TW201316523A - Structure of point contact solar cell - Google Patents

Structure of point contact solar cell Download PDF

Info

Publication number
TW201316523A
TW201316523A TW100136523A TW100136523A TW201316523A TW 201316523 A TW201316523 A TW 201316523A TW 100136523 A TW100136523 A TW 100136523A TW 100136523 A TW100136523 A TW 100136523A TW 201316523 A TW201316523 A TW 201316523A
Authority
TW
Taiwan
Prior art keywords
solar cell
passivation layer
openings
cell structure
semiconductor substrate
Prior art date
Application number
TW100136523A
Other languages
Chinese (zh)
Inventor
Seow Wei Tan
Yen-Yu Chen
Wei-Shuo Ho
Yu-Hung Huang
Chee-Wee Liu
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW100136523A priority Critical patent/TW201316523A/en
Priority to US13/341,526 priority patent/US20130087191A1/en
Publication of TW201316523A publication Critical patent/TW201316523A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A point-contact solar cell structure includes a semiconductor substrate having an upper surface, a lower surface, an emitter layer, a base layer, and doped regions, a front electrode, a first passivation layer, a second passivation layer, and a back electrode. The emitter layer, the base layer, and the doped regions are sequentially disposed between the upper surface and the lower surface. The doped regions are separately located in the lower surface. The second passivation layer is located on the lower surface. The second passivation layer has openings respectively disposed corresponding to the doped regions. The back electrode is located in the side of the second passivation layer opposite to the semiconductor substrate. The back electrode penetrates through the openings of the second passivation layer to contact with the doped regions. The width of at least one opening corresponding to the front electrode is larger than that of the others.

Description

點接觸式太陽能電池結構Point contact solar cell structure

本發明係有關一種太陽能電池結構,特別是一種點接觸式太陽能電池結構。The present invention relates to a solar cell structure, and more particularly to a point contact solar cell structure.

第1圖為習知之太陽能電池結構100a之立體圖。如第1圖所示,太陽能電池可包含矽晶半導體110a、前電極130a、背電極150a及可增加光入射量的抗反射層170a。矽晶圓110a包含P型矽層112a及N型矽層114a,並於二者之間形成正反接面(P-N juction)116a。當光能量進入到位於正反接面116a之空乏區時,會產生電子(e-)電洞(h+)對,但因正反接面116a的內部電場作用,會使得電子(e-)往前電極130a方向集中,而電洞(h+)往後電極150a方向集中,進而達到供電的作用。Figure 1 is a perspective view of a conventional solar cell structure 100a. As shown in Fig. 1, the solar cell may include a twinned semiconductor 110a, a front electrode 130a, a back electrode 150a, and an anti-reflection layer 170a capable of increasing the amount of light incident. The germanium wafer 110a includes a p-type germanium layer 112a and an n-type germanium layer 114a, and forms a positive and negative junction (PN juction) 116a therebetween. When the light energy enters the depletion region of the positive and negative junction 116a, an electron (e - ) hole (h + ) pair is generated, but due to the internal electric field of the positive and negative junction 116a, the electron (e - ) is caused. The current is concentrated in the direction of the front electrode 130a, and the hole (h + ) is concentrated in the direction of the rear electrode 150a, thereby achieving the power supply.

然而,矽與傳導性材質之間的介面容易造成表面覆合(surface recombination),致使太陽能電池的轉換效率降低。因此,有如第2圖所示之太陽能電池結構100a’,其較第1圖多了重摻雜P型矽層118a。使得P型矽層112a與重摻雜P型矽層118a之間形成能障,可避免P型矽層112a的電子往P型區移動,以降低表面覆合率。However, the interface between the crucible and the conductive material is liable to cause surface recombination, resulting in a decrease in conversion efficiency of the solar cell. Therefore, there is a solar cell structure 100a' as shown in Fig. 2, which has a heavily doped P-type germanium layer 118a as compared with Fig. 1. An energy barrier is formed between the P-type germanium layer 112a and the heavily doped P-type germanium layer 118a, and electrons of the P-type germanium layer 112a can be prevented from moving toward the P-type region to reduce the surface coverage ratio.

或者,為了降低表面覆合率,亦可將背電極150a改採用點接觸(point contact)結構(如美國第6524880號專利),使得矽與傳導性材質之接觸面積縮小。藉此,減少表面覆合而可提升太陽能電池的填充係數(fill factor),進而增進太陽能電池的轉換效率(efficiency)。Alternatively, in order to reduce the surface coverage ratio, the back electrode 150a may be changed to a point contact structure (such as U.S. Patent No. 6,524,880) to reduce the contact area between the crucible and the conductive material. Thereby, reducing the surface coverage can increase the fill factor of the solar cell, thereby increasing the conversion efficiency of the solar cell.

由上述可知,如何提高太陽能電池的填充係數,以增進轉換效率,為發明人以及從事此相關行業之技術領域者亟欲改善的課題。From the above, it is known how to improve the filling factor of the solar cell to improve the conversion efficiency, and it is an object of improvement for the inventors and those skilled in the related art.

有鑑於此,本發明係提供一種點接觸式太陽能電池結構,藉以解決先前技術所存在的問題。In view of this, the present invention provides a point contact solar cell structure to solve the problems of the prior art.

在本發明之實施例中,一種點接觸式太陽能電池結構包含半導體基板、前電極、第一鈍化層、第二鈍化層及背電極。In an embodiment of the invention, a point contact solar cell structure includes a semiconductor substrate, a front electrode, a first passivation layer, a second passivation layer, and a back electrode.

半導體基板包含上表面、下表面、複數個局部摻雜部、射極層及基極層。下表面相對於上表面。複數個局部摻雜部彼此間隔地位於下表面而形成背表面電場。射極層位上表面。基極層位於射極層與背表面電場之間。The semiconductor substrate includes an upper surface, a lower surface, a plurality of partial doping portions, an emitter layer, and a base layer. The lower surface is opposite the upper surface. A plurality of partial doping portions are spaced apart from each other on the lower surface to form a back surface electric field. The upper surface of the emitter layer. The base layer is between the emitter layer and the back surface electric field.

前電極位於半導體基板的上表面。第一鈍化層亦位於半導體基板的上表面,並連接前電極。第二鈍化層位於半導體基板的下表面,且第二鈍化層具有複數個開口,分別對應局部摻雜部而配置。背電極位於第二鈍化層相對於半導體基板的另一側,並經由開口貫穿第二鈍化層而接觸局部摻雜部。其中,該些開口中之對應於前電極的至少一開口的寬度均大於該些開口中之其餘開口的寬度。The front electrode is located on the upper surface of the semiconductor substrate. The first passivation layer is also located on the upper surface of the semiconductor substrate and is connected to the front electrode. The second passivation layer is located on a lower surface of the semiconductor substrate, and the second passivation layer has a plurality of openings respectively disposed corresponding to the local doping portions. The back electrode is located on the other side of the second passivation layer with respect to the semiconductor substrate, and contacts the local doping portion through the opening through the second passivation layer. The width of at least one of the openings corresponding to the front electrode is greater than the width of the remaining openings of the openings.

透過本發明之實施例,可提高太陽能電池的填充係數,並增進轉換效率。Through the embodiments of the present invention, the filling factor of the solar cell can be improved and the conversion efficiency can be improved.

第3圖為本發明實施例之點接觸式太陽能電池結構200之俯視圖。如第3圖所示,本實施例之點接觸式太陽能電池結構200可具有指叉式(interdigitated)的前電極230。3 is a top plan view of a point contact solar cell structure 200 in accordance with an embodiment of the present invention. As shown in FIG. 3, the point contact solar cell structure 200 of the present embodiment may have an interdigitated front electrode 230.

第4圖為第3圖中沿B-B線之剖面圖。如第4圖所示,點接觸式太陽能電池結構200包含半導體基板210、前電極230、第一鈍化層250、第二鈍化層270及背電極290。Fig. 4 is a cross-sectional view taken along line B-B in Fig. 3. As shown in FIG. 4, the point contact solar cell structure 200 includes a semiconductor substrate 210, a front electrode 230, a first passivation layer 250, a second passivation layer 270, and a back electrode 290.

半導體基板210包含上表面211及相對的下表面212。前電極230位於半導體基板210的上表面211。第一鈍化層250亦位於半導體基板210的上表面211,並連接前電極230。第二鈍化層270位於半導體基板210的下表面212。背電極290位於第二鈍化層270相對於半導體基板210的另一側。The semiconductor substrate 210 includes an upper surface 211 and an opposite lower surface 212. The front electrode 230 is located on the upper surface 211 of the semiconductor substrate 210. The first passivation layer 250 is also located on the upper surface 211 of the semiconductor substrate 210 and is connected to the front electrode 230. The second passivation layer 270 is located on the lower surface 212 of the semiconductor substrate 210. The back electrode 290 is located on the other side of the second passivation layer 270 with respect to the semiconductor substrate 210.

於此,上表面211為入光面,用以接收光能而利於點接觸式太陽能電池結構200進行光伏效應(photovoltaic effect)。第一鈍化層250亦可稱為抗反射層(anti reflection coating,ARC),用以減少入射光經過第一次反射即折回的機率。第一鈍化層250可由二氧化矽(silicon dioxide)、氮化矽(silicon nitride)或氧化鋁(aluminum oxide)等鈍化材料構成。且第一鈍化層250可經表面處理,如於第一鈍化層250的表面形成不同尺寸的金字塔(pyramid)構造,以減少入射光經過第一次反射即折回的機率。Here, the upper surface 211 is a light incident surface for receiving light energy to facilitate the photovoltaic effect of the point contact solar cell structure 200. The first passivation layer 250 may also be referred to as an anti-reflective coating (ARC) to reduce the probability of incident light being folded back through the first reflection. The first passivation layer 250 may be formed of a passivation material such as silicon dioxide, silicon nitride, or aluminum oxide. And the first passivation layer 250 may be surface-treated, such as forming a pyramid structure of different sizes on the surface of the first passivation layer 250 to reduce the probability of incident light passing back through the first reflection.

第5圖為第3圖中A處的半導體基板211的仰視圖。合併參照第4圖及第5圖,半導體基板211於上表面211及下表面212之間還包含有射極層213、基極層214及複數個局部摻雜部(locally doped regions)215。射極層213位上表面211。局部摻雜部215彼此間隔地位於下表面212而形成背表面電場(back-side surface field,BSF)216。基極層214位於射極層213與背表面電場216之間。Fig. 5 is a bottom view of the semiconductor substrate 211 at A in Fig. 3. Referring to FIGS. 4 and 5, the semiconductor substrate 211 further includes an emitter layer 213, a base layer 214, and a plurality of locally doped regions 215 between the upper surface 211 and the lower surface 212. The emitter layer 213 is located on the upper surface 211. The local doped portions 215 are spaced apart from one another on the lower surface 212 to form a back-side surface field (BSF) 216. The base layer 214 is between the emitter layer 213 and the back surface electric field 216.

於此,半導體基板211可為單晶材料(single crystalline material)、多晶材料(polycrystalline material)或非晶材料(amorphous material)所構成。於一實施例中,半導體基板211實質可為單晶矽(single crystalline silicon)、多晶矽(polycrystalline silicon)或非晶矽(amorphous silicon)之材質。Here, the semiconductor substrate 211 may be composed of a single crystalline material, a polycrystalline material, or an amorphous material. In one embodiment, the semiconductor substrate 211 may be substantially a material of single crystalline silicon, polycrystalline silicon, or amorphous silicon.

半導體基板211可利用N型或P型基材的晶圓形成。以P型晶圓為例,於半導體基板211重摻雜(heavily dope)施體(donor)而可形成N型(N+)的射極層213。相似地,於半導體基板211重摻雜受體(acceptor)而可形成P型(P+)的局部摻雜部215。於此,施體可為第五族的元素,如磷、砷或銻等,受體可為第三族的元素,如鋁、鎵或銦等。藉此,射極層213、基極層214及背表面電場216可形成N+PP+結構的接面。The semiconductor substrate 211 can be formed using a wafer of an N-type or P-type substrate. Taking the P-type wafer as an example, a semiconductor layer 211 is heavily doped to form an N-type (N + ) emitter layer 213. Similarly, a partial doping portion 215 of P-type (P + ) can be formed by heavily doping an acceptor on the semiconductor substrate 211. Herein, the donor may be a Group 5 element such as phosphorus, arsenic or antimony, and the acceptor may be a Group III element such as aluminum, gallium or indium. Thereby, the emitter layer 213, the base layer 214 and the back surface electric field 216 can form a junction of the N + PP + structure.

相似地,當以N型晶圓製造半導體基板211時,則可形成P+NN+結構的接面(junction),其中,射極層213為N型(N+),局部摻雜部215為P型(P+)。Similarly, when the semiconductor substrate 211 is fabricated from an N-type wafer, a junction of a P + NN + structure can be formed, wherein the emitter layer 213 is N-type (N + ), and the local doping portion 215 is P type (P + ).

於此,前述重摻雜可透過雷射退火(laser anneal)、擴散法(diffusion)或離子佈植(ion implantation)等方式達成。Here, the heavy doping may be achieved by laser annealing, diffusion, or ion implantation.

第6圖為第3圖中A處的第二鈍化層270與背電極290的俯視圖。合併參照第4圖至第6圖,第二鈍化層270具有複數個開口280,分別對應局部摻雜部215而配置。藉此,背電極290可經由開口280貫穿第二鈍化層270而接觸局部摻雜部215。詳言之,背電極290包含有複數個接點(point contacts)291。接點291凸出於背電極290的表面,並分別貫穿過開口280而接觸各自對應的局部摻雜部215。Fig. 6 is a plan view of the second passivation layer 270 and the back electrode 290 at A in Fig. 3. Referring to FIGS. 4-6, the second passivation layer 270 has a plurality of openings 280, which are respectively arranged corresponding to the local doping portions 215. Thereby, the back electrode 290 can contact the local doping portion 215 through the opening 280 through the second passivation layer 270. In detail, the back electrode 290 includes a plurality of point contacts 291. The contacts 291 protrude from the surface of the back electrode 290 and pass through the openings 280, respectively, to contact the respective corresponding partial dopings 215.

於此,第二鈍化層270係由鈍化材料構成,如二氧化矽(silicon dioxide)、氮化矽(silicon nitride)、二氧化鈦(TiO2)或氧化鋁(aluminum oxide)。第二鈍化層270可透過雷射雕刻(laser etching)、平板印刷(lithography)或蝕刻(etching)等方式製成。前述的方法中可視需求之開口280的尺寸而做選擇。而背電極290可於開口280製作後,以雷射燒結(laser sintering)、網版印刷等雷射、物理、化學或其組合之方式形成。Here, the second passivation layer 270 is composed of a passivation material such as silicon dioxide, silicon nitride, titanium oxide (TiO 2 ) or aluminum oxide. The second passivation layer 270 can be formed by laser etching, lithography, or etching. In the foregoing method, the size of the opening 280 can be selected as desired. The back electrode 290 can be formed after the opening 280 is formed by laser, physical, chemical, or a combination thereof, such as laser sintering or screen printing.

第7圖為第3圖之半導體基板210沿B-B線剖面之電流密度模擬圖。如第7圖所示,可清楚看到前電極230下方之電流密度會較其他地方大。因此,當對應於前電極230的至少一開口280的寬度大於其餘開口的寬度時,可提高點接觸式太陽能電池結構200的填充係數,進而增進轉換效率。Fig. 7 is a current density simulation diagram of the semiconductor substrate 210 of Fig. 3 taken along the line B-B. As shown in Fig. 7, it can be clearly seen that the current density under the front electrode 230 is larger than that of other places. Therefore, when the width of the at least one opening 280 corresponding to the front electrode 230 is larger than the width of the remaining openings, the fill factor of the point contact solar cell structure 200 can be improved, thereby improving the conversion efficiency.

表一為第3圖之點接觸式太陽能電池結構200以不同開口寬度之測試結果。合併參照第4、6及8圖,為方便說明,開口280中位於第一鈍化層下方者稱為第一開口281,其他開口則稱為第二開口282。Table 1 shows the test results of the point contact solar cell structure 200 of Fig. 3 with different opening widths. Referring to Figures 4, 6 and 8, for convenience of explanation, the opening 280 below the first passivation layer is referred to as a first opening 281, and the other openings are referred to as a second opening 282.

如表一所示,當第二開口282的寬度為10μm,而第一開口281較第二開口282的寬度分別增加0μm、5μm及20μm時,對應之短路電流密度(short circuit current density,Jsc)、開路電壓(open circuit voltage,Voc)、填充係數(fill factor,FF)及光電轉換效率(efficiency,η)。可見當第一開口281較第二開口282的寬度增加5μm或20μm時,均可提供較當第一開口281與第二開口282的寬度相同時更好的填充係數。As shown in Table 1, when the width of the second opening 282 is 10 μm and the width of the first opening 281 is increased by 0 μm, 5 μm, and 20 μm, respectively, the short circuit current density (J sc ) ), open circuit voltage (V oc ), fill factor (FF), and photoelectric conversion efficiency (efficiency, η). It can be seen that when the width of the first opening 281 is increased by 5 μm or 20 μm compared to the width of the second opening 282, a better filling factor can be provided than when the widths of the first opening 281 and the second opening 282 are the same.

較佳地,二相鄰的開口280中心對中心的距離(開口間距L)為90μm~300μm。且第二開口282的寬度(W2)為10μm~30μm。第一開口281的寬度(W1)可較第二開口282的寬度(W2)大5μm~20μm。意即,第一開口281的寬度可為15μm~50μm。此外,第二鈍化層270的厚度(n)較佳為100nm。Preferably, the center-to-center distance (opening interval L) of the two adjacent openings 280 is from 90 μm to 300 μm. And the width (W 2 ) of the second opening 282 is 10 μm to 30 μm. The width (W 1 ) of the first opening 281 may be larger than the width (W 2 ) of the second opening 282 by 5 μm to 20 μm. That is, the width of the first opening 281 may be 15 μm to 50 μm. Further, the thickness (n) of the second passivation layer 270 is preferably 100 nm.

於此,為了維持圖式的清晰,第4圖至第6圖中,局部摻雜部215、開口280與接點291僅以精簡的數量繪示,且經上述開口280寬度與間距的說明,熟習本領域之人員應可理解實施本發明實施例時局部摻雜部215、開口280與接點291的實際數量。Here, in order to maintain the clarity of the drawing, in FIGS. 4 to 6 , the partial doping portion 215 , the opening 280 and the contact 291 are only shown in a reduced number, and the width and spacing of the opening 280 are described. Those skilled in the art will appreciate the actual number of local dopings 215, openings 280 and contacts 291 when practicing embodiments of the present invention.

綜上所述,本發明之實施例藉由調整前電極230下方的接點291的尺寸而增進填充係數,進而可獲得更高的轉換效率。In summary, the embodiment of the present invention improves the fill factor by adjusting the size of the contact 291 under the front electrode 230, thereby achieving higher conversion efficiency.

100a...太陽能電池結構100a. . . Solar cell structure

110a...矽晶半導體110a. . . Twin crystal semiconductor

100a’...矽晶半導體100a’. . . Twin crystal semiconductor

112a...P型矽層112a. . . P-type layer

114a...N型矽層114a. . . N-type layer

116a...正反接面116a. . . Positive and negative junction

118a...重摻雜P型矽層118a. . . Heavily doped P-type layer

211...上表面211. . . Upper surface

212...下表面212. . . lower surface

213...射極層213. . . Emitter layer

214...基極層214. . . Base layer

215...局部摻雜部215. . . Local doping

216...背表面電場216. . . Back surface electric field

230...前電極230. . . Front electrode

130a...前電極130a. . . Front electrode

150a...背電極150a. . . Back electrode

170a...抗反射層170a. . . Antireflection layer

200...點接觸式太陽能電池結構200. . . Point contact solar cell structure

210...半導體基板210. . . Semiconductor substrate

290...背電極290. . . Back electrode

291...接點291. . . contact

e-...電子e - . . . electronic

h+...電洞h + . . . Hole

250...第一鈍化層250. . . First passivation layer

270...第二鈍化層270. . . Second passivation layer

280...開口280. . . Opening

281...第一開口281. . . First opening

282...第二開口282. . . Second opening

L...開口間距L. . . Opening spacing

n...第二鈍化層厚度n. . . Second passivation layer thickness

W1...第一開口寬度W 1 . . . First opening width

W2...第二開口寬度W 2 . . . Second opening width

第1圖為習知之太陽能電池結構之立體圖。Figure 1 is a perspective view of a conventional solar cell structure.

第2圖為習知之另一太陽能電池結構之剖面圖。Figure 2 is a cross-sectional view showing another conventional solar cell structure.

第3圖為本發明實施例之點接觸式太陽能電池結構之俯視圖。Fig. 3 is a plan view showing the structure of a point contact solar cell according to an embodiment of the present invention.

第4圖為第3圖中沿B-B線之剖面圖。Fig. 4 is a cross-sectional view taken along line B-B in Fig. 3.

第5圖為第3圖中A處的半導體基板的仰視圖。Fig. 5 is a bottom view of the semiconductor substrate at A in Fig. 3.

第6圖為第3圖中A處的第二鈍化層與背電極的俯視圖。Fig. 6 is a plan view of the second passivation layer and the back electrode at A in Fig. 3.

第7圖為第3圖之半導體基板沿B-B線剖面之電流密度模擬圖。Fig. 7 is a current density simulation diagram of the semiconductor substrate of Fig. 3 taken along the line B-B.

200...點接觸式太陽能電池結構200. . . Point contact solar cell structure

210...半導體基板210. . . Semiconductor substrate

211...上表面211. . . Upper surface

212...下表面212. . . lower surface

213...射極層213. . . Emitter layer

214...基極層214. . . Base layer

215...局部摻雜部215. . . Local doping

216...背表面電場216. . . Back surface electric field

230...前電極230. . . Front electrode

250...第一鈍化層250. . . First passivation layer

270...第二鈍化層270. . . Second passivation layer

280...開口280. . . Opening

281...第一開口281. . . First opening

282...第二開口282. . . Second opening

290...背電極290. . . Back electrode

L...開口間距L. . . Opening spacing

n...第二鈍化層厚度n. . . Second passivation layer thickness

W1...第一開口寬度W 1 . . . First opening width

W2...第二開口寬度W 2 . . . Second opening width

Claims (10)

一種點接觸式太陽能電池結構,包含:一半導體基板,包含:一上表面;一下表面,相對於該上表面;複數個局部摻雜部,彼此間隔地位於該下表面而形成一背表面電場;一射極層,位該上表面;以及一基極層,位於該射極層與該背表面電場之間;一前電極,位於該半導體基板的該上表面;一第一鈍化層,位於該半導體基板的該上表面,並連接該前電極;一第二鈍化層,位於該半導體基板的該下表面,該第二鈍化層具有複數個開口,分別對應該些局部摻雜部而配置;以及一背電極,位於該第二鈍化層相對於該半導體基板的另一側,並經由該些開口貫穿該第二鈍化層而接觸該些局部摻雜部;其中,該些開口中之對應於該前電極的至少一開口的寬度均大於該些開口中之其餘開口的寬度。A point contact solar cell structure comprising: a semiconductor substrate comprising: an upper surface; a lower surface opposite to the upper surface; a plurality of partial doping portions spaced apart from each other on the lower surface to form a back surface electric field; An emitter layer positioned on the upper surface; and a base layer between the emitter layer and the back surface electric field; a front electrode on the upper surface of the semiconductor substrate; a first passivation layer located at the The upper surface of the semiconductor substrate is connected to the front electrode; a second passivation layer is disposed on the lower surface of the semiconductor substrate, and the second passivation layer has a plurality of openings respectively disposed corresponding to the partial doping portions; a back electrode is disposed on the other side of the second passivation layer opposite to the semiconductor substrate, and contacts the partial doping portions through the openings through the openings; wherein the openings correspond to the The width of at least one opening of the front electrode is greater than the width of the remaining openings in the openings. 如請求項1所述之太陽能電池結構,其中該射極層、該基極層及該背表面電場形成p+nn+或n+pp+的接面。The solar cell structure of claim 1, wherein the emitter layer, the base layer, and the back surface electric field form a junction of p+nn+ or n+pp+. 如請求項1所述之太陽能電池結構,其中該半導體基板的材質係選自單晶矽、多晶矽及非晶矽所組成之群組。The solar cell structure of claim 1, wherein the material of the semiconductor substrate is selected from the group consisting of a single crystal germanium, a polycrystalline germanium, and an amorphous germanium. 如請求項1所述之太陽能電池結構,其中該第二鈍化層的材質係選自二氧化矽、氮化矽及氧化鋁所組成之群組。The solar cell structure of claim 1, wherein the material of the second passivation layer is selected from the group consisting of cerium oxide, cerium nitride and aluminum oxide. 如請求項1所述之太陽能電池結構,其中二相鄰的該開口中心對中心的距離為90μm~300μm。The solar cell structure according to claim 1, wherein the distance between the centers of the two adjacent openings to the center is from 90 μm to 300 μm. 如請求項1所述之太陽能電池結構,其中位於該第一鈍化層下方的該些開口的寬度為10μm~30μm。The solar cell structure of claim 1, wherein the openings under the first passivation layer have a width of 10 μm to 30 μm. 如請求項1所述之太陽能電池結構,其中位於該前電極下方的該些開口的寬度為15μm~50μm。The solar cell structure of claim 1, wherein the openings under the front electrode have a width of 15 μm to 50 μm. 如請求項1所述之太陽能電池結構,其中位於該前電極下方的該些開口的寬度較位於該第一鈍化層下方的該些開口大5μm~20μm。The solar cell structure of claim 1, wherein the openings under the front electrode have a width greater than 5 μm to 20 μm larger than the openings below the first passivation layer. 如請求項1所述之太陽能電池結構,其中該第二鈍化層的厚度為100nm。The solar cell structure of claim 1, wherein the second passivation layer has a thickness of 100 nm. 如請求項1所述之太陽能電池結構,其中該背電極包含複數個接點,凸出該背電極的表面並貫穿過該些開口而接觸該些局部摻雜部。The solar cell structure of claim 1, wherein the back electrode comprises a plurality of contacts protruding from the surface of the back electrode and passing through the openings to contact the partial doping portions.
TW100136523A 2011-10-07 2011-10-07 Structure of point contact solar cell TW201316523A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100136523A TW201316523A (en) 2011-10-07 2011-10-07 Structure of point contact solar cell
US13/341,526 US20130087191A1 (en) 2011-10-07 2011-12-30 Point-contact solar cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100136523A TW201316523A (en) 2011-10-07 2011-10-07 Structure of point contact solar cell

Publications (1)

Publication Number Publication Date
TW201316523A true TW201316523A (en) 2013-04-16

Family

ID=48041275

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100136523A TW201316523A (en) 2011-10-07 2011-10-07 Structure of point contact solar cell

Country Status (2)

Country Link
US (1) US20130087191A1 (en)
TW (1) TW201316523A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013134029A1 (en) * 2012-03-06 2013-09-12 Applied Materials, Inc. Patterned aluminum back contacts for rear passivation
EP3235008A4 (en) * 2014-12-17 2018-07-25 Intel Corporation Integrated circuit die having reduced defect group iii-nitride structures and methods associated therewith
KR101840801B1 (en) * 2016-12-06 2018-03-22 엘지전자 주식회사 Compound semiconductor solar cell
CN114464689B (en) * 2021-09-27 2024-02-27 浙江晶科能源有限公司 Photovoltaic cell, preparation method thereof and photovoltaic module
CN117153914A (en) * 2022-06-30 2023-12-01 浙江晶科能源有限公司 Photovoltaic cell, manufacturing method thereof and photovoltaic module

Also Published As

Publication number Publication date
US20130087191A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP6059173B2 (en) Solar cell
US9853178B2 (en) Selective emitter solar cell
CN103700713B (en) Solaode and manufacture method thereof
KR100850641B1 (en) Fabrication method of high-efficiency crystalline silicon solar cells
KR20140135881A (en) Solar cell and method for manufacturing the same
TWI424582B (en) Method of fabricating solar cell
TW201316523A (en) Structure of point contact solar cell
JP2014007382A (en) Solar cell
US20140202526A1 (en) Solar cell and method for manufacturing the same
US10141467B2 (en) Solar cell and method for manufacturing the same
KR20150049211A (en) Solar cell and method for manufacturing the same
KR20150109745A (en) Solar cell and method for manufacturing the same
EP2854182B1 (en) Solar cell
US20180287003A1 (en) Solar cell and method of manufacturing solar cell
US20140318612A1 (en) Manufacturing method of silicon solar cell and silicon solar cell
KR20150029203A (en) Solar cell
KR20120009562A (en) Solar cell and method of manufacturing the same
KR20160025222A (en) Solar cell and method for manufacturing the same
KR101889774B1 (en) Solar cell
KR20180034091A (en) Silicon solar cell and Method for manufacturing thereof
KR20180064265A (en) Solar cell manufacturing method and solar cell
TWM542861U (en) Solar cell
KR20160111624A (en) Solar cell and method for manufacturing the same
KR20170090781A (en) Solar cell and manufacturing method thereof
KR102110527B1 (en) Solar cell