TW201314834A - Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing - Google Patents

Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing Download PDF

Info

Publication number
TW201314834A
TW201314834A TW101139316A TW101139316A TW201314834A TW 201314834 A TW201314834 A TW 201314834A TW 101139316 A TW101139316 A TW 101139316A TW 101139316 A TW101139316 A TW 101139316A TW 201314834 A TW201314834 A TW 201314834A
Authority
TW
Taiwan
Prior art keywords
dielectric
electrostatic chuck
substrate
channel
plasma
Prior art date
Application number
TW101139316A
Other languages
Chinese (zh)
Other versions
TWI479597B (en
Inventor
Dmitry Lubomirsky
xing-long Chen
Sudhir Gondhalekar
Kadthala Ramaya Narendranath
Muhammad Rasheed
Tony Kaushal
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/888,327 external-priority patent/US8108981B2/en
Priority claimed from US11/888,341 external-priority patent/US9202736B2/en
Priority claimed from US11/888,311 external-priority patent/US7848076B2/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201314834A publication Critical patent/TW201314834A/en
Application granted granted Critical
Publication of TWI479597B publication Critical patent/TWI479597B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Abstract

A method and apparatus for providing a fluid distribution element for an electrostatic chuck that reduces plasma formation and arcing within heat transfer fluid passages. One embodiment comprises a plate and a dielectric component, where the dielectric component is inserted into the plate. The plate is adapted to be positioned within a channel to define a plenum, wherein the dielectric component provides at least a portion of a fluid passage coupled to the plenum. A porous dielectric layer, formed upon the dielectric component, provides at least another portion of a fluid passage coupled to the plenum. In other embodiments, the fluid distribution element comprises various arrangements of components to define a fluid passage that does not provide a line-of-sight path from the support surface for a substrate to a plenum.

Description

提供減少電漿穿透與電弧之靜電吸盤的方法與設備 Method and apparatus for providing an electrostatic chuck that reduces plasma penetration and arcing

本發明之實施例大致係關於半導體元件製造用之設備,且特別是,係關於一種在處理過程中用於支撐半導體晶圓之靜電吸盤。 Embodiments of the present invention generally relate to apparatus for fabricating semiconductor components, and more particularly to an electrostatic chuck for supporting a semiconductor wafer during processing.

靜電吸盤廣泛用於對半導體處理設備(例如,電漿處理室)中的基板(或稱為半導體晶圓或晶圓)提供支撐。在基板處理期間(即,材料沉積或蝕刻期間),靜電吸盤通常將基板固持於一靜止位置。靜電吸盤係利用電容性或強生-拉別克(Johnsen-Rahbeck)吸力來固持基板於定位。 Electrostatic chucks are widely used to provide support to substrates (or semiconductor wafers or wafers) in semiconductor processing equipment (eg, plasma processing chambers). The electrostatic chuck typically holds the substrate in a rest position during substrate processing (ie, during material deposition or etching). Electrostatic chucks utilize capacitive or Johnson-Rahbeck suction to hold the substrate in position.

有一類靜電吸盤係包括一主體以及覆蓋有一層介電材料(藉以形成一支撐表面)之一流體分佈元件。該主體一般具有傳導性,使得主體形成了靜電吸盤的電極。基板係置於支撐表面上。流體分佈元件包括一氣室,其帶有形成於靜電吸盤支撐表面中之多個流體通道,以於吸盤的支撐表面與基板背側之間分佈一傳熱流體(例如,氣體)。一般而言,氣體填滿靜電吸盤與基板之間的空隙區域,因而提升靜電吸盤與基板之間的傳熱率與傳熱均勻性。 One type of electrostatic chuck includes a body and a fluid distribution element covered with a layer of dielectric material ( thereby forming a support surface). The body is generally conductive such that the body forms the electrode of the electrostatic chuck. The substrate is placed on the support surface. The fluid distribution element includes a plenum having a plurality of fluid passages formed in the electrostatic chuck support surface for distributing a heat transfer fluid (eg, a gas) between the support surface of the suction cup and the back side of the substrate. In general, the gas fills the void region between the electrostatic chuck and the substrate, thereby increasing the heat transfer rate and heat transfer uniformity between the electrostatic chuck and the substrate.

在電漿處理室中,靜電吸盤會受到基板周圍的高功率射頻(RF)電場與高密度電漿。在這種電漿處理室中,可 能會使氣體因氣體通道中產生高電場而崩解。靜電吸盤的操作與生命週期係受到氣體通動中之電漿形成的不良影響。這種電漿會破壞基板、靜電吸盤或兩者。此外,氣體通道中電漿之形成會導致電弧(arcing),其形成腔室中的粒狀汙染物。 In a plasma processing chamber, the electrostatic chuck is subjected to a high power radio frequency (RF) electric field and high density plasma around the substrate. In this plasma processing chamber, It can cause the gas to disintegrate due to the high electric field generated in the gas passage. The operation and life cycle of the electrostatic chuck are adversely affected by the formation of plasma in the gas passage. This plasma can damage the substrate, the electrostatic chuck, or both. In addition, the formation of plasma in the gas passage can cause arcing, which forms particulate contaminants in the chamber.

已有多種技術來減少氣體通道中的電漿形成。有一種技術包括了將一多孔性介電質栓插置在吸盤表面的通道中。選擇栓的孔隙度以確保孔隙的大小可以抑制電漿形成、但又可讓傳熱流體到達基板支撐表面。雖然多孔性材料提供了對電漿形成之保護,但這種靜電吸盤的製造則相當困難、費時且耗費成本。 A variety of techniques have been developed to reduce plasma formation in gas passages. One technique involves inserting a porous dielectric plug into the channel of the surface of the chuck. The porosity of the plug is chosen to ensure that the size of the pores inhibits plasma formation but allows the heat transfer fluid to reach the substrate support surface. While porous materials provide protection from plasma formation, the manufacture of such electrostatic chucks is quite difficult, time consuming, and costly.

因此,需要一種改良的靜電吸盤以減少電漿形成與電弧。 Therefore, there is a need for an improved electrostatic chuck to reduce plasma formation and arcing.

本發明大致提供了一種提供靜電吸盤所用之流體分佈元件的方法與設備,其可減少傳熱流體通道中之電漿形成與電弧。一實施例包括了一平板與一介電部件,其中該介電部件係插置於該平板中。該平板係適於定位在一通道內以界定一氣室,其中該介電部件提供了與氣室耦合之流體通道的至少一部分。形成在介電部件上的多孔性介電層提供了與氣室耦合之流體通道的至少另一部分。在其他實施例中,流體分佈元件包括部件的各種排 列,其界定一流體通道但未提供從基板支撐表面到氣室之一視線路徑(line-of-sight path)。 SUMMARY OF THE INVENTION The present invention generally provides a method and apparatus for providing a fluid distribution element for an electrostatic chuck that reduces plasma formation and arcing in a heat transfer fluid passage. An embodiment includes a flat panel and a dielectric component, wherein the dielectric component is interposed in the flat panel. The plate is adapted to be positioned within a channel to define a plenum, wherein the dielectric component provides at least a portion of a fluid passage coupled to the plenum. The porous dielectric layer formed on the dielectric member provides at least another portion of the fluid passage coupled to the plenum. In other embodiments, the fluid distribution element includes various rows of components A column that defines a fluid passage but does not provide a line-of-sight path from the substrate support surface to the plenum.

第1圖說明了一種電漿式基板處理系統36,其包括如本發明中各種實施例之靜電吸盤68。電漿處理系統36係用於需控制基板(如矽晶圓、GaAs晶圓等)溫度之處理,同時產生並維持一電漿環境以於其中處理基板。電漿係產生於基板附近以處理基板,且基板的溫度係使用各種技術加以控制,例如:藉由供應一傳熱流體至基板的後表面。雖然以高密度電漿-化學氣相沉積(HDP-CVD)系統(例如,應用材料公司(Applied Materials,Inc.,Santa Clara,Calif.)之300mm HDP-CVD Ultima X系統)來說明電漿處理室的一個實施例,然本發明可用於使用電漿的其他處理室,包括物理氣相沉積室、化學氣相沉積室、蝕刻室與其他需控制基板溫度之應用。 1 illustrates a plasma substrate processing system 36 that includes an electrostatic chuck 68 as in various embodiments of the present invention. The plasma processing system 36 is used to control the temperature of substrates (e.g., germanium wafers, GaAs wafers, etc.) while generating and maintaining a plasma environment for processing the substrates therein. The plasma is generated near the substrate to process the substrate, and the temperature of the substrate is controlled using various techniques, for example, by supplying a heat transfer fluid to the back surface of the substrate. Although plasma processing is described by a high density plasma-chemical vapor deposition (HDP-CVD) system (for example, 300 mm HDP-CVD Ultima X system of Applied Materials, Inc., Santa Clara, Calif.) One embodiment of the chamber, however, can be used in other processing chambers that use plasma, including physical vapor deposition chambers, chemical vapor deposition chambers, etching chambers, and other applications where substrate temperature needs to be controlled.

第1圖說明了HDP-CVD系統36的一個實施例,其使用一靜電吸盤68於基板處理期間固定基板。根據本發明實施例,靜電吸盤68係經設計以減少吸盤68附近的電漿穿透與電弧。 Figure 1 illustrates an embodiment of an HDP-CVD system 36 that uses an electrostatic chuck 68 to secure a substrate during substrate processing. In accordance with an embodiment of the invention, electrostatic chuck 68 is designed to reduce plasma penetration and arcing near suction cup 68.

系統36包括處理室38、真空系統40、來源電漿系統42、偏壓電漿系統44、氣體傳送系統46以及遠端電漿清潔系統48。 System 36 includes a process chamber 38, a vacuum system 40, a source plasma system 42, a bias plasma system 44, a gas delivery system 46, and a remote plasma cleaning system 48.

處理室38的上方部分包括一圓蓋50,其由介電材料(諸如,氧化鋁或氮化鋁)所製成。圓蓋50界定了電漿處理區域52的上邊界。電漿處理區域52的底部是由基板54的上表面與基板支撐件56予以界定。 The upper portion of the processing chamber 38 includes a dome 50 made of a dielectric material such as alumina or aluminum nitride. The dome 50 defines the upper boundary of the plasma processing zone 52. The bottom of the plasma processing zone 52 is defined by the upper surface of the substrate 54 and the substrate support 56.

