TW201247869A - Osmolyte N- ε -acetyl- β -lysine biosynthetic genes from methanogenic archaea and application thereof - Google Patents

Osmolyte N- ε -acetyl- β -lysine biosynthetic genes from methanogenic archaea and application thereof Download PDF

Info

Publication number
TW201247869A
TW201247869A TW101112322A TW101112322A TW201247869A TW 201247869 A TW201247869 A TW 201247869A TW 101112322 A TW101112322 A TW 101112322A TW 101112322 A TW101112322 A TW 101112322A TW 201247869 A TW201247869 A TW 201247869A
Authority
TW
Taiwan
Prior art keywords
lysine
leu
glu
gly
asp
Prior art date
Application number
TW101112322A
Other languages
Chinese (zh)
Other versions
TWI450964B (en
Inventor
Mei-Chin Lai
Chuan-Chuan Hung
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW101112322A priority Critical patent/TWI450964B/en
Publication of TW201247869A publication Critical patent/TW201247869A/en
Application granted granted Critical
Publication of TWI450964B publication Critical patent/TWI450964B/en

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to isolated nucleic acid molecules encoding N ε -acetyl- β -lysine biosynthetic enzymes (lysine 2, 3-aminomutase and β -lysine acetyltransferase) of methanogenic archaea. The present invention also relates to a method for procducing the N ε -acetyl- β -lysine biosynthetic enzymes in E. coli. host cells by using the isolated nucleic acid. The present invention further provides a method for in vivo and/or in vitro production of osmolyte N ε -acetyl- β -lysine.

Description

201247869 六、發明說明: 【發明所屬之技術領域】 本案為第097146358號「甲烷古菌之相容 酸生合成基因及其應用」發明專利申請案之分宝丨】子案。土、 本發^關於,編碼甲烷古g加她咖^肌㈣之相容 質’乙酿基-卜,,酸生合成酵素(賴胺酸2,3_氨基轉位 2,3-ammomutase)及 β-賴胺酸乙醯 ^ . 腸#心大量製造相容質^乙醯基·ρ·賴胺酸生合 之方法。本發明進—步提供,於活體内及 烷古菌相容質JV6-乙醯基-Ρ-賴胺酸的方法。 r座τ 【先前技術】 相容質為滲透壓保翻子,具有倾、抗鹽及抗旱的特性, 其生合成基因在發酵工業、食品界、化妝美容界、製藥、醫療與 農漁業具有相當大的應用潛力。相容f,乙醯基_卩_賴胺^ (A^acetyl+lysine)為特殊的β型胺基酸,目前僅只發現於曱烧古 菌中,在其他的真核生物、原核生物中尚未發現它的存在。相容 貝Λ^-乙醯基-β-賴胺酸之生合成途徑為,由α•賴胺酸 氨基轉位酶(祕)個轉為β_賴胺酸,隨後再經由ρ_賴胺^乙’酿 基轉移酶(α6/Β)作用生合成乙醯基-ρ_賴胺酸(參見,例如Lai, M.C.等人,173:5352-5358,1991 ; R〇berts,M.F.等人,乂’ Bacteriol 174:6688-6693,1992 ; A Robertson D. E.^ M. F. Robert^ 3: 1-9, 1992)。 ’201247869 VI. Description of the invention: [Technical field to which the invention belongs] This case is a sub-case of the invention patent application No. 097146358 "Compatible acid-synthesis gene of methane archaea and its application". Earth, this hair ^ about, encoding methane ancient g plus her coffee ^ muscle (four) of the compatible quality 'B-based base - Bu, acid synthesis enzyme (lysine 2,3_amino translocation 2,3-ammomutase) And β-lysine acetonitrile ^. Intestine # heart mass production of compatible quality ^ 醯 · · lysine kinetics method. The present invention further provides a method for the in vivo and alkanax-compatible JV6-ethinyl-indole-lysine. R-square τ [Prior Art] Compatible quality is osmotic pressure protection, with characteristics of tilting, salt-resistance and drought resistance. Its biosynthetic genes are quite similar in the fermentation industry, food industry, cosmetic beauty industry, pharmaceutical, medical and agricultural fisheries. Great application potential. Compatible with f, ethyl ketone 卩 赖 lysine ^ (A ^ acetyl + lysine) is a special β-type amino acid, currently only found in the sputum archaea, in other eukaryotes, prokaryotes Found its existence. The biosynthesis pathway of compatible beryllium-ethylidene-β-lysine is converted from β-lysine by α-lysine aminotransferase (secret), followed by ρ_lysine ^B'-transferase (α6/Β) acts to synthesize ethionyl-ρ_lysine (see, for example, Lai, MC et al, 173: 5352-5358, 1991; R〇berts, MF et al,乂' Bacteriol 174: 6688-6693, 1992; A Robertson DE^ MF Robert^ 3: 1-9, 1992). ’

Pfltiger 等人(如p/.69:6047-6055, 2003 ) 自甲烧太古生物Me仇maze/ Gdl的全基因體序列中,搜 尋自體生合成相容質TV8-乙醯基_β-賴胺酸之酵素的基因,分別為賴 胺酸2,3-氨基轉位酶(fi^/A)以及β-賴胺酸乙醯基轉移酶(^^沿)。' 利用北方墨潰法證實Μ/A及M/B兩基因為同一個操縱子 201247869 (operon)、,Μ/操縱子的表現量會隨著培養環境鹽濃度提升而隨之Pfltiger et al. (eg p/.69:6047-6055, 2003) search for autologous biosynthesis compatible TV8-acetyl-based _β-赖The genes of the amino acid enzymes are lysine 2,3-aminotransposase (fi^/A) and β-lysine acetyltransferase (^^). 'Using the northern ink collapse method to confirm that the Μ/A and M/B genes are the same operon 201247869 (operon), the 表现/operon expression will increase with the increase of the culture environment salt concentration.

増加。生見利用 Methanococcus maripcdudis 建構 ab!A 反 ablB ,變株’將突變株培養於不同鹽濃度下,以NMR偵測胞内累積相 容質’乙醯基-β-賴胺酸的含量並且測試其生長狀況,以分 析的結果得知在低鹽(376.5 mMNaCl)環境下,野生株(wild type) 細胞内TV6-乙醯基-β-賴胺酸的累積量為〇 μηιοΐ/mg,隨著培養的 鹽度提升至800 mM及1 M NaQ ’胞内乙醯基_β_賴胺酸的累 積量增加3.7倍為0.7 μιηοΐ/mg以及增加7.8倍為1.09 μιηοΐ/mg, 而突變株培養在低鹽或高鹽的環境下,胞内皆未偵測到乙醯基 -β-賴胺酸的累積量’顯示劼/A及Μ/Β基因為相容質乙醯基_β_ 賴胺酸的自體生合成酵素賴胺酸2,3_氨基轉位酶(lysine 2,3-aminomutase)及β·賴胺酸乙醯基轉移酶(p_lysine acetyltmnsfemse)所轉譯;將突變株培養在不同鹽度下的生長測試 結果得知突變株在低鹽(376.5 mM NaCl)環境下生長速率與野生 株相同’在高鹽(800 mM NaCl)環境下生長明顯受到抑制’鹽度 為1 M NaCl環境下則細胞受損幾乎不生長,顯示从玎 因應胞外高鹽環境產生的高滲透壓差是以累積相容質八8_乙醯基 -β-賴胺酸作為滲透壓適應機制(PflUger,2〇〇3,如前述)。 嗜鹽性曱烧古菌Me仇3m?½/c►/?Mus/7orίwcfl/e«>sz’<sFDFl是不規 則球菌’由Marthrani等人自葡萄牙Figutria da Foz含飽和氣化鈉 的鹽池所分離出來’並於1993年由Boone D,R正式定名(B〇〇ne扣 α/.,1993)。M FDF1可以利用甲醇、單_、二_或三甲 基胺做為碳源來進行甲烧化作用(methan〇genesis),但無法利用 氏+ (:〇2、曱酸酯、乙酸酯、甲硫醇或二甲亞砜為生長基質(B〇〇ne βα/·,1993)〇Mp〇rtea/m^FDFl能生長在鹽濃度範圍為丨〇〜3 〇 Μ的環境中’最適生長鹽濃度為2.1 μ,其在高鹽環境中並不能藉 由改變細胞體積來平衡胞内外滲透壓,因此累積相容質是其主要 的滲透壓調節機制(LaUi < 1991,1992)。由高效率液相^析儀 (high-performance liquid chromatography,HPLC)及核磁共振儀 201247869 (nuclear magnetic resonance,NMR)的實驗證實,M /wriwca/ms/s FDF1於環境中甜菜驗(glycine betaine)不存在的情況下,會因應胞 外高鹽環境產生的高滲透壓差而在胞内主要累積鉀離子、α_谷胺 酸、β-谷胺醯胺、甜菜鹼及Λ/6-乙醯基_β_賴胺酸等溶質來因應外界 的尚/參壓逆境。這些溶質在胞内的轉換率(tum〇verrate)很低,並 不參與蛋白合成及細胞代謝,可在胞内長期累積,且其累積量會 隨著胞外鹽濃度上升而增加,顯示這些溶質在从 FDF1胞内扮演著相容質的角色(Lai ei 〇/.,1991 ; Robertson βα/., 1992,如前述)。从fdFI具有自體生合成甜菜驗、 W乙酿基-β-賴胺酸以及(3_谷胺醯胺作為相容質的能力乙醯基 -β_賴胺酸的生合成是經由diaminopimelate pathway產生α-賴胺 西文’再經賴胺酸2,3-氨基轉位酶(lysine 2,3-aminomutase)作用轉為 β-賴胺酸,隨後再經由(3_賴胺酸乙醯基轉移酶(p_】ysine acetyltmnsferase)作用生合成π—乙醯基_p_賴胺酸。 而今 jbu 在 ψ 说九古支物 Methanocalculus chunghsingensis KlF9705b是不規則球菌,由賴美津實驗室自台灣彰化縣王功附近 的海水養殖場所分離出來(Lai等人,2〇〇4),可利用h2及(:02作 為,源^進行甲烷化作用。尬K1F97〇5b可生長在 鹽濃度範JS為G〜2.G1V[的環境中,最適生長鹽濃度為〇.175M。由 核磁共振儀(nuclear magnetic resonance,NMR)的分析得知,Μ増加. Using Methanococcus maripcdudis to construct ab!A anti-ablB, the mutant strain was cultured at different salt concentrations, and the content of intracellular cumulative compatibilities 'ethinyl-β-lysine was detected by NMR and tested. According to the results of the analysis, in the low salt (376.5 mM NaCl) environment, the cumulative amount of TV6-acetyl-β-lysine in the wild type cells was 〇μηιοΐ/mg, with the culture. The salinity increased to 800 mM and the accumulation of intracellular ethyl ketone _β_lysine increased by 3.7 times to 0.7 μιηοΐ/mg and increased by 7.8 times to 1.09 μιηοΐ/mg, while the mutant strain was cultured at a low level. In the salt or high-salt environment, the cumulative amount of acetyl-β-lysine was not detected in the cells, indicating that the 劼/A and Μ/Β genes are compatible with ethionyl _β_ lysine. Translation of autologous synthetic enzyme lysine 2,3-aminomutase and β-lysine acetyltmnsfemse; culture of mutants at different salinities The results of the growth test showed that the mutant strain grew at the same rate as the wild strain in the low salt (376.5 mM NaCl) environment. Growth was significantly inhibited under high salt (800 mM NaCl) environment. The salinity was 1 M NaCl. The cell damage was almost non-growth, indicating that the high osmotic pressure difference from the sputum in response to the extracellular high salt environment was cumulatively compatible. VIII-8-ethinyl-β-lysine as an osmotic pressure adaptation mechanism (PflUger, 2〇〇3, as described above). Halophilic smoldering archaea Meqi 3m?1⁄2/c►/?Mus/7orίwcfl/e«>sz'<sFDFl is an irregular bacterium 'from Sathrani et al. from Portugal Figutria da Foz containing saturated sodium hydride The salt pond was separated' and was officially named by Boone D, R in 1993 (B〇〇ne buckle α/., 1993). M FDF1 can use methanol, mono-, di- or trimethylamine as a carbon source for methanogenesis (methan〇genesis), but can not use the + (: 〇2, phthalate, acetate, A Mercaptan or dimethyl sulfoxide as growth substrate (B〇〇ne βα/·, 1993) 〇Mp〇rtea/m^FDFl can grow in an environment with a salt concentration range of 丨〇~3 〇Μ' optimum growth salt concentration It is 2.1 μ, which does not balance the intracellular and extracellular osmotic pressure by changing the cell volume in a high salt environment, so cumulative compatibilities are the main osmotic pressure regulating mechanism (LaUi < 1991, 1992). High-performance liquid chromatography (HPLC) and nuclear magnetic resonance (ICP-A) 201247869 (nuclear magnetic resonance, NMR) experiments confirmed that M / wriwca / ms / s FDF1 in the environment glycine test (glycine betaine) does not exist In the meantime, potassium ions, α-glutamic acid, β-glutamine, betaine and Λ/6-ethylindolyl _β_ are mainly accumulated in the cells in response to the high osmotic pressure difference generated by the extracellular high salt environment. Solutes such as lysine are used in response to external/parametric stresses. The intracellular conversion rate of these solutes Tum〇verrate) is very low, does not participate in protein synthesis and cellular metabolism, can accumulate in the cell for a long time, and its accumulation will increase with the increase of extracellular salt concentration, indicating that these solutes play a compatible role in FDF1 cells. Qualitative role (Lai ei 〇/., 1991; Robertson βα/., 1992, as described above). From fdFI with autologous synthetic beet, W-ethyl-β-lysine and (3_glutamine) The ability of amines as a compatibilizer for the biosynthesis of acetamino-β-lysine is the production of α-lysine via the diaminopimelate pathway, followed by lysine 2,3-aminotransferase (lysine 2,3- The aminomutase acts to convert to β-lysine, and then biosynthesizes π-ethionyl-p_lysine via (3_lysine acetyl-t-butyltransferase). Now jbu is in ψ It is said that the ancient scorpion Methanocalculus chunghsingensis KlF9705b is an irregular cocci isolated from the mariculture site near Wanggong in Changhua County, Taiwan (Lai et al., 2〇〇4), and can use h2 and (:02 as , source ^ for methanation. 尬K1F97〇5b can grow in salt concentration van JS G~2.G1V [environment, optimum growth concentration of 〇.175M. Nuclear magnetic resonance apparatus is known from the analysis (nuclear magnetic resonance, NMR) is, [mu]

KlF9705b會因應胞外高鹽環境產生的高滲透壓差 而在胞内累積β-谷胺酿胺、乙醯基_β_賴胺酸,且其量會隨著外 界鹽濃度上㈣增加’ 溶f在胞内之賴率(t_verrate)很 低,顯不TV6-乙醯基-β_賴胺酸和β_谷胺醯胺是此株菌的主要的滲透 適應的相容質。 、賴胺酸2,3-氨基轉位酶(AblA)酵素功能為催化α•賴胺酸轉化 成β-賴胺酸。此酵素催化作用需要輔助因子(c〇fact〇r) : [4Fe_4S] duster*、S-adenosylmethionine (SAM)以及 pyrid〇xal 5,_沖抱 (PLP)參與。其作關㈣細胞内還縣㈣[4Fe_4S]2+還原成活化 6 201247869 態的[4Fe-4S]1+,活化態的[4Fe-4S]1+會釋出電子與SAM進行反 應’裂解SAM產生甲硫胺酸以及5’-deoxyadensyl自由基。而PLP 與AblA蛋白上賴胺酸胺基酸上的ε-錄基形成内部酸亞胺pntemai aldimine)鍵結。在受質α-賴胺酸存在下,PLP會與受質α_賴胺酸 的α-胺基進行transaldimation反應形成外部醛亞胺(extemal aldimine)鍵結。[4Fe_4S]1+與 SAM 作用產生的 5,_de〇xyadensyi 自 由基會與PLP鍵結的受賀α-賴胺酸作用,產生5’_deoxyadenosine 以及具有自由基的中間產物’其中間產物經由isomerizati〇n反應, 以及由5’-deoxyadenosine提供氫原子轉移形成β_賴胺酸(Frey與 Reed,乂ί/ν· Evymi?/· i^/αΛ Jmxs. Mo/.所〇/. 66:1-39, 1993 ; Chen 與 Milne,呀y. 45: 12647-12653, 2006)。賴胺酸 2,3-氨基轉位 酶催化α-賴胺酸生成β-賴胺酸作用需要[4Fe-4S] cluster、SAM以 及PLP的參與’在胺基酸序列上’與[4Fe_4S] cluster結合位置是 保留半胱胺酸,與SAM結合位置具有較多的甘胺酸,與pLp鍵 結的位置為賴胺酸(Chen 與 Frey·所oc/zem. 40: 596-602, 2001)。亦 确研究指出此酵素活化需要辞的參與(Ruzicka,2000),推測在胺 基酸序列接近C端的位置上所包含的三個cysteine胺基酸為鋅結 合的位置。在已發表的甲烧太古生物从所瓜以G51的賴胺酸2,3_ 氨基轉位酶序列中皆有發現這些輔助因子結合的位置。 賴胺酸乙醯基轉移酶(AblB)酵素功能為催化β_賴胺酸生成 tv6-乙酿基-β-賴胺酸。酵素乙醯基轉移酶是屬於GNAT (gcn_5^ 關乙醯基轉移酶)超家族(SUperfamily),此GNAT超家族酵素 作用為,催化乙醯辅酶A將其乙醯基轉移至一級胺 amine)。其作用的受質可分為三種:⑴Wst〇ne :參與轉錄活化、 染色質集合以及DNA修復過程,乙醯基轉移酶主要作用在特定的 賴胺酸;(2) aminiglycosides :乙醯基轉移酶的活性會使致病菌產 生抗生素抑制的現象,其作用在aminjglyc〇SideS類的抗生素上, 導致這類抗生素對於目標物的親合性下降;⑶aiylalkylamines :目 刚只有在脊椎動物中發現,參與催化血清素(ser〇t〇nin)生成退黑 201247869 激素(melatonin)的過程。乙醯基轉移酶之胺基酸序列依二級結 可以區分為四個保留模體(conserved motif),1排列脂床或 C-D-A-B ’模體B、C以及D的功能主要與蛋白的結'構穩定有關”, A是-段含有較長及高度保㈣區域,是參與乙醯以a =5的位置,並且在此區域包含一段保留的胺基酸為 QHX-G-X-G/A (Dyda,2000 ; Wolf,1998)。截至目前為止,並 [ger, 沒有針對β-賴胺酸乙醯基轉移酶㈣/B)酵素特性的研究:而在已 發表的曱烷太古生物M maze/ G61的β·賴胺酸乙醯基轉移酶序 中則是有發現一段保留的胺基酸序列為 _3,如祕)。 ^ ' 【發明内容】 於一方面’本發明係提供一種編碼耐鹽性甲烷古菌 c/m«客KlF9705b 之相容質 乙醯其_β· 賴胺酸(facetyl-p-lysine)生合成酵素賴胺酸2,3-氨基轉&酶 (lysine 2,3-aminomutase)的單離核酸分子,其中該賴胺酸2 3•氨基 轉位轉具有SEQ ID No· 2之胺基酸序列或其同功能變體。 於一項具體態樣’編碼賴胺酸2,3-氨基轉位酶之經單離核酸分 子包含選自由⑴SEQIDNO: 1之核苷酸序列;及(¾具有與SEQID NO: 1之核苷酸序列相似性大於90%以上的核苷酸序列所組成之 組群的核苷酸序列。 ” 於另一方面’本發明係提供一種編碼耐鹽性曱炫古菌 Afe认im〇ajf/cw/奶 KlF9705b 之相容質 乙醯基_β_ 賴胺酸(A^-acetyl-P-lysine)生合成酵素β-賴胺酸乙醯基轉移酶 (β-lysine acetyltransferase)的單離核酸分子,其中該β_賴胺酸乙醢 基轉移酶具有SEQ ID No. 4之胺基酸序列或其同功能變體。 於一項具體態樣’編碼β-賴胺酸乙醯基轉移酶之經單離核酸 分子包含選自由(i) SEQ ID NO: 3之核苷酸序列;及⑼具有與SEq ID NO: 3之核苷酸序列相似性大於90%以上的核苷酸序列所組成 201247869 之組群的核苷酸序列。 於又一方面,本發明係提供一種編碼嗜鹽性曱烧古菌 似& FDF1 之相容質 生合成酵素賴胺酸2,3·氣基轉位S# (lysine 2,3-aminoniutase)的單 離核酸分子,其中該賴胺酸2,3-氨基轉位酶具有SEq ID N〇. 6之 胺基酸序列或其同功能變體。 於一項具體態樣’編媽賴胺酸2,3-氨基轉位酶之經單離核酸分 子包含選自由⑴SEQ ID NO: 5之核苷酸序列;及⑼具有與seq ID NO: 5之核苷酸序列相似性大於90%以上的核苷酸序列所組成之 組群的核苷酸序列。 於另一方面,本發明係提供一種編碼嗜鹽性甲烷古菌 MethanohabpMus portucalensis FDF1 之相容質乙酿基_β_賴胺 酸(A^acetyl-P-lysine)生合成酵素β-賴胺酸乙醯基轉移酶 (β-lysine acetyltransferase)的單離核酸分子,其中該β_賴胺酸乙醯 基轉移酶具有SEQ ID No. 8之胺基酸序列或其同功能變體。 於一項具體態樣,編碼β-賴胺酸乙醯基轉移酶之經單離核酸 分子包含選自由⑴SEQ ID NO: 7之核苷酸序列;及⑻具有與SEq ID NO: 7之核苷酸序列相似性大於90%以上的核苷酸序列所組成 之組群的核苷酸序列。 本發明之另一方面係提供’一種利用大腸桿菌大量表現甲烧 古菌賴胺酸2,3-氨基轉位酶之方法’其特徵在於將編碼賴胺酸2,3_ 氨基轉位酶之核酸分子,選殖_於適當表現載體中,並將所得之重 組質體轉形至大腸桿菌宿主細胞中大量表現,及純化得賴胺酸2,3-氨基轉位酶重組蛋白。於一項具體態樣,該編碼賴胺酸2,3-氨基轉 位酶之核酸分子係源自耐鹽性曱烷古菌Mei/zim〇ca/cw/w>s KlF9705b基因組。於另一項具體態樣’該編碼賴 胺酸2,3-氨基轉位酶之核酸分子係源自嗜鹽性甲烷古菌 Aiethanohalophilus portucalensis FDFI 基^ 紙。 本發明之又一方面係提供’一種利用大腸桿菌大量表現甲烧 201247869 重組質體轉形至大腸桿g宿主細胞巾大* : ’並將所付之 酸乙醯基轉移酶重組蛋白。於一項具體樣^化 醯基轉移酶之核酸分子係源自耐龜賴岐乙 chunghsingensis KlF9705b ^ΪΓ 賴胺酸乙醯基轉移酶之核酸分子係源自嗜▲性曱:古KlF9705b accumulates β-glutamine-rich amine and acetaminophen _β_lysine in the cell in response to the high osmotic pressure difference generated by the extracellular high salt environment, and its amount will increase with the external salt concentration (4). The intracellular rate of f (t_verrate) is very low, and it is shown that TV6-acetamido-β-lysine and β-glutamine are the main osmotic compatible compatibilities of this strain. The lysine 2,3-aminotransposase (AblA) enzyme functions to catalyze the conversion of α•lysine to β-lysine. This enzyme catalysis requires cofactors (c〇fact〇r): [4Fe_4S] duster*, S-adenosylmethionine (SAM), and pyrid〇xal 5, _ rush (PLP). (4) Intracellular regenerative (4) [4Fe_4S] 2+ reduced to activated 6 201247869 state of [4Fe-4S]1+, activated state of [4Fe-4S]1+ will release electrons and react with SAM 'cracking SAM Produces methionine and 5'-deoxyadensyl free radicals. The PLP and the ε-bank on the lysine amino acid on the AblA protein form an internal acid imine pntemai aldimine bond. In the presence of the receptor α-lysine, PLP undergoes a transaldimation reaction with the α-amino group of the receptor α_lysine to form an external aldimine bond. The 5,_de〇xyadensyi radical generated by [4Fe_4S]1+ interacts with SAM will interact with the PLP-bonded a-alpha-lysine to produce 5'_deoxyadenosine and intermediates with free radicals' intermediate products via isomerizati〇 n reaction, and hydrogen atom transfer provided by 5'-deoxyadenosine to form β_lysine (Frey and Reed, 乂ί/ν· Evymi?/· i^/αΛ Jmxs. Mo/.〇/. 66:1- 39, 1993; Chen and Milne, y. 45: 12647-12653, 2006). The lysine 2,3-aminotransposase catalyzes the formation of β-lysine by α-lysine requires the participation of [4Fe-4S] cluster, SAM and PLP 'on the amino acid sequence' and [4Fe_4S] cluster The binding site is a retention of cysteine, which has more glycine acid at the binding site to the SAM and a lysine at the pLp linkage (Chen and Frey oc/zem. 40: 596-602, 2001). It has also been pointed out that this enzyme activation requires the participation (Ruzicka, 2000), presuming that the three cysteine amino acids contained at the position near the C-terminus of the amino acid sequence are zinc-bonded sites. The location of these cofactor bindings has been found in the published serotonin 2,3_aminotransposase sequence of G51 from the A. sinensis. The lysine acetyltransferase (AblB) enzyme functions to catalyze the production of β-lysine tv6-ethyl-based-β-lysine. The enzyme acetyltransferase belongs to the GNAT (gcn_5^g-ethyltransferase) superfamily (SUperfamily), which acts to catalyze the transfer of the acetamidine coenzyme A to its primary amine. The role of the receptor can be divided into three types: (1) Wst〇ne: involved in transcriptional activation, chromatin assembly and DNA repair process, acetyltransferase mainly acts on specific lysine; (2) aminiglycosides: acetyltransferase The activity will cause antibiotic inhibition of pathogenic bacteria, which acts on aminjglyc〇SideS antibiotics, resulting in a decrease in the affinity of such antibiotics for the target; (3) aiylalkylamines: only found in vertebrates, involved in catalysis Serotonin (ser〇t〇nin) produces a process of blackening 201247869 hormone (melatonin). The amino acid sequence of the acetyltransferase can be divided into four conserved motifs according to the secondary knot, and the function of the 1 arrangement of the lipid bed or the CDAB 'phantoms B, C and D is mainly related to the structure of the protein. Stable related", A is - the segment contains a longer and highly protected (four) region, is involved in the position of acetam with a = 5, and contains a portion of the retained amino acid in this region is QHX-GXG / A (Dyda, 2000; Wolf, 1998). Up to now, and [ger, there is no research on the properties of β-lysine acetyltransferase (IV)/B): while in the published decane Taikoo M maze/ G61 β· In the lysine acetyltransferase sequence, the amino acid sequence found to be retained for a period of time is _3, such as the secret. ^ ' [Invention] In one aspect, the present invention provides a salt-tolerant methane Cc/m «KlF9705b compatible acetamidine _β· lysine (facetyl-p-lysine) biosynthetic enzyme lysine 2,3-aminotrans & lysine 2,3-aminomutase An isolated nucleic acid molecule wherein the lysine 2 3•amino group is transposed to have the amino acid sequence of SEQ ID No. 2 or a functionally equivalent variant thereof. a specific aspect of the ligated nucleic acid molecule encoding a lysine 2,3-aminotransposase comprising a nucleotide sequence selected from the group consisting of (1) SEQ ID NO: 1; and (3⁄4 having a nucleotide sequence similarity to SEQ ID NO: 1 a nucleotide sequence of a group consisting of more than 90% of the nucleotide sequences." On the other hand, the present invention provides a method for encoding a salt-tolerant sputum archaea Afe recognizes im〇ajf/cw/milk KlF9705b Compatible 醯β- lysine (A^-acetyl-P-lysine) is a synthetic nucleic acid molecule of β-lysine acetyltransferase, wherein β_ The lysine acetyltransferase has the amino acid sequence of SEQ ID No. 4 or a homologous variant thereof. In one embodiment, the isolated nucleic acid molecule encoding β-lysine acetyltransferase a core comprising a group consisting of (i) SEQ ID NO: 3; and (9) a group having a nucleotide sequence greater than 90% similar to the nucleotide sequence of SEq ID NO: 3; 201247869 In another aspect, the present invention provides a compatible probiotic synthase encoding a halophilic smoldering archaea & FDF1 An isolated nucleic acid molecule of lysine 2,3-aminoniutase, wherein the lysine 2,3-aminotransposase has an amino group of SEq ID N〇. An acid sequence or a homologous variant thereof. In one embodiment, the isolated nucleic acid molecule of the chimeric lysine 2,3-aminotransposase comprises a nucleotide sequence selected from (1) SEQ ID NO: 5; and (9) has a seq ID NO: 5 A nucleotide sequence of a group consisting of nucleotide sequences having a nucleotide sequence similarity greater than 90%. In another aspect, the present invention provides a compatibilized acetyl-P-lysine-producing enzyme β-lysine encoding Methanohabp Mus portucalensis FDF1. An isolated nucleic acid molecule of β-lysine acetyltransferase, wherein the β-lysine acetyltransferase has the amino acid sequence of SEQ ID No. 8 or a functionally equivalent variant thereof. In one embodiment, the isolated nucleic acid molecule encoding beta-lysine acetyltransferase comprises a nucleotide sequence selected from the group consisting of (1) SEQ ID NO: 7; and (8) has a nucleoside with SEq ID NO: 7. A nucleotide sequence of a group consisting of nucleotide sequences having an acid sequence similarity greater than 90%. Another aspect of the present invention provides a method for expressing a large amount of a serotonin lysine 2,3-aminotransposase using Escherichia coli, which is characterized in that a nucleic acid encoding a lysine 2,3_aminotransposase is characterized. Molecules, cloning - in appropriate expression vectors, and transforming the resulting recombinant plasmid into a large number of expressions in E. coli host cells, and purifying the lysine 2,3-aminotransposase recombinant protein. In one embodiment, the nucleic acid molecule encoding the lysine 2,3-aminotransferase is derived from the salt-tolerant decane archaea Mei/zim〇ca/cw/w>s KlF9705b genome. In another embodiment, the nucleic acid molecule encoding the lysine 2,3-aminotransposase is derived from the halophilic methanogen Aiethanohalophilus portucalensis FDFI substrate. A further aspect of the present invention provides a recombinant protein which is expressed in a large amount by means of Escherichia coli, and which is transformed into a large intestine rod g host cell towel **' and which is administered with an acid acetyltransferase. The nucleic acid molecule of a specific thiol transferase is derived from Helicobacter sinensis chunghsingensis KlF9705b ^ 核酸 lysine acetyltransferase nucleic acid molecule derived from 嗜 曱 曱: ancient

MethanohcdophUusportucalensis FOYI 良西也 困 基/賴=另方;方=:於漁 rr",3-氨基轉位酶叫4大酸腸 白,將L-α-賴胺酸基質轉化成相容質象乙酿基侧胺酸。、,·蛋 又:i面得’ 一種於活體内將“-賴胺酸轉化 丨Β之核酸分子於宿主細胞中共同表現而於ϊίί ·=胞内將L-_酸作用生合成^乙醯基♦賴胺酸。於一“且 巧態樣,係藉由活體⑽L_a•賴胺轉化錢醯基賴^ 酸^提綠卿或觀錄之抗鹽、抗.旱與減溫能力P = 一項具體祕’該宿主生難選自微生物、植物及動物。、 生成in之面係提f ’ —種於活體内將w賴胺酸轉化 與寧blB之核酸分子於宿主細胞中共同二 主細胞内將L-a·賴胺酸作用生合成,乙酿基_p_賴胺酸。於 ,體態樣’係藉由活體内將L_a•賴胺酸轉化生成,乙酿基 ,酸’以提高經轉形或轉殖生物之抗鹽、抗旱與抗高溫能力。於 另-項具體態樣,該宿主生物係選自微生物、植物及動物。、 〜本發明之另一方面係提供,一種於T烷古菌誘導大量生合 1容質TV6-乙醯基-β_賴胺酸(A/s_acety丨_p_〗ysine)之方法,其特徵在 方'、將耐鹽性ψ烧古菌胸九_—以肋咖_磁幻彻眺 201247869 戈=皿\竺5悦古截 MethanohalophilusportucalensisYDYl 培秦於含 f最終鹽,度為l·5至3.0M高鹽(NaCl)之無氧培養基中,以提 尚甲烧古菌之賴胺酸2,3-氨基轉位酶以及β_賴胺酸乙醯基轉移酶 基因的表現。 >本發明的其他特徵與優點,將從下列圖式及數項具體實施例 之詳細描述,亦從附屬之申請專利範圍顯而易見。 【實施方式】 冬發明所使用之 Methanoca丨cuius chunghsingensis I^lF9705b,巧所屬技術領域中具有通常知識者易於獲得,其等係 已寄存於德國菌種中心,寄存編號為DSM 14539 #及美國曱烷菌 種中〜’寄存編說為 。Methanohalophihisportucalensis FDF1係所屬技術領域中具有通常知識者易於獲得,其等係已寄存 於德國菌種中心(DSMZ)寄存編號為DSM7471T,美國菌種中心 (ATCC)寄存編號為BBA-912TM以及美國甲烷菌種中心,寄存編 號為OCM 59。 本研九利用已發表的尬认α⑽coccw.ifes 及 ⑽基因體命名的賴胺酸2,3_氨基轉位酶 (lysine 2,3-aminomutaSe,Μ/A)序列高度保留的區域設計引子,以耐 鹽性 Methanocalculus chunghsingensis KlF9705b 及嗜鹽性 MethcmohabphHus portucdemis FOFI 的染色體 mA 進行^酶 連鎖反應(PCR),分別獲得部分的序列8吐以及 ΜρΜ/Α-0·8 kb片段,隨後將兩片段分別製作為探針,分別針對MethanohcdophUusportucalensis FOYI Liangxi is also sleepy base / Lai = other side; Fang =: Yu Yu rr", 3-aminotransposase is called 4 large acid intestinal white, transforming L-α-lysine matrix into compatible quality image B Stucco side acid. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Base lysine. In a "complex" way, by the living body (10) L_a • lysine, the conversion of the money, the base of the acid, the acid, the salt, the drought resistance and the ability to reduce the temperature P = one The specific secret is that the host is difficult to select from microorganisms, plants and animals. , in the formation of in the surface of the f'-type in vivo, the conversion of w-lysine and the blB of the nucleic acid molecule in the host cell in the common two main cells to the synthesis of La lysine, the brewing base _p _Lysine. In the body state, L_a•lysine is converted into a living body, and the acid is used to improve the salt resistance, drought resistance and high temperature resistance of the transformed or transformed organism. In another embodiment, the host organism is selected from the group consisting of a microorganism, a plant, and an animal. And a further aspect of the present invention provides a method for inducing a large amount of serotonin 1 tolerant TV6-acetamido-β-lysine (A/s_acety丨_p_〗 ysine) by T. oxysporum. In the square', the salt-tolerant sputum burns the ancient bacteria chest _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In the anaerobic medium of M high salt (NaCl), the performance of the lysine 2,3-aminotransposase and the β-lysine acetyltransferase gene of the genus Artemisia sphaeroides was evaluated. Other features and advantages of the present invention will be apparent from the following description of the appended claims and claims. [Embodiment] Methanoca 丨cuius chunghsingensis I^lF9705b used in the winter invention is easily available to those skilled in the art, and has been deposited in the German strain center, the storage number is DSM 14539 # and the American decane. In the strain ~ ~ registered editor. Methanohalophihisportucalensis FDF1 is readily available to those of ordinary skill in the art, and is deposited in the German Stem Center (DSMZ) under the accession number DSM7471T, the American Types Center (ATCC) under the accession number BBA-912TM, and the American methanogen species. Center, the registration number is OCM 59. This study uses the published 尬 α α (10) coccw.ifes and (10) gene-named lysine 2,3-aminomutaSe, Μ / A sequence to maintain a highly retained region of the primer, The chromosomal mA of the salt-tolerant Methanocalculus chunghsingensis KlF9705b and the halophilic MethcmohabphHus portucdemis FOFI was subjected to an enzyme-linked reaction (PCR), and a partial sequence of 8 sputum and ΜρΜ/Α-0·8 kb fragments were obtained, respectively. Probes

Methanocakulus chunghsingensis 反 Methanohabphilus FDF1基因體進行南方墨潰法(s〇uthemhybridizat 分析’獲得該兩株甲烷古菌相容質A^-acetyH^-lysine生合成基因, 分别為命Z 為 McablA、McablB V人反 MpablA、MpablQ I 風。 此外,本發明已經將兩株甲烷古菌之賴胺酸2,3_氨基轉位酶基 因(M—/A、MeM/A),以及β-賴胺酸乙醯基轉移酶基^ 201247869 (Λ/c^WB、Λφβ6/Β) ’分別利用大腸桿菌異源表現.,以添加有特定 限制酶切位的引子進行聚合酶連鎖反應(pCR),進行選殖後再利 用相同限制酶作用,將基因片段分別送入pET系統於五⑺ (DE3)-RIL中大置表現,以使所製得之重組蛋白可用於活體外合成 相容質iV8-乙醯基_β_賴胺酸。 σ 此外,本發明已經將 K1F9705b之賴胺酸2,3_氨基轉位酶基因(McaWA),以及β·賴胺 酸乙醯基轉移酶基因(McaWB) ’利用大腸桿菌異源共同表現,將 McM/A基因片段構築至pET21b質體,而Mcm/b基因片段構築 至pET28a質體’並將構築好的pET21b_Mc以/A以及 pET28a-M^/B質體同時送入五⑽BL21 (DE3>RIL中大量表 現’以使所製得之重組蛋白可用於活體内合成相容質乙醯基_P_ 賴胺酸。亦將Me认⑽Μα/ορΜ⑽FDF1之賴胺酸2,3-氨基轉位酶基因(MpM/A),以及β·賴胺酸乙醯基轉移酶基’因 (姆W®) ’利用大腸桿菌異源共同表現,將基因片段構築 至pET21b質體,而雄Μ/Β基因片段構築至pET28a質體,並將 構築好的pET21b-M/^/A以及pET28a-M/^/B質體同時送入五. co/ί BL21 (DE3)-RIL中大量表現,以使所製得之重組蛋白可用於 活體内合成相容質A^-乙醯基-β_賴胺酸。 本發明將詳細描述特殊的具體實施例。這些具體實施例經由 發明解釋提供,並非意欲用以限制本發明。在發明的範圍及精神 内’本發明存在傾向於包括這些及其他變更及變動。 實施例 貫施例1.分離及選殖耐鹽性甲院古菌从Methanocakulus chunghsingensis anti-Methanohabphilus FDF1 gene was subjected to Southern ink collapse method (s〇uthemhybridizat analysis 'obtained the two methane archaeal compatible A^-acetyH^-lysine biosynthesis genes, respectively, life Z is McablA, McablB V human anti- MpablA, MpablQ I wind. In addition, the present invention has two methane archaea lysine 2,3_aminotransposase genes (M-/A, MeM/A), and β-lysine Transferase base ^ 201247869 (Λ / c ^ WB, Λ φβ6 / Β) 'Use the heterologous expression of E. coli, respectively, with a primer with a specific restriction enzyme cleavage site for polymerase chain reaction (pCR), after breeding Using the same restriction enzymes, the gene fragments were sent to the pET system for display in five (7) (DE3)-RIL, so that the recombinant protein can be used for in vitro synthesis of compatible iV8-ethylidene-β. _Lylamic acid. σ In addition, the present invention has utilized K1F9705b lysine 2,3_aminotransposase gene (McaWA), and β-lysine acetyltransferase gene (McaWB) to utilize Escherichia coli The common expression of the source, the McM/A gene fragment was constructed into the pET21b plastid And the Mcm/b gene fragment was constructed into the pET28a plastid' and the constructed pET21b_Mc was simultaneously introduced into the five (10) BL21 (DE3>RIL in a large number of expressions) with the /A and pET28a-M^/B plastids. The recombinant protein can be used to synthesize compatibilinyl _P_ lysine in vivo. It also recognizes (10) Μα/ορΜ(10)FDF1 lysine 2,3-aminotransposase gene (MpM/A), and β-lysine The acid acetyltransferase group 'cause (M W®)' uses a heterologous expression of E. coli to construct a gene fragment into the pET21b plastid, and the male/Β gene fragment is constructed into the pET28a plastid and will be constructed well. The pET21b-M/^/A and pET28a-M/^/B plastids were simultaneously fed into a large number of five. co/ί BL21 (DE3)-RIL, so that the recombinant protein produced can be used for in vivo synthesis and compatibility. The present invention will be described in detail with reference to the particular embodiments of the invention, which are not intended to limit the invention. The present invention is intended to include these and other variations and modifications. Embodiments Example 1. Separation and selection of salt-tolerant hospitals From bacteria

KlF9705b及嗜鹽性曱烷古菌M FDF1之 ablA與ab电A·基^ 12 201247869 抽取曱烷太古生物染色體DNA的方法係由Jarrell (1992)加以 修飾。將培養至中對數期的250 ml菌液收集至離心瓶中,以高速 離心機(Sorvall RC5C,DuPont Co.) 8000 rprn、4 °C 下離心 15 分鐘 收集菌體。離心後所得的菌塊’以2 ml lysis solution (10 mM Tris, pH 8.0,1 mM EDTA pH 8.0 ; 2 % SDS ; 100 pg/ml proteinase K)懸 浮並打破菌體。將菌塊打散後於冰上靜置10分鐘,以離心機 (Sigma,2K15) 14000 rpm、4 °C下離心10分鐘,回收上清液,加 入等體積4°〇保存之?1^11〇1/(^11〇11〇£>〇1111^〇&111>^1(;〇11〇1 (25:24: 1) ’輕輕搖晃均勻後以離心機(Sigmi 2K15) 14000 rpm、4 °C下KlF9705b and the halophilic decane archaea M FDF1 ablA and ab electricity A·base ^ 12 201247869 The method for extracting decane from the ancient chromosomal DNA was modified by Jarrell (1992). 250 ml of the culture solution cultured to the middle log phase was collected into a centrifuge bottle, and centrifuged at 8000 rprn in a high-speed centrifuge (Sorvall RC5C, DuPont Co.) at 4 ° C for 15 minutes to collect the cells. The pellet obtained after centrifugation was suspended in 2 ml of lysis solution (10 mM Tris, pH 8.0, 1 mM EDTA pH 8.0; 2% SDS; 100 pg/ml proteinase K) and disrupted. The bacteria pieces were dispersed and allowed to stand on ice for 10 minutes, centrifuged at 14,000 rpm in a centrifuge (Sigma, 2K15) at 4 ° C for 10 minutes, and the supernatant was collected and stored in an equal volume of 4 ° 〇. 1^11〇1/(^11〇11〇£>〇1111^〇&111>^1(;〇11〇1 (25:24: 1) 'Gently shake evenly to centrifuge (Sigmi 2K15 ) 14000 rpm, 4 °C

離心10分鐘’回收上清液重複上述萃取動作一次。小心取出離心 後的上清液,加入RNase (50 pg/ml)於37 °C作用一小時。再繼續 以Phenol/chloroform/isoamyl alcohol萃取兩次,取出上清液後加入 一半體積的chloroform/isoamyl alcohol (24 : 1) ’輕輕搖晃均勻後以 離心機(Sigma,2K15) 14000 rpm、4 °C下離心10分鐘,取出上清 液重複chloroform/isoamyl alcohol萃取動作兩次,直至界面層沒有 蛋白質殘留為止。以3 M sodium acetate將上清液部分的s〇dium acetate濃度調整為0.3 Μ以沉澱DNA,加入0.6-0.7倍體積之 isopropanol 並混合均勻,以離心機(Sigma, 2Κ15) 14000 rpm、4 〇C 下離心10分鐘,小心地去除上層液,並加入適量70 %酒精清洗 DNA 樣品’以離心機(Sigma,2K15) 14000 rpm、4 °C 下離心 10 分鐘,去除上層液,以真空減壓濃縮機(Savant Speed Vac System, Savant Co.)將酒精抽乾,以無菌水回溶DNA樣品,並以核酸電 泳以及量測OD26G/28()比值檢視所萃取之DNA純度並且計算DNA 含量。Centrifuge for 10 minutes to recover the supernatant and repeat the above extraction operation once. The supernatant after centrifugation was carefully taken out and added to RNase (50 pg/ml) for one hour at 37 °C. Continue to extract twice with Phenol/chloroform/isoamyl alcohol, remove the supernatant and add half the volume of chloroform/isoamyl alcohol (24: 1). Gently shake gently to centrifuge (Sigma, 2K15) 14000 rpm, 4 ° Centrifuge for 10 minutes at C, remove the supernatant and repeat the chloroform/isoamyl alcohol extraction twice until there is no protein residue in the interface layer. The concentration of s〇dium acetate in the supernatant fraction was adjusted to 0.3 3 with 3 M sodium acetate to precipitate DNA, and 0.6-0.7 volumes of isopropanol was added and mixed uniformly to centrifuge (Sigma, 2Κ15) 14000 rpm, 4 〇C Centrifuge for 10 minutes, carefully remove the supernatant, and add a suitable amount of 70% alcohol to clean the DNA sample. Centrifuge (Sigma, 2K15) at 14000 rpm, centrifuge at 10 °C for 10 minutes, remove the supernatant, and vacuum decompressor. (Savant Speed Vac System, Savant Co.) The alcohol was drained, the DNA sample was reconstituted with sterile water, and the purity of the extracted DNA was examined by nucleic acid electrophoresis and measurement of the OD26G/28() ratio and the DNA content was calculated.

4^研究利用已發表的Methanococcoides burtonii及 marpa/wito 基因體命名的 lysine 2,3-aminomutase (肋/A)序列高度保留的區域設計引子ablA bm-F fi’-GAAGATCCTCTTTCCGAAGAT-3’、ablAbm-R 5,-GGTGATAA CACCTTCATAATT-3’,以我們實驗室純化的耐鹽性M 13 201247869 炊⑽;y KlF9705b 及嗜鹽性 M 似& FDF1 的染色 體DNA進行聚合酶連鎖反應(PCR)分別獲得部分的序列 Mca6/A-0.8 kb以及MpM/A-0.8 kb片段,隨後將兩片段分別製作 為探針’分別針對从KlF9705b及M I<DF1基因體進行南方墨潰法(Southemhybridization)分析。將Μ4^ Research using the published Methanococcoides burtonii and marpa/wito gene-named lysine 2,3-aminomutase (rib/A) sequence highly retained region design primer ablA bm-F fi'-GAAGATCCTCTTTCCGAAGAT-3', ablAbm-R 5,-GGTGATAA CACCTTCATAATT-3', obtained by polymerase chain reaction (PCR) of our laboratory-purified salt-tolerant M 13 201247869 炊(10);y KlF9705b and halophilic M-like & FDF1 chromosomal DNA The sequence Mca6/A-0.8 kb and the MpM/A-0.8 kb fragment were subsequently made into probes, respectively, for Southemhybridization analysis from KlF9705b and M I<DF1 genomes, respectively. Will

KlF9705b 及 M FDF1 染色體 DNA 分別以限制酶#沿1作用處理,進行電泳分析,將膠體以0.25 N HC1 浸泡膠體震盤 20 分鐘後,再以 denaturation buffer (0.5 NNaOH, 1.5 M NaCl)浸泡膠體並震盪20分鐘,最後以neutralization buffer (1.5 MNaCl,1 MTris)浸泡膠體並震盪20分鐘。隨後利用真空轉潰將 核酸轉潰至HybondTM-N+ Nylon膜(Amersham)以短波紫外光核 I固疋Is將核酸固定於膜上。利用DIG DNA Labeling and Detection Kit所製備的探針進行雜合反應以及免疫偵測。結果,獲 知兩株曱院古菌相容質T^-acetyl-p-lysine之生合成基因組,分別命 名為 McaWA-1320 bp (序列列示於 SEQ ID NO: 1)與 Μ^ό/Β-858 bp (序列列示於SEQIDNO:3),以及ΛφΜ/Α-1314Βρ (序列列 示於 SEQ ID NO: 5 )與 ΛφΜ/Β-831 bp (序列列示於 SEQ ID NO: 7、8) ’彼等基因之相對位置如圖1所示。 一分析该兩株甲烧古菌與的賴胺酸2,3_ 氨基轉位酶之胺基酸序列,結果發現本發明所獲得的兩株曱烷古 菌的賴胺酸2,3-氨基轉位酶基因的胺基酸序列盥c/ay的沿 ―纪―e的賴胺酸2,3_氨基轉位酶胺基酸序列一/樣,均具有⑴. 與[4Fe-4S] duster結合的位置區域上含有保留胺基酸cystdne (CXXXCXXC) ; (2).與SAM結合位置為 D-A-P-G/H-G-G-G-K-I-P-V;⑶.與PLP結合位置為SAM結合區域 内的賴胺酸(K);另外,(4).在序列接近c端的位置上包含三個半 ,胺酸’推測是與鋅結合的位置(參賴2)。序列分析結果顯示, 本發明所獲自甲霞古g的祕t基因,是驗酸2,3_氨基轉位酶基 因。 201247869 健基轉移酶酵素的特性,依結構可以區分為四KlF9705b and M FDF1 chromosomal DNA were treated with restriction enzyme #1, respectively. Electrophoresis analysis was performed. The colloid was soaked in a colloidal shock plate with 0.25 N HC1 for 20 minutes, then the colloid was soaked with a denaturation buffer (0.5 NNaOH, 1.5 M NaCl) and shaken. After 20 minutes, the gel was soaked in a neutralization buffer (1.5 MNaCl, 1 MTris) and shaken for 20 minutes. The nucleic acid was then cleaved to a HybondTM-N+ Nylon membrane (Amersham) by vacuum spinning to immobilize the nucleic acid on the membrane with a short-wave ultraviolet nucleus. The probe prepared by the DIG DNA Labeling and Detection Kit was used for hybridization and immunodetection. As a result, two synthetic genomic DNAs of T.-acetyl-p-lysine compatible with the broth were obtained, which were named McaWA-1320 bp (listed in SEQ ID NO: 1) and Μ^ό/Β- 858 bp (sequences are listed in SEQ ID NO: 3), and ΛφΜ/Α-1314Βρ (sequences are listed in SEQ ID NO: 5) and ΛφΜ/Β-831 bp (sequences are listed in SEQ ID NO: 7, 8)' The relative positions of these genes are shown in Figure 1. The amino acid sequence of the 2,3_aminotransferase of the two strains of the genus Artemisia sphaeroides was analyzed, and the 2,3-aminotransfer of lysine of the two strains of decane archaea obtained by the present invention was found. The amino acid sequence of the enzyme gene 盥c/ay along the   lysine 2,3_aminotransferase amino acid sequence has a (1). combined with [4Fe-4S] duster The positional region contains the retained amino acid cystdne (CXXXCXXC); (2). The binding site with the SAM is DAPG/HGGGKIPV; (3). The binding site with the PLP is the lysine (K) in the SAM binding region; in addition, (4) Containing three halves at a position near the c-terminus, the amine acid 'presumably is the position to bind to zinc (see 2). The results of sequence analysis revealed that the secret t gene obtained from the Jiaxiagu g of the present invention is an acid-testing 2,3-aminotransposase gene. 201247869 The characteristics of the Jiji transferase enzyme can be divided into four according to the structure.

=mQtif) ’其制順序為⑶_A_B,其中以模 』人二严】有較長及高度保留的區域,是參與a_ coenzyme A ί Y //λ並且在此區域包含一段保留的胺基酸為 7 ,結果發現我們所獲得的兩株曱烧古菌的β-賴 Ϊ 轉移酶基_絲酸序列與GNAT suPe—ily酵素一 =的保留序列為叫G/K_K/L_G视福_k/g⑽2)。 ’我們所獲自甲烷古菌的_基叫賴胺酸 胺而我們由這些甲燒古菌可藉由α•賴胺酸經賴 ^轉轉朴驗酸,隨後躲由㈣胺酸乙 "R 生 σ 成 W 乙醯基-P-賴胺酸(A^-acetyl-P-lysine) 也可以確認此兩基因產物確實有賴胺酸2,3·氨基 轉位鰣以及β—賴胺酸乙醯基轉移酶的活性。 符化分析這兩株甲烧古8_胺酸2,3_氨基轉位酶以 Ϊίί Ϊ基轉移酶的胺基酸序列,結果繼blA、姆藤 二!tJ5菌雜的胺基酸序列相似度為47〜80 %;嫩师、 其他古菌纖的胺基酸序列相似度為24〜52 % ’ 及耐鹽甲烷古菌的相容質以6-乙醯基♦賴胺酸 τϋηθ生合成基因具有相當的差異性。這兩株甲烧古 肺以保iif低’且帶有較多的負電胺基酸’能與氫氧根離子 趟ί換ΐ、、ί二表面為水合作用層,並維持其表面的疏水性,在高 二Γ形成集團;唁鹽性、耐鹽性生物的蛋白質能與鹽進 嗜鹽性、耐鹽性生物的蛋白質能抵抗有機溶劑 廳i’乂 ϋ兄。顯示甲烧古菌的賴胺酸2>氨基轉位酶以及ρ- ;員細_文乙酿基轉移酶具有耐鹽、耐高溶劑等特性,更適合於工 與胞外生產應用。 、呆 實施ϋ於ί腸桿®宿主異源表現找古g之祕與祕基因 *經過设叶有限制酶切位(麗吐A^IandATwI)的引子,模板 15 201247869 來源為南方·墨潰法獲得的片段與質體pGEM_7zf進行接合後篩選 獲得的質體’並且經由定序確認此質體帶有賴胺酸2,3_氨基轉位酶 以及β-賴胺酸乙醯基轉移酶的基因。進行聚合酶連鎖反應後,可 以増幅出兩端各含有限制酶切位(、=mQtif) 'The order of its production is (3)_A_B, where the model has a longer and highly reserved area, is involved in a_ coenzyme A ί Y //λ and contains a portion of the retained amino acid in this region is 7 As a result, we found that the retention sequence of the β-lysine transferase-silica sequence and GNAT suPe-ily enzyme-one of the two strains of the sputum archaea we obtained was G/K_K/L_G 视福_k/g(10)2) . 'We have obtained the lysine from the methane archaea, and we can use these lysines to transfer acid to the acid by the α-lysine, and then hide the acid from the (tetra) amino acid. R σ to W acetyl-P-lysine can also confirm that the two gene products do have lysine 2,3·amino transposition oxime and β-lysine B The activity of thiol transferase. The two aminoglycans of the sucralose transferase were analyzed by the amino acid sequence of 甲ίί thiol transferase. The results showed that the amino acid sequences of blA and Mt. The degree is 47~80%; the similarity of the amino acid sequence of the tender and other ancient bacteria fibers is 24~52%' and the compatible nature of the salt-tolerant methanogens is synthesized by 6-ethenyl-lysine τϋηθ Genes are quite different. These two strains of burnt ancient lungs to protect iif low 'and have more negatively charged amino acids' can be exchanged with hydroxide ions, ί two surfaces for hydration layer, and maintain the hydrophobic surface Sex, in the formation of high-two bismuth; 唁 salty, salt-tolerant biological protein and salt into the halophilic, salt-tolerant biological protein can resist the organic solvent hall i'乂ϋ brother. The lysine 2 > aminotransferase and the ρ-; succinyltransferase have the characteristics of salt tolerance and high solvent resistance, and are more suitable for industrial and extracellular production applications. The implementation of ϋ ί ί ί ί ί 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 宿主 ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί The obtained fragment was ligated with the plastid pGEM_7zf, and the obtained plastid was screened and confirmed by sequencing to have the gene of lysine 2,3-aminotransferase and β-lysine acetyltransferase. After performing a polymerase chain reaction, the restriction ends can be nicked at each end of the ruthenium (

mel-McablQ-Noil、Nhel-MpablA-XhcA 瓦 Nhel-Mpam-XhcA)的I ,。將其選殖至pGEM®-T Easy vector後,轉形至勝任細胞大腸桿 菌JM101 ’塗佈於含有IPTG/X_gal以及Ampicimn的LA phte上 進行筛選。經由藍白蒒選之後,挑選白㈣落培養並抽取質體, 接气以限制酶(鳩61、从^及瓜〇1)進行切割,篩選回收具有限 制酶切位的片段。再將其與經相同限制酶切割後之表現載體 ?:已丁211)於16。(:進行接合作帛16小時,分別再轉形至勝任細胞大 腸桿菌JM101,以抗藥性基因Ampr作為筛選標誌。更近一步利用 限制酶切割確認無誤後,將確認過的質體^ET21b_McabiA, pET21b-MpablA’ pET21b-McablB and pET21b-雄ablB)分別再轉形’ 至勝任細胞大腸桿菌BL21 (DE2)-RIL中,以IPTG誘導蛋白表現, 利用蛋白質電泳分析重組基因蛋白表現情況。 由圖3之結果顯示,、wMblA、McAWB以及场在 IPTG誘導下於大腸桿菌中皆有大量重組蛋白表現。而且,利用大 腸才干菌分別表現之這些重組蛋白,均以可溶性的蛋白呈現。 貫施例3.於大腸桿菌宿主異源共同表現甲烷古菌之與以氾 基因 。將貫施例2所獲得pGEM®-T-A7^I>M祕/Β_ΛΜ質體,以限制 酶(Mel與胸I)進行切割,筛選回收具有限制酶切位的片段。 再將其與_隱綱蝴後之魏賴pET28a於耽進行接 合作用/6小時’再轉形至勝任細胞大腸桿菌厕〇卜以抗藥性基 ,Kan%4_標誌、。更近—步湘限獅切割確認無誤後,將 確認過的質體(pET21b-尬ablA與pET28a她a_同時轉形至 勝任細胞大腸湖BL21 (DE2>RIL巾,以的㈣導她观八以 201247869 fitAblB蛋白共同表現’利用蛋白質電泳分析重組基因蛋白表 現情況。 將實施例2所獲得pGEM®-T揭el-蜂“勝施^質體,以限制 與伽)進行切割,筛選回收具有限制酶切位的片= 再將其與、____後之表現·卿撕於机進行接 合作用16小時’再轉形至勝任細胞大腸桿菌腿⑴,以抗藥性基 I^Kan作為_標誌、。更近—步關酶蝴確認無誤後,將 確忑過的ffl (pET21b姊ablA與pET28a姊ablB)啊轉形至勝 任細胞大腸桿g BL21 _2)孤t,以IPTG — MMblA以及 帅AblB蛋白共同表現,糊蛋白質電泳分析重組細蛋白表 況0 由圖4之結果顯示’ McAblA、她AblB、ΜΜ·以及释awb在 IPTG誘導下於大腸桿菌中皆有大量共同表現的重組蛋白。 實施例4.北方墨潰法分析甲烧古菌相容質f乙醯基賴胺酸 (A^-acetyl-p-ly sine)生合成基因受鹽逆境的影響 將嗜鹽性甲烷古菌Μ /7(?以_/_> FDF1分別培養在含有不 同鹽度(1.2, 1.65, 2.1,2.5及2.9 MNaCl)的無氧培養液中,培養至 中對數期以離心方式收集菌體。或二、將M FDF1 培養在1.2 MNaCl至中對數期,以厭氧操作方式,加入高鹽(2丄 3.0, 3.8及4.6 M NaCl)的無氧培養液使其最終鹽濃度為165, 2丄 2.5及2.9 M NaCl再繼續培養,並於不同的時間點以離心方式收集 菌體。隨後以Rare RNA套組(真興生物科技公司)萃取全細月包 RNA,利用TBE膠體進行電泳分析,利用semi_dry electr〇bl〇tter system (Galileo Bioscience)將 RNA 轉潰至 HybondTM-N+ Nylon 膜 上’並以短波紫外線固定器將核酸固定於模上,以相容質 A^-acetyl-p-lysine生合成基因(71φαΖ)/Α)為探針進行北方墨潰分 析。利用掃瞄器IamgeScannerTMII (Amersham Co.)將膜掃描成圖 擋’並以TINA software軟體分析膜上訊號大小(Versi〇n 2 〇9e, 17 201247869 raytest IsotopenmepgerSte)。基因相對轉錄量的計算方式是將目標 訊號值除以相對該目標訊號的16S rRNA訊號值所得。 圖5之實驗結果顯示,嗜鹽性甲院古菌MFDF1 會隨著外界鹽濃度的增加’其胞内A^-acetyl-p—lysine生合成基因的 表現量確實也會隨之增加。由此可推知,甲烷古菌的賴胺酸2,3_ 氨基轉位酶(lysine 2,3-amin〇mutaSe)以及β_賴胺酸乙醯基轉移’酶 (β-lysine acetyltmnsfemse)基因的表現會隨著鹽濃度 因^可_鶴縣絲提高此基_表婦,提高y乙酿基·β_ 賴胺酸(A^-acetyl-P-lysine)的累積。 其他具體熊樣 是,部特徵可以任何組合方式組合。於 之替代^徵取代。因此,除依相同、相等或類似目的 僅為-系列同等贼類似特徵舰指示’所揭示之各特徵I, mel-McablQ-Noil, Nhel-MpablA-XhcA tile Nhel-Mpam-XhcA). After colonization with the pGEM®-T Easy vector, transformation was performed on the competent E. coli JM101' onto a LA phte containing IPTG/X_gal and Ampicimn for screening. After selection by blue and white, the white (four) is selected and cultured, and the plastid is extracted, and the enzyme is cut by restriction enzymes (鸠61, from ^ and 〇1), and the fragment having the restriction enzyme cleavage site is screened and recovered. And then the expression vector after cutting with the same restriction enzymes: Ding 211) at 16. (: After 16 hours of cooperation, the cells were transformed into competent cell E. coli JM101, and the drug resistance gene Ampr was used as a screening marker. After further confirmation by restriction enzyme cleavage, the confirmed plastid ^ET21b_McabiA, pET21b-MpablA' pET21b-McablB and pET21b-male ablB) were re-transformed into the competent cell E. coli BL21 (DE2)-RIL, and the protein expression was induced by IPTG. The expression of recombinant protein was analyzed by protein electrophoresis. From the results shown in Fig. 3, wMblA, McAWB and the field exhibited a large amount of recombinant protein expression in Escherichia coli under the induction of IPTG. Moreover, these recombinant proteins expressed by the large intestine-producing bacteria are present as soluble proteins. Example 3. The heterologous E. coli host heterologously expresses the co-genesis of the methane archaea. The pGEM®-T-A7^I>M secret/Β_ΛΜ plastid obtained in Example 2 was cleaved with a restriction enzyme (Mel and chest I), and a fragment having a restriction enzyme cleavage site was selected and screened. Then, it was combined with Wei Lai pET28a in the _ hidden class, and then transferred to the competent cell E. coli toilet to resist the drug base, Kan%4_ mark. More recent - after the step of cutting the lion cut is confirmed, the confirmed plastids (pET21b-尬ablA and pET28a she a_ simultaneously transformed into the competent cell large intestine lake BL21 (DE2> RIL towel, with (four) lead her view eight The performance of the recombinant gene protein was analyzed by protein electrophoresis with the 201247869 fitAblB protein. The pGEM®-T obtained in Example 2 was uncovered, and the e-bee was used to cut the plastids to limit and gamma. The restriction cleavage site = the _ after the ____, the performance of the qing, tearing the machine for 16 hours 're-transformed to the competent cell E. coli leg (1), with the resistance group I ^ Kan as the _ mark, More closely - after the enzyme is confirmed, the ffl (pET21b姊ablA and pET28a姊ablB) will be transformed into the competent cell colon g g21 _2) l, with IPTG — MMblA and handsome AblB protein. Co-expression, paste protein electrophoresis analysis of recombinant fine protein conditions 0 The results of Figure 4 show that ' McAblA, her AblB, ΜΜ· and release awb have a large number of recombinant proteins in E. coli induced by IPTG. Example 4 .Northern ink collapse analysis The synthetic gene of A(-acetyl-p-ly sine) is affected by salt stress. The halophilic methane archaea 77 (?___> In an anaerobic medium containing different salinities (1.2, 1.65, 2.1, 2.5 and 2.9 MNaCl), the cells were cultured until the middle log phase to collect the cells by centrifugation. Or, the M FDF1 was cultured at 1.2 MNaCl to the middle log phase. Anaerobic operation, adding high-salt (2丄3.0, 3.8 and 4.6 M NaCl) anaerobic culture solution to the final salt concentration of 165, 2丄2.5 and 2.9 M NaCl and continue to culture at different time points The cells were collected by centrifugation, and then the RNA was extracted with a Rare RNA kit (Zhenxing Biotech Co., Ltd.), electrophoresed using TBE colloid, and RNA was spun using semi_dry electr〇bl〇tter system (Galileo Bioscience). On the HybondTM-N+ Nylon membrane, the nucleic acid was immobilized on a mold with a short-wave UV holder, and the homogenized A^-acetyl-p-lysine biosynthesis gene (71φαΖ)/Α was used as a probe for Northern ink collapse analysis. Scan the film into a map with the scanner IamgeScannerTM II (Amersham Co.) and use TINA The software software analyzes the signal size on the membrane (Versi〇n 2 〇9e, 17 201247869 raytest IsotopenmepgerSte). The relative transcript of a gene is calculated by dividing the target signal value by the 16S rRNA signal value relative to the target signal. The experimental results in Fig. 5 show that the halophilic A. facilis MFDF1 will increase with the increase of the concentration of the external salt, and the expression of the intracellular A^-acetyl-p-lysine biosynthesis gene will also increase. It can be inferred that the performance of lysine 2,3-aminotransferase (lysine 2,3-amin〇mutaSe) and β-lysine acetyltmnsfemse gene of methane archaea As the salt concentration increases, the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Other specific bears are that the features can be combined in any combination. Replace it with ^. Therefore, except for the same, equal or similar purpose, only the characteristics revealed by the - series equivalent thief-like feature ship indication'

從前述之說明,習於該 H 本特徵,且在未偏離其範圍下,1只人士可谷易地確定本發明之基 以使其適於各種不同用途與進行本發明之各種改變與修飾, 含其他具體態樣。 一况。因此’於申請專利範圍内亦包 201247869 【圖式簡單說明】 圖 1 為 M 似& KlF9705b 及 Μ 吋wca/饥治 FDF1 中ablA與ablB基因組及調節區之基因順序。 圖2為曱烷古菌乙醯基-β-賴胺酸(A^-acetyl-p-lysine)生合 成酵素之胺基酸序列的比較分析結果。(A)為曱炫(古菌與 C/osinW/ww如7m>2a/e (LAM)之賴胺酸2,3-氨基轉位酶胺基酸序 列的序列排列分析(sequence alignment),該排列分析是藉由Qustai W程式(SDSC Biology Workbench)所得,其中⑻:鐵原子之配體; (b): SAM結合功能域及PLP-結合位置的賴胺酸殘基;(c):辞結合位 置。(B)為曱烷古菌之乙醯基轉移酶與釀酒酵母Hatl之GCN-5相 關N-乙醯基轉移酶一級序列的保留模體A之的序列排列分析。 圖 3 列示 M ⑼诒 KlF9705b 及 Μ pom/ciz/饥诒 FDF1的AblA及AblB於大腸桿菌BL(DE3)-RIL之表現。到達中 對數期之大腸桿菌轉形株分別以IPTG處理4 (II)、8 (12)、22 (13) 小時’以誘導AblA及AblB表現,並以ΐ2·5°/〇 SDS-PAGE分離。 Μ:彩虹標記。箭號指出被誘導之AblA (藍色)及AblB (紅色) 蛋白質。 圖 4 列示 M chunghsingemis KlF9705b 反 H P〇rtucalensis FDF1的AblA及AWB於大腸桿菌BL(DE3)-RIL之共同表現。到 達中對數期之大腸桿菌轉形株分別以IPTG處理2 (ιι)、4 (12)、8 (13) 小時,以誘導AblA及AblB共同表現,並以12.5% SDS-PAGE分 離。M:彩虹標記。箭號指出被誘導之(藍色)及AblB (紅 色)蛋白質。 圖5列示M 於所指定鹽濃度培養基下生長之 的轉錄程度,以北方轉潰進行分析。(a)以丨探針雜 合之結果;(b)四分之一的總體RNA經變性瓊脂凝膠分離,以EtBr 染色及直接由uv光偵測之結果;(c)以TINA軟體計算之相對轉 錄量。 【主要元件符號說明】 201247869 序列表 <110>中興大學 <12,0>甲烷古菌之相容質趴乙酿基-β·賴胺酸生合成基因及其應用 <1608 <170> Patentln Version 3.4 <2101 <2Π>1320From the foregoing description, the features of the present invention, and without departing from the scope of the invention, the subject matter of the present invention can be readily adapted to various different uses and various changes and modifications of the invention. Contains other specific aspects. The situation. Therefore, it is also included in the scope of the patent application 201247869 [Simple description of the diagram] Figure 1 shows the genetic sequence of the ablA and ablB genomes and regulatory regions in M-like & KlF9705b and Μ 吋wca/ hunger FDF1. Fig. 2 shows the results of comparative analysis of the amino acid sequence of the arsenic archaea acetyl-p-lysine. (A) is a sequence alignment of the lysine 2,3-aminotransposase amino acid sequence of archaea (C and osinW/ww such as 7m> 2a/e (LAM), The alignment analysis was obtained by the Qustai W program (SDSC Biology Workbench), wherein (8): ligand of iron atom; (b): lysine residue of SAM binding domain and PLP-binding position; (c): combination of words (B) is a sequence alignment analysis of the retention motif A of the primary sequence of the N-acetyltransferase associated with the GCN-5 of the Saccharomyces cerevisiae Hatl. (9) The expression of AblA and AblB of 诒KlF9705b and Μpom/ciz/famine FDF1 in Escherichia coli BL(DE3)-RIL. The E. coli transformants arriving in the middle log phase were treated with IPTG 4 (II), 8 (12, respectively) , 22 (13) hours to induce AblA and AblB expression, and separated by ΐ2·5°/〇SDS-PAGE. Μ: rainbow marker. Arrow indicates induced AblA (blue) and AblB (red) protein Figure 4 shows the common performance of A blA and AWB of M chunghsingemis KlF9705b anti-HP〇rtucalensis FDF1 in Escherichia coli BL(DE3)-RIL. The transgenic plants were treated with IPTG for 2 (ι), 4 (12), and 8 (13) hours, respectively, to induce AblA and AblB to be expressed together and separated by 12.5% SDS-PAGE. M: rainbow marker. Arrow indicates induction (blue) and AblB (red) proteins. Figure 5 shows the degree of transcription of M grown in the specified salt concentration medium, analyzed by the northern collapse. (a) The result of heterozygous probes; b) One quarter of the total RNA is separated by denaturing agar gel, stained with EtBr and directly detected by uv light; (c) Relative transcript calculated by TINA software. [Key Symbol Description] 201247869 Sequence Listing <110>Zhongxing University<12,0> Compatible saccharide of methicillin-β-lysine synthesis gene and its application <1608 <170> Patentln Version 3.4 <2101 <2Π>1320

<212>DNA <2:丨 3> 时鹽性甲燒古菌 Afe/Zzawoca/cw/Ms K1 F9705b <4001 at^gaattat tttcacaaaa atacaaatcc ggagaatatc acaactcgat cggagaggat 60 gcaccccagt ggagggactg gcgctggcag atcgcccata ccgtccggag cctctcgatg 120 cttgagaagg ttttcggcat caccttcccc cccgaagagc gggagaagct gcaggagacg 180 atagataagt ttccccctgc tgcaacaccc tactatctct cgctcatcaa gaccgaggat 240 tatgccaatg atcccatctt ccggcaggcc gttccggttc ctgatgaaat gagggtggaa 300 gagtgtgagc ttgaagatcc ccttgccgaa gatagcgaca gcccggttcc ggggatcaca 360 caccggtatc cggatcgcgt cctcttcctt gtctcaaatg tctgcgcaat gtactgccgt 420 cattgtacac ggaagcggaa agtcggagat cgggacagaa tcccgacatg ggaggagatg 480 gaggtgggta tcacctatat tcgtgagcat cccgaggtcc gggatgtcct cctctcgggc 540 ggtgatccac tcatgctccc cgatgatctc cttgatagga tcctcaccca acttcgggcg 600 caccggtatc cggatcgcgt cctcttcctt gtctcaaatg tctgcgcaat gtactgccgt 420 cattgtacac ggaagcggaa agtcggagat cgggacagaa tcccgacatg ggaggagatg 480 gaggtgggta tcacctatat tcgtgagcat cccgaggtcc gggatgtcct cctctcgggc 540 ggtgatccac tcatgctccc cgatgatctc cttgatagga tcctcaccca acttcgggcg 600 attccgcatg tcgaggtgat ccggatcggg tcgagaaccc ctgtcgtcct tccattcaga 660 ataactgatg gtctggtgaa tgtcctcaaa aaacatcagc cgatctggct caatacccat 720 tttaatcatc cccaggagat caccccgagt gctgagaagg cacttgcgaa actcgcggat 780 gccgggattc cactcggcaa ccagtcggtc ctcctcgccg gagtgaatga ctgcccgagg 840 atcatgaagt cgctcgtcca gaagctcgtc aaaaacaggg tccggccgta ctatctctac 900 cagtgtgatc tctctgaggg tctctcgcac ttccggaccc cggtcgggaa ggggattgag 960 atcatggaga acctcatcgg ccatacaagc ggctttgcgg ttccaaccta tgtcatcgac 1020 gcacctggtg gcggcgggaa gatcccggtg atgccgacat atctcatatc gtactccacc 1080 aacaaggtga tcctcaggaa ctttgaaggg gtgatcacca cctaccggga gcctgacaac 1140 tatacctcga tcttctgtga tcgcaactgc aaggactgtt cactccagct gaaactcgag 1200 gccggagacg agcagcatgt cgtcgggatc gcaaagctcc tctcagatta tgatgaagcg 1260 201247869 1320 acggcactcg tccctgccga ctcggaacgg atggcacgga gagaggatga agaggagtga <210>2 <211>439<212>DNA <2:丨3> 盐盐甲甲菌菌 Afe/Zzawoca/cw/Ms K1 F9705b <4001 at^gaattat tttcacaaaa atacaaatcc ggagaatatc acaactcgat cggagaggat 60 gcaccccagt ggagggactg gcgctggcag atcgcccata ccgtccggag cctctcgatg 120 cttgagaagg ttttcggcat caccttcccc cccgaagagc gggagaagct gcaggagacg 180 atagataagt ttccccctgc tgcaacaccc tactatctct cgctcatcaa gaccgaggat 240 tatgccaatg atcccatctt ccggcaggcc gttccggttc ctgatgaaat gagggtggaa 300 gagtgtgagc ttgaagatcc ccttgccgaa gatagcgaca gcccggttcc ggggatcaca 360 caccggtatc cggatcgcgt cctcttcctt gtctcaaatg tctgcgcaat gtactgccgt 420 cattgtacac ggaagcggaa agtcggagat cgggacagaa tcccgacatg ggaggagatg 480 gaggtgggta tcacctatat tcgtgagcat cccgaggtcc gggatgtcct cctctcgggc 540 ggtgatccac tcatgctccc cgatgatctc cttgatagga Tcctcaccca acttcgggcg 600 caccggtatc cggatcgcgt cctcttcctt gtctcaaatg tctgcgcaat gtactgccgt 420 cattgtacac ggaagcggaa agtcggagat cgggacagaa tcccgacatg ggaggagatg 480 gaggtgggta tcacctatat tcgtgagcat cccgaggtcc gggatgtcct cctctcgggc 540 g gtgatccac tcatgctccc cgatgatctc cttgatagga tcctcaccca acttcgggcg 600 attccgcatg tcgaggtgat ccggatcggg tcgagaaccc ctgtcgtcct tccattcaga 660 ataactgatg gtctggtgaa tgtcctcaaa aaacatcagc cgatctggct caatacccat 720 tttaatcatc cccaggagat caccccgagt gctgagaagg cacttgcgaa actcgcggat 780 gccgggattc cactcggcaa ccagtcggtc ctcctcgccg gagtgaatga ctgcccgagg 840 atcatgaagt cgctcgtcca gaagctcgtc aaaaacaggg tccggccgta ctatctctac 900 cagtgtgatc tctctgaggg tctctcgcac ttccggaccc cggtcgggaa ggggattgag 960 atcatggaga acctcatcgg ccatacaagc ggctttgcgg ttccaaccta tgtcatcgac 1020 gcacctggtg gcggcgggaa gatcccggtg atgccgacat atctcatatc gtactccacc 1080 aacaaggtga tcctcaggaa ctttgaaggg gtgatcacca cctaccggga gcctgacaac 1140 tatacctcga tcttctgtga tcgcaactgc aaggactgtt cactccagct gaaactcgag 1200 gccggagacg agcagcatgt cgtcgggatc gcaaagctcc tctcagatta tgatgaagcg 1260 201247869 1320 acggcactcg tccctgccga ctcggaacgg atggcacgga gagaggatga agaggagtga < 210 > 2 < 211 >439

<212>PRT <2\3> 耐鹽性Ψ坑古菌 Methmoca/cuiuschmghsingensis KlF9705b <4002<212>PRT <2\3> salt-tolerant sputum archaea Methmoca/cuiuschmghsingensis KlF9705b <4002

Met Glu Leu Phe Ser Gin Lys Tyr Lys Ser Gly Glu Tyr His Asn Ser 15 10 15 lie Gly Glu Asp Ala Pro Gin Trp Arg Asp Trp Arg Trp Gin lie Ala 20 25 30Met Glu Leu Phe Ser Gin Lys Tyr Lys Ser Gly Glu Tyr His Asn Ser 15 10 15 lie Gly Glu Asp Ala Pro Gin Trp Arg Asp Trp Arg Trp Gin lie Ala 20 25 30

His Thr Val Arg Ser Leu Ser Met Leu Glu Lys Val Phe Gly lie Thr 35 40 45His Thr Val Arg Ser Leu Ser Met Leu Glu Lys Val Phe Gly lie Thr 35 40 45

Fhe Pro Pro Glu Glu Arg Glu Lys Leu Gin Glu Thr lie Asp Lys Phe 50 55 60Fhe Pro Pro Glu Glu Arg Glu Lys Leu Gin Glu Thr lie Asp Lys Phe 50 55 60

Pro Pro Ala Ala TTir Pro Tyr Tyr Leu Ser Leu lie Lys Thr Glu Asp 65 70 75 80Pro Pro Ala Ala TTir Pro Tyr Tyr Leu Ser Leu lie Lys Thr Glu Asp 65 70 75 80

Tyr Ala Asn Asp Pro lie Phe Arg Gin Ala Val Pro Val Pro Asp Glu 85 90 95Tyr Ala Asn Asp Pro lie Phe Arg Gin Ala Val Pro Val Pro Asp Glu 85 90 95

Met Arg Val Glu Glu Cys Glu Leu Glu Asp Pro Leu Ala Glu Asp Ser 100 105 110Met Arg Val Glu Glu Cys Glu Leu Glu Asp Pro Leu Ala Glu Asp Ser 100 105 110

Asp Ser Pro Val Pro Gly lie Thr His Arg Tyr Pro Asp Arg Val Leu 115 120 125Asp Ser Pro Val Pro Gly lie Thr His Arg Tyr Pro Asp Arg Val Leu 115 120 125

Phe Leu Val Ser Asn Val Cys Ala Met Tyr Cys Arg His Cys Thr Arg 130 135 140Phe Leu Val Ser Asn Val Cys Ala Met Tyr Cys Arg His Cys Thr Arg 130 135 140

Lys Arg Lys Val Gly Asp Arg Asp Arg lie Pro Thr Trp Glu Glu Met 14:5 150 155 160Lys Arg Lys Val Gly Asp Arg Asp Arg lie Pro Thr Trp Glu Glu Met 14:5 150 155 160

Glu Val Gly lie Thr Tyr He Arg Glu His Pro Glu Val Arg Asp Val 165 170 175Glu Val Gly lie Thr Tyr He Arg Glu His Pro Glu Val Arg Asp Val 165 170 175

Leu Leu Ser Gly Gly Asp Pro Leu Met Leu Pro Asp Asp Leu Leu Asp 180 185 190Leu Leu Ser Gly Gly Asp Pro Leu Met Leu Pro Asp Asp Leu Leu Asp 180 185 190

Arg lie Leu Thr Gin Leu Arg Ala He Pro His Val Glu Val lie Arg 195 200 205 lie Gly Ser Arg Thr Pro Val Val Leu Pro Rie Arg lie Thr Asp Gly 210 215 220Arg lie Leu Thr Gin Leu Arg Ala He Pro His Val Glu Val lie Arg 195 200 205 lie Gly Ser Arg Thr Pro Val Val Leu Pro Rie Arg lie Thr Asp Gly 210 215 220

Leu Val Asn Val Leu Lys Lys His Gin Pro lie Trp Leu Asn Thr His 225 230 235 240Leu Val Asn Val Leu Lys Lys His Gin Pro lie Trp Leu Asn Thr His 225 230 235 240

Fhe Asn His Pro Gin Glu lie Thr Pro Ser Ala Glu Lys Ala Leu Ala 245 250 255Fhe Asn His Pro Gin Glu lie Thr Pro Ser Ala Glu Lys Ala Leu Ala 245 250 255

Lys Leu Ala Asp Ala Gly lie Pro Leu Gly Asn Gin Ser Val Leu Leu 260 265 270Lys Leu Ala Asp Ala Gly lie Pro Leu Gly Asn Gin Ser Val Leu Leu 260 265 270

Ala Gly Val Asn Asp Cys Pro Arg lie Met Lys Ser Leu Val Gin Lys 2 201247869 275 280 285Ala Gly Val Asn Asp Cys Pro Arg lie Met Lys Ser Leu Val Gin Lys 2 201247869 275 280 285

Leu Val Lys Asn Arg Val Arg Pro Tyr Tyr Leu Tyr Gin Cys Asp Leu 290 295 300Leu Val Lys Asn Arg Val Arg Pro Tyr Tyr Leu Tyr Gin Cys Asp Leu 290 295 300

Ser Glu Gly Leu Ser His Phe Arg Thr Pro Val Gly Lys Gly lie Glu 305 310 315 320 lie Met Glu Asn Leu lie Gly His Thr Ser Gly Phe Ala Val Pro Thr 325 330 335Ser Glu Gly Leu Ser His Phe Arg Thr Pro Val Gly Lys Gly lie Glu 305 310 315 320 lie Met Glu Asn Leu lie Gly His Thr Ser Gly Phe Ala Val Pro Thr 325 330 335

Tyr Val He Asp Ala Pro Gly Gly Gly Gly Lys lie Pro Val Met Pro 340 345 350Tyr Val He Asp Ala Pro Gly Gly Gly Gly Lys lie Pro Val Met Pro 340 345 350

Thr Tyr Leu lie Ser Tyr Ser Thr Asn Lys Val lie Leu Arg Asn Rie 355 360 365Thr Tyr Leu lie Ser Tyr Ser Thr Asn Lys Val lie Leu Arg Asn Rie 355 360 365

Glu Gly Val lie Thr Thr Tyr Arg Glu Pro Asp Asn Tyr Thr Ser lie 370 375 380Glu Gly Val lie Thr Thr Tyr Arg Glu Pro Asp Asn Tyr Thr Ser lie 370 375 380

Phe Cys Asp Arg Asn Cys Lys Asp Cys Ser Leu Gin Leu Lys Leu Glu 385 390 395 400Phe Cys Asp Arg Asn Cys Lys Asp Cys Ser Leu Gin Leu Lys Leu Glu 385 390 395 400

Ala Gly Asp Glu Gin His Val Val Gly lie Ala Lys Leu Leu Ser Asp 405 410 415Ala Gly Asp Glu Gin His Val Val Gly lie Ala Lys Leu Leu Ser Asp 405 410 415

Tyr Asp Glu Ala Thr Ala Leu Val Pro Ala Asp Ser Glu Arg Met Ala 420 425 430Tyr Asp Glu Ala Thr Ala Leu Val Pro Ala Asp Ser Glu Arg Met Ala 420 425 430

Arg Arg Glu Asp Glu Glu Glu 435 <2103 <211>858Arg Arg Glu Asp Glu Glu Glu 435 <2103 <211>858

<212>DNA <213> 耐鹽性,说古菌 Methanocalculuschunghsingemis KAF97Q5b <4003 atgaagagga gtgatccggt catcagggtg ggccgaagcc tcatccagca tggaagctat 60 aacaatcgga tctacctgat gaaactcgat cctgaggata ccgccctcat tcttggttgg 120 atccgggaga cgcttgaaga agaggggtat agcaaggtct tcgcaaagat cccgggtccg 180 gctgcacctg catttgagag ggaggggttc ggcgttgagg cgagaatccc cggctacttc 240 agaaatggtg atacctgtct cttcatgggg aagtacaccg atccctcgcg gagggagiat 300 aatgaggaag gggtagccgt agcactcggg actgccttag aacgggcagg ttcaggccat 360 aatccattaa aggagggata tctgatccat gaggcagacc tttccgatgc tgaggcgctt 420 gcagagctct atggaacggt ctttccgagc tacccgtttc cgatagatga tcccggcttc 480 atacagacct cgatagagag cggggagacc cgtttcttta tggtgatgaa cggagagacc 540 ctcctcgccg cctcgtcggc agaacttgac cctgattccg gaacggtcga gatgactgac 600 tttgcgaccc tcccggaggc gagggggctc ggtgttgccg gtgctctcct gagacatatg 660 gaaggggttg tacgggatga cggctatcat cttgcctaca ccatctgccg tggcgaggag 720 cctgcggtga atatcctctt tgcacgtgga gggtaccagt ttgccggcac cctcccgaac 780 aatacccaga ttggaggagg atttgagagt atgaatgtct ggtaccgatc ccttcttacg 840 aacccttcgc ctggttaa 858 3 201247869 <210>4 <2I1>285≪ 212 > DNA < 213 > tolerance, said archaea Methanocalculuschunghsingemis KAF97Q5b < 4003 atgaagagga gtgatccggt catcagggtg ggccgaagcc tcatccagca tggaagctat 60 aacaatcgga tctacctgat gaaactcgat cctgaggata ccgccctcat tcttggttgg 120 atccgggaga cgcttgaaga agaggggtat agcaaggtct tcgcaaagat cccgggtccg 180 gctgcacctg catttgagag ggaggggttc ggcgttgagg cgagaatccc cggctacttc 240 agaaatggtg atacctgtct cttcatgggg aagtacaccg atccctcgcg gagggagiat 300 aatgaggaag gggtagccgt agcactcggg actgccttag aacgggcagg ttcaggccat 360 aatccattaa aggagggata tctgatccat gaggcagacc tttccgatgc tgaggcgctt 420 gcagagctct atggaacggt ctttccgagc tacccgtttc cgatagatga tcccggcttc 480 atacagacct cgatagagag cggggagacc cgtttcttta tggtgatgaa cggagagacc 540 ctcctcgccg cctcgtcggc agaacttgac cctgattccg gaacggtcga gatgactgac 600 tttgcgaccc tcccggaggc gagggggctc ggtgttgccg gtgctctcct gagacatatg 660 gaaggggttg tacgggatga Cggctatcat cttgcctaca ccatctgccg tggcgaggag 720 cctgcggtga atatcctctt tgcacgtgga gggtaccagt ttgccggcac cctcccgaa c 780 aatacccaga ttggaggagg atttgagagt atgaatgtct ggtaccgatc ccttcttacg 840 aacccttcgc ctggttaa 858 3 201247869 <210>4 <2I1>285

<2;[2>PRT <213> 耐骚性ψ'跋j古菌 Methanocalcu丨uschmghsingensisKAF9705b <4Q0>4<2;[2>PRT <213> Saskatchewan ψ'跋j archaea Methanocalcu丨uschmghsingensisKAF9705b <4Q0>4

Mel. Lys Arg Ser Asp Pro Val lie Arg Val Gly Arg Ser Leu lie Gin 15 10 15Mel. Lys Arg Ser Asp Pro Val lie Arg Val Gly Arg Ser Leu lie Gin 15 10 15

His Gly Ser Tyr Asn Asn Arg He Tyr Leu Met Lys Leu Asp Pro Glu 20 25 30His Gly Ser Tyr Asn Asn Arg He Tyr Leu Met Lys Leu Asp Pro Glu 20 25 30

Asp Thr Ala Leu lie Leu Gly Trp lie Arg Glu Thr Leu Glu Glu Glu 35 40 45Asp Thr Ala Leu lie Leu Gly Trp lie Arg Glu Thr Leu Glu Glu Glu 35 40 45

Gly Tyr Ser Lys Val Phe Ala Lys lie Pro Gly Pro Ala Ala Pro Ala 50 55 60Gly Tyr Ser Lys Val Phe Ala Lys lie Pro Gly Pro Ala Ala Pro Ala 50 55 60

Phe Glu Arg Glu Gly Hie Gly Val Glu Ala Arg lie Pro Gly Tyr Phe 65 70 75 80 hr\l Asn Gly Asp Thr Cys Leu Phe Met Gly Lys Tyr Tlir Asp Pro Ser 85 90 95Phe Glu Arg Glu Gly Hie Gly Val Glu Ala Arg lie Pro Gly Tyr Phe 65 70 75 80 hr\l Asn Gly Asp Thr Cys Leu Phe Met Gly Lys Tyr Tlir Asp Pro Ser 85 90 95

Arg Arg Glu Tyr Asn Glu Glu Gly Val Ala Val Ala Leu Gly Thr Ala loo 105 noArg Arg Glu Tyr Asn Glu Glu Gly Val Ala Val Ala Leu Gly Thr Ala loo 105 no

Leu Glu Arg Ala Gly Ser Gly His Asn Pro Leu Lys Glu Gly Tyr Leu 115 120 125 lie His Glu Ala Asp Leu Ser Asp Ala Glu Ala Leu Ala Glu Leu Tyr 130 135 140Leu Glu Arg Ala Gly Ser Gly His Asn Pro Leu Lys Glu Gly Tyr Leu 115 120 125 lie His Glu Ala Asp Leu Ser Asp Ala Glu Ala Leu Ala Glu Leu Tyr 130 135 140

Gly Thr Val Phe Pro Ser Tyr Pro Fhe Pro lie Asp Asp Pro Gly Phe 14:5 150 155 160 lie Gin Thr Ser lie Glu Ser Gly Glu Thr Arg Phe Phe Met Val Met 165 170 175Gly Thr Val Phe Pro Ser Tyr Pro Fhe Pro lie Asp Asp Pro Gly Phe 14:5 150 155 160 lie Gin Thr Ser lie Glu Ser Gly Glu Thr Arg Phe Phe Met Val Met 165 170 175

Asn Gly Glu Thr Leu Leu Ala Ala Ser Ser Ala Glu Leu Asp Pro Asp 180 185 190Asn Gly Glu Thr Leu Leu Ala Ala Ser Ser Ala Glu Leu Asp Pro Asp 180 185 190

Ser Gly Thr Val Glu Met Thr Asp Phe Ala Thr Leu Pro Glu Ala Arg 195 200 205Ser Gly Thr Val Glu Met Thr Asp Phe Ala Thr Leu Pro Glu Ala Arg 195 200 205

Gly Leu Gly Val Ala Gly Ala Leu Leu Arg His Met Glu Gly Val Val 210 215 220Gly Leu Gly Val Ala Gly Ala Leu Leu Arg His Met Glu Gly Val Val 210 215 220

Arg Asp Asp Gly Tyr His Leu Ala Tyr Thr lie Cys Arg Gly Glu Glu 22:5 230 235 240Arg Asp Asp Gly Tyr His Leu Ala Tyr Thr lie Cys Arg Gly Glu Glu 22:5 230 235 240

Pro Ala Val Asn lie Leu Phe Ala Arg Gly Gly Tyr Gin Phe Ala Gly 245 250 255Pro Ala Val Asn lie Leu Phe Ala Arg Gly Gly Tyr Gin Phe Ala Gly 245 250 255

Thr Leu Pro Asn Asn Thr Gin lie Gly Gly Gly Phe Glu Ser Met Asn 260 265 270Thr Leu Pro Asn Asn Thr Gin lie Gly Gly Gly Phe Glu Ser Met Asn 260 265 270

Val Trp Tyr Arg Ser Leu Leu Thr Asn Pro Ser Pro Gly 275 280 285 201247869 <2105 <211>1314Val Trp Tyr Arg Ser Leu Leu Thr Asn Pro Ser Pro Gly 275 280 285 201247869 <2105 <211>1314

<212>DNA <2].3> 令鹽,悅古菌 Methanohalophihisportucalensis FDF\ <400>5 atgacacagc acacacaagc acaaaaagaa atagctaaaa aaatcgattc tgatactgtt 60 att:gccaact ggaaggattg gagatggcaa ctcaagcatt ctattggtga tattgataca 120 tugagactt tacttggcat caaattcaaa cccggggaaa aggataaact caaacaaact 180 ctggaaaaat tcccattate cgtaactcca tactaccttt ccctcataga tgccgaggat 240 ttcaggaatg atcccatatt cctgcaggcc tttccttcac caaaggagct ggacatcgat 300 gaagaegate ttgaagatcc tctttctgag gatgaggaca gtcctgttga aggaatcaca 360 cacaggtatc cggacagggt actattccat ataagcaaca catgttcgat gtactgcagg 420 cactgtacac gtaagagaaa agtgggagat gtagattcca ttcctacaaa ggatgcagtc 480 tetgaaggae tggaatacat caggaatacc ccacaggtac gagatgtcct gctttcgggc 540 ggagatcctt ttatgttgcc tgatgettat ctggactgga tcctggcaaa attgcgggaa 600 attcctcatg ttgagattat tegtateggt acaaggatgc ccgtggtgct tccttacagg 660 gtaactgatg atcttgtaaa aatactcaaa aagcatcatc cgctctggat caatactcac 720 ttcaaccatc cacgtgaagt aaeggeatet tccagggaag ccctgcgcaa aettgeagat 780 gcaggaattc ccctcggaaa ccagacggtg ttactttcag gagtgaatga ctgccacagg 840 attatgaaaa ggcttgtaca gaaacttgtg caaaaccgtg taegteetta ttatctctac 900 cagtgtgacc ttteggaagg cctgtcccat ttccgcactc cggttggcaa gggtatagaa 960 ataatggaac acctcatcgg ccacacaagt ggttttgcag ttcctaccta tgttatcgat 1020 gctccccatg gaggaggtaa gatacctgtc atgccttcct atettatate ctggtccacc 1080 aacagggtta ttttgcgtaa ctatgagggt gtaatcacct catataaaga accggattcc 1140 tatgageega tatactgtga ccgtaaatgc gaagaatgta aactccagct caaacttgac 1200 gatgeagetg aatataaatc tacaggtatt gcaaaactgc ttgccgataa tgatgaagtt 1260 gtaagtcttg taccggaaga taccgaaaga atggagagaa gggacgttga gtga 1314 <2106 <2.11>437≪ 212 > DNA < 2] .3 > order salt, Wyatt archaea Methanohalophihisportucalensis FDF \ < 400 > 5 atgacacagc acacacaagc acaaaaagaa atagctaaaa aaatcgattc tgatactgtt 60 att: gccaact ggaaggattg gagatggcaa ctcaagcatt ctattggtga tattgataca 120 tugagactt tacttggcat caaattcaaa cccggggaaa aggataaact caaacaaact 180 ctggaaaaat tcccattate cgtaactcca tactaccttt ccctcataga tgccgaggat 240 ttcaggaatg atcccatatt cctgcaggcc tttccttcac caaaggagct ggacatcgat 300 gaagaegate ttgaagatcc tctttctgag gatgaggaca gtcctgttga aggaatcaca 360 cacaggtatc cggacagggt actattccat ataagcaaca catgttcgat gtactgcagg 420 cactgtacac gtaagagaaa agtgggagat gtagattcca ttcctacaaa ggatgcagtc 480 tetgaaggae tggaatacat caggaatacc ccacaggtac gagatgtcct gctttcgggc 540 ggagatcctt ttatgttgcc tgatgettat ctggactgga tcctggcaaa attgcgggaa 600 attcctcatg ttgagattat Tegtateggt acaaggatgc ccgtggtgct tccttacagg 660 gtaactgatg atcttgtaaa aatactcaaa aagcatcatc cgctctggat caatactcac 720 ttcaaccatc cacgtgaagt aaeggeatet tccagggaag ccctgcgcaa aettgeagat 780 gcaggaattc ccctcggaaa ccagacggtg ttactttcag gagtgaatga ctgccacagg 840 attatgaaaa ggcttgtaca gaaacttgtg caaaaccgtg taegteetta ttatctctac 900 cagtgtgacc ttteggaagg cctgtcccat ttccgcactc cggttggcaa gggtatagaa 960 ataatggaac acctcatcgg ccacacaagt ggttttgcag ttcctaccta tgttatcgat 1020 gctccccatg gaggaggtaa gatacctgtc atgccttcct atettatate ctggtccacc 1080 aacagggtta ttttgcgtaa ctatgagggt gtaatcacct catataaaga accggattcc 1140 tatgageega tatactgtga ccgtaaatgc gaagaatgta aactccagct caaacttgac 1200 Gatgeagetg aatataaatc tacaggtatt gcaaaactgc ttgccgataa tgatgaagtt 1260 gtaagtcttg taccggaaga taccgaaaga atggagagaa gggacgttga gtga 1314 <2106 <2.11>437

<2.12>PRT <2\3> 靖盤ψ、炭古错 Methanohalophiiuspomtcaiensis FDF\ <4006<2.12>PRT <2\3> 靖盘ψ,炭古错 Methanohalophiiuspomtcaiensis FDF\ <4006

Met Thr Gin His Thr Gin Ala Gin Lys Glu lie Ala Lys Lys lie Asp 15 10 15Met Thr Gin His Thr Gin Ala Gin Lys Glu lie Ala Lys Lys lie Asp 15 10 15

Ser Asp Thr Val lie Ala Asn Trp Lys Asp Trp Arg Trp Gin Leu Lys 20 25 30Ser Asp Thr Val lie Ala Asn Trp Lys Asp Trp Arg Trp Gin Leu Lys 20 25 30

His Ser lie Gly Asp lie Asp Thr Phe Glu Thr Leu Leu Gly lie Lys 35 40 45His Ser lie Gly Asp lie Asp Thr Phe Glu Thr Leu Leu Gly lie Lys 35 40 45

Hie Lys Pro Gly Glu Lys Asp Lys Leu Lys Gin Thr Leu Glu Lys Phe . 5 201247869 50 55 60Hie Lys Pro Gly Glu Lys Asp Lys Leu Lys Gin Thr Leu Glu Lys Phe . 5 201247869 50 55 60

Pro Leu Ser Val Thr Pro Tyr Tyr Leu Ser Leu lie Asp Ala Glu Asp 65 70 75 80Pro Leu Ser Val Thr Pro Tyr Tyr Leu Ser Leu lie Asp Ala Glu Asp 65 70 75 80

Phe Arg Asn Asp Pro lie Phe Leu Gin Ala Phe Pro Ser Pro Lys Glu 85 90 95Phe Arg Asn Asp Pro lie Phe Leu Gin Ala Phe Pro Ser Pro Lys Glu 85 90 95

Leu Asp He Asp Glu Asp Asp Leu Glu Asp Pro Leu Ser Glu Asp Glu 100 105 110Leu Asp He Asp Glu Asp Asp Leu Glu Asp Pro Leu Ser Glu Asp Glu 100 105 110

Asp Ser Pro Val Glu Gly lie Thr His Arg Tyr Pro Asp Arg Val Leu 115 120 125Asp Ser Pro Val Glu Gly lie Thr His Arg Tyr Pro Asp Arg Val Leu 115 120 125

Hie His lie Ser Asn Thr Cys Ser Met Tyr Cys Arg His Cys Thr Arg 130 135 140Hie His lie Ser Asn Thr Cys Ser Met Tyr Cys Arg His Cys Thr Arg 130 135 140

Lys Arg Lys Val Gly Asp Val Asp Ser lie Pro Thr Lys Asp Ala Val 145 150 155 160Lys Arg Lys Val Gly Asp Val Asp Ser lie Pro Thr Lys Asp Ala Val 145 150 155 160

Set Glu Gly Leu Glu Tyr lie Arg Asn Thr Pro Gin Val Arg Asp Val 165 170 175Set Glu Gly Leu Glu Tyr lie Arg Asn Thr Pro Gin Val Arg Asp Val 165 170 175

Leu Leu Ser Gly Gly Asp Pro Phe Met Leu Pro Asp Ala Tyr Leu Asp 180 185 190Leu Leu Ser Gly Gly Asp Pro Phe Met Leu Pro Asp Ala Tyr Leu Asp 180 185 190

Trp lie Leu Ala Lys Leu Arg Glu He Pro His Val Glu lie lie Arg 195 200 205Trp lie Leu Ala Lys Leu Arg Glu He Pro His Val Glu lie lie Arg 195 200 205

He Gly Thr Arg Met Pro Val Val Leu Pro Tyr Arg Val Thr Asp Asp 210 215 220He Gly Thr Arg Met Pro Val Val Leu Pro Tyr Arg Val Thr Asp Asp 210 215 220

Leu Val Lys lie Leu Lys Lys His His Pro Leu Trp lie Asn Thr His 225 230 235 240Leu Val Lys lie Leu Lys Lys His His Pro Leu Trp lie Asn Thr His 225 230 235 240

Phe Asn His Pro Arg Glu Val Thr Ala Ser Ser Arg Glu Ala Leu Arg 245 250 255Phe Asn His Pro Arg Glu Val Thr Ala Ser Ser Arg Glu Ala Leu Arg 245 250 255

Lys Leu Ala Asp Ala Gly lie Pro Leu Gly Asn Gin Thr Val Leu Leu 260 265 270Lys Leu Ala Asp Ala Gly lie Pro Leu Gly Asn Gin Thr Val Leu Leu 260 265 270

Ser Gly Val Asn Asp Cys His Arg lie Met Lys Arg Leu Val Gin Lys 275 280 285 k:u Val Gin Asn Arg Val Arg Pro Tyr Tyr Leu Tyr Gin Cys Asp Leu 290 295 300Ser Gly Val Asn Asp Cys His Arg lie Met Lys Arg Leu Val Gin Lys 275 280 285 k:u Val Gin Asn Arg Val Arg Pro Tyr Tyr Leu Tyr Gin Cys Asp Leu 290 295 300

Ser Glu Gly Leu Ser His Phe Arg Thr Pro Val Gly Lys Gly lie Glu 305 310 315 320 lie Met Glu His Leu lie Gly His Thr Ser Gly Phe Ala Val Pro Thr 325 330 335Ser Glu Gly Leu Ser His Phe Arg Thr Pro Val Gly Lys Gly lie Glu 305 310 315 320 lie Met Glu His Leu lie Gly His Thr Ser Gly Phe Ala Val Pro Thr 325 330 335

Tyr Val lie Asp Ala Pro His Gly Gly Gly Lys lie Pro Val Met Pro 340 345 350Tyr Val lie Asp Ala Pro His Gly Gly Gly Lys lie Pro Val Met Pro 340 345 350

Ser Tyr Leu lie Ser Trp Ser Thr Asn Arg Val lie Leu Arg Asn Tyr 355 360 365Ser Tyr Leu lie Ser Trp Ser Thr Asn Arg Val lie Leu Arg Asn Tyr 355 360 365

Glu Gly Val lie Thr Ser Tyr Lys Glu Pro Asp Ser Tyr Glu Pro lie 370 375 380Glu Gly Val lie Thr Ser Tyr Lys Glu Pro Asp Ser Tyr Glu Pro lie 370 375 380

Tyr Cys Asp Arg Lys Cys Glu Glu Cys Lys Leu Gin Leu Lys Leu Asp 385 390 395. 400 201247869Tyr Cys Asp Arg Lys Cys Glu Glu Cys Lys Leu Gin Leu Lys Leu Asp 385 390 395. 400 201247869

Asp Ala Ala Glu Tyr Lys Ser Thr Gly He Ala Lys Leu Leu Ala Asp 405 410 415Asp Ala Ala Glu Tyr Lys Ser Thr Gly He Ala Lys Leu Leu Ala Asp 405 410 415

Asn Asp Glu Val Val Ser Leu Val Pro Glu Asp Thr Glu Arg Met Glu 420 425 430Asn Asp Glu Val Val Ser Leu Val Pro Glu Asp Thr Glu Arg Met Glu 420 425 430

Arg Arg Asp Val Glu 435 <2107Arg Arg Asp Val Glu 435 <2107

<211>83I<211>83I

<212>DNA <2]3> 嗜骚 古镜 MethanohalopMusportucaiemisFOF\ <m>i tt^agtgata taatcgaaaa tataggcagc tccctgatcc agcacggtac gtacaacaat 60 cgtatttacc ttatgaaact ggatactggc gatctgccgg atattatacc tgaaatggat 120 ca^tiggcag aacaacgcgg ctacagcaag atatttgcaa aagtccctgc agattccaga 180 gtcgcttttg aagcaaaggg atatataaag gaggctggtg ttcccggcta ttattccggc 240 aagaaagaag ccctgttcat gtgtaaatat ttctcagagc acagacagga ggacacacag 300 gccgaggatg accggatcat caccactgcc agaggtaagg caggagacat catgaaacct 360 gaattacccg aaggtttcct tatacggata tgtacggaag cggatgtgcc tgcaatggca 420 gagatctacg ccgaagtgtt ccctacatat ccttttecta tccaggaccc ggcctacctg 480 aaagagacca tggaagataa tgttgtatat ttcgcagttg aaaatgaagg taacatagtt 540 gccctttcct cctgcgagat cgattttgaa aaccggaatg eggaaatgae cgactttgcc 600 acactccctc agttcagggg aatgggtctg tccacttatc tcctctcaaa gatggaaaca 660 gaaatgaata agaaagggat ccttatcttt tatacaattg cccgggccgc gtcctatggt 720 atgaatactg tttttgcaag gcttgggtat gaatttaccg gaaaacttgt tcaaaatacc 780 aatatatccg gtaaccttga aaatatgaat gtatggtaca agcgcatctg a 831 CH>8 <!11>276i tt ^ agtgata taatcgaaaa tataggcagc tccctgatcc agcacggtac gtacaacaat 60 cgtatttacc ttatgaaact ggatactggc gatctgccgg atattatacc tgaaatggat 120 ca ^ tiggcag aacaacgcgg ctacagcaag atatttgcaa aagtccctgc agattccaga 180 gtcgcttttg aagcaaaggg atatataaag; < 212 > DNA < 2] 3 > addicted Sao ancient mirror MethanohalopMusportucaiemisFOF \ < m & gt gaggctggtg ttcccggcta ttattccggc 240 aagaaagaag ccctgttcat gtgtaaatat ttctcagagc acagacagga ggacacacag 300 gccgaggatg accggatcat caccactgcc agaggtaagg caggagacat catgaaacct 360 gaattacccg aaggtttcct tatacggata tgtacggaag cggatgtgcc tgcaatggca 420 gagatctacg ccgaagtgtt ccctacatat ccttttecta tccaggaccc ggcctacctg 480 aaagagacca tggaagataa tgttgtatat ttcgcagttg aaaatgaagg taacatagtt 540 gccctttcct cctgcgagat cgattttgaa aaccggaatg eggaaatgae cgactttgcc 600 acactccctc agttcagggg aatgggtctg tccacttatc Tcctctcaaa gatggaaaca 660 gaaatgaata agaaagggat ccttatcttt tatacaattg cccgggccgc gtcctatggt 720 atgaatactg tttttgcaag gcttgggtat gaatttaccg gaaaacttgt tcaaaatacc 780 aatatat Ccg gtaaccttga aaatatgaat gtatggtaca agcgcatctg a 831 CH>8 <!11>276

<il2>PRT <213> 吃鹽古菌 MethanohabphilusporiucalensisFOF] <400>8<il2>PRT <213> Eating salt archaea MethanohabphilusporiucalensisFOF] <400>8

Met Ser Asp lie lie Glu Asn lie Gly Ser Ser Leu lie Gin His Gly 1 5 · 10 15 Ήιγ Tyr Asn Asn Arg lie Tyr Leu Met Lys Leu Asp Thr Gly Asp Leu 20 25 30Met Ser Asp lie lie Glu Asn lie Gly Ser Ser Leu lie Gin His Gly 1 5 · 10 15 Ήιγ Tyr Asn Asn Arg lie Tyr Leu Met Lys Leu Asp Thr Gly Asp Leu 20 25 30

Pro Asp lie lie Pro Glu Met Asp Gin Leu Ala Glu Gin Arg Gly Tyr 35 40 45Pro Asp lie lie Pro Glu Met Asp Gin Leu Ala Glu Gin Arg Gly Tyr 35 40 45

Ser Lys He Rie Ala Lys Val Pro Ala Asp Ser Arg Val Ala Phe Glu 50 55 60Ser Lys He Rie Ala Lys Val Pro Ala Asp Ser Arg Val Ala Phe Glu 50 55 60

Ala Lys Gly Tyr lie Lys Glu Ala Gly Val Pro Gly Tyr Tyr Ser Gly 7 201247869 65 70 75 80Ala Lys Gly Tyr lie Lys Glu Ala Gly Val Pro Gly Tyr Tyr Ser Gly 7 201247869 65 70 75 80

Lys Lys Glu Ala Leu Phe Met Cys Lys Tyr Phe Ser Glu His Arg Gin 85 90 95Lys Lys Glu Ala Leu Phe Met Cys Lys Tyr Phe Ser Glu His Arg Gin 85 90 95

Glu Asp Thr Gin Ala Glu Asp Asp Arg lie lie Thr Tlir Ala Arg Gly 100 105 110Glu Asp Thr Gin Ala Glu Asp Asp Arg lie lie Thr Tlir Ala Arg Gly 100 105 110

Lys Ala Gly Asp lie Met Lys Pro Glu Leu Pro Glu Gly Phe Leu lie 115 120 125Lys Ala Gly Asp lie Met Lys Pro Glu Leu Pro Glu Gly Phe Leu lie 115 120 125

Arg lie Cys Thr Glu Ala Asp Val Pro Ala Met Ala Glu lie Tyr Ala 130 135 140Arg lie Cys Thr Glu Ala Asp Val Pro Ala Met Ala Glu lie Tyr Ala 130 135 140

Glu Val Fhe Pro ΤΤπ Tyr Pro Phe Pro lie Gin Asp Pro Ala Tyr Leu 145 150 155 160Glu Val Fhe Pro ΤΤπ Tyr Pro Phe Pro lie Gin Asp Pro Ala Tyr Leu 145 150 155 160

Lys Glu Thr Met Glu Asp Asn Val Val Tyr Phe Ala Val Glu Asn Glu 165 170 175Lys Glu Thr Met Glu Asp Asn Val Val Tyr Phe Ala Val Glu Asn Glu 165 170 175

Gly Asn lie Val Ala Leu Ser Ser Cys Glu lie Asp Phe Glu Asn Arg 180 185 190Gly Asn lie Val Ala Leu Ser Ser Cys Glu lie Asp Phe Glu Asn Arg 180 185 190

Asn Ala Glu Met Thr Asp Phe Ala Thr Leu Pro Gin Phe Arg Gly Met 195 200 205Asn Ala Glu Met Thr Asp Phe Ala Thr Leu Pro Gin Phe Arg Gly Met 195 200 205

Gly Leu Ser Tlir Tyr Leu Leu Ser Lys Met Glu Thr Glu Met Asn Lys 210 215 220Gly Leu Ser Tlir Tyr Leu Leu Ser Lys Met Glu Thr Glu Met Asn Lys 210 215 220

Lys Gly lie Leu lie Hie Tyr Thr lie Ala Arg Ala Ala Ser Tyr Gly 225 230 235 240Lys Gly lie Leu lie Hie Tyr Thr lie Ala Arg Ala Ala Ser Tyr Gly 225 230 235 240

Met Asn Thr Val Phe Ala Arg Leu Gly Tyr Glu Phe Thr Gly Lys Leu 245 250 255Met Asn Thr Val Phe Ala Arg Leu Gly Tyr Glu Phe Thr Gly Lys Leu 245 250 255

Val Gin Asn Thr Asn lie Ser Gly Asn Leu Glu Asn Met Asn Val Τφ 260 265 270Val Gin Asn Thr Asn lie Ser Gly Asn Leu Glu Asn Met Asn Val Τφ 260 265 270

Tyr Lys Arg lie 275Tyr Lys Arg lie 275

Claims (1)

201247869 七、申請專利範圍: 1. 一種編碼養鹽性甲炫^古菌 Aiethanohabphihis portuccdensis FDF1之相容質τν6-乙醯基-β-賴胺酸(TV^acetyl-p-lysine)生合 成酵素賴胺酸2,3-氨基轉位酶(lysine 2,3-aminomutase)的單 離核酸分子,其中該賴胺酸2,3-氨基轉位酶具有SEQ ID No. 6 之胺基酸序列。 2. 根據申請專利範圍第5項之編碼賴胺酸2,3-氨基轉位酶之經 單離核酸分子,其包含SEQ ID NO: 5之核苷酸序列。 3. 一 後編瑪$ 鹽性巧说古菌 Methanohalophihis poriucalemis FDF1之相容質乙醯基-β-賴胺酸(A^-acetyl-p-lysine)生合 成酵素β-賴胺酸乙酿基轉移酶(β-lysine acetyltransferase)的 單離核酸分子,其中該β-賴胺酸乙醯基轉移酶具有SEQ ID No. 8之胺基酸序列。 4. 根據申請專利範圍第7項之編碼β-賴胺酸乙醢基轉移酶之經 單離核酸分子,其包含SEQ ID NO: 7之核苷酸序列。 5. 一種於活體内製造相容質A^-乙醯基_β-賴胺酸 (A^-acetyl-p-lysine)之方法,其特徵在於利用根據申請專利範 圍第2與4項之嗜鹽性甲烷古菌她ω即/2細 FDF1的賴胺酸2,3-氨基轉位酶及β-賴胺酸乙醯 基轉移酶核酸分子’選殖於適當表現載體中,並將所得之重 組質體轉形至大腸桿菌宿主細胞中共同大量表現重組蛋白, 以將L-α-賴胺酸基質轉化成相容質TV6-乙醯基-β-賴胺酸。 6. —種於曱烷古菌誘導大量生合成相容質Λ^-乙醯基_β_賴胺酸 (A^-acetyl-p-lysine)之方法’其特徵在於將嗜鹽性曱烷古菌 Methanohalophilusportucalensis FDF1 培養於含有最終鹽濃度 為1.5至3.0 Μ高鹽(NaCl)之無氧培養基中,以提高甲烷古菌 之賴胺酸2,3_氨基轉位酶以及β-賴胺酸乙醯基轉移酶基因的 表現。201247869 VII. Scope of application for patents: 1. A compatible τν6-acetamido-β-lysine (TV^acetyl-p-lysine)-derived enzyme-based enzyme encoding the salt-tolerant A. sylvestris Aiethanohabphihis portuccdensis FDF1 An isolated nucleic acid molecule of lysine 2,3-aminomutase, wherein the lysine 2,3-aminotransposase has the amino acid sequence of SEQ ID No. 6. 2. An isolated nucleic acid molecule encoding a lysine 2,3-aminotransposase according to claim 5, which comprises the nucleotide sequence of SEQ ID NO: 5. 3. A post-compilation of the salt of the genus Methanohalophihis poriucalemis FDF1 compatible with acetyl-β-lysine (A^-acetyl-p-lysine) biosynthetic enzyme β-lysine transfer An isolated nucleic acid molecule of the enzyme (β-lysine acetyltransferase), wherein the β-lysine acetyltransferase has the amino acid sequence of SEQ ID No. 8. 4. The isolated nucleic acid molecule encoding a beta-lysine acetyltransferase according to claim 7 of the patent application, comprising the nucleotide sequence of SEQ ID NO: 7. A method for producing a compatible A^-acetyl-p-lysine in vivo, which is characterized by using the susceptibility according to items 2 and 4 of the patent application scope. Salted methane archaea her ω, ie 2, FDF1 lysine 2,3-aminotransposase and β-lysine acetyltransferase nucleic acid molecule 'selected in appropriate expression vector, and will be obtained The recombinant plasmid is transformed into an E. coli host cell to express a large amount of recombinant protein to convert the L-α-lysine matrix into a compatible TV6-acetamido-β-lysine. 6. A method for inducing a large amount of biosynthesis-compatible Λ^-acetyl-p-lysine (A--acetyl-p-lysine) in arsenic archaea, characterized by halophilic decane The archaea Methanohalophilus portucalensis FDF1 is cultured in an anaerobic medium containing a final salt concentration of 1.5 to 3.0 Μ high salt (NaCl) to enhance the lysine 2,3_aminotransferase and β-lysine B of the methane archaea The performance of the thiol transferase gene.
TW101112322A 2008-11-28 2008-11-28 Osmolyte nε-acetyl-β-lysine biosynthetic genes from methanogenic archaea and application thereof TWI450964B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101112322A TWI450964B (en) 2008-11-28 2008-11-28 Osmolyte nε-acetyl-β-lysine biosynthetic genes from methanogenic archaea and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101112322A TWI450964B (en) 2008-11-28 2008-11-28 Osmolyte nε-acetyl-β-lysine biosynthetic genes from methanogenic archaea and application thereof

Publications (2)

Publication Number Publication Date
TW201247869A true TW201247869A (en) 2012-12-01
TWI450964B TWI450964B (en) 2014-09-01

Family

ID=48138540

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101112322A TWI450964B (en) 2008-11-28 2008-11-28 Osmolyte nε-acetyl-β-lysine biosynthetic genes from methanogenic archaea and application thereof

Country Status (1)

Country Link
TW (1) TWI450964B (en)

Also Published As

Publication number Publication date
TWI450964B (en) 2014-09-01

Similar Documents

Publication Publication Date Title
TW554043B (en) Process for preparing O-acetylserine, L-cysteine and L-cysteine-related products
CN101715490B (en) Method for production of glutathione or gamma-glutamylcysteine
PT2970934T (en) Valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof
NZ552631A (en) Biochemical synthesis of 1,4-butanediamine
TW202012626A (en) Novel 5'-inosinic acid dehydrogenase and method of preparing 5'-inosinic acid using the same
CN108368491A (en) The algae mutant of lipid production rate with raising
Nishizawa et al. Characterization of the locus of genes encoding enzymes producing heptadepsipeptide micropeptin in the unicellular cyanobacterium Microcystis
JP6430250B2 (en) Gene cluster for biosynthesis of glyceromycin and methylglyceromycin
KR20060018868A (en) Methods and compositions for amino acid production
JP5497295B2 (en) Microginin-producing protein, nucleic acid encoding microginin gene cluster, and method for producing microginin
Bag et al. Mutational analysis of the (p) ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis
CN117136054A (en) Microbial ergothioneine biosynthesis
BR102018075897A2 (en) method for the fermentative production of l-lysine
KR20010112232A (en) Pyruvate carboxylase from corynebacterium glutamicum
CN111004730A (en) Method for producing ergothioneine
Noguchi et al. Genetic analysis of the microcystin biosynthesis gene cluster in Microcystis strains from four bodies of eutrophic water in Japan
TW201247869A (en) Osmolyte N- ε -acetyl- β -lysine biosynthetic genes from methanogenic archaea and application thereof
JP6951702B2 (en) How to make Trehangerin
CN112522222B (en) Novel tryptophan hydroxylase mutant and application thereof
KR100984480B1 (en) Recombinant microorganisms harboring a ?-glucosidase and their use for the production of indigo dyes
Lee et al. Cloning, expression and characterization of the catalase–peroxidase (KatG) gene from a fast-growing Mycobacterium sp. strain JC1 DSM 3803
CN110129294B (en) Homoserine acetyltransferase mutant and host cell and application thereof
Kim et al. Molecular cloning of levan fructotransferase gene from Arthrobacter ureafaciens K2032 and its expression in Escherichia coli for the production of difructose dianhydride IV
Jimbo et al. Cloning of the Microcystis aeruginosa M228 lectin (MAL) gene
CN110234767A (en) The method for producing the microorganism of the corynebacterium of L-arginine and producing L-arginine using it

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees