KR100984480B1 - Recombinant microorganisms harboring a ?-glucosidase and their use for the production of indigo dyes - Google Patents

Recombinant microorganisms harboring a ?-glucosidase and their use for the production of indigo dyes Download PDF

Info

Publication number
KR100984480B1
KR100984480B1 KR1020080033705A KR20080033705A KR100984480B1 KR 100984480 B1 KR100984480 B1 KR 100984480B1 KR 1020080033705 A KR1020080033705 A KR 1020080033705A KR 20080033705 A KR20080033705 A KR 20080033705A KR 100984480 B1 KR100984480 B1 KR 100984480B1
Authority
KR
South Korea
Prior art keywords
glucosidase
indigo
activity
production
dyes
Prior art date
Application number
KR1020080033705A
Other languages
Korean (ko)
Other versions
KR20090108339A (en
Inventor
김근중
신윤숙
김지윤
이진영
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020080033705A priority Critical patent/KR100984480B1/en
Publication of KR20090108339A publication Critical patent/KR20090108339A/en
Application granted granted Critical
Publication of KR100984480B1 publication Critical patent/KR100984480B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B61/00Dyes of natural origin prepared from natural sources, e.g. vegetable sources
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)

Abstract

본 발명은 천연재료인 쪽식물에 포함되어 있는 인디칸 혹은 그 유도체에 작용하여 염료와 의약품 원료로 이용되는 인디고 블루와 인디루비딘 제조에 유용한 핵심 효소인 β-글리코시다아제(β-glucosidase)를 코딩하는 유전자를 포함하는 형질전환 미생물 및 그를 이용한 인디고 염료의 생산 방법에 관한 것이다. 본 발명에 의하면 쪽 식물을 이용한 천연 염료의 생산, 화장품이나 물감 등 다양한 분야에서 활용할 수 있을 것으로 기대된다. 또한 제조공정이 친환경적이고 천연재료를 이용함으로 면역, 항균작용과 관련한 의약품의 개발에도 유리할 것으로 판단된다. 부수적으로 단일 효소공정이 지니는 장점으로 인해 전통적인 인디고 염료의 단점, 즉 고비용, 재현성 및 균일화 측면에서의 문제점도 극복할 수 있을 것으로 기대되어지며, 기존의 인돌 혹은 트립토판을 이용한 복잡한 생산과정을 대체할 수 있을 것이다. The present invention is a β-glycosidase (β-glucosidase) which is a key enzyme useful in the production of indigo blue and indirubidin used as a raw material for dyes and pharmaceuticals by acting on indicans or derivatives thereof contained in natural plant material The present invention relates to a transformed microorganism comprising a gene encoding and a method for producing an indigo dye using the same. According to the present invention is expected to be able to use in various fields, such as the production of natural dyes using plants, cosmetics and paints. In addition, it is expected that the manufacturing process will be advantageous for the development of medicines related to immunity and antibacterial activity using eco-friendly and natural materials. As a side note, the advantages of a single enzymatic process are expected to overcome the shortcomings of traditional indigo dyes, namely, high cost, reproducibility, and homogenization, and can replace traditional production processes using indole or tryptophan. There will be.

글루코시다아제, 인디칸, 인디고 Glucosidase, Indican, Indigo

Description

β-글루코시다아제를 코딩하는 유전자를 포함하는 형질전환 미생물 및 그를 이용한 인디고 염료의 생산 방법{Recombinant microorganisms harboring a β-glucosidase and their use for the production of indigo dyes}Recombinant microorganisms harboring a β-glucosidase and their use for the production of indigo dyes}

본 발명은 쪽 식물에 함유되어 있는 인디칸 혹은 그 유도체에 작용하여 염료와 의약품 원료로 이용되는 인디고 블루와 인디루비딘 제조에 유용한 핵심 효소인 β-글리코시다아제(β-glucosidase)를 코딩하는 유전자를 포함하는 형질전환 미생물 및 그를 이용한 인디고 염료의 생산 방법에 관한 것이다. The present invention is a gene encoding β-glucosidase, which is a key enzyme useful in the production of indigo blue and indirubividin used as a raw material for dyes and pharmaceuticals by acting on indicans or derivatives thereof contained in plant plants. It relates to a method for producing a transformed microorganism comprising the and indigo dye using the same.

인류의 역사와 함께 천연염료는 합성염료 제조법이 확립되기 이전부터 오랜 기간 이용되어지고 있으며 대부분이 천연재료, 즉 식물추출물 위주의 재료로부터 만들어진다. 합성염료와 달리 천연염료는 인체에 무해하며 합성과정이나 추출공정에서 파생되는 환경오염의 문제가 발생하지 않는다. 염료의 주된 활용분야인 염색액으로 사용할 경우엔 자연스럽고 조화로운 색채와 질감을 가져, 합성염료로는 표현할 수 없는 색감의 구현이 가능하다고 알려져 있다. 이러한 천연물로 대표적인 인디고블루와 인디루비딘은 청색과 붉은색을 지닌 염료물질로 식물에 포함된 소재물질인 인디칸으로부터 생산되어지고 있다. 인디칸은 쪽(Polygonum tinctorium) 식 물에 많은 양이 존재하는 것으로 알려져 있다. 이들의 특성을 활용해 로마 시대부터 화장품과 물감의 재료로 인디고를 사용하였으며 현재에도 친환경적인 천의 염색에 사용되는 주된 재료이다. 상기한 예에서와 같이 인디고 계열의 염료는 전통적인 방법에 의존한 천연추출물의 형태로 주로 이용되어져 왔으나 생산과정의 비균일성과 재료식물의 염료성분 차이, 발효-숙성과정의 비규격화 등으로 인해 하기 [도 1a]에서와 같이 인디고의 화학적 합성이 가능해지면서 염색액 대부분의 염료로 합성원료가 사용되고 있다. 그러나 최근에 의류염색, 식품 혹은 화장품 성분으로 첨가될 때 암을 포함한 질병 유발 물질 잔존 가능성과 알레르기 등을 유발한다는 보고와 함께 유기합성법의 환경오염 문제가 대두되면서 건강, 환경오염, 소비자 선호도에 따라 천연염료에 대한 관심이 늘어나는 추세이다. 국내에서도 천염염료에 대한 관심과 연구가 증가되어 실제 염색에 많이 응용되고 있으며 전통적인 방법에서 벗어나 생물공학적인 방법으로 인디고 생산을 대체하고자 많은 연구가 활발히 진행 중이다. 이 외에도 인디고는 화장품 원료나 인디고틴(indigotin)이라는 유도체 형태로 식품산업에 이용할 수 있으며 피부병 치료목적의 항균제로 쓰이고 면역반응을 촉진하는 효과 등이 알려지면서 여러 가지 의약품으로써의 가능성도 모색 중이다.With the history of mankind, natural dyes have been used for a long time before the synthetic dye preparation method was established, and most of them are made from natural materials, that is, plant extract-oriented materials. Unlike synthetic dyes, natural dyes are harmless to the human body and do not cause any environmental pollution problems derived from synthetic or extraction processes. When used as a dye solution, which is a major application field of dyes, it is known to have a natural and harmonious color and texture, so that colors can not be expressed by synthetic dyes. Representative indigo blue and indirubidin as a natural product is a dye material of blue and red color is produced from indican, a material material contained in plants. Indikanes are known to have high amounts in Polygonum tinctorium plants . Taking advantage of these characteristics, Indigo has been used as a material for cosmetics and paints since Roman times, and it is still the main material used for dyeing eco-friendly cloth. As mentioned above, indigo-based dyes have been mainly used in the form of natural extracts depending on the traditional method, but due to the non-uniformity of the production process, the difference in the dye composition of the material plants, and the non-standardization of the fermentation-maturation process. As shown in FIG. 1A, chemical synthesis of indigo is enabled, and synthetic raw materials are used as most dyes in dyeing solutions. However, with the recent reports of dyeing of clothing, food or cosmetic ingredients, the possibility of remaining disease-causing substances including cancer and allergies has emerged, and the environmental pollution problem of organic synthesis has emerged, and according to health, environmental pollution and consumer preferences, There is a growing interest in dyes. There is an increasing interest and research on natural dyes in Korea, which has been applied to dyeing a lot, and many researches are actively underway to replace indigo production by biotechnology. Indigo can be used in the food industry in the form of cosmetic raw materials or indigotin derivatives, and is being used as an antimicrobial agent for the treatment of skin diseases and promoting the immune response.

산업적으로 활용가치가 높은 인디고블루를 생산하는 생물학적 방법은 일반적으로 발효법과 효소전환법으로 나뉜다. 생물학적 활성이 필요한 첫 번째 방법으로는 옷감을 염색할 때 쓰이는 재래식 방법으로 쪽을 일정기간 물에 침지시켜 발효, 숙성과정을 유도한 후 생성된 앙금형태의 인디고블루를 이용하는 것이다. 즉, 침지된 시간과 온도 등의 환경에서 쪽 식물자체 혹은 자연적으로 내포된 미생물의 효소 활성을 이용해 염료를 생산하는 것이다. 결과적으로 생성된 인디고블루는 석회를 첨가하여 침전물로 회수한 후 염료로 이용된다. 이러한 방법으로 염료를 제조할 경우 소요시간이 길고 입자가 균일하지 않으며 사용하는 석회의 종류와 양 또는 다른 침지화합물에 따라 품질이 다르므로 규격화하기가 어렵다. 따라서 염색시간 역시 일정하지 않아, 일반적으로 오래 걸리고 불균일한 입자로 인해 일정하게 염색되지 않는다. 이러한 문제점과 함께 천연염료의 염색 견뢰도, 재현성, 생산의 한계성 및 보관상의 문제점 때문에 그 이용범위가 제한되어 있고 고가로 거래되고 있는 실정이어서 대중화가 이루어지지 않고 있다. 생물학적 생산의 두 번째 방법은 하기 [도 1b]와 같이 박테리아에서 트립토판이나 나프탈렌, 톨루엔과 같은 방향족 화합물이 효소반응을 거쳐 인돌(indole)로 전환된 후 인독실(indoxyl)을 거쳐 인디고블루를 생산하는 것이다. 이러한 방법에 이용되는 숙주인 대장균은 인독실로 전환하는 효소는 물론 방향족 화합물의 전대사가 불가능함으로 매우 복잡한 재조합 유전자 제작과정을 거치거나 대안으로 관련 활성효소의 대부분을 지닌 슈도모나스(Pseudomonas)의 활용 등이 검토될 수 있다. 하지만 나프탈렌과 톨루엔 같은 유기용제의 경우, 소수성을 띄어 수용액과 혼합이 어려우며 매우 강력한 독성을 지니고 있어 숙주세포는 물론 생산된 염료로부터 원료방향족 화합물의 잔류물을 완전히 제거해야 하는 문제점이 있다. 대안으로써 하기 [도 1c]에서와 같이 글루코스 대사 시 생성되는 트립토판에서 인돌을 거치는 과정으로 생산하는 발효법이 있으나 이들 역시 낮은 생산 수율, 세포 고농도 배양의 어려움, 대사산물에 의한 성장저해 등으로 실용화되지 못하고 있다. Biological methods for producing industrially valuable indigo blue are generally divided into fermentation method and enzyme conversion method. The first method that requires biological activity is the conventional method used for dyeing cloth. It uses sediment-type indigo blue produced after immersing the spines in water for a certain period of time to induce fermentation and ripening. In other words, the dye is produced using the enzymatic activity of the plant itself or naturally contained microorganisms in the environment, such as the time and temperature of the immersion. The resulting indigo blue is recovered as a precipitate by adding lime and used as a dye. When dyes are prepared in this way, it is difficult to standardize because the time required is long, the particles are not uniform, and the quality varies depending on the type and amount of lime used or other immersion compounds. Therefore, the dyeing time is also not constant, which generally takes a long time and is not uniform due to uneven particles. In addition to these problems, due to the dyeing fastness, reproducibility, production limitations and storage problems of natural dyes, their use range is limited and they are being traded at high prices, and thus they are not popularized. The second method of biological production is to produce indigo blue via indole (indoxyl) after the conversion of aromatic compounds such as tryptophan, naphthalene, toluene from bacteria into indole (indole) through the enzymatic reaction as shown in [1b] will be. E. coli, the host used in this method, is not capable of metabolism of aromatic compounds, as well as enzymes that convert to the human labyrinth, which leads to highly complex recombinant gene production or alternatively, the use of Pseudomonas , which contains most of the related active enzymes. Can be reviewed. However, in the case of organic solvents such as naphthalene and toluene, it is difficult to mix with an aqueous solution because of the hydrophobicity and has a very strong toxicity, there is a problem that the residue of the raw aromatic compound from the host cell as well as the dye produced. As an alternative there is a fermentation method produced by the process of indole in tryptophan produced during glucose metabolism as shown in [1c] but these also can not be put to practical use due to low production yield, difficulty in culturing high concentration of cells, growth inhibition by metabolites, etc. have.

이와는 달리 노보자임(Novozyme) 188과 노바그램(novagram) G 효소에 의해 인디칸을 인디고로 전환할 수 있다는 논문이 보고되어 있으나 이들의 단가가 아주 높고 수요가 적어 현재 생산이 단절된 상태이다. 또한 쪽 식물에서의 인디고 전구체인 인디칸과 이사탄 B(Isatan B) 등에 대한 함량과 식물 자체 효소의 활성에 의해 생성된 인디고에 관한 연구는 많이 보고되어 있으나 상기 보고들 외에 인디칸의 생변환에 일반적으로 사용할 수 있는 대량생산가능 효소에 관한 연구사례는 전무한 실정이다. Contrary to this, there have been reports that Novozyme 188 and novagram G enzymes can convert indicans into indigo, but their production has been cut off due to their high cost and low demand. In addition, there have been many studies on indigo produced by the activity of indigo and istanan B, which are indigo precursors in plants, and the activity of the plant's own enzymes. There are no studies on the mass production enzymes that can be used in general.

본 발명자들은 쪽 식물에서 β-글루코시다아제(β-glucosidase)에 의해 인디칸이 인디고로 전환되는 점에 착안해 체계적인 과정으로 발굴된 β-글루코시다아제 계열의 아과(sub-family)의 인디칸에 대한 활성능을 확인한 후 비교ㆍ분석하는 과정을 통해 우수한 효소원을 발굴하여, 본 발명을 완성하기에 이르렀다.The present inventors have focused on the fact that indican is converted to indigo by β-glucosidase in a plant, and the subdifamily of sub-family of β-glucosidase family discovered by a systematic process. After confirming the activity of the activity to find a superior enzyme source through the process of comparison and analysis, the present invention was completed.

따라서 본 발명의 목적은 쪽 식물 또는 그의 추출물로부터 인디고 계열의 염료 및 의약물질을 생산하는 활성을 지닌 β-글루코시다제를 생산하는, 형질전환 미생물을 제공하는 것이다.It is therefore an object of the present invention to provide a transformed microorganism which produces β-glucosidase having the activity of producing indigo-based dyes and pharmaceuticals from a plant or extract thereof.

본 발명의 다른 목적은 시노라이조비움 멜리로티(Shinorhizobium meliloti) 균주로부터 유래된 β-글루코시다제(β-glucosidase)를 포함하는, 쪽 식물 또는 그의 추출물로부터 인디고 염료를 생산하기 위한 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for producing an indigo dye from a plant or extract thereof, comprising β-glucosidase derived from a Shinorhizobium meliloti strain. .

또한, 본 발명의 다른 목적은 시노라이조비움 멜리로티 균주로부터 유래된 β-글루코시다제, 또는 이를 생산하는 미생물을 쪽 식물 또는 그의 추출물에 가하여 인디칸을 인디고 염료로 전환시키는 단계를 포함하는, 인디고 염료를 생산하는 방법을 제공하는 것이다.In addition, another object of the present invention includes adding a β-glucosidase derived from a Sinoraizolium melorirot strain, or a microorganism producing the same, to a plant or an extract thereof to convert indican to an indigo dye. It is to provide a method for producing a dye.

본 발명의 제 1면은 서열번호 1 ~ 8의 염기서열을 가지는 β-glucosidase를 코딩하는 유전자에 관한 것이다. 상기 유전자는 쪽 식물 또는 그의 추출물로부터 인디고 염료를 생산하는 활성을 갖는 β-글루코시다제를 코딩하는 유전자이다.The first aspect of the present invention relates to a gene encoding β-glucosidase having a nucleotide sequence of SEQ ID NOs: 1-8. The gene is a gene encoding β-glucosidase having an activity of producing indigo dyes from a plant or an extract thereof.

본 발명의 제 2면은 상기 유전자를 포함하는 재조합 플라스미드에 관한 것이다. 상기 재조합 플라스미드는 말토오즈 결합 단백질(Maltose binding protein; MBP) 융합 단백질로 발현되는 것을 특징으로 하는 재조합 플라스미드이다.The second aspect of the present invention relates to a recombinant plasmid comprising the gene. The recombinant plasmid is a recombinant plasmid characterized by being expressed as a maltose binding protein (MBP) fusion protein.

본 발명의 제 3면은 쪽 식물 또는 그의 추출물로부터 인디고 염료를 생산하는 활성을 갖는 β-글루코시다제를 생산하는, 형질전환 미생물 E. coli XL1-BLUE[pTrc99A-glu(SM)] (수탁번호 KCTC 11236BP)에 관한 것이다. 상기 β-글루코시다제는 시노라이조비움 멜리로티(Shinorhizobium meliloti) 균주로부터 유래된 형질전환 미생물이다.The third aspect of the present invention provides a transforming microorganism E. coli XL1-BLUE [pTrc99A-glu (SM)], which produces β-glucosidase having activity to produce indigo dyes from a plant or extract thereof (Accession No. KCTC 11236BP). The β-glucosidase is a transforming microorganism derived from the Shinorhizobium meliloti strain.

본 발명의 제 4면은 시노라이조비움 멜리로티(Shinorhizobium meliloti) 균주로부터 유래된 β-글루코시다제(β-glucosidase)를 포함하는, 쪽 식물 또는 그의 추출물로부터 인디고 염료를 생산하기 위한 조성물에 관한 것이다. 상기 β-글루코시다제는 서열번호 8의 염기 서열을 갖는 조성물이며, X-gal(5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside)에 활성을 갖는 것을 특징으로 한다. 이는 X-gal을 기질로 본 발명의 효소를 이용해 유전자 클로닝 여부를 판단하는 리포팅 시스템으로 사용될 수 있다는 것이다.A fourth aspect of the present invention relates to a composition for producing indigo dyes from a plant or extract thereof, comprising β-glucosidase derived from a Shinorhizobium meliloti strain. . The β-glucosidase is a composition having a nucleotide sequence of SEQ ID NO: 8, and is characterized by having activity on X-gal (5-bromo-4-chloro-3-indolyl-bD-galactopyranoside). This means that X-gal can be used as a reporting system for determining whether or not to clone a gene using the enzyme of the present invention as a substrate.

본 발명의 제 5면은 시노라이조비움 멜리로티 균주로부터 유래된 β-글루코시다제, 또는 이를 생산하는 미생물을 쪽 식물 또는 그의 추출물에 가하여 인디칸을 인디고 염료로 전환시키는 단계를 포함하는, 인디고 염료를 생산하는 방법에 관한 것이다. 상기 인디칸을 인디고 염료로 전환시키는 단계는, The fifth aspect of the present invention comprises adding a β-glucosidase derived from a cynorazobi meliloti strain, or a microorganism producing the same, to a plant or an extract thereof to convert the indican to an indigo dye. It is about how to produce. Converting the indican to indigo dye,

a) β-글루코시다아제 유전자를 벡터에 삽입하는 단계;a) inserting the β-glucosidase gene into the vector;

b) 상기 벡터를 숙주세포에 형질전환한 후 세포배양하여 형질전환체를 생산하는 단계; 및b) transforming the vector into a host cell and then culturing the cell to produce a transformant; And

c) 상기 형질전환체가 배양된 배지에 쪽 식물 또는 추출물을 가하여 반응시키는 단계:c) adding the plant or extract to the medium in which the transformant is cultured and reacting:

를 포함하는 인디고 염료를 생산하는 방법을 제공한다.It provides a method for producing an indigo dye comprising a.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

이 때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다. At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art.

또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.Repeated descriptions of the same technical constitution and operation as those of the conventional art will be omitted.

본 발명의 구현을 위해 β-글루코시다아제 활성의 결과로 인디칸에서 탈착하는 D-글루코스의 단일 탄소원(sole carbon source)로서의 이용 가능성과 비교적 쉽게 도입이 가능한 발색 혹은 형광기질을 사용해 원하는 기질특이성을 지닌 아과를 탐색하여 체계적인 발굴을 시도하였다. 우선 GeneBank와 PDB 데이터 베이스 내의 모든 글루코시다아제 유전자 서열과 아미노산 서열을 수집하여 진화상의 계통도를 분석하였다. 이들 구성원 중, 아미노산 서열이 유사성이 매우 높은 경우(>35 %)와 같은 균주 내의 파라로그(paralogue)인 경우, 오르소로그(orthologue)지만 진화유연 관계가 극히 밀접한 경우를 제외한 후 계통도를 재구성하였다. 이후에 각각의 아과를 유전상의 진화거리와 기질특이성, 기질 스펙트럼(substrate spectrum)으로 재분류한 후 각각의 아-아과를 대표하는 균주를 환경시료, 균주은행, 실험실 보유균주에서 확보한 후 활성을 측정하였다. 결과적으로 하나의 아-아과가 목적기질인 인디칸에 대해 높은 활성을 지닌 것으로 확인되었다. 이러한 과정으로 분류된 아-아과의 모든 아미노산 서열을 Clustal X 프로그램을 활용하여 보존서열을 확인한 후 이를 다시 GenBank 내의 BLAST-P 프로그램을 이용하여 스캐닝(scanning) 한 결과 추정상의 글루코시다아제(putative glucosidase) 계열의 효소로 분류되어 있으나 인디칸에 대해 활성이 보고되지 않은 신규 효소군을 확보할 수 있었다. For the implementation of the present invention the desired substrate specificity is achieved using the availability of D-glucose desorbed from indicans as a sole carbon source as a result of β-glucosidase activity and a color or fluorescent substrate that can be introduced relatively easily. I searched for a child's family and tried systematic excavation. First, all glucosidase gene sequences and amino acid sequences in GeneBank and PDB databases were collected to analyze the evolutionary tree. Of these members, if the amino acid sequence is a paralogue in a strain, such as when the similarity is very high (> 35%), the phylogenetic tree was reconstructed except for orthologous but extremely close evolutionary relationships. . Subsequently, each subfamily is reclassified into genetic evolutionary distance, substrate specificity, and substrate spectrum, and the strains representing each sub- subfamily are obtained from environmental samples, strain banks, and laboratory holding strains. Measured. As a result, it was confirmed that one sub-agua had high activity against the target substrate, indican. Putative glucosidase after all the amino acid sequences of sub-Aguas classified by this process were identified using the Clustal X program and then scanned using the BLAST-P program in GenBank. A new group of enzymes classified as a family of enzymes but whose activity was not reported for indicans could be obtained.

본 발명에서 체계적인 발굴과정을 통해 확인된 β-글루코시다아제 아-아과의 특성을 분석하면, 발굴된 인디칸 분해 β-글루코시다아제 대부분이 일반적인 토양 미생물(라이조비움, 시노라이조비움, 아그로박테리움 및 플로보박테리움)의 일종이 고, 밭, 농지, 온천 수서환경계에 빈번한 스와넬라(Swanella)와 서머스(Thermus)를 포함한다. 본 발명자들은 선별된 β-글루코시다아제들이 공통된 조상에서 진화하였고 같은 기질에 대해 활성을 보이는 것이 일반적인 특징임을 보여주기 위해 유사한 크기의 아미노산(431 ~ 459)과 35% 이상의 높은 서열유사성을 보임을 [표 1]에 나타내었으며, 서열번호 1 ~ 8로 표시되는 각 균주의 염기서열은 다음과 같다.When analyzing the properties of β-glucosidase a-agua identified through a systematic excavation process in the present invention, most of the indican decomposed β-glucosidase is found in general soil microorganisms (Rizobium, cynorazobibium, Agrobacterium) And Flobobacterium) and include Swanella and Thermus, which are frequent in fields, farmland, and aquatic environment. The present inventors show that the similar β-glucosidases evolved from a common ancestor and showed a similar sequence of amino acids (431-459) and more than 35% high sequence similarity to show that it is a common feature to be active against the same substrate [ Table 1], the base sequence of each strain represented by SEQ ID NO: 1 to 8 is as follows.

[표 1] TABLE 1

Figure 112008026010797-pat00001
Figure 112008026010797-pat00001

1) 서머스 칼도필러스(Thermus caldophilus)1) Thermus caldophilus )

Figure 112008026010797-pat00002
Figure 112008026010797-pat00002

(서열번호 1)(SEQ ID NO 1)

2) 서머스 서머필러스 HB8(Thermus thermiphilus HB8) 2) Thermus thermiphilus HB8

Figure 112008026010797-pat00003
Figure 112008026010797-pat00003

(서열번호 2)(SEQ ID NO: 2)

3) 서머스 스피시스( Thermus sp .) 3) RY Summers sheath (Thermus sp .)

Figure 112008026010797-pat00004
Figure 112008026010797-pat00004

(서열번호 3)(SEQ ID NO 3)

4) 아그로박테리움 튜미펙션즈(Agrobacterium tumefaciens) 4) Agrobacterium tumefaciens

Figure 112008026010797-pat00005
Figure 112008026010797-pat00005

(서열번호 4)(SEQ ID NO: 4)

5) 브라디라이조비움 자포니쿰(Bradyrhizobium japonicum)5) Bradyrhizobium japonicum

Figure 112008026010797-pat00006
Figure 112008026010797-pat00006

(서열번호 5)(SEQ ID NO: 5)

6) 스와넬라 발티카(Shewanella baltica)6) Shewanella baltica )

Figure 112008026010797-pat00007
Figure 112008026010797-pat00007

(서열번호 6)(SEQ ID NO: 6)

7) 플라보박테리움 존소니에(Flavobacterium johnsoniae)7) Flavobacterium johnsoniae

Figure 112008026010797-pat00008
Figure 112008026010797-pat00008

(서열번호 7)(SEQ ID NO: 7)

8) 시노라이조비움 멜리로티(Shinorhizobium meliloti) Shinorhizobium meliloti )

Figure 112008026010797-pat00009
Figure 112008026010797-pat00009

(서열번호 8)(SEQ ID NO: 8)

본 발명은 기존의 인디고 염료 생산방법에서 문제가 되는 인디고 생산의 소요시간, 복잡한 과정, 생산의 불균일 현상 및 염색 시 재현성 문제나 견뢰도가 뒤 떨어지는 결점을 보완하기 위하여 체계적인 발굴 과정을 통해, 선정된 미생물 유래 β-글루코시다아제 아과들을 이용하여 인디고 생산의 전구체인 인디칸과 그 유도체에 활성이 높은 효소의 발굴을 수행하였다. The present invention is a microorganism selected through a systematic excavation process in order to compensate for the time required for indigo production, a complicated process, a production non-uniformity, and a reproducibility problem during dyeing, or a drawback of poor fastness. Derived β-glucosidase subfamily was used to find enzymes with high activity in indican and its derivatives, which are precursors of indigo production.

본 발명자들은 발굴된 β-글루코시다아제 계열의 효소의 경우, 인독실과 D-글루코오스가 글리코사이드 결합(glycoside bond) 형태로 중합된 인디칸의 결합을 분해할 수 있다면 단일 공정으로 인디고 염료의 생산이 가능할 것이라 사료되었다. 그러나 발굴한 효소들이 인디칸에 활성을 지닌 것을 확인하였으나 실제 인디고 생산 공정에서 순수한 인디칸을 사용할 경우, 정제과정을 거쳐야 하거나 유기 합성된 기질을 이용해야 함으로 생산 공정에 직접 적용하기에는 많은 어려움이 따른다. 따라서 경제적이고 친환경적인 공정의 개발을 위해서는 식물자체 혹은 분획된 성분, 추출물의 형태로 이용해야 한다. 이러한 가능성의 확인을 위해 천연 재료인 쪽 식물자체에 효소가 작용할 수 있는지를 확인하였다. 결과적으로 단순히 물리적인 방법으로 파쇄한 쪽 분말에서는 뚜렷한 효소반응을 검출하기 어려웠다. 이는 기존의 결과와 일치하는 것으로써 액포 혹은 근처 조직에 주로 분포하는 인디칸에 효소의 접근이 어려운 것이 원인인 것으로 알려져 있다. 이러한 문제의 해결책으로 쪽 식물 분말에서 추출한 인디칸 함유용액에서 효소 활성의 검출을 시도하였다.In the case of the discovered β-glucosidase family of enzymes, the present inventors have demonstrated that production of indigo dyes in a single process is possible if the indoksil and D-glucose can degrade the bonds of polymerized indicans in the form of glycoside bonds. It was thought that this would be possible. However, it was confirmed that the discovered enzymes have activity on indicans, but when pure indicans are used in the actual indigo production process, it is difficult to apply them directly to the production process because they have to be purified or used organically synthesized substrates. Therefore, in order to develop an economical and environmentally friendly process, the plant itself or fractionated components, extracts should be used. To confirm this possibility, it was confirmed whether the enzyme could act on the natural plant itself. As a result, it was difficult to detect distinct enzyme reactions in the powders that were simply broken by physical methods. This is consistent with the existing results, and it is known that the enzyme is difficult to access to indicans mainly distributed in vacuoles or nearby tissues. As a solution to this problem, an attempt was made to detect enzyme activity in an indican-containing solution extracted from plant powder.

인위적인 조작 없이 대장균에서 리킹(leaking)에 의해 발현되는 효소의 특성을 비교하였을 때, 상대적으로 발현양이 많고 활성이 높은 시노라이조비움 멜리로티 균주 유래의 β-글루코시다아제가 활용가치가 높았다. 따라서 이를 근거로 효소특성의 규명과 현장적용을 위한 대량생산을 시도하였다. 이 때, 단백질의 대량생산 을 위하여 융합 표지 또는 융합 단백질을 이용하여 생산하며, 본 발명에서는 말토오즈 결합 단백질(Maltose binding protein; MBP) 융합 단백질을 사용하여 보다 안정적인 발현 시스템을 구축하였다.When comparing the characteristics of the enzyme expressed by the leaking (leaking) in E. coli without artificial manipulation, the β-glucosidase derived from the relatively high expression and high activity of cynorazobi melilotiti strains was high. Therefore, based on this, the mass production for the identification and application of the enzyme was attempted. In this case, for mass production of the protein is produced using a fusion label or a fusion protein, in the present invention to build a more stable expression system using a maltose binding protein (MBP) fusion protein.

단백질의 과발현 유도와 가용성의 증가라는 목적에는 일반적으로 글루타치온-S-전이효소(Glutathione-S-Transferase; GST)나 MBP와 같은 융합단백질을 사용하여 과발현 시키는데, 세포독성 혹은 성장저해가 없다면 일반적으로 산업현장에 이용할 수 있다. 또한, 아밀로스(amylose) 레진을 이용하면 단백질의 순수분리가 용이하고 고정화에 의한 연속조업이 가능한 장점을 지닌다.For the purpose of inducing overexpression of proteins and increasing their solubility, they are generally overexpressed using a fusion protein such as glutathione-S-transferase (GST) or MBP. Available on site. In addition, the use of amylose (amylose) resin has the advantage that it is easy to pure separation of proteins and continuous operation by immobilization.

본 발명은 선정된 효소원을 재조합 유전자 기법을 이용해 대량생산한 후 천연재료인 인디칸을 다량으로 함유한 쪽 식물에서 인디고 염료를 생산한다면, 처리 시간과 효소역가의 조정, 공정의 단순화가 가능함으로 효율적인 천염염료의 생물학적 생산이 가능할 것이며, 환경오염이나 보건상의 문제를 최소화 할 수 있을 것이라 사료된다.According to the present invention, if indigo dye is produced in a plant containing a large amount of indican, a natural material, after mass production of the selected enzyme source using recombinant genetic techniques, it is possible to adjust the processing time, enzyme titer, and simplify the process. Efficient biological production of natural dyes will be possible, and environmental pollution and health problems will be minimized.

본 발명은 앞서 설명한 바와 같이, β-글루코시다아제 계열의 아과의 인디칸에 대한 활성능을 확인함으로써 선별된 효소를 이용하여 쪽 식물 자체, 분말 또는 추출물에서 인디고 염료의 생산이 가능함을 보여준다. 따라서 쪽 식물을 이용한 천연 염료의 생산, 화장품이나 물감 등 다양한 분야에서 활용할 수 있을 것으로 기대된다. 또한 제조공정이 친환경적이고 천연재료를 이용함으로 면역, 항균작용과 관련한 의약품의 개발에도 유리할 것으로 판단된다. 부수적으로 단일 효소공정이 지 니는 장점으로 인해 전통적인 인디고 염료법의 단점, 즉 고비용, 재현성 및 균일화 측면에서의 문제점도 극복할 수 있을 것으로 기대되어지며, 기존의 인돌 혹은 트립토판을 이용한 복잡한 생산과정을 대체할 수 있을 것이다. As described above, the present invention shows that it is possible to produce indigo dyes from the side plants themselves, powders or extracts by using enzymes selected by confirming the activity of the β-glucosidase family of subfamily indica. Therefore, it is expected to be used in various fields such as production of natural dyes using plant, cosmetics and paints. In addition, it is expected that the manufacturing process will be advantageous for the development of medicines related to immunity and antibacterial activity using eco-friendly and natural materials. Incidentally, the single enzymatic process is expected to overcome the shortcomings of the traditional indigo dye method, i.e., high cost, reproducibility and homogenization. The complex production process using indole or tryptophan Could be replaced.

이하 실시예에 의거하여 본 발명을 상세히 설명한다. 본 발명은 하기 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.Hereinafter, the present invention will be described in detail with reference to Examples. The present invention is not limited to the following examples, and any person having ordinary skill in the art to which the present invention pertains may make various modifications without departing from the gist of the present invention as claimed in the claims. Such changes are intended to fall within the scope of the claims.

[실시예 1] 체계적인 과정에 의한 인디칸 분해능 균주의 발굴Example 1 Excavation of Indican Degrading Strains by a Systematic Process

인디칸에 대한 활성유무의 발굴대상인 β-글루코시다아제 관련 효소자원을 유전자와 단백질 정보은행으로부터 확인한 후 전체적인 염기서열과 아미노산서열을 분석하여, 유사성이 높은 유전자 내의 오르소로그, 동종내의 파라로그를 제외한 후 총 61개 균주로부터 유래된 141개의 유전자를 바탕으로 계통도를 재구성 하였다. 이후 생태학적으로 밀접한 관련이 있는 균주들과 알려진 기질 특이성을 고려하여 아-아과에 해당하는 계통도로 단순화하였다. 각각의 아과를 대표할 수 있는 유전자를 지닌 11개의 균주를 전체 게놈 서열(whole genome sequence)이 알려진 균주들로부터 선별한 후, 목적기질인 인디칸에 대한 활성여부와 상대적인 역가를 글루코스 분석 키트(glucose assay kit, 시그마)와 uBondapak C18 컬럼이 장착된 고성능 액체 크로마토그래피(high performance liquid chromatography; HPLC)를 이용하여 비교ㆍ분석하였다. 결과적으로 계통도 내의 아-아과 중의 하나인 라이조비알(rhizobial) 속의 균주들이 인디칸에 대해 높은 활성을 지니는 것으로 조사되었다. After confirming β-glucosidase-related enzyme resources, which are the targets for the activity of indicans, from the gene and protein information banks, the overall sequencing and amino acid sequences were analyzed and the orthologs and similar paralogs in the genes with high similarity were analyzed. After the exclusion, the phylogenetic tree was reconstructed based on 141 genes derived from a total of 61 strains. Subsequent ecologically related strains and known substrate specificities were then simplified to sub- subfamily. Eleven strains with genes representing each subfamily were selected from strains known for the whole genome sequence, and then the activity and relative titers of the target substrate indican were determined using a glucose assay kit (glucose). assay kit (Sigma) and high performance liquid chromatography (HPLC) equipped with uBondapak C18 column were compared and analyzed. As a result, strains of the genus Riizobial, one of the sub- subfamily in the phylogenetic tree, were found to have high activity against indicans.

확인된 결과를 검증하고 보다 확장된 형태의 효소원을 확보하고자 라이조비알 속 균주 유래의 글루코시다아제의 보존서열을 바탕으로 BLAST-P 프로그램을 통해 밀접한 진화서열상의 특징으로 인해 인디칸에 대한 활성을 예상할 수 있는 8개의 효소원을 지닌 균주들을 발굴하여 하기 [표 1]에 나타내었으며, 각 균주들의 계통도를 하기 [도 2]에 나타내었다.Based on the conserved sequence of glucosidase from the strains of the genus Rizovial to verify the confirmed results and to secure an extended source of enzymes, the BLAST-P program was used to enhance the activity of indicans. Strains with eight predictable enzyme sources were identified and shown in the following [Table 1], and the strains of each strain are shown in the following [Fig. 2].

선별된 균주의 인디칸에 대한 활성은 상기한 반응을 통한 전 세포 이용과정과 인디칸이 포함된 영양배지(LB 혹은 NB) 및 인디칸을 탄소원으로 공급한 최소배지에서 모두 확인할 수 있었다. 각각의 경우 1 ~ 5mM의 인디칸을 포함한 고체배지를 각 균주의 최적생장온도에서 3 ~ 5일간 배양하였다. The activity of the selected strains on indican was confirmed both in the whole cell utilization process through the above reactions and in the nutrient medium containing indican (LB or NB) and at least medium fed with indican as a carbon source. In each case, solid medium containing 1 ~ 5 mM indican was incubated for 3 to 5 days at the optimum growth temperature of each strain.

[[ 실시예Example 2] 발굴된 균주로부터 관련효소를 코딩한 유전자의  2] of the gene encoding the related enzyme from the identified strain 클로닝Cloning

인디칸 분해능과 관련 있는 유전자의 습득을 위해 선정된 상기 [표 1]의 균주는 실험실 보유균주와 공시기관(KACC, MICRO BANK)에서 분양받아 사용하였다. 게놈(Genomic) DNA 추출을 위한 균주의 배양은 LB배지와 분양기관에서 명시한 배지를 사용해 25 ~ 50℃에서 수행하였고, 배양된 균체에서의 게놈 DNA 추출에는 promega genomic DNA prep kit를 이용하였다. 게놈 DNA를 주형으로 발현벡터인 pTrc99A(파마시아)에 클로닝할 유전자의 증폭에 이용된 프라이머는 GenBank에 등록된 서열을 바탕으로 제작하였다. 중합효소연쇄반응(polymerase chain reaction; PCR) 반응은 Pfu 폴리머레이즈(polymerase)를 이용하였고 주형 DNA는 각각 20ng을 첨가하여 진행하였다. PCR 조건은 95℃에서 5분간 변성(denaturation), 95℃에서 1분 변성(denaturation), 55 ~ 60℃에서 1분 풀림(annealing), 72℃에서 2분 신장(extension) 하는 과정을 30회 반복하였다. 본 실시예에서는 선정된 8개 균주 내의 글루코시다아제 서열유사도 및 실제 응용 시 유리한 열안정성 등을 고려하여, 4개의 균주만을 우선 실험하였다. 이하 각각의 클로닝 조건은 다음과 같다. The strains of [Table 1] selected for the acquisition of genes related to indican resolution were used by preservation in laboratory-owned strains and published institutions (KACC, MICRO BANK). Cultivation of the strain for genomic DNA extraction was carried out at 25 ~ 50 ℃ using the medium specified by the LB medium and the distribution institution, the genomic DNA extraction from the cultured cells using a promega genomic DNA prep kit. Primers used for amplification of genes to be cloned into pTrc99A (Pharmacia), which is a genomic DNA as a template, were prepared based on sequences registered in GenBank. Polymerase chain reaction (PCR) reaction was performed using Pfu polymerase and template DNA was added by adding 20ng each. PCR conditions were repeated 30 times for 5 minutes denaturation at 95 ° C, 1 minute denaturation at 95 ° C, 1 minute annealing at 55 to 60 ° C, and 2 minutes extension at 72 ° C. It was. In this example, only four strains were first tested in consideration of glucosidase sequence similarity within 8 selected strains and favorable thermal stability in practical application. Each cloning condition is as follows.

(1) 서머스 칼도필러스 (Thermus caldophilus)(1) Thermus caldophilus

pTrc99A 플라스미드를 EcoRⅠ과 HindⅢ 제한효소로 절단한 후, 서머스 칼도필러스 균주의 β-글루코시다아제 영역을 PCR로 증폭하여 재조합 플라스미드를 제작하였다. 이를 위해 서머스 칼도필러스 염색체를 주형으로, 정방향 프라이머 (5'-TAGAATTCAACGCCGAAAAGTTT-3')와 역방향 프라이머 (5'-TAAAGCTTTCACTCTGGCTGGGGThe pTrc99A plasmid was digested with EcoR I and Hind III restriction enzymes, and then a recombinant plasmid was prepared by amplifying the β-glucosidase region of the Summer Caldophilus strain by PCR. To this end, the Thermos Caldophilus chromosome was used as a template, and a forward primer (5'-TAGAATTCAACGCCGAAAAGTTT-3 ') and a reverse primer (5'-TAAAGCTTTCACTCTGGCTGGGG)

-3')를 이용하였다. -3 ') was used.

정방향 프라이머 : 5'-TAGAATTCAACGCCGAAAAGTTT-3' (서열번호 9)Forward primer: 5'-TAGAATTCAACGCCGAAAAGTTT-3 '(SEQ ID NO: 9)

역방향 프라이머 : 5'-TAAAGCTTTCACTCTGGCTGGGG-3' (서열번호 10)Reverse primer: 5'-TAAAGCTTTCACTCTGGCTGGGG-3 '(SEQ ID NO: 10)

(2) 서머스 서머필러스 HB8 (Thermus thermophilus HB8 )(2) Thermus thermophilus HB8

pTrc99A 플라스미드를 EcoRⅠ과 HindⅢ 제한효소로 절단한 후, 서머스 서머필러스 HB8 균주의 β-글루코시다아제 영역을 PCR로 증폭하여 재조합 플라스미드 제작하였다. 이를 위해 서머스 서머필러스 HB8 염색체를 주형으로, 정방향 프라이머(5'-TAGAATTCAACGCCGAAAAATTC-3')와 역방향 프라이머(5'-TAAAGCTTTTAGGTCTGGGCCCThe pTrc99A plasmid was digested with EcoR I and Hind III restriction enzymes, and then the recombinant plasmid was prepared by amplifying the β-glucosidase region of the Summers thermophilus HB8 strain by PCR. For this purpose, the Thermos Thermophilus HB8 chromosome was used as a template, and a forward primer (5'-TAGAATTCAACGCCGAAAAATTC-3 ') and a reverse primer (5'-TAAAGCTTTTAGGTCTGGGCCC

G-3')를 이용하였다. G-3 ').

정방향 프라이머 : 5'-TAGAATTCAACGCCGAAAAATTC-3' (서열번호 11)Forward primer: 5'-TAGAATTCAACGCCGAAAAATTC-3 '(SEQ ID NO: 11)

역방향 프라이머 : 5'-TAAAGCTTTTAGGTCTGGGCCCG-3' (서열번호 12) Reverse primer: 5'-TAAAGCTTTTAGGTCTGGGCCCG-3 '(SEQ ID NO: 12)

(3) 플라보박테리움 존소니에 (Flavobacterium johnsoniae)(3) Flavobacterium johnsoniae

pTrc99A 플라스미드를 NcoI과 HindⅢ 제한효소로 절단한 후, 플라보박테리움 존소니에 균주의 β-글루코시다아제 영역을 PCR로 증폭하여 재조합 플라스미드를 제작하였다. 이를 위해 플라보박테리움 존소니에 염색체를 주형으로 정방향 프라이머 (5'-GCCCATGGGTAAAATTGAAAACTCATTT-3') 과 역방향 프라이머(5'-GCAAGCTTTTAAGAThe pTrc99A plasmid was digested with Nco I and Hind III restriction enzymes, followed by flavobacterium johnsonie strains. The recombinant plasmid was prepared by amplifying the β-glucosidase region by PCR. For this purpose, the forward primer (5'-GCCCATGGGTAAAATTGAAAACTCATTT-3 ') and the reverse primer (5'-GCAAGCTTTTAAGA) were used as the template for the Flavobacterium johnsonie chromosome.

TAAAAAATCTTTAAA-3')를 이용하였다. TAAAAAATCTTTAAA-3 ') was used.

정방향 프라이머 : 5'-GCCCATGGGTAAAATTGAAAACTCATTT-3' (서열번호 13) Forward primer: 5'-GCCCATGGGTAAAATTGAAAACTCATTT-3 '(SEQ ID NO: 13)

역방향 프라이머 : 5'-GCAAGCTTTTAAGATAAAAAATCTTTAAA-3' (서열번호 14) Reverse primer: 5'-GCAAGCTTTTAAGATAAAAAATCTTTAAA-3 '(SEQ ID NO: 14)

(4) 시노라이조비움 멜리로티 (Sinorhizobium meliloti)(4) Sinorhizobium meliloti

pTrc99A 플라스미드를 NcoⅠ과 HindⅢ 제한효소로 절단한 후, 시노라이조비움 멜리로티 균주의 β-글리코시다아제 영역을 클로닝하여 재조합 플라스미드를 제 작하였다. 이를 위해 시노라이조비움 멜리로티 균주의 유전체를 주형으로, 정방향 프라이머 (5'-ATCCATGGTGATCGAAGCCAAGA-3')와 역방향 프라이머(5'-ATAAGCTTTCATCCCThe pTrc99A plasmid was digested with Nco I and Hind III restriction enzymes, followed by cloning of the β-glycosidase region of the cynorazobilium melorirot strain to produce a recombinant plasmid. To this end, the genome of the cyno- razobiium melorirot strain was used as a template, and a forward primer (5'-ATCCATGGTGATCGAAGCCAAGA-3 ') and a reverse primer (5'-ATAAGCTTTCATCCC) were used.

GGCTTGT-3')를 이용해 PCR을 수행하였다. PCR was performed using GGCTTGT-3 ').

정방향 프라이머 : 5'-ATCCATGGTGATCGAAGCCAAGA-3' (서열번호 15) Forward primer: 5'-ATCCATGGTGATCGAAGCCAAGA-3 '(SEQ ID NO: 15)

역방향 프라이머 : 5'-ATAAGCTTTCATCCCGGCTTGT-3' (서열번호 16) Reverse primer: 5'-ATAAGCTTTCATCCCGGCTTGT-3 '(SEQ ID NO: 16)

상기와 같은 조건으로 증폭된 유전자를 아가로스 젤(0.8%)에 전기영동 하여 원하는 크기의 절편만을 회수한 후 전술한 제한효소로 절단한 발현벡터에 삽입하여 재조합 플라스미드를 제작하였다. 제조된 재조합 플라스미드를 숙주인 E.coli XL1-Blue에 도입하여 형질전환한 후 전세포 배양을 통해 대량으로 증폭하여 회수하였다. 회수한 각각의 재조합 플라스미드에 삽입된 유전자의 염기서열 및 아미노산 서열을 확인한 결과, 발굴된 β-글리코시다아제 유전자의 서열과 일치한 것으로 확인되었다. 상기에서 회수한 재조합 플라스미드 중 시노라이조비움 멜리로티 균주의 β-글리코시다아제 유전자로 형질전환된 대장균 형질전환체를 E. coli XL1-Blue[pTrc99A-glu(SM)]이라 명명하였고, 대전광역시 유성구 어은동 52번지 생명공학연구원 유전자자원센터에 소재하는 국제기탁기관인 유전자은행에 기탁번호 KCTC 11236BP로, 2007년 11월 23일자로 기탁하였다.Genes amplified under the above conditions were electrophoresed on agarose gel (0.8%) to recover only fragments of a desired size and then inserted into expression vectors cut with the above-described restriction enzymes to prepare recombinant plasmids. The recombinant plasmid prepared was introduced into E. coli XL1-Blue, transformed, and recovered by amplification in large quantities through whole cell culture. As a result of confirming the nucleotide sequence and amino acid sequence of the gene inserted into each of the recovered recombinant plasmids, it was confirmed that it was identical with the sequence of the discovered β-glycosidase gene. Among the recombinant plasmids recovered above, E. coli XL1-Blue [pTrc99A-glu (SM)] transformed with the β-glycosidase gene of the cynorazobi memelirot strain was named E. coli XL. The deposit was made on November 23, 2007, with the accession number KCTC 11236BP, to the Gene Bank, an international depository institution located at 52, Eun-dong Biotechnology Research Institute.

[실시예 3] 형질전환 균주의 β-글리코시다아제의 발현 및 활성 측정Example 3 Expression and Activity of β-Glycosidase in Transgenic Strains

상기 실시예 2에서 제작된 재조합 β-글리코시다아제의 발현양과 활성의 확 인을 위해 고체배지에서 활성화시킨 재조합 균체를 암피실린(50㎍/ml)이 포함된 LB 액체배지에 접종한 후 37℃에서 10시간 배양하였다. 배양액 1%를 10ml 50㎍ 암피실린이 포함된 LB 액체배지에 재접종한 후 O.D600에서 흡광도가 0.5가 되도록 37℃, 180rpm에서 배양하였다. 그 후, 1mM IPTG(isopropyl- thiogalatoside)를 첨가한 후 37℃, 100분 조건으로 단백질의 발현을 유도하였다. 발현이 유도된 균체는 원심분리기를 이용하여 회수하였으며 세포를 파쇄한 후 SDS-PAGE(sodium dodecyl sulfate polyacrylamide gel electrophoresis)를 통해 효소의 발현량을 측정하였다. 대조군으로써 인서트를 지니지 않은 공벡터에 형질전환된 숙주를 사용하였고 β-글리코시다아제 효소의 활성은 검출되지 않았다. 그 결과, 하기 [도 3]에서와 같이 모든 재조합 β-글리코시다아제는 융합 표지(fusion tag)나 단백질을 사용하지 않고 단일 단백질(sole protein)로 발현시킬 경우 대부분 비가용성인 상태로 발현되는 것이 확인되었다. 서머스 칼도필러스 효소는 뚜렷한 발현이 확인되지 않았으며, 서머스 서머필러스 HB8과 플라보박테리움 존소니에의 효소발현양은 전체단백질의 30% 내외로 과발현 되었지만 90% 이상이 비가용성인 형태로 발현되었다. 시노라이조비움 멜리로티의 효소는 전체 숙주 단백질의 45% 이상을 차지할 정도로 과발현 되었으나 20% 정도만이 가용성으로 발현되었다. 이러한 발현양상은 온도를 낮추거나 숙주를 바꾸어 발현시킨 경우에도 유지되는 것으로 보아 대장균 내에서의 발현이 불안정적인 것으로 확인되었다. 따라서 대장균 내에서 발현을 유도할 경우, 유도체가 없는 조건에서 소량으로 발현되는 단백질의 활성을 측정하는 것이 보다 유리할 것으로 판단되었다. 따라서 상기와 동일한 환경에서 다음과 같은 조건일 때, 형광기질을 사용해 발현되는 단백질의 활성 유무와 정도를 확인하였다. 이를 위해 형광기질인 MUG(4-methylumbelliferyl-ㅯ-D-glucopyranoside, Sigma-Aldrich)가 2mM이 포함된 LA 플레이트에 형질전환체를 도말하여 배양하였고 [도 4a의 좌], 배양된 균체위에 5mM MUG가 포함된 1% 아가로스 겔(50 mM sodium-acetate) 용액을 부어 5분간 반응 [도 4a의 우] 시킨 후 350 ~ 375nm에서 형광이 나타나는지 확인하였다. 그 결과, 하기 [도 4a]에서와 같이 플라보박테리움 존소니에 균주 유래의 효소를 제외한 나머지 모든 효소의 경우 활성에 의한 뚜렷한 형광이 확인되었다. 이 중 시노라이조비움 멜리로티 균주 유래의 효소를 지닌 형질전환체에서 형광의 세기가 가장 높은 것으로 보아 상대적으로 활성이 큰 것을 알 수 있었다.In order to confirm the expression level and activity of the recombinant β-glycosidase prepared in Example 2, the recombinant cells activated in a solid medium were inoculated into LB liquid medium containing ampicillin (50 µg / ml) at 37 ° C. Incubated for 10 hours. 1% of the culture solution was reinoculated into LB liquid medium containing 10ml 50µg ampicillin, and then cultured at 37 ° C and 180rpm to have an absorbance of 0.5 at OD 600 . Thereafter, 1 mM IPTG (isopropyl-thiogalatoside) was added, and then protein expression was induced at 37 ° C. for 100 minutes. Expression-induced cells were recovered using a centrifugal separator and the cells were lysed and the expression levels of enzymes were measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). A host transformed with an empty vector without inserts was used as a control and no activity of β-glycosidase enzyme was detected. As a result, all recombinant β-glycosidase, as shown in the following [Fig. 3] is expressed in the most insoluble state when expressed as a single protein (sole protein) without using a fusion tag (fusion tag) or protein Confirmed. There was no clear expression of the Summer Caldophyllase enzyme, and the expression levels of Summers Thermophilus HB8 and Flavobacterium johnsonie were overexpressed in about 30% of the total protein, but over 90% were insoluble form. It became. The enzyme of cynorazobi memeliotti was overexpressed to account for more than 45% of the total host protein, but only 20% was soluble. This expression pattern was found to be maintained even when the temperature was lowered or the host was expressed, indicating that the expression in E. coli was unstable. Therefore, when inducing expression in E. coli, it would be more advantageous to measure the activity of the protein expressed in small amounts in the absence of derivatives. Therefore, under the same conditions as above, the presence or absence and activity of the protein expressed using the fluorescent substrate was confirmed. To this end, MUG (4-methylumbelliferyl- ㅯ -D-glucopyranoside, Sigma-Aldrich), a fluorescent substrate, was cultured by smearing transformants onto LA plates containing 2 mM [Figure 4a], and 5 mM MUG on the cultured cells. 1% agarose gel (50 mM sodium-acetate) containing the solution was poured and reacted for 5 minutes [right of FIG. 4a], and then it was confirmed whether fluorescence appeared at 350 to 375 nm. As a result, as shown in [FIG. 4A], all of the enzymes except for the enzymes derived from Flavobacterium johnsonie strains were found to have distinct fluorescence by activity. Among them, the transformant having an enzyme derived from the cynorazobi melloriti strain showed the highest fluorescence intensity, indicating a relatively high activity.

일반적으로 실험에 이용한 대장균 숙주의 경우, 여러 종류의 글루코시다아제 과(family) 계열의 효소가 존재하는 것으로 알려져 있다. 따라서 형광기질의 활성화가 숙주의 효소에 의한 것인지 발굴된 효소에 의한 것인지를 확인하기 위한 효소도(zymogram)를 비변성 겔(native gel)에서 수행하였다. 각각의 재조합 균체를 상기된 조건에서 배양하고 파쇄하여 상등액을 수집한 후 8% 비변성 겔에 전기영동 하였다. 전개된 겔을 증류수 혹은 완충액으로 세척하고 5mM MUG가 포함된 1% 아가로스 겔(50mM Na-acetate)을 만들어 겹친 후 37℃에서 5분간 반응시켜 형광을 나타내는 단백질 밴드를 확인하였다. 그 결과 하기 [도 4b]에서와 같이 각기 다른 위치에서 형광을 보이는 것으로 보아, 숙주 내의 동일 효소에 의해 형광기질이 분해되는 것이 아니라 각 발굴된 효소에 의해 형광기질이 분해되는 것으로 확인되었다. 고체 배지에서와 같이 효소도 상에서도 시노라이조비움 멜리로티 유래의 효소가 발현양이 많고 활성이 높은 것으로 관찰되었다. 대조군으로써 인서트를 지니지 않은 공벡터로 형질전환한 숙주의 경우 β-글리코시다아제 활성이 관찰되지 않았다. In general, in the case of the E. coli host used in the experiment, it is known that various kinds of glucosidase family enzymes exist. Therefore, an enzyme diagram (zymogram) was performed on a native gel to confirm whether the activation of the fluorescent substrate was caused by an enzyme of the host or by an excavated enzyme. Each recombinant cell was incubated and disrupted in the above-described conditions to collect the supernatant and electrophoresed on 8% undenatured gel. The developed gel was washed with distilled water or a buffer solution, a 1% agarose gel (50mM Na-acetate) containing 5mM MUG was overlapped, and then reacted at 37 ° C for 5 minutes to identify a fluorescence protein band. As a result, as shown in the following [4b] to show the fluorescence at different positions, it was confirmed that the fluorescent substrate is decomposed by each of the discovered enzymes, rather than the degradation of the fluorescent substrate by the same enzyme in the host. On the enzyme diagram as in the solid medium, it was observed that the enzyme derived from cynorazobimelellioteti was high in expression and high in activity. Β-glycosidase activity was not observed for hosts transformed with the empty vector with no insert as a control.

이외에 인디칸이나 MUG와 유사한 특성을 지닌 X-gal(5-bromo-4-chloro- 3-indolyl-D-galalactopyranoside)에 대해서도 시노라이조비움 멜리로티의 β-glucosidase 가 뚜렷한 활성을 보여주었다 [도 5].In addition, β-glucosidase of cynorazobimelelliote showed distinct activity against X-gal (5-bromo-4-chloro-3-indolyl-D-galalactopyranoside) having similar characteristics to that of indican or MUG. ].

[실시예 4] 발굴된 β-글루코시다아제의 인디칸 분해 활성 확인Example 4 Indican Degradation Activity of Excavated β-Glucosidase

형광기질로 활성이 증명된 선별효소들의 인디칸에 대한 활성을 다음과 같은 방법으로 확인하였다. 1mM의 순수한 인디칸을 포함한 LA 고체배지와 M9 최소배지에 활성이 확인된 유전자를 포함한 재조합균체들을 도말한 후 각각을 37℃에서 배양하며 인디고 블루의 생성여부를 관찰하였다. 우선, 1mM 인디칸을 포함한 M9 최소배지 (도 6a)에 발굴된 β-글루코시다아제 유전자를 지닌 재조합 미생물의 생장을 확인하였다. 하기 [도 6]에서와 같이 배양한지 2 ~ 3일 후 인디칸을 탄소원으로 하여 플라보박테리움 존소니에 효소를 지닌 형질전환체를 제외한 시노라이조비움 멜리로티와 서머스 칼도필러스, 서머스 서머필러스 HB8 균주의 β-글루코시다아제를 지닌 대장균이 생장하며 남색의 인디고블루를 생산하는 것을 확인할 수 있었다. LA배지(도 6b)에서도 M9 최소배지에서와 같은 결과로 시노라이조비움 멜리로티와 서머스 칼도필러스, 서머스 서머필러스 HB8 균주의 β-글루코시다아제가 남색의 인디고 블루를 생산하였다. 또한 형광기질에서의 결과와 마찬가지로 시노라이조비움 멜리로 티 효소를 지닌 형질전환체의 발색이 가장 강한 것으로 보아 활성이 상대적으로 높음을 확인 할 수 있었다. 플라보박테리움 존소니에 균주의 β-글루코시다아제의 경우 하기 [도 6]에서는 불분명하나 배양 5 ~ 6일 후에 적은 양의 인디고를 생산하는 것이 확인되었다. 이는 낮은 효소활성이 원인인 것으로 추정되며 세포의 최소성장에 필요한 미미한 정도의 활성만을 지닌 것으로 예측되어진다. 대조군으로써 인서트를 지니지 않은 공벡터로 형질전환한 숙주의 경우 성장이나 활성이 관찰되지 않았다. The activity of the indican of the enzymes whose activity was demonstrated by fluorescence substrate was confirmed by the following method. LA cells containing 1mM pure indican and M9 minimal medium were plated with recombinants containing the genes whose activity was confirmed, and then cultured at 37 ° C., respectively, and the indigo blue was observed. First, the growth of recombinant microorganisms with β-glucosidase gene discovered in M9 minimal medium containing 1 mM indican (FIG. 6A) was confirmed. 2 to 3 days after incubation as shown in [FIG. 6], except for transformants with flavobacterium johnsonie enzymes using indican as a carbon source, cynorazobib melloritti and Somers Caldophilus, Somers Summer Filler Escherichia coli with β-glucosidase of HB8 strain was grown and produced indigo blue of indigo blue. In LA medium (FIG. 6b), the same results as in M9 minimal medium were produced indigo blue of β-glucosidase of cynorazobi memeliotti, Summers caldophyllus, and Summers thermophilus HB8 strains. In addition, as shown in the fluorescent substrate, it was confirmed that the activity of the transformant having the cyno- razobiium melilloti enzyme was the strongest, indicating that the activity was relatively high. In the case of β-glucosidase of the Flavobacterium johnsonie strain, it is unclear in the following [FIG. 6], but it was confirmed to produce a small amount of indigo after 5-6 days of culture. It is assumed that this is caused by low enzymatic activity and is expected to have only a slight degree of activity necessary for minimal cell growth. No growth or activity was observed in the host transformed with an empty vector with no insert as a control.

[실시예 5] 발굴된 β-글루코시다아제의 쪽 추출물에서 인디칸 분해능 확인Example 5 Indican Degradation in the Extracted Extract of β-Glucosidase

쪽 식물에서 추출한 인디칸 함유분말에서 효소 활성의 검출을 위해서, LA 고체배지에 형질전환체를 도말하여 배양한 후 메탄올에 녹인 쪽 추출물을 분주하여 펼치고 남색의 인디고가 생성되는지를 확인하였다. 쪽 추출물의 제조는 쪽잎을 동결건조한 후 분쇄한 가루를 아세톤(10 ml/g)에 1시간동안 부유시키고 원심분리한 후 상등액을 회수해 70℃에서 건조시켰다. 그 결과 하기 [도 7]에서와 같이 배양된 균체에 쪽 추출물을 처리하였을 때 시간이 지남에 따라 남색의 색깔이 진해지는 것으로 보아 여러 물질이 혼합된 형태의 쪽 추출물에서도 인디고가 생산됨을 확인하였다. 하기 도 4와 도 6의 결과와 같이 시노라이조비움 멜리로티 균주 유래의 효소가 활성이 가장 높은 것을 확인하였다. 남색의 반응 결과물의 확인은 시판되는 인디고의 흡광도와 특성피크, HPLC 상의 정체시간(retention time)을 비교하여 검증하였다. In order to detect the enzyme activity in the indican-containing powder extracted from the plant, the transformant was plated and cultured in a LA solid medium, and the extract extracted in dissolving in methanol was spread out to confirm that indigo of blue color was produced. To prepare the extract, the leaf was lyophilized and the ground powder was suspended in acetone (10 ml / g) for 1 hour, centrifuged and the supernatant was recovered and dried at 70 ° C. As a result, when the side extract was treated to the cultured cells as shown in [Fig. 7], it was confirmed that the indigo was produced even in the extract of the form in which several substances were mixed, as the color of indigo blue increased. As shown in the results of FIGS. 4 and 6, it was confirmed that the enzyme derived from the Sino-Rizobium melloriti strain had the highest activity. Confirmation of the reaction result of the indigo blue color was confirmed by comparing the absorbance and characteristic peak of the commercial indigo, retention time on HPLC.

[실시예 6] 선별된 효소의 안정적인 발현 시스템 선정Example 6 Selection of Stable Expression System of Selected Enzymes

전술한 바와 같이 시노라이조비움 멜리로티 유래의 효소의 경우에도 단일 단백질로 발현시키는 경우에 80% 이상이 불용성인 상태로 생성되므로 이를 해결할 수 있는 안정된 발현 시스템을 찾고 생산에 필요한 충분한 양의 단백질을 확보하기 위해 다음과 같은 실험을 수행하였다. 대장균 내에서 발현된 단백질의 가용성의 증가는 사용된 융합 표지 혹은 단백질에 의존적인 것이 일반적인 현상이므로, 가용성을 높이기 위해 히스티딘-표지(His-tag)를 이용한 표지(tagging)와 MBP를 이용한 융합 시스템의 활용이 가능한 pQE30(퀴아젠)과 pMAL-c2X 발현벡터(뉴일글랜드 바이오랩스) 로의 클로닝을 시도하였다. pQE30과 pMALc2X 플라스미드에 삽입하기 위해 제작한 PCR 프라이머의 정방향 염기서열은 5'-ATGGATCCATGATCGAAGCCAAGA-3'(BamHⅠ)이었고, 역방향 염기서열은 5'-ATAAGCTTTCATCCCGGCTTGT-3'(HindⅢ)이었다. As described above, in the case of an enzyme derived from cynorazobimeliiloti, when expressed as a single protein, 80% or more of the enzyme is generated in an insoluble state. Therefore, a stable expression system capable of solving this problem and sufficient amount of protein required for production are secured. In order to perform the following experiment. The increase in the solubility of the expressed protein in E. coli is generally dependent on the fusion label or protein used, and therefore, the histidine-tagging and MBP fusion systems are used to increase the solubility. Cloning into pQE30 (Qiagen) and pMAL-c2X expression vector (Newland Biolabs) that can be utilized was attempted. The forward nucleotide sequence of the PCR primers prepared for insertion into the pQE30 and pMALc2X plasmids was 5'-ATGGATCCATGATCGAAGCCAAGA-3 '( BamH I), and the reverse nucleotide sequence was 5'-ATAAGCTTTCATCCCGGCTTGT-3' ( Hind III).

정방향 프라이머 : 5'-ATGGATCCATGATCGAAGCCAAGA-3' (서열번호 17)Forward primer: 5'-ATGGATCCATGATCGAAGCCAAGA-3 '(SEQ ID NO: 17)

역방향 프라이머 : 5'-ATAAGCTTTCATCCCGGCTTGT-3' (서열번호 18)Reverse primer: 5'-ATAAGCTTTCATCCCGGCTTGT-3 '(SEQ ID NO: 18)

발현이 유도된 β-글루코시다아제의 발현양과 가용성을 확인하기 위해 LA배지에서 활성화시킨 균체를 암피실린(50㎍/ml)이 포함된 LB 배지에 접종한 후 37℃에서 10시간 배양하였다. 배양액 1%를 10ml(50㎍ 암피실린) LB 액체배지에 재접종한 후 O.D600에서 흡광도가 0.5가 되도록 37℃, 180rpm에서 배양하였다. 1mM IPTG를 발현유도제로 첨가한 후 37℃에서 100분간 단백질의 발현을 유도하였다. 발현이 유 도된 균체는 원심분리기를 이용하여 회수한 후 인산완충식염수(phosphate-buffered saline; PBS) 용액으로 3번 세척하여 원심분리 하였다. 회수된 균체는 4ml 완충용액(50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, 1mM DTT, pH 7.2)에 현탁하고 초음파파쇄기(5 sec pulse on, 10 sec pulse off, amplify by 37%)를 이용하여 파쇄하였다. 12,000rpm에서 30분 동안 원심분리한 후 상등액과 침전물을 분리하여 2ㅧ 샘플 로딩 버퍼를 첨가한 후 100℃에서 10분간 변성을 유도하였다. 준비된 샘플을 상온까지 천천히 식힌 후 10% 폴리아크릴아마이드 겔에 로딩하여 전기영동(20mA, 1시간) 하였다. 전개된 겔의 경우 염색액(Brillient blue R-250)으로 2시간 염색한 후 디스테이닝(destaining) 하였다. 그 결과, 하기 [도 8]에서와 같이 히스티딘-표지를 붙여 발현 시킨 경우, 단일 단백질로 발현한 경우와 비슷하게 가용성이 낮았다. 이러한 특성은 발현조건과 배양조건을 변화시킨 환경에서 실험한 경우에도 유지되는 것으로 관찰되었다. 이와는 달리, MBP 융합단백질의 경우, 85% 이상이 가용성이며 활성을 지닌 단백질로 발현되는 것이 확인되어 안정적으로 발현됨을 확인할 수 있었다. 단백질 발현양의 경우에도 전체 숙주 단백질의 30% 내외로 과발현 되는 것이 확인되었다.In order to confirm the expression level and solubility of the expression-induced β-glucosidase, the cells activated in LA medium were inoculated in LB medium containing ampicillin (50 µg / ml) and incubated at 37 ° C for 10 hours. 1% of the culture was re-inoculated into 10 ml (50 μg ampicillin) LB liquid medium and incubated at 37 ° C. and 180 rpm to have an absorbance of 0.5 at OD 600 . After addition of 1 mM IPTG as an expression inducer, the expression of protein was induced at 37 ° C. for 100 minutes. The expression-induced cells were recovered using a centrifuge, washed three times with a phosphate-buffered saline (PBS) solution, and centrifuged. The recovered cells were suspended in 4 ml buffer (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.2) and sonicated (5 sec pulse on, 10 sec pulse off, amplify by 37%). It was crushed using. After centrifugation at 12,000rpm for 30 minutes, the supernatant and the precipitate were separated, and a 2 ㅧ sample loading buffer was added to induce denaturation at 100 ° C. for 10 minutes. The prepared sample was slowly cooled to room temperature and then loaded onto a 10% polyacrylamide gel, followed by electrophoresis (20 mA, 1 hour). The developed gel was stained with a staining solution (Brillient blue R-250) for 2 hours and then detained. As a result, when expressed with a histidine-labeled as shown in [Fig. 8], the solubility was low similar to the case of expressing with a single protein. These properties were observed to be maintained even in the experiments with varying expression and culture conditions. On the contrary, in the case of the MBP fusion protein, more than 85% was confirmed to be expressed as a soluble and active protein, confirming that it is stably expressed. In the case of the amount of protein expression, it was confirmed that overexpression of about 30% of the whole host protein.

도 1은 기존의 인디고 염료 생산방법으로 화학적인 합성법과 트립토판을 전구체로 생변환하는 방법, 방향족 화합물을 전구체로 생변환하는 방법을 나타낸 그림이다.1 is a diagram illustrating a chemical synthesis method and a bioconversion method of tryptophan into a precursor and a bioconversion method of an aromatic compound into a precursor using a conventional indigo dye production method.

도 2는 발굴된 β-글루코시다아제 유전자의 계통도를 나타낸 그림이다.Figure 2 is a diagram showing the phylogenetic tree of the discovered β-glucosidase gene.

도 3은 인디칸에 대해 활성을 지닌 유전자로 형질전환된 대장균 XL1-blue에서의 β-글루코시다아제 발현양을 나타낸 SDS-PAGE 결과이다.Figure 3 is an SDS-PAGE showing the expression of β-glucosidase in E. coli XL1-blue transformed with a gene having activity against indican.

(1: 대조군, 2: 플라보박테리움 존소니에, 3: 서머스 서머필러스 HB8, 4: 시노라이조비움 멜리로티, 5: 서머스 칼도필러스 ; P: 비가용성 fraction, S: 가용성 fraction)(1: control, 2: Flavobacterium johnsonie, 3: Summers Thermophilus HB8, 4: cynorazobilium melototti, 5: Summers Caldophyllus; P: insoluble fraction, S: soluble fraction)

도 4는 β-글루코시다아제 효소들이 고체배지와 비변성 겔에서 나타낸 효소도 결과이다.Figure 4 shows the results of the enzyme β-glucosidase enzymes are shown in solid medium and unmodified gel.

(a - 1: 대조군, 2: 플라보박테리움 존소니에, 3: 서머스 서머필러스 HB8, 4: 시노라이조비움 멜리로티, 5: 서머스 칼도필러스 ; (a-1: control, 2: Flavobacterium johnsonie, 3: Summers Thermophilus HB8, 4: cynorazobilium melototti, 5: Summers Caldophilus;

b - 1: 서머스 칼도필러스, 2: 시노라이조비움 멜리로티, 3: 서머스 서머필러스 HB8, 4: 플라보박테리움 존소니에, 5: 대조군)b-1: Summers Caldophilus, 2: Sinorazobib melloritti, 3: Summers Thermophilus HB8, 4: Flavobacterium Johnsonier, 5: Control)

도 5는 시노라이조비움 멜리로티 균주 유래의 β-글루코시다아제 효소의 X-gal에 대한 활성을 LA배지에서 확인한 그림이다.Figure 5 is a figure confirming the activity of X-gal of β-glucosidase enzyme derived from the Sinorazobi meliloti strain in LA medium.

(1: β-글루코시다아제 효소를 포함한 재조합 균주, 2: 공벡터를 지닌 대조군, 3: X-gal 에 활성을 지닌 효소를 포함한 대조군)(1: recombinant strain containing β-glucosidase enzyme, 2: control with an empty vector, 3: control with an enzyme active on X-gal)

도 6은 β-글루코시다아제 효소들의 인디칸에 대한 활성을 M9 최소배지(a)와 LA배지(b)에서 확인한 그림이다. Figure 6 is a figure confirming the activity of the β-glucosidase enzymes on indikanes in M9 minimal medium (a) and LA medium (b).

(1: 대조군, 2: 플라보박테리움 존소니에, 3: 서머스 서머필러스 HB8, 4: 시노라이조비움 멜리로티, 5: 서머스 칼도필러스)(1: Control, 2: Flavobacterium Johnsonie, 3: Summers Thermophilus HB8, 4: Sinoraizolium melototti, 5: Summers Caldophyllus)

도 7은 선정된 β-글루코시다아제들의 실제 활용을 위해 쪽 추출물로 확인한 활성결과를 나타낸 그림이다.Figure 7 is a diagram showing the results of the activity confirmed by the extract extract for the practical use of the selected β-glucosidase.

(1: 대조군, 2: 플라보박테리움 존소니에, 3: 서머스 서머필러스 HB8, 4: 시노라이조비움 멜리로티, 5: 서머스 칼도필러스)(1: Control, 2: Flavobacterium Johnsonie, 3: Summers Thermophilus HB8, 4: Sinoraizolium melototti, 5: Summers Caldophyllus)

도 8은 선정된 β-글루코시다아제의 과발현을 가용성으로 유도한 융합단백질의 발현양을 보여주는 그림이다.8 is a diagram showing the amount of expression of the fusion protein soluble induced overexpression of the selected β-glucosidase.

(1: His tag 융합단백질, 2: MBP 융합단백질 ; P: 비가용성 fraction, S: 가용성 fraction)(1: His tag fusion protein, 2: MBP fusion protein; P: insoluble fraction, S: soluble fraction)

<110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Recombinant microorganisms harboring a B-glucosidase and their use for the production of indigo dyes <160> 18 <170> KopatentIn 1.71 <210> 1 <211> 1272 <212> DNA <213> Thermus caldophilus <400> 1 atgaccgaga acgccgaaaa attcctttgg ggagtggcca ccagcgccta ccagattgag 60 ggggccaccc aggaggacgg ccgggggcct tccatctggg acgccttcgc ccagcgcccg 120 ggggccatcc gggacgggag cacaggggag cccgcctgcg accactaccg ccgctacgag 180 gaggacatcg ccctgatgca atccctcggg gtgggggcct accgcttctc cgtggcctgg 240 ccccggatcc tccccgaggg ccgggggcgg atcaacccca agggcctcgc cttctacgac 300 cgcctggtgg accggcttct cgcttccggg atcacgccct ttctcaccct ctaccactgg 360 gacctgcctt tggcccagga ggagcgggga ggctggcgga gccgggagac cgccttcgcc 420 ttcgccgagt acgccgaggc ggtggcccgg gccctcgccg accggttgcc cttcttcgcc 480 accctgaacg agccctggtg ctcggccttc ctcgggcact ggacggggga acacgccccc 540 ggcctcagga acctggaagc ggccctccgc gccgcccacc acctcctcct gggccacggc 600 ctcgccgtgg aggccttgag ggccgcgggg gcgaagcggg tggggatcgt cctcaacttc 660 gccccgcgct acggcgagga ccccgaggcg gtggacgtgg ccgaccgcta ccacaaccgc 720 ttcttcctgg accccatcct gggcaagggg tatcccgaaa gccccttccg agaccccccg 780 cccgtcccca tcctctcccg cgacctggag ctcgtggcaa ggcccctgga cttcctgggg 840 gtgaactact acgcccccgt ccgcgtggcc ccggggacgg ggaccttgcc cgtgcgctac 900 cttcccccgg aagggccggc cacggccatg gggtgggagg tctaccccga ggggctttac 960 cacctcttga agcgcctcgg ccgggaggtg ccctggcccc tttacgtcac ggaaaacggg 1020 gccgcctacc ccgacctctg gacgggagag gccgtggtgg aggaccccga gcgggtggcc 1080 tacctcgagg cccacgtgga gggccgcctc cgggcccggg aagaaggggt ggacctccgg 1140 ggctacttcg tctggagcct catggacaac tttgagtggg cgttcggcta cacccggcgc 1200 ttcggcctct actacgtgga cttccccagc cagaggcgca tccccaaaag gagcgccctc 1260 tggtaccaat ga 1272 <210> 2 <211> 1296 <212> DNA <213> Thermus thermophilus <400> 2 atgaccgaga acgccgaaaa attcctttgg ggagtggcca ccagcgccta ccagattgag 60 ggggccaccc aggaggacgg ccgggggcct tccatctggg acgccttcgc ccagcgcccc 120 ggggccatcc gggacgggag cacaggggag cccgcctgcg accactaccg ccgctacgag 180 gaggacatcg ccctgatgca atccctcggg gtgcgggcct accgcttctc cgtggcctgg 240 ccccggatcc tccccgaggg ccgggggcgg atcaacccca agggcctcgc cttctacgac 300 cgcctggtgg accggcttct cgcttccggg atcacgccct ttctcaccct ctaccactgg 360 gacctgcctt tggccctgga ggagcgggga ggctggcgga gccgggagac cgccttcgcc 420 ttcgccgagt acgccgaggc ggtggcccgg gccctcgccg accgggtgcc cttcttcgcc 480 accctgaacg agccctggtg ctcggccttc ctcgggcact ggacggggga acacgccccc 540 ggcctcagga acctggaagc ggccctccgc gccgcccacc acctcctcct gggccacggc 600 ctcgccgtgg aggccttgag ggccgcgggg gcgaggcggg tggggatcgt cctcaacttc 660 gccccggcct acggcgagga ccccgaggcg gtggacgtgg ccgaccgcta ccacaaccgc 720 ttcttcctgg accccatcct gggcaagggg tatcccgaaa gccccttccg agaccccccg 780 cccgtcccca tcctctcccg cgacctggag ctcgtggcaa ggcccctgga cttcctgggg 840 gtgaactact acgcccccgt ccgcgtggcc ccggggacgg ggaccttgcc cgtgcgctac 900 cttcccccgg aagggccggc cacggccatg gggtgggagg tctaccccga ggggctttac 960 cacctcttga agcgcctcgg ccgggaggtg ccctggcccc tttacgtcac ggaaaacggg 1020 gccgcctacc ccgatctctg gacgggagag gccgtggtgg aggaccccga gcgggtggcc 1080 tacctcgagg cccacgtgga ggccgccctc cgggcccggg aagaaggggt ggacctccgg 1140 ggctacttcg tctggagcct catggacaac tttgagtggg ccttcggcta cacccggcgc 1200 ttcggcctct actacgtgga cttccccagc cagaggcgca tccccaaaag gagcgccctc 1260 tggtaccggg agcggatcgc gcgggcccag acctaa 1296 <210> 3 <211> 1296 <212> DNA <213> Thermus sp. <400> 3 atgaccgaga acgccgaaaa gtttctgtgg ggggtagcca ccagcgccta ccagattgag 60 ggggccaccc aggaggacgg gcgggggcct tccatctggg acaccttcgc ccgccgcccc 120 ggggccatcc gggacggaag cacaggggag cccgcctgcg accactacca ccgctacgag 180 gaggacatcg cccttatgca atccctcggg gtgggggtct atcgcttctc cgtggcctgg 240 ccccggatcc tccccgaggg ccgggggcgg atcaacccca agggcctcgc cttttacgac 300 cgcctggtgg accggcttct cgcggcgggg atcacgccct tcctcaccct ctaccactgg 360 gacctgcccc aggccctcga ggaccggggc ggctggcgga gccgggagac cgccttcgcc 420 ttcgccgagt acgccgaggc ggtggcccgg accctcgccg accgggtgcc cttcttcgcc 480 accctgaacg agccctggtg ctcggccttc ctcgggcact ggacggggga acacgccccc 540 ggcctcagga acctggaggc ggcccttcgc gccgcccacc acctcctcct ggggcacggc 600 ctcgccgtgg aggccttgag ggccgcgggg gcgaagcggg tggggatcgt cctcaacttc 660 gccccggcct acggcgagga ccccgaggcg gtggacgtgg ccgaccgcta ccacaaccgc 720 tacttcctgg accccatcct gggcaggggg tatcccgaaa gcccctttca agaccccccg 780 cccactccca tcctctcccg tgacctggag ctcgtcgcaa ggcccctgga cttcctagga 840 gtgaactact acgcccccgt ccgcgtggcc ccggggacgg ggcctttgcc cgtgcgctac 900 cttcccccgg aggggccggt cacggccatg gggtgggagg tctaccccga ggggctttac 960 cacctcttga agcgcctcgg ccgggaggtg ccctggcccc tttacatcac ggaaaacggg 1020 gccgcctacc ccgacctctg gacgggagag gccgtcgtgg aggaccccga gcgggtggcc 1080 tacctcgagg cccacgtgga ggccgccctc cgggcccggg aagaaggggt ggacctcagg 1140 ggctacttcg tctggagcct catggacaac tttgagtggg ccttcggcta cacccggcgc 1200 ttcggcctct actacgtgga cttccccagc cagaggcgca tccccaaaag gagcgccctc 1260 tggtaccggg agcggatcgc gcgggcccag ctctga 1296 <210> 4 <211> 1380 <212> DNA <213> Agrobacterium tumefaciens <400> 4 atgaccgatc cccaaacgct tgcagcccgt ttccccggtg atttcctgtt cggcgtcgcg 60 accgcctcgt tccagattga gggtgcaacc aaggcagatg gccgcaaacc ctccatctgg 120 gatgccttct gcaacatgcc aggccatgtc ttcgggcgtc acaatggcga tatcgcctgc 180 gatcattaca atcgctggga agaggacctc gatctcatca aggagatggg tgtcgaggcc 240 tatcgtttct ccatcgcctg gccgcgcatc attcccgacg gtttcggacc gatcaacgaa 300 aagggtctgg atttttacga ccgactggtt gatggctgca aggcgcgcgg tatcaagacc 360 tatgcgacgc tttaccattg ggatctgccg ctgaccctga tgggcgacgg cggctgggcc 420 tcgcgctcca ccgcccatgc tttccagcgt tacgccaaaa ccgtcatggc ccgtctgggc 480 gaccggctgg atgcggtggc gaccttcaac gaaccctggt gcgcggtgtg gctcagccat 540 ctctacggca tccatgcgcc gggcgagcgc aacatggagg cggccttagc ggccatgcac 600 cacatcaatc tcgcccatgg tttcggcgtc gaggcgtctc gccatgtagc gccaaaagtg 660 ccggtggggc tggtgctgaa cgcccattcc gtcattccgg cttctaacag cgaggccgat 720 ctcaaggctg ccgaacgggc gttccagttc cacaatggcg cgtttttcga tccggtcttc 780 aagggcgaat atccggccga gatgatggaa gcgcttggtg atcgcatgcc agtcgtggag 840 gcggaagacc tcgccatcat cagccagaag ctcgactggt ggggcctgaa ttattatacg 900 ccgatgcgcg ttgccgacga cgcgacgccg ggtgctgaat tccccgccac gacgccggct 960 ccggcggtca gcgaggtgaa gaccgatatc ggctgggagg tctacgcccc ggcgctcaag 1020 tcgctggtgg agacactcta caagcgttac gacctgccgg aatgctacat taccgaaaac 1080 ggcgcctgct ataatatggg catcgaaaac ggcgaggtga atgaccagcc gcggctcgat 1140 tattacgccg aacatctcgg catcgtcgcc gatctcatcc gcgacggtta cccgatgcgc 1200 ggatatttcg cctggagcct gatggataat ttcgaatggg cagagggcta tcgcatgcgc 1260 ttcggcctcg tgcatgtgga ttatgacacg caggtgcgta cgctgaagaa cagcgggaag 1320 tggtatagtg ctttggcttc gcgttttccg aaggggaacc atggtgtggt gaaggggtga 1380 1380 <210> 5 <211> 1353 <212> DNA <213> Bradyrhizobium japonicum <400> 5 atgaataaaa ttgaaaactc atttttgaac aaaaaccaat ttggggaaga tttcttgtgg 60 ggtgtttcta ccgctgcttt ccaaattgaa ggagcacatg attctgatgg aaaaggttct 120 tctatttggg acgtttttac ttctcaaaaa ggaaaaataa aaaacggaca tcatgccctg 180 actgcctgcg atttctataa ctcgtaccaa aatgatatag acttgattcg ggaattgaat 240 attccaaatt ttaggttttc tataagctgg ccccgaatta tgccaactgg agttcatccg 300 gtaaatcagg caggaattga ttattacaat aaaattatag actctctgct ggcatctgga 360 atcgaaccct ggataacgct ttaccactgg gatttaccgc acgctctaga agtaaaagga 420 ggctggacta accgtgaatc ggttaactgg ttttcagaat atgtagaagt ttgtgcgcag 480 tattttggtg atcgtgtcaa aaactggatg gtaatcaatg aaccatctgt ttttaccgga 540 gctggttatt tcttaggaat tcacgctcct ggaaaaaaag gaatcacaaa ttatctaaaa 600 gccatgcatc acgttacttt agcgacagct gccggcgcca ggatattacg aaacaaggtt 660 ccagaagcaa acataggaac gactttttca tgtacgcata ttgaagcggc aacagaaagc 720 gcgaaagatg ttgaagccgc aaaacgtgtc gatactttac tcaacagaac atttatcgaa 780 cctattttag gattaggata tccgcaaaaa gatcttccgg tacttaaaaa actcaacaat 840 tatattttag aagacgattt aaacaatctc gatttcgact ttgattttat tggattacag 900 tgttataccc gcgaagttgt aaaatcttct atccttactc cctacattgg tgccgaatta 960 gtgagtgccg aaaaaaggaa tgtaatttct accgaaatgg gctgggaagt atatcctccg 1020 gcattgtacc atgttctgga gaaattcaat aaatacgata aaatcaaaaa aatcattatt 1080 accgaaaacg gcgcggcttt tccagatacg gttacaaacg gaaaagtatt cgacattaaa 1140 cgaacacatt atattcagga ccatttagaa caaatcttaa aggccaaaaa aaatggtcta 1200 aatgtagaag ggtattttgt gtggagttta actgataact tcgaatgggc cgaaggctac 1260 aacgctcgct tcggactaat tcatgtcgat ttcgaaactc aaaaaagaac cattaaaaac 1320 tcaggattat ggtttaaaga ttttttatct taa 1353 <210> 6 <211> 1356 <212> DNA <213> Shewanella baltica <400> 6 atgaaaatat ctttaccaaa gaactcgaga ctccaaagcg aagcgtttac ttttggtgtt 60 gcaaccgctt cctttcaaat cgaaggtggc gtggactctc gccaaacctg tatttgggat 120 accttttgtg caacaccaga taaaatccgt gatgcctcca atggcgatgt cgcctgcaac 180 cacctgaatc tatggcaaga agatatcgcc ttaatcgcgt cactcggggt ggatgcctat 240 cgtttttcca tcgcatgggg acgcgtctta aatcaagatg gcagcattaa tcagcaggga 300 gttgatttct acattggcat tctagacgaa ctaaaacgta gaaatatcaa agcatttgtc 360 acgctttacc attgggatct tcctcaacat attgaggacc aaggcggctg gttaaaccga 420 gataccgctt atcttttcaa agactatgct gacaaaataa gccaagcctt cggcgaccga 480 gtgtattcct acgccacttt aaacgaaccc ttttgcagct catatttagg ctatgagtca 540 ggcattcacg cccccggctt aatgaaaaaa gcctatggcc gccaatcggc tcaccaccta 600 ttactcgccc acggtttagc gatgcaagtg ctgcaaaaga acagccctaa cagcatgaat 660 ggcatagtgc ttaacttcac gccttgctac gcattaaccc aaagtgctgc cgatattcaa 720 gccgcaaaac aagccgatga ttactttaac cagtggtata tcaagcccat tttcgatgcg 780 gcatacccag agcttatcgc ggcattagcg ccagaagata gaccggaaat tcacgacggc 840 gaccttgagc ttatcagtca acccattgac tttttagggg tcaactttta tacccgcgcc 900 gtatatcagg ccgatgccga acatggattt gtgcaagttg atttaccagg ggtaaccaaa 960 accgacatag gctgggagat ctatcctcag gcatttaccg atttattggt ttctttagat 1020 cacatctatg atttaccgcc tattttcatc acagaaaatg gcgccgccat ggacgataaa 1080 tgtattgatg gacgtgtcga tgacttcgat aggctcagct attaccagca ccatttaacc 1140 gcagtagaca atgccatagt acaaggtgtt aacattcagg gttactttgc ctggagcttg 1200 atggataatt ttgagtgggc ggaaggctac ttaaaacgtt ttggcattgt ctatgtggat 1260 tatgccagcc aaacccgaac gataaaggcc agtggtcacg cctacagtga cttgattcgc 1320 tcaagggccc acttaaccaa taacaataat aaataa 1356 <210> 7 <211> 1335 <212> DNA <213> Flavobacterium johnsoniae <400> 7 atgccgacaa cgcaactgcc aaacaccgcc agcctgcgcc ccggtttcat ctggggcgtt 60 tccacctcca gcttccagat cgaaggggca acgaaggagg acgggcgcgg actcagcatc 120 tgggacatct attgtcggtc cggtgaaatc aaaaatcacg ataccggcga cgtcgcgtgt 180 gaccattatc atcgctaccg cgaagatgtc ggcctcatga agacgttggg cgtacaggcg 240 taccggttct cggttgcctg gccgcgcgtc ctgccgctgg gactcggatc cgccaacgag 300 gccggcgttt cattctatga ccggctgatc gacgagctcg tggccgccgg tatcgaaccg 360 tggctgtgcc tgtatcattg ggacctgccg caggccctgg aggagcgcgg cggctggctg 420 aaccgtgagt cggcggcgtg gttcgccgac tatgtgacgt tgatcgccgc gcgatttggc 480 gaccgggtca agcgctttgc gacattcaac gagccgtcga tcttcagcct gttcagccgt 540 tcgctcggca agcgggagca tagcagcgag gacaagttcc accgcatgat ccacaacgtc 600 aatctcgccc acggggcggc ggtggatgtg cttcgcgcca acgtgatcgg cgcctcgatc 660 ggctgtatcc ataatcgaca gccatgccgg ccttccagtg caagcgaggc cgatgaagcg 720 gctgcggcac ggctggatgt gtactggaac gcggcctttc cggatccgca atgccgcggc 780 gaatatccgc catcgatgcg cgcggcaatc gaaccgcata tgcagccagg cgacctgacg 840 cggatttgcc gtccgctgga ttggttcggg ctgaaccact atagcccggt ctatgtgaag 900 gcacgggcgg attcgatgct gggctacgac ttcggcgaca agcccgccag cgtccccttg 960 accccgatcg gatggccgat cgatcccgag gccttcagcg agacgttgca ggcggtccgc 1020 acacggtacg gcctgccgat ttacgtgctc gagaatggct acggcgattc cggccagccc 1080 gaccagaccg gtgcggtgat cgacccgggc cggatagagt tcctgaaggc ctatatcaac 1140 gcgatgaata acgccgcggc ccacggcgtc gatgttcgtg gctatttcgt ctggtctctg 1200 ctcgacaatt tcgagtgggc ctccggttac agcatcaggt tcggcctgac ctatgtcgat 1260 tatgcttcgc tgcggcgaat cccgaaatcg tctttcggct ggtatagccg ggctgatcag 1320 ggcggtgcag ccatg 1335 <210> 8 <211> 1377 <212> DNA <213> Shinorhizobium meliloti <400> 8 atgatgatcg aagccaagaa actcgcagcg cgctttcccg gcgactttgt cttcggcgtt 60 gcaaccgcat ccttccagat cgagggagcc agcaaggcgg atggtcgcaa agcctccatc 120 tgggacgcct tctccaatat gccggggcgc gtttacgggc gccacaacgg cgacgtcgcc 180 tgcgaccatt acaaccggct ggagcaggac ctggacctca tcaagagcct cggcgtcgag 240 gcctaccgct tctcgatcgc ctggccgcgg atcgtgccgg agggcacggg gccgatcaac 300 gagaaggggc tcgactttta cgaccgcctt gtcgacggac tgaaggcgcg cggcatcaag 360 gcctttgcga ccctctatca ctgggacctg ccgctggcgc tgatgggcga cggcggctgg 420 acggcacgca cgaccgccta tgcataccag cgttacgcca agaccgtgat cgcgcgtctg 480 ggggatcgtc tcgacgcggt cgcgaccttc aacgaaccgt ggtgttccgt ctggctcggc 540 catctctacg gtgtccatgc accgggcgag cgcaacatgg atgcagcact tgccgcactg 600 cacttcacca atctcgccca cgggttgggg gtcgcggcga tccgctcgga acggccggaa 660 ctgccggtcg gcatcgtcat caatgcccat tcggtctatc ccggcagcaa cagcgccgag 720 gacaaggccg cggcggagcg cgccttcgat ttccacaacg gcgtcttctt cgatccgatc 780 ttcaagggcg agtatccgga ggatttcctc tccgcgctcg gcgaacgcat gccggcgatc 840 gaggacggcg acatggcaac gatcgcccag ccgctcgatt ggtgggggct caactattat 900 acgccgatgc gggtttcggc agaccccgcg aaaggcgccg aatatccggc gaccgtcaat 960 gcgaaacctg tcagcaacgt gaagaccgat attggctggg aagtctatgc gccggctttg 1020 ggcagcctgg tggagacgct caatgcgcgc tacaggctcc ccgactgcta catcaccgag 1080 aatggcgcct gttacaacat gggcgtcgag aacggtaccg tcgacgatca gcctcggctc 1140 gactacatct cagaccacct cgccgtcacc gccgatctca tcgccaaggg ttatccgatg 1200 cggggctatt tcgcctggag cctgatggat aacttcgaat gggccgaggg ctaccggatg 1260 cgcttcggca tcgttcacgt cgattacgag acacaggtcc gcacgatcaa gaaaagcggt 1320 cgctggtata aggacctggc ggaacggttt ccaagcggca accacaagcc gggatga 1377 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 tagaattcaa cgccgaaaag ttt 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 taaagctttc actctggctg ggg 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tagaattcaa cgccgaaaaa ttc 23 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 taaagctttt aggtctgggc ccg 23 <210> 13 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gcccatgggt aaaattgaaa actcattt 28 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gcaagctttt aagataaaaa atctttaaa 29 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 atccatggtg atcgaagcca aga 23 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 ataagctttc atcccggctt gt 22 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 atggatccat gatcgaagcc aaga 24 <210> 18 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 ataagctttc atcccggctt gt 22 <110> INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY <120> Recombinant microorganisms harboring a B-glucosidase and their          use for the production of indigo dyes <160> 18 <170> KopatentIn 1.71 <210> 1 <211> 1272 <212> DNA <213> Thermus caldophilus <400> 1 atgaccgaga acgccgaaaa attcctttgg ggagtggcca ccagcgccta ccagattgag 60 ggggccaccc aggaggacgg ccgggggcct tccatctggg acgccttcgc ccagcgcccg 120 ggggccatcc gggacgggag cacaggggag cccgcctgcg accactaccg ccgctacgag 180 gaggacatcg ccctgatgca atccctcggg gtgggggcct accgcttctc cgtggcctgg 240 ccccggatcc tccccgaggg ccgggggcgg atcaacccca agggcctcgc cttctacgac 300 cgcctggtgg accggcttct cgcttccggg atcacgccct ttctcaccct ctaccactgg 360 gacctgcctt tggcccagga ggagcgggga ggctggcgga gccgggagac cgccttcgcc 420 ttcgccgagt acgccgaggc ggtggcccgg gccctcgccg accggttgcc cttcttcgcc 480 accctgaacg agccctggtg ctcggccttc ctcgggcact ggacggggga acacgccccc 540 ggcctcagga acctggaagc ggccctccgc gccgcccacc acctcctcct gggccacggc 600 ctcgccgtgg aggccttgag ggccgcgggg gcgaagcggg tggggatcgt cctcaacttc 660 gccccgcgct acggcgagga ccccgaggcg gtggacgtgg ccgaccgcta ccacaaccgc 720 ttcttcctgg accccatcct gggcaagggg tatcccgaaa gccccttccg agaccccccg 780 cccgtcccca tcctctcccg cgacctggag ctcgtggcaa ggcccctgga cttcctgggg 840 gtgaactact acgcccccgt ccgcgtggcc ccggggacgg ggaccttgcc cgtgcgctac 900 cttcccccgg aagggccggc cacggccatg gggtgggagg tctaccccga ggggctttac 960 cacctcttga agcgcctcgg ccgggaggtg ccctggcccc tttacgtcac ggaaaacggg 1020 gccgcctacc ccgacctctg gacgggagag gccgtggtgg aggaccccga gcgggtggcc 1080 tacctcgagg cccacgtgga gggccgcctc cgggcccggg aagaaggggt ggacctccgg 1140 ggctacttcg tctggagcct catggacaac tttgagtggg cgttcggcta cacccggcgc 1200 ttcggcctct actacgtgga cttccccagc cagaggcgca tccccaaaag gagcgccctc 1260 tggtaccaat ga 1272 <210> 2 <211> 1296 <212> DNA <213> Thermus thermophilus <400> 2 atgaccgaga acgccgaaaa attcctttgg ggagtggcca ccagcgccta ccagattgag 60 ggggccaccc aggaggacgg ccgggggcct tccatctggg acgccttcgc ccagcgcccc 120 ggggccatcc gggacgggag cacaggggag cccgcctgcg accactaccg ccgctacgag 180 gaggacatcg ccctgatgca atccctcggg gtgcgggcct accgcttctc cgtggcctgg 240 ccccggatcc tccccgaggg ccgggggcgg atcaacccca agggcctcgc cttctacgac 300 cgcctggtgg accggcttct cgcttccggg atcacgccct ttctcaccct ctaccactgg 360 gacctgcctt tggccctgga ggagcgggga ggctggcgga gccgggagac cgccttcgcc 420 ttcgccgagt acgccgaggc ggtggcccgg gccctcgccg accgggtgcc cttcttcgcc 480 accctgaacg agccctggtg ctcggccttc ctcgggcact ggacggggga acacgccccc 540 ggcctcagga acctggaagc ggccctccgc gccgcccacc acctcctcct gggccacggc 600 ctcgccgtgg aggccttgag ggccgcgggg gcgaggcggg tggggatcgt cctcaacttc 660 gccccggcct acggcgagga ccccgaggcg gtggacgtgg ccgaccgcta ccacaaccgc 720 ttcttcctgg accccatcct gggcaagggg tatcccgaaa gccccttccg agaccccccg 780 cccgtcccca tcctctcccg cgacctggag ctcgtggcaa ggcccctgga cttcctgggg 840 gtgaactact acgcccccgt ccgcgtggcc ccggggacgg ggaccttgcc cgtgcgctac 900 cttcccccgg aagggccggc cacggccatg gggtgggagg tctaccccga ggggctttac 960 cacctcttga agcgcctcgg ccgggaggtg ccctggcccc tttacgtcac ggaaaacggg 1020 gccgcctacc ccgatctctg gacgggagag gccgtggtgg aggaccccga gcgggtggcc 1080 tacctcgagg cccacgtgga ggccgccctc cgggcccggg aagaaggggt ggacctccgg 1140 ggctacttcg tctggagcct catggacaac tttgagtggg ccttcggcta cacccggcgc 1200 ttcggcctct actacgtgga cttccccagc cagaggcgca tccccaaaag gagcgccctc 1260 tggtaccggg agcggatcgc gcgggcccag acctaa 1296 <210> 3 <211> 1296 <212> DNA <213> Thermus sp. <400> 3 atgaccgaga acgccgaaaa gtttctgtgg ggggtagcca ccagcgccta ccagattgag 60 ggggccaccc aggaggacgg gcgggggcct tccatctggg acaccttcgc ccgccgcccc 120 ggggccatcc gggacggaag cacaggggag cccgcctgcg accactacca ccgctacgag 180 gaggacatcg cccttatgca atccctcggg gtgggggtct atcgcttctc cgtggcctgg 240 ccccggatcc tccccgaggg ccgggggcgg atcaacccca agggcctcgc cttttacgac 300 cgcctggtgg accggcttct cgcggcgggg atcacgccct tcctcaccct ctaccactgg 360 gacctgcccc aggccctcga ggaccggggc ggctggcgga gccgggagac cgccttcgcc 420 ttcgccgagt acgccgaggc ggtggcccgg accctcgccg accgggtgcc cttcttcgcc 480 accctgaacg agccctggtg ctcggccttc ctcgggcact ggacggggga acacgccccc 540 ggcctcagga acctggaggc ggcccttcgc gccgcccacc acctcctcct ggggcacggc 600 ctcgccgtgg aggccttgag ggccgcgggg gcgaagcggg tggggatcgt cctcaacttc 660 gccccggcct acggcgagga ccccgaggcg gtggacgtgg ccgaccgcta ccacaaccgc 720 tacttcctgg accccatcct gggcaggggg tatcccgaaa gcccctttca agaccccccg 780 cccactccca tcctctcccg tgacctggag ctcgtcgcaa ggcccctgga cttcctagga 840 gtgaactact acgcccccgt ccgcgtggcc ccggggacgg ggcctttgcc cgtgcgctac 900 cttcccccgg aggggccggt cacggccatg gggtgggagg tctaccccga ggggctttac 960 cacctcttga agcgcctcgg ccgggaggtg ccctggcccc tttacatcac ggaaaacggg 1020 gccgcctacc ccgacctctg gacgggagag gccgtcgtgg aggaccccga gcgggtggcc 1080 tacctcgagg cccacgtgga ggccgccctc cgggcccggg aagaaggggt ggacctcagg 1140 ggctacttcg tctggagcct catggacaac tttgagtggg ccttcggcta cacccggcgc 1200 ttcggcctct actacgtgga cttccccagc cagaggcgca tccccaaaag gagcgccctc 1260 tggtaccggg agcggatcgc gcgggcccag ctctga 1296 <210> 4 <211> 1380 <212> DNA <213> Agrobacterium tumefaciens <400> 4 atgaccgatc cccaaacgct tgcagcccgt ttccccggtg atttcctgtt cggcgtcgcg 60 accgcctcgt tccagattga gggtgcaacc aaggcagatg gccgcaaacc ctccatctgg 120 gatgccttct gcaacatgcc aggccatgtc ttcgggcgtc acaatggcga tatcgcctgc 180 gatcattaca atcgctggga agaggacctc gatctcatca aggagatggg tgtcgaggcc 240 tatcgtttct ccatcgcctg gccgcgcatc attcccgacg gtttcggacc gatcaacgaa 300 aagggtctgg atttttacga ccgactggtt gatggctgca aggcgcgcgg tatcaagacc 360 tatgcgacgc tttaccattg ggatctgccg ctgaccctga tgggcgacgg cggctgggcc 420 tcgcgctcca ccgcccatgc tttccagcgt tacgccaaaa ccgtcatggc ccgtctgggc 480 gaccggctgg atgcggtggc gaccttcaac gaaccctggt gcgcggtgtg gctcagccat 540 ctctacggca tccatgcgcc gggcgagcgc aacatggagg cggccttagc ggccatgcac 600 cacatcaatc tcgcccatgg tttcggcgtc gaggcgtctc gccatgtagc gccaaaagtg 660 ccggtggggc tggtgctgaa cgcccattcc gtcattccgg cttctaacag cgaggccgat 720 ctcaaggctg ccgaacgggc gttccagttc cacaatggcg cgtttttcga tccggtcttc 780 aagggcgaat atccggccga gatgatggaa gcgcttggtg atcgcatgcc agtcgtggag 840 gcggaagacc tcgccatcat cagccagaag ctcgactggt ggggcctgaa ttattatacg 900 ccgatgcgcg ttgccgacga cgcgacgccg ggtgctgaat tccccgccac gacgccggct 960 ccggcggtca gcgaggtgaa gaccgatatc ggctgggagg tctacgcccc ggcgctcaag 1020 tcgctggtgg agacactcta caagcgttac gacctgccgg aatgctacat taccgaaaac 1080 ggcgcctgct ataatatggg catcgaaaac ggcgaggtga atgaccagcc gcggctcgat 1140 tattacgccg aacatctcgg catcgtcgcc gatctcatcc gcgacggtta cccgatgcgc 1200 ggatatttcg cctggagcct gatggataat ttcgaatggg cagagggcta tcgcatgcgc 1260 ttcggcctcg tgcatgtgga ttatgacacg caggtgcgta cgctgaagaa cagcgggaag 1320 tggtatagtg ctttggcttc gcgttttccg aaggggaacc atggtgtggt gaaggggtga 1380                                                                         1380 <210> 5 <211> 1353 <212> DNA <213> Bradyrhizobium japonicum <400> 5 atgaataaaa ttgaaaactc atttttgaac aaaaaccaat ttggggaaga tttcttgtgg 60 ggtgtttcta ccgctgcttt ccaaattgaa ggagcacatg attctgatgg aaaaggttct 120 tctatttggg acgtttttac ttctcaaaaa ggaaaaataa aaaacggaca tcatgccctg 180 actgcctgcg atttctataa ctcgtaccaa aatgatatag acttgattcg ggaattgaat 240 attccaaatt ttaggttttc tataagctgg ccccgaatta tgccaactgg agttcatccg 300 gtaaatcagg caggaattga ttattacaat aaaattatag actctctgct ggcatctgga 360 atcgaaccct ggataacgct ttaccactgg gatttaccgc acgctctaga agtaaaagga 420 ggctggacta accgtgaatc ggttaactgg ttttcagaat atgtagaagt ttgtgcgcag 480 tattttggtg atcgtgtcaa aaactggatg gtaatcaatg aaccatctgt ttttaccgga 540 gctggttatt tcttaggaat tcacgctcct ggaaaaaaag gaatcacaaa ttatctaaaa 600 gccatgcatc acgttacttt agcgacagct gccggcgcca ggatattacg aaacaaggtt 660 ccagaagcaa acataggaac gactttttca tgtacgcata ttgaagcggc aacagaaagc 720 gcgaaagatg ttgaagccgc aaaacgtgtc gatactttac tcaacagaac atttatcgaa 780 cctattttag gattaggata tccgcaaaaa gatcttccgg tacttaaaaa actcaacaat 840 tatattttag aagacgattt aaacaatctc gatttcgact ttgattttat tggattacag 900 tgttataccc gcgaagttgt aaaatcttct atccttactc cctacattgg tgccgaatta 960 gtgagtgccg aaaaaaggaa tgtaatttct accgaaatgg gctgggaagt atatcctccg 1020 gcattgtacc atgttctgga gaaattcaat aaatacgata aaatcaaaaa aatcattatt 1080 accgaaaacg gcgcggcttt tccagatacg gttacaaacg gaaaagtatt cgacattaaa 1140 cgaacacatt atattcagga ccatttagaa caaatcttaa aggccaaaaa aaatggtcta 1200 aatgtagaag ggtattttgt gtggagttta actgataact tcgaatgggc cgaaggctac 1260 aacgctcgct tcggactaat tcatgtcgat ttcgaaactc aaaaaagaac cattaaaaac 1320 tcaggattat ggtttaaaga ttttttatct taa 1353 <210> 6 <211> 1356 <212> DNA <213> Shewanella baltica <400> 6 atgaaaatat ctttaccaaa gaactcgaga ctccaaagcg aagcgtttac ttttggtgtt 60 gcaaccgctt cctttcaaat cgaaggtggc gtggactctc gccaaacctg tatttgggat 120 accttttgtg caacaccaga taaaatccgt gatgcctcca atggcgatgt cgcctgcaac 180 cacctgaatc tatggcaaga agatatcgcc ttaatcgcgt cactcggggt ggatgcctat 240 cgtttttcca tcgcatgggg acgcgtctta aatcaagatg gcagcattaa tcagcaggga 300 gttgatttct acattggcat tctagacgaa ctaaaacgta gaaatatcaa agcatttgtc 360 acgctttacc attgggatct tcctcaacat attgaggacc aaggcggctg gttaaaccga 420 gataccgctt atcttttcaa agactatgct gacaaaataa gccaagcctt cggcgaccga 480 gtgtattcct acgccacttt aaacgaaccc ttttgcagct catatttagg ctatgagtca 540 ggcattcacg cccccggctt aatgaaaaaa gcctatggcc gccaatcggc tcaccaccta 600 ttactcgccc acggtttagc gatgcaagtg ctgcaaaaga acagccctaa cagcatgaat 660 ggcatagtgc ttaacttcac gccttgctac gcattaaccc aaagtgctgc cgatattcaa 720 gccgcaaaac aagccgatga ttactttaac cagtggtata tcaagcccat tttcgatgcg 780 gcatacccag agcttatcgc ggcattagcg ccagaagata gaccggaaat tcacgacggc 840 gaccttgagc ttatcagtca acccattgac tttttagggg tcaactttta tacccgcgcc 900 gtatatcagg ccgatgccga acatggattt gtgcaagttg atttaccagg ggtaaccaaa 960 accgacatag gctgggagat ctatcctcag gcatttaccg atttattggt ttctttagat 1020 cacatctatg atttaccgcc tattttcatc acagaaaatg gcgccgccat ggacgataaa 1080 tgtattgatg gacgtgtcga tgacttcgat aggctcagct attaccagca ccatttaacc 1140 gcagtagaca atgccatagt acaaggtgtt aacattcagg gttactttgc ctggagcttg 1200 atggataatt ttgagtgggc ggaaggctac ttaaaacgtt ttggcattgt ctatgtggat 1260 tatgccagcc aaacccgaac gataaaggcc agtggtcacg cctacagtga cttgattcgc 1320 tcaagggccc acttaaccaa taacaataat aaataa 1356 <210> 7 <211> 1335 <212> DNA <213> Flavobacterium johnsoniae <400> 7 atgccgacaa cgcaactgcc aaacaccgcc agcctgcgcc ccggtttcat ctggggcgtt 60 tccacctcca gcttccagat cgaaggggca acgaaggagg acgggcgcgg actcagcatc 120 tgggacatct attgtcggtc cggtgaaatc aaaaatcacg ataccggcga cgtcgcgtgt 180 gaccattatc atcgctaccg cgaagatgtc ggcctcatga agacgttggg cgtacaggcg 240 taccggttct cggttgcctg gccgcgcgtc ctgccgctgg gactcggatc cgccaacgag 300 gccggcgttt cattctatga ccggctgatc gacgagctcg tggccgccgg tatcgaaccg 360 tggctgtgcc tgtatcattg ggacctgccg caggccctgg aggagcgcgg cggctggctg 420 aaccgtgagt cggcggcgtg gttcgccgac tatgtgacgt tgatcgccgc gcgatttggc 480 gaccgggtca agcgctttgc gacattcaac gagccgtcga tcttcagcct gttcagccgt 540 tcgctcggca agcgggagca tagcagcgag gacaagttcc accgcatgat ccacaacgtc 600 aatctcgccc acggggcggc ggtggatgtg cttcgcgcca acgtgatcgg cgcctcgatc 660 ggctgtatcc ataatcgaca gccatgccgg ccttccagtg caagcgaggc cgatgaagcg 720 gctgcggcac ggctggatgt gtactggaac gcggcctttc cggatccgca atgccgcggc 780 gaatatccgc catcgatgcg cgcggcaatc gaaccgcata tgcagccagg cgacctgacg 840 cggatttgcc gtccgctgga ttggttcggg ctgaaccact atagcccggt ctatgtgaag 900 gcacgggcgg attcgatgct gggctacgac ttcggcgaca agcccgccag cgtccccttg 960 accccgatcg gatggccgat cgatcccgag gccttcagcg agacgttgca ggcggtccgc 1020 acacggtacg gcctgccgat ttacgtgctc gagaatggct acggcgattc cggccagccc 1080 gaccagaccg gtgcggtgat cgacccgggc cggatagagt tcctgaaggc ctatatcaac 1140 gcgatgaata acgccgcggc ccacggcgtc gatgttcgtg gctatttcgt ctggtctctg 1200 ctcgacaatt tcgagtgggc ctccggttac agcatcaggt tcggcctgac ctatgtcgat 1260 tatgcttcgc tgcggcgaat cccgaaatcg tctttcggct ggtatagccg ggctgatcag 1320 ggcggtgcag ccatg 1335 <210> 8 <211> 1377 <212> DNA <213> Shinorhizobium meliloti <400> 8 atgatgatcg aagccaagaa actcgcagcg cgctttcccg gcgactttgt cttcggcgtt 60 gcaaccgcat ccttccagat cgagggagcc agcaaggcgg atggtcgcaa agcctccatc 120 tgggacgcct tctccaatat gccggggcgc gtttacgggc gccacaacgg cgacgtcgcc 180 tgcgaccatt acaaccggct ggagcaggac ctggacctca tcaagagcct cggcgtcgag 240 gcctaccgct tctcgatcgc ctggccgcgg atcgtgccgg agggcacggg gccgatcaac 300 gagaaggggc tcgactttta cgaccgcctt gtcgacggac tgaaggcgcg cggcatcaag 360 gcctttgcga ccctctatca ctgggacctg ccgctggcgc tgatgggcga cggcggctgg 420 acggcacgca cgaccgccta tgcataccag cgttacgcca agaccgtgat cgcgcgtctg 480 ggggatcgtc tcgacgcggt cgcgaccttc aacgaaccgt ggtgttccgt ctggctcggc 540 catctctacg gtgtccatgc accgggcgag cgcaacatgg atgcagcact tgccgcactg 600 cacttcacca atctcgccca cgggttgggg gtcgcggcga tccgctcgga acggccggaa 660 ctgccggtcg gcatcgtcat caatgcccat tcggtctatc ccggcagcaa cagcgccgag 720 gacaaggccg cggcggagcg cgccttcgat ttccacaacg gcgtcttctt cgatccgatc 780 ttcaagggcg agtatccgga ggatttcctc tccgcgctcg gcgaacgcat gccggcgatc 840 gaggacggcg acatggcaac gatcgcccag ccgctcgatt ggtgggggct caactattat 900 acgccgatgc gggtttcggc agaccccgcg aaaggcgccg aatatccggc gaccgtcaat 960 gcgaaacctg tcagcaacgt gaagaccgat attggctggg aagtctatgc gccggctttg 1020 ggcagcctgg tggagacgct caatgcgcgc tacaggctcc ccgactgcta catcaccgag 1080 aatggcgcct gttacaacat gggcgtcgag aacggtaccg tcgacgatca gcctcggctc 1140 gactacatct cagaccacct cgccgtcacc gccgatctca tcgccaaggg ttatccgatg 1200 cggggctatt tcgcctggag cctgatggat aacttcgaat gggccgaggg ctaccggatg 1260 cgcttcggca tcgttcacgt cgattacgag acacaggtcc gcacgatcaa gaaaagcggt 1320 cgctggtata aggacctggc ggaacggttt ccaagcggca accacaagcc gggatga 1377 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 tagaattcaa cgccgaaaag ttt 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 taaagctttc actctggctg ggg 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tagaattcaa cgccgaaaaa ttc 23 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 taaagctttt aggtctgggc ccg 23 <210> 13 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gcccatgggt aaaattgaaa actcattt 28 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gcaagctttt aagataaaaa atctttaaa 29 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 atccatggtg atcgaagcca aga 23 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 ataagctttc atcccggctt gt 22 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 atggatccat gatcgaagcc aaga 24 <210> 18 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 ataagctttc atcccggctt gt 22  

Claims (11)

서열번호 8의 염기서열로 이루어지는 β-글루코시다제(β-glucosidase)를 코딩하는 유전자.A gene encoding β-glucosidase consisting of the nucleotide sequence of SEQ ID NO: 8. 삭제delete 제 1항의 유전자를 포함하는 재조합 플라스미드.Recombinant plasmid comprising the gene of claim 1. 제 3항에 있어서,The method of claim 3, wherein 상기 재조합 플라스미드는 말토오즈 결합 단백질(Maltose binding protein; MBP) 융합 단백질로 발현되는 것을 특징으로 하는 재조합 플라스미드.The recombinant plasmid is a recombinant plasmid characterized in that it is expressed as a Maltose binding protein (MBP) fusion protein. 쪽 식물 또는 그의 추출물로부터 인디고 염료를 생산하는 활성을 갖는 β-글루코시다제(β-glucosidase)를 생산하는, 형질전환 미생물 E. coli XL1- BLUE[pTrc99A-glu(SM)] (수탁번호 KCTC 11236BP).Transgenic microorganism E. coli XL1-BLUE [pTrc99A-glu (SM)], which produces β-glucosidase having the activity of producing indigo dyes from a plant or extract thereof (Accession No. KCTC 11236BP) ). 삭제delete 서열번호 8의 염기서열로 이루어지는 유전자에 의해 코딩되는 β-글루코시다제(β-glucosidase)를 포함하는, 쪽 식물 또는 그의 추출물로부터 인디고 염료를 생산하기 위한 조성물.A composition for producing an indigo dye from a plant or extract thereof comprising β-glucosidase encoded by a gene consisting of the nucleotide sequence of SEQ ID NO: 8. 삭제delete 제 7항에 있어서, The method of claim 7, wherein 상기 조성물은 X-gal(5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside)에 활성을 갖는 조성물. The composition is a composition having activity on X-gal (5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside). 서열번호 8의 염기서열로 이루어지는 유전자에 의해 코딩되는 β-글루코시다제(β-glucosidase), 또는 형질전환 미생물 E. coli XL1-BLUE[pTrc99A-glu(SM)] (수탁번호 KCTC 11236BP)을 쪽 식물 또는 그의 추출물에 가하여 인디칸을 인디고 염료로 전환시키는 단계를 포함하는, 인디고 염료를 생산하는 방법.Β-glucosidase encoded by the gene consisting of the nucleotide sequence of SEQ ID NO: 8, or transformed microorganism E. coli XL1-BLUE [pTrc99A-glu (SM)] (Accession No. KCTC 11236BP) A method of producing an indigo dye, comprising converting indican to an indigo dye in addition to a plant or extract thereof. 삭제delete
KR1020080033705A 2008-04-11 2008-04-11 Recombinant microorganisms harboring a ?-glucosidase and their use for the production of indigo dyes KR100984480B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080033705A KR100984480B1 (en) 2008-04-11 2008-04-11 Recombinant microorganisms harboring a ?-glucosidase and their use for the production of indigo dyes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080033705A KR100984480B1 (en) 2008-04-11 2008-04-11 Recombinant microorganisms harboring a ?-glucosidase and their use for the production of indigo dyes

Publications (2)

Publication Number Publication Date
KR20090108339A KR20090108339A (en) 2009-10-15
KR100984480B1 true KR100984480B1 (en) 2010-10-01

Family

ID=41551750

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080033705A KR100984480B1 (en) 2008-04-11 2008-04-11 Recombinant microorganisms harboring a ?-glucosidase and their use for the production of indigo dyes

Country Status (1)

Country Link
KR (1) KR100984480B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101021789B1 (en) * 2010-09-28 2011-03-17 전남대학교산학협력단 The production method of natural indirubin from indican using wild type e. coli cells
KR101891999B1 (en) * 2017-07-03 2018-08-27 재단법인 경북해양바이오산업연구원 Yangia sp. strain from marine source and method for producing indigo dye by using the same
KR102326617B1 (en) * 2019-06-20 2021-11-15 서울대학교산학협력단 Method for preparing indoleninone and method for preparing indirubin derivatives through the synthesis of indoleninone

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLIED AND ENVIRONMENTAL MICROBIOLOGY 71(8):4225–4232 (2005)
Biotechnol. Prog. 18:1104-1108 (2002)

Also Published As

Publication number Publication date
KR20090108339A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
Pascon et al. Amylolytic microorganism from São Paulo zoo composting: isolation, identification, and amylase production
CN112680433B (en) Method for producing and secreting protein by using halophilic bacteria
CN113604445B (en) Tyrosinase and preparation and application thereof
WO2009139365A1 (en) Process for production of cis-4-hydroxy-l-proline
KR100984480B1 (en) Recombinant microorganisms harboring a ?-glucosidase and their use for the production of indigo dyes
EP1957639A1 (en) Microginin producing proteins and nucleic acids encoding a microginin gene cluster as well as methods for creating microginins
CN113430181B (en) Bacterial laccase derived from Asian elephant intestinal metagenome and gene thereof
CN104673814B (en) A kind of L threonine aldolases for coming from enterobacter cloacae and its application
CN111394380A (en) Method for improving resistance of formic acid and acetic acid in cellulose hydrolysate by using formate dehydrogenase
CN101659698A (en) Violacein synthesized related protein system, coding gene cluster thereof and application thereof
Kim et al. Mining and identification of a glucosidase family enzyme with high activity toward the plant extract indican
CN112661820A (en) Rhizobium tianshanense transcription regulation protein MsiR mutant protein and application thereof in canavanine biosensor
CN107881205A (en) The function of oxidizing ferment and its application in bicyclomycin biosynthesis
Zhang et al. Chryseobacterium lacus sp. nov. isolated from the surface water of two lakes with light-induced carotenoid production
KR102043356B1 (en) Lignin degrading enzymes from Macrophomina phaseolina and uses thereof
CN105296513A (en) Marine esterase as well as coding gene E22 and application thereof
CN106701800B (en) A kind of Aureobasidium pullulans polyketide synthases gene and its application
CN105368802B (en) A kind of salt tolerant esterase and its encoding gene and application
CN109097315B (en) Genetically engineered bacterium for high-yield lipopeptide and construction method and application thereof
KR100449456B1 (en) Novel D-stereo specific amino acid amidase, gene thereof, preparation method thereof and production method of D-amino acid by using the same
CN109402188B (en) Omega-transaminase from bacillus pumilus and application of omega-transaminase in biological amination
CN107619832B (en) Chloronitrophenol compound oxidoreductase gene cluster cnpAB and application thereof
CN106434583B (en) Glucose dehydrogenase and its encoding gene and application
CN110804602A (en) L-aspartic acid β -decarboxylase mutant and application thereof
CN113930402B (en) Method for improving laccase catalytic activity, mutant Lcc9-M2, gene and application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130814

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140905

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150826

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee