TW200921838A - Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing - Google Patents

Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing Download PDF

Info

Publication number
TW200921838A
TW200921838A TW097128899A TW97128899A TW200921838A TW 200921838 A TW200921838 A TW 200921838A TW 097128899 A TW097128899 A TW 097128899A TW 97128899 A TW97128899 A TW 97128899A TW 200921838 A TW200921838 A TW 200921838A
Authority
TW
Taiwan
Prior art keywords
dielectric
electrostatic chuck
dielectric layer
tube
hole
Prior art date
Application number
TW097128899A
Other languages
Chinese (zh)
Other versions
TWI399824B (en
Inventor
Dmitry Lubomirsky
xing-long Chen
Sudhir Gondhalekar
Kadthala Ramaya Narendranath
Muhammad Rasheed
Tony Kaushal
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/888,311 external-priority patent/US7848076B2/en
Priority claimed from US11/888,327 external-priority patent/US8108981B2/en
Priority claimed from US11/888,341 external-priority patent/US9202736B2/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200921838A publication Critical patent/TW200921838A/en
Application granted granted Critical
Publication of TWI399824B publication Critical patent/TWI399824B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

A method and apparatus for providing a fluid distribution element for an electrostatic chuck that reduces plasma formation and arcing within heat transfer fluid passages. One embodiment comprises a plate and a dielectric component, where the dielectric component is inserted into the plate. The plate is adapted to be positioned within a channel to define a plenum, wherein the dielectric component provides at least a portion of a fluid passage coupled to the plenum. A porous dielectric layer, formed upon the dielectric component, provides at least another portion of a fluid passage coupled to the plenum. In other embodiments, the fluid distribution element comprises various arrangements of components to define a fluid passage that does not provide a line-of-sight path from the support surface for a substrate to a plenum.

Description

200921838 六、發明說明: 【發明所屬之技術領域】 本發明之實施例大致係關於半導體元件製造用之設 備,且特別疋,係關於一種在處理過程中用於支撐半導 體晶圓之靜電吸盤。 【先前技術】 靜電吸盤廣泛用於對半導體處理設備(例如,電漿處理 至)中的基板(或稱為半導體晶圓或晶圓)提供支撐。在基 板處理期間(即,材料沉積或蝕刻期間),靜電吸盤通常 將基板固持於一靜止位置。靜電吸盤係利用電容性或強 生-拉別克(Johnsen-Rahbeck)吸力來固持基板於定位。 有一類靜電吸盤係包括一主體以及覆蓋有一層介電材 料(藉以形成一支撐表面)之一流體分佈元件。該主體一 般具有傳導性,使得主體形成了靜電吸盤的電極。基板 係置於支撐表面上。流體分佈元件包括一氣室,其帶有 形成於靜電吸盤支撐表面甲之多個流體通道,以於吸盤 的支撐表面與基板背側之間分佈一傳熱流體(例如,氣 體)。一般而言,氣體填滿靜電吸盤與基板之間的空隙區 域,因而提升靜電吸盤與基板之間的傳熱率與傳熱均 性。 、、、刁 在電漿處理室中,靜電吸盤會受到基板周圍的高功率 射頻(RF)電%與尚雄、度電聚。在這種電漿處理室中,可 4 200921838 能會使氣體因氣體通道中產生高電場而崩解。靜電吸盤 的操作與生命週期係受到氣體通動中之電漿形成的不良 影響。這種電漿會破壞基板、靜電吸盤或兩者。此外, 氣體通道中電聚之形成會導致電弧(arcing),其形成腔室 中的粒狀汙染物。 已有多種技術來減少氣體通道中的電漿形成。有一種 技術包括了將一多孔性介電質栓插置在吸盤表面的通道 中。選擇栓的孔隙度以確保孔隙的大小可以抑制電漿形 成、但又可讓傳熱流體到達基板支撐表面。雖然多孔性 材料提供了對電漿形成之保護,但這種靜電吸盤的製造 則相當困難、費時且耗費成本。 因此,需要一種改良的靜電吸盤以減少電漿形成與電 弧 〇 【發明内容】 =發明大致提供了-種提供靜電吸盤所用之流體分佈 US法與㈣,其可減少傳熱流體通^之電聚形 料電…Γ貫施例包括了—平板與—介電部件,其中 2顿係插置於該平板中。該平板係適 一氣室’其中該介電部件提供了與_ 性介電二的至少—部分。形成在介電部件上的多孔 分。在:他:了與氧室麵合之流體通道的至少另-部 ’、施例中’流體分佈元件包括部件的各種排 200921838 列’其界定一流體通道但未提供從基板支撐表面到氣室 之一視線路徑(line-〇f_sight path)。 【實施方式】 第1圖說明了一種電漿式基板處理系統36,其包括如 本發明中各種實施例之靜電吸盤68。電漿處理系統36 係用於需控制基板(如矽晶圓、GaAs晶圓等)溫度之處 理,同時產生並維持一電漿環境以於其中處理基板。電 漿係產生於基板附近以處理基板,且基板的溫度係使用 各種技術加以控制,例如:藉由供應一傳熱流體至基板 的後表面。雖然以两密度電漿_化學氣相沉積(HDp_CVD) 系統(例如’應用材料公司(AppHed Matedals,如,BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to an apparatus for manufacturing a semiconductor element, and more particularly to an electrostatic chuck for supporting a semiconductor wafer during processing. [Prior Art] Electrostatic chucks are widely used to provide support for substrates (or semiconductor wafers or wafers) in semiconductor processing equipment (e.g., plasma processing). The electrostatic chuck typically holds the substrate in a rest position during substrate processing (i.e., during material deposition or etching). Electrostatic chucks utilize capacitive or Johnson-Rahbeck suction to hold the substrate in position. One type of electrostatic chuck includes a body and a fluid distribution element covered with a layer of dielectric material ( thereby forming a support surface). The body is generally conductive such that the body forms the electrodes of the electrostatic chuck. The substrate is placed on the support surface. The fluid distribution element includes a plenum having a plurality of fluid passages formed in the electrostatic chuck support surface A for distributing a heat transfer fluid (e.g., gas) between the support surface of the suction cup and the back side of the substrate. In general, the gas fills the void region between the electrostatic chuck and the substrate, thereby increasing the heat transfer rate and heat transfer uniformity between the electrostatic chuck and the substrate. ,,, 刁 In the plasma processing chamber, the electrostatic chuck is subjected to high-power radio frequency (RF) electricity around the substrate and is concentrated. In this plasma processing chamber, 4 200921838 can cause gas to disintegrate due to the high electric field generated in the gas passage. The operation and life cycle of the electrostatic chuck are adversely affected by the formation of plasma in the gas passage. This plasma can damage the substrate, the electrostatic chuck, or both. In addition, the formation of electropolymerization in the gas passages can cause arcing, which forms particulate contaminants in the chamber. A variety of techniques have been developed to reduce plasma formation in gas passages. One technique involves inserting a porous dielectric plug into the channel of the surface of the chuck. The porosity of the plug is chosen to ensure that the size of the pores inhibits plasma formation but allows the heat transfer fluid to reach the substrate support surface. While porous materials provide protection from plasma formation, the manufacture of such electrostatic chucks is relatively difficult, time consuming, and costly. Therefore, there is a need for an improved electrostatic chuck to reduce plasma formation and arcing. [Invention] The invention generally provides a fluid distribution US method and (4) for providing an electrostatic chuck, which can reduce the electrofusion of the heat transfer fluid. The shape of the electric device includes a flat plate and a dielectric member in which two rows are inserted into the plate. The plate is adapted to a gas chamber wherein the dielectric member provides at least a portion of the dielectric dielectric. A porous component formed on the dielectric member. In: he: at least the other part of the fluid passage that meets the oxygen chamber, in the example, the fluid distribution element comprises various rows of components 200921838 column which defines a fluid passage but does not provide a support surface from the substrate to the air chamber One of the line of sight paths (line-〇f_sight path). [Embodiment] FIG. 1 illustrates a plasma substrate processing system 36 including an electrostatic chuck 68 as in various embodiments of the present invention. The plasma processing system 36 is used to control the temperature of the substrate (e.g., germanium wafer, GaAs wafer, etc.) while generating and maintaining a plasma environment for processing the substrate therein. The plasma is generated near the substrate to process the substrate, and the temperature of the substrate is controlled using various techniques, for example, by supplying a heat transfer fluid to the back surface of the substrate. Although in a two-density plasma-chemical vapor deposition (HDp_CVD) system (for example, 'AppHed Matedals, eg,

Clara’ Calif.)之 3〇〇mm HDP_CVD 仙―χ 系統)來說明 電漿處理室的一個實施例,然本發明可用於使用電漿的 其他處理室,包括物理氣相沉積室、化學氣相沉積室、 姓刻室與其他需控制基板溫度之應用。 第1圖說明了 HDP-CVD系統36的一個實施例,其使 用一靜電吸盤68於基板處理期間固定基板。根據本發明 實施例,靜電吸盤68係經設計以減少吸盤68附近的電 漿穿透與電弧。 系統36包括處理室38、真空系統40、來源電漿系統 42、偏壓電漿系統44、氣體傳送系統46以及遠端電漿 清潔系統4 8。 6 200921838 :理至广的上方部分包括_龍5。,其由介電材料 ,乳化鋁或氮化銘)所製成。圓蓋50界定了電聚處 理區域52όίτμ、惠田 J % ^ 的上邊界。電漿處理區域52的底部是由基板 54的上表面與基板支撐件56予以界定。 加熱板58與冷卻板6〇係位於圓蓋5〇上方且與其敎耗 合。加熱板58與冷卻板6〇使圓蓋溫度可以在約⑽至 觀的範圍内可控制於職的差異内。這使圓蓋溫度 可針對各種處理而最佳化。舉例而言,在清潔或蚀刻處 理期間需要使圓蓋維持於較沉積處理更高的溫度。精確 控制圓蓋溫度也減少處理室中的薄片或粒子數,並提升 了沉積層與基板之間的接合力。 處理室38的下方包括一主體件62,其連接了處理室 與真空系統。基板支擇件56的基部料係固定於主體件 62 _上並與其形成一連續内表面。藉由自動控制葉片(圖中 未不)將基板傳遞通過處理室38 一側的插入/移除開口 % 二進出處理冑38。氣塵式致動器(圖中未示)升高與降低 —舉升鎖板(圖中未示),其升高與降低舉升鎖(圖中未示) 以使晶圓升高及降低。在傳遞至處理室%中時,基板係 載至升高之舉升鎖上’然後降低至基板支擇件56的基板 接收部66。基板接收部66包括靜電吸盤68,其於基板 處理期間將基板固定在基板支撐件56上。 真空系統40包括一調節體7〇,其覆蓋多葉片調節閥 與閘閥74與渦輪式幫浦76結合。應注意,調節體 提仏氣流最小阻礙並進行對稱性抽吸,如同樣待審、 200921838 八同申吻之美國專利申請案「對稱腔室(symmetric CHAMBER)」中所述者,其最初於1995年i2月u日提 申(申請號為Ν〇·08/574,839),並於^外年今月u曰再 次提申(申請號為No.助12,724)β閘閥74可以使幫浦 %與調節體70隔離’並可藉由限制調節闊72在完全開 啟時的排流能力來控制處理室壓力。調節閥72、閘閥 74、以及渦輪式幫浦76的配置可精確穩定地控制處理室 壓力於約1至1〇〇毫托(miUit〇rr)。 來源電漿系統42包括了裝設在圓蓋5〇上的頂部線圈 78與側線圈8G…對稱接地屏蔽(未示出)減少了線圈之 間的電耗合。頂部線圈78係由頂部射頻(rf)來源產生器 Μ所啟動’而侧線圈80係由侧射頻(rf)來源產生器84 所啟動’讓各線圈可具有獨立的功率級與操作頻率。此 一雙重_系統可控制處理室38中的輕射離子密度,藉 以增進電漿均勻性。你丨綠園 側線圈80與頂部線圈78感應地將 能量麵合至腔室38中。在一特定實施例中,頂部RF來 源產生器82於2MH7雜中/ · MHz額疋(nominal)頻率時提供了高達 _〇=的RF功率,而側RF來源產生器料於⑽Η?額 =料提供了高達80卿的奸功率。頂部與側处 盗的刼作頻率係偏離額定操作頻率(諸如:分別為 1.7 至 1.91VIHZ 以及 1 9 〇 ΐΛ/rtr、 及至2·1ΜΗΖ)’以提高電漿產生效 牛 〇 82與84包括數位式控制合成器 頻率範圍WHz中運作。各產生器= 200921838 RF控制電路(未示)’其測量從處理室與線圈對產生器的 反射功率,並調整操作頻率以獲得最低反射功率,如該 領域技術人士所了解者。RF產生器一般係設計為操作於 特性阻抗為歐姆(ohms)之負載(load)。RF功率係從與 產生器之特性阻抗不同的負載反射。這可減少傳遞至負 載的功率。此外,從負載反射回產生器的功率會超載並 破壞產生器。由於電漿的阻抗係根據電漿離子密度等多 項因子而介於低於5歐姆至超過9〇〇歐姆的範圍中,且 由於反射功率係頻率之函數,根據反射功率來調整產生 器頻率可增加從RF產生器傳送到電漿的功率並保護產 生器另種降低反射功率並提升效率的方法是與匹配 網路進行運作。 匹配網路89與90將產生器82與84的輸出阻抗分別 與線圈78與80進行匹配。RF控制電路改變匹配網路内 的電容值來調整兩匹配網路,以於負載變化時將產生器 匹配至負載。當自負載反射回產生器的功率超過一特定 限值時,RF控制電路將調整一匹配網路。一種提供固定 匹配及有效使RF控制電路無法調整匹配電路的方式是 將反射功率限值設定為高於反射功率的任何期待值。這 藉由使匹配網路在其大部分條件中保持固定而有助於在 某些條件下穩定電漿。 偏壓電漿系統44包括一 rF偏壓產生器%與一偏壓匹 配網路88。偏壓電漿系統44電容性耦合基板接收部μ 至主體件62(其係做為補償電極)。偏壓電漿系統44用於 9 200921838 加強來源電漿系統42所產生的電漿物質傳送至基板的 表面。在一特定實施例中,RF偏壓產生器86於13.56MHz 叫"提供尚達10000W的RF功率。Clara' Calif.) 3 〇〇 mm HDP_CVD system - to illustrate one embodiment of a plasma processing chamber, but the invention can be used in other processing chambers using plasma, including physical vapor deposition chambers, chemical vapors Deposition chambers, surname chambers and other applications where substrate temperature needs to be controlled. Figure 1 illustrates an embodiment of an HDP-CVD system 36 that uses an electrostatic chuck 68 to secure a substrate during substrate processing. In accordance with an embodiment of the invention, electrostatic chuck 68 is designed to reduce plasma penetration and arcing near suction cup 68. System 36 includes a process chamber 38, a vacuum system 40, a source plasma system 42, a bias plasma system 44, a gas delivery system 46, and a remote plasma cleaning system 48. 6 200921838: The upper part of Li Weiguang includes _Long 5. It is made of dielectric material, emulsified aluminum or nitride. The dome 50 defines the upper boundary of the electropolymerization zone 52όίτμ and Huitian J % ^ . The bottom of the plasma processing zone 52 is defined by the upper surface of the substrate 54 and the substrate support 56. The heating plate 58 and the cooling plate 6 are slid over the dome 5 且 and are consumed by it. The heating plate 58 and the cooling plate 6 are so that the dome temperature can be controlled within a range of from about (10) to about the range. This allows the dome temperature to be optimized for a variety of treatments. For example, it is desirable to maintain the dome at a higher temperature than the deposition process during the cleaning or etching process. Precise control of the dome temperature also reduces the number of flakes or particles in the chamber and increases the bonding force between the deposit and the substrate. Below the processing chamber 38 includes a body member 62 that connects the processing chamber to the vacuum system. The base of the substrate support member 56 is secured to the body member 62 and forms a continuous inner surface therewith. The substrate is transferred through the insertion/removal opening % on the side of the processing chamber 38 by the automatic control of the blade (not shown). A dust-type actuator (not shown) is raised and lowered - a lift lock plate (not shown) that raises and lowers the lift lock (not shown) to raise and lower the wafer . Upon transfer to the process chamber %, the substrate is loaded onto the raised lift lock' and then lowered to the substrate receiving portion 66 of the substrate support 56. The substrate receiving portion 66 includes an electrostatic chuck 68 that secures the substrate to the substrate support 56 during substrate processing. The vacuum system 40 includes an adjustment body 7〇 that covers the multi-blade adjustment valve and the gate valve 74 in combination with the turbo pump 76. It should be noted that the accommodating body provides minimal suffocation and symmetrical suction, as described in the US Patent Application "symmetric CHAMBER", which is also pending, and was originally filed in 1995. In the year of February, we submit the application (application number is Ν〇·08/574,839), and in the next year, we will apply again (application number is No. 12,724). β gate valve 74 can make the pump and adjustment body The 70 isolation 'can control the process chamber pressure by limiting the drainage capacity of the adjustment width 72 at full opening. The configuration of the regulating valve 72, the gate valve 74, and the turbo pump 76 can accurately and stably control the process chamber pressure to about 1 to 1 Torr. The source plasma system 42 includes a top coil 78 mounted on the dome 5 and a side coil 8G. A symmetrical ground shield (not shown) reduces the power dissipation between the coils. The top coil 78 is activated by the top radio frequency (rf) source generator ’ and the side coil 80 is activated by the side radio frequency (rf) source generator 84 'allowing each coil to have independent power levels and operating frequencies. This dual system controls the light ion density in the processing chamber 38 to enhance plasma uniformity. Your green park side coil 80 and top coil 78 inductively couple energy into chamber 38. In a particular embodiment, the top RF source generator 82 provides up to _〇= of RF power at 2 MHz of the /MH initial frequency, while the side RF source generator is expected to be (10) =? Provided up to 80 sen. The frequency of the top and side thieves deviates from the rated operating frequency (such as: 1.7 to 1.91 VIHZ and 1 9 〇ΐΛ/rtr, and to 2·1 分别, respectively) to improve the efficiency of the plasma. 82 and 84 include digits. The control synthesizer operates in the frequency range WHz. Each generator = 200921838 RF control circuit (not shown) which measures the reflected power from the process chamber and the coil pair generator and adjusts the operating frequency to obtain the lowest reflected power, as will be appreciated by those skilled in the art. RF generators are typically designed to operate with loads having a characteristic impedance of ohms. The RF power is reflected from a load that is different from the characteristic impedance of the generator. This reduces the power delivered to the load. In addition, the power reflected back from the load back to the generator can overload and destroy the generator. Since the impedance of the plasma is in the range of less than 5 ohms to more than 9 ohms depending on a plurality of factors such as the plasma ion density, and depending on the frequency of the reflected power system, the generator frequency can be adjusted according to the reflected power. The method of transferring power from the RF generator to the plasma and protecting the generator to reduce reflected power and increase efficiency is to operate with a matching network. Matching networks 89 and 90 match the output impedances of generators 82 and 84 to coils 78 and 80, respectively. The RF control circuit changes the capacitance value in the matching network to adjust the two matching networks to match the generator to the load as the load changes. The RF control circuit will adjust a matching network when the power reflected from the load back to the generator exceeds a certain limit. One way to provide a fixed match and effectively disable the RF control circuit from adjusting the match circuit is to set the reflected power limit to any desired value above the reflected power. This helps stabilize the plasma under certain conditions by keeping the matching network fixed in most of its conditions. The bias plasma system 44 includes an rF bias generator % and a bias matching network 88. The bias plasma system 44 capacitively couples the substrate receiving portion μ to the body member 62 (which acts as a compensation electrode). The bias plasma system 44 is used for 9 200921838 to enhance the transfer of the plasma generated by the source plasma system 42 to the surface of the substrate. In a particular embodiment, the RF bias generator 86 is " provides a 10,000 W RF power at 13.56 MHz.

其他方式也有助於穩定電漿。舉例而言,可使用RF 控制電路來決定傳遞至負載(電漿)的功率,並增加或減 少產生ϋ輸出功率以使傳遞之功率在沉積膜層期間實質 上保持固定。 氣體傳送系統46包括複數個氣體來源1〇〇a、1〇〇b、 100c l〇〇d與i00e。在一實施例中,前述氣體來源分別 包括石夕院(su_)、氧分子、氦與氬。氣體傳送系統46 '左由氣體傳送線路92(圖中僅繪示部分)而從多個來源提 仏氣體至處理室以處理基板。氣體經 ㈣排氣…導入處理室38。明確地說,氣體:: 1〇〇&與1〇〇d分別經由流量控制器120a與120c以及氣體 傳送線路92而提供氣體至上喷嘴96。來自氣體來源1 的氣體係經由流量控制器120b而被提供至排氣口 98。 上噴嘴96與頂部排氣口 98可獨立控制頂部與側邊的氣 L動其增進了薄膜均勻度並可細調薄膜的沉積與摻 雜參數。頂部排氣口 98係沿著上喷嘴%周圍之一環型 開口,氣體可藉其而從氣體傳送系統流入處理室中。 氣體從各前述氣體來源經由流量控制器1〇2a、1〇孔、 l〇2c、1024與1〇2e以及氣體傳送線路92而提供至氣環 94。氣環94具有複數個氣體喷嘴1〇6與1〇8(僅繪示其中 兩個)其^供均勻氣流於基板上方。噴嘴長度與噴嘴角 200921838 度係可藉由改變氣環94 處理室内之特定處理料^ 今許針對個別 在一牡〜眘& °。句勻度特性及氣體利用效率。Other ways also help stabilize the plasma. For example, RF control circuitry can be used to determine the power delivered to the load (plasma) and to increase or decrease the yield of the ϋ output so that the delivered power remains substantially fixed during deposition of the film. The gas delivery system 46 includes a plurality of gas sources 1a, 1〇〇b, 100c l〇〇d, and i00e. In one embodiment, the gas sources include Shi Xi Yuan (su_), oxygen molecules, helium and argon, respectively. The gas delivery system 46' is left by a gas delivery line 92 (only a portion of which is shown) to extract gas from a plurality of sources to the processing chamber to process the substrate. The gas is introduced into the processing chamber 38 via (4) exhaust gas. Specifically, gas:: 1 〇〇 & 1 〇〇d provides gas to the upper nozzle 96 via flow controllers 120a and 120c and gas delivery line 92, respectively. A gas system from gas source 1 is provided to exhaust port 98 via flow controller 120b. The upper nozzle 96 and the top exhaust port 98 independently control the top and side air movements to enhance film uniformity and fine tune the film deposition and doping parameters. The top vent 98 is along a toroidal opening around the upper nozzle % through which gas can flow from the gas delivery system into the processing chamber. Gas is supplied to the gas ring 94 from each of the foregoing gas sources via the flow controllers 1A, 1b, 1〇2c, 1024 and 1〇2e, and the gas transfer line 92. The gas ring 94 has a plurality of gas nozzles 1 〇 6 and 1 〇 8 (only two of which are shown) for uniform gas flow over the substrate. Nozzle length and nozzle angle 200921838 degrees can be treated by changing the gas ring 94 to treat the specific processing material in the room. ^ Now for individual ones in one oy ~ caution & ° ° °. Syndrome characteristics and gas utilization efficiency.

在 特疋貫施例中,客;ps η X 氧衣94具有總共3 6個氣體喑 即24個第-氣體嘴 Μ體噴f, 一般而言,氣體喑喂 ” 12個第二氣體噴嘴Η)6。 噴嘴10“平面1〇8(僅繪示其中-個)係與第二氣體 嘴嘴106共千面且較其為短。 在部分實施例中,可 體。η ^ 使易燃、有毒、具腐蝕性之氣 體。在迫些實例中 〜礼 送線路内的氣體。這可_由=之後消除遺留在氣體傳 而完成,以使處理室用/向閥(例如 …給Λ 自傳送線路92a隔離,並排空傳 运線路92a至例如真空前遙 别導線路114。如第1圖所示,其 他的類似閥,例如閥U2a^ 具 ^ ^ ^ ^ 〇 U2b也可併於其他氣體傳 送線路上。在實施時,這 二向閥可置於靠近處理室38 慝以使未排空之氣體傳送 触#、土 η 味路(二向閥與處理室之間)的 體積達最小。此外,雙向(ρ彳热由 (開啟與關閉)閥(未示)可置於質 量流置控制器(MFC)與處理 MFC之間。 至之間、或置於氣體來源與 系統3 6更包括—;責*山、主、知 接祉“ 清潔灯電裝來源(未示出),以 如供清潔氣體至腔室38的 , Α 1 $ % 96。在其他實施例 中,a潔氣體(如果有使用的 幻话)係於其他位置進入腔室 «3 8 中。 系統控制器13 2調節系絲κ h 統36的知作並包括與其電性連 接以調節其操作之處理器一 .. 叙而言,處理器134 係單主機板電腦(SBC)的一邱八甘a ’ 邛刀,其包括類比與數位輸入 200921838 /輸出電路板、介面電路板與步進式馬達控制器電路板。 CVD系統36的各種組件符合侧標準,其界定了 板、卡槽以及連接器類型與大小。侧標準亦界定匯流 排結構為具有16位元資料匯流排與24位元資料匯流 排。處理器m執行系統控制軟體,其係儲存於與處理 盗134電耦合之記憶1 136中的一電腦程式。可使用任 何形式的記憶體’例如硬碟機、軟碟機、記憶卡或其組 口。該糸統控制之軟體包括㈣、混合氣體、處理室壓 力、處理室溫度、料油从.安处 . 放波力率級、室座位置以及特定處理 的其他參數等之指令組合。 基板104的溫度與基板溫度的均句性對於處理基板 P而言是很重要的處理參數。為了產生均句的溫度特 ::在吸盤叫板104的背部表面之間施加—傳熱流 牛^而5 ’本發明之—實施例是使用氦氣做為傳熱 二一般而言,靜電吸盤68為圓形’但或者靜電吸盤 =錢規則與不規則的幾何形狀以容納非圓形基板 (列如做為彳^面板之方开)、矩形基板)。 面m❹於靜電吸盤^上,並從氣體 6供應多種氣態成分至電漿處理室38的處理區域 其二氣態混合物。為點燃電漿,RF功率係被施加至 2 #件56中的電極、頂部線圈78或侧線圈⑽其中 2多^為^處理期間維持基板的溫度均勾性,在本 所亍施例中係經由至少一個流體分佈元件(如下文 者)供應一傳熱流體(例如氦氣)。 12 200921838 第2圖係根據本發明之一具體實施例,說明具有流體 刀佈元件222之靜電吸盤68的俯視平面圖。第2A圖係 弟圖之靜電吸盤68的一部分截面圖。第3圖係第2圖 3所不之吸盤68的截面圖。以下說明可藉由同 時參'日’?、第2圖與第3圖而加以了解。靜電吸盤68包括一 主體220、—流體分佈元件222與一介電層224,在靜電 吸盤68的—實施例中,主體220係由傳導材料(例如, 鋁)所製成,而介電層224係一陶瓷材料(例如氮化鋁、 氧化鋁等)。流體分佈元件222係置於靠近靜電吸盤68 周圍的附近。流體分佈元件222包括多個孔洞230(或其 他形式的通道),其穿過介電層224以從靜電吸盤分佈一 "IL體(如,氦軋)至基板的背部表面。對於結合1 2吋 (300mm)直徑半導體晶圓而使用的靜電吸盤丄们而言,在 靜電吸盤102周圍附近具有6G至36()個孔洞。各個多重 據所使用之流體分佈元件的種類、處理室内的壓力以及 通過流體分佑开.杜In a special embodiment, the guest; ps η X oxygen coat 94 has a total of 36 gas 喑 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 6. The nozzle 10 "plane 1 〇 8 (only one of which is shown) is thousands of faces and shorter than the second gas nozzle 106. In some embodiments, it is readable. η ^ makes flammable, toxic, corrosive gases. In some instances, the gas in the line is sent. This can be accomplished by eliminating the residual gas after the pass, so that the process chamber/way valve (e.g., isolating the transfer line 92a from the transfer line 92a and evacuating the transfer line 92a to, for example, the vacuum before the transfer line 114. As shown in Fig. 1, other similar valves, such as valve U2a^^^^ 〇U2b, can also be applied to other gas transmission lines. In practice, the two-way valve can be placed close to the processing chamber 38. The volume of the unempted gas transfer contact #, the soil η taste path (between the two-way valve and the processing chamber) is minimized. In addition, the two-way (p彳 heat (open and close) valve (not shown) can be placed Between the mass flow controller (MFC) and the processing MFC. Between or between the gas source and the system 3 6 includes;; the responsibility of the mountain, the main, the knower 祉 "cleaning lamp electric source (not shown) For example, for cleaning gas to chamber 38, Α 1 $ % 96. In other embodiments, a clean gas (if there is a phantom used) enters the chamber «3 8 at other locations. System Control The device 13 2 adjusts the knowledge of the wire 36 h system 36 and includes a processor 1 electrically connected thereto to adjust its operation In terms of the description, the processor 134 is a single motherboard computer (SBC) of a Qiu Bagan a 'sickle, which includes analog and digital input 200921838 / output circuit board, interface circuit board and stepper motor controller circuit The various components of the CVD system 36 conform to the side standard, which defines the board, card slot, and connector type and size. The side standard also defines the bus bar structure to have a 16-bit data bus and a 24-bit data bus. The m executes the system control software, which is stored in a computer program in the memory 1 136 electrically coupled to the hacker 134. Any form of memory can be used, such as a hard disk drive, a floppy disk drive, a memory card or a group port thereof. The soft body controlled by the system includes (4), mixed gas, process chamber pressure, process chamber temperature, oil from the safety point, the wave force rate level, the chamber seat position, and other parameters of the specific processing, etc. The uniformity of the temperature and the substrate temperature is an important processing parameter for the processing of the substrate P. In order to generate the temperature of the uniform sentence:: between the back surface of the suction plate 104 is applied - heat transfer flow and ^ 5 'Inventive - Embodiments use helium as heat transfer. In general, electrostatic chuck 68 is circular' or electrostatic chucks = money rules and irregular geometries to accommodate non-circular substrates (column as The surface of the panel is a rectangular substrate. The surface is placed on the electrostatic chuck, and a plurality of gaseous components are supplied from the gas 6 to the processing region of the plasma processing chamber 38. The two gaseous mixtures are used to ignite the plasma, RF power. Is applied to the electrode in the 2# member 56, the top coil 78 or the side coil (10), wherein more than 2 are used to maintain the temperature uniformity of the substrate during processing, in the present embodiment via at least one fluid distribution element ( A heat transfer fluid (such as helium) is supplied as follows. 12 200921838 Figure 2 is a top plan view of an electrostatic chuck 68 having a fluid knife element 222, in accordance with an embodiment of the present invention. Fig. 2A is a partial cross-sectional view of the electrostatic chuck 68 of the drawing. Fig. 3 is a cross-sectional view of the suction cup 68 of Fig. 2; The following description can be understood by referring to 'Day', Figure 2 and Figure 3 at the same time. The electrostatic chuck 68 includes a body 220, a fluid distribution element 222 and a dielectric layer 224. In the embodiment of the electrostatic chuck 68, the body 220 is made of a conductive material (eg, aluminum) and the dielectric layer 224 A ceramic material (such as aluminum nitride, aluminum oxide, etc.). The fluid distribution element 222 is placed adjacent to the vicinity of the electrostatic chuck 68. The fluid distribution element 222 includes a plurality of holes 230 (or other forms of channels) that pass through the dielectric layer 224 to distribute an "IL body (e.g., rolling) from the electrostatic chuck to the back surface of the substrate. For electrostatic chucks used in conjunction with a 12 Å (300 mm) diameter semiconductor wafer, there are 6G to 36 () holes near the periphery of the electrostatic chuck 102. The types of fluid distribution components used in each of the multiple data, the pressure in the processing chamber, and the separation by the fluid.

元件的幾何形狀。 介電層224覆蓋主體22〇的至少—部分頂 •部分頂部表面以及 藉以形成支撐表面 孔洞23。之直徑—般介於約。15mm間。這些大小係根 少—部分的流體分佈元件222, 13 200921838 支#表面228支撐置於其上之基板1〇4。介電層224 係散布於主體的頂部表面上並研磨至一所需厚度。 主體220包括頂部表面332與通道334,其係形成於 主體220的頂部表面332中,一般而言’通道334具有 一矩形截面形狀。然而,在替代實施例中,通道334具 有各種幾何截面形狀。流體分佈元件222係耦合至主體 220,使得通道334與流體分佈元件222形成一氣室μ。 亦即7L件222係定位於通道334内並固定在其中。此外, 主體220包括連接至通道334以對氣室336提供流體的 導管338。根據本發明之一具體實施例,冷卻氣體係經 由導管338而供應並由氣室分佈置流體分佈元件222。 氣體經由一或多個多重孔洞23〇(或其他形式之通道)而 流出,藉以提供傳熱流體至一基板之背部表面。 第4圖至第1 〇圖說明了靜電吸盤(例如,靜電吸盤〗〇2) 之虛線部分230的截面圖,此部分具有一流體分佈元件 222、介電層228與主體220。在說明中,靜電吸盤的大 小已經放大以清楚描述流體分佈元件與主體的截面。 特別疋,苐4圖說明了根據本發明一實施例之靜電吸 盤402的一部分,主體220包括一雙鑲嵌通道4〇4,其 具有一下通道404A與一上通道404B,其中下通道404A 係窄於上通道404B。靜電吸盤402包括具有平板440與 介電管442之流體分佈元件422。平板440係與上通道 404B相符(例如該平板具有一圓形平面形狀以與通道 404匹配),使得上通道404B的基部406形成一中止部 14 200921838 (stop)。平板440的高度實質上與上通道404B的高度相 同,因此平板440的頂部408實質上與主體220的頂部 332共平面。平板44〇係由傳導材料(例如,鋁)所製得, 並熔接定位於上通道404B中。平板440進一步包括—通 道410,其形成於平板44〇的底部表面◦在本發明之— 實施例中,通道410的寬度與下通道4〇4A的寬度實質上 相似,然在其他實施例中,通道4丨〇的寬度比下通道4〇4八 狹窄。下通道404A與通道410結合而界定了氣室336。 介電管442(電絕緣體)包括一第一端446、一第二端4竹 與一軸向通孔450。舉例而言,介電管442是由氧化鋁 所製,其之直徑實質上與平板44〇中開口 444的直徑匹 配。開口 444的直徑一般為(但不限於)約〇 〇〇8吋(約 0.2mm)或更大。在替代實施例中,開口 444具有各種幾 何形狀,例如圓形、三角形、方形等。此外,開口的形 狀與大小實質上與介電管442外徑的形狀與大小相配。 介電管442係定位(例如,壓合)至開口 444中。開口 444 ,括一凸緣412,管件442係坐落於其上(亦即凸緣形成 中止邛)。在所說明之實施例中,管件一 延伸於主體220的表面332上方。在… 端 J衣甸>332上方。在其他貫施例中,管 件442的第一端446係與表面332共平面。 至少-部分的主體220以及至少一部分的流體分佈元 件22係由介電| 224加以覆蓋,藉以形成支撐表面 428。介電層224係噴塗在主體的頂部表面上並研磨至一 所需厚度。在-實施例中’介電I⑵包括熱喷塗氧化 15 200921838 鋁或噴塗之氧化鋁/氧化鈦。本領域中已熟知此一熱噴塗 介電層的應用處理。熱噴塗處理可選自數種不同方法, 例如電漿喷塗、爆炸搶式喷塗、高速氧燃料(high vei〇ei^ oxygen fuel,HVOF)噴塗以及火焰式噴塗等。 在-實施例中’介電層224係研磨至線414所代表之 一厚度’使得層224的表面428與管件442的第一端 共平面。或者’介電層224係-多孔性陶曼,因此膜層 224係研磨至-特定平坦度,但膜層224覆蓋至少該管 件442的第一端446。由於陶兗的孔隙率之故,來自氣 室的氣體流經管件442與介電層以。舉例而言,介電 層224鄰近管件442之第一端446處係整個或部分由孔 隙率為體積百分率10%至6〇%的氧化紹所形成,其所產 生之孔隙直徑為約1至彳nn他止 ^ q J丄至100微米。在部分實施例中,如 以下將參照第8圖所玲昍去人a 圖所說明者,介電層係於管件442末端 446鄰近處具多孔性, 而在其他地方較不具多孔性。根 通道445的優點為缺少了從支撐表面428至氣 ^ 之直接視線路徑,藉此限制了通道445中形成電 漿的可能性。在另一實中:成電 丨電層224係研磨至一 446度’其中膜層…覆蓋了管件442的第一端 可鑽出或用其他方式形成(例如 電層224而達通道 通過" 介電材料,亦即主_傳^"同416。鑽洞處理僅鑽通 減。 體的傳導材科並不會由鑽除處理所噴 如該領域中所知,切表面似係經進—步處理以 26 200921838 U溝槽圖樣(圖中未示)而製於介電層224上。.溝槽係 經機製^其他方式形成於支撐表面428上,因此其與通 乙445父錯。冷部氣體可從通道445導進至溝槽中以均 勻刀佈冷郃氣體於靜電吸盤4〇2的整個支撐表面上。 糟由使用電絕緣體(介電管及/或介電層)以界定氣室與 基板表面之間的通道,從導熱氣體形成電毁或由電衆形 成導致電弧的可能性即可降低。藉由降低或消除電漿形 成與電弧,靜電吸盤的壽命可顯著增加。絕緣體的使用 減少了通道中的電場,因此降低了電漿形成的機會。此 外,本發明之特定實施例係使用流體分佈元件結構來進 一步減少通道中的電場,其係、藉由消除基板支擒表面(高 電場存在處)與氣室傳導表面之間的視線路徑而達成。當 出現此-視線路徑時,通道中流體的體積係足以點燃: 為電衆°使用非視線路徑減少了建立於大量流體的電場 (其可此導致電漿形成”因此可減少或消除電漿形成或 相關之電弧。 第5圖根據本發明另一實施例而說明靜電吸盤的 一部分之截面。類似於第4圖之實施例,介電管542係 疋位通過平板440。在替代實施例中,管542延伸至通 道534底部,而管542的第二端548係坐落在形成於通 道534底部中之支撐元件(例如,階狀物556)上。如先前 貫鉍例所示,介電管542及/或部分介電層224形成一電 絕緣體,其界定了通道545以供流體從氣室536流至表 面 528。 17 200921838 第6圖s兒明了本發明另一實施例之靜電吸盤602的一 4分之截面。與第4圖及第5圖之實施例類似,介電管 642係定位通過平板44〇。在替代實施例中,介電管642 包括形成於第二端604中之至少一凹口 656。在一替代 實施例中’管642包括孔洞以促進流體從氣室636流至 管642的通道645中。在先前實施例中,介電層224係 具多孔性且覆蓋管件642的一第一端606,膜層224係 經研磨以暴露管件642的第一端606,或一孔洞係形成 於該膜層中以與通道645相通。介電管642與部分介電 層224形成一通道645以供流體從氣室流出。根據所述, 當介電層224為多孔性且覆蓋管件642時,通道645的 優點為缺少從支撐表面628至氣室636之直接視線路 徑,猎此限制了通道6 4 5中電漿的形成。 第7圖β兒明了根據本發明又一實施例之靜電吸盤 的一部分截面。靜電吸盤7〇2包括主體72〇與流體分佈 π件722。流體分佈元件722包括一平板74〇與一介電 官742,其係以與先前實施例相同的方式加以組裝。在 此一實施例中,主體72〇包括通道734,其包括一介電 端蓋760。介電端蓋76〇係定位於通道734的底部。介 電端蓋760包括一開口 762,使得蓋760呈現杯形。介 電管742包括一第—端746、一第二# 748以及連接該 第一端746與該第二端748之一軸向通孔75〇。在本發 明之一實施例中,介電層724覆蓋該管件742的第一端 746 ’而在第二實施例中,介電層724係經研磨達到線 18 200921838 414以暴露管件742的第—4山nr . 扪第褊746。介電蓋742係w#、s 道73"以致管742的第二端748延伸至開口 7二 但與其隔開而形成一間隙。管742盥 瑪盍760形成一曲 折通道,而流體係流動於其間。 便用種通道確保會 出現從傳導性氣室壁到吸盤表面之視線路徑。 第8圖說明了根據本發明另一實施例之靜電吸盤⑽ 的-部分之截面。靜電吸盤8〇2包括一流體分佈元件 822。該流體分佈元件822包括具有一開口 844之平板 840。該平板840耦合至—主體82〇,使得通道834與平 板840形成一氣室836。介電層824覆蓋了至少一部分 的主體820以及至少一部分的流體分佈元件822。介電 層824包括一多孔性介電質區段87〇,使得至少一部分The geometry of the component. Dielectric layer 224 covers at least a portion of the top portion of the body 22's top surface and thereby forms a support surface aperture 23. The diameter is generally about. 15mm room. These sizes are few roots - part of the fluid distribution element 222, 13 200921838 branch # surface 228 supports the substrate 1 〇 4 placed thereon. The dielectric layer 224 is spread over the top surface of the body and ground to a desired thickness. The body 220 includes a top surface 332 and a channel 334 formed in the top surface 332 of the body 220, generally having a rectangular cross-sectional shape. However, in an alternate embodiment, the passage 334 has various geometric cross-sectional shapes. Fluid distribution element 222 is coupled to body 220 such that channel 334 and fluid distribution element 222 form a plenum μ. That is, the 7L member 222 is positioned within the channel 334 and secured therein. In addition, body 220 includes a conduit 338 that is coupled to passage 334 to provide fluid to plenum 336. According to one embodiment of the invention, the cooling gas system is supplied via conduit 338 and the fluid distribution element 222 is disposed by the gas chamber. The gas flows out through one or more multiple holes 23 (or other forms of channels) to provide a heat transfer fluid to the back surface of a substrate. 4 through 1 illustrate cross-sectional views of a broken line portion 230 of an electrostatic chuck (e.g., electrostatic chuck 〇 2) having a fluid distribution element 222, a dielectric layer 228, and a body 220. In the description, the size of the electrostatic chuck has been enlarged to clearly describe the cross section of the fluid distribution member and the body. In particular, Figure 4 illustrates a portion of an electrostatic chuck 402 in accordance with an embodiment of the present invention. The body 220 includes a dual damascene channel 4〇4 having a lower channel 404A and an upper channel 404B, wherein the lower channel 404A is narrower than Upper channel 404B. Electrostatic chuck 402 includes a fluid distribution element 422 having a plate 440 and a dielectric tube 442. The plate 440 is conformable to the upper channel 404B (e.g., the plate has a circular planar shape to match the channel 404) such that the base 406 of the upper channel 404B forms a stop 14 200921838 (stop). The height of the plate 440 is substantially the same as the height of the upper channel 404B, such that the top 408 of the plate 440 is substantially coplanar with the top 332 of the body 220. The flat plate 44 is made of a conductive material (for example, aluminum) and is welded and positioned in the upper passage 404B. The plate 440 further includes a channel 410 formed on the bottom surface of the plate 44A. In the present invention, the width of the channel 410 is substantially similar to the width of the lower channel 4A4A, although in other embodiments, The width of the channel 4丨〇 is narrower than the lower channel 4〇4-8. Lower channel 404A is combined with channel 410 to define a plenum 336. The dielectric tube 442 (electrical insulator) includes a first end 446, a second end 4, and an axial through hole 450. For example, the dielectric tube 442 is made of alumina and has a diameter that substantially matches the diameter of the opening 444 in the flat plate 44. The diameter of the opening 444 is generally, but not limited to, about 〇 8 吋 (about 0.2 mm) or more. In an alternate embodiment, opening 444 has various geometric shapes such as circular, triangular, square, and the like. Further, the shape and size of the opening substantially match the shape and size of the outer diameter of the dielectric tube 442. Dielectric tube 442 is positioned (e.g., pressed) into opening 444. The opening 444 includes a flange 412 upon which the tubular member 442 rests (i.e., the flange forms a stop). In the illustrated embodiment, the tubular member extends above the surface 332 of the body 220. At the end of J Jade > 332. In other embodiments, the first end 446 of the tube 442 is coplanar with the surface 332. At least a portion of the body 220 and at least a portion of the fluid distribution member 22 are covered by a dielectric | 224 to form a support surface 428. Dielectric layer 224 is sprayed onto the top surface of the body and ground to a desired thickness. In the embodiment - dielectric I(2) comprises thermal spray oxidation 15 200921838 aluminum or sprayed alumina/titanium oxide. The application process of this thermal sprayed dielectric layer is well known in the art. The thermal spray treatment can be selected from a number of different methods, such as plasma spray, explosion grab spray, high vei ei gas fuel (HVOF) spray, and flame spray. In the embodiment the dielectric layer 224 is ground to a thickness represented by line 414 such that the surface 428 of the layer 224 is coplanar with the first end of the tube 442. Alternatively, the dielectric layer 224 is a porous Tauman, so the film layer 224 is ground to a particular flatness, but the film layer 224 covers at least the first end 446 of the tube 442. Due to the porosity of the pottery, the gas from the chamber flows through the tube 442 and the dielectric layer. For example, the dielectric layer 224 is formed adjacent to the first end 446 of the tube 442 by a total or partial volume of 10% to 6% by volume of the porosity, which produces a pore diameter of about 1 to about 彳. Nn he stopped ^ q J丄 to 100 microns. In some embodiments, as will be described below with reference to Figure 8, the dielectric layer is porous in the vicinity of the end 446 of the tubular member 442 and less porous in other locations. The advantage of the root passage 445 is the lack of a direct line of sight path from the support surface 428 to the gas ^, thereby limiting the likelihood of plasma formation in the passage 445. In another implementation: the electrified electric layer 224 is ground to a 446 degree 'where the film layer ... covers the first end of the tube 442 that can be drilled or otherwise formed (eg, the electrical layer 224 reaches the passage through " The dielectric material, that is, the main _ 传 ^ " the same 416. Drilling hole treatment only drill and reduce. The body of the conductive material is not sprayed by the drilling process as known in the field, the cutting surface seems to be The step process is formed on the dielectric layer 224 by a 26 200921838 U trench pattern (not shown). The trench is formed on the support surface 428 by other means, so that it is inaccurate with the pass B 445. The cold gas can be directed from the passage 445 into the groove to uniformly cool the gas on the entire support surface of the electrostatic chuck 4〇2. The waste is defined by the use of an electrical insulator (dielectric tube and/or dielectric layer). The passage between the gas chamber and the surface of the substrate can be reduced from the formation of electrical damage from the heat-conducting gas or the formation of an electric arc, which can be significantly reduced. By reducing or eliminating plasma formation and arcing, the life of the electrostatic chuck can be significantly increased. Use reduces the electric field in the channel, thus reducing the plasma shape In addition, a particular embodiment of the invention uses a fluid distribution element structure to further reduce the electric field in the channel by eliminating the substrate support surface (where the high electric field is present) and the gas cell conduction surface. The line of sight path is achieved. When this line of sight path occurs, the volume of fluid in the channel is sufficient to ignite: the use of a non-line of sight path for the electricity population reduces the electric field built up in a large number of fluids (which can result in plasma formation) and thus can be reduced Or eliminating plasma formation or associated arcing. Figure 5 illustrates a cross-section of a portion of an electrostatic chuck in accordance with another embodiment of the present invention. Similar to the embodiment of Figure 4, dielectric tube 542 is clamped through plate 440. In an alternate embodiment, the tube 542 extends to the bottom of the channel 534 and the second end 548 of the tube 542 is seated on a support member (eg, step 556) formed in the bottom of the channel 534. As shown previously in the example The dielectric tube 542 and/or a portion of the dielectric layer 224 form an electrical insulator that defines a channel 545 for fluid to flow from the plenum 536 to the surface 528. 17 200921838 FIG. 6 is a view of the present invention A 4-minute cross section of the electrostatic chuck 602 of the embodiment. Similar to the embodiment of Figures 4 and 5, the dielectric tube 642 is positioned through the flat plate 44. In an alternative embodiment, the dielectric tube 642 includes At least one notch 656 in the second end 604. In an alternate embodiment, the tube 642 includes a hole to facilitate fluid flow from the plenum 636 into the channel 645 of the tube 642. In the previous embodiment, the dielectric layer 224 is A first end 606 that is porous and covers the tubular member 642, the membrane layer 224 is ground to expose the first end 606 of the tubular member 642, or a hole is formed in the membrane layer to communicate with the passage 645. The dielectric tube 642 A channel 645 is formed with a portion of the dielectric layer 224 for fluid to flow out of the plenum. According to the description, when the dielectric layer 224 is porous and covers the tube member 642, the channel 645 has the advantage of lacking a direct line of sight path from the support surface 628 to the plenum 636, which limits the formation of plasma in the channel 654. . Fig. 7 is a partial cross section of an electrostatic chuck according to still another embodiment of the present invention. The electrostatic chuck 7〇2 includes a body 72〇 and a fluid distribution π member 722. Fluid distribution element 722 includes a flat plate 74 and a dielectric member 742 that are assembled in the same manner as the prior embodiments. In this embodiment, body 72 includes a channel 734 that includes a dielectric end cap 760. The dielectric end cap 76 is positioned at the bottom of the channel 734. The dielectric end cap 760 includes an opening 762 such that the cover 760 assumes a cup shape. The dielectric tube 742 includes a first end 746, a second #748, and an axial through hole 75〇 connecting the first end 746 and the second end 748. In one embodiment of the invention, the dielectric layer 724 covers the first end 746' of the tube 742. In the second embodiment, the dielectric layer 724 is ground to the line 18 200921838 414 to expose the first portion of the tube 742. 4 Mountain nr. 扪第褊746. The dielectric cover 742 is w#, s-channel 73" such that the second end 748 of the tube 742 extends to the opening 7 but is spaced apart therefrom to form a gap. The tube 742 盍 盍 760 forms a meandering channel, and the flow system flows therebetween. The seed passage is used to ensure that there is a line of sight from the conductive chamber wall to the surface of the suction cup. Figure 8 illustrates a cross-section of a portion of an electrostatic chuck (10) in accordance with another embodiment of the present invention. The electrostatic chuck 8〇2 includes a fluid distribution element 822. The fluid distribution element 822 includes a plate 840 having an opening 844. The plate 840 is coupled to the body 82A such that the channel 834 forms a plenum 836 with the plate 840. Dielectric layer 824 covers at least a portion of body 820 and at least a portion of fluid distribution element 822. Dielectric layer 824 includes a porous dielectric segment 87〇 such that at least a portion

的多孔性介電質區段870與開口 844重疊。多孔性介電 質區段870係一多孔性陶瓷,例如孔隙度介於約體積百 分率10%與60%之間的氧化鋁,其具有形成穿過多孔性 介電質區段870之連續通道之互連開口。開口 844與至 少一部分的多孔隙介電質區段870形成了通道845以供 流體從氣室836流到靜電吸盤8〇2的支撐表面828。根 據所述,通道845的優點在於缺少從支撐表面828到傳 導性氣室836的直接視線路徑,藉此抑制通道845中電 漿的形成。 第9圖說明了根據本發明另一實施例之靜電吸盤902 的一部分之截面。靜電吸盤902包括一流體分佈元件 922。流體分佈元件922包括具有一開口 944與一介電栓 19 200921838 980之平板940。平板94〇係耦合至一主體92〇,使得通 道934與平板94〇形成一氣室936。平板94〇與主體 係如上述本發明之其他實施例的方式加以組裝。介電栓 的直棱λ質上與開口 944的直徑相配,介電栓98〇 係位於開口 1044中且一般係壓合於其内。介電層224覆 蓋了至少-部分的主體92〇以及至少—部分的流體分佈 兀件922,藉此界定—支樓表面928。介電廣224係喷塗 於主體920與流體分佈元件922的頂部表面i,並研磨 至一所需厚度。孔洞982係形成穿透介電層924並穿過 介電栓980。孔洞982使流體可以從氣室咖流到靜電 吸盤902的支撐表面928 β孔洞奶係利用各種技術加 以形成,例如機械鑽除、雷射鑽除等。孔洞982係形成 僅穿透介電材料。因此,軸向通孔982中不會形成任何 因鑽除處理而產生的金屬殘餘物。因為沒有這些金屬殘 餘物,即可限制孔洞982中電漿形成或電弧的可能性。 第10圖說明了根據本發明另一實施例之靜電吸盤 1002的-部分之截面。靜電吸盤1GG2包括—流體分佈 1 1022。流體分佈元件1〇22包括一平板1〇4〇與—介 電盖1〇42。平板1040包括兩圓環1040A與ι〇40Β。圓 環H)4〇A的直徑小於圓環1〇伽的直徑。各圓環1〇爾 與1〇働係坐落在上通道4_之底部處所形成之壁架 4〇6上。平板购絲接至主體議以將平板保持: 上通道侧卜介電蓋购(環形以形成氣室1〇 插置在上通道404B中並坐落在平板1〇4〇上。 ’、 20 200921838 在另一實施例中’平板包括具有複數個反向凹陷孔洞 之一倒U形截面(例如,第4圖所示之平板440)。具有與 元件1042類似之截面形狀的一圓形(甜甜圈形)介電元件 係插置在這樣的反向凹陷孔洞中。流體分佈元件1 〇22係 耦合至主體1020,使得流體分佈元件i〇22與通道1034 形成一氣室1036。介電層224覆蓋至少一部分的主體 1020以及至少一部分的流體分佈元件ι〇22,藉此形成一 支撐表Φ 1028。介電層.224係喷塗至主體1〇20與流體 刀佈元件1022的頂部表面上,並研磨至一所需厚度。一 孔洞1082係形成穿透介電層224與介電蓋1〇9〇。該孔 洞1082係利用各種技術加以形成,例如機械鑽除、雷射 鑽除等,如第9圖之實施例所述,孔洞1 〇 & 2係开^成僅穿 透介電材料,因此,孔洞1〇82中不會有任何金屬殘餘物。 在各前述實施例中,可能有極少數情形是利用本發明 之流體分佈元件的靜電吸盤會受到電漿形成或電弧的破 壞,然該吸盤可利用多種方法而輕易修復(或刷新卜一 般而言,破壞性的電漿形成或電弧係發生於介電質部件 (管件、多孔性嵌入件等)内或其鄰近處。因此介電層可 被局部(介電質部件上方)移除或整體(整個吸盤)移除以 暴露出介電質部件。接著可利用抽除(extracti〇n)工具來 鑽除或拉除該部件以移除部件,一旦經移除,即可插置 新的介電質部件,並視需要而局部或整體替換介電層。 在部分實施例中,介電質部件延伸至吸盤的支撐表面(如 以上所述),且在抽除前不需移除介電層。在這些情況 21 200921838 中’破壞之介電質部件传祐 貝11干你被和除,並插置(一般為壓合) 新的"電質部件於平板中的開口内。在接近傳熱流體通 暹處或在其中產生電弧或電漿形成時,相較於替換一整 個靜電吸盤而言,扁卜古斗士 在此方式中,可以實質節省的方式來 修復靜電吸盤。 釗述S兒明係針對本於日月夕眘 丁 月之實施例,然可於不背離其基 本概念下名于生本發明夕# AU J^S. t , 赞月之其他K施例,且其範疇係由如附 申請專利範圍所限定。 【圖式簡單說明】 藉由參照上述實施例與發明内容之說明,可詳細了解 本發明之前述特徵’其中部分係說明於伴隨之圖式中。 然應注意的是,伴隨之圖式僅說明了本發明的典型實施 例,因而不應視為對其範疇之限制,亦即本發明亦可用 其他等效實施方式。 第1圖說明了 —種電漿式基板處理系統,其包括如本 發明各種實施例所述之具有流體分佈元件之一靜電吸 盤; 第2圖為第1圖所示之靜電0及盤的俯視圖; 第2Α圖為一部分截面透視圖,其說明了第2圖所示之 靜電吸盤的一部分; 第3圖為第2圖所示之靜電吸盤沿線3_3所取之剖面 圖丨 22 200921838 了本發明之靜電吸盤流體 了本發明之靜電吸盤流體 了本發明之靜電吸盤流體 第4圖係一剖面圖,其說明 分佈元件的一實施例; 第5圖係一剖面圖,其說明 分佈元件的另一實施例; 弟6圖係一剖面圖,其說明 分佈元件的另一實施例; 第7圖係-剖面圖,其說明了本發明之靜電吸盤流體 分佈元件的又一實施例; 第8圖係一剖面圖,其說明了本發明之靜電吸盤流體 分佈元件的不同實施例; 第9圖係-剖面圖,其說明了本發明之靜電吸盤流體 分佈元件的不同實施例;以及 第10圖係一剖面圖,其說明了本發明之靜電吸盤流體 分佈元件的不同實施例。 I. 热知該領域技術之人士應了冑,上述實施例與說明之 圖式係用於描述本發明,然本發明並不限於圖式及其所 說明之實施例。應了解圖式以及對圖式之詳細說明並非 用,限制本發明為所揭露之特定型式;相對地,本發明 綠蓋了落於本發明如时請專利範圍所限定之精神與範 s的所有修飾例、等效例與替代例。此處所使用之標 β 於工織用、而非用於限制說明範疇或申請專利範 在本文t通篇所使用之用語「可」係表示允許的意 :音、即具有進行某動作的可能)而非表示強制(即,必須) 的意思。同樣的,用語「包括」、「包含」意指包括(但不 23 200921838 限於)。此外,如未特別說明,用語「一」是代表「至少 【主要元件符號說明】 36 基板處理系統 38處理室 40 真空系統 42來源電漿系統 44 偏壓電漿系統 46氣體傳送系統 48 遠端電漿清潔系統 50圓蓋 52 電漿處理區域 54基板 56 基板支撐件 5 8加熱板 60 冷卻板 62主體件 64 基部 68靜電吸盤 70 調解體 72多葉片調節閥 74 閘閥 7 6渦輪式幫浦 78 頂部線圈 80側線圈 82 頂部射頻(RF)來源產生器 84 侧射頻(RF)來源產生 器 86 射頻(RF)偏壓產生器 88〜90匹配網路 92氣體傳送線路 94氣環 96上喷嘴 100a~100e氣體源 104基板 92a 排氣線路 95插入/移除開口 98排氣口 102 靜電吸盤 1 06、1 08 氣體喷嘴 24 200921838 112、 112a 、 112b 閥 114 真空前導線路 120a〜120b流量控制器 132 系統控制器 134 處理器 136 記憶體 220 主體 222 流體分佈元件 224 介電層 228 支撐表面 230 多重孔洞 332 頂部 334 通道 336 氣室 338 導管 402 靜電吸盤 404A ^下通道 404B 上通道 406 壁架 408 頂部 410 通道 412 凸緣 414 線路 416 介電層 422 流體分佈元件 428 支撐表面 436 氣室 440 平板 442 電性管件 444 開口 446 第一端 448 第二端 450 孔洞 502 靜電吸盤 528 表面 534 通道 536 氣室 542 介電管 545 通道 548 第二端 556 階狀物 602 靜電吸盤 604 第二端 606 第一端 628 支撐表面 636 氣室 642 介電管 645 通道 25 200921838 656 凹口 702 靜電吸盤 720 主體 722 流體分佈元件 724 介電層 734 通道 740 平板 742 介電管 746 第一端 748 第二端 750 孔洞 760 介電端蓋 762 開口 802 靜電吸盤 820 主體 822 流體分佈元件 824 流體層 828 支撐表面 834 通道 836 氣室 840 平板 844 開口 845 通道 870 多孔性介電質區段 902 靜電吸盤 920 主體 922 流體分佈元件 928 支撐表面 936 氣室 940 平板 944 開口 980 介電栓 982 孔洞 1002 靜電吸盤 1020 主體 1022 流體分佈元件 1028 支撐表面 1034 通道 1036 氣室 1040 平板 1040Α、1040Β 環 1042 介電質蓋件 1044 開口 1082 孑L洞 1090 蓋件 26The porous dielectric segment 870 overlaps the opening 844. The porous dielectric segment 870 is a porous ceramic, such as alumina having a porosity between about 10% and 60% by volume, having a continuous channel formed through the porous dielectric segment 870. Interconnecting openings. The opening 844 forms a channel 845 with at least a portion of the porous dielectric section 870 for fluid to flow from the plenum 836 to the support surface 828 of the electrostatic chuck 8〇2. According to the description, the passage 845 has the advantage of lacking a direct line of sight path from the support surface 828 to the conductive plenum 836, thereby inhibiting the formation of plasma in the passage 845. Figure 9 illustrates a cross section of a portion of an electrostatic chuck 902 in accordance with another embodiment of the present invention. Electrostatic chuck 902 includes a fluid distribution element 922. The fluid distribution element 922 includes a plate 940 having an opening 944 and a dielectric plug 19 200921838 980. The plate 94 is coupled to a body 92, such that the channel 934 and the plate 94 are formed into a plenum 936. The flat plate 94 is assembled with the main body in the manner of the other embodiments of the present invention described above. The straight ribs of the dielectric plug are qualitatively matched to the diameter of the opening 944, and the dielectric plug 98 is located in the opening 1044 and is generally press-fitted therein. Dielectric layer 224 covers at least a portion of body 92'' and at least a portion of fluid distribution element 922, thereby defining a branch surface 928. A dielectric 224 series is sprayed onto the top surface i of the body 920 and the fluid distribution element 922 and ground to a desired thickness. Hole 982 forms a penetrating dielectric layer 924 and passes through dielectric plug 980. The holes 982 allow fluid to flow from the plenum to the support surface 928 of the electrostatic chuck 902. The beta milk system is formed using a variety of techniques, such as mechanical drilling, laser drilling, and the like. Hole 982 is formed to penetrate only the dielectric material. Therefore, any metal residue generated by the drilling process is not formed in the axial through hole 982. Because of the absence of these metal residues, the possibility of plasma formation or arcing in the holes 982 can be limited. Figure 10 illustrates a cross section of a portion of an electrostatic chuck 1002 in accordance with another embodiment of the present invention. The electrostatic chuck 1GG2 includes a fluid distribution 1 1022. The fluid distribution element 1 22 includes a flat plate 1 〇 4 〇 and a dielectric cover 1 〇 42. The plate 1040 includes two rings 1040A and ι 40 Β. The diameter of the circle H)4〇A is smaller than the diameter of the ring 1 〇. Each ring 1 与 and 1 坐落 are located on the ledge 4 〇 6 formed at the bottom of the upper channel 4_. The flat plate is connected to the main body to hold the flat plate: the upper channel side is covered by a dielectric cover (the ring is formed to form the air chamber 1 and is inserted in the upper channel 404B and is located on the flat plate 1〇4〇. ', 20 200921838 In another embodiment, the 'plate includes an inverted U-shaped cross section having a plurality of inverted recessed holes (e.g., flat plate 440 shown in Fig. 4). A circular shape (doughnut) having a cross-sectional shape similar to element 1042 The dielectric element is interposed in such a reverse recessed hole. The fluid distribution element 1 22 is coupled to the body 1020 such that the fluid distribution element i 22 forms a gas chamber 1036 with the channel 1034. The dielectric layer 224 covers at least A portion of the body 1020 and at least a portion of the fluid distribution element ι 22 thereby forming a support table Φ 1028. The dielectric layer 224 is sprayed onto the top surface of the body 1 20 and the fluid blade member 1022 and ground To a desired thickness, a hole 1082 is formed through the dielectric layer 224 and the dielectric cover 1 〇 9 〇. The hole 1082 is formed by various techniques, such as mechanical drilling, laser drilling, etc., such as the ninth Hole 1 as described in the embodiment of the figure The & 2 system is only penetrating through the dielectric material, and therefore, there is no metal residue in the holes 1 〇 82. In each of the foregoing embodiments, there may be a rare case where the fluid distribution element of the present invention is utilized. The electrostatic chuck can be damaged by plasma formation or arcing. However, the chuck can be easily repaired by various methods (or refreshing. Generally, destructive plasma formation or arcing occurs in dielectric components (tubes, porosity). Within or adjacent to the insert, etc.. Thus the dielectric layer can be removed locally (above the dielectric component) or removed as a whole (the entire chuck) to expose the dielectric component. Extraction can then be utilized (extracti〇 n) a tool to drill or pull the component to remove the component, and once removed, a new dielectric component can be inserted and the dielectric layer can be replaced partially or entirely as needed. In some embodiments, The dielectric component extends to the support surface of the chuck (as described above) and does not require removal of the dielectric layer prior to pumping. In these cases 21 200921838 'Destruction of the dielectric component Chuanbei 11 dry you are And divide, and insert ( The new "electrical component is in the opening in the plate. When it is close to the heat transfer fluid or in the formation of arc or plasma, it is flat compared to replacing an entire electrostatic chuck. In this way, the ancient warriors can repair the electrostatic chuck in a way that can be saved in a substantial way. The S-Ming system is based on the example of the Shenyue and Yue Dingyue, but it can be named after the basic concept. Inventive eve # AU J^S. t, other K examples of the month, and the scope thereof is defined by the scope of the patent application. [Simplified description of the drawings] By referring to the above embodiments and the description of the invention, DETAILED DESCRIPTION OF THE INVENTION The foregoing features of the invention are described in part in the accompanying drawings. It is to be understood that the drawings are merely illustrative of the exemplary embodiments of the invention and are not intended to Figure 1 illustrates a plasma substrate processing system including an electrostatic chuck having one of the fluid distribution elements as described in various embodiments of the present invention; and Figure 2 is a top view of the static 0 and the disk shown in Figure 1 2 is a partial cross-sectional perspective view illustrating a portion of the electrostatic chuck shown in FIG. 2; and FIG. 3 is a cross-sectional view of the electrostatic chuck shown in FIG. 2 taken along line 3_3 2009 22 200921838 Electrostatic chuck fluids The electrostatic chuck fluid of the present invention is a cross-sectional view of a fourth embodiment of the electrostatic chuck fluid of the present invention, which illustrates an embodiment of a distribution element. FIG. 5 is a cross-sectional view showing another implementation of the distribution element. Example 6 is a cross-sectional view illustrating another embodiment of a distribution element; FIG. 7 is a cross-sectional view illustrating still another embodiment of the electrostatic chuck fluid distribution element of the present invention; Sectional view illustrating various embodiments of the electrostatic chuck fluid distribution component of the present invention; FIG. 9 is a cross-sectional view illustrating various embodiments of the electrostatic chuck fluid distribution component of the present invention; and A Department sectional view illustrating the electrostatic chuck of the present invention, the fluid distribution element of different embodiments. The above description of the embodiments and the drawings is intended to describe the invention, but the invention is not limited to the drawings and the illustrated embodiments. The drawings and the detailed description of the drawings are not intended to limit the invention to the specific forms disclosed. Modifications, equivalents and alternatives. The term "beta" as used herein is used for the purpose of weaving, and is not intended to limit the scope of the description or the patent application. The term "may" used throughout this document refers to the meaning of permission: sound, that is, the possibility of performing an action. Rather than mean mandatory (ie, must). Similarly, the terms "including" and "comprising" are meant to include (but not 23 200921838). In addition, unless otherwise specified, the term "a" is used to mean "at least [main component symbol description] 36 substrate processing system 38 processing chamber 40 vacuum system 42 source plasma system 44 bias plasma system 46 gas delivery system 48 remote power Pulp cleaning system 50 dome 52 plasma processing area 54 substrate 56 substrate support 5 8 heating plate 60 cooling plate 62 body member 64 base 68 electrostatic chuck 70 mediation body 72 multi-blade regulating valve 74 gate valve 7 6 turbine pump 78 top Coil 80 side coil 82 top radio frequency (RF) source generator 84 side radio frequency (RF) source generator 86 radio frequency (RF) bias generator 88~90 matching network 92 gas transmission line 94 gas ring 96 upper nozzle 100a~100e Gas source 104 substrate 92a Exhaust line 95 insertion/removal opening 98 Exhaust port 102 Electrostatic chuck 1 06, 1 08 Gas nozzle 24 200921838 112, 112a, 112b Valve 114 Vacuum pilot line 120a~120b Flow controller 132 System controller 134 Processor 136 Memory 220 Body 222 Fluid Distribution Element 224 Dielectric Layer 228 Support Surface 230 Multiple Holes 332 Top 334 Channel 33 6 Air chamber 338 conduit 402 electrostatic chuck 404A ^ lower channel 404B upper channel 406 ledge 408 top 410 channel 412 flange 414 line 416 dielectric layer 422 fluid distribution element 428 support surface 436 gas chamber 440 plate 442 electrical tube 444 opening 446 First end 448 second end 450 hole 502 electrostatic chuck 528 surface 534 channel 536 gas chamber 542 dielectric tube 545 channel 548 second end 556 step 602 electrostatic chuck 604 second end 606 first end 628 support surface 636 gas chamber 642 Dielectric Tube 645 Channel 25 200921838 656 Notch 702 Electrostatic Suction Cup 720 Body 722 Fluid Distribution Element 724 Dielectric Layer 734 Channel 740 Plate 742 Dielectric Tube 746 First End 748 Second End 750 Hole 760 Dielectric End Cap 762 Opening 802 Electrostatic chuck 820 body 822 fluid distribution element 824 fluid layer 828 support surface 834 channel 836 gas chamber 840 plate 844 opening 845 channel 870 porous dielectric segment 902 electrostatic chuck 920 body 922 fluid distribution element 928 support surface 936 gas chamber 940 plate 944 opening 980 dielectric plug 982 hole 1002 electrostatic suction Body fluid distribution 1028 1020 1022 1034 channel supporting surface element 1036 plenum plate 1040 1040Α, 1040Β ring dielectric cover member 1042 opening 1082 1044 1090 larvae L hole cover member 26

Claims (1)

200921838 七、申請專利範圍: 括: -種用於刷新一靜電吸盤的至少一部分之方法, 包 自該靜電吸盤的一流體分配元件移 件;及 除一第一介電部 以一第二介電部件取代該第一介電 部件 2.如申請專利範圍第1 移除一介電層的至少 件;及 項所述之方法,更包括: 一部分,以暴露該第一介電部 在以該第二介電部件取代該 介電層的至少-新部分取代該 一部分。 第一介電部件之後,以該 麵移除之介電層的至少 3.200921838 VII. Patent application scope: - a method for refreshing at least a part of an electrostatic chuck, a fluid distribution component from the electrostatic chuck, and a second dielectric except a first dielectric portion Replacing the first dielectric member 2. The method of claim 1, wherein at least one of the dielectric layers is removed; and the method of the present invention further comprises: a portion to expose the first dielectric portion The second dielectric member replaces at least the new portion of the dielectric layer to replace the portion. After the first dielectric component, at least 3. of the dielectric layer removed by the face 如申請專利範圍第 第二介電部件係壓配 1 2項中你—項所述之方法,其中 至°亥&quot;丨L體分配元件的一開口中。 保一項所述之方法,其中 少其一包括一管件。 4·如申請專利範圍第丨_2項中 該第一或該第二介電部件的至 5.如申請專利範圍第ι_2 兮第一赤诗镇_ 彳壬一項所述之方法,其i μ第A該第二介電部件的 (Plug)。 ^其包括—多孔性米 27 200921838 6.如申請專利範圍第K2 該第一或該第二介電部、中任項所述之方法,其中 电#件的至小甘 ^ 主夕其―包括一陶瓷。 項所述之方法,其中該陶究包括 7.如_請專利範園第6 乳化銘 8.如申請專利範圍第 該移除步驟包括鑽除該第 2項申任—項所述 介電部件。 之方法,其令 2 9.如申請專利範圍第 取代之介電層。 項所述之方法,更包括研 磨該經 10. —種靜電吸盤,包括: 一主體,其包括一通道; 該通道 一千板,其包括-開口 ’該平板適於耦接至 以形成一氣室; 以自該氣室界定一流 一介電部件,置於該開口中, 體通道的至少一部分. &quot;電層’覆蓋該主體的至少—部分以及該平板的 至少-部分’以形成一基板支撐表面;及 、 /孔t生&quot;電層,覆蓋該介電部件以形成該流體通 道的一部分。 28 200921838 11.如申請專利範圍第10項所述之靜電吸盤,其中該主 體具傳導性。 ' 〆 12·如申請專利範圍第10項所述之靜電吸盤,其中該流 體通道不形成從該氣室至該基板支撐表面之一視線 (line-〇f_sight)路徑。 13. 如申凊專利範圍第1〇項所述之靜電吸盤,其中該介 電部件係一介電管,其包括一第一端、一第二端與一轴 向通孔,其中該介電管係置於該平版之一開口中。 14. 如申請專利範圍第13項所述之靜電吸盤,其中該介 電層覆蓋該介電管之第一端的至少一部分,且該轴向通 孔與該介電層的至少一部分形成該流體通道。 15. —種用於處理半導體基板之設備,包括: 一腔室’界定一處理區域;及 如申請專利範圍第10-14項中任一項所述之〆靜電 吸盤’用於固定一半導體基板於該處理區域中。 16· —種製作一靜電吸盤的方法,包括: 將一平板置於一主體中之一通道内,以形成一氣 室; 將一介電部件插入該平板中之一開口内,其中該介 29 200921838 電部件自該氣室界定一通道之一部分; /冗積一介電層覆蓋該主體的至少一部分與該平板 的至少一部分’以形成—支撐表面; 研磨該介電層至一特定厚度;及 形成一通過該介電層與該介電部件之開口,以界定 該支撐表面與該氣室間之一通道。 1 7·如申請專利範圍第丨6項所述之方法,其中沉積該介 電層的步驟更包括: 沉積該介電層於該介電部件上,其中鄰近該介電部 件之該介電層的至少—部分為多孔性;及 更包括研磨該介電層至—特定厚度,其中鄰近該介 電部件之該介電層的至少1分與該介f部件的1分 界定該支撐表面與該氣室間之一通道。For example, the second dielectric component of the patent application is a method according to the above-mentioned item, wherein the method is to an opening of the 亥L body distribution component. One of the methods described is one in which one tube is included. 4. The method of claim 1, wherein the first or the second dielectric component is in the patent application scope ι_2 兮 first Chishi town _ 彳壬 one of the methods, i μAth (Plug) of the second dielectric member. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A ceramic. The method of the present invention, wherein the ceramics includes 7. The method of removing the dielectric component of the second application is as follows: . The method of claim 2, such as the dielectric layer replaced by the patent application scope. The method of claim 1, further comprising: grinding the electrostatic chuck of the tenth, comprising: a body comprising a channel; the channel of one thousand plates comprising an opening - the plate is adapted to be coupled to form a gas chamber Defining a first-class dielectric component from the gas chamber, disposed in the opening, at least a portion of the body passage. The "electric layer" covers at least a portion of the body and at least a portion of the plate to form a substrate support a surface; and/or an electric layer covering the dielectric member to form a portion of the fluid passage. The electrostatic chuck of claim 10, wherein the body is conductive. The electrostatic chuck of claim 10, wherein the fluid passage does not form a line-〇f_sight path from the plenum to the support surface of the substrate. 13. The electrostatic chuck of claim 1, wherein the dielectric component is a dielectric tube comprising a first end, a second end and an axial through hole, wherein the dielectric A tubing is placed in one of the openings of the lithographic plate. 14. The electrostatic chuck of claim 13, wherein the dielectric layer covers at least a portion of the first end of the dielectric tube, and the axial through hole forms the fluid with at least a portion of the dielectric layer aisle. 15. A device for processing a semiconductor substrate, comprising: a chamber defining a processing region; and the electrostatic chuck of any one of claims 10-14 for fixing a semiconductor substrate In the processing area. 16) A method of making an electrostatic chuck, comprising: placing a flat plate in a passage in a body to form a gas chamber; inserting a dielectric member into one of the openings in the flat plate, wherein the medium 29 200921838 An electrical component defining a portion of a channel from the plenum; a redundant dielectric layer covering at least a portion of the body and at least a portion of the slab to form a support surface; grinding the dielectric layer to a particular thickness; and forming An opening through the dielectric layer and the dielectric member defines a passage between the support surface and the plenum. The method of claim 6, wherein the depositing the dielectric layer further comprises: depositing the dielectric layer on the dielectric member, wherein the dielectric layer is adjacent to the dielectric member At least - partially porous; and further comprising grinding the dielectric layer to a specific thickness, wherein at least 1 minute of the dielectric layer adjacent to the dielectric member and 1 point of the dielectric member define the support surface and One passage between the air chambers. 以.如申請專利範圍第16_17項中任一項所述之方法,其 ㈣介電部件包括-介電管,其包m 端、以及一連接該第一端鱼 一 '、&quot;X第一々而之軸向通孔; 將一端蓋置於該通道内 ^ 人 、巧,其中該介電管的第二端延 伸於該介電端蓋内並與其隔 隙與該通孔形成該m道。 y °亥間 19·如申請專利範圍第16-17 中該介電部件包括一介電管 項中任一項所述之方法,其 其包括一第一端、—_ —* 30 200921838 端、以及一連接該第—端與嗦 將該介電管置於該開口二,一端之軸向通孔;以及 一端的至少一部分, 並以該介電層覆蓋該第 I -争由 s 一部分形成該通道。 11、孔與該介電層的至少 20·如申請專利範圍第16〈 中該介電部件包括項所述之方法,其 端、以及-連接該第-端與該第:端之::端、一第二 中該形成步驟包括研磨該介電# »通孔’且其 通孔暴露於該支撐表面為止/ 到该介電管之軸向 21.如中請專利_第16_17項巾任1 中該介電部件包括-介電管,其包括—第一端、第/、 端、以及一連接該第一端與該 :二第二 响之軸向通孔,且立 中鄰近該介電管的第_端之該介電層的至少―部分為^ 孔性。 22 ·如申請專利範圍第16_ i 7項中住— _ A 項所述之方法,兑 中該介電邛件包括一介電管,其包括— 山 八 乐 '一 、一第一 端、以及一連接該第—端與該第二 一 味之軸向通孔,且其 中該介電官的第二端接觸該通道之一底部。 、 —項所述之方法,其 23.如申請專利範圍第16-17 中該主體具傳導性。 31 200921838 24. 如申請專利範圍第16-17項中任一項所述之方法,其 中該介電部件或該介電層至少其一包括氧化銘。 25. 如申請專利範圍第16項所述之方法,其中該形成步 驟包括鑽出一通過該介電層至該介電部件之孔洞。 32The method of any one of the preceding claims, wherein the (IV) dielectric component comprises a dielectric tube, the m end of the package, and a first end of the fish, a &quot;X first An axial through hole is formed in the channel; the second end of the dielectric tube extends in the dielectric end cover and forms a gap with the through hole and the through hole . The method of any one of the dielectric articles, comprising a first end, -_ - * 30 200921838, And an axial through hole connecting the dielectric tube to the opening 2 at one end; and at least a portion of one end, and covering the first portion with the dielectric layer to form the portion aisle. 11. The hole and the dielectric layer are at least 20. The method of claim 16, wherein the dielectric member comprises the method of the item, the terminal, and the - terminal and the :: The second forming step includes: grinding the dielectric #»through hole and exposing the through hole to the support surface/to the axial direction of the dielectric tube. 21. Patent _16_17 item 1 The dielectric component includes a dielectric tube including a first end, a / end, and an axial through hole connecting the first end and the second second ring, and the medium is adjacent to the dielectric At least a portion of the dielectric layer at the _ end of the tube is porous. 22. The method of claim 16, wherein the dielectric component comprises a dielectric tube, comprising: a mountain, a first end, and a first end, and An axial through hole connecting the first end and the second one, and wherein the second end of the dielectric contacts the bottom of one of the channels. The method of claim 7, wherein the body is conductive as in the scope of claims 16-17. The method of any one of claims 16-17, wherein at least one of the dielectric member or the dielectric layer comprises an oxide. 25. The method of claim 16, wherein the forming step comprises drilling a hole through the dielectric layer to the dielectric member. 32
TW097128899A 2007-07-31 2008-07-30 Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing TWI399824B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/888,311 US7848076B2 (en) 2007-07-31 2007-07-31 Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing
US11/888,327 US8108981B2 (en) 2007-07-31 2007-07-31 Method of making an electrostatic chuck with reduced plasma penetration and arcing
US11/888,341 US9202736B2 (en) 2007-07-31 2007-07-31 Method for refurbishing an electrostatic chuck with reduced plasma penetration and arcing

Publications (2)

Publication Number Publication Date
TW200921838A true TW200921838A (en) 2009-05-16
TWI399824B TWI399824B (en) 2013-06-21

Family

ID=40380622

Family Applications (2)

Application Number Title Priority Date Filing Date
TW101139316A TWI479597B (en) 2007-07-31 2008-07-30 Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing
TW097128899A TWI399824B (en) 2007-07-31 2008-07-30 Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW101139316A TWI479597B (en) 2007-07-31 2008-07-30 Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing

Country Status (4)

Country Link
JP (1) JP5140516B2 (en)
KR (1) KR101125885B1 (en)
SG (1) SG149791A1 (en)
TW (2) TWI479597B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728429B2 (en) 2010-07-27 2017-08-08 Lam Research Corporation Parasitic plasma prevention in plasma processing chambers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8336891B2 (en) * 2008-03-11 2012-12-25 Ngk Insulators, Ltd. Electrostatic chuck
JP5984504B2 (en) * 2012-05-21 2016-09-06 新光電気工業株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck
US10784139B2 (en) * 2016-12-16 2020-09-22 Applied Materials, Inc. Rotatable electrostatic chuck having backside gas supply
US11456161B2 (en) * 2018-06-04 2022-09-27 Applied Materials, Inc. Substrate support pedestal
JP7269759B2 (en) * 2019-03-12 2023-05-09 新光電気工業株式会社 Substrate fixing device
CN112908919A (en) * 2019-12-04 2021-06-04 中微半导体设备(上海)股份有限公司 Electrostatic chuck device and plasma processing device comprising same
KR20240023224A (en) * 2022-08-12 2024-02-20 엔지케이 인슐레이터 엘티디 Materials for semiconductor manufacturing equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2106325A (en) * 1981-09-14 1983-04-07 Philips Electronic Associated Electrostatic chuck
US5792562A (en) * 1995-01-12 1998-08-11 Applied Materials, Inc. Electrostatic chuck with polymeric impregnation and method of making
US5644467A (en) * 1995-09-28 1997-07-01 Applied Materials, Inc. Method and structure for improving gas breakdown resistance and reducing the potential of arcing in a electrostatic chuck
US6108189A (en) * 1996-04-26 2000-08-22 Applied Materials, Inc. Electrostatic chuck having improved gas conduits
US5720818A (en) * 1996-04-26 1998-02-24 Applied Materials, Inc. Conduits for flow of heat transfer fluid to the surface of an electrostatic chuck
EP0803900A3 (en) * 1996-04-26 1999-12-29 Applied Materials, Inc. Surface preparation to enhance the adhesion of a dielectric layer
US6263829B1 (en) * 1999-01-22 2001-07-24 Applied Materials, Inc. Process chamber having improved gas distributor and method of manufacture
US6500299B1 (en) * 1999-07-22 2002-12-31 Applied Materials Inc. Chamber having improved gas feed-through and method
JP3482949B2 (en) * 2000-08-04 2004-01-06 松下電器産業株式会社 Plasma processing method and apparatus
US6581275B2 (en) * 2001-01-22 2003-06-24 Applied Materials Inc. Fabricating an electrostatic chuck having plasma resistant gas conduits
TW502368B (en) * 2001-11-06 2002-09-11 Duratek Inc Electrostatic chuck and method for manufacturing the same
JP2004158751A (en) * 2002-11-08 2004-06-03 Matsushita Electric Ind Co Ltd Plasma processing apparatus
JP4421874B2 (en) * 2003-10-31 2010-02-24 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP4364667B2 (en) * 2004-02-13 2009-11-18 東京エレクトロン株式会社 Thermal spray member, electrode, and plasma processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728429B2 (en) 2010-07-27 2017-08-08 Lam Research Corporation Parasitic plasma prevention in plasma processing chambers
TWI662864B (en) * 2010-07-27 2019-06-11 美商蘭姆研究公司 Plasma processing chambers,substrate support and method of manufacturing the same

Also Published As

Publication number Publication date
KR20090013052A (en) 2009-02-04
JP2009065133A (en) 2009-03-26
TWI399824B (en) 2013-06-21
JP5140516B2 (en) 2013-02-06
TW201314834A (en) 2013-04-01
TWI479597B (en) 2015-04-01
SG149791A1 (en) 2009-02-27
KR101125885B1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
TW200921838A (en) Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing
US8108981B2 (en) Method of making an electrostatic chuck with reduced plasma penetration and arcing
US9202736B2 (en) Method for refurbishing an electrostatic chuck with reduced plasma penetration and arcing
US6478924B1 (en) Plasma chamber support having dual electrodes
KR200491576Y1 (en) Process kit components for use with an extended and independent rf powered cathode substrate for extreme edge tunability
KR101025232B1 (en) Electrostatic chuck having reduced arcing
US20090034147A1 (en) Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing
US11049755B2 (en) Semiconductor substrate supports with embedded RF shield
KR101466588B1 (en) Low profile process kit
US9779975B2 (en) Electrostatic carrier for thin substrate handling
TW200931508A (en) Shower plate electrode for plasma CVD reactor
TWI729495B (en) High temperature rf heater pedestals
JP2021520639A (en) Carbon hardmasks and related methods for patterning applications
JP2021511663A (en) Process kit for board support
WO2002073654A1 (en) Plasma chamber support having dual electrodes
US20040261714A1 (en) Plasma processing apparatus
CN110622282B (en) Deposition of metal silicide layers on substrates and chamber components
JP3917508B2 (en) Plasma deposition system
TWI779546B (en) Semiconductor substrate support with internal channels
TW202232571A (en) Plasma source with ceramic electrode plate
CN116325106A (en) Semiconductor substrate support power transmission component
TW202225451A (en) Systems and methods of seasoning electrostatic chucks with dielectric seasoning films
CN100373549C (en) Plasma doping apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees