TW201301380A - Wafer treatment method and fabricating method of MOS transistor - Google Patents

Wafer treatment method and fabricating method of MOS transistor Download PDF

Info

Publication number
TW201301380A
TW201301380A TW100122247A TW100122247A TW201301380A TW 201301380 A TW201301380 A TW 201301380A TW 100122247 A TW100122247 A TW 100122247A TW 100122247 A TW100122247 A TW 100122247A TW 201301380 A TW201301380 A TW 201301380A
Authority
TW
Taiwan
Prior art keywords
oxide layer
substrate
mos transistor
etching process
layer
Prior art date
Application number
TW100122247A
Other languages
Chinese (zh)
Inventor
Ruei-Hao Huang
Jung-Ching Chen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW100122247A priority Critical patent/TW201301380A/en
Publication of TW201301380A publication Critical patent/TW201301380A/en

Links

Abstract

A wafer treatment method is provided including the followings. A wafer is provided, wherein the wafer includes a substrate, a first oxide layer located on a front side of the substrate and a second oxide layer located on a back side of the substrate. An etching process is performed to entirely remove the first oxide layer. A fabricating method of a MOS transistor applying the wafer treatment method is also provided.

Description

晶圓的處理方法以及MOS電晶體的製作方法Wafer processing method and MOS transistor manufacturing method

本發明係關於一種晶圓的處理方法以及MOS電晶體的製作方法,特別係關於一種僅移除晶圓或MOS電晶體正面之氧化層的晶圓的處理方法以及MOS電晶體的製作方法。The present invention relates to a method of processing a wafer and a method of fabricating the MOS transistor, and more particularly to a method of processing a wafer that removes only an oxide layer on the front side of a wafer or MOS transistor, and a method of fabricating the MOS transistor.

習知的半導體製程,會搭配在晶圓的背面形成一層氮化矽層,用以防止摻雜於晶圓中的成分於製程中由晶圓背面釋放出,而造成製程環境的污染,影響製程良率。The conventional semiconductor process is formed with a layer of tantalum nitride on the back side of the wafer to prevent the components doped in the wafer from being released from the back side of the wafer during the process, thereby causing contamination of the process environment and affecting the process. Yield.

然而,氮化矽層雖能避免摻雜於晶圓中的成分釋放出,且能防止晶圓背面被蝕刻,但由於氮化矽與矽質晶圓晶格大小及排列上的差異,氮化矽的形成會對於矽晶圓產生殘留之熱應力與內應力,造成晶圓彎曲以致表面不平坦,因而使得後續黃光製程無法對準、晶圓邊緣良率下降,以及衍生其他製程中的問題,而導致形成之半導體元件的各種缺陷。However, the tantalum nitride layer can prevent the components doped in the wafer from being released, and can prevent the back side of the wafer from being etched, but the nitridation due to the difference in lattice size and arrangement between the tantalum nitride and the tantalum wafer. The formation of germanium will cause residual thermal stress and internal stress on the germanium wafer, causing the wafer to bend so that the surface is not flat, thus making the subsequent yellow light process impossible to align, the wafer edge yield is lowered, and problems in other processes are derived. , resulting in various defects in the formed semiconductor components.

本發明提出一種晶圓的處理方法以及MOS電晶體的製作方法,用以解決上述問題。The invention provides a method for processing a wafer and a method for fabricating the MOS transistor to solve the above problems.

本發明提供一種晶圓的處理方法。首先,提供一晶圓,包含一基底、一第一氧化層位於基底的一正面以及一第二氧化層位於基底的一背面。接著,進行一蝕刻製程,以全面移除第一氧化層。The present invention provides a method of processing a wafer. First, a wafer is provided, including a substrate, a first oxide layer on a front side of the substrate, and a second oxide layer on a back side of the substrate. Next, an etching process is performed to completely remove the first oxide layer.

本發明提供一種MOS電晶體的製作方法。首先,提供一基底。接著,進行一磊晶製程,於基底的一正面上形成一磊晶層。然後,進行一氧化製程,於磊晶層上以及基底的一背面分別形成一氧化層。而後,形成一摻雜區域於磊晶層中。其後,進行一蝕刻製程,移除磊晶層表面的氧化層。The invention provides a method for fabricating a MOS transistor. First, a substrate is provided. Next, an epitaxial process is performed to form an epitaxial layer on a front side of the substrate. Then, an oxidation process is performed to form an oxide layer on the epitaxial layer and a back surface of the substrate, respectively. Then, a doped region is formed in the epitaxial layer. Thereafter, an etching process is performed to remove the oxide layer on the surface of the epitaxial layer.

基於上述,本發明提供一種晶圓的處理方法以及MOS電晶體的製作方法,只單獨蝕刻晶圓正面之氧化層,而保留晶圓背面之氧化層。如此一來,可使背面之氧化層作為一阻擋層,用以取代習知之氮化層而阻擋晶圓中之摻雜雜質外洩。並且,以此氧化層為阻擋層,就不會產生習知晶圓因應力而產生之扭曲的問題。Based on the above, the present invention provides a method of processing a wafer and a method of fabricating the MOS transistor, which only etch the oxide layer on the front side of the wafer and retain the oxide layer on the back side of the wafer. In this way, the oxide layer on the back side can be used as a barrier layer to replace the conventional nitride layer to block the leakage of dopant impurities in the wafer. Moreover, with this oxide layer as a barrier layer, there is no problem that the conventional wafer is distorted due to stress.

第1-9圖為依據本發明一較佳實施例之晶圓的處理方法的剖面示意圖。請參閱第1-9圖。如第1圖所示,首先,提供一晶圓100,其中晶圓100包含一基底110、一第一氧化層120以及一第二氧化層130。第一氧化層120位於基底110的一正面S1,第二氧化層130位於基底110的一背面S2。一般而言,基底110可為一矽基底、一含矽基底以及一矽覆絕緣基底等。第一氧化層120以及第二氧化層130可例如為一基底110的原生氧化層,或者係以氧化製程所形成之氧化層。1-9 are cross-sectional views showing a method of processing a wafer in accordance with a preferred embodiment of the present invention. Please refer to Figure 1-9. As shown in FIG. 1 , first, a wafer 100 is provided. The wafer 100 includes a substrate 110 , a first oxide layer 120 , and a second oxide layer 130 . The first oxide layer 120 is located on a front surface S1 of the substrate 110, and the second oxide layer 130 is located on a back surface S2 of the substrate 110. In general, the substrate 110 can be a germanium substrate, a germanium-containing substrate, a germanium insulating substrate, and the like. The first oxide layer 120 and the second oxide layer 130 may be, for example, a native oxide layer of the substrate 110 or an oxide layer formed by an oxidation process.

如第2圖所示,進行一蝕刻製程P1,以全面移除第一氧化層120。在此強調,本發明僅移除第一氧化層120,並留下第二氧化層130,而不採用將整批之晶圓100直接浸泡於濕式化學設備(wet bench)的方式進行濕蝕刻製程,例如緩衝氧化物蝕刻(Buffered oxide etch,BOE)製程,這會導致同時蝕除第一氧化層120以及第二氧化層130的結果。詳細來說,由於基底110一般摻雜有銻元素等雜質,如蝕刻掉背面S2之第二氧化層130,則會造成基底110中之雜質外洩,污染製程環境。但如習知再形成一氮化層(未繪示),例如氮化矽層,於基底110的背面S2,以進一步阻擋雜質外洩,此氮化層由於與基底110材質之差異,亦會對於基底110產生應力而導致晶圓100扭曲。一旦晶圓100扭曲,就會對於後續一連串之半導體製程造成負面影響,例如黃光對不準、平坦度不佳、邊緣良率下降及缺陷等問題。因此,本發明係以單獨蝕刻第一氧化層120,而留下第二氧化層130的方式,即可使不具應力之第二氧化層130取代氮化層(未繪示)的阻擋雜質功能。如此,不僅可防止基底110中之雜質外洩,亦可防止晶圓100扭曲。並且,還可減少形成氮化層的步驟,簡化製程。As shown in FIG. 2, an etching process P1 is performed to completely remove the first oxide layer 120. It is emphasized herein that the present invention removes only the first oxide layer 120 and leaves the second oxide layer 130 without wet etching by immersing the entire wafer 100 directly in the wet bench. The process, such as a Buffered Oxide Etched (BOE) process, results in simultaneous etching of the first oxide layer 120 and the second oxide layer 130. In detail, since the substrate 110 is generally doped with impurities such as germanium or the like, such as etching away the second oxide layer 130 on the back surface S2, impurities in the substrate 110 are leaked, which pollutes the process environment. However, a nitride layer (not shown), such as a tantalum nitride layer, is formed on the back surface S2 of the substrate 110 to further block the leakage of impurities. The nitride layer may also be different from the material of the substrate 110. Stress is generated on the substrate 110 causing the wafer 100 to be distorted. Once the wafer 100 is distorted, it will have a negative impact on subsequent series of semiconductor processes, such as yellow light misalignment, poor flatness, edge yield degradation and defects. Therefore, in the present invention, the first oxide layer 120 is etched separately, and the second oxide layer 130 is left, so that the non-stressed second oxide layer 130 can replace the barrier function of the nitride layer (not shown). In this way, not only the impurities in the substrate 110 can be prevented from leaking, but also the wafer 100 can be prevented from being twisted. Moreover, the step of forming a nitride layer can be reduced, and the process can be simplified.