加熱板58與冷卻板60係位於圓蓋50上方且與其熱耦合。加熱板58與冷卻板60使圓蓋溫度可以在約100至200℃的範圍內可控制於±10℃的差異內。這使圓蓋溫度可針對各種處理而最佳化。舉例而言,在清潔或蝕刻處理期間需要使圓蓋維持於較沉積處理更高的溫度。精確控制圓蓋溫度也減少處理室中的薄片或粒子數,並提升了沉積層與基板之間的接合力。 The heating plate 58 and the cooling plate 60 are located above and thermally coupled to the dome 50. The heating plate 58 and the cooling plate 60 allow the dome temperature to be controlled within a difference of ± 10 ° C in the range of about 100 to 200 ° C. This allows the dome temperature to be optimized for a variety of treatments. For example, it is desirable to maintain the dome at a higher temperature than the deposition process during the cleaning or etching process. Precise control of the dome temperature also reduces the number of flakes or particles in the processing chamber and increases the bonding force between the deposited layer and the substrate.

處理室38的下方包括一主體件62,其連接了處理室與真空系統。基板支撐件56的基部64係固定於主體件62上並與其形成一連續內表面。藉由自動控制葉片(圖中未示)將基板傳遞通過處理室38一側的插入/移除開口95而進出處理室38。氣壓式致動器(圖中未示)升高與降低一舉升銷板(圖中未示),其升高與降低舉升銷(圖中未示)以使晶圓升高及降低。在傳遞至處理室38中時,基板係載至升高之舉升銷上,然後降低至基板支撐件56的基板接收部66。基板接收部66包括靜電吸盤68,其於基板處理期間將基板固定在基板支撐件56上。 Below the processing chamber 38 includes a body member 62 that connects the processing chamber to the vacuum system. The base 64 of the substrate support 56 is secured to the body member 62 and forms a continuous inner surface therewith. The substrate is transferred into and out of the processing chamber 38 by automatically controlling the vanes (not shown) to transfer the substrate through the insertion/removal opening 95 on one side of the processing chamber 38. A pneumatic actuator (not shown) raises and lowers the lift pin (not shown), which raises and lowers the lift pin (not shown) to raise and lower the wafer. Upon transfer into the processing chamber 38, the substrate is loaded onto the raised lift pins and then lowered to the substrate receiving portion 66 of the substrate support 56. The substrate receiving portion 66 includes an electrostatic chuck 68 that secures the substrate to the substrate support 56 during substrate processing.

真空系統40包括一調節體70,其覆蓋多葉片調節閥72並與閘閥74與渦輪式幫浦76結合。應注意,調節體70提供氣流最小阻礙並進行對稱性抽吸,如同樣待審、 共同申請之美國專利申請案「對稱腔室(SYMMETRIC CHAMBER)」中所述者,其最初於1995年12月12日提申(申請號為No.08/574,839),並於1996年9月11日再次提申(申請號為No.08/712,724)。閘閥74可以使幫浦76與調節體70隔離,並可藉由限制調節閥72在完全開啟時的排流能力來控制處理室壓力。調節閥72、閘閥74、以及渦輪式幫浦76的配置可精確穩定地控制處理室壓力於約1至100毫托(millitorr)。 The vacuum system 40 includes an adjustment body 70 that covers the multi-blade adjustment valve 72 and is coupled to the gate valve 74 and the turbo pump 76. It should be noted that the adjustment body 70 provides minimal airflow obstruction and symmetric suction, as also pending, U.S. Patent Application Serial No. SYMMETRIC CHAMBER, which was originally filed on Dec. 12, 1995 (Application No. 08/574,839), and filed on September 11, 1996 The day is again requested (application number is No. 08/712, 724). The gate valve 74 can isolate the pump 76 from the regulator 70 and can control the chamber pressure by limiting the drain capacity of the regulator valve 72 when fully open. The configuration of the regulating valve 72, the gate valve 74, and the turbo pump 76 can accurately and stably control the process chamber pressure at about 1 to 100 milliTorr.

來源電漿系統42包括了裝設在圓蓋50上的頂部線圈78與側線圈80,一對稱接地屏蔽(未示出)減少了線圈之間的電耦合。頂部線圈78係由頂部射頻(RF)來源產生器82所啟動,而側線圈80係由側射頻(RF)來源產生器84所啟動,讓各線圈可具有獨立的功率級與操作頻率。此一雙重線圈系統可控制處理室38中的輻射離子密度,藉以增進電漿均勻性。側線圈80與頂部線圈78感應地將能量耦合至腔室38中。在一特定實施例中,頂部RF來源產生器82於2MHz額定(nominal)頻率時提供了高達8000W的RF功率,而側RF來源產生器84於2MHz額定頻率時提供了高達8000W的RF功率。頂部與側RF產生器的操作頻率係偏離額定操作頻率(諸如:分別為1.7至1.9MHZ以及1.9至2.1MHz),以提高電漿產生效率。 The source plasma system 42 includes a top coil 78 and a side coil 80 mounted on a dome 50, and a symmetrical ground shield (not shown) reduces electrical coupling between the coils. The top coil 78 is activated by a top radio frequency (RF) source generator 82, and the side coils 80 are activated by a side radio frequency (RF) source generator 84, allowing each coil to have independent power levels and operating frequencies. This dual coil system controls the density of the radiation ions in the processing chamber 38 to enhance plasma uniformity. Side coil 80 and top coil 78 inductively couple energy into chamber 38. In a particular embodiment, the top RF source generator 82 provides up to 8000 W of RF power at a 2 MHz nominal frequency, while the side RF source generator 84 provides up to 8000 W of RF power at a 2 MHz nominal frequency. The operating frequencies of the top and side RF generators are offset from the nominal operating frequency (such as: 1.7 to 1.9 MHz and 1.9 to 2.1 MHz, respectively) to increase plasma generation efficiency.

RF產生器82與84包括數位式控制合成器,且其係於頻率範圍約1.7至約2.1MHz中運作。各產生器包括一 RF控制電路(未示),其測量從處理室與線圈對產生器的反射功率,並調整操作頻率以獲得最低反射功率,如該領域技術人士所了解者。RF產生器一般係設計為操作於特性阻抗為50歐姆(ohms)之負載(load)。RF功率係從與產生器之特性阻抗不同的負載反射。這可減少傳遞至負載的功率。此外,從負載反射回產生器的功率會超載並破壞產生器。由於電漿的阻抗係根據電漿離子密度等多項因子而介於低於5歐姆至超過900歐姆的範圍中,且由於反射功率係頻率之函數,根據反射功率來調整產生器頻率可增加從RF產生器傳送到電漿的功率並保護產生器。另一種降低反射功率並提升效率的方法是與匹配網路進行運作。 RF generators 82 and 84 include a digitally controlled synthesizer and operate in a frequency range of from about 1.7 to about 2.1 MHz. Each generator includes one An RF control circuit (not shown) that measures the reflected power from the process chamber and the coil pair generator and adjusts the operating frequency to obtain the lowest reflected power, as will be appreciated by those skilled in the art. RF generators are typically designed to operate with loads having a characteristic impedance of 50 ohms. The RF power is reflected from a load that is different from the characteristic impedance of the generator. This reduces the power delivered to the load. In addition, the power reflected back from the load back to the generator can overload and destroy the generator. Since the impedance of the plasma is in the range of less than 5 ohms to over 900 ohms depending on a number of factors such as plasma ion density, and depending on the frequency of the reflected power system, the generator frequency can be increased from the RF according to the reflected power. The generator delivers power to the plasma and protects the generator. Another way to reduce reflected power and increase efficiency is to operate with a matching network.

匹配網路89與90將產生器82與84的輸出阻抗分別與線圈78與80進行匹配。RF控制電路改變匹配網路內的電容值來調整兩匹配網路,以於負載變化時將產生器匹配至負載。當自負載反射回產生器的功率超過一特定限值時,RF控制電路將調整一匹配網路。一種提供固定匹配及有效使RF控制電路無法調整匹配電路的方式是將反射功率限值設定為高於反射功率的任何期待值。這藉由使匹配網路在其大部分條件中保持固定而有助於在某些條件下穩定電漿。 Matching networks 89 and 90 match the output impedances of generators 82 and 84 to coils 78 and 80, respectively. The RF control circuit changes the capacitance value in the matching network to adjust the two matching networks to match the generator to the load as the load changes. The RF control circuit will adjust a matching network when the power reflected from the load back to the generator exceeds a certain limit. One way to provide a fixed match and effectively disable the RF control circuit from adjusting the match circuit is to set the reflected power limit to any desired value above the reflected power. This helps stabilize the plasma under certain conditions by keeping the matching network fixed in most of its conditions.

偏壓電漿系統44包括一RF偏壓產生器86與一偏壓匹配網路88。偏壓電漿系統44電容性耦合基板接收部66至主體件62(其係做為補償電極)。偏壓電漿系統44用於 加強來源電漿系統42所產生的電漿物質傳送至基板的表面。在一特定實施例中,RF偏壓產生器86於13.56MHz時提供高達10000W的RF功率。 The bias plasma system 44 includes an RF bias generator 86 and a bias matching network 88. The bias plasma system 44 capacitively couples the substrate receiving portion 66 to the body member 62 (which acts as a compensation electrode). Biased plasma system 44 is used The plasma material generated by the source plasma system 42 is enhanced to be transferred to the surface of the substrate. In a particular embodiment, RF bias generator 86 provides up to 10,000 W of RF power at 13.56 MHz.

其他方式也有助於穩定電漿。舉例而言,可使用RF控制電路來決定傳遞至負載(電漿)的功率,並增加或減少產生器輸出功率以使傳遞之功率在沉積膜層期間實質上保持固定。 Other ways also help stabilize the plasma. For example, RF control circuitry can be used to determine the power delivered to the load (plasma) and increase or decrease the generator output power such that the delivered power remains substantially fixed during deposition of the film.

氣體傳送系統46包括複數個氣體來源100a、100b、100c、100d與100e。在一實施例中,前述氣體來源分別包括矽烷(silane)、氧分子、氦與氬。氣體傳送系統46經由氣體傳送線路92(圖中僅繪示部分)而從多個來源提供氣體至處理室以處理基板。氣體經由氣環94、上噴嘴96與排氣口98而導入處理室38。明確地說,氣體來源100a與100d分別經由流量控制器120a與120c以及氣體傳送線路92而提供氣體至上噴嘴96。來自氣體來源102b的氣體係經由流量控制器120b而被提供至排氣口98。上噴嘴96與頂部排氣口98可獨立控制頂部與側邊的氣體流動,其增進了薄膜均勻度並可細調薄膜的沉積與摻雜參數。頂部排氣口98係沿著上噴嘴96周圍之一環型開口,氣體可藉其而從氣體傳送系統流入處理室中。 Gas delivery system 46 includes a plurality of gas sources 100a, 100b, 100c, 100d, and 100e. In one embodiment, the foregoing gas sources include silane, oxygen molecules, helium and argon, respectively. The gas delivery system 46 provides gas from a plurality of sources to the processing chamber to process the substrate via a gas delivery line 92 (only a portion of which is shown). The gas is introduced into the processing chamber 38 via the gas ring 94, the upper nozzle 96, and the exhaust port 98. In particular, gas sources 100a and 100d provide gas to upper nozzle 96 via flow controllers 120a and 120c and gas delivery line 92, respectively. A gas system from gas source 102b is provided to vent 98 via flow controller 120b. The upper nozzle 96 and the top exhaust port 98 independently control the gas flow at the top and side, which enhances film uniformity and fine-tunes film deposition and doping parameters. The top vent 98 is along a toroidal opening around the upper nozzle 96 through which gas can flow from the gas delivery system into the processing chamber.

氣體從各前述氣體來源經由流量控制器102a、102b、102c、102d與102e以及氣體傳送線路92而提供至氣環94。氣環94具有複數個氣體噴嘴106與108(僅繪示其中兩個),其提供均勻氣流於基板上方。噴嘴長度與噴嘴角 度係可藉由改變氣環94而加以變化。這可容許針對個別處理室內之特定處理調整均勻度特性及氣體利用效率。在一特定實施例中,氣環94具有總共36個氣體噴嘴,即24個第一氣體噴嘴108與12個第二氣體噴嘴106。一般而言,氣體噴嘴108(僅繪示其中一個)係與第二氣體噴嘴106共平面且較其為短。 Gas is supplied to the gas ring 94 from each of the foregoing gas sources via flow controllers 102a, 102b, 102c, 102d and 102e and a gas transfer line 92. The gas ring 94 has a plurality of gas nozzles 106 and 108 (only two of which are shown) that provide a uniform gas flow over the substrate. Nozzle length and nozzle angle The degree can be varied by changing the gas ring 94. This allows adjustment of uniformity characteristics and gas utilization efficiency for specific processing within individual processing chambers. In a particular embodiment, the gas ring 94 has a total of 36 gas nozzles, namely 24 first gas nozzles 108 and 12 second gas nozzles 106. In general, gas nozzle 108 (only one of which is shown) is coplanar and shorter than second gas nozzle 106.

在部分實施例中,可使用易燃、有毒、具腐蝕性之氣體。在這些實例中,樂於在沉積之後消除遺留在氣體傳送線路內的氣體。這可藉由使用三向閥(例如,閥112)而完成,以使處理室38自傳送線路92a隔離,並排空傳送線路92a至例如真空前導線路114。如第1圖所示,其他的類似閥,例如閥112a與112b也可併於其他氣體傳送線路上。在實施時,這種三向閥可置於靠近處理室38處以使未排空之氣體傳送線路(三向閥與處理室之間)的體積達最小。此外,雙向(開啟與關閉)閥(未示)可置於質量流量控制器(MFC)與處理室之間、或置於氣體來源與MFC之間。 In some embodiments, flammable, toxic, corrosive gases can be used. In these examples, it is desirable to eliminate the gases remaining in the gas transmission line after deposition. This can be accomplished by using a three-way valve (e.g., valve 112) to isolate process chamber 38 from transfer line 92a and evacuate transfer line 92a to, for example, vacuum lead line 114. As shown in Fig. 1, other similar valves, such as valves 112a and 112b, may be combined with other gas transmission lines. In practice, such a three-way valve can be placed adjacent to the processing chamber 38 to minimize the volume of the un-emptied gas delivery line (between the three-way valve and the processing chamber). Additionally, a two-way (open and close) valve (not shown) can be placed between the mass flow controller (MFC) and the process chamber, or between the gas source and the MFC.

系統36更包括一遠端清潔RF電漿來源(未示出),以提供清潔氣體至腔室38的頂部噴嘴96。在其他實施例中,清潔氣體(如果有使用的話)係於其他位置進入腔室38中。 System 36 further includes a remote cleaning RF plasma source (not shown) to provide cleaning gas to top nozzle 96 of chamber 38. In other embodiments, the cleaning gas (if used) enters the chamber 38 at other locations.

系統控制器132調節系統36的操作並包括與其電性連接以調節其操作之處理器134。一般而言,處理器134係單主機板電腦(SBC)的一部分,其包括類比與數位輸入 /輸出電路板、介面電路板與步進式馬達控制器電路板。CVD系統36的各種組件符合VME標準,其界定了主機板、卡槽以及連接器類型與大小。VME標準亦界定匯流排結構為具有16位元資料匯流排與24位元資料匯流排。處理器134執行系統控制軟體,其係儲存於與處理器134電耦合之記憶體136中的一電腦程式。可使用任何形式的記憶體,例如硬碟機、軟碟機、記憶卡或其組合。該系統控制之軟體包括定時、混合氣體、處理室壓力、處理室溫度、微波功率級、臺座位置以及特定處理的其他參數等之指令組合。 System controller 132 regulates the operation of system 36 and includes a processor 134 that is electrically coupled thereto to regulate its operation. In general, processor 134 is part of a single motherboard computer (SBC) that includes analog and digital inputs. / Output board, interface board and stepper motor controller board. The various components of CVD system 36 conform to the VME standard, which defines the motherboard, card slot, and connector type and size. The VME standard also defines a busbar structure with a 16-bit data bus and a 24-bit data bus. The processor 134 executes system control software, which is stored in a computer program in the memory 136 that is electrically coupled to the processor 134. Any form of memory can be used, such as a hard disk drive, a floppy disk drive, a memory card, or a combination thereof. The software controlled by the system includes combinations of commands such as timing, mixed gas, process chamber pressure, process chamber temperature, microwave power level, pedestal position, and other parameters for a particular process.

基板104的溫度與基板溫度的均勻性對於處理基板104而言是很重要的處理參數。為了產生均勻的溫度特性,在吸盤68與基板104的背部表面之間施加一傳熱流體。舉例而言,本發明之一實施例是使用氦氣做為傳熱流體。一般而言,靜電吸盤68為圓形,但或者靜電吸盤68包括各種規則與不規則的幾何形狀以容納非圓形基板(例如做為平面面板之方形、矩形基板)。 The uniformity of the temperature of the substrate 104 and the substrate temperature is an important processing parameter for processing the substrate 104. To produce uniform temperature characteristics, a heat transfer fluid is applied between the chuck 68 and the back surface of the substrate 104. For example, one embodiment of the invention uses helium as a heat transfer fluid. In general, electrostatic chuck 68 is circular, but electrostatic chuck 68 includes various regular and irregular geometries to accommodate non-circular substrates (e.g., square, rectangular substrates as planar panels).

在運作時,基板104係置於靜電吸盤68上,並從氣體面板46供應多種氣態成分至電漿處理室38的處理區域52以形成氣態混合物。為點燃電漿,RF功率係被施加至基板支撐件56中的電極、頂部線圈78或側線圈80其中一或多者。為於處理期間維持基板的溫度均勻性,在本發明之實施例中係經由至少一個流體分佈元件(如下文所示者)供應一傳熱流體(例如氦氣)。 In operation, the substrate 104 is placed on the electrostatic chuck 68 and a plurality of gaseous components are supplied from the gas panel 46 to the processing region 52 of the plasma processing chamber 38 to form a gaseous mixture. To ignite the plasma, RF power is applied to one or more of the electrodes, top coil 78 or side coils 80 in the substrate support 56. To maintain temperature uniformity of the substrate during processing, a heat transfer fluid (e.g., helium) is supplied via at least one fluid distribution element (as shown below) in an embodiment of the invention.

第2圖係根據本發明之一具體實施例,說明具有流體分佈元件222之靜電吸盤68的俯視平面圖。第2A圖係第2圖之靜電吸盤68的一部分截面圖。第3圖係第2圖中沿線3-3所示之吸盤68的截面圖。以下說明可藉由同時參照第2圖與第3圖而加以了解。靜電吸盤68包括一主體220、一流體分佈元件222與一介電層224,在靜電吸盤68的一實施例中,主體220係由傳導材料(例如,鋁)所製成,而介電層224係一陶瓷材料(例如氮化鋁、氧化鋁等)。流體分佈元件222係置於靠近靜電吸盤68周圍的附近。流體分佈元件222包括多個孔洞230(或其他形式的通道),其穿過介電層224以從靜電吸盤分佈一流體(如,氦氣)至基板的背部表面。對於結合12吋(300mm)直徑半導體晶圓而使用的靜電吸盤102而言,在靜電吸盤102周圍附近具有60至360個孔洞。各個多重孔洞230之直徑一般介於約0.15mm間。這些大小係根據所使用之流體分佈元件的種類、處理室內的壓力以及通過流體分佈元件222的氣流量而加以調整。 2 is a top plan view of an electrostatic chuck 68 having a fluid distribution element 222 in accordance with an embodiment of the present invention. Fig. 2A is a partial cross-sectional view of the electrostatic chuck 68 of Fig. 2. Figure 3 is a cross-sectional view of the chuck 68 shown in Figure 2 along line 3-3. The following description can be understood by referring to FIGS. 2 and 3 simultaneously. The electrostatic chuck 68 includes a body 220, a fluid distribution element 222 and a dielectric layer 224. In one embodiment of the electrostatic chuck 68, the body 220 is made of a conductive material (eg, aluminum) and the dielectric layer 224 A ceramic material (such as aluminum nitride, aluminum oxide, etc.). The fluid distribution element 222 is placed adjacent to the vicinity of the electrostatic chuck 68. The fluid distribution element 222 includes a plurality of holes 230 (or other forms of channels) that pass through the dielectric layer 224 to distribute a fluid (eg, helium) from the electrostatic chuck to the back surface of the substrate. For an electrostatic chuck 102 used in conjunction with a 12 inch (300 mm) diameter semiconductor wafer, there are 60 to 360 holes near the periphery of the electrostatic chuck 102. Each of the multiple holes 230 has a diameter generally between about 0.15 mm. These sizes are adjusted depending on the type of fluid distribution element used, the pressure within the processing chamber, and the amount of gas flow through the fluid distribution element 222.

流體分佈元件222具有一環形結構。然而在替代實施例中,流體分佈元件222具有各種幾何設計,端視處理方法與使用者所需而定,而其包括多重環、放射臂、放射與環形之組合等。本發明之實施例並不限制流體分佈元件的幾何形狀。 The fluid distribution element 222 has an annular structure. In alternative embodiments, however, the fluid distribution element 222 has various geometric designs, depending on the user's needs, including multiple rings, radial arms, combinations of radiation and toroids, and the like. Embodiments of the invention do not limit the geometry of the fluid distribution elements.

介電層224覆蓋主體220的至少一部分頂部表面以及至少一部分的流體分佈元件222,藉以形成支撐表面 228。支撐表面228支撐置於其上之基板104。介電層224係散布於主體的頂部表面上並研磨至一所需厚度。 Dielectric layer 224 covers at least a portion of the top surface of body 220 and at least a portion of fluid distribution element 222 to form a support surface 228. Support surface 228 supports substrate 104 disposed thereon. Dielectric layer 224 is interspersed on the top surface of the body and ground to a desired thickness.

主體220包括頂部表面332與通道334,其係形成於主體220的頂部表面332中,一般而言,通道334具有一矩形截面形狀。然而,在替代實施例中,通道334具有各種幾何截面形狀。流體分佈元件222係耦合至主體220,使得通道334與流體分佈元件222形成一氣室336,亦即元件222係定位於通道334內並固定在其中。此外,主體220包括連接至通道334以對氣室336提供流體的導管338。根據本發明之一具體實施例,冷卻氣體係經由導管338而供應並由氣室分佈置流體分佈元件222。氣體經由一或多個多重孔洞230(或其他形式之通道)而流出,藉以提供傳熱流體至一基板之背部表面。 The body 220 includes a top surface 332 and a channel 334 formed in the top surface 332 of the body 220. Generally, the channel 334 has a rectangular cross-sectional shape. However, in an alternate embodiment, the channels 334 have various geometric cross-sectional shapes. Fluid distribution element 222 is coupled to body 220 such that channel 334 and fluid distribution element 222 form a plenum 336, i.e., element 222 is positioned within channel 334 and secured therein. In addition, body 220 includes a conduit 338 that is coupled to passage 334 to provide fluid to plenum 336. According to one embodiment of the invention, the cooling gas system is supplied via conduit 338 and the fluid distribution element 222 is disposed by the gas chamber. The gas flows out through one or more multiple holes 230 (or other forms of channels) to provide a heat transfer fluid to the back surface of a substrate.

第4圖至第10圖說明了靜電吸盤(例如,靜電吸盤102)之虛線部分230的截面圖,此部分具有一流體分佈元件222、介電層228與主體220。在說明中,靜電吸盤的大小已經放大以清楚描述流體分佈元件與主體的截面。 4 through 10 illustrate cross-sectional views of a dashed portion 230 of an electrostatic chuck (e.g., electrostatic chuck 102) having a fluid distribution component 222, a dielectric layer 228, and a body 220. In the description, the size of the electrostatic chuck has been enlarged to clearly describe the cross section of the fluid distribution element and the body.

特別是,第4圖說明了根據本發明一實施例之靜電吸盤402的一部分,主體220包括一雙鑲嵌通道404,其具有一下通道404A與一上通道404B,其中下通道404A係窄於上通道404B。靜電吸盤402包括具有平板440與介電管442之流體分佈元件422。平板440係與上通道404B相符(例如該平板具有一圓形平面形狀以與通道404匹配),使得上通道404B的基部406形成一中止部 (stop)。平板440的高度實質上與上通道404B的高度相同,因此平板440的頂部408實質上與主體220的頂部332共平面。平板440係由傳導材料(例如,鋁)所製得,並熔接定位於上通道404B中。平板440進一步包括一通道410,其形成於平板440的底部表面。在本發明之一實施例中,通道410的寬度與下通道404A的寬度實質上相似;然在其他實施例中,通道410的寬度比下通道404A狹窄。下通道404A與通道410結合而界定了氣室336。 In particular, Figure 4 illustrates a portion of an electrostatic chuck 402 in accordance with an embodiment of the present invention. The body 220 includes a dual damascene channel 404 having a lower channel 404A and an upper channel 404B, wherein the lower channel 404A is narrower than the upper channel. 404B. The electrostatic chuck 402 includes a fluid distribution element 422 having a flat plate 440 and a dielectric tube 442. The plate 440 is conformable to the upper channel 404B (eg, the plate has a circular planar shape to match the channel 404) such that the base 406 of the upper channel 404B forms a stop (stop). The height of the plate 440 is substantially the same as the height of the upper channel 404B, such that the top 408 of the plate 440 is substantially coplanar with the top 332 of the body 220. The plate 440 is made of a conductive material (e.g., aluminum) and is welded in the upper channel 404B. The plate 440 further includes a channel 410 formed in the bottom surface of the plate 440. In one embodiment of the invention, the width of the channel 410 is substantially similar to the width of the lower channel 404A; however, in other embodiments, the channel 410 is narrower than the lower channel 404A. Lower channel 404A is combined with channel 410 to define a plenum 336.

介電管442(電絕緣體)包括一第一端446、一第二端448與一軸向通孔450。舉例而言,介電管442是由氧化鋁所製,其之直徑實質上與平板440中開口444的直徑匹配。開口444的直徑一般為(但不限於)約0.008吋(約0.2mm)或更大。在替代實施例中,開口444具有各種幾何形狀,例如圓形、三角形、方形等。此外,開口的形狀與大小實質上與介電管442外徑的形狀與大小相配。介電管442係定位(例如,壓合)至開口444中。開口444包括一凸緣412,管件442係坐落於其上(亦即凸緣形成一中止部)。在所說明之實施例中,管件442的第一端446延伸於主體220的表面332上方。在其他實施例中,管件442的第一端446係與表面332共平面。 The dielectric tube 442 (electrical insulator) includes a first end 446, a second end 448 and an axial through hole 450. For example, dielectric tube 442 is made of alumina and has a diameter that substantially matches the diameter of opening 444 in plate 440. The diameter of the opening 444 is generally, but not limited to, about 0.008 吋 (about 0.2 mm) or more. In an alternate embodiment, the opening 444 has various geometric shapes, such as circular, triangular, square, and the like. Further, the shape and size of the opening substantially match the shape and size of the outer diameter of the dielectric tube 442. Dielectric tube 442 is positioned (eg, pressed) into opening 444. The opening 444 includes a flange 412 upon which the tubular member 442 rests (i.e., the flange forms a stop). In the illustrated embodiment, the first end 446 of the tubular member 442 extends above the surface 332 of the body 220. In other embodiments, the first end 446 of the tubular member 442 is coplanar with the surface 332.

至少一部分的主體220以及至少一部分的流體分佈元件422係由介電層224加以覆蓋,藉以形成支撐表面428。介電層224係噴塗在主體的頂部表面上並研磨至一所需厚度。在一實施例中,介電層224包括熱噴塗氧化 鋁或噴塗之氧化鋁/氧化鈦。本領域中已熟知此一熱噴塗介電層的應用處理。熱噴塗處理可選自數種不同方法,例如電漿噴塗、爆炸槍式噴塗、高速氧燃料(high velocity oxygen fuel,HVOF)噴塗以及火焰式噴塗等。 At least a portion of the body 220 and at least a portion of the fluid distribution element 422 are covered by a dielectric layer 224 to form a support surface 428. Dielectric layer 224 is sprayed onto the top surface of the body and ground to a desired thickness. In an embodiment, the dielectric layer 224 includes thermal spray oxidation. Aluminum or sprayed alumina/titanium oxide. The application process of this thermal sprayed dielectric layer is well known in the art. The thermal spray treatment can be selected from a number of different methods, such as plasma spray, explosion gun spray, high velocity oxygen fuel (HVOF) spray, and flame spray.

在一實施例中,介電層224係研磨至線414所代表之一厚度,使得層224的表面428與管件442的第一端446共平面。或者,介電層224係一多孔性陶瓷,因此膜層224係研磨至一特定平坦度,但膜層224覆蓋至少該管件442的第一端446。由於陶瓷的孔隙率之故,來自氣室的氣體流經管件442與介電層224。舉例而言,介電層224鄰近管件442之第一端446處係整個或部分由孔隙率為體積百分率10%至60%的氧化鋁所形成,其所產生之孔隙直徑為約1至100微米。在部分實施例中,如以下將參照第8圖所說明者,介電層係於管件442末端446鄰近處具多孔性,而在其他地方較不具多孔性。根據所述,通道445的優點為缺少了從支撐表面428至氣室436之直接視線路徑,藉此限制了通道445中形成電漿的可能性。在另一實施例中,介電層224係研磨至一特定平坦度,其中膜層224覆蓋了管件442的第一端446。可鑽出或用其他方式形成(例如:雷射鑽除)通過介電層224而達通道445之一孔洞416。鑽洞處理僅鑽通介電材料,亦即主體的傳導材料並不會由鑽除處理所噴濺。 In one embodiment, dielectric layer 224 is ground to a thickness represented by line 414 such that surface 428 of layer 224 is coplanar with first end 446 of tube 442. Alternatively, dielectric layer 224 is a porous ceramic such that film layer 224 is ground to a particular flatness, but film layer 224 covers at least first end 446 of tube 442. Gas from the plenum flows through the tube 442 and the dielectric layer 224 due to the porosity of the ceramic. For example, the dielectric layer 224 is formed adjacent to the first end 446 of the tube 442 in whole or in part from alumina having a porosity of 10% to 60% by volume, which produces a pore diameter of from about 1 to 100 microns. . In some embodiments, as will be described below with reference to Figure 8, the dielectric layer is porous adjacent the end 446 of the tubular member 442 and less porous elsewhere. According to the described, the channel 445 has the advantage of lacking a direct line of sight path from the support surface 428 to the plenum 436, thereby limiting the likelihood of plasma formation in the channel 445. In another embodiment, the dielectric layer 224 is ground to a particular flatness, wherein the film layer 224 covers the first end 446 of the tube 442. Holes 416 may be drilled or otherwise formed (e.g., laser drilled) through dielectric layer 224 to one of channels 445. The drilling process only drills through the dielectric material, ie the conductive material of the body is not splashed by the drilling process.

如該領域中所知,支撐表面428係經進一步處理以提 供一溝槽圖樣(圖中未示)而製於介電層224上。溝槽係經機製或其他方式形成於支撐表面428上,因此其與通道445交錯。冷卻氣體可從通道445導進至溝槽中以均勻分佈冷卻氣體於靜電吸盤402的整個支撐表面428上。 As is known in the art, the support surface 428 is further processed to provide A dielectric pattern 224 is formed on a trench pattern (not shown). The grooves are formed on the support surface 428 by mechanism or otherwise so that they are interlaced with the channels 445. Cooling gas may be directed from the passage 445 into the groove to evenly distribute the cooling gas over the entire support surface 428 of the electrostatic chuck 402.

藉由使用電絕緣體(介電管及/或介電層)以界定氣室與基板表面之間的通道,從導熱氣體形成電漿或由電漿形成導致電弧的可能性即可降低。藉由降低或消除電漿形成與電弧,靜電吸盤的壽命可顯著增加。絕緣體的使用減少了通道中的電場,因此降低了電漿形成的機會。此外,本發明之特定實施例係使用流體分佈元件結構來進一步減少通道中的電場,其係藉由消除基板支撐表面(高電場存在處)與氣室傳導表面之間的視線路徑而達成。當出現此一視線路徑時,通道中流體的體積係足以點燃成為電漿。使用非視線路徑減少了建立於大量流體的電場(其可能導致電漿形成),因此可減少或消除電漿形成或相關之電弧。 By using an electrical insulator (dielectric tube and/or dielectric layer) to define the passage between the plenum and the substrate surface, the possibility of forming a plasma from the heat conducting gas or causing an arc from the plasma can be reduced. By reducing or eliminating plasma formation and arcing, the life of the electrostatic chuck can be significantly increased. The use of an insulator reduces the electric field in the channel, thus reducing the chance of plasma formation. Moreover, certain embodiments of the present invention use a fluid distribution element structure to further reduce the electric field in the channel by eliminating the line of sight path between the substrate support surface (where the high electric field is present) and the plenum conduction surface. When this line of sight path occurs, the volume of fluid in the channel is sufficient to ignite into a plasma. The use of a non-line of sight reduces the electric field built up by a large number of fluids (which may result in plasma formation), thus reducing or eliminating plasma formation or associated arcing.

第5圖根據本發明另一實施例而說明靜電吸盤502的一部分之截面。類似於第4圖之實施例,介電管542係定位通過平板440。在替代實施例中,管542延伸至通道534底部,而管542的第二端548係坐落在形成於通道534底部中之支撐元件(例如,階狀物556)上。如先前實施例所示,介電管542及/或部分介電層224形成一電絕緣體,其界定了通道545以供流體從氣室536流至表面528。 Figure 5 illustrates a cross section of a portion of an electrostatic chuck 502 in accordance with another embodiment of the present invention. Similar to the embodiment of FIG. 4, the dielectric tube 542 is positioned through the plate 440. In an alternate embodiment, tube 542 extends to the bottom of channel 534, while second end 548 of tube 542 sits on a support element (eg, step 556) formed in the bottom of channel 534. As shown in the previous embodiment, the dielectric tube 542 and/or a portion of the dielectric layer 224 form an electrical insulator that defines a channel 545 for fluid to flow from the plenum 536 to the surface 528.

第6圖說明了本發明另一實施例之靜電吸盤602的一部分之截面。與第4圖及第5圖之實施例類似,介電管642係定位通過平板440。在替代實施例中,介電管642包括形成於第二端604中之至少一凹口656。在一替代實施例中,管642包括孔洞以促進流體從氣室636流至管642的通道645中。在先前實施例中,介電層224係具多孔性且覆蓋管件642的一第一端606,膜層224係經研磨以暴露管件642的第一端606,或一孔洞係形成於該膜層中以與通道645相通。介電管642與部分介電層224形成一通道645以供流體從氣室流出。根據所述,當介電層224為多孔性且覆蓋管件642時,通道645的優點為缺少從支撐表面628至氣室636之直接視線路徑,藉此限制了通道645中電漿的形成。 Figure 6 illustrates a cross section of a portion of an electrostatic chuck 602 of another embodiment of the present invention. Similar to the embodiments of Figures 4 and 5, the dielectric tube 642 is positioned through the plate 440. In an alternate embodiment, the dielectric tube 642 includes at least one notch 656 formed in the second end 604. In an alternate embodiment, the tube 642 includes a hole to facilitate fluid flow from the plenum 636 into the channel 645 of the tube 642. In the previous embodiment, the dielectric layer 224 is porous and covers a first end 606 of the tubular member 642. The membrane layer 224 is ground to expose the first end 606 of the tubular member 642, or a hole is formed in the membrane layer. The middle is connected to the channel 645. The dielectric tube 642 and the portion of the dielectric layer 224 form a channel 645 for fluid to flow out of the plenum. According to this, when the dielectric layer 224 is porous and covers the tubular member 642, the channel 645 has the advantage of lacking a direct line of sight path from the support surface 628 to the plenum 636, thereby limiting the formation of plasma in the channel 645.

第7圖說明了根據本發明又一實施例之靜電吸盤702的一部分截面。靜電吸盤702包括主體720與流體分佈元件722。流體分佈元件722包括一平板740與一介電管742,其係以與先前實施例相同的方式加以組裝。在此一實施例中,主體720包括通道734,其包括一介電端蓋760。介電端蓋760係定位於通道734的底部。介電端蓋760包括一開口762,使得蓋760呈現杯形。介電管742包括一第一端746、一第二端748以及連接該第一端746與該第二端748之一軸向通孔750。在本發明之一實施例中,介電層724覆蓋該管件742的第一端746,而在第二實施例中,介電層724係經研磨達到線 414以暴露管件742的第一端746。介電蓋742係置於通道734中以致管742的第二端748延伸至開口762中,但與其隔開而形成一間隙。管742與端蓋760形成一曲折通道,而流體係流動於其間。使用這種通道確保不會出現從傳導性氣室壁到吸盤表面之視線路徑。 Figure 7 illustrates a partial cross section of an electrostatic chuck 702 in accordance with yet another embodiment of the present invention. The electrostatic chuck 702 includes a body 720 and a fluid distribution element 722. Fluid distribution element 722 includes a flat plate 740 and a dielectric tube 742 that are assembled in the same manner as the prior embodiments. In this embodiment, body 720 includes a channel 734 that includes a dielectric end cap 760. Dielectric end cap 760 is positioned at the bottom of channel 734. The dielectric end cap 760 includes an opening 762 such that the cover 760 assumes a cup shape. The dielectric tube 742 includes a first end 746, a second end 748, and an axial through hole 750 connecting the first end 746 and the second end 748. In one embodiment of the invention, the dielectric layer 724 covers the first end 746 of the tube 742, and in the second embodiment, the dielectric layer 724 is ground to the line. 414 to expose the first end 746 of the tubular member 742. Dielectric cover 742 is placed in channel 734 such that second end 748 of tube 742 extends into opening 762 but is spaced apart therefrom to form a gap. Tube 742 and end cap 760 form a tortuous path with the flow system flowing therebetween. The use of such a passage ensures that there is no line of sight path from the conductive chamber wall to the surface of the suction cup.

第8圖說明了根據本發明另一實施例之靜電吸盤802的一部分之截面。靜電吸盤802包括一流體分佈元件822。該流體分佈元件822包括具有一開口844之平板840。該平板840耦合至一主體820,使得通道834與平板840形成一氣室836。介電層824覆蓋了至少一部分的主體820以及至少一部分的流體分佈元件822。介電層824包括一多孔性介電質區段870,使得至少一部分的多孔性介電質區段870與開口844重疊。多孔性介電質區段870係一多孔性陶瓷,例如孔隙度介於約體積百分率10%與60%之間的氧化鋁,其具有形成穿過多孔性介電質區段870之連續通道之互連開口。開口844與至少一部分的多孔隙介電質區段870形成了通道845以供流體從氣室836流到靜電吸盤802的支撐表面828。根據所述,通道845的優點在於缺少從支撐表面828到傳導性氣室836的直接視線路徑,藉此抑制通道845中電漿的形成。 Figure 8 illustrates a cross section of a portion of an electrostatic chuck 802 in accordance with another embodiment of the present invention. Electrostatic chuck 802 includes a fluid distribution element 822. The fluid distribution element 822 includes a plate 840 having an opening 844. The plate 840 is coupled to a body 820 such that the channel 834 forms a plenum 836 with the plate 840. Dielectric layer 824 covers at least a portion of body 820 and at least a portion of fluid distribution element 822. Dielectric layer 824 includes a porous dielectric segment 870 such that at least a portion of porous dielectric segment 870 overlaps opening 844. The porous dielectric segment 870 is a porous ceramic, such as alumina having a porosity between about 10% and 60% by volume, having a continuous channel formed through the porous dielectric segment 870. Interconnecting openings. The opening 844 forms a channel 845 with at least a portion of the porous dielectric section 870 for fluid to flow from the plenum 836 to the support surface 828 of the electrostatic chuck 802. According to the described, the channel 845 has the advantage of lacking a direct line of sight path from the support surface 828 to the conductive plenum 836, thereby inhibiting the formation of plasma in the channel 845.

第9圖說明了根據本發明另一實施例之靜電吸盤902的一部分之截面。靜電吸盤902包括一流體分佈元件922。流體分佈元件922包括具有一開口944與一介電栓 980之平板940。平板940係耦合至一主體920,使得通道934與平板940形成一氣室936。平板940與主體920係如上述本發明之其他實施例的方式加以組裝。介電栓980的直徑實質上與開口944的直徑相配,介電栓980係位於開口1044中且一般係壓合於其內。介電層224覆蓋了至少一部分的主體920以及至少一部分的流體分佈元件922,藉此界定一支撐表面928。介電層224係噴塗於主體920與流體分佈元件922的頂部表面上,並研磨至一所需厚度。孔洞982係形成穿透介電層924並穿過介電栓980。孔洞982使流體可以從氣室936流到靜電吸盤902的支撐表面928。孔洞982係利用各種技術加以形成,例如機械鑽除、雷射鑽除等。孔洞982係形成僅穿透介電材料。因此,軸向通孔982中不會形成任何因鑽除處理而產生的金屬殘餘物。因為沒有這些金屬殘餘物,即可限制孔洞982中電漿形成或電弧的可能性。 Figure 9 illustrates a cross section of a portion of an electrostatic chuck 902 in accordance with another embodiment of the present invention. Electrostatic chuck 902 includes a fluid distribution element 922. Fluid distribution element 922 includes an opening 944 and a dielectric plug 980 tablet 940. The plate 940 is coupled to a body 920 such that the channel 934 forms a plenum 936 with the plate 940. The plate 940 and the body 920 are assembled in a manner as described above for other embodiments of the present invention. The diameter of the dielectric plug 980 is substantially matched to the diameter of the opening 944, which is located in the opening 1044 and is generally press-fitted therein. Dielectric layer 224 covers at least a portion of body 920 and at least a portion of fluid distribution element 922, thereby defining a support surface 928. Dielectric layer 224 is sprayed onto the top surface of body 920 and fluid distribution element 922 and ground to a desired thickness. Hole 982 forms a penetrating dielectric layer 924 and passes through dielectric plug 980. The holes 982 allow fluid to flow from the plenum 936 to the support surface 928 of the electrostatic chuck 902. Hole 982 is formed using a variety of techniques, such as mechanical drilling, laser drilling, and the like. The holes 982 are formed to penetrate only the dielectric material. Therefore, any metal residue generated by the drilling process is not formed in the axial through hole 982. Because of the absence of these metal residues, the possibility of plasma formation or arcing in the holes 982 can be limited.

