at least one bit to generate a second detection result; and in step 856, inverting at least one second bit in the second bit stream according to the second detection result to generate the third Bit stream. For example, step 852 can be used to interrupt the case where the same logical value continuously appears in the second bit stream exceeds the predetermined number of consecutive times, and steps 854 and 856 can be used to perform the second bit stream. Detecting and inverting at least the second bit to avoid duplicate encoded data. Please refer to FIG. 8B, which is an example flow chart of still another implementation of step 540 shown in FIG. 5. In this embodiment, the foregoing manner of generating the second detection result may include detecting a last one of the last bit stream and a complex number of the first bit stream The bits are generated to generate the second detection result (as shown in step 855). In short, in this embodiment, the bit stream of the bit stream to be encoded and the bit stream adjacent to the bit stream to be encoded are considered for dynamic coding.

請參閱第9圖,第9圖係為本發明編碼方法應用至鎖相迴路類型之傳輸介面之另一實施例的流程圖。於此實施例中(但本發明並不侷限於此),一第一位元流BS1係為「00000000」,其特定位元集SB為由最高有效位元算起的前兩個位元「00」,接下來,依據特定位元集SB之型式「00」來將一辨識位元IB「1」插入至第一位元流BS1之最低有效位元之後,將特定位元集SB之型式「00」轉換為另一型式「01」,以形成一第二位元流BS2「010000001」(亦即,第5圖所示之步驟510)。由於第二位元流BS2「010000001」中邏輯「0」連續出現的次數超過5次(亦即,上述之預定連續次數),因此,第二位元流BS2的一訊號品質並未滿足一判斷準則,故需調整第二位元流BS2來產生並輸出一第三位元流BS3(亦即,第5圖所示之步驟530及步驟540)。首先,反轉第二位元流BS2中由最高有效位元算起的第5個位元,此時,第二位元流BS2變成「010010001」(亦即,第8A圖之步驟852),接下來,偵測該前一位元流之中最後的一個位元(例如,「1」)與第二位元流BS2之中一開始的前兩個位元(亦即,「01」)(亦即,第8A圖之步驟854)。於此實施例中,當該前一位元流之中最後的一個位元與第二位元流BS2中一開始的前兩個位元的型式分別為「1」及「01」時,將第二位元流BS2中一開始的前兩個位元轉換為「00」;當該前一位元流之中最後的一個位元與第二位元流BS2中一開始的前兩個位元的型式分別為「0」及「01」時,將第二位元流BS2中一開始的前兩個位元轉換為「11」,以及反轉第二位元流BS2中由最低有效位元算起的第3個位元;當該前一位元流之中最後的一個位元與第二位元流BS2中一開始的前兩個位元的型式分別為「1」及「10」時,將第二位元流BS2中一開始的前兩個位元轉換為「00」,以及反轉第二位元流BS2中由最低有效位元算起的第3個位元;以及當該前一位元流之中最後的一個位元與第二位元流BS2中一開始的前兩個位元的型式分別為「0」及「10」時,將第二位元流BS2中一開始的前兩個位元轉換為「11」(亦即,第8A圖之步驟856)。如此一來,所產生之第三位元流BS3係為「000010001」。值得注意的是,以上述實作方式來編碼時,所有滿足該判斷準則的複數個第二位元流之前面兩個位元(亦即,由最高有效位元算起的前兩個位元)之型式,經由編碼處理之後皆為「01」或「10」,以及所有未滿足該判斷準則的複數個第二位元流之前面兩個位元,經由編碼處理之後皆為「00」或「11」,因此,後續之解碼處理可輕易藉此得知待處理之一已編碼資料於編碼過程中是否有經過提升訊號品質的轉換處理。請注意,以上僅供說明之需,並非用來做為本發明之限制,也就是說,針對訊號品質所執行的動態調整操作,並不侷限於上述之方式。舉例來說,亦可視該前一位元流之其他複數個位元來調整第二位元流BS2的第1個位元,以及藉由其他複數個位元來區分所輸出之已編碼資料的原始訊號品質(亦即,未編碼前之訊號品質)。簡言之,只要是將至少一辨識位元插入至一第一位元流以形成一第二位元流、利用判斷一位元流之訊號品質來將該位元流直接輸出或經由調整處理後再輸出,依據一位元流之前一位元流來對該位元流進行動態調整處理,及/或利用所執行的調整操作來區分一已編碼資料是否經過提升訊號品質的轉換處理之編碼方法,皆遵循本發明之發明精神並落入本發明之範疇。Please refer to FIG. 9. FIG. 9 is a flow chart showing another embodiment of the transmission method applied to the phase-locked loop type of the coding method of the present invention. In this embodiment (but the invention is not limited thereto), a first bit stream BS1 is "00000000", and a specific bit set SB is the first two bits from the most significant bit. 00", next, after inserting a recognition bit IB "1" into the least significant bit of the first bit stream BS1 according to the pattern "00" of the specific bit set SB, the pattern of the specific bit set SB "00" is converted to another type "01" to form a second bit stream BS2 "010000001" (i.e., step 510 shown in Fig. 5). Since the number of consecutive occurrences of logic "0" in the second bit stream BS2 "010000001" exceeds 5 times (that is, the predetermined number of consecutive times), the quality of the signal of the second bit stream BS2 does not satisfy a judgment. The criterion is that the second bit stream BS2 needs to be adjusted to generate and output a third bit stream BS3 (ie, step 530 and step 540 shown in FIG. 5). First, the fifth bit from the most significant bit in the second bit stream BS2 is inverted. At this time, the second bit stream BS2 becomes "010010001" (that is, step 852 of FIG. 8A). Next, detecting the last one of the previous bit stream (for example, "1") and the first two bits of the second bit stream BS2 (ie, "01") (ie, step 854 of Figure 8A). In this embodiment, when the last bit of the previous bit stream and the first two bits of the first bit stream BS2 are "1" and "01", respectively, The first two bits in the first bit stream BS2 are converted to "00"; when the last bit in the previous bit stream and the first two bits in the second bit stream BS2 When the patterns of the elements are "0" and "01", the first two bits in the second bit stream BS2 are converted to "11", and the least significant bit in the second bit stream BS2 is inverted. The third bit from the first bit; the last bit in the previous bit stream and the first two bits in the second bit stream BS2 are "1" and "10" respectively. Converting the first two bits from the beginning of the second bit stream BS2 to "00" and inverting the third bit from the least significant bit in the second bit stream BS2; When the last bit of the previous bit stream and the first two bits of the first bit stream BS2 are respectively "0" and "10", the second bit stream BS2 is used. In the beginning Two bits is converted to "11" (ie, step 856 of Figure 8A). As a result, the generated third bit stream BS3 is "000010001". It is worth noting that, when encoding in the above implementation manner, all of the plurality of second bit streams satisfying the criterion are preceded by two bits (ie, the first two bits from the most significant bit). The type of the code is "01" or "10" after the encoding process, and all the two bits before the plurality of second bit streams that do not satisfy the criterion are "00" or after the encoding process. "11", therefore, the subsequent decoding process can easily know whether or not one of the encoded data to be processed has a conversion process of the upgraded signal quality in the encoding process. Please note that the above is for illustrative purposes only and is not intended to be a limitation of the present invention. That is to say, the dynamic adjustment operation performed on the signal quality is not limited to the above. For example, the first bit of the second bit stream BS2 may be adjusted according to other plural bits of the previous bit stream, and the encoded data outputted by the other plurality of bits may be distinguished. Original signal quality (ie, signal quality before unencoding). In short, as long as at least one identification bit is inserted into a first bit stream to form a second bit stream, the signal quality of the bit stream is determined to directly output the bit stream or via adjustment processing. After the output, the bit stream is dynamically adjusted according to a bit stream before the bit stream, and/or the adjusted operation is used to distinguish whether the encoded data is encoded by the upgrade signal quality. The method is in accordance with the spirit of the invention and falls within the scope of the invention.

請參閱第10圖,第10圖係為本發明編碼方法之另一實施例的廣義流程圖。在步驟1010中,將至少一辨識位元插入至一第一位元流,並據以形成一第二位元流。在步驟1020中,檢查該第二位元流欲傳輸的傳輸介面類型,若是不需要考量所傳輸之資料中具有同一邏輯值之連續位元數的多寡的傳輸介面(例如,延遲鎖相迴路類型的傳輸介面),則執行步驟1030;反之,則執行步驟1040。在步驟1030中,輸出該第二位元流。在步驟1040中,判斷該第二位元流的訊號品質,若該訊號品質良好,執行步驟1050;反之,則執行步驟1060。在步驟1050中,輸出該第二位元流。在步驟1060中,調整該第二位元流來產生並輸出一第三位元流。簡言之,本發明編碼方法可實作出雙模式(dual mode)的編碼方式,也就是說,本發明所提出之編碼方法可視不同的資料傳輸介面來動態切換。此外,步驟1010可利用(但本發明並不侷限於此)第1圖所示之步驟110及步驟120來加以實作出,以及步驟1040、1050及1060可利用(但本發明並不侷限於此)第5圖所示之步驟520、530及540來加以實作出。值得注意的是,在一設計變化中,在執行步驟1010之後,亦可先判斷訊號品質(步驟1040),再判斷資料傳輸介面的類型(步驟1020)而據以執行相對應的處理。在另一設計變化中,使用者可依資料傳輸介面的類型而事先手動切換資料傳輸的編碼模式,因此,步驟1020便可省略。Please refer to FIG. 10, which is a generalized flowchart of another embodiment of the encoding method of the present invention. In step 1010, at least one identification bit is inserted into a first bit stream, and a second bit stream is formed accordingly. In step 1020, the type of the transmission interface to be transmitted by the second bit stream is checked, if it is not necessary to consider the transmission interface of the number of consecutive bits having the same logical value in the transmitted data (for example, the delay phase locked loop type) Step 1030 is performed; otherwise, step 1040 is performed. In step 1030, the second bit stream is output. In step 1040, the signal quality of the second bit stream is determined. If the signal quality is good, step 1050 is performed; otherwise, step 1060 is performed. In step 1050, the second bit stream is output. In step 1060, the second bit stream is adjusted to generate and output a third bit stream. In short, the coding method of the present invention can implement a dual mode coding mode, that is, the coding method proposed by the present invention can be dynamically switched by different data transmission interfaces. In addition, step 1010 can be utilized (but the invention is not limited thereto) by step 110 and step 120 shown in FIG. 1, and steps 1040, 1050, and 1060 are available (but the invention is not limited thereto) Steps 520, 530, and 540 shown in FIG. 5 are implemented. It should be noted that, in a design change, after performing step 1010, the signal quality may be first determined (step 1040), and then the type of the data transmission interface is determined (step 1020) to perform the corresponding processing. In another design change, the user can manually switch the encoding mode of the data transmission according to the type of the data transmission interface. Therefore, step 1020 can be omitted.

請參閱第11A圖,第11A圖係為本發明編碼裝置之一實施例的功能方塊圖。編碼裝置1100包含(但並不侷限於)一偵測單元1110以及一處理單元1120。偵測單元1110係用以偵測一第一位元流BS1以取得一第一偵測結果DR1。處理單元1120係耦接於偵測單元1110,用以依據第一偵測結果DR1來將一辨識位元IB插入至第一位元流BS1,並據以形成一第二位元流BS2,其中第一位元流BS1的位元數與第二位元流BS2的位元數相差1。在一設計變化中,偵測單元1110另用以偵測第一位元流BS1之最低有效位元以取得第一偵測結果DR1,以及處理單元1120另用以依據第一偵測結果DR1來將一辨識位元IB插入至第一位元流BS1之最低有效位元之後,並據以形成第二位元流BS2。在另一設計變化中,偵測單元1110另用以偵測第一位元流BS1之最高有效位元以取得第一偵測結果DR1,以及處理單元1120另用以依據第一偵測結果DR1來將一辨識位元IB插入至第一位元流BS1之最高有效位元之前,並據以形成第二位元流BS2。由於熟習技藝者經由閱讀第1圖至第4圖之相關說明,應可輕易地了解編碼裝置1100之相關運作,故進一步的說明在此便不再贅述。Please refer to FIG. 11A, which is a functional block diagram of an embodiment of an encoding apparatus of the present invention. The encoding device 1100 includes (but is not limited to) a detecting unit 1110 and a processing unit 1120. The detecting unit 1110 is configured to detect a first bit stream BS1 to obtain a first detection result DR1. The processing unit 1120 is coupled to the detecting unit 1110, for inserting a identifying bit IB into the first bit stream BS1 according to the first detecting result DR1, and forming a second bit stream BS2, wherein The number of bits of the first bit stream BS1 differs from the number of bits of the second bit stream BS2 by one. In a design change, the detecting unit 1110 is further configured to detect the least significant bit of the first bit stream BS1 to obtain the first detection result DR1, and the processing unit 1120 is further configured to use the first detection result DR1. An identification bit IB is inserted after the least significant bit of the first bit stream BS1, and a second bit stream BS2 is formed accordingly. In another design change, the detecting unit 1110 is further configured to detect the most significant bit of the first bit stream BS1 to obtain the first detection result DR1, and the processing unit 1120 is further configured to use the first detection result DR1. An identification bit IB is inserted before the most significant bit of the first bit stream BS1, and a second bit stream BS2 is formed accordingly. Since the skilled artisan can easily understand the related operations of the encoding device 1100 by reading the related descriptions of FIGS. 1 to 4, further description will not be repeated here.

請參閱第11B圖,第11B圖係為本發明編碼裝置之另一實施例的功能方塊圖。編碼裝置1101包含(但並不侷限於)一第一處理單元1111以及一第二處理單元1121。第一處理單元1111係用以將至少一辨識位元IB插入至一第一位元流BS1,並據以形成一第二位元流BS2。第二處理單元1121係耦接於第一處理單元1111,用以判斷第二位元流BS2的一訊號品質,其中當該訊號品質滿足一判斷準則時,輸出第二位元流BS2,以及當該訊號品質並未滿足該判斷準則時,調整第二位元流BS2來產生並輸出一第三位元流BS3。由於熟習技藝者經由閱讀第5圖至第9圖之相關說明,應可輕易地了解編碼裝置1200之相關運作,故進一步的說明在此便不再贅述。Please refer to FIG. 11B, which is a functional block diagram of another embodiment of the encoding apparatus of the present invention. The encoding device 1101 includes, but is not limited to, a first processing unit 1111 and a second processing unit 1121. The first processing unit 1111 is configured to insert at least one identification bit IB into a first bit stream BS1, and thereby form a second bit stream BS2. The second processing unit 1121 is coupled to the first processing unit 1111 for determining a signal quality of the second bit stream BS2, wherein when the signal quality satisfies a criterion, the second bit stream BS2 is output, and when When the signal quality does not satisfy the criterion, the second bit stream BS2 is adjusted to generate and output a third bit stream BS3. Since the skilled artisan can easily understand the related operations of the encoding device 1200 by reading the related descriptions of FIGS. 5 to 9, the further description will not be repeated here.

請參閱第11C圖,第11C圖係為本發明編碼裝置之又一實施例的功能方塊圖。編碼裝置1102包含(但並不侷限於)一第一處理單元1112、一切換單元1122及一第二處理單元1132。第一處理單元1112係用以將至少一辨識位元IB插入至一第一位元流BS1,並據以形成一第二位元流BS2。切換單元1122係耦接於第一處理單元1111,用以檢查第二位元流BS2所欲傳輸的傳輸介面類型,若所傳輸之傳輸介面類型不需要考量所傳輸之資料中具有同一邏輯值之連續位元數的多寡(例如,延遲鎖相迴路類型的傳輸介面),則直接輸出第二位元流BS2;反之,將第二位元流BS2傳送至第二處理單元1132以供訊號品質的判斷。第二處理單元1121係耦接於切換單元1122,用以判斷第二位元流BS2的一訊號品質,其中當該訊號品質滿足一判斷準則時,輸出第二位元流BS2,以及當該訊號品質並未滿足該判斷準則時,調整第二位元流BS2來產生並輸出一第三位元流BS3。Please refer to FIG. 11C, which is a functional block diagram of still another embodiment of the encoding apparatus of the present invention. The encoding device 1102 includes, but is not limited to, a first processing unit 1112, a switching unit 1122, and a second processing unit 1132. The first processing unit 1112 is configured to insert at least one identification bit IB into a first bit stream BS1, and thereby form a second bit stream BS2. The switching unit 1122 is coupled to the first processing unit 1111 for checking the type of the transmission interface to be transmitted by the second bit stream BS2. If the type of the transmission interface to be transmitted does not need to consider the same logical value in the transmitted data. The number of consecutive bits (for example, the transmission interface of the delay phase-locked loop type) directly outputs the second bit stream BS2; otherwise, the second bit stream BS2 is transmitted to the second processing unit 1132 for signal quality. Judge. The second processing unit 1121 is coupled to the switching unit 1122 for determining a signal quality of the second bit stream BS2, wherein when the signal quality satisfies a criterion, the second bit stream BS2 is output, and when the signal is When the quality does not satisfy the criterion, the second bit stream BS2 is adjusted to generate and output a third bit stream BS3.

請注意,由第10圖所述之說明可知,在使用者事先手動切換資料傳輸的編碼模式的情形下,切換單元1122可被省略。此外,切換單元1122亦可合併/整合至第二處理單元1132,因此,第二處理單元1132係為因應不同傳輸介面類型而執行不同編碼模式的一共用電路,故而減少編碼裝置的電路尺寸,並且實現具有至少雙模式(例如,針對延遲鎖相迴路類型以及鎖相迴路類型的資料傳輸介面)的編碼裝置。值得注意的是,編碼裝置1100、1101以及1102利用僅將一個位元插入至一未編碼資料來執行編碼操作,因此,所犧牲的頻寬會比傳統的編碼裝置減少許多,尤其是當操作頻率比較高的時候,所減少的能量損耗會更加顯著。Please note that the description of FIG. 10 shows that the switching unit 1122 can be omitted in the case where the user manually switches the encoding mode of the data transmission in advance. In addition, the switching unit 1122 can also be combined/integrated into the second processing unit 1132. Therefore, the second processing unit 1132 is a common circuit that performs different encoding modes according to different transmission interface types, thereby reducing the circuit size of the encoding device, and An encoding device is implemented that has at least dual mode (eg, a data transfer interface for a delayed phase locked loop type and a phase locked loop type). It is to be noted that the encoding devices 1100, 1101, and 1102 perform encoding operations by inserting only one bit into an uncoded material, and thus the sacrificed bandwidth is much reduced compared to conventional encoding devices, especially when operating frequencies. At higher times, the reduced energy loss will be more significant.

請參閱第12圖,第12圖係為本發明解碼方法之一實施例的廣義流程圖。在步驟1210中,首先會偵測一第一位元流(例如,一已編碼資料)中的一特定位元集以產生一第一偵測結果,其中該特定位元集包含有至少一位元,接著,在步驟1220中,依據該第一偵測結果來將該第一位元流轉換為一第二位元流,其中該第一位元流的位元數與該第二位元流的位元數相差1。於一實施例中,當該特定位元集係為一辨識位元時,步驟1220可包含直接輸出該第一位元流中除了該辨識位元之外的所有剩餘位元,來做為該第二位元流。舉例來說,當一第一位元流BS1(例如,一已編碼資料)係接收自一種不需要考量所傳輸之資料中具有同一邏輯值之連續位元數的多寡的傳輸介面(例如,延遲鎖相迴路類型的傳輸介面)時,其中第一位元流BS1係具有位元型式「001000101」以及其特定位元集SB係為最低有效位元「1」(亦為一辨識位元IB),一接收端會依據針對第一位元流BS1所進行的偵測結果DR來執行解碼,也就是說,該接收端會直接輸出第一位元流BS1中除了辨識位元IB之外的所有剩餘位元「00100010」,來做為第二位元流BS2。Please refer to FIG. 12, which is a generalized flowchart of an embodiment of the decoding method of the present invention. In step 1210, a specific bit set in a first bit stream (eg, an encoded data) is first detected to generate a first detection result, wherein the specific bit set includes at least one bit. And then, in step 1220, converting the first bit stream to a second bit stream according to the first detection result, wherein the number of bits of the first bit stream and the second bit The number of bits in the stream differs by one. In an embodiment, when the specific bit set is a recognized bit, step 1220 may include directly outputting all remaining bits in the first bit stream except the recognized bit as the The second bit stream. For example, when a first bit stream BS1 (eg, an encoded data) is received from a transmission interface that does not require consideration of the number of consecutive bits having the same logical value in the transmitted data (eg, delay) In the case of a phase-locked loop type transmission interface, the first bit stream BS1 has a bit pattern "001000101" and its specific bit set SB is the least significant bit "1" (also an identification bit IB). a receiving end performs decoding according to the detection result DR performed for the first bit stream BS1, that is, the receiving end directly outputs all of the first bit stream BS1 except the identification bit IB. The remaining bit "00100010" is used as the second bit stream BS2.

如上所述,當一未編碼資料傳送至一種需要考量所傳輸之資料中具有同一邏輯值之連續位元數的多寡的傳輸介面(例如,鎖相迴路類型的傳輸介面)時,由於該未編碼資料可能有經過提升訊號品質的調整處理,因此,在將接收自一種需要考量所傳輸之資料中具有同一邏輯值之連續位元數的多寡的傳輸介面(例如,鎖相迴路類型的傳輸介面)的一已編碼資料加以解碼時,可能會需要針對提升訊號品質之調整處理來做判斷及轉換。請參閱第13圖,第13圖係為本發明解碼方法之一實施例的流程圖,其中第13圖所示之流程係基於第12圖所示之流程。在第13圖中,第12圖所示之步驟1220可包含:當該第一偵測結果顯示該特定位元集所包含的複數個位元具有一第一編碼型式時,輸出該第一位元流中除了一辨識位元之外的所有剩餘位元,來做為該第二位元流(亦即,步驟1322及1324);以及當該第一偵測結果顯示該特定位元集所包含的該複數個位元具有不同於該第一編碼型式之一第二編碼型式時,將該第一位元流轉換為一第三位元流,並輸出該第三位元流中除了一辨識位元之外的所有剩餘位元,來做為該第二位元流(亦即,步驟1322及1326)。As described above, when an uncoded material is transferred to a transmission interface (for example, a phase-locked loop type transmission interface) that requires consideration of the number of consecutive bits of the same logical value in the transmitted data, since the uncoded The data may be subject to an improved signal quality adjustment, and therefore, will be received from a transmission interface that has a number of consecutive bits of the same logical value in the data to be transmitted (eg, a phase-locked loop type transmission interface). When an encoded data is decoded, it may be necessary to make judgments and conversions for the adjustment of the quality of the signal. Referring to FIG. 13, FIG. 13 is a flowchart of an embodiment of a decoding method of the present invention, wherein the flow shown in FIG. 13 is based on the flow shown in FIG. In FIG. 13 , the step 1220 shown in FIG. 12 may include: outputting the first bit when the first detection result indicates that the plurality of bits included in the specific bit set have a first coding pattern. All remaining bits in the meta stream except a recognized bit are used as the second bit stream (ie, steps 1322 and 1324); and when the first detection result shows the particular bit set When the plurality of bits included have a second encoding pattern different from the first encoding pattern, converting the first bit stream into a third bit stream, and outputting the third bit stream except one All remaining bits except the bit are identified as the second bit stream (i.e., steps 1322 and 1326).

在一實施例中,步驟1326可包含依據一轉換運算來轉換該第一位元流以產生複數個轉換結果,以及依據一判斷準則來選取該複數個轉換結果的其中之一,來做為該第三位元流。上述之判斷準則可包含同一邏輯值連續出現的次數最多,及/或一第一邏輯值與一第二邏輯值的轉換次數最少。請參閱第14圖,第14圖係為第13圖所示之步驟1326的一實作方式的範例流程圖。在步驟1426中,依據一轉換運算來轉換該第一位元流以產生複數個轉換結果,其中該複數個轉換結果包含一第一轉換結果以及一第二轉換結果,以及在步驟1427中,依據一判斷準則來選取該複數個轉換結果的其中之一,來做為該第三位元流。步驟1426可包含步驟1428以及步驟1429,在步驟1428中,反轉該第一位元流中包含一特定位元的一第一位元集,以產生該第一轉換結果,其中該特定位元係為具有同一邏輯值之連續複數個位元的其中之一。在步驟1429中,反轉該第一位元流中包含該特定位元的一第二位元集,以產生該第二轉換結果。步驟1428以及步驟1429皆是用以還原該第一位元流於編碼過程中曾經反轉的至少一位元。In an embodiment, step 1326 may include converting the first bit stream according to a conversion operation to generate a plurality of conversion results, and selecting one of the plurality of conversion results according to a determination criterion as the one. The third bit stream. The above criterion may include that the same logical value appears consecutively the most, and/or a first logical value and a second logical value are converted the least. Please refer to FIG. 14, which is an example flow diagram of an implementation of step 1326 shown in FIG. In step 1426, the first bit stream is converted according to a conversion operation to generate a plurality of conversion results, wherein the plurality of conversion results include a first conversion result and a second conversion result, and in step 1427, A criterion is used to select one of the plurality of conversion results as the third bit stream. Step 1426 can include a step 1428 and a step 1429. In step 1428, inverting a first bit set of the first bit stream that includes a specific bit to generate the first conversion result, wherein the specific bit It is one of a contiguous number of bits having the same logical value. In step 1429, a second set of bits in the first bitstream containing the particular bit is inverted to generate the second conversion result. Step 1428 and step 1429 are both for restoring at least one bit of the first bit stream that was inverted during the encoding process.

由上述所揭示之複數個實施例可知,在將一未編碼資料加以編碼時,當該未編碼資料之訊號品質不佳時,需反轉至少一位元來改善同一邏輯值連續出現於該未編碼資料的次數過多的情形,以及會再執行一次反轉以避免複數個已編碼資料中有重複的情形發生;再者,由上述所揭示之複數個實施例可知,可利用執行提升訊號品質的轉換處理來區別該複數個已編碼資料之原始訊號品質(亦即,編碼之前的訊號品質),因此,於此實施例中,需反轉在編碼過程中可能會反轉的位元(包含該特定位元),以便正確地得到具有較差訊號品質的該未編碼資料。值得注意的是,由於解碼方法會因應編碼方法而做調整,因此,以上所述僅供說明之需,並非用來做為本發明之限制。舉例來說,所產生的複數個轉換結果並不侷限於兩個。It can be seen from the foregoing embodiments that when encoding an uncoded data, when the signal quality of the uncoded data is not good, at least one bit needs to be inverted to improve the same logical value continuously appearing in the In the case where the number of times of encoding the data is excessive, and the inversion is performed again to avoid the occurrence of repetition in the plurality of encoded data; furthermore, it can be seen from the plurality of embodiments disclosed above that the performance of the enhanced signal can be utilized. Converting processing to distinguish the original signal quality of the plurality of encoded data (that is, the signal quality before encoding), therefore, in this embodiment, the bit that may be inverted during the encoding process needs to be inverted (including the Specific bits) to correctly obtain the uncoded material with poor signal quality. It is to be noted that since the decoding method is adjusted according to the encoding method, the above description is for illustrative purposes only and is not intended to be a limitation of the present invention. For example, the resulting multiple conversion results are not limited to two.

請連同第7圖來參閱第15圖,其中第15圖係為本發明解碼方法應用至鎖相迴路類型之傳輸介面之一實施例的流程圖,以及第15圖所示之解碼流程係對應於第7圖所示之編碼流程。於此實施例中(但本發明並不侷限於此),第一位元流BS1係為「001100011」(亦即,第7圖所示之已完成編碼之位元流),其特定位元集SB為由最低有效位元算起的前兩個位元「11」。由第7圖相關的說明可知,如果特定位元集SB之編碼型式為「01」或「10」,則第一位元流BS1之原始資料(亦即,未編碼之前的位元流)具有良好的訊號品質;反之,如果特定位元集SB之編碼型式為「00」或「11」,則第一位元流BS1之原始資料的訊號品質較差。因此,需依據一轉換運算來轉換第一位元流BS1以還原第一位元流BS1在編碼之前的複數種可能型式(亦即,產生複數個轉換結果),再選擇訊號品質較差的一位元流來做為一第三位元流BS3。由於第7圖所示之編碼流程係運用邏輯互斥運算,因此,首先將第一位元流BS1「001100011」轉換為一第一轉換結果「000000010」(亦即,反轉由最高有效位元算起的第4個與第3個位元,以及最低有效位元),接下來,將第一位元流BS1「001100011」轉換為一第二轉換結果「001000001」(亦即,反轉由最高有效位元算起的第4個,以及由最低有效位元算起的第2個位元)。由於該第一轉換結果「000000010」中,同一邏輯值連續出現的次數最多,因此,選取該第一轉換結果來做為第三位元流BS3。接下來,輸出第三位元流BS3中除了一辨識位元(亦即,最低有效位元「0」)之外的所有剩餘位元,來做為一第二位元流BS2(亦即,第13圖所示之步驟1326),換言之,所得到的未編碼資料為「00000001」。Please refer to FIG. 15 together with FIG. 7, wherein FIG. 15 is a flowchart of an embodiment of a transmission interface applied to a phase-locked loop type of the decoding method of the present invention, and the decoding process shown in FIG. 15 corresponds to The encoding process shown in Figure 7. In this embodiment (but the invention is not limited thereto), the first bit stream BS1 is "001100011" (that is, the bit stream of the completed encoding shown in FIG. 7), and the specific bit thereof The set SB is the first two bits "11" counted by the least significant bit. As can be seen from the description of FIG. 7, if the coding pattern of the specific bit set SB is "01" or "10", the original data of the first bit stream BS1 (that is, the bit stream before the unencoding) has Good signal quality; conversely, if the coding pattern of the specific bit set SB is "00" or "11", the signal quality of the original data of the first bit stream BS1 is poor. Therefore, the first bit stream BS1 needs to be converted according to a conversion operation to restore a plurality of possible patterns of the first bit stream BS1 before encoding (that is, generating a plurality of conversion results), and then selecting a bit with poor signal quality. The stream is used as a third bit stream BS3. Since the encoding process shown in FIG. 7 uses a logical mutual exclusion operation, the first bit stream BS1 "001100011" is first converted into a first conversion result "000000010" (that is, the inversion is performed by the most significant bit). The fourth and third bits counted, and the least significant bit), and then the first bit stream BS1 "001100011" is converted into a second conversion result "001000001" (ie, inverted by The fourth most significant bit, and the second bit from the least significant bit). Since the same logical value occurs most frequently in the first conversion result "000000010", the first conversion result is selected as the third bit stream BS3. Next, all the remaining bits except the one identifying bit (ie, the least significant bit "0") in the third bit stream BS3 are output as a second bit stream BS2 (ie, Step 1326) shown in Fig. 13, in other words, the obtained uncoded material is "00000001".

請參閱第16圖,第16圖係為本發明解碼方法之一實施例的流程圖,其中第16圖所示之步驟係基於第12圖所示之流程。在第16圖中,第12圖所示之步驟1220可包含:當該第一偵測結果顯示該特定位元集所包含的複數個位元具有一第一編碼型式時,偵測該第一位元流的一辨識位元以產生一第二偵測結果,以及依據該第二偵測結果來將該第一位元流轉換為該第二位元流(如步驟1621、1622及1623所示);以及當該第一偵測結果顯示該特定位元集所包含的該複數個位元具有不同於該第一編碼型式之一第二編碼型式時,將該第一位元流轉換為一第三位元流,並依據該第三位元流來產生該第二位元流(如步驟1621、1624及1625所示)。在一實施例中,步驟1624可包含依據一轉換運算來轉換該第一位元流以產生複數個轉換結果,以及依據一判斷準則來選取該複數個轉換結果的其中之一,來做為該第三位元流。上述之判斷準則可包含同一邏輯值連續出現的次數最多,及/或一第一邏輯值與一第二邏輯值的轉換次數最少。Referring to FIG. 16, FIG. 16 is a flowchart of an embodiment of a decoding method of the present invention, wherein the steps shown in FIG. 16 are based on the flow shown in FIG. In FIG. 16, the step 1220 shown in FIG. 12 may include: detecting the first when the first detection result indicates that the plurality of bits included in the specific bit set have a first coding pattern. An identification bit of the bitstream generates a second detection result, and converts the first bitstream into the second bitstream according to the second detection result (as in steps 1621, 1622, and 1623) And when the first detection result indicates that the plurality of bits included in the specific bit set have a second coding pattern different from the first coding pattern, converting the first bit stream to A third bit stream is generated according to the third bit stream (as shown in steps 1621, 1624, and 1625). In an embodiment, step 1624 can include converting the first bit stream according to a conversion operation to generate a plurality of conversion results, and selecting one of the plurality of conversion results according to a criterion to serve as the The third bit stream. The above criterion may include that the same logical value appears consecutively the most, and/or a first logical value and a second logical value are converted the least.

此外,步驟1625可包含依據該第一位元流之一辨識位元,來將該第三位元流中之對應於該特定位元集之一位元集轉換為該第二編碼型式,並輸出該第三位元流中除了一辨識位元之外的所有剩餘位元來作為該第二位元流。在一設計變化中,步驟1625可包含依據該第一位元流之一辨識位元,直接輸出該第三位元流中除了一辨識位元之外的所有剩餘位元,來做為該第二位元流。另外,由於步驟1623係為依據偵測該第一位元流之一辨識位元所得之第二偵測結果,來將該第一位元流轉換為該第二位元流,因此,於另一設計變化中,步驟1625係可運用步驟1623及步驟1624來加以實作。In addition, step 1625 can include identifying a bit in accordance with one of the first bitstreams to convert the set of bits in the third bitstream corresponding to the particular set of bits into the second encoding pattern, and All remaining bits except the one identifying bit in the third bit stream are output as the second bit stream. In a design change, step 1625 may include identifying a bit according to one of the first bit streams, and directly outputting all remaining bits except the one identifying bit in the third bit stream as the first Two bit stream. In addition, since the step 1623 is to detect the second detection result obtained by identifying the bit in the first bit stream, the first bit stream is converted into the second bit stream, and therefore, In a design change, step 1625 can be implemented using steps 1623 and 1624.

請參閱第17圖,第17圖係為第16圖所示之步驟1624及步驟1625的一實作方式的範例流程圖。在步驟1724中,依據一轉換運算來轉換該第一位元流以產生複數個轉換結果,其中該複數個轉換結果包含一第一轉換結果以及一第二轉換結果,以及在步驟1725中,依據一判斷準則來選取該複數個轉換結果的其中之一,來做為該第三位元流。步驟1724可包含步驟1726以及步驟1727,在步驟1726中,反轉該第一位元流中包含一特定位元的一第一位元集,以產生該第一轉換結果,其中該特定位元係為具有同一邏輯值之連續複數個位元的其中之一。在步驟1727中,反轉該第一位元流中包含該特定位元的一第二位元集,以產生該第二轉換結果。步驟1726以及步驟1727皆是用以還原該第一位元流於編碼過程中曾經反轉的至少一位元。此外,在步驟1723中,偵測該第一位元流之一辨識位元,以產生一第二偵測結果。接著,依據該第二偵測結果,來將該第三位元流中之對應於該特定位元集之一位元集轉換為該第二編碼型式,並輸出該第三位元流中除了一辨識位元之外的所有剩餘位元來作為該第二位元流(如步驟1724及1728所示)。在另一實施例中,依據該第二偵測結果,直接輸出該第三位元流中除了一辨識位元之外的所有剩餘位元,來做為該第二位元流(如步驟1724及1729所示)。Please refer to FIG. 17, which is an exemplary flow chart of an implementation of steps 1624 and 1625 shown in FIG. In step 1724, the first bit stream is converted according to a conversion operation to generate a plurality of conversion results, wherein the plurality of conversion results include a first conversion result and a second conversion result, and in step 1725, A criterion is used to select one of the plurality of conversion results as the third bit stream. Step 1724 can include a step 1726 and a step 1727. In step 1726, inverting a first bit set of the first bit stream that includes a specific bit to generate the first conversion result, where the specific bit is generated. It is one of a contiguous number of bits having the same logical value. In step 1727, a second set of bits of the first bit stream containing the particular bit is inverted to generate the second conversion result. Step 1726 and step 1727 are both used to restore at least one bit of the first bit stream that was inverted during the encoding process. In addition, in step 1723, one of the first bitstreams is detected to identify the bit to generate a second detection result. Then, according to the second detection result, the set of bits in the third bit stream corresponding to the specific bit set is converted into the second coding type, and the third bit stream is output. A remaining bit other than the identified bit is used as the second bit stream (as shown in steps 1724 and 1728). In another embodiment, according to the second detection result, all remaining bits except the one of the identification bits in the third bit stream are directly output as the second bit stream (step 1724). And 1729)).

請連同第9圖來參閱第18圖,其中第18圖係為本發明解碼方法應用至鎖相迴路類型之傳輸介面之另一實施例的流程圖,以及第18圖所示之解碼流程係對應於第9圖所示之編碼流程。於此實施例中(但本發明並不侷限於此),一第一位元流BS1係為「000010001」(亦即,第9圖所示之已完成編碼之位元流),其特定位元集SB為由最高有效位元算起的前兩個位元,且具有一編碼型式「00」。由第9圖相關的說明可知,如果特定位元集SB之編碼型式為「01」或「10」,則第一位元流BS1之原始資料(亦即,未編碼之前的位元流)具有良好的訊號品質;反之,如果特定位元集SB之編碼型式為「00」或「11」,第一位元流BS1之原始資料的訊號品質較差。因此,需依據一轉換運算來轉換第一位元流BS1以還原第一位元流BS1在編碼之前的複數種可能型式(亦即,產生複數個轉換結果),再選擇訊號品質較差的一位元流來轉換為一第三位元流BS3。依據第9圖所示之編碼流程,首先將第一位元流BS1「000010001」轉換為一第一轉換結果「010000001」(亦即,反轉由最高有效位元算起的第5個位元,以及將前兩個位元由「00」轉換為「01」),另外,再將第一位元流BS1「000010001」轉換為一第二轉換結果「100000101」(亦即,反轉由最高有效位元算起的第5個位元、將前兩個位元由「00」轉換為「10」,以及反轉由最低有效位元算起的第3個位元)。由於第一轉換結果「010000001」中,同一邏輯值連續出現的次數最多,因此,選取該第一轉換結果來做為第三位元流BS3。Please refer to FIG. 18 together with FIG. 9, wherein FIG. 18 is a flowchart of another embodiment of the transmission interface applied to the phase-locked loop type of the decoding method of the present invention, and the decoding process shown in FIG. The encoding process shown in Figure 9. In this embodiment (but the present invention is not limited thereto), a first bit stream BS1 is "000010001" (that is, the bit stream of the completed encoding shown in FIG. 9), and its specific bit The metaset SB is the first two bits counted by the most significant bit and has an encoding pattern "00". As can be seen from the description of FIG. 9, if the coding pattern of the specific bit set SB is "01" or "10", the original data of the first bit stream BS1 (that is, the bit stream before unencoding) has Good signal quality; conversely, if the coding pattern of the specific bit set SB is "00" or "11", the signal quality of the original data of the first bit stream BS1 is poor. Therefore, the first bit stream BS1 needs to be converted according to a conversion operation to restore a plurality of possible patterns of the first bit stream BS1 before encoding (that is, generating a plurality of conversion results), and then selecting a bit with poor signal quality. The meta stream is converted into a third bit stream BS3. According to the encoding process shown in FIG. 9, first converting the first bit stream BS1 "000010001" into a first conversion result "010000001" (that is, inverting the fifth bit from the most significant bit) And converting the first two bits from "00" to "01"), and converting the first bit stream BS1 "000010001" into a second conversion result "100000101" (ie, the inversion is highest) The fifth bit from the valid bit, converts the first two bits from "00" to "10", and inverts the third bit from the least significant bit). Since the same logical value appears the most frequently in the first conversion result "010000001", the first conversion result is selected as the third bit stream BS3.

由於第三位元流BS3之型式為「010000001」,而第一位元流BS1之一辨識位元係為「1」,因此,將第三位元流BS3之前面兩個位元轉換為「00」,並且輸出除了第三位元流BS3之一辨識位元「1」的所有剩餘位元來做為一第二位元流BS2,換言之,所輸出之已解碼資料為「00000000」。Since the type of the third bit stream BS3 is "010000001", and one of the first bit stream BS1 recognizes that the bit system is "1", the two bits before the third bit stream BS3 are converted into " 00", and outputting all remaining bits of the bit "1" except one of the third bit stream BS3 as a second bit stream BS2, in other words, the decoded data outputted is "00000000".

請參閱第19圖,第19圖係為本發明編碼方法之另一實施例的廣義流程圖。在步驟1910中,偵測一第一位元流中的一特定位元集以產生一第一偵測結果,其中該特定位元集係為一辨識位元。在步驟1920中,檢查該第一位元流欲傳輸的傳數介面類型,若是不需要考量所傳輸之資料中具有同一邏輯值之連續位元數的多寡的傳輸介面(例如,延遲鎖相迴路類型的傳輸介面),或是雖然需要考量所傳輸之資料中具有同一邏輯值之連續位元數的多寡的傳輸介面(例如,鎖相迴路類型的傳輸介面),但該第一偵測結果指示出該第一位元流之辨識位元具有一第一編碼型式(例如,代表訊號品質良好的編碼型式),則執行步驟1930;反之,執行步驟1940。在步驟2030中,直接輸出該第一位元流中除了該辨識位元之外的所有剩餘位元,來做為該第二位元流。在步驟1940中,依據一轉換運算來轉換該第一位元流以產生複數個轉換結果。在步驟1950中,依據一判斷準則來選取該複數個轉換結果的其中之一,來做為該第三位元流。在步驟1960中,直接輸出該第三位元流中除了一辨識位元之外的所有剩餘位元,來做為該第二位元流。簡言之,本發明解碼方法可實作出雙模式(dual mode)的編碼方式,也就是說,本發明所提出之解碼方法可視不同的資料傳輸介面來動態切換。在一設計變化中,使用者可依資料傳輸介面的類型而事先手動切換資料傳輸的解碼模式,因此,步驟1920便可省略。Please refer to FIG. 19, which is a generalized flowchart of another embodiment of the encoding method of the present invention. In step 1910, a specific bit set in a first bit stream is detected to generate a first detection result, wherein the specific bit set is a recognition bit. In step 1920, the type of the interface to be transmitted by the first bit stream is checked, if it is not necessary to consider the transmission interface of the number of consecutive bits having the same logical value in the transmitted data (for example, a delay phase locked loop) a type of transmission interface), or a transmission interface (for example, a phase-locked loop type transmission interface) having a number of consecutive bits of the same logical value in the transmitted data, but the first detection result indication If the identification bit of the first bit stream has a first coding pattern (for example, an encoding pattern representing a good signal quality), step 1930 is performed; otherwise, step 1940 is performed. In step 2030, all remaining bits in the first bit stream except the identification bit are directly output as the second bit stream. In step 1940, the first bit stream is converted in accordance with a conversion operation to produce a plurality of conversion results. In step 1950, one of the plurality of conversion results is selected according to a criterion to be the third bit stream. In step 1960, all remaining bits of the third bit stream except one recognition bit are directly output as the second bit stream. In short, the decoding method of the present invention can implement a dual mode encoding mode, that is, the decoding method proposed by the present invention can be dynamically switched by different data transmission interfaces. In a design change, the user can manually switch the decoding mode of the data transmission according to the type of the data transmission interface. Therefore, step 1920 can be omitted.

請參閱第20圖,第20圖係為本發明解碼裝置之一實施例的功能方塊圖。編碼裝置2000包含(但並不侷限於)一偵測單元2010以及一處理單元2020。偵測單元2010係用以偵測一第一位元流BS1中的一特定位元集SB以產生一第一偵測結果DR,其中特定位元集SB包含有至少一位元。處理單元2020係耦接於偵測單元2010,用以依據第一偵測結果DR來將第一位元流BS1轉換為一第二位元流BS2,其中第一位元流BS1的位元數與第二位元流BS2的位元數相差1。在一實施例中,當第一偵測結果DR1顯示特定位元集SB所包含的複數個位元具有一第一編碼型式時,處理單元2020輸出第一位元流BS1中除了一辨識位元IB1之外的所有剩餘位元,來做為第二位元流BS2,以及當第一偵測結果DR1顯示特定位元集SB所包含的該複數個位元具有不同於該第一編碼型式之一第二編碼型式時,處理單元2020將第一位元流BS1轉換為一第三位元流BS3,並輸出第三位元流BS3中除了一辨識位元IB3之外的所有剩餘位元,來做為第二位元流BS2。在另一實施例中,當第一偵測結果DR1顯示特定位元集SB所包含的複數個位元具有一第一編碼型式時,2020處理單元偵測第一位元流BS1的一辨識位元IB1以產生一第二偵測結果DR2,並依據第二偵測結果DR2來將第一位元流BS1轉換為第二位元流BS2,以及當第一偵測結果DR1顯示特定位元集SB所包含的該複數個位元具有不同於該第一編碼型式之一第二編碼型式時,處理單元2020將第一位元流BS1轉換為一第三位元流BS3,並依據BS3第三位元流來產生第二位元流BS2。由於熟習技藝者經由閱讀第12圖至第19圖之相關說明,應可輕易地了解編碼裝置2000之相關運作,故進一步的說明在此便不再贅述。Please refer to FIG. 20, which is a functional block diagram of an embodiment of a decoding apparatus of the present invention. The encoding device 2000 includes (but is not limited to) a detecting unit 2010 and a processing unit 2020. The detecting unit 2010 is configured to detect a specific bit set SB in a first bit stream BS1 to generate a first detecting result DR, wherein the specific bit set SB includes at least one bit. The processing unit 2020 is coupled to the detecting unit 2010 for converting the first bit stream BS1 into a second bit stream BS2 according to the first detection result DR, wherein the number of bits of the first bit stream BS1 It differs from the number of bits of the second bit stream BS2 by one. In an embodiment, when the first detection result DR1 shows that the plurality of bits included in the specific bit set SB have a first coding pattern, the processing unit 2020 outputs a recognition bit in the first bit stream BS1. All remaining bits except IB1 are used as the second bit stream BS2, and when the first detection result DR1 shows that the plurality of bits included in the specific bit set SB are different from the first coding type In a second coding mode, the processing unit 2020 converts the first bit stream BS1 into a third bit stream BS3, and outputs all remaining bits in the third bit stream BS3 except one identification bit IB3. As the second bit stream BS2. In another embodiment, when the first detection result DR1 indicates that the plurality of bits included in the specific bit set SB have a first coding pattern, the 2020 processing unit detects a recognition bit of the first bit stream BS1. The element IB1 generates a second detection result DR2, and converts the first bit stream BS1 into the second bit stream BS2 according to the second detection result DR2, and when the first detection result DR1 displays the specific bit set When the plurality of bits included in the SB have a second coding pattern different from the first coding pattern, the processing unit 2020 converts the first bit stream BS1 into a third bit stream BS3, and according to the BS3 third. The bit stream is generated to generate a second bit stream BS2. Since the skilled artisan can easily understand the related operations of the encoding device 2000 by reading the related descriptions of Figs. 12 to 19, further description will not be repeated here.

請參閱第21圖,第21圖係為依據本發明編碼裝置來加以實作出的一資料傳送裝置2100的一實施例的功能方塊圖,其中資料傳送裝置2100包含(但本發明並不侷限於此)一鎖相迴路單元2110、一並列至串列(parallel-to-serial)轉換單元2120、一編碼單元2130以及一驅動單元2140。鎖相迴路單元2110係用以依據一時脈訊號CS以產生一第一控制訊號C1以及一第二控制訊號C2。並列至串列轉換單元2120係用以依據第一控制訊號C1來將一並列資料PD轉換為一串列資料SD。編碼單元2130係用以依據第二控制訊號C2來將一位元插入至串列資料SD,並據以形成一已編碼資料CD,其中串列資料SD的位元數與已編碼資料CD的位元數相差1。驅動單元2140係將已編碼資料CD輸出為一已編碼訊號ECS。於此實施例中,編碼單元2130可以由第11C圖所示之編碼裝置1102來加以實作出,因此,編碼單元2130具有低能量損耗、電路尺寸小、編碼品質好、至少雙編碼模式切換以及所犧牲頻寬的較少等優點,所以資料傳送裝置2100便可應用於高速及高資料量傳輸裝置(例如,高解析度之顯示器)之傳輸介面。此外,在實際應用上,編碼單元2130可選擇性地以一延遲鎖相迴路編碼模式或一鎖相迴路編碼模式來將串列資料PD加以編碼。於另一實施例中,編碼單元2130亦可以由第11A圖所示之編碼裝置1100或11B圖所示之編碼裝置1102來加以實作出。由於熟習技藝者應可輕易地了解傳統資料傳送裝置(例如,未包含編碼單元2130的其它電路元件)以及本發明所揭示之編碼單元2130之相關運作,故進一步的說明在此便不再贅述。Referring to FIG. 21, FIG. 21 is a functional block diagram of an embodiment of a data transfer apparatus 2100 implemented in accordance with the encoding apparatus of the present invention, wherein the data transfer apparatus 2100 includes (but the invention is not limited thereto) A phase-locked loop unit 2110, a parallel-to-serial conversion unit 2120, an encoding unit 2130, and a driving unit 2140. The phase-locked loop unit 2110 is configured to generate a first control signal C1 and a second control signal C2 according to a clock signal CS. The parallel-to-serial conversion unit 2120 is configured to convert a parallel data PD into a serial data SD according to the first control signal C1. The encoding unit 2130 is configured to insert a bit into the serial data SD according to the second control signal C2, and form an encoded data CD, wherein the number of bits of the serial data SD and the bit of the encoded data CD The difference between the numbers is 1. The driving unit 2140 outputs the encoded material CD as an encoded signal ECS. In this embodiment, the encoding unit 2130 can be implemented by the encoding device 1102 shown in FIG. 11C. Therefore, the encoding unit 2130 has low energy loss, small circuit size, good encoding quality, at least dual encoding mode switching, and The data transfer device 2100 can be applied to the transmission interface of high-speed and high-volume data transmission devices (for example, high-resolution displays) because of the advantages of less sacrifice of bandwidth. Moreover, in practical applications, the encoding unit 2130 can selectively encode the serial data PD in a delayed phase locked loop encoding mode or a phase locked loop encoding mode. In another embodiment, the encoding unit 2130 can also be implemented by the encoding device 1102 shown in the drawing device 1100 or 11B shown in FIG. 11A. Since the skilled artisan should readily understand the conventional data transfer device (e.g., other circuit components that do not include the encoding unit 2130) and the associated operations of the encoding unit 2130 disclosed herein, further description will not be repeated herein.

請參閱第22圖,第22圖係為依據本發明編碼裝置來加以實作出的一資料接收裝置2200的一實施例的功能方塊圖,其中資料接收裝置2200包含(但本發明並不侷限於此)一比較單元2210、一時脈回復單元2220、一解碼單元2230以及一串列至並列(serial-to-parallel)轉換單元2240。比較單元2210係用以依據一已編碼訊號ECS來產生一輸入資料ID。時脈回復單元2220係用以依據輸入資料ID來產生一第一控制訊號C1、一第二控制訊號C2以及一時脈訊號CS。解碼單元2230係用以依據第一控制訊號C1來將輸入資料ID轉換為一已解碼資料CD,其中輸入資料ID的位元數與已解碼資料CD的位元數相差1。串列至並列轉換單元2240係用以依據第一控制訊號C1來將已解碼資料CD轉換為一並列資料PD。此外,於此實施例中,解碼單元2230可以由第20圖所示之解碼裝置2000來加以實作出,因此,編碼單元2230具有低能量損耗、電路尺寸小、解碼品質好、至少雙解碼模式切換以及所犧牲頻寬的較少等優點,所以資料接收裝置2200便可應用於高速及高資料量傳輸裝置(例如,高解析度之顯示器)之傳輸介面。此外,在實際應用上,解碼單元2230可選擇性地以一延遲鎖相迴路解碼模式或一鎖相迴路解碼模式來將並列資料SD加以解碼。由於熟習技藝者應可輕易地了解傳統資料接收裝置(例如,未包含解碼單元2230的其它電路元件)以及本發明所揭示之編碼單元2230之相關運作,故進一步的說明在此便不再贅述。Referring to FIG. 22, FIG. 22 is a functional block diagram of an embodiment of a data receiving apparatus 2200 implemented in accordance with the encoding apparatus of the present invention, wherein the data receiving apparatus 2200 includes (but the invention is not limited thereto) A comparison unit 2210, a clock recovery unit 2220, a decoding unit 2230, and a serial-to-parallel conversion unit 2240. The comparing unit 2210 is configured to generate an input material ID according to an encoded signal ECS. The clock recovery unit 2220 is configured to generate a first control signal C1, a second control signal C2, and a clock signal CS according to the input data ID. The decoding unit 2230 is configured to convert the input data ID into a decoded data CD according to the first control signal C1, wherein the number of bits of the input material ID is different from the number of bits of the decoded data CD by one. The serial-to-parallel conversion unit 2240 is configured to convert the decoded data CD into a parallel data PD according to the first control signal C1. In addition, in this embodiment, the decoding unit 2230 can be implemented by the decoding device 2000 shown in FIG. 20, and therefore, the encoding unit 2230 has low energy loss, small circuit size, good decoding quality, and at least double decoding mode switching. As well as the advantages of less bandwidth, the data receiving device 2200 can be applied to the transmission interface of high-speed and high-volume transmission devices (for example, high-resolution displays). Moreover, in practical applications, the decoding unit 2230 can selectively decode the parallel data SD in a delay locked loop decoding mode or a phase locked loop decoding mode. Since the skilled artisan should be able to readily understand the conventional data receiving device (e.g., other circuit components that do not include decoding unit 2230) and the associated operations of encoding unit 2230 disclosed herein, further description is not repeated herein.

簡言之,本發明提出一種創新的編碼方法,利用只插入一辨識位元的方式來將資料加以編碼,以降低於資料傳輸時所犧牲的頻寬及能量損耗、並利用簡易的邏輯電路來使不同編碼模式得以共用電路,進而減少收發端電路之尺寸及增加編碼彈性。此外,基於此一創新的編碼方法,本發明亦提供相對應的解碼方法以及相關的編碼/解碼裝置、資料傳送裝置與資料接收裝置,以應用於現今高速與大量資料傳送及接收。Briefly, the present invention proposes an innovative coding method that encodes data by inserting only one identification bit to reduce the bandwidth and energy loss at the time of data transmission, and to utilize simple logic circuits. Different coding modes can be shared, thereby reducing the size of the transceiver circuit and increasing the coding flexibility. In addition, based on this innovative coding method, the present invention also provides a corresponding decoding method and associated encoding/decoding apparatus, data transmission apparatus and data receiving apparatus for application to today's high speed and large amount of data transmission and reception.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

1100、1101、1102...編碼裝置1100, 1101, 1102. . . Coding device

1110、2010...偵測單元1110, 2010. . . Detection unit

1111、1112、1121、1120、1132、2020...處理單元1111, 1112, 1121, 1120, 1132, 2020. . . Processing unit

1122...切換單元1122. . . Switching unit

2000...解碼裝置2000. . . Decoding device

2100...資料傳送裝置2100. . . Data transfer device

2110...鎖相迴路單元2110. . . Phase-locked loop unit

2120...並列至串列轉換單元2120. . . Parallel to serial conversion unit

2130...編碼單元2130. . . Coding unit

2140...驅動單元2140. . . Drive unit

2200...資料接收裝置2200. . . Data receiving device

2210...比較單元2210. . . Comparison unit

2220...時脈回復單元2220. . . Clock recovery unit

2230...解碼單元2230. . . Decoding unit

2240...串列至並列轉換單元2240. . . Tandem to parallel conversion unit

第1圖為本發明編碼方法之一實施例的廣義流程圖。1 is a generalized flow chart of an embodiment of an encoding method of the present invention.

第2圖為本發明編碼方法之一實施例的流程圖。2 is a flow chart of an embodiment of an encoding method of the present invention.

第3A圖為將一辨識位元插入至位元數為N之一第一位元流的示意圖。Figure 3A is a schematic diagram of inserting a recognition bit into a first bit stream with a number of bits N.

第3B圖為將一辨識位元插入至位元數為N之一第一位元流的示意圖。Figure 3B is a schematic diagram of inserting a recognition bit into a first bit stream with a number of bits N.

第4圖為本發明編碼方法之另一實施例的流程圖。Figure 4 is a flow chart of another embodiment of the encoding method of the present invention.

第5圖為本發明編碼方法之另一實施例的流程圖。Figure 5 is a flow chart of another embodiment of the encoding method of the present invention.

第6圖為第5圖所示之步驟的一實作方式的範例流程圖。Figure 6 is a flow chart showing an example of an implementation of the steps shown in Figure 5.

第7圖為本發明編碼方法應用至鎖相迴路類型之傳輸介面之一實施例的流程圖。Figure 7 is a flow diagram of one embodiment of a transmission interface of the inventive encoding method applied to a phase locked loop type.

第8A圖為第5圖所示之步驟的另一實作方式的範例流程圖。Figure 8A is an example flow diagram of another implementation of the steps shown in Figure 5.

第8B圖為第5圖所示之步驟的又一實作方式的範例流程圖。Figure 8B is a flow chart showing an example of another implementation of the steps shown in Figure 5.

第9圖為本發明編碼方法應用至鎖相迴路類型之傳輸介面之另一實施例的流程圖。Figure 9 is a flow diagram of another embodiment of the transmission interface of the inventive encoding method applied to a phase locked loop type.

第10圖為本發明編碼方法之另一實施例的廣義流程圖。Figure 10 is a generalized flow chart of another embodiment of the encoding method of the present invention.

第11A圖為本發明編碼裝置之一實施例的功能方塊圖。Figure 11A is a functional block diagram of an embodiment of an encoding apparatus of the present invention.

第11B圖為本發明編碼裝置之另一實施例的功能方塊圖。Figure 11B is a functional block diagram of another embodiment of the encoding apparatus of the present invention.

第11C圖為本發明編碼裝置之又一實施例的功能方塊圖。Figure 11C is a functional block diagram of still another embodiment of the encoding apparatus of the present invention.

第12圖為本發明解碼方法之一實施例的廣義流程圖。Figure 12 is a generalized flow chart of an embodiment of a decoding method of the present invention.

第13圖為本發明解碼方法之一實施例的流程圖。Figure 13 is a flow chart of an embodiment of a decoding method of the present invention.

第14圖為第13圖所示之步驟的一實作方式的範例流程圖。Figure 14 is a flow chart showing an example of an implementation of the steps shown in Figure 13.

第15圖為本發明解碼方法應用至鎖相迴路類型之傳輸介面之一實施例的流程圖。Figure 15 is a flow chart showing an embodiment of a transmission interface of the decoding method applied to a phase-locked loop type of the present invention.

第16圖為本發明解碼方法之一實施例的流程圖。Figure 16 is a flow chart of an embodiment of a decoding method of the present invention.

第17圖為第16圖所示之步驟的一實作方式的範例流程圖。Figure 17 is a flow chart showing an example of an implementation of the steps shown in Figure 16.

第18圖為本發明解碼方法應用至鎖相迴路類型之傳輸介面之另一實施例的流程圖。Figure 18 is a flow diagram of another embodiment of a transmission interface of the present invention for a decoding method applied to a phase locked loop type.

第19圖為本發明編碼方法之另一實施例的廣義流程圖。Figure 19 is a generalized flow chart of another embodiment of the encoding method of the present invention.

第20圖為本發明解碼裝置之一實施例的功能方塊圖。Figure 20 is a functional block diagram of an embodiment of a decoding apparatus of the present invention.

第21圖為依據本發明編碼裝置來加以實作出的一資料傳送裝置的一實施例的功能方塊圖。Figure 21 is a functional block diagram of an embodiment of a data transfer apparatus implemented in accordance with the encoding apparatus of the present invention.

第22圖為依據本發明編碼裝置來加以實作出的一資料接收裝置的一實施例的功能方塊圖。Figure 22 is a functional block diagram of an embodiment of a data receiving apparatus implemented in accordance with the encoding apparatus of the present invention.

1010、1020、1030、1040、1050、1060...步驟1010, 1020, 1030, 1040, 1050, 1060. . . step

Claims (40)

一種編碼方法,包含:偵測一第一位元流以取得一第一偵測結果;以及依據該第一偵測結果來將一辨識位元插入至該第一位元流,並據以形成一第二位元流,其中該第一位元流的位元數與該第二位元流的位元數相差1。An encoding method includes: detecting a first bit stream to obtain a first detection result; and inserting a recognition bit into the first bit stream according to the first detection result, and forming according to the first detection result a second bit stream, wherein the number of bits of the first bit stream differs from the number of bits of the second bit stream by one. 如申請專利範圍第1項所述之編碼方法,其中偵測該第一位元流以取得該第一偵測結果包含:偵測該第一位元流中位於特定位元位置之一特定位元集的一型式,以做為該第一偵測結果,其中該特定位元集包含位於該第一位元流中的至少一位元。The encoding method of claim 1, wherein detecting the first bit stream to obtain the first detection result comprises: detecting a specific bit in the first bit stream at a specific bit position A type of the metaset is used as the first detection result, wherein the specific set of bits includes at least one bit located in the first bitstream. 如申請專利範圍第2項所述之編碼方法,其中該辨識位元係插入至與該特定位元集緊鄰之一相鄰位元以及該特定位元集之間。The encoding method of claim 2, wherein the identifying bit is inserted between one of the adjacent bits immediately adjacent to the particular set of bits and the particular set of bits. 如申請專利範圍第2項所述之編碼方法,其中依據該第一偵測結果來將該辨識位元插入至該第一位元流的步驟包含:當該特定位元集的該型式係為一第一型式時,將具有一第一邏輯值之該辨識位元插入至該第一位元流;以及當該特定位元集的該型式係為不同於該第一型式之一第二型式時,將具有一第二邏輯值之該辨識位元插入至該第一位元流。The encoding method of claim 2, wherein the step of inserting the identification bit into the first bit stream according to the first detection result comprises: when the specific bit set is a first type, the identification bit having a first logic value being inserted into the first bit stream; and when the pattern of the particular bit set is different from the second pattern of the first type The identification bit having a second logic value is inserted into the first bit stream. 如申請專利範圍第4項所述之編碼方法,其中依據該第一偵測結果來將該辨識位元插入至該第一位元流的步驟另包含:當該特定位元集的該型式係為該第一型式時,將該特定位元集轉換為該第二型式。The encoding method of claim 4, wherein the step of inserting the identification bit into the first bit stream according to the first detection result further comprises: when the type of the specific bit set is For the first version, the particular set of bits is converted to the second version. 一種編碼方法,包含:偵測一第一位元流之最低有效位元以取得一第一偵測結果;以及依據該第一偵測結果來將一辨識位元插入至該第一位元流之最低有效位元之後,並據以形成一第二位元流。An encoding method includes: detecting a least significant bit of a first bit stream to obtain a first detection result; and inserting a recognition bit into the first bit stream according to the first detection result After the least significant bit, a second bit stream is formed accordingly. 一種編碼方法,包含:偵測一第一位元流之最高有效位元以取得一第一偵測結果;以及依據該第一偵測結果來將一辨識位元插入至該第一位元流之最高有效位元之前,並據以形成一第二位元流。An encoding method includes: detecting a most significant bit of a first bit stream to obtain a first detection result; and inserting a recognition bit into the first bit stream according to the first detection result Before the most significant bit, a second bit stream is formed accordingly. 一種編碼方法,包含:將至少一辨識位元插入至一第一位元流,並據以形成一第二位元流;判斷該第二位元流的一訊號品質;當該訊號品質滿足一判斷準則時,輸出該第二位元流;以及當該訊號品質並未滿足該判斷準則時,調整該第二位元流來產生並輸出一第三位元流。An encoding method includes: inserting at least one identification bit into a first bit stream, and forming a second bit stream; determining a signal quality of the second bit stream; when the signal quality satisfies a When the criterion is judged, the second bit stream is output; and when the signal quality does not satisfy the judgment criterion, the second bit stream is adjusted to generate and output a third bit stream. 如申請專利範圍第8項所述之編碼方法,其中該判斷準則係為同一邏輯值連續出現於該第二位元流的次數不超過一預定連續次數。The encoding method of claim 8, wherein the judging criterion is that the number of consecutive occurrences of the same logical value in the second bit stream does not exceed a predetermined number of consecutive times. 如申請專利範圍第8項所述之編碼方法,其中該判斷準則係為一第一邏輯值與一第二邏輯值於該第二位元流中的轉換次數不低於一預定轉換次數。The encoding method of claim 8, wherein the determining criterion is that a first logical value and a second logical value are converted in the second bit stream by a predetermined number of conversions. 如申請專利範圍第8項所述之編碼方法,其中調整該第二位元流以產生並輸出該第三位元流的步驟包含:針對該第二位元流中的複數個位元進行邏輯運算,以產生該第三位元流。The encoding method of claim 8, wherein the step of adjusting the second bit stream to generate and output the third bit stream comprises: logic for a plurality of bits in the second bit stream An operation to generate the third bit stream. 如申請專利範圍第8項所述之編碼方法,其中調整該第二位元流以產生並輸出該第三位元流的步驟包含:反轉該第二位元流中的至少一第一位元以滿足該判斷準則;偵測該第二位元流中的複數個位元以產生一第二偵測結果;以及依據該第二偵測結果反轉該第二位元流中的至少一第二位元以產生該第三位元流。The encoding method of claim 8, wherein the step of adjusting the second bit stream to generate and output the third bit stream comprises: inverting at least a first bit in the second bit stream And satisfying the criterion; detecting a plurality of bits in the second bit stream to generate a second detection result; and inverting at least one of the second bit stream according to the second detection result The second bit is to generate the third bit stream. 如申請專利範圍第12項所述之編碼方法,其中偵測該第二位元流中的該複數個位元以產生該第二偵測結果的步驟包含:針對該複數個位元進行一邏輯互斥運算來產生該第二偵測結果。The encoding method of claim 12, wherein the detecting the plurality of bits in the second bit stream to generate the second detection result comprises: performing a logic on the plurality of bits A mutually exclusive operation produces the second detection result. 如申請專利範圍第8項所述之編碼方法,其中調整該第二位元流以產生並輸出該第三位元流的步驟包含:反轉該第二位元流中的至少一第一位元以滿足該判斷準則;至少偵測該第二位元流之一前一位元流之中最後的至少一位元,以產生一第二偵測結果;以及依據該第二偵測結果反轉該第二位元流中的至少一第二位元以產生該第三位元流。The encoding method of claim 8, wherein the step of adjusting the second bit stream to generate and output the third bit stream comprises: inverting at least a first bit in the second bit stream The element satisfies the criterion; at least the last at least one element of the previous one of the second bit streams is detected to generate a second detection result; and the second detection result is reversed Transducing at least one second bit of the second bit stream to generate the third bit stream. 如申請專利範圍第14項所述之編碼方法,其中產生該第二偵測結果的步驟包含:偵測該前一位元流之中最後的至少一位元與該第二位元流之中一開始的複數個位元,來產生該第二偵測結果。The encoding method of claim 14, wherein the step of generating the second detection result comprises: detecting a last one of the last one of the previous meta streams and the second bit stream The first plurality of bits are initially generated to generate the second detection result. 一種解碼方法,包含:偵測一第一位元流中的一特定位元集以產生一第一偵測結果,其中該特定位元集包含有至少一位元;以及依據該第一偵測結果來將該第一位元流轉換為一第二位元流,其中該第一位元流的位元數與該第二位元流的位元數相差1。A decoding method includes: detecting a specific bit set in a first bit stream to generate a first detection result, wherein the specific bit set includes at least one bit; and according to the first detection As a result, the first bit stream is converted to a second bit stream, wherein the number of bits of the first bit stream differs from the number of bits of the second bit stream by one. 如申請專利範圍第16項所述之解碼方法,其中該特定位元集係為一辨識位元,以及依據該第一偵測結果來將該第一位元流轉換為該第二位元流的步驟包含:直接輸出該第一位元流中除了該辨識位元之外的所有剩餘位元,來做為該第二位元流。The decoding method of claim 16, wherein the specific bit set is a recognition bit, and the first bit stream is converted into the second bit stream according to the first detection result. The step includes: directly outputting all remaining bits in the first bit stream except the identification bit as the second bit stream. 如申請專利範圍第16項所述之解碼方法,其中依據該第一偵測結果來將該第一位元流轉換為該第二位元流的步驟包含:當該第一偵測結果顯示該特定位元集所包含的複數個位元具有一第一編碼型式時,輸出該第一位元流中除了一辨識位元之外的所有剩餘位元,來做為該第二位元流;以及當該第一偵測結果顯示該特定位元集所包含的該複數個位元具有不同於該第一編碼型式之一第二編碼型式時,將該第一位元流轉換為一第三位元流,並輸出該第三位元流中除了一辨識位元之外的所有剩餘位元,來做為該第二位元流。The decoding method of claim 16, wherein the converting the first bit stream to the second bit stream according to the first detection result comprises: when the first detection result shows the When a plurality of bits included in a specific bit set have a first coding pattern, all remaining bits except the one recognized bit in the first bit stream are output as the second bit stream; And converting the first bit stream to a third when the first detection result indicates that the plurality of bits included in the specific bit set have a second coding pattern different from the first coding pattern. The bit stream is output, and all remaining bits except the one identifying bit in the third bit stream are output as the second bit stream. 如申請專利範圍第18項所述之解碼方法,其中將該第一位元流轉換為該第三位元流的步驟包含:依據一轉換運算來轉換該第一位元流以產生複數個轉換結果;以及依據一判斷準則來選取該複數個轉換結果的其中之一,來做為該第三位元流。The decoding method of claim 18, wherein the converting the first bit stream to the third bit stream comprises: converting the first bit stream according to a conversion operation to generate a plurality of conversions a result; and selecting one of the plurality of conversion results according to a criterion to be the third bit stream. 如申請專利範圍第19項所述之解碼方法,其中該判斷準則係為同一邏輯值連續出現的次數最多。The decoding method of claim 19, wherein the criterion is that the same logical value appears consecutively the most. 如申請專利範圍第19項所述之解碼方法,其中該判斷準則係為一第一邏輯值與一第二邏輯值的轉換次數最少。The decoding method of claim 19, wherein the determining criterion is that the number of conversions of a first logical value and a second logical value is the least. 如申請專利範圍第19項所述之解碼方法,其中該複數個轉換結果包含一第一轉換結果以及一第二轉換結果,以及依據該轉換運算來轉換該第一位元流以產生該複數個轉換結果的步驟包含:反轉該第一位元流中包含一特定位元的一第一位元集,以產生該第一轉換結果,其中該特定位元係為具有同一邏輯值之連續複數個位元的其中之一;以及反轉該第一位元流中包含該特定位元的一第二位元集,以產生該第二轉換結果。The decoding method of claim 19, wherein the plurality of conversion results include a first conversion result and a second conversion result, and converting the first bit stream according to the conversion operation to generate the plurality of The step of converting the result includes: inverting a first bit set of the first bit stream including a specific bit to generate the first conversion result, wherein the specific bit is a continuous complex number having the same logical value One of the bits; and inverting a second set of bits of the first bitstream containing the particular bit to produce the second conversion result. 如申請專利範圍第16項所述之解碼方法,其中依據該第一偵測結果來將該第一位元流轉換為該第二位元流的步驟包含:當該第一偵測結果顯示該特定位元集所包含的複數個位元具有一第一編碼型式時,偵測該第一位元流的一辨識位元以產生一第二偵測結果,以及依據該第二偵測結果來將該第一位元流轉換為該第二位元流;以及當該第一偵測結果顯示該特定位元集所包含的該複數個位元具有不同於該第一編碼型式之一第二編碼型式時,將該第一位元流轉換為一第三位元流,並依據該第三位元流來產生該第二位元流。The decoding method of claim 16, wherein the converting the first bit stream to the second bit stream according to the first detection result comprises: when the first detection result shows the Detecting a certain bit of the first bit stream to generate a second detection result, and Converting the first bit stream to the second bit stream; and when the first detection result indicates that the plurality of bits included in the specific bit set have a second difference from the first coding pattern When encoding the pattern, the first bit stream is converted into a third bit stream, and the second bit stream is generated according to the third bit stream. 如申請專利範圍第23項所述之解碼方法,其中將該第一位元流轉換為該第三位元流的步驟包含:依據一轉換運算來轉換該第一位元流以產生複數個轉換結果;以及依據一判斷準則來選取該複數個轉換結果的其中之一,來做為該第三位元流。The decoding method of claim 23, wherein converting the first bit stream to the third bit stream comprises: converting the first bit stream according to a conversion operation to generate a plurality of conversions a result; and selecting one of the plurality of conversion results according to a criterion to be the third bit stream. 如申請專利範圍第24項所述之解碼方法,其中該判斷準則係為同一邏輯值連續出現的次數最多。The decoding method of claim 24, wherein the criterion is that the same logical value appears consecutively the most. 如申請專利範圍第24項所述之解碼方法,其中該判斷準則係為一第一邏輯值與一第二邏輯值的轉換次數最少。The decoding method of claim 24, wherein the determining criterion is that the number of conversions of a first logical value and a second logical value is the least. 如申請專利範圍第24項所述之解碼方法,其中該複數個轉換結果包含一第一轉換結果以及一第二轉換結果,以及依據該轉換運算來轉換該第一位元流以產生該複數個轉換結果的步驟包含:反轉該第一位元流中包含一特定位元的一第一位元集,以產生該第一轉換結果,其中該特定位元係為具有同一邏輯值之連續複數個位元的其中之一;以及反轉該第一位元流中包含該特定位元的一第二位元集,以產生該第二轉換結果。The decoding method of claim 24, wherein the plurality of conversion results include a first conversion result and a second conversion result, and converting the first bit stream according to the conversion operation to generate the plurality of The step of converting the result includes: inverting a first bit set of the first bit stream including a specific bit to generate the first conversion result, wherein the specific bit is a continuous complex number having the same logical value One of the bits; and inverting a second set of bits of the first bitstream containing the particular bit to produce the second conversion result. 如申請專利範圍第23項所述之解碼方法,其中依據該第三位元流來產生該第二位元流的步驟包含:依據該第一位元流之一辨識位元,來將該第三位元流中之對應於該特定位元集之一位元集轉換為該第二編碼型式,並輸出該第三位元流中除了一辨識位元之外的所有剩餘位元來做為該第二位元流。The decoding method of claim 23, wherein the generating the second bit stream according to the third bit stream comprises: identifying a bit according to one of the first bit streams, to Converting a bit set corresponding to the specific bit set into the second coding pattern, and outputting all remaining bits except the one identifying bit in the third bit stream as The second bit stream. 如申請專利範圍第23項所述之解碼方法,其中依據該第三位元流來產生該第二位元流的步驟包含:依據該第一位元流之一辨識位元,直接輸出該第三位元流中除了一辨識位元之外的所有剩餘位元,來做為該第二位元流。The decoding method of claim 23, wherein the generating the second bit stream according to the third bit stream comprises: identifying the bit according to one of the first bit streams, directly outputting the first The remaining bits in the three-bit stream except one identifying the bit are used as the second bit stream. 一種編碼裝置,包含:一偵測單元,用以偵測一第一位元流以取得一第一偵測結果;以及一處理單元,耦接於該偵測單元,用以依據該第一偵測結果來將一辨識位元插入至該第一位元流,並據以形成一第二位元流,其中該第一位元流的位元數與該第二位元流的位元數相差1。An encoding device includes: a detecting unit for detecting a first bit stream to obtain a first detecting result; and a processing unit coupled to the detecting unit for using the first detecting The measurement result inserts a recognition bit into the first bit stream, and accordingly forms a second bit stream, wherein the number of bits of the first bit stream and the number of bits of the second bit stream The difference is 1. 一種編碼裝置,包含:一偵測單元,用以偵測一第一位元流之最低有效位元以取得一第一偵測結果;以及一處理單元,耦接於該偵測單元,用以依據該第一偵測結果來將一辨識位元插入至該第一位元流之最低有效位元之後,並據以形成一第二位元流。An encoding device includes: a detecting unit for detecting a least significant bit of a first bit stream to obtain a first detecting result; and a processing unit coupled to the detecting unit for Inserting a recognition bit into the least significant bit of the first bit stream according to the first detection result, and forming a second bit stream accordingly. 一種編碼裝置,包含:一偵測單元,用以偵測一第一位元流之最高有效位元以取得一第一偵測結果;以及一處理單元,耦接於該偵測單元,用以依據該第一偵測結果來將一辨識位元插入至該第一位元流之最高有效位元之前,並據以形成一第二位元流。An encoding device includes: a detecting unit for detecting a most significant bit of a first bit stream to obtain a first detecting result; and a processing unit coupled to the detecting unit for And inserting a recognition bit before the most significant bit of the first bit stream according to the first detection result, and forming a second bit stream accordingly. 一種編碼裝置,包含:一第一處理單元,用以將至少一辨識位元插入至一第一位元流,並據以形成一第二位元流;以及一第二處理單元,耦接於該第一處理單元,用以判斷該第二位元流的一訊號品質;其中當該訊號品質滿足一判斷準則時,輸出該第二位元流,以及當該訊號品質並未滿足該判斷準則時,調整該第二位元流來產生並輸出一第三位元流。An encoding device includes: a first processing unit, configured to insert at least one identification bit into a first bit stream, and thereby form a second bit stream; and a second processing unit coupled to The first processing unit is configured to determine a signal quality of the second bit stream; wherein when the signal quality satisfies a criterion, the second bit stream is output, and when the signal quality does not satisfy the criterion The second bit stream is adjusted to generate and output a third bit stream. 一種解碼裝置,包含:一偵測單元,用以偵測一第一位元流中的一特定位元集以產生一第一偵測結果,其中該特定位元集包含有至少一位元;以及一處理單元,耦接於該偵測單元,用以依據該第一偵測結果來將該第一位元流轉換為一第二位元流,其中該第一位元流的位元數與該第二位元流的位元數相差1。A decoding device includes: a detecting unit, configured to detect a specific bit set in a first bit stream to generate a first detecting result, wherein the specific bit set includes at least one bit; And a processing unit coupled to the detecting unit, configured to convert the first bit stream into a second bit stream according to the first detection result, where the number of bits of the first bit stream The number of bits of the second bit stream differs by one. 如申請專利範圍第34項所述之解碼裝置,其中當該第一偵測結果顯示該特定位元集所包含的複數個位元具有一第一編碼型式時,該處理單元輸出該第一位元流中除了一辨識位元之外的所有剩餘位元,來做為該第二位元流,以及當該第一偵測結果顯示該特定位元集所包含的該複數個位元具有不同於該第一編碼型式之一第二編碼型式時,該處理單元將該第一位元流轉換為一第三位元流,並輸出該第三位元流中除了一辨識位元之外的所有剩餘位元,來做為該第二位元流。The decoding device of claim 34, wherein the processing unit outputs the first bit when the first detection result indicates that the plurality of bits included in the specific bit set have a first coding pattern All remaining bits in the meta stream except for a recognized bit are used as the second bit stream, and when the first detection result shows that the plurality of bits included in the specific bit set are different In the second coding mode of the first coding type, the processing unit converts the first bit stream into a third bit stream, and outputs the third bit stream except for one identification bit. All remaining bits are used as the second bit stream. 如申請專利範圍第34項所述之解碼裝置,其中當該第一偵測結果顯示該特定位元集所包含的複數個位元具有一第一編碼型式時,該處理單元偵測該第一位元流的一辨識位元以產生一第二偵測結果,並依據該第二偵測結果來將該第一位元流轉換為該第二位元流,以及當該第一偵測結果顯示該特定位元集所包含的該複數個位元具有不同於該第一編碼型式之一第二編碼型式時,該處理單元將該第一位元流轉換為一第三位元流,並依據該第三位元流來產生該第二位元流。The decoding device of claim 34, wherein the processing unit detects the first when the first detection result indicates that the plurality of bits included in the specific bit set have a first coding pattern And identifying a bit of the bit stream to generate a second detection result, and converting the first bit stream to the second bit stream according to the second detection result, and when the first detection result When the plurality of bits included in the specific bit set are different from the second coding pattern of the first coding pattern, the processing unit converts the first bit stream into a third bit stream, and The second bit stream is generated according to the third bit stream. 一種資料傳送裝置,包含:一鎖相迴路單元,用以依據一時脈訊號以產生一第一控制訊號以及一第二控制訊號;一並列至串列轉換單元,用以依據該第一控制訊號來將一並列資料轉換為一串列資料;一編碼單元,用以依據該第二控制訊號來將一位元插入至該串列資料,並據以形成一已編碼資料,其中該串列資料的位元數與該已編碼資料的位元數相差1;以及一驅動單元,用以將該已編碼資料輸出為一已編碼訊號。A data transmission device includes: a phase locked loop unit for generating a first control signal and a second control signal according to a clock signal; and a parallel to the serial conversion unit for using the first control signal according to the first control signal Converting a side-by-side data into a series of data; a coding unit for inserting a bit into the serial data according to the second control signal, and thereby forming an encoded data, wherein the serial data The number of bits differs from the number of bits of the encoded data by one; and a driving unit for outputting the encoded data as an encoded signal. 如申請專利範圍第37項所述之資料傳送裝置,其中該編碼單元係選擇性地以一延遲鎖相迴路編碼模式或一鎖相迴路編碼模式來將該串列資料加以編碼。The data transfer device of claim 37, wherein the coding unit selectively encodes the serial data in a delayed phase locked loop coding mode or a phase locked loop coding mode. 一種資料接收裝置,包含:一比較單元,用以依據一已編碼資料來產生一輸入資料;一時脈回復單元,用以依據該輸入資料來產生一第一控制訊號、一第二控制訊號,以及一時脈訊號;一解碼單元,用以依據該第一控制訊號來將該輸入資料轉換為一已解碼資料,其中該輸入資料的位元數與該已解碼資料的位元數相差1;以及一串列至並列轉換單元,用以依據該第一控制訊號來將該已解碼資料轉換為一並列資料。A data receiving device includes: a comparing unit configured to generate an input data according to an encoded data; a clock recovery unit configured to generate a first control signal, a second control signal according to the input data, and a decoding unit, configured to convert the input data into a decoded data according to the first control signal, wherein a number of bits of the input data is different from a number of bits of the decoded data; The serial to parallel conversion unit is configured to convert the decoded data into a parallel data according to the first control signal. 如申請專利範圍第39項所述之資料接收裝置,其中該解碼單元係選擇性地以一延遲鎖相迴路解碼模式或一鎖相迴路解碼模式來將該輸入資料加以解碼。The data receiving device of claim 39, wherein the decoding unit selectively decodes the input data in a delay locked loop decoding mode or a phase locked loop decoding mode.
TW100136678A 2011-10-07 2011-10-07 Encoding method, encoding apparatus, decoding method, decoding apparatus, data transmitting apparatus and data receiving apparatus TWI489814B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100136678A TWI489814B (en) 2011-10-07 2011-10-07 Encoding method, encoding apparatus, decoding method, decoding apparatus, data transmitting apparatus and data receiving apparatus
CN201110396499.9A CN102497249B (en) 2011-10-07 2011-11-29 Encoding method, encoding device, decoding method, decoding device, data transmission device, and data reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100136678A TWI489814B (en) 2011-10-07 2011-10-07 Encoding method, encoding apparatus, decoding method, decoding apparatus, data transmitting apparatus and data receiving apparatus

Publications (2)

Publication Number Publication Date
TW201316718A true TW201316718A (en) 2013-04-16
TWI489814B TWI489814B (en) 2015-06-21

Family

ID=46189042

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100136678A TWI489814B (en) 2011-10-07 2011-10-07 Encoding method, encoding apparatus, decoding method, decoding apparatus, data transmitting apparatus and data receiving apparatus

Country Status (2)

Country Link
CN (1) CN102497249B (en)
TW (1) TWI489814B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587663B (en) * 2016-01-25 2017-06-11 國立交通大學 Bpsk demodulator

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104679448B (en) * 2015-02-05 2017-10-03 深圳市硅格半导体有限公司 The method and apparatus of data bit flow conversion
CN110474709B (en) * 2018-05-11 2021-11-05 Tcl华星光电技术有限公司 Encoding method, apparatus and readable storage medium
CN109309548B (en) * 2018-05-11 2020-01-03 深圳市华星光电技术有限公司 Encoding method, apparatus and readable storage medium
CN110474711B (en) * 2018-05-11 2021-11-09 Tcl华星光电技术有限公司 Encoding method, apparatus and readable storage medium
CN110474710B (en) * 2018-05-11 2021-06-01 Tcl华星光电技术有限公司 Encoding method, apparatus and readable storage medium
CN108777606B (en) * 2018-05-30 2021-07-27 Tcl华星光电技术有限公司 Decoding method, apparatus and readable storage medium
CN108847916B (en) * 2018-05-30 2020-12-04 深圳市华星光电技术有限公司 Encoding method, apparatus and readable storage medium
CN110620635A (en) * 2018-06-20 2019-12-27 深圳市华星光电技术有限公司 Decoding method, apparatus and readable storage medium
CN110087080B (en) * 2019-04-03 2021-03-23 Tcl华星光电技术有限公司 Decoding method, apparatus and readable storage medium
CN110098837B (en) * 2019-04-08 2020-11-06 深圳市华星光电技术有限公司 Data encoding method, decoding method, related device and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU618680B2 (en) * 1989-07-17 1992-01-02 Digital Equipment Corporation Data and forward error control coding techniques for digital signals
RU2190929C2 (en) * 1998-08-06 2002-10-10 Самсунг Электроникс Ко., Лтд. Channel coding/decoding in communication system
TW509900B (en) * 2000-02-29 2002-11-11 Via Tech Inc Error correction method for correcting errors in digital data
FR2874293B1 (en) * 2004-08-13 2006-11-03 Thales Sa 9-BIT-10-BIT CODER AND DECODER
CN101847997B (en) * 2010-04-26 2014-02-05 瑞斯康达科技发展股份有限公司 9B/10B coder-decoder and realization method thereof
CN102143360B (en) * 2010-06-30 2013-08-07 华为技术有限公司 Image coding method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587663B (en) * 2016-01-25 2017-06-11 國立交通大學 Bpsk demodulator

Also Published As

Publication number Publication date
CN102497249A (en) 2012-06-13
TWI489814B (en) 2015-06-21
CN102497249B (en) 2015-01-14

Similar Documents

Publication Publication Date Title
TWI489814B (en) Encoding method, encoding apparatus, decoding method, decoding apparatus, data transmitting apparatus and data receiving apparatus
US8144802B2 (en) Digital data encoding and decoding method and system
US9965435B2 (en) Communication low-speed and high-speed parallel bit streams over a high-speed serial bus
EP4224328A2 (en) Encoding data using combined data mask and data bus inversion
US8914698B2 (en) Cyclic redundancy check circuit and communication system having the same for multi-channel communication
CN108694918B (en) Encoding method and device, decoding method and device and display device
CN102136843A (en) Turner circuit with an inter-chip transmitter and method of providing an inter-chip link frame
US20070168835A1 (en) Serial communications system and method
JP2008061132A (en) Transceiver, transmitter, and receiver
US8723702B2 (en) Data transfer method, and code conversion circuit and apparatus
KR102223031B1 (en) Differential signal processing device using for advanced braid clock signaling
US11777765B2 (en) Signal transmission system, transmitter encoding apparatus and receiver decoding apparatus
US7259699B1 (en) Circuitry for providing configurable running disparity enforcement in 8B/10B encoding and error detection
WO2019242180A1 (en) Decoding method and device, and readable storage medium
JP2005210695A (en) Data transmission method and data transmission circuit
CN115733606A (en) Method for encoding and decoding data and transcoder
KR101038112B1 (en) DisplayPort digital encoders and digital decoders
US8166219B2 (en) Method and apparatus for encoding/decoding bus signal
US8089860B2 (en) Data transmission system and method
US20080013634A1 (en) Apparatus and method for high-speed interfacing between integrated circuits
JP2011155330A (en) Transmission system
US9832010B1 (en) Signal processing device and signal processing method
JP2010062890A (en) Data transmitting apparatus, data receiving apparatus and data transfer system
EP0514777A2 (en) A disparity detection circuit for a 2-bit to 4-bit coded signal decoder