在本實施例中,蝕刻製程P1為一次僅蝕刻單一晶圓的蝕刻製程,且此蝕刻製程P1可為動態旋轉(dynamic spin)蝕刻製程。例如,可將晶圓110放於一基座(未繪示)上,而後將蝕刻液滴至晶圓110的正面,並以旋轉晶圓110的方式,全面蝕除第一氧化層120,當然,本發明不以此為限。In the present embodiment, the etching process P1 is an etching process in which only a single wafer is etched at a time, and the etching process P1 may be a dynamic spin etching process. For example, the wafer 110 can be placed on a pedestal (not shown), and then the etched droplets are etched onto the front side of the wafer 110, and the first oxide layer 120 is completely etched away by rotating the wafer 110. The invention is not limited thereto.

再者,一般而言,第一氧化層120以及第二氧化層130的厚度皆大於2000埃(angstrom)。在本實施例中,第一氧化層120的厚度為3500埃,而第二氧化層130的厚度為2000埃。以蝕刻製程P1為濕蝕刻製程為例,為有效蝕除此厚度之氧化層,其蝕刻液可以含氫氟酸的蝕刻液蝕刻第一氧化層120。特別是,此氫氟酸的濃度為49%,大於習知之稀釋的氫氟酸的濃度,如此可有效地蝕除第一氧化層120。在本發明之一實施例中,可應用SEZ機台進行蝕刻製程,但亦可為其他可單獨蝕刻第一氧化層120的機台,本發明不以此為限。再者,在進行蝕刻製程P1之後,可再進行一清洗製程(未繪示),以清洗基底110的正面S1,其中清洗製程例如以含臭氧離子水之清洗液清洗,但不限於此。Furthermore, in general, the thickness of the first oxide layer 120 and the second oxide layer 130 are both greater than 2000 angstroms. In the present embodiment, the first oxide layer 120 has a thickness of 3,500 angstroms and the second oxide layer 130 has a thickness of 2,000 angstroms. Taking the etching process P1 as a wet etching process as an example, in order to effectively etch the oxide layer of this thickness, the etching liquid may etch the first oxide layer 120 with an etching solution containing hydrofluoric acid. In particular, the concentration of the hydrofluoric acid is 49%, which is greater than the concentration of the conventionally diluted hydrofluoric acid, so that the first oxide layer 120 can be effectively etched away. In an embodiment of the present invention, the SEZ machine can be used for the etching process, but it can also be another machine that can etch the first oxide layer 120 separately, and the invention is not limited thereto. Furthermore, after the etching process P1 is performed, a cleaning process (not shown) may be further performed to clean the front surface S1 of the substrate 110, wherein the cleaning process is washed, for example, with a cleaning liquid containing ozone ionized water, but is not limited thereto.

接著,如第3圖所示,在進行蝕刻製程P1之後,可選擇性地進行一磊晶製程P2,以形成一磊晶層140於基底110之正面S1。磊晶製程P2例如為一N型矽磊晶製程、一P型矽磊晶製程、一矽鍺磊晶製程或一矽碳磊晶製程等,其視實際需形成之半導體元件特性而定。在本實施例中,係於N型基底上形成N型矽磊晶。Next, as shown in FIG. 3, after the etching process P1 is performed, an epitaxial process P2 may be selectively performed to form an epitaxial layer 140 on the front surface S1 of the substrate 110. The epitaxial process P2 is, for example, an N-type germanium epitaxial process, a P-type germanium epitaxial process, a germanium epitaxial process, or a carbon epitaxial process, depending on the characteristics of the semiconductor component to be formed. In this embodiment, N-type germanium epitaxy is formed on the N-type substrate.

如第4圖所示,可再進行氧化製程P3,以分別於基底110之正面S1形成一氧化層150,以及基底110之背面S2形成一氧化層160,其中氧化層160包含第二氧化層130以及在此次氧化製程P3所形成之氧化層162,換言之,進行氧化製程P3,可使背面S2的第二氧化層130增厚。如此一來,在進行氧化製程P3形成氧化層150的同時,亦可於下層形成更厚之氧化層160,而進一步加強防止晶圓110背面之雜質洩出的功能。氧化製程P3例如為快速熱氧化製程、原位水汽生成(ISSG)氧化製程等氧化製程,其同時在基底110之正面S1及背面S2形成氧化層。此外,只在基底110之正面S1形成氧化層之氧化製程亦屬本發明之範圍。因為本發明之蝕刻製程P1僅蝕刻掉正面S1之氧化層,故即使在後續的氧化製程P3中不會增後背面之氧化層,亦可達到本發明之功效。As shown in FIG. 4, an oxidation process P3 may be further performed to form an oxide layer 150 on the front surface S1 of the substrate 110, and an oxide layer 160 on the back surface S2 of the substrate 110, wherein the oxide layer 160 includes the second oxide layer 130. And the oxide layer 162 formed in the oxidation process P3, in other words, the oxidation process P3, can thicken the second oxide layer 130 on the back surface S2. As a result, the oxide layer 150 is formed by the oxidation process P3, and the thicker oxide layer 160 can be formed in the lower layer, thereby further enhancing the function of preventing the impurities on the back surface of the wafer 110 from leaking out. The oxidation process P3 is, for example, an oxidation process such as a rapid thermal oxidation process or an in situ water vapor generation (ISSG) oxidation process, which simultaneously forms an oxide layer on the front surface S1 and the back surface S2 of the substrate 110. Further, an oxidation process in which an oxide layer is formed only on the front surface S1 of the substrate 110 is also within the scope of the present invention. Since the etching process P1 of the present invention etches only the oxide layer of the front surface S1, the effect of the present invention can be attained even if the oxide layer of the back surface is not increased in the subsequent oxidation process P3.

如第5圖所示,在進行氧化製程P3後,再進行蝕刻製程P4,以去除正面S1的至少部分之氧化層150,例如可全面去除氧化層150或者圖案化氧化層150。以圖案化氧化層150為例,可例如以蝕刻微影的方式,先形成一光阻層Q於氧化層150上,接著圖案化光阻層Q,並將光阻層Q之圖案轉移至氧化層150上。As shown in FIG. 5, after the oxidation process P3 is performed, an etching process P4 is performed to remove at least a portion of the oxide layer 150 of the front surface S1, for example, the oxide layer 150 or the patterned oxide layer 150 may be completely removed. Taking the patterned oxide layer 150 as an example, a photoresist layer Q may be first formed on the oxide layer 150 by etching lithography, then the photoresist layer Q is patterned, and the pattern of the photoresist layer Q is transferred to oxidation. On layer 150.

在去除光阻層Q之後,如第6圖所示,以圖案化之氧化層150為遮罩,進行一離子佈植製程P5,以於磊晶層140中形成摻雜區域A。在此說明,可藉由改變氧化層150之圖案密度,或者利用半調式光罩(half tone mask)僅蝕刻上半部之氧化層150而留下較薄之氧化層150的方式,來調整離子佈植製程P5摻雜於磊晶層140中之雜質濃度、分佈及雜質的均勻性等,而改善電性品質。如此一來,則藉由第5-6圖之步驟,即可於磊晶層140中形成摻雜區域A。After the photoresist layer Q is removed, as shown in FIG. 6, an ion implantation process P5 is performed with the patterned oxide layer 150 as a mask to form a doping region A in the epitaxial layer 140. Herein, the ion can be adjusted by changing the pattern density of the oxide layer 150 or by etching only the upper half of the oxide layer 150 by using a half tone mask to leave a thin oxide layer 150. The implantation process P5 is doped with the impurity concentration, distribution, and uniformity of impurities in the epitaxial layer 140 to improve electrical quality. In this way, the doping region A can be formed in the epitaxial layer 140 by the steps of FIGS. 5-6.

如第7圖所示,進行一蝕刻製程P6,以移除磊晶層140表面剩餘的氧化層150。當然,蝕刻製程P6係與蝕刻製程P1相同,僅蝕刻磊晶層140上之氧化層150,而不蝕刻基底110之背面S2的氧化層160。As shown in FIG. 7, an etching process P6 is performed to remove the remaining oxide layer 150 on the surface of the epitaxial layer 140. Of course, the etching process P6 is the same as the etching process P1, and only the oxide layer 150 on the epitaxial layer 140 is etched without etching the oxide layer 160 on the back surface S2 of the substrate 110.

另外,由於每次進行之離子佈植製程P5所能摻雜於磊晶層140中之深度有限,故如欲形成例如超界面(super-junction)MOS電晶體、高壓半導體元件等,其需更厚之摻雜區域A時,可重複再進行第3-7圖的步驟。舉例而言,如第8圖所示,在去除氧化層150之後,再進行一磊晶製程P7於磊晶層140上,以形成一磊晶層170。換言之,逐步增厚磊晶層的厚度。接著,再依序進行上述之氧化製程、圖案化製程、離子佈植製程等,以在磊晶層170中形成摻雜區域(未繪示),其為摻雜區域A在磊晶層170中之延續。以此,可形成更厚之磊晶層與摻雜區域A。當然,可視實際需求再重複進行上述製程,例如5-8次。如此一來,即可形成如第9圖所示之結構。如圖所示,磊晶層180具有厚度h,且具有摻雜區域B貫穿於其中。並且,背面S2之氧化層160亦同時在進行複數次氧化製程時增厚,不受該等去除正面S1氧化層150之蝕刻製程的影響。In addition, since the depth of the ion implantation process P5 that can be doped into the epitaxial layer 140 is limited, it is necessary to form, for example, a super-junction MOS transistor, a high voltage semiconductor device, or the like. In the case of the thick doped region A, the steps of Figs. 3-7 can be repeated. For example, as shown in FIG. 8, after the oxide layer 150 is removed, an epitaxial process P7 is performed on the epitaxial layer 140 to form an epitaxial layer 170. In other words, the thickness of the epitaxial layer is gradually increased. Then, the above oxidation process, patterning process, ion implantation process, and the like are sequentially performed to form a doped region (not shown) in the epitaxial layer 170, which is the doped region A in the epitaxial layer 170. Continuation. Thereby, a thicker epitaxial layer and a doped region A can be formed. Of course, the above process can be repeated according to actual needs, for example, 5-8 times. In this way, the structure as shown in Fig. 9 can be formed. As shown, the epitaxial layer 180 has a thickness h and has a doped region B therethrough. Moreover, the oxide layer 160 on the back surface S2 is also thickened at the same time during the plurality of oxidation processes, and is not affected by the etching process for removing the front surface S1 oxide layer 150.

最後,配合產品特性與實際製程需要,可選擇性一次移除氧化層160,以進一步形成所欲形成之半導體元件之其他部分。例如以形成超界面MOS電晶體為例,可如第10圖所示,第10圖為依據本發明一較佳實施例之超界面MOS電晶體的剖面示意圖。在形成上述之摻雜區域B之後,於磊晶層180上依序形成一介電層(未繪示)以及一電極層(未繪示)並將其圖案化以形成至少一閘極介電層192及至少一閘極電極層194,分別位於各閘極介電層192上。接著,再例如進行離子佈植製程以形成至少一源極區212,如此以與摻雜區域B外之磊晶層214形成一源/汲極對210。而後,可再形成側壁子、形成層間介電層、進行金屬內連線製程等。之後,在完成正面S1之連線製程之後,移除背面S2之氧化層160以暴露出基底110。接著,形成一汲極金屬220於基底110的背面S2。如此一來,即可完成MOS電晶體之製作。在一實施例中,源/汲極對210具有一第一導電型,例如N型,而摻雜區域B具有一第二導電型,例如P型。如此,摻雜區域B可作為分隔區。Finally, the oxide layer 160 can be selectively removed at a time to further form other portions of the semiconductor component to be formed, in conjunction with product characteristics and actual process requirements. For example, in the case of forming a super-interface MOS transistor, as shown in FIG. 10, FIG. 10 is a schematic cross-sectional view of a super-interface MOS transistor according to a preferred embodiment of the present invention. After forming the doped region B, a dielectric layer (not shown) and an electrode layer (not shown) are sequentially formed on the epitaxial layer 180 and patterned to form at least one gate dielectric. Layer 192 and at least one gate electrode layer 194 are respectively disposed on each of the gate dielectric layers 192. Then, an ion implantation process is performed, for example, to form at least one source region 212, such that a source/drain pair 210 is formed with the epitaxial layer 214 outside the doped region B. Then, a sidewall spacer, an interlayer dielectric layer, a metal interconnect process, and the like can be formed. Thereafter, after the wiring process of the front surface S1 is completed, the oxide layer 160 of the back surface S2 is removed to expose the substrate 110. Next, a drain metal 220 is formed on the back surface S2 of the substrate 110. In this way, the fabrication of the MOS transistor can be completed. In one embodiment, the source/drain pair 210 has a first conductivity type, such as an N-type, and the doped region B has a second conductivity type, such as a P-type. As such, the doped region B can serve as a separation region.

綜上所述,本發明提供一種晶圓的處理方法以及MOS電晶體的製作方法,只單獨蝕刻晶圓正面之氧化層,而保留晶圓背面之氧化層。如此一來,可使背面逐次形成之氧化層作為一阻擋層,用以取代習知之氮化層阻擋晶圓中之摻雜雜質外洩。並且,此氧化層為阻擋層,不會產生習知晶圓因應力而產生之扭曲的問題,進而防止於晶圓上所形成之MOS電晶體等半導體元件,產生如習知製程之對不準、晶圓邊緣良率下降或缺陷等問題。In summary, the present invention provides a method for processing a wafer and a method for fabricating the MOS transistor, which only etch the oxide layer on the front side of the wafer and retain the oxide layer on the back side of the wafer. In this way, the oxide layer formed successively on the back side can be used as a barrier layer to replace the leakage of doping impurities in the wafer by the conventional nitride layer. Moreover, the oxide layer is a barrier layer, and does not cause the problem of distortion of the conventional wafer due to stress, thereby preventing semiconductor elements such as MOS transistors formed on the wafer from being misaligned, such as conventional processes. Problems such as falling edge yield or defects.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100...晶圓100. . . Wafer

110...基底110. . . Base

120...第一氧化層120. . . First oxide layer

130...第二氧化層130. . . Second oxide layer

140、170、180、214...磊晶層140, 170, 180, 214. . . Epitaxial layer

150、160、162...氧化層150, 160, 162. . . Oxide layer

190...源/汲極區190. . . Source/bungee area

192...閘極介電層192. . . Gate dielectric layer

194...閘極電極層194. . . Gate electrode layer

200...閘極結構200. . . Gate structure

210...源/汲極對210. . . Source/bungee pair

212...源極區212. . . Source area

220...汲極金屬220. . . Bungee metal

A、B...摻雜區域A, B. . . Doped region

h...厚度h. . . thickness

P1、P4、P6...蝕刻製程P1, P4, P6. . . Etching process

P2...磊晶製程P2. . . Epitaxial process

P3...氧化製程P3. . . Oxidation process

P5...離子佈植製程P5. . . Ion implantation process

Q...光阻層Q. . . Photoresist layer

S1...正面S1. . . positive

S2...背面S2. . . back

第1-9圖為依據本發明一較佳實施例之晶圓的處理方法的剖面示意圖。1-9 are cross-sectional views showing a method of processing a wafer in accordance with a preferred embodiment of the present invention.

第10圖為依據本發明一較佳實施例之超界面MOS電晶體的剖面示意圖。Figure 10 is a cross-sectional view showing a super-interface MOS transistor in accordance with a preferred embodiment of the present invention.

110...基底110. . . Base

130...第二氧化層130. . . Second oxide layer

P1...蝕刻製程P1. . . Etching process

Claims (18)

一種晶圓的處理方法,包含有:提供一晶圓,包含一基底、一第一氧化層位於該基底的一正面以及一第二氧化層位於該基底的一背面;以及進行一蝕刻製程,以全面移除該第一氧化層。A method for processing a wafer, comprising: providing a substrate, a substrate, a first oxide layer on a front surface of the substrate, and a second oxide layer on a back surface of the substrate; and performing an etching process to The first oxide layer is completely removed. 如申請專利範圍第1項所述之晶圓的處理方法,在進行該蝕刻製程之後,更包含:進行複數次氧化製程,以於該基底之該正面及該背面更分別形成一氧化層,且每次該氧化製程後,僅去除該正面的該氧化層。The processing method of the wafer according to claim 1, after performing the etching process, further comprising: performing a plurality of oxidation processes to form an oxide layer on the front surface and the back surface of the substrate, respectively, and After the oxidation process, only the oxide layer on the front side is removed. 如申請專利範圍第2項所述之晶圓的處理方法,其中在每次進行該氧化製程之前,更包含:進行一磊晶製程,以形成一磊晶層於該正面。The method for processing a wafer according to claim 2, wherein before each performing the oxidation process, further comprising: performing an epitaxial process to form an epitaxial layer on the front side. 如申請專利範圍第1項所述之晶圓的處理方法,其中該蝕刻製程一次僅蝕刻單一晶圓。The method of processing a wafer according to claim 1, wherein the etching process etches only a single wafer at a time. 如申請專利範圍第2項所述之晶圓的處理方法,其中該蝕刻製程為動態旋轉蝕刻製程。The method for processing a wafer according to claim 2, wherein the etching process is a dynamic spin etching process. 如申請專利範圍第1項所述之晶圓的處理方法,其中該蝕刻製程包含以含氫氟酸的蝕刻液蝕刻,且該氫氟酸的濃度49%。The method of processing a wafer according to claim 1, wherein the etching process comprises etching with an etchant containing hydrofluoric acid, and the concentration of the hydrofluoric acid is 49%. 如申請專利範圍第2項所述之晶圓的處理方法,其中每次進行該氧化製程,皆使該背面的該氧化層增厚。The method for processing a wafer according to claim 2, wherein the oxidation process of the back surface is thickened each time the oxidation process is performed. 一種MOS電晶體的製作方法,包含有:(a)提供一基底;(b)進行一磊晶製程,於該基底的一正面上形成一磊晶層;(c)進行一氧化製程,於該磊晶層上以及該基底的一背面分別形成一氧化層;(d)形成一摻雜區域於該磊晶層中;以及(e)進行一蝕刻製程,移除該磊晶層表面的該氧化層。A method for fabricating a MOS transistor, comprising: (a) providing a substrate; (b) performing an epitaxial process to form an epitaxial layer on a front surface of the substrate; (c) performing an oxidation process, Forming an oxide layer on the epitaxial layer and a back surface of the substrate; (d) forming a doped region in the epitaxial layer; and (e) performing an etching process to remove the oxide on the surface of the epitaxial layer Floor. 如申請專利範圍第8項所述之MOS電晶體的製作方法,其中在進行該蝕刻製程,移除該磊晶層表面的該氧化層之後,更包含:重複進行至少一次(b)、(c)、(d)及(e)的步驟。The method for fabricating a MOS transistor according to claim 8 , wherein after the etching process is performed to remove the oxide layer on the surface of the epitaxial layer, the method further comprises: repeating at least one time (b), (c) ), (d) and (e) steps. 如申請專利範圍第8項所述之MOS電晶體的製作方法,其中形成該摻雜區域的步驟,包含:進行一蝕刻製程,圖案化該磊晶層上之該氧化層;以及進行一離子佈植製程,於該磊晶層中形成該摻雜區域。The method for fabricating a MOS transistor according to claim 8, wherein the step of forming the doped region comprises: performing an etching process to pattern the oxide layer on the epitaxial layer; and performing an ion cloth The implanting process forms the doped region in the epitaxial layer. 如申請專利範圍第8項所述之MOS電晶體的製作方法,其中該蝕刻製程包含以含氫氟酸的蝕刻液蝕刻,且該氫氟酸的濃度49%。The method of fabricating the MOS transistor according to claim 8, wherein the etching process comprises etching with an etching solution containing hydrofluoric acid, and the concentration of the hydrofluoric acid is 49%. 如申請專利範圍第8項所述之MOS電晶體的製作方法,其中該蝕刻製程一次僅蝕刻單一晶圓。The method of fabricating the MOS transistor according to claim 8, wherein the etching process etches only a single wafer at a time. 如申請專利範圍第8項所述之MOS電晶體的製作方法,其中該蝕刻製程為動態旋轉蝕刻製程。The method for fabricating a MOS transistor according to claim 8, wherein the etching process is a dynamic spin etching process. 如申請專利範圍第9項所述之MOS電晶體的製作方法,其中每次進行該氧化製程,皆使該背面之氧化層增厚。The method for fabricating an MOS transistor according to claim 9, wherein each time the oxidation process is performed, the oxide layer on the back surface is thickened. 如申請專利範圍第9項所述之MOS電晶體的製作方法,其中進行該蝕刻製程,移除該磊晶層表面的該氧化層之後,更包含:形成至少一閘極介電層及至少一閘極電極層;以及形成至少一源極區,以與該摻雜區域外的該磊晶層形成一源/汲極對。The method of fabricating the MOS transistor according to claim 9, wherein the etching process is performed to remove the oxide layer on the surface of the epitaxial layer, further comprising: forming at least one gate dielectric layer and at least one a gate electrode layer; and forming at least one source region to form a source/drain pair with the epitaxial layer outside the doped region. 如申請專利範圍第15項所述之MOS電晶體的製作方法,其中在形成該源極區之後,更包含:移除該背面的該氧化層以暴露出該基底;以及於該基底的該背面形成一汲極金屬。The method of fabricating the MOS transistor according to claim 15, wherein after forming the source region, further comprising: removing the oxide layer of the back surface to expose the substrate; and the back surface of the substrate Form a bungee metal. 如申請專利範圍第16項所述之MOS電晶體的製作方法,其中該源/汲極對具有一第一導電型,而該摻雜區域具有一第二導電型。The method of fabricating an MOS transistor according to claim 16, wherein the source/drain pair has a first conductivity type and the doped region has a second conductivity type. 如申請專利範圍第16項所述之MOS電晶體的製作方法,其中該摻雜區域為一分隔區。The method for fabricating a MOS transistor according to claim 16, wherein the doped region is a separation region.
TW100122247A 2011-06-24 2011-06-24 Wafer treatment method and fabricating method of MOS transistor TW201301380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100122247A TW201301380A (en) 2011-06-24 2011-06-24 Wafer treatment method and fabricating method of MOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100122247A TW201301380A (en) 2011-06-24 2011-06-24 Wafer treatment method and fabricating method of MOS transistor

Publications (1)

Publication Number Publication Date
TW201301380A true TW201301380A (en) 2013-01-01

Family

ID=48137595

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100122247A TW201301380A (en) 2011-06-24 2011-06-24 Wafer treatment method and fabricating method of MOS transistor

Country Status (1)

Country Link
TW (1) TW201301380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223957A (en) * 2021-04-28 2021-08-06 华虹半导体(无锡)有限公司 Semiconductor device manufacturing method for improving metal cavity and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223957A (en) * 2021-04-28 2021-08-06 华虹半导体(无锡)有限公司 Semiconductor device manufacturing method for improving metal cavity and semiconductor device

Similar Documents

Publication Publication Date Title
TWI608543B (en) Semiconductor device and manufacturing method thereof
US20090057760A1 (en) Semiconductor device and fabricating method thereof
US9048087B2 (en) Methods for wet clean of oxide layers over epitaxial layers
KR20130119836A (en) Dummy finfet structure and method of making same
EP3288064A1 (en) Semiconductor structure and fabrication method thereof
US10312366B2 (en) Semiconductor device with contamination improvement
CN109950207B (en) Method for manufacturing grid
KR20070056749A (en) Manufacturing method for recess channel transistor with improved refresh characteristics
US8809172B2 (en) Self-aligned patterning for deep implantation in a semiconductor structure
TW201301380A (en) Wafer treatment method and fabricating method of MOS transistor
US20120329233A1 (en) Wafer treatment method and fabricating method of mos transistor
CN106024622A (en) Method for manufacturing self-aligned silicide barrier layer
TWI662687B (en) Semiconductor device and manufacturing method thereof
CN108206193B (en) Image sensor and method for manufacturing the same
CN111477590B (en) Grid manufacturing method
CN111129153B (en) LDMOS (laterally diffused Metal oxide semiconductor) manufacturing method and LDMOS device
TW201804514A (en) Patterning method
KR100967485B1 (en) Semiconductor device and manufacturing method of semiconductor device
TW201717281A (en) Semiconductor device and method for fabricating the same
KR20040060560A (en) Manufacture method and structure of semiconductor element
JP4828790B2 (en) Method for manufacturing MOSFET type semiconductor device
CN116959986A (en) Method for forming semiconductor structure
KR100806798B1 (en) Method for forming semiconductor device
CN116206980A (en) Method for manufacturing semiconductor device and semiconductor device
KR20040006424A (en) Method of manufacturing a semiconductor device