第10圖說明了根據本發明另一實施例之靜電吸盤1002的一部分之截面。靜電吸盤1002包括一流體分佈元件1022。流體分佈元件1022包括一平板1040與一介電蓋1042。平板1040包括兩圓環1040A與1040B。圓環1040A的直徑小於圓環1040B的直徑。各圓環1040A與1040B係坐落在上通道404B之底部處所形成之壁架406上。平板1040係熔接至主體1020以將平板保持於上通道404B中。介電蓋1042(環形以形成氣室1036)係插置在上通道404B中並坐落在平板1040上。 Figure 10 illustrates a cross section of a portion of an electrostatic chuck 1002 in accordance with another embodiment of the present invention. Electrostatic chuck 1002 includes a fluid distribution element 1022. The fluid distribution element 1022 includes a flat plate 1040 and a dielectric cover 1042. The plate 1040 includes two rings 1040A and 1040B. The diameter of the ring 1040A is smaller than the diameter of the ring 1040B. Each of the rings 1040A and 1040B is seated on a ledge 406 formed at the bottom of the upper channel 404B. The plate 1040 is fused to the body 1020 to retain the plate in the upper channel 404B. A dielectric cover 1042 (annular to form a plenum 1036) is inserted into the upper channel 404B and sits on the plate 1040.

在另一實施例中,平板包括具有複數個反向凹陷孔洞之一倒U形截面(例如,第4圖所示之平板440)。具有與元件1042類似之截面形狀的一圓形(甜甜圈形)介電元件係插置在這樣的反向凹陷孔洞中。流體分佈元件1022係耦合至主體1020,使得流體分佈元件1022與通道1034形成一氣室1036。介電層224覆蓋至少一部分的主體1020以及至少一部分的流體分佈元件1022,藉此形成一支撐表面1028。介電層224係噴塗至主體1020與流體分佈元件1022的頂部表面上,並研磨至一所需厚度。一孔洞1082係形成穿透介電層224與介電蓋1090。該孔洞1082係利用各種技術加以形成,例如機械鑽除、雷射鑽除等,如第9圖之實施例所述,孔洞1082係形成僅穿透介電材料,因此,孔洞1082中不會有任何金屬殘餘物。 In another embodiment, the plate includes an inverted U-shaped cross section having a plurality of inverted recessed holes (e.g., flat plate 440 shown in FIG. 4). A circular (doughnut shaped) dielectric element having a cross-sectional shape similar to element 1042 is interposed in such a counter-recessed hole. Fluid distribution element 1022 is coupled to body 1020 such that fluid distribution element 1022 forms a plenum 1036 with channel 1034. Dielectric layer 224 covers at least a portion of body 1020 and at least a portion of fluid distribution element 1022, thereby forming a support surface 1028. Dielectric layer 224 is sprayed onto the top surface of body 1020 and fluid distribution element 1022 and ground to a desired thickness. A hole 1082 forms a penetrating dielectric layer 224 and a dielectric cover 1090. The hole 1082 is formed by various techniques, such as mechanical drilling, laser drilling, etc., as described in the embodiment of Fig. 9, the hole 1082 is formed to penetrate only the dielectric material, and therefore, there is no hole 1082. Any metal residue.

在各前述實施例中,可能有極少數情形是利用本發明之流體分佈元件的靜電吸盤會受到電漿形成或電弧的破壞,然該吸盤可利用多種方法而輕易修復(或刷新)。一般而言,破壞性的電漿形成或電弧係發生於介電質部件(管件、多孔性嵌入件等)內或其鄰近處。因此介電層可被局部(介電質部件上方)移除或整體(整個吸盤)移除以暴露出介電質部件。接著可利用抽除(extraction)工具來鑽除或拉除該部件以移除部件。一旦經移除,即可插置新的介電質部件,並視需要而局部或整體替換介電層。在部分實施例中,介電質部件延伸至吸盤的支撐表面(如以上所述),且在抽除前不需移除介電層。在這些情況 中,破壞之介電質部件係被移除,並插置(一般為壓合)新的介電質部件於平板中的開口內。在接近傳熱流體通道處或在其中產生電弧或電漿形成時,相較於替換一整個靜電吸盤而言,在此方式中,可以實質節省的方式來修復靜電吸盤。 In each of the foregoing embodiments, there may be a rare case where the electrostatic chuck using the fluid distributing member of the present invention may be damaged by plasma formation or arcing, but the chuck may be easily repaired (or refreshed) by various methods. In general, destructive plasma formation or arcing occurs within or adjacent to dielectric components (tubes, porous inserts, etc.). Thus the dielectric layer can be removed locally (above the dielectric component) or removed as a whole (the entire chuck) to expose the dielectric component. The extraction tool can then be used to drill or pull the part to remove the part. Once removed, new dielectric components can be inserted and the dielectric layer replaced partially or entirely as needed. In some embodiments, the dielectric component extends to the support surface of the chuck (as described above) and does not require removal of the dielectric layer prior to pumping. In these situations The damaged dielectric component is removed and a new dielectric component is placed (typically pressed) into the opening in the panel. When an arc or plasma is formed near or in the heat transfer fluid passage, the electrostatic chuck can be repaired in a substantially economical manner compared to replacing an entire electrostatic chuck.

前述說明係針對本發明之實施例,然可於不背離其基本概念下衍生本發明之其他實施例,且其範疇係由如附申請專利範圍所限定。 The foregoing description is directed to the embodiments of the present invention, and other embodiments of the invention may be derived without departing from the basic scope of the invention.

