TWI450964B - Osmolyte nε-acetyl-β-lysine biosynthetic genes from methanogenic archaea and application thereof - Google Patents
Osmolyte nε-acetyl-β-lysine biosynthetic genes from methanogenic archaea and application thereof Download PDFInfo
- Publication number
- TWI450964B TWI450964B TW101112322A TW101112322A TWI450964B TW I450964 B TWI450964 B TW I450964B TW 101112322 A TW101112322 A TW 101112322A TW 101112322 A TW101112322 A TW 101112322A TW I450964 B TWI450964 B TW I450964B
- Authority
- TW
- Taiwan
- Prior art keywords
- lysine
- acetyl
- acetyltransferase
- nucleic acid
- aminotransposase
- Prior art date
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
Description
本案為第097146358號「甲烷古菌之相容質N ε -乙醯基-β-賴胺酸生合成基因及其應用」發明專利申請案之分割子案。This case is the divisional case of the invention patent application of No. 097146358 "Compatible N ε -Ethyl-β-lysine synthesis gene of methane archaea and its application".
本發明係關於,編碼甲烷古菌(methanogenic archaea)之相容質N ε -乙醯基-β-賴胺酸生合成酵素(賴胺酸2,3-氨基轉位酶(lysine 2,3-aminomutase)及β-賴胺酸乙醯基轉移酶(β-lysine acetyltransferase)之經單離核酸分子。本發明亦關於,利用該等核酸分子於大腸桿菌宿主大量製造相容質N ε -乙醯基-β-賴胺酸生合成酵素之方法。本發明進一步提供,於活體內及/或活體外生產甲烷古菌相容質N ε -乙醯基-β-賴胺酸的方法。The present invention relates to a compatible N ε -acetyl-β-lysine biosynthesis enzyme encoding methanogenic archaea (lysine 2,3- lysine 2,3-aminotransferase (lysine 2,3- Aminomutase) and a single-stranded nucleic acid molecule of β-lysine acetyltransferase. The present invention also relates to the use of such nucleic acid molecules to produce a compatible N ε -acetyl group in an Escherichia coli host. A method of synthesizing an enzyme with basal-β-lysine. The present invention further provides a method for producing a methane archaeal compatible N ε -acetyl-β-lysine in vivo and/or in vitro.
相容質為滲透壓保護因子,具有保溼、抗鹽及抗旱的特性,其生合成基因在發酵工業、食品界、化妝美容界、製藥、醫療與農漁業具有相當大的應用潛力。相容質N ε -乙醯基-β-賴胺酸(N ε -acetyl-β-lysine)為特殊的β型胺基酸,目前僅只發現於甲烷古菌中,在其他的真核生物、原核生物中尚未發現它的存在。相容質N ε -乙醯基-β-賴胺酸之生合成途徑為,由α-賴胺酸經賴胺酸2,3-氨基轉位酶(abl A)作用轉為β-賴胺酸,隨後再經由β-賴胺酸乙醯基轉移酶(abl B)作用生合成N ε -乙醯基-β-賴胺酸(參見,例如Lai,M.C.等人,J. Bacteriol . 173: 5352-5358,1991;Roberts,M.F.等人,J. Bacteriol . 174:6688-6693,1992;及Robertson D. E.與M. F. Roberts,BioFactors 3: 1-9,1992)。Compatible with osmotic pressure protection factor, it has the characteristics of moisturizing, salt-resistant and drought-resistant. Its biosynthetic genes have considerable application potential in the fermentation industry, food industry, cosmetic beauty industry, pharmaceutical, medical and agricultural fishery. Compatible mass N ε - acetyl -β- yl lysine (N ε -acetyl-β-lysine ) for a particular amino acid type beta], now only been found in methanogenic archaea in other eukaryotes, It has not been found in prokaryotes. The biosynthesis pathway of the compatible N ε -acetamido-β-lysine is converted from β-lysine by α-lysine via lysine 2,3-aminotransposase ( abl A) Acid, followed by the synthesis of N ε -ethinyl-β-lysine by the action of β-lysine acetyltransferase ( abl B) (see, for example, Lai, MC et al., J. Bacteriol . 173: 5352-5358, 1991; Roberts, MF et al, J. Bacteriol . 174: 6688-6693, 1992; and Robertson DE and MF Roberts, BioFactors 3: 1-9, 1992).
Pflger等人(Appl. Environ. Microbiol . 69: 6047-6055,2003)自甲烷太古生物Methanosarcina mazei G1的全基因體序列中,搜尋自體生合成相容質N ε -乙醯基-β-賴胺酸之酵素的基因,分別為賴胺酸2,3-氨基轉位酶(abl A)以及β-賴胺酸乙醯基轉移酶(abl B)。利用北方墨漬法證實abl A及abl B兩基因為同一個操縱子(operon),abl 操縱子的表現量會隨著培養環境鹽濃度提升而隨之增加。並且利用Methanococcus maripaludis JJ建構abl A及abl B突變株,將突變株培養於不同鹽濃度下,以NMR偵測胞內累積相容質N ε -乙醯基-β-賴胺酸的含量並且測試其生長狀況,以NMR分析的結果得知在低鹽(376.5 mM NaCl)環境下,野生株(wild type)細胞內N ε -乙醯基-β-賴胺酸的累積量為0.14 μmol/mg,隨著培養的鹽度提升至800 mM及1 M NaCl,胞內N ε -乙醯基-β-賴胺酸的累積量增加3.7倍為0.7 μmol/mg以及增加7.8倍為1.09 μmol/mg,而突變株培養在低鹽或高鹽的環境下,胞內皆未偵測到N ε -乙醯基-β-賴胺酸的累積量,顯示abl A及abl B基因為相容質N ε -乙醯基-β-賴胺酸的自體生合成酵素賴胺酸2,3-氨基轉位酶(lysine 2,3-aminomutase)及β-賴胺酸乙醯基轉移酶(β-lysine acetyltransferase)所轉譯;將突變株培養在不同鹽度下的生長測試結果得知突變株在低鹽(376.5 mM NaCl)環境下生長速率與野生株相同,在高鹽(800 mM NaCl)環境下生長明顯受到抑制,鹽度為1 M NaCl環境下則細胞受損幾乎不生長,顯示M. maripaludis JJ因應胞外高鹽環境產生的高滲透壓差是以累積相容質N ε -乙醯基-β-賴胺酸作為滲透壓適應機制(Pflger,2003,如前述)。Pfl Ger et al. ( Appl. Environ. Microbiol . 69 : 6047-6055, 2003) from methane archaic creature Methanosarcina mazei G In the whole genome sequence of 1 , the gene for the self-generated synthetic N ε -acetyl-β-lysine enzyme is lysine 2,3-aminotransposase ( abl A). And beta-lysine acetyltransferase ( abl B). Using the northern blotting method to confirm that the two genes abl A and abl B are the same operon, the expression of the abl operon will increase with the increase of the salt concentration in the culture environment. And using Methanococcus maripaludis JJ to construct abl A and abl B mutants, the mutants were cultured at different salt concentrations, and the content of intracellular cumulative compatible N ε -acetyl-β-lysine was detected by NMR and tested. The growth condition was confirmed by NMR analysis. The accumulation of N ε -ethyl thio-β-lysine in the wild type cells was 0.14 μmol/mg in the low salt (376.5 mM NaCl) environment. As the culture salinity increased to 800 mM and 1 M NaCl, the cumulative amount of intracellular N ε -acetyl-β-lysine increased by 3.7 times to 0.7 μmol/mg and increased by 7.8 times to 1.09 μmol/mg. However, when the mutant strain was cultured in a low salt or high salt environment, the accumulation of N ε -ethyl thiol-β-lysine was not detected in the cells, indicating that the abl A and abl B genes are compatible N. ε -Ethyl-β-lysine autologous biosynthesis lysine 2,3-aminomutase and β-lysine acetyltransferase (β- Translated by lysine acetyltransferase; the growth test results of the mutant strains cultured under different salinities showed that the growth rate of the mutant strain in the low salt (376.5 mM NaCl) environment was the same as that of the wild strain. Lower (800 mM NaCl) significantly inhibited the growth environment, the salinity of cell damage at 1 M NaCl almost no growth environment, show high osmotic pressure difference JJ response to the extracellular environment of a high salt accumulation is compatible M. maripaludis Qualitative N ε -ethinyl-β-lysine as an osmotic pressure adaptation mechanism (Pfl Ger, 2003, as mentioned above).
嗜鹽性甲烷古菌Methanohalophilus portucalensis FDF1是不規則球菌,由Marthrani等人自葡萄牙Figutria da Foz含飽和氯化鈉的鹽池所分離出來,並於1993年由Boone D,R正式定名(Booneet al .,1993)。M. portucalensis FDF1可以利用甲醇、單-、二-或三甲基胺做為碳源來進行甲烷化作用(methanogenesis),但無法利用H2 +CO2 、甲酸酯、乙酸酯、甲硫醇或二甲亞碸為生長基質(Booneet al .,1993)。M. portucalensis FDF1能生長在鹽濃度範圍為1.0~3.0 M的環境中,最適生長鹽濃度為2.1 M,其在高鹽環境中並不能藉由改變細胞體積來平衡胞內外滲透壓,因此累積相容質是其主要的滲透壓調節機制(Laiet al .,1991,1992)。由高效率液相分析儀(high-performance liquid chromatography,HPLC)及核磁共振儀(nuclear magnetic resonance,NMR)的實驗證實,M. portucalensis FDF1於環境中甜菜鹼(glycine betaine)不存在的情況下,會因應胞外高鹽環境產生的高滲透壓差而在胞內主要累積鉀離子、α-谷胺酸、β-谷胺醯胺、甜菜鹼及N ε -乙醯基-β-賴胺酸等溶質來因應外界的高滲壓逆境。這些溶質在胞內的轉換率(turnover rate)很低,並不參與蛋白合成及細胞代謝,可在胞內長期累積,且其累積量會隨著胞外鹽濃度上升而增加,顯示這些溶質在M. portucalensis FDF1胞內扮演著相容質的角色(Laiet al .,1991;Robertsonet al .,1992,如前述)。M. portucalensis FDF1具有自體生合成甜菜鹼、N ε -乙醯基-β-賴胺酸以及β-谷胺醯胺作為相容質的能力。N ε -乙醯基-β-賴胺酸的生合成是經由diaminopimelate pathway產生α-賴胺酸,再經賴胺酸2,3-氨基轉位酶(lysine 2,3-aminomutase)作用轉為β-賴胺酸,隨後再經由β-賴胺酸乙醯基轉移酶(β-lysine acetyltransferase)作用生合成N ε -乙醯基-β-賴胺酸。 Methanohalophilus portucalensis FDF1 is an irregular bacterium isolated from Marthrani et al. from the salt pool of saturated sodium chloride in Figutria da Foz, Portugal, and was officially named by Boone D, R in 1993 (Boone et al . , 1993). M. portucalensis FDF1 can use methanol, mono-, di- or trimethylamine as a carbon source for methanogenesis, but cannot utilize H 2 +CO 2 , formate, acetate, methyl sulfide Alcohol or dimethyl hydrazine is the growth substrate (Boone et al ., 1993). M. portucalensis FDF1 can grow in an environment with a salt concentration range of 1.0-3.0 M. The optimum growth salt concentration is 2.1 M. In high-salt environment, the intracellular and extra- osseous osmotic pressure cannot be balanced by changing the cell volume. Density is its main osmotic pressure regulation mechanism (Lai et al ., 1991, 1992). It was confirmed by high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) experiments that M. portucalensis FDF1 was not present in the environment when glycine betaine was absent. Mainly accumulate potassium ions, α-glutamine, β-glutamine, betaine and N ε -ethinyl-β-lysine in the cell in response to the high osmotic pressure difference generated by the extracellular high salt environment. Solutes are used to cope with the high osmotic pressure of the outside world. These solute have a low turnover rate in the cell, are not involved in protein synthesis and cellular metabolism, and can accumulate in the cell for a long time, and their cumulative amount increases as the extracellular salt concentration increases, indicating that these solutes are M. portucalensis FDF1 plays a complementary role in the cell (Lai et al ., 1991; Robertson et al ., 1992, supra). M. portucalensis FDF1 has the ability to automate the synthesis of betaine, N ε -ethinyl-β-lysine and β-glutamine as a compatible substance. The biosynthesis of N ε -ethinyl-β-lysine is the production of α-lysine via the diaminopimelate pathway, which is then converted to lysine 2,3-aminomutase by lysine 2,3-aminomutase. --lysine, followed by the synthesis of N ε -acetyl-β-lysine by the action of β-lysine acetyltransferase.
耐鹽性甲烷太古生物Methanocalculus chunghsingensis K1F9705b是不規則球菌,由賴美津實驗室自台灣彰化縣王功附近的海水養殖場所分離出來(Lai等人,2004),可利用H2 及CO2 作為碳源來進行甲烷化作用。M. chunghsingensis K1F9705b可生長在鹽濃度範圍為0~2.0 M的環境中,最適生長鹽濃度為0.175 M。由核磁共振儀(nuclear magnetic resonance,NMR)的分析得知,M. chunghsingensis K1F9705b會因應胞外高鹽環境產生的高滲透壓差而在胞內累積β-谷胺醯胺、N ε -乙醯基-β-賴胺酸,且其量會隨著外界鹽濃度上升而增加,這些溶質在胞內之轉換率(turnover rate)很低,顯示N ε -乙醯基-β-賴胺酸和β-谷胺醯胺是此株菌的主要的滲透適應的相容質。Salt-tolerant methane archaea Methanocalculus chunghsingensis K1F9705b is an irregular cocci isolated from the marine aquaculture site near Wanggong in Changhua County, Taiwan (Lai et al., 2004), using H 2 and CO 2 as carbon sources. To carry out methanation. M. chunghsingensis K1F9705b can be grown in an environment with a salt concentration ranging from 0 to 2.0 M. The optimum growth salt concentration is 0.175 M. According to the analysis of nuclear magnetic resonance (NMR), M. chunghsingensis K1F9705b accumulates β-glutamine and N ε -acetamidine in the cell in response to the high osmotic pressure difference generated by the extracellular high salt environment. Basal-β-lysine, and its amount increases as the concentration of external salt increases. The intracellular turnover rate of these solutes is very low, indicating N ε -ethinyl-β-lysine and Beta-glutamine is the major osmotic compatible compatibilizer of this strain.
賴胺酸2,3-氨基轉位酶(AblA)酵素功能為催化α-賴胺酸轉化成β-賴胺酸。此酵素催化作用需要輔助因子(cofactor):[4Fe-4S]cluster、S-adenosylmethionine(SAM)以及pyridoxal 5’-phosphate(PLP)參與。其作用機制為細胞內還原蛋白將[4Fe-4s]2+ 還原成活化態的[4Fe-4S]1+ ,活化態的[4Fe-4S]1+ 會釋出電子與SAM進行反應,裂解SAM產生甲硫胺酸以及5’-deoxyadensyl自由基。而PLP與AblA蛋白上賴胺酸胺基酸上的ε-銨基形成內部醛亞胺(internal aldimine)鍵結。在受質α-賴胺酸存在下,PLP會與受質α-賴胺酸的α-胺基進行transaldimation反應形成外部醛亞胺(external aldimine)鍵結。[4Fe-4S]1+ 與SAM作用產生的5’-deoxyadensyl自由基會與PLP鍵結的受質α-賴胺酸作用,產生5’-deoxyadenosine以及具有自由基的中間產物,其中間產物經由isomerization反應,以及由5’-deoxyadenosine提供氫原子轉移形成β-賴胺酸(Frey與Reed,Adv. Enzymol. Relat. Areas. Mol. Biol. 66: 1-39,1993;Chen與Milne,Biochemistry. 45: 12647-12653,2006)。賴胺酸2,3-氨基轉位酶催化α-賴胺酸生成β-賴胺酸作用需要[4Fe-4S] cluster、SAM以及PLP的參與,在胺基酸序列上,與[4Fe-4S] cluster結合位置是保留半胱胺酸,與SAM結合位置具有較多的甘胺酸,與PLP鍵結的位置為賴胺酸(Chen與Frey.Biochem . 40: 596-602,2001)。亦有研究指出此酵素活化需要鋅的參與(Ruzicka,2000),推測在胺基酸序列接近C端的位置上所包含的三個cysteine胺基酸為鋅結合的位置。在已發表的甲烷太古生物M. mazei G1的賴胺酸2,3-氨基轉位酶序列中皆有發現這些輔助因子結合的位置。The lysine 2,3-aminotransposase (AblA) enzyme functions to catalyze the conversion of alpha-lysine to beta-lysine. This enzyme catalysis requires cofactors: [4Fe-4S]cluster, S-adenosylmethionine (SAM), and pyridoxal 5'-phosphate (PLP). The mechanism of action is that the intracellular reducing protein reduces [4Fe-4s] 2+ to the activated state of [4Fe-4S] 1+ , and the activated [4Fe-4S] 1+ releases electrons to react with the SAM to cleave the SAM. Produces methionine and 5'-deoxyadensyl free radicals. The PLP and the ε-ammonium group on the lysine amino acid of the AblA protein form an internal aldimine bond. In the presence of the substrate α-lysine, PLP undergoes a transaldimation reaction with the α-amino group of the α-lysine to form an external aldimine bond. The 5'-deoxyadensyl radical generated by the action of [4Fe-4S] 1+ and SAM interacts with the PLP-bonded α-lysine to produce 5'-deoxyadenosine and an intermediate with free radicals. The isomerization reaction, as well as the transfer of hydrogen atoms from 5'-deoxyadenosine to form β-lysine (Frey and Reed, Adv. Enzymol. Relat. Areas. Mol. Biol. 66 : 1-39, 1993; Chen and Milne, Biochemistry. 45: 12647-12653, 2006). The lysine 2,3-aminotransposase catalyzes the formation of β-lysine by α-lysine requires the participation of [4Fe-4S] cluster, SAM and PLP, on the amino acid sequence, and [4Fe-4S The cluster binding position is the retention of cysteine, which has more glycine acid in the binding position with the SAM, and the position of the PLP linkage is lysine (Chen and Frey. Biochem . 40: 596-602, 2001). Studies have also indicated that the activation of this enzyme requires the participation of zinc (Ruzicka, 2000), presuming that the three cysteine amino acids contained at the position near the C-terminus of the amino acid sequence are zinc-binding sites. In the published methane archaic creature M. mazei G The location of these cofactor bindings was found in the lysine 2,3-aminotransposase sequence of 1.
β-賴胺酸乙醯基轉移酶(AblB)酵素功能為催化β-賴胺酸生成N ε -乙醯基-β-賴胺酸。酵素乙醯基轉移酶是屬於GNAT(GCN-5-相關N -乙醯基轉移酶)超家族(superfamily),此GNAT超家族酵素作用為,催化乙醯輔酶A將其乙醯基轉移至一級胺(primary amine)。其作用的受質可分為三種:(1) histone:參與轉錄活化、染色質集合以及DNA修復過程,乙醯基轉移酶主要作用在特定的賴胺酸;(2) aminiglycosides:乙醯基轉移酶的活性會使致病菌產生抗生素抑制的現象,其作用在aminiglycosides類的抗生素上,導致這類抗生素對於目標物的親合性下降;(3) arylalkylamines:目前只有在脊椎動物中發現,參與催化血清素(serotonin)生成退黑激素(melatonin)的過程。乙醯基轉移酶之胺基酸序列依二級結構可以區分為四個保留模體(conserved motif),其排列順序為C-D-A-B,模體B、C以及D的功能主要與蛋白的結構穩定有關,而模體A是一段含有較長及高度保留的區域,是參與乙醯輔酶A結合的位置,並且在此區域包含一段保留的胺基酸為Q/R-X-X-G-X-G/A(Dyda,2000;Wolf,1998)。截至目前為止,並沒有針對β-賴胺酸乙醯基轉移酶(abl B)酵素特性的研究,而在已發表的甲烷太古生物M. mazei G1的β-賴胺酸乙醯基轉移酶序列中則是有發現一段保留的胺基酸序列為R-G-K-G-H-M-K(Pflger,2003,如前述)。The β-lysine acetyltransferase (AblB) enzyme functions to catalyze the production of N ε -ethinyl-β-lysine by β-lysine. The enzyme acetyltransferase belongs to the superfamily of GNAT (GCN-5-related N -acetyltransferase). This GNAT superfamily enzyme acts to catalyze the transfer of its acetamino group to its first grade. Primary amine. The role of the receptor can be divided into three types: (1) histone: involved in transcriptional activation, chromatin assembly and DNA repair process, acetyltransferase mainly acts on specific lysine; (2) aminiglycosides: ethionyl transfer Enzyme activity can cause antibiotic inhibition of pathogenic bacteria, which acts on antibiotics of aminiglycosides, resulting in decreased affinity of such antibiotics for targets; (3) arylalkylamines: currently only found in vertebrates, participation Catalyzing the process by which serotonin produces melatonin. The amino acid sequence of the acetaminotransferase can be divided into four conserved motifs according to the secondary structure, and the order of the amino acid is CDAB. The functions of the phenotypes B, C and D are mainly related to the structural stability of the protein. And phantom A is a region containing a long and highly retained region, which is involved in the binding of acetaminophen A, and contains a retained amino acid in this region as Q/RXXGXG/A (Dyda, 2000; Wolf, 1998). ). To date, there has been no study on the properties of beta-lysine acetyltransferase ( Abl B) enzymes, but in the published methane archaic organism M. mazei G In the β-lysine acetyltransferase sequence of 1 , the amino acid sequence found to be retained is RGKGHMK (Pfl Ger, 2003, as mentioned above).
於一方面,本發明係提供一種編碼耐鹽性甲烷古菌Methanocalculus chunghsingensis K1F9705b之相容質N ε -乙醯基-β-賴胺酸(N ε -acetyl-β-lysine)生合成酵素賴胺酸2,3-氨基轉位酶(lysine 2,3-aminomutase)的單離核酸分子,其中該賴胺酸2,3-氨基轉位酶具有SEQ ID No. 2之胺基酸序列或其同功能變體。In one aspect, the invention provides an encoding salt of methanogenic archaea Methanocalculus chunghsingensis K1F9705b compatible substance of N ε - acetyl -β- yl lysine (N ε -acetyl-β-lysine ) biosynthetic enzyme depends amine An isolated nucleic acid molecule of lysine 2,3-aminomutase, wherein the lysine 2,3-aminotransposase has the amino acid sequence of SEQ ID No. 2 or the same Functional variants.
於一項具體態樣,編碼賴胺酸2,3-氨基轉位酶之經單離核酸分子包含選自由(i) SEQ ID NO: 1之核苷酸序列;及(ii)具有與SEQ ID NO: 1之核苷酸序列相似性大於90%以上的核苷酸序列所組成之組群的核苷酸序列。In a specific aspect, the isolated nucleic acid molecule encoding a lysine 2,3-aminotransposase comprises a nucleotide sequence selected from the group consisting of (i) SEQ ID NO: 1; and (ii) having the SEQ ID NO: A nucleotide sequence of a group consisting of nucleotide sequences having a nucleotide sequence similarity greater than 90%.
於另一方面,本發明係提供一種編碼耐鹽性甲烷古菌Methanocalculus chunghsingensis K1F9705b之相容質N ε -乙醯基-β-賴胺酸(N ε -acetyl-β-lysine)生合成酵素β-賴胺酸乙醯基轉移酶(β-lysine acetyltransferase)的單離核酸分子,其中該β-賴胺酸乙醯基轉移酶具有SEQ ID No. 4之胺基酸序列或其同功能變體。In another aspect, the invention provides an encoding salt of methanogenic archaea Methanocalculus chunghsingensis K1F9705b compatible mass of N ε - acetyl -β- yl lysine (N ε -acetyl-β-lysine ) biosynthetic enzyme beta] - an isolated nucleic acid molecule of ?-lysine acetyltransferase, wherein the beta-lysine acetyltransferase has the amino acid sequence of SEQ ID No. 4 or a functionally equivalent variant thereof .
於一項具體態樣,編碼β-賴胺酸乙醯基轉移酶之經單離核酸分子包含選自由(i) SEQ ID NO: 3之核苷酸序列;及(ii)具有與SEQ ID NO: 3之核苷酸序列相似性大於90%以上的核苷酸序列所組成之組群的核苷酸序列。In one embodiment, the isolated nucleic acid molecule encoding beta-lysine acetyltransferase comprises a nucleotide sequence selected from (i) SEQ ID NO: 3; and (ii) has SEQ ID NO : a nucleotide sequence of a group consisting of nucleotide sequences having a nucleotide sequence similarity greater than 90%.
於又一方面,本發明係提供一種編碼嗜鹽性甲烷古菌Methanohalophilus portucalensis FDF1之相容質N ε -acetyl-β-lysine生合成酵素賴胺酸2,3-氨基轉位酶(lysine 2,3-aminomutase)的單離核酸分子,其中該賴胺酸2,3-氨基轉位酶具有SEQ ID No. 6之胺基酸序列或其同功能變體。In a further aspect, the present invention provides a compatible N ε -acetyl-β-lysine biosynthetic enzyme lysine 2,3-aminotransposase (lysine 2) encoding Methanohalophilus portucalensis FDF1. An isolated nucleic acid molecule of 3-aminomutase, wherein the lysine 2,3-aminotransposase has the amino acid sequence of SEQ ID No. 6 or an isofunctional variant thereof.
於一項具體態樣,編碼賴胺酸2,3-氨基轉位酶之經單離核酸分子包含選自由(i) SEQ ID NO: 5之核苷酸序列;及(ii)具有與SEQ ID NO: 5之核苷酸序列相似性大於90%以上的核苷酸序列所組成之組群的核苷酸序列。In one embodiment, the isolated nucleic acid molecule encoding a lysine 2,3-aminotransposase comprises a nucleotide sequence selected from the group consisting of (i) SEQ ID NO: 5; and (ii) having the SEQ ID NO: A nucleotide sequence of a group consisting of nucleotide sequences having a nucleotide sequence similarity greater than 90%.
於另一方面,本發明係提供一種編碼嗜鹽性甲烷古菌Methanohalophilus portucalensis FDF1之相容質N ε -乙醯基-β-賴胺酸(N ε -acetyl-β-lysine)生合成酵素β-賴胺酸乙醯基轉移酶(β-lysine acetyltransferase)的單離核酸分子,其中該β-賴胺酸乙醯基轉移酶具有SEQ ID No. 8之胺基酸序列或其同功能變體。In another aspect, the invention provides an encoding halophilic methanogenic archaea Methanohalophilus portucalensis FDF1 compatible substance of N ε - acetyl -β- yl lysine (N ε -acetyl-β-lysine ) biosynthetic enzyme beta] - an isolated nucleic acid molecule of ?-lysine acetyltransferase, wherein the beta-lysine acetyltransferase has the amino acid sequence of SEQ ID No. 8 or a functionally equivalent variant thereof .
於一項具體態樣,編碼β-賴胺酸乙醯基轉移酶之經單離核酸分子包含選自由(i) SEQ ID NO: 7之核苷酸序列;及(ii)具有與SEQ ID NO: 7之核苷酸序列相似性大於90%以上的核苷酸序列所組成之組群的核苷酸序列。In one embodiment, the isolated nucleic acid molecule encoding beta-lysine acetyltransferase comprises a nucleotide sequence selected from (i) SEQ ID NO: 7; and (ii) has SEQ ID NO : The nucleotide sequence of the group consisting of nucleotide sequences having a nucleotide sequence similarity greater than 90%.
本發明之另一方面係提供,一種利用大腸桿菌大量表現甲烷古菌賴胺酸2,3-氨基轉位酶之方法,其特徵在於將編碼賴胺酸2,3-氨基轉位酶之核酸分子,選殖於適當表現載體中,並將所得之重組質體轉形至大腸桿菌宿主細胞中大量表現,及純化得賴胺酸2,3-氨基轉位酶重組蛋白。於一項具體態樣,該編碼賴胺酸2,3-氨基轉位酶之核酸分子係源自耐鹽性甲烷古菌Methanocalculus chunghsingensis K1F9705b基因組。於另一項具體態樣,該編碼賴胺酸2,3-氨基轉位酶之核酸分子係源自嗜鹽性甲烷古菌Methanohalophilus portucalensis FDF1基因組。Another aspect of the present invention provides a method for expressing a large amount of methane archaea lysine 2,3-aminotransposase using Escherichia coli, which is characterized in that a nucleic acid encoding a 2,3-aminotransferase of lysine is used. The molecule is selected in an appropriate expression vector, and the resulting recombinant plasmid is transformed into a large amount of expression in an E. coli host cell, and the recombinant lysine 2,3-aminotransposase is purified. In one particular aspect, the nucleic acid encoding lysine 2,3-amino translocase based molecules derived from the salt of methanogenic archaea Methanocalculus chunghsingensis K1F9705b genome. In another embodiment, the nucleic acid molecule encoding a lysine 2,3-aminotransposase is derived from the Methanohalophilus portucalensis FDF1 genome of the halophilic methanogen.
本發明之又一方面係提供,一種利用大腸桿菌大量表現甲烷古菌β-賴胺酸乙醯基轉移酶之方法,其特徵在於將編碼β-賴胺酸乙醯基轉移酶之核酸分子,選殖於適當表現載體中,並將所得之重組質體轉形至大腸桿菌宿主細胞中大量表現,及純化得β-賴胺酸乙醯基轉移酶重組蛋白。於一項具體態樣,該編碼β-賴胺酸乙醯基轉移酶之核酸分子係源自耐鹽性甲烷古菌Methanocalculus chunghsingensis K1F9705b基因組。於另一項具體態樣,該編碼β-賴胺酸乙醯基轉移酶之核酸分子係源自嗜鹽性甲烷古菌Methanohalophilus portucalensis FDF1基因組。According to still another aspect of the present invention, a method for expressing a large amount of methane archaea β-lysine acetyltransferase using Escherichia coli, characterized in that a nucleic acid molecule encoding β-lysine acetyltransferase is The recombinant plasmid is transformed into an appropriate expression vector, and the resulting recombinant plasmid is transformed into a large amount of expression in an E. coli host cell, and the β-lysine acetyltransferase recombinant protein is purified. In one embodiment, the nucleic acid molecule encoding beta-lysine acetyltransferase is derived from the salt-tolerant Methane archaea Methanocalculus chunghsingensis K1F9705b genome. In another embodiment, the nucleic acid molecule encoding beta-lysine acetyltransferase is derived from the Methanohalophilus portucalensis FDF1 genome of the halophilic methanogen.
本發明之另一方面係提供,一種於活體外製造相容質N ε -乙醯基-β-賴胺酸之方法,其特徵在於利用以大腸桿菌大量製造之甲烷古菌賴胺酸2,3-氨基轉位酶以及B-賴胺酸乙醯基轉移酶重組蛋白,將L-α-賴胺酸基質轉化成相容質N ε -乙醯基-β-賴胺酸。Another aspect of the present invention provides a method for producing a compatible N ε -ethinyl-β-lysine in vitro, characterized in that a methane archaea lysine 2 produced in large quantities by Escherichia coli is used. The 3-aminotransposase and the B-lysine acetyltransferase recombinant protein convert the L-α-lysine matrix into a compatible N ε -ethinyl-β-lysine.
本發明之又一方面係提供,一種於活體內將L-α-賴胺酸轉化生成有機相容質N ε -乙醯基-β-賴胺酸的方法,其包含將編碼Mc AblA,Mc AblB之核酸分子於宿主細胞中共同表現,而於該宿主細胞內將L-α-賴胺酸作用生合成N ε -乙醯基-β-賴胺酸。於一項具體態樣,係藉由活體內將L-α-賴胺酸轉化生成N ε -乙醯基-β-賴胺酸,以提高經轉形或轉殖生物之抗鹽、抗旱與抗高溫能力。於另一項具體態樣,該宿主生物係選自微生物、植物及動物。According to still another aspect of the present invention, a method for converting L-α-lysine into an organic compatible N ε -ethinyl-β-lysine in vivo comprises encoding Mc AblA, Mc The nucleic acid molecule of AblB is expressed together in a host cell, and L-α-lysine is reacted in the host cell to synthesize N ε -ethinyl-β-lysine. In a specific aspect, L-α-lysine is converted into N ε -acetyl-β-lysine by in vivo to improve the salt and drought resistance of transgenic or transgenic organisms. High temperature resistance. In another embodiment, the host organism is selected from the group consisting of a microorganism, a plant, and an animal.
本發明之又一方面係提供,一種於活體內將L-α-賴胺酸轉化生成有機相容質N ε -乙醯基-β-賴胺酸的方法,其包含將編碼Mp AblA與Mp AblB之核酸分子於宿主細胞中共同表現,而於該宿主細胞內將L-α-賴胺酸作用生合成N ε -乙醯基-β-賴胺酸。於一項具體態樣,係藉由活體內將L-α-賴胺酸轉化生成N ε -乙醯基-β-賴胺酸,以提高經轉形或轉殖生物之抗鹽、抗旱與抗高溫能力。於另一項具體態樣,該宿主生物係選自微生物、植物及動物。According to still another aspect of the present invention, a method for converting L-α-lysine into an organic compatible N ε -ethinyl-β-lysine in vivo comprises encoding Mp AblA and Mp The nucleic acid molecule of AblB is expressed together in a host cell, and L-α-lysine is reacted in the host cell to synthesize N ε -ethinyl-β-lysine. In a specific aspect, L-α-lysine is converted into N ε -acetyl-β-lysine by in vivo to improve the salt and drought resistance of transgenic or transgenic organisms. High temperature resistance. In another embodiment, the host organism is selected from the group consisting of a microorganism, a plant, and an animal.
本發明之另一方面係提供,一種於甲烷古菌誘導大量生合成相容質N ε -乙醯基-β-賴胺酸(N ε -acetyl-β-lysine)之方法,其特徵在於將耐鹽性甲烷古菌Methanocalculus chunghsingensis K1F9705b或嗜鹽性甲烷古菌Methanohalophilus portucalensis FDF1培養於含有最終鹽濃度為1.5至3.0 M高鹽(NaCl)之無氧培養基中,以提高甲烷古菌之賴胺酸2,3-氨基轉位酶以及β-賴胺酸乙醯基轉移酶基因的表現。Another aspect of the present invention to provide line A in methanogenic archaea compatible substance induces massive biosynthesis N ε - acetyl -β- yl lysine (N ε -acetyl-β-lysine ) of the method, characterized in that Methanocalculus chunghsingensis K1F9705b or Methanohalophilus portucalensis FDF1, salt-tolerant, is cultured in an anaerobic medium containing a final salt concentration of 1.5 to 3.0 M high salt (NaCl) to enhance the lysine of methane archaea Expression of 2,3-aminotransposase and β-lysine acetyltransferase gene.
本發明的其他特徵與優點,將從下列圖式及數項具體實施例之詳細描述,亦從附屬之申請專利範圍顯而易見。Other features and advantages of the present invention will be apparent from the description of the appended claims and appended claims.
本發明所使用之Methanocalculus chunghsingensis K1F9705b,係所屬技術領域中具有通常知識者易於獲得,其等係已寄存於德國菌種中心,寄存編號為DSM 14539以及美國甲烷菌種中心,寄存編號為OCM772。Methanohalophilus portucalensis FDF1係所屬技術領域中具有通常知識者易於獲得,其等係已寄存於德國菌種中心(DSMZ)寄存編號為DSM 7471T,美國菌種中心(ATCC)寄存編號為BBA-912TM以及美國甲烷菌種中心,寄存編號為OCM59。 Methanocalculus chunghsingensis K1F9705b, which is used in the present invention, is readily available to those of ordinary skill in the art, and is deposited at the German Bacterial Center, under the accession number DSM 14539 and the American Methanogen Center, under the accession number OCM772. Methanohalophilus portucalensis FDF1 is readily available to those of ordinary skill in the art, and has been deposited with the German Stem Center (DSMZ) under the accession number DSM 7471T, the American Type Culture Center (ATCC) under the accession number BBA-912TM and the US methane. The center of the strain, the registration number is OCM59.
本研究利用已發表的Methanococcoides burtonii 及Methanococcus marpaludis 基因體命名的賴胺酸2,3-氨基轉位酶(lysine 2,3-aminomutase,abl A)序列高度保留的區域設計引子,以耐鹽性Methanocalculus chunghsingensis K1F9705b及嗜鹽性Methanohalophilus portucalensis FDF1的染色體DNA進行聚合酶連鎖反應(PCR),分別獲得部分的序列Mcabl A-0.8 kb以及Mpabl A-0.8 kb片段,隨後將兩片段分別製作為探針,分別針對Methanocalculus chunghsingensis K1F9705b及Methanohalophilus portucalensis FDF1基因體進行南方墨漬法(Southern hybridization)分析,獲得該兩株甲烷古菌相容質N ε -acetyl-β-lysine生合成基因,分別為命名為Mcabl A、Mcabl B以及Mpabl A、Mpabl B基因。In this study, we designed the primers to use the published Methanococcoides burtonii and Methanococcus marpaludis gene-named lysine 2,3-aminomutase ( abl A) sequence to maintain the salt tolerance of Methanocalculus. chromosomal DNA chunghsingensis K1F9705b halophilic Methanohalophilus portucalensis FDF1 and performing a polymerase chain reaction (the PCR), sequence Mc abl a-0.8 kb and Mp abl a-0.8 kb fragment portions respectively, and then the two fragments were prepared as probes Southern hybridization analysis was carried out on the Methanocalculus chunghsingensis K1F9705b and Methanohalophilus portucalensis FDF1 genomes respectively, and the two methane archaeal compatible N ε -acetyl-β-lysine biosynthesis genes were obtained, respectively named Mcabl. A, Mcabl B and Mpabl A, Mpabl B genes.
此外,本發明已經將兩株甲烷古菌之賴胺酸2,3-氨基轉位酶基因(Mcabl A、Mpabl A),以及β-賴胺酸乙醯基轉移酶基因(Mcabl B、Mpabl B),分別利用大腸桿菌異源表現,以添加有特定限制酶切位的引子進行聚合酶連鎖反應(PCR),進行選殖後再利用相同限制酶作用,將基因片段分別送入pET系統於E. coli BL21(DE3)-RIL中大量表現,以使所製得之重組蛋白可用於活體外合成相容質N ε -乙醯基-β-賴胺酸。In addition, the present invention has two methane archaea lysine 2,3-aminotransposase genes ( Mcabl A, Mpabl A), and β-lysine acetyltransferase genes ( Mcabl B, Mpabl B ), using the heterologous expression of E. coli, respectively, with a primer with a specific restriction enzyme cleavage site for polymerase chain reaction (PCR), after the selection and then using the same restriction enzymes, the gene fragments are sent to the pET system in E . coli BL21 (DE3) -RIL performance of a large number, so that the produced recombinant protein may be used for the in vitro synthesis is compatible substance N ε - acetyl -β- lysine group.
此外,本發明已經將Methanocalculus chunghsingensis K1F9705b之賴胺酸2,3-氨基轉位酶基因(Mcabl A),以及β-賴胺酸乙醯基轉移酶基因(Mcabl B),利用大腸桿菌異源共同表現,將Mcabl A基因片段構築至pET21b質體,而Mcabl B基因片段構築至pET28a質體,並將構築好的pET21b-Mcabl A以及pET28a-Mcabl B質體同時送入E. coli BL21(DE3)-RIL中大量表現,以使所製得之重組蛋白可用於活體內合成相容質N ε -乙醯基-β-賴胺酸。亦將Methanohalophilus portucalensis FDF1之賴胺酸2,3-氨基轉位酶基因(Mpabl A),以及β-賴胺酸乙醯基轉移酶基因(Mpabl B),利用大腸桿菌異源共同表現,將Mpabl A基因片段構築至pET21b質體,而Mpabl B基因片段構築至pET28a質體,並將構築好的pET21b-Mpabl A以及pET28a-Mpabl B質體同時送入E. coli BL21(DE3)-RIL中大量表現,以使所製得之重組蛋白可用於活體內合成相容質N ε -乙醯基-β-賴胺酸。In addition, the present invention has used Methanocalculus chunghsingensis K1F9705b lysine 2,3-aminotransposase gene ( Mcabl A), and β-lysine acetyltransferase gene ( Mcabl B), using Escherichia coli heterologous In the performance, the Mcabl A gene fragment was constructed into the pET21b plastid, and the Mcabl B gene fragment was constructed into the pET28a plastid, and the constructed pET21b- Mcabl A and pET28a- Mcabl B plastids were simultaneously sent to E. coli BL21 (DE3). A large number of expressions in -RIL, so that the recombinant protein produced can be used to synthesize a compatible N ε -acetyl-β-lysine in vivo. Methanohalophilus portucalensis FDF1 lysine 2,3-aminotransposase gene ( Mpabl A), and β-lysine acetyltransferase gene ( Mpabl B), using E. coli heterologous co-expression, Mpabl The A gene fragment was constructed into the pET21b plastid, and the Mpabl B gene fragment was constructed into the pET28a plastid, and the constructed pET21b- Mpabl A and pET28a- Mpabl B plastids were simultaneously introduced into E. coli BL21(DE3)-RIL. The performance is such that the recombinant protein produced can be used to synthesize a compatible N ε -acetyl-β-lysine in vivo.
本發明將詳細描述特殊的具體實施例。這些具體實施例經由發明解釋提供,並非意欲用以限制本發明。在發明的範圍及精神內,本發明存在傾向於包括這些及其他變更及變動。The invention will be described in detail with particular embodiments. These specific examples are provided by way of illustration of the invention and are not intended to limit the invention. The present invention is intended to embrace these and other modifications and variations within the scope and spirit of the invention.
實施例1. 分離及選殖耐鹽性甲烷古菌M . chunghsingensis K1F9705b及嗜鹽性甲烷古菌M . portucalensis FDF1之abl A與abl B A基因Example 1. Isolation and cloning of methanogenic archaea salt M. Chunghsingensis K1F9705b halophilic methanogenic archaea and M. Abl portucalensis FDF1 of gene A and abl B A
抽取甲烷太古生物染色體DNA的方法係由Jarrell(1992)加以修飾。將培養至中對數期的250 ml菌液收集至離心瓶中,以高速離心機(Sorvall RC5C,DuPont Co.) 8000 rpm、4℃下離心15分鐘收集菌體。離心後所得的菌塊,以2 ml lysis solution(10 mM Tris,pH 8.0;1 mM EDTA pH 8.0;2% SDS;100 μg/ml proteinase K)懸浮並打破菌體。將菌塊打散後於冰上靜置10分鐘,以離心機(Sigma,2K15) 14000 rpm、4℃下離心10分鐘,回收上清液,加入等體積4℃保存之Phenol/chloroform/isoamyl alcohol(25:24:1),輕輕搖晃均勻後以離心機(Sigma,2K15) 14000 rpm、4℃下離心10分鐘,回收上清液重複上述萃取動作一次。小心取出離心後的上清液,加入RNase(50 μg/ml)於37℃作用一小時。再繼續以Phenol/chloroform/isoamyl alcohol萃取兩次,取出上清液後加入一半體積的chloroform/isoamyl alcohol(24:1),輕輕搖晃均勻後以離心機(Sigma,2K15) 14000 rpm、4℃下離心10分鐘,取出上清液重複chloroform/isoamyl alcohol萃取動作兩次,直至界面層沒有蛋白質殘留為止。以3 M sodium acetate將上清液部分的sodium acetate濃度調整為0.3 M以沉澱DNA,加入0.6-0.7倍體積之isopropanol並混合均勻,以離心機(Sigma,2K15) 14000 rpm、4℃下離心10分鐘,小心地去除上層液,並加入適量70%酒精清洗DNA樣品,以離心機(Sigma,2K15) 14000 rpm、4℃下離心10分鐘,去除上層液,以真空減壓濃縮機(Savant Speed Vac System,Savant Co.)將酒精抽乾,以無菌水回溶DNA樣品,並以核酸電泳以及量測OD260/280 比值檢視所萃取之DNA純度並且計算DNA含量。The method for extracting methane Pacific chromosomal DNA was modified by Jarrell (1992). 250 ml of the culture solution cultured to the middle log phase was collected into a centrifuge bottle, and the cells were collected by a high-speed centrifuge (Sorvall RC5C, DuPont Co.) at 8000 rpm and centrifuged at 4 ° C for 15 minutes. The obtained pellet was centrifuged and suspended in 2 ml of lysis solution (10 mM Tris, pH 8.0; 1 mM EDTA pH 8.0; 2% SDS; 100 μg/ml proteinase K) and disrupted. The bacteria pieces were dispersed, and then allowed to stand on ice for 10 minutes, centrifuged at 14000 rpm in a centrifuge (Sigma, 2K15) at 4 ° C for 10 minutes, and the supernatant was recovered, and an equal volume of Phenol/chloroform/isoamyl alcohol was stored at 4 ° C for storage. (25:24:1), gently shake it evenly, centrifuge with a centrifuge (Sigma, 2K15) at 14000 rpm, 4 ° C for 10 minutes, and recover the supernatant to repeat the above extraction. The supernatant after centrifugation was carefully taken out and added to RNase (50 μg/ml) for one hour at 37 °C. Continue to extract twice with Phenol/chloroform/isoamyl alcohol, remove the supernatant and add half volume of chloroform/isoamyl alcohol (24:1), shake gently and centrifuge (Sigma, 2K15) 14000 rpm, 4 °C Centrifuge for 10 minutes, remove the supernatant and repeat the chloroform/isoamyl alcohol extraction twice until there is no protein residue in the interface layer. The sodium acetate concentration of the supernatant fraction was adjusted to 0.3 M with 3 M sodium acetate to precipitate DNA, 0.6-0.7 volumes of isopropanol was added and mixed uniformly, and centrifuged at 14000 rpm, 4 ° C in a centrifuge (Sigma, 2K15) 10 Minutes, carefully remove the supernatant, and add a suitable amount of 70% alcohol to wash the DNA sample, centrifuge (Sigma, 2K15) 14000 rpm, 4 ° C for 10 minutes, remove the supernatant, vacuum decompression concentrator (Savant Speed Vac System, Savant Co.) The alcohol was drained, the DNA sample was reconstituted with sterile water, and the purity of the extracted DNA was examined by nucleic acid electrophoresis and measurement of the OD 260/280 ratio and the DNA content was calculated.
本研究利用已發表的Methanococcoides burtonii 及Methanococcus marpaludis 基因體命名的lysine 2,3-aminomutase(abl A)序列高度保留的區域設計引子ablA bm-F 5’-GAAGATCCTCTTTCCGAAGAT-3’、ablAbm-R 5’-GGTGATAACACCTTCATAATT-3’,以我們實驗室純化的耐鹽性M. chunghsingensis K1F9705b及嗜鹽性M. portucalensis FDF1的染色體DNA進行聚合酶連鎖反應(PCR)分別獲得部分的序列Mcabl A-0.8 kb以及Mpabl A-0.8 kb片段,隨後將兩片段分別製作為探針,分別針對M. chunghsingensis K1F9705b及M. portucalensis FDF1基因體進行南方墨漬法(Southern hybridization)分析。將M. chunghsingensis K1F9705b及M. portucalensis FDF1染色體DNA分別以限制酶Nsi I作用處理,進行電泳分析,將膠體以0.25 N HCl浸泡膠體震盪20分鐘後,再以denaturation buffer(0.5 N NaOH,1.5 M NaCl)浸泡膠體並震盪20分鐘,最後以neutralization buffer(1.5 M NaCl,1 M Tris)浸泡膠體並震盪20分鐘。隨後利用真空轉漬將核酸轉漬至HybondTM -N+ Nylon膜(Amersham)以短波紫外光核酸固定器將核酸固定於膜上。利用DIG DNA Labeling and Detection Kit所製備的探針進行雜合反應以及免疫偵測。結果,獲得兩株甲烷古菌相容質N ε -acetyl-β-lysine之生合成基因組,分別命名為Mcabl A-1320 bp(序列列示於SEQ ID NO: 1)與Mcabl B-858 bp(序列列示於SEQ ID NO: 3),以及Mpabl A-1314 bp(序列列示於SEQ ID NO: 5)與Mpabl B-831 bp(序列列示於SEQ ID NO: 7、8),彼等基因之相對位置如圖1所示。In this study, we designed ablA bm-F 5'-GAAGATCCTCTTTCCGAAGAT-3', ablAbm-R 5'- using the highly retained region of the published lysine 2,3-aminomutase ( abl A) sequence named Methanococcoides burtonii and Methanococcus marpaludis. GGTGATAACACCTTCATAATT-3 ', in our laboratory salt tolerance purified chromosomal DNA chunghsingensis K1F9705b M. and M. portucalensis FDF1 halophilic performing a polymerase chain reaction (PCR) respectively sequence Mc abl a-0.8 kb portion and Mp Abl A-0.8 kb fragment, and then the two fragments were separately made into probes, and Southern hybridization analysis was performed on M. chunghsingensis K1F9705b and M. portucalensis FDF1 genomes, respectively. M. chunghsingensis K1F9705b and M. portucalensis FDF1 chromosomal DNA were treated with restriction enzyme Nsi I, respectively. Electrophoresis analysis was performed. The colloid was shaken with 0.25 N HCl soak for 20 minutes, then with denaturation buffer (0.5 N NaOH, 1.5 M NaCl). Soak the gel and shake for 20 minutes. Finally, soak the gel with a neutralization buffer (1.5 M NaCl, 1 M Tris) and shake for 20 minutes. Followed by vacuum blotting of nucleic acids blotted to Hybond TM -N + Nylon membrane (Amersham) to short-wave UV nucleic acids immobilized nucleic acids immobilized on the membrane will. The probe prepared by the DIG DNA Labeling and Detection Kit was used for hybridization and immunodetection. As a result, the biosynthetic profiles of two methane archaeal compatible N ε -acetyl-β-lysine were obtained, which were named Mcabl A-1320 bp (listed in SEQ ID NO: 1) and Mcabl B-858 bp ( The sequences are listed in SEQ ID NO: 3), and Mpabl A-1314 bp (sequences are listed in SEQ ID NO: 5) and Mpabl B-831 bp (sequences are listed in SEQ ID NO: 7, 8), The relative positions of the genes are shown in Figure 1.
分析該兩株甲烷古菌與Clostridium subterminale 的賴胺酸2,3-氨基轉位酶之胺基酸序列,結果發現本發明所獲得的兩株甲烷古菌的賴胺酸2,3-氨基轉位酶基因的胺基酸序列與Clostridium subterminale 的賴胺酸2,3-氨基轉位酶胺基酸序列一樣,均具有(1).與[4Fe-4s] cluster結合的位置區域上含有保留胺基酸cysteine(CXXXCXXC);(2).與SAM結合位置為D-A-P-G/H-G-G-G-K-I-P-V;(3).與PLP結合位置為SAM結合區域內的賴胺酸(K);另外,(4).在序列接近C端的位置上包含三個半胱胺酸,推測是與鋅結合的位置(參見圖2)。序列分析結果顯示,本發明所獲自甲烷古菌的abl A基因,是賴胺酸2,3-氨基轉位酶基因。The amino acid sequences of the 2,3-aminotransposases of the two strains of methane archaea and Clostridium subterminale were analyzed, and the 2,3-aminotransfer of lysine of the two strains of methane archaea obtained by the present invention was found. The amino acid sequence of the enzyme gene is the same as the lysine 2,3-aminotransposase amino acid sequence of Clostridium subterminale , which has (1). The positional region bound to the [4Fe-4s] cluster contains a retained amine. The cysteine (CXXXCXXC); (2). The binding position to the SAM is DAPG/HGGGKIPV; (3). The binding position to the PLP is the lysine (K) in the SAM binding region; in addition, (4). The C-terminal position contains three cysteines, presumably in the position to bind to zinc (see Figure 2). The results of sequence analysis revealed that the abl A gene obtained from the methane archaea of the present invention is a lysine 2,3-aminotransposase gene.
而β-賴胺酸乙醯基轉移酶酵素的特性,依結構可以區分為四個保留模體(conserved motif),其排列順序為C-D-A-B,其中以模體A是一段含有較長及高度保留的區域,是參與acetyl coenzyme A結合的位置,並且在此區域包含一段保留的胺基酸為Q/R-X-X-G-X-G/A,結果發現我們所獲得的兩株甲烷古菌的β-賴胺酸乙醯基轉移酶基因的胺基酸序列與GNAT superfamily酵素一樣,具有類似的保留序列為R/Q-G/K-K/L-G-H/L-M/S-K/G(圖2)。序列分析結果顯示,我們所獲自甲烷古菌的abl B基因是β-賴胺酸乙醯基轉移酶基因。而我們由這些甲烷古菌可藉由α-賴胺酸經賴胺酸2,3-氨基轉位酶作用轉為β-賴胺酸,隨後再經由β-賴胺酸乙醯基轉移酶作用生合成N ε -乙醯基-β-賴胺酸(N ε -acetyl-β-lysine)(Roberts 1992),也可以確認此兩基因產物確實有賴胺酸2,3-氨基轉位酶以及β-賴胺酸乙醯基轉移酶的活性。The characteristics of the β-lysine acetyltransferase enzyme can be divided into four conserved motifs according to the structure, and the order is CDAB, wherein the phantom A is a segment containing a longer and highly retained one. The region, which is involved in the binding of acetyl coenzyme A, and contains a retained amino acid in this region as Q/RXXGXG/A, and found that the two strains of methane archaea obtained by β-lysine transfer The amino acid sequence of the enzyme gene, like the GNAT superfamily enzyme, has a similar retention sequence of R/QG/KK/LGH/LM/SK/G (Fig. 2). Sequence analysis showed that the abl B gene we obtained from the methane archaea was the β-lysine acetyltransferase gene. And we can convert these methane archaea into β-lysine by the action of α-lysine via lysine 2,3-aminotransferase, followed by β-lysine acetyltransferase. biosynthesis N ε - acetyl -β- yl lysine (N ε -acetyl-β-lysine ) (Roberts 1992), the two genes can be confirmed this product does depend alanine 2,3-aminomutase and beta] translocase - Activity of lysine acetyltransferase.
以系統演化分析這兩株甲烷古菌的賴胺酸2,3-氨基轉位酶以及β-賴胺酸乙醯基轉移酶的胺基酸序列,結果Mc AblA、M pAblA與其他甲烷古菌AblA的胺基酸序列相似度為47~80%;Mc AblB、M pAblB與其他甲烷古菌AblB的胺基酸序列相似度為24~52%,顯示嗜鹽以及耐鹽甲烷古菌的相容質N ε -乙醯基-β-賴胺酸(N ε -acetyl-β-lysine)生合成基因具有相當的差異性。這兩株甲烷古菌的蛋白pI值較低,且帶有較多的負電胺基酸,能與氫氧根離子鍵結以保持其表面為水合作用層,並維持其表面的疏水性,在高鹽環境下減少形成集團;嗜鹽性、耐鹽性生物的蛋白質能與鹽進行水合作用,使得嗜鹽性、耐鹽性生物的蛋白質能抵抗有機溶劑等低水活性的環境。顯示甲烷古菌的賴胺酸2,3-氨基轉位酶以及β-賴胺酸乙醯基轉移酶具有耐鹽、耐高溶劑等特性,更適合於工業與胞外生產應用。Systematic evolution analysis of the lysine 2,3-aminotransposase and the amino acid sequence of β-lysine acetyltransferase of the two methane archaea, resulting in Mc AblA, M pAblA and other methane archaea The amino acid sequence similarity of AblA is 47-80%; the amino acid sequence similarity between Mc AblB and M pAblB and other methane archaea AblB is 24-52%, indicating the compatibility of halophilic and salt-tolerant methanogens. quality N ε - acetyl -β- yl lysine (N ε -acetyl-β-lysine ) biosynthesis genes has considerable differences. These two strains of methane archaea have lower protein pI values and more negatively charged amino acids, which can bond with hydroxide ions to maintain their surface as a hydration layer and maintain the hydrophobicity of their surface. The formation of a group is reduced in a high-salt environment; proteins of halophilic and salt-tolerant organisms can be hydrated with salts, so that proteins of halophilic and salt-tolerant organisms can withstand low-water activities such as organic solvents. The lysine 2,3-aminotransposase and β-lysine acetyltransferase of methane archaea have the characteristics of salt tolerance and high solvent resistance, and are more suitable for industrial and extracellular production applications.
實施例2. 於大腸桿菌宿主異源表現甲烷古菌之abl A與abl B基因將經過設計有限制酶切位(Nhe I,Not I andXho I)的引子,模板來源為南方墨漬法獲得的片段與質體pGEM-7zf進行接合後篩選獲得的質體,並且經由定序確認此質體帶有賴胺酸2,3-氨基轉位酶以及β-賴胺酸乙醯基轉移酶的基因。進行聚合酶連鎖反應後,可以增幅出兩端各含有限制酶切位(Nhe I-Mcabl A-Not I、Nhe I-Mcabl B-Not I、Nhe I-Mpabl A-Xho I及Nhe I-Mpabl B-Xho I)的產物。將其選殖至-T Easy vector後,轉形至勝任細胞大腸桿菌JM101,塗佈於含有IPTG/X-gal以及Ampicillin的LA plate上進行篩選。經由藍白篩選之後,挑選白色菌落培養並抽取質體,接著以限制酶(Nhe I、Not I及Xho I)進行切割,篩選回收具有限制酶切位的片段。再將其與經相同限制酶切割後之表現載體pET21b於16℃進行接合作用16小時,分別再轉形至勝任細胞大腸桿菌JM101,以抗藥性基因Ampr 作為篩選標誌。更近一步利用限制酶切割確認無誤後,將確認過的質體(pET21b-M cablA,pET21b-Mp ab1A,pET21b-M cab1B and pET21b-Mp ablB)分別再轉形至勝任細胞大腸桿菌BL21(DE2)-RIL中,以IPTG誘導蛋白表現,利用蛋白質電泳分析重組基因蛋白表現情況。由圖3之結果顯示,Mc AblA、Mp AblA、Mc AblB以及Mp AblB在IPTG誘導下於大腸桿菌中皆有大量重組蛋白表現。而且,利用大腸桿菌分別表現之這些重組蛋白,均以可溶性的蛋白呈現。Example 2. Abl A and abl B genes of heterologous expression of methane archaea in E. coli host will be introduced with restriction enzyme cleavage sites ( Nhe I, Not I and Xho I), and the template source is obtained by Southern blotting method. The fragment was ligated with the plastid pGEM-7zf, and the obtained plastid was screened, and the plastid carrying the gene of lysine 2,3-aminotransposase and β-lysine acetyltransferase was confirmed by sequencing. . After the polymerase chain reaction, the restriction enzyme cleavage sites can be increased at both ends ( Nhe I- Mcabl A- Not I, Nhe I- Mcabl B- Not I, Nhe I- Mpabl A- Xho I and Nhe I- Mpabl The product of B- Xho I). Colonize it to After the -T Easy vector, it was transformed into competent cell Escherichia coli JM101, and plated on an LA plate containing IPTG/X-gal and Ampicillin for screening. After screening through blue and white, white colonies were picked and plastids were extracted, followed by cleavage with restriction enzymes ( Nhe I, Not I and Xho I), and fragments having restriction enzyme cleavage sites were screened and recovered. Then, the expression vector pET21b cleavage by the same restriction enzyme was ligated at 16 ° C for 16 hours, and then transformed into competent cell E. coli JM101, respectively, and the drug resistance gene Amp r was used as a screening marker. After further confirmation by restriction enzyme cleavage, the confirmed plastids (pET21b- M cablA, pET21b- Mp ab1A, pET21b- M cab1B and pET21b- Mp ablB) were separately transformed into competent cell E. coli BL21 (DE2). In the -RIL, protein expression was induced by IPTG, and the expression of the recombinant gene protein was analyzed by protein electrophoresis. From the results of Fig. 3, Mc AblA, Mp AblA, Mc AblB and Mp AblB showed a large amount of recombinant protein expression in Escherichia coli under the induction of IPTG. Moreover, these recombinant proteins expressed by E. coli are present as soluble proteins.
實施例3. 於大腸桿菌宿主異源共同表現甲烷古菌之abl A與abl B基因Example 3. Abl A and abl B genes of methane archaea in a heterologous source of E. coli host
將實施例2所獲得-T-Nhe I-Mcabl B-Not I質體,以限制酶(Nhe I與Not I)進行切割,篩選回收具有限制酶切位的片段。再將其與經相同限制酶切割後之表現載體pET28a於16℃進行接合作用16小時,再轉形至勝任細胞大腸桿菌JM101,以抗藥性基因Kanr 作為篩選標誌。更近一步利用限制酶切割確認無誤後,將確認過的質體(pET21b-M cablA與pET28a-Mc ablB)同時轉形至勝任細胞大腸桿菌BL21(DE2)-RIL中,以IPTG誘導Mc AblA以及Mc AblB蛋白共同表現,利用蛋白質電泳分析重組基因蛋白表現情況。Obtained in Example 2 -T- Nhe I-Mc abl B- Not I plastid, cleavage with restriction enzymes ( Nhe I and Not I), screening for fragments with restriction enzyme cleavage sites. Then, it was ligated with the expression vector pET28a cleaved by the same restriction enzyme at 16 ° C for 16 hours, and then transformed into competent cell Escherichia coli JM101, and the drug resistance gene Kan r was used as a screening marker. Using restriction enzyme cleavage step closer confirmation, confirmed the plastid (pET21b- M cablA and pET28a- Mc ablB) simultaneously to the competent cells of Escherichia coli Transformation BL21 (DE2) -RIL in and induced with IPTG Mc AblA The Mc AblB protein co-expressed and analyzed the expression of recombinant protein by protein electrophoresis.
將實施例2所獲得-T-Nhe I-Mpabl B-Xho I質體,以限制酶(Nhe I與Xho I)進行切割,篩選回收具有限制酶切位的片段。再將其與經相同限制酶切割後之表現載體pET28a於16℃進行接合作用16小時,再轉形至勝任細胞大腸桿菌JM101,以抗藥性基因Kanr 作為篩選標誌。更近一步利用限制酶切割確認無誤後,將確認過的質體(pET21b-Mp ablA與pET28a-Mp ablB)同時轉形至勝任細胞大腸桿菌BL21(DE2)-RIL中,以IPTG誘導Mp AblA以及Mp AblB蛋白共同表現,利用蛋白質電泳分析重組基因蛋白表現情況。由圖4之結果顯示,Mc AblA、Mc AblB、Mp AblA以及Mp AblB在IPTG誘導下於大腸桿菌中皆有大量共同表現的重組蛋白。Obtained in Example 2 -T- Nhe I- Mpabl B- Xho I plastid, cleavage with restriction enzymes ( Nhe I and Xho I), screening for fragments with restriction enzyme cleavage sites. Then, it was ligated with the expression vector pET28a cleaved by the same restriction enzyme at 16 ° C for 16 hours, and then transformed into competent cell Escherichia coli JM101, and the drug resistance gene Kan r was used as a screening marker. After further confirmation by restriction enzyme cleavage, the confirmed plastids (pET21b- Mp ablA and pET28a- Mp ablB) were simultaneously transformed into competent E. coli BL21(DE2)-RIL, and Mp AblA was induced by IPTG. Mp AblB protein co-expressed and analyzed the expression of recombinant gene protein by protein electrophoresis. From the results shown in Fig. 4, Mc AblA, Mc AblB, Mp AblA and Mp AblB have a large amount of recombinant proteins co-expressed in E. coli under the induction of IPTG.
實施例4. 北方墨漬法分析甲烷古菌相容質N ε -乙醯基-β-賴胺酸(N ε -acetyl-β-lysine)生合成基因受鹽逆境的影響Example 4. Northern blot analysis of blots methanogenic archaea compatible substance N ε - acetyl -β- yl lysine (N ε -acetyl-β-lysine ) biosynthesis genes affected by salt stress
將嗜鹽性甲烷古菌M. portucalensis FDF1分別培養在含有不同鹽度(1.2,1.65,2.1,2.5及2.9 M NaCl)的無氧培養液中,培養至中對數期以離心方式收集菌體。或二、將M. portucalensis FDF1培養在1.2 M NaCl至中對數期,以厭氧操作方式,加入高鹽(2.1,3.0,3.8及4.6 M NaCl)的無氧培養液使其最終鹽濃度為1.65,2.1,2.5及2.9 M NaCl再繼續培養,並於不同的時間點以離心方式收集菌體。隨後以Rare RNA套組(真興生物科技公司)萃取全細胞RNA,利用TBE膠體進行電泳分析,利用semi-dry electroblotter system(Galileo Bioscience)將RNA轉漬至HybondTM -N+ Nylon膜上,並以短波紫外線固定器將核酸固定於模上,以相容質N ε -acetyl-β-lysine生合成基因(Mpabl A)為探針進行北方墨漬分析。利用掃瞄器IamgeScannerTM II(Amersham Co.)將膜掃描成圖檔,並以TINA software軟體分析膜上訊號大小(Version 2.09e,raytest Isotopenmeβgerte)。基因相對轉錄量的計算方式是將目標訊號值除以相對該目標訊號的16S rRNA訊號值所得。The halophilic methanogen M. portucalensis FDF1 was separately cultured in an anaerobic medium containing different salinities (1.2, 1.65, 2.1, 2.5 and 2.9 M NaCl), and cultured until the middle log phase to collect the cells by centrifugation. Or 2. M. portucalensis FDF1 was cultured in 1.2 M NaCl to the middle log phase. Anaerobic operation was carried out, and anaerobic medium with high salt (2.1, 3.0, 3.8 and 4.6 M NaCl) was added to make the final salt concentration 1.65. The culture was continued with 2.1, 2.5 and 2.9 M NaCl, and the cells were collected by centrifugation at different time points. Subsequently of Rare RNA kit (Jinheung Biosciences) whole cell RNA was extracted, analyzed by electrophoresis using TBE colloid, electroblotter system (Galileo Bioscience) RNA was blotted to Hybond TM -N + Nylon membranes using semi-dry, and to The short-wave UV holder immobilized the nucleic acid on the mold and analyzed the northern ink stain with the compatible N ε -acetyl-β-lysine biosynthesis gene ( Mpabl A) as a probe. The membrane was scanned into a pattern using a scanner IamgeScanner TM II (Amersham Co.), and the signal size on the membrane was analyzed by TINA software (Version 2.09e, raytest Isotopenmeβger Te). The relative transcript amount of a gene is calculated by dividing the target signal value by the 16S rRNA signal value relative to the target signal.
圖5之實驗結果顯示,嗜鹽性甲烷古菌M. portucalensis FDF1會隨著外界鹽濃度的增加,其胞內N ε -acetyl-β-lysine生合成基因的表現量確實也會隨之增加。由此可推知,甲烷古菌的賴胺酸2,3-氨基轉位酶(lysine 2,3-aminomutase)以及β-賴胺酸乙醯基轉移酶(β-lysine acetyltransferase)基因的表現會隨著鹽濃度增加而增加,因此可利用鹽誘導表現來提高此基因的表現量,提高N ε -乙醯基-β-賴胺酸(N ε -acetyl-β-lysine)的累積。The experimental results in Figure 5 show that the halophilic methane archaea M. portucalensis FDF1 will increase the expression of intracellular N ε -acetyl-β-lysine biosynthesis gene with the increase of external salt concentration. It can be inferred that the expression of lysine 2,3-aminomutase and β-lysine acetyltransferase genes of methane archaea will follow the salt concentration increases, and therefore may be utilized to improve the performance of salt-induced expression levels of the gene, to improve N ε - lysine accumulation acetylsalicylic -β- (N ε -acetyl-β-lysine ) of.
其他具體態樣Other specific aspects
本說明書中所揭示之全部特徵可以任何組合方式組合。於是,本說明書中所揭示之各別特徵可由依相同、相等或類似目的之替代特徵取代。因此,除非另行清楚地指示,所揭示之各特徵僅為一系列同等物或類似特徵之實例。All of the features disclosed in this specification can be combined in any combination. Thus, the individual features disclosed in this specification can be replaced by alternative features that are the same, equivalent, or similar. Therefore, the various features disclosed are merely examples of a series of equivalents or similar features, unless otherwise clearly indicated.
從前述之說明,習於該項技藝人士可容易地確定本發明之基本特徵,且在未偏離其範圍下,可進行本發明之各種改變與修飾,以使其適於各種不同用途與狀況。因此,於申請專利範圍內亦包含其他具體態樣。From the foregoing description, those skilled in the art can readily determine the essential features of the invention, and various changes and modifications of the invention can be made to adapt to various different uses and conditions without departing from the scope thereof. Therefore, other specific aspects are included in the scope of patent application.
圖1為M. chunghsingensis K1F9705b及M. portucalensis FDF1中ablA與ablB基因組及調節區之基因順序。FIG 1 is a M. chunghsingensis K1F9705b and M. portucalensis FDF1 in ablA with ablB genomic sequence and the regulatory region of the gene.
圖2為甲烷古菌N ε -乙醯基-β-賴胺酸(N ε -acetyl-β-lysine)生合成酵素之胺基酸序列的比較分析結果。(A)為甲烷古菌與Clostridium subterminale (LAM)之賴胺酸2,3-氨基轉位酶胺基酸序列的序列排列分析(sequence alignment),該排列分析是藉由Clustal W程式(SDSC Biology Workbench)所得,其中(a):鐵原子之配體;(b):SAM結合功能域及PLP-結合位置的賴胺酸殘基;(c):鋅結合位置。(B)為甲烷古菌之乙醯基轉移酶與釀酒酵母Hat1之GCN-5相關N-乙醯基轉移酶一級序列的保留模體A之的序列排列分析。Comparative analysis of acetylsalicylic -β- lysine (N ε -acetyl-β-lysine ) amino acid sequence of the synthetic raw enzyme of Figure 2 - is a methanogenic archaea N ε. (A) Sequence alignment of the 2,3-aminotransposase amino acid sequence of lysine by Clostridium subterminale (LAM), which is performed by Clustal W program (SDSC Biology) Workbench), wherein (a): a ligand for an iron atom; (b): a lysine residue of a SAM binding domain and a PLP-binding site; (c): a zinc binding site. (B) Sequence alignment analysis of the retention motif A of the primary sequence of the GCN-5-related N-acetyltransferase of the methicillin and the S. cerevisiae Hat1.
圖3列示M. chunghsingensis K1F9705b及M. portucalensis FDF1的AblA及AblB於大腸桿菌BL(DE3)-RIL之表現。到達中對數期之大腸桿菌轉形株分別以IPTG