36‧‧‧基板處理系統 36‧‧‧Substrate processing system

38‧‧‧處理室 38‧‧‧Processing room

40‧‧‧真空系統 40‧‧‧vacuum system

42‧‧‧來源電漿系統 42‧‧‧Source plasma system

44‧‧‧偏壓電漿系統 44‧‧‧Pressure plasma system

46‧‧‧氣體傳送系統 46‧‧‧ gas delivery system

48‧‧‧遠端電漿清潔系統 48‧‧‧Remote plasma cleaning system

50‧‧‧圓蓋 50‧‧‧ round cover

52‧‧‧電漿處理區域 52‧‧‧ Plasma processing area

54‧‧‧基板 54‧‧‧Substrate

56‧‧‧基板支撐件 56‧‧‧Substrate support

58‧‧‧加熱板 58‧‧‧heating plate

60‧‧‧冷卻板 60‧‧‧cooling plate

62‧‧‧主體件 62‧‧‧ body parts

64‧‧‧基部 64‧‧‧ base

68‧‧‧靜電吸盤 68‧‧‧Electrostatic suction cup

70‧‧‧調解體 70‧‧‧Mediation

72‧‧‧多葉片調節閥 72‧‧‧Multi-blade regulating valve

74‧‧‧閘閥 74‧‧‧ gate valve

76‧‧‧渦輪式幫浦 76‧‧‧ Turbo pump

78‧‧‧頂部線圈 78‧‧‧Top coil

80‧‧‧側線圈 80‧‧‧ side coil

82‧‧‧頂部射頻(RF)來源產生器 82‧‧‧Top RF (RF) Source Generator

84‧‧‧側射頻(RF)來源產生器 84‧‧‧ side radio frequency (RF) source generator

86‧‧‧射頻(RF)偏壓產生器 86‧‧‧RF (RF) bias generator

88~90‧‧‧匹配網路 88~90‧‧‧match network

92‧‧‧氣體傳送線路 92‧‧‧ gas transmission line

92a‧‧‧排氣線路 92a‧‧‧Exhaust line

94‧‧‧氣環 94‧‧‧ gas ring

95‧‧‧插入/移除開口 95‧‧‧Insert/Remove openings

96‧‧‧上噴嘴 96‧‧‧Upper nozzle

98‧‧‧排氣口 98‧‧‧Exhaust port

100a~100e‧‧‧氣體源 100a~100e‧‧‧ gas source

102‧‧‧靜電吸盤 102‧‧‧Electrostatic suction cup

104‧‧‧基板 104‧‧‧Substrate

106、108‧‧‧氣體噴嘴 106, 108‧‧‧ gas nozzle

112、112a、112b‧‧‧閥 112, 112a, 112b‧‧‧ valves

114‧‧‧真空前導線路 114‧‧‧vacuum lead line

120a~120b‧‧‧流量控制器 120a~120b‧‧‧Flow Controller

132‧‧‧系統控制器 132‧‧‧System Controller

134‧‧‧處理器 134‧‧‧ processor

136‧‧‧記憶體 136‧‧‧ memory

220‧‧‧主體 220‧‧‧ Subject

222‧‧‧流體分佈元件 222‧‧‧ Fluid distribution components

224‧‧‧介電層 224‧‧‧ dielectric layer

228‧‧‧支撐表面 228‧‧‧Support surface

230‧‧‧多重孔洞 230‧‧‧Multiple holes

332‧‧‧頂部 332‧‧‧ top

334‧‧‧通道 334‧‧‧ channel

336‧‧‧氣室 336‧‧‧ air chamber

338‧‧‧導管 338‧‧‧ catheter

402‧‧‧靜電吸盤 402‧‧‧Electrostatic suction cup

404A‧‧‧下通道 404A‧‧‧ lower channel

404B‧‧‧上通道 404B‧‧‧Upper channel

406‧‧‧壁架 406‧‧‧ ledge

408‧‧‧頂部 408‧‧‧ top

410‧‧‧通道 410‧‧‧ channel

412‧‧‧凸緣 412‧‧‧Flange

414‧‧‧線路 414‧‧‧ lines

416‧‧‧介電層 416‧‧‧ dielectric layer

422‧‧‧流體分佈元件 422‧‧‧ Fluid distribution components

428‧‧‧支撐表面 428‧‧‧Support surface

436‧‧‧氣室 436‧‧ ‧ air chamber

440‧‧‧平板 440‧‧‧ tablet

442‧‧‧電性管件 442‧‧‧Electrical fittings

444‧‧‧開口 444‧‧‧ openings

446‧‧‧第一端 446‧‧‧ first end

448‧‧‧第二端 448‧‧‧ second end

450‧‧‧孔洞 450‧‧‧ holes

502‧‧‧靜電吸盤 502‧‧‧Electrostatic suction cup

528‧‧‧表面 528‧‧‧ surface

534‧‧‧通道 534‧‧‧ channel

536‧‧‧氣室 536‧‧‧ air chamber

542‧‧‧介電管 542‧‧‧ dielectric tube

545‧‧‧通道 545‧‧‧ channel

548‧‧‧第二端 548‧‧‧ second end

556‧‧‧階狀物 556‧‧‧

602‧‧‧靜電吸盤 602‧‧‧Electrostatic suction cup

604‧‧‧第二端 604‧‧‧ second end

606‧‧‧第一端 606‧‧‧ first end

628‧‧‧支撐表面 628‧‧‧Support surface

636‧‧‧氣室 636‧‧‧ air chamber

642‧‧‧介電管 642‧‧‧ dielectric tube

645‧‧‧通道 645‧‧‧ channel

656‧‧‧凹口 656‧‧‧ notch

702‧‧‧靜電吸盤 702‧‧‧Electrostatic suction cup

720‧‧‧主體 720‧‧‧ Subject

722‧‧‧流體分佈元件 722‧‧‧ Fluid distribution components

724‧‧‧介電層 724‧‧‧ dielectric layer

734‧‧‧通道 734‧‧‧ channel

740‧‧‧平板 740‧‧‧ tablet

742‧‧‧介電管 742‧‧‧ dielectric tube

746‧‧‧第一端 746‧‧‧ first end

748‧‧‧第二端 748‧‧‧ second end

750‧‧‧孔洞 750‧‧‧ holes

760‧‧‧介電端蓋 760‧‧‧ dielectric end cap

762‧‧‧開口 762‧‧‧ openings

802‧‧‧靜電吸盤 802‧‧‧Electrostatic suction cup

820‧‧‧主體 820‧‧‧ Subject

822‧‧‧流體分佈元件 822‧‧‧ Fluid distribution components

824‧‧‧流體層 824‧‧‧ fluid layer

828‧‧‧支撐表面 828‧‧‧Support surface

834‧‧‧通道 834‧‧‧ channel

836‧‧‧氣室 836‧‧ ‧ air chamber

840‧‧‧平板 840‧‧‧ tablet

844‧‧‧開口 844‧‧‧ openings

845‧‧‧通道 845‧‧‧ channel

870‧‧‧多孔性介電質區段 870‧‧‧Porous dielectric section

902‧‧‧靜電吸盤 902‧‧‧Electrostatic suction cup

920‧‧‧主體 920‧‧‧ Subject

922‧‧‧流體分佈元件 922‧‧‧ Fluid distribution components

928‧‧‧支撐表面 928‧‧‧Support surface

936‧‧‧氣室 936‧‧‧ air chamber

940‧‧‧平板 940‧‧‧ tablet

944‧‧‧開口 944‧‧‧ openings

980‧‧‧介電栓 980‧‧‧ dielectric plug

982‧‧‧孔洞 982‧‧‧ hole

1002‧‧‧靜電吸盤 1002‧‧‧Electrostatic suction cup

1020‧‧‧主體 1020‧‧‧ Subject

1022‧‧‧流體分佈元件 1022‧‧‧ Fluid distribution components

1028‧‧‧支撐表面 1028‧‧‧Support surface

1034‧‧‧通道 1034‧‧‧ channel

1036‧‧‧氣室 1036‧‧‧ air chamber

1040‧‧‧平板 1040‧‧‧ tablet

1040A、1040B‧‧‧環 1040A, 1040B‧‧" ring

1042‧‧‧介電質蓋件 1042‧‧‧Dielectric cover

1044‧‧‧開口 1044‧‧‧ openings

1082‧‧‧孔洞 1082‧‧‧ Hole

1090‧‧‧蓋件 1090‧‧‧Care pieces

藉由參照上述實施例與發明內容之說明,可詳細了解本發明之前述特徵,其中部分係說明於伴隨之圖式中。然應注意的是,伴隨之圖式僅說明了本發明的典型實施例,因而不應視為對其範疇之限制,亦即本發明亦可用其他等效實施方式。 The foregoing features of the present invention are disclosed in detail by reference to the embodiments of the invention and It is to be understood that the appended drawings are merely illustrative of the exemplary embodiments of the invention

第1圖說明了一種電漿式基板處理系統,其包括如本發明各種實施例所述之具有流體分佈元件之一靜電吸盤;第2圖為第1圖所示之靜電吸盤的俯視圖;第2A圖為一部分截面透視圖,其說明了第2圖所示之靜電吸盤的一部分;第3圖為第2圖所示之靜電吸盤沿線3-3所取之剖面圖; 第4圖係一剖面圖,其說明了本發明之靜電吸盤流體分佈元件的一實施例;第5圖係一剖面圖,其說明了本發明之靜電吸盤流體分佈元件的另一實施例;第6圖係一剖面圖,其說明了本發明之靜電吸盤流體分佈元件的另一實施例;第7圖係一剖面圖,其說明了本發明之靜電吸盤流體分佈元件的又一實施例;第8圖係一剖面圖,其說明了本發明之靜電吸盤流體分佈元件的不同實施例;第9圖係一剖面圖,其說明了本發明之靜電吸盤流體分佈元件的不同實施例;以及第10圖係一剖面圖,其說明了本發明之靜電吸盤流體分佈元件的不同實施例。 1 is a view showing a plasma substrate processing system including an electrostatic chuck having one of fluid distribution elements according to various embodiments of the present invention; and FIG. 2 is a plan view of the electrostatic chuck shown in FIG. 1; The figure is a partial cross-sectional perspective view illustrating a portion of the electrostatic chuck shown in FIG. 2; and FIG. 3 is a cross-sectional view of the electrostatic chuck shown in FIG. 2 taken along line 3-3; Figure 4 is a cross-sectional view showing an embodiment of the electrostatic chuck fluid distribution member of the present invention; and Figure 5 is a cross-sectional view showing another embodiment of the electrostatic chuck fluid distribution member of the present invention; 6 is a cross-sectional view illustrating another embodiment of the electrostatic chuck fluid distribution member of the present invention; and FIG. 7 is a cross-sectional view illustrating still another embodiment of the electrostatic chuck fluid distribution member of the present invention; 8 is a cross-sectional view illustrating different embodiments of the electrostatic chuck fluid distribution component of the present invention; and FIG. 9 is a cross-sectional view illustrating different embodiments of the electrostatic chuck fluid distribution component of the present invention; and 10th The figure is a cross-sectional view illustrating various embodiments of the electrostatic chuck fluid distribution elements of the present invention.

熟知該領域技術之人士應了解,上述實施例與說明之圖式係用於描述本發明,然本發明並不限於圖式及其所說明之實施例。應了解圖式以及對圖式之詳細說明並非用於限制本發明為所揭露之特定型式;相對地,本發明涵蓋了落於本發明如附申請專利範圍所限定之精神與範疇內的所有修飾例、等效例與替代例。此處所使用之標題僅用於組織用、而非用於限制說明範疇或申請專利範圍,在本文中通篇所使用之用語「可」係表示允許的意思(亦即具有進行某動作的可能)而非表示強制(即,必須)的意思。同樣的,用語「包括」、「包含」意指包括(但不 限於)。此外,如未特別說明,用語「一」是代表「至少一」。 Those skilled in the art should understand that the above-described embodiments and illustrations are used to describe the invention, but the invention is not limited to the drawings and the illustrated embodiments. The detailed description of the drawings and the detailed description of the drawings are not intended to limit the scope of the invention. Examples, equivalents and alternatives. The headings used herein are used for organizational purposes only and are not intended to limit the scope of the description or the scope of the patent application. The term "may" used throughout this document means the meaning of permission (ie, the possibility of performing an action). Rather than mean mandatory (ie, necessary). Similarly, the terms "including" and "including" are meant to include (but not Limited to). In addition, the term "one" means "at least one" unless otherwise specified.

36‧‧‧基板處理系統 36‧‧‧Substrate processing system

38‧‧‧處理室 38‧‧‧Processing room

40‧‧‧真空系統 40‧‧‧vacuum system

42‧‧‧來源電漿系統 42‧‧‧Source plasma system

44‧‧‧偏壓電漿系統 44‧‧‧Pressure plasma system

46‧‧‧氣體傳送系統 46‧‧‧ gas delivery system

48‧‧‧遠端電漿清潔系統 48‧‧‧Remote plasma cleaning system

50‧‧‧圓蓋 50‧‧‧ round cover

52‧‧‧電漿處理區域 52‧‧‧ Plasma processing area

54‧‧‧基板 54‧‧‧Substrate

56‧‧‧基板支撐件 56‧‧‧Substrate support

58‧‧‧加熱板 58‧‧‧heating plate

60‧‧‧冷卻板 60‧‧‧cooling plate

62‧‧‧主體件 62‧‧‧ body parts

64‧‧‧基部 64‧‧‧ base

68‧‧‧靜電吸盤 68‧‧‧Electrostatic suction cup

70‧‧‧調解體 70‧‧‧Mediation

72‧‧‧多葉片調節閥 72‧‧‧Multi-blade regulating valve

74‧‧‧閘閥 74‧‧‧ gate valve

76‧‧‧渦輪式幫浦 76‧‧‧ Turbo pump

78‧‧‧頂部線圈 78‧‧‧Top coil

80‧‧‧側線圈 80‧‧‧ side coil

82‧‧‧頂部射頻(RF)來源產生器 82‧‧‧Top RF (RF) Source Generator

84‧‧‧側射頻(RF)來源產生器 84‧‧‧ side radio frequency (RF) source generator

86‧‧‧射頻(RF)偏壓產生器 86‧‧‧RF (RF) bias generator

88~90‧‧‧匹配網路 88~90‧‧‧match network

92‧‧‧氣體傳送線路 92‧‧‧ gas transmission line

92a‧‧‧排氣線路 92a‧‧‧Exhaust line

94‧‧‧氣環 94‧‧‧ gas ring

95‧‧‧插入/移除開口 95‧‧‧Insert/Remove openings

96‧‧‧上噴嘴 96‧‧‧Upper nozzle

98‧‧‧排氣口 98‧‧‧Exhaust port

100a~100e‧‧‧氣體源 100a~100e‧‧‧ gas source

102‧‧‧靜電吸盤 102‧‧‧Electrostatic suction cup

104‧‧‧基板 104‧‧‧Substrate

106、108‧‧‧氣體噴嘴 106, 108‧‧‧ gas nozzle

112、112a、112b‧‧‧閥 112, 112a, 112b‧‧‧ valves

114‧‧‧真空前導線路 114‧‧‧vacuum lead line

120a~120b‧‧‧流量控制器 120a~120b‧‧‧Flow Controller

132‧‧‧系統控制器 132‧‧‧System Controller

134‧‧‧處理器 134‧‧‧ processor

136‧‧‧記憶體 136‧‧‧ memory

Claims (13)

一種用於刷新一靜電吸盤的至少一部分之方法,該靜電吸盤具有一平板與一第一介電部件,其中該第一介電部件包括一管件,該管件係插入該平板中,且該平板係適以被置於一通道內以界定一氣室,其中該第一介電部件提供一流體通道的至少一部分,該流體通道係耦接至該氣室,該方法包括:自該靜電吸盤的該平板移除該第一介電部件,其中該第一介電部件係經配置以提供一流體至一基板的一背部表面,當該基板被置於該靜電吸盤上時,該基板的該背部表面面對該靜電吸盤;及以一第二介電部件取代該第一介電部件。 A method for refreshing at least a portion of an electrostatic chuck having a flat plate and a first dielectric member, wherein the first dielectric member includes a tubular member, the tubular member is inserted into the flat plate, and the flat plate is Suitably disposed in a channel to define a plenum, wherein the first dielectric component provides at least a portion of a fluid channel coupled to the plenum, the method comprising: the slab from the electrostatic chuck Removing the first dielectric component, wherein the first dielectric component is configured to provide a fluid to a back surface of the substrate, the back surface of the substrate when the substrate is placed on the electrostatic chuck The electrostatic chuck; and the second dielectric member is replaced by a second dielectric member. 如申請專利範圍第1項所述之方法,其中該第二介電部件係壓配至該平板的一開口中。 The method of claim 1, wherein the second dielectric member is press-fitted into an opening of the plate. 如申請專利範圍第1項所述之方法,其中在移除該第一介電部件之前,移除一介電層的至少一部分以接取該第一介電部件;且在用該第二介電部件取代該第一介電部件之後,取代該介電層之該經移除的至少一部分。 The method of claim 1, wherein at least a portion of a dielectric layer is removed to access the first dielectric component prior to removing the first dielectric component; and the second dielectric is used After the electrical component replaces the first dielectric component, at least a portion of the removed dielectric layer is replaced. 如申請專利範圍第1項所述之方法,其中該第一介電部件或該第二介電部件的至少一者包括一陶瓷。 The method of claim 1, wherein at least one of the first dielectric member or the second dielectric member comprises a ceramic. 如申請專利範圍第4項所述之方法,其中該陶瓷包括氧化鋁。 The method of claim 4, wherein the ceramic comprises alumina. 如申請專利範圍第3項所述之方法,更包括研磨該經取代之介電層。 The method of claim 3, further comprising grinding the substituted dielectric layer. 如申請專利範圍第1項所述之方法,其中該移除步驟包括對該第一介電部件鑽孔。 The method of claim 1, wherein the removing step comprises drilling the first dielectric component. 一種用於刷新一靜電吸盤的至少一部分之方法,該靜電吸盤具有一平板與一第一介電部件,其中該第一介電部件包括一管件,該管件係插入該平板中,且該平板係適以被置於一通道內以界定一氣室,其中該第一介電部件提供一流體通道的至少一部分,該流體通道係耦接至該氣室,該方法包括:移除一介電層的至少一部分以暴露該第一介電部件,其中該第一介電部件係經配置以提供一流體至一基板的一背部表面,當該基板被置於該靜電吸盤上時,該基板的該背部表面面對該靜電吸盤;自該平板移除該第一介電部件;以一第二介電部件取代該第一介電部件;及以該介電層的一新的至少一部分取代該介電層之該經移除的至少一部分。 A method for refreshing at least a portion of an electrostatic chuck having a flat plate and a first dielectric member, wherein the first dielectric member includes a tubular member, the tubular member is inserted into the flat plate, and the flat plate is Suitably disposed in a channel to define a plenum, wherein the first dielectric component provides at least a portion of a fluid channel coupled to the plenum, the method comprising: removing a dielectric layer At least a portion to expose the first dielectric component, wherein the first dielectric component is configured to provide a fluid to a back surface of the substrate, the back of the substrate when the substrate is placed on the electrostatic chuck Facing the electrostatic chuck; removing the first dielectric member from the flat plate; replacing the first dielectric member with a second dielectric member; and replacing the dielectric with a new at least one portion of the dielectric layer At least a portion of the layer that has been removed. 如申請專利範圍第8項所述之方法,其中該第二介電部件係壓配至該平板的一開口中。 The method of claim 8, wherein the second dielectric member is press-fitted into an opening of the plate. 如申請專利範圍第8項所述之方法,其中該第一介電部件或該第二介電部件的至少一者包括一陶瓷。 The method of claim 8, wherein at least one of the first dielectric member or the second dielectric member comprises a ceramic. 如申請專利範圍第10項所述之方法,其中該陶瓷包括氧化鋁。 The method of claim 10, wherein the ceramic comprises alumina. 如申請專利範圍第8項所述之方法,更包括研磨該經取代之介電層。 The method of claim 8, further comprising grinding the substituted dielectric layer. 如申請專利範圍第8項所述之方法,其中該移除步驟包括對該第一介電部件鑽孔。 The method of claim 8, wherein the removing step comprises drilling the first dielectric component.
TW101139316A 2007-07-31 2008-07-30 Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing TWI479597B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/888,327 US8108981B2 (en) 2007-07-31 2007-07-31 Method of making an electrostatic chuck with reduced plasma penetration and arcing
US11/888,341 US9202736B2 (en) 2007-07-31 2007-07-31 Method for refurbishing an electrostatic chuck with reduced plasma penetration and arcing
US11/888,311 US7848076B2 (en) 2007-07-31 2007-07-31 Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing

Publications (2)

Publication Number Publication Date
TW201314834A true TW201314834A (en) 2013-04-01
TWI479597B TWI479597B (en) 2015-04-01

Family

ID=40380622

Family Applications (2)

Application Number Title Priority Date Filing Date
TW097128899A TWI399824B (en) 2007-07-31 2008-07-30 Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing
TW101139316A TWI479597B (en) 2007-07-31 2008-07-30 Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW097128899A TWI399824B (en) 2007-07-31 2008-07-30 Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing

Country Status (4)

Country Link
JP (1) JP5140516B2 (en)
KR (1) KR101125885B1 (en)
SG (1) SG149791A1 (en)
TW (2) TWI399824B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8336891B2 (en) * 2008-03-11 2012-12-25 Ngk Insulators, Ltd. Electrostatic chuck
US9728429B2 (en) 2010-07-27 2017-08-08 Lam Research Corporation Parasitic plasma prevention in plasma processing chambers
JP5984504B2 (en) * 2012-05-21 2016-09-06 新光電気工業株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck
US10784139B2 (en) * 2016-12-16 2020-09-22 Applied Materials, Inc. Rotatable electrostatic chuck having backside gas supply
US11456161B2 (en) * 2018-06-04 2022-09-27 Applied Materials, Inc. Substrate support pedestal
JP7269759B2 (en) * 2019-03-12 2023-05-09 新光電気工業株式会社 Substrate fixing device
CN112908919A (en) * 2019-12-04 2021-06-04 中微半导体设备(上海)股份有限公司 Electrostatic chuck device and plasma processing device comprising same
JP7356620B1 (en) * 2022-08-12 2023-10-04 日本碍子株式会社 Components for semiconductor manufacturing equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2106325A (en) * 1981-09-14 1983-04-07 Philips Electronic Associated Electrostatic chuck
US5792562A (en) * 1995-01-12 1998-08-11 Applied Materials, Inc. Electrostatic chuck with polymeric impregnation and method of making
US5644467A (en) * 1995-09-28 1997-07-01 Applied Materials, Inc. Method and structure for improving gas breakdown resistance and reducing the potential of arcing in a electrostatic chuck
US5720818A (en) * 1996-04-26 1998-02-24 Applied Materials, Inc. Conduits for flow of heat transfer fluid to the surface of an electrostatic chuck
EP0803900A3 (en) * 1996-04-26 1999-12-29 Applied Materials, Inc. Surface preparation to enhance the adhesion of a dielectric layer
US6108189A (en) * 1996-04-26 2000-08-22 Applied Materials, Inc. Electrostatic chuck having improved gas conduits
US6263829B1 (en) * 1999-01-22 2001-07-24 Applied Materials, Inc. Process chamber having improved gas distributor and method of manufacture
US6500299B1 (en) * 1999-07-22 2002-12-31 Applied Materials Inc. Chamber having improved gas feed-through and method
JP3482949B2 (en) * 2000-08-04 2004-01-06 松下電器産業株式会社 Plasma processing method and apparatus
US6581275B2 (en) * 2001-01-22 2003-06-24 Applied Materials Inc. Fabricating an electrostatic chuck having plasma resistant gas conduits
TW502368B (en) * 2001-11-06 2002-09-11 Duratek Inc Electrostatic chuck and method for manufacturing the same
JP2004158751A (en) * 2002-11-08 2004-06-03 Matsushita Electric Ind Co Ltd Plasma processing apparatus
JP4421874B2 (en) * 2003-10-31 2010-02-24 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP4364667B2 (en) * 2004-02-13 2009-11-18 東京エレクトロン株式会社 Thermal spray member, electrode, and plasma processing apparatus

Also Published As

Publication number Publication date
JP2009065133A (en) 2009-03-26
SG149791A1 (en) 2009-02-27
TW200921838A (en) 2009-05-16
KR101125885B1 (en) 2012-03-22
JP5140516B2 (en) 2013-02-06
KR20090013052A (en) 2009-02-04
TWI479597B (en) 2015-04-01
TWI399824B (en) 2013-06-21

Similar Documents

Publication Publication Date Title
US8108981B2 (en) Method of making an electrostatic chuck with reduced plasma penetration and arcing
US7848076B2 (en) Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing
US9202736B2 (en) Method for refurbishing an electrostatic chuck with reduced plasma penetration and arcing
US9218997B2 (en) Electrostatic chuck having reduced arcing
TWI479597B (en) Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing
US20190221463A1 (en) Process kit components for use with an extended and independent rf powered cathode substrate for extreme edge tunability
EP1074041B1 (en) A high temperature multi-layered alloy heater assembly
JP4485681B2 (en) High temperature ceramic heater assembly with high frequency capability.
US8274017B2 (en) Multifunctional heater/chiller pedestal for wide range wafer temperature control
US6051286A (en) High temperature, high deposition rate process and apparatus for depositing titanium layers
JP2971847B2 (en) Method and apparatus for cleaning process in high temperature, corrosive, plasma environment
US5968379A (en) High temperature ceramic heater assembly with RF capability and related methods
US8826855B2 (en) C-shaped confinement ring for a plasma processing chamber
US7776156B2 (en) Side RF coil and side heater for plasma processing apparatus
CN102315150A (en) The removable basic ring that is used for plasma processing chamber
JPH10298767A (en) High-temperature and high-flow-rate chemical vapor deposition device, and related method
JP3004621B2 (en) Method and apparatus for depositing a film at high temperature and high deposition rate
TWI819370B (en) Semiconductor processing chambers for deposition and etch
JP7382329B2 (en) Process kit for substrate supports
KR20160083057A (en) Isolator for a substrate processing chamber
TWI840341B (en) Process kit for a substrate support
WO2022245645A1 (en) Low impedance current path for edge non-uniformity tuning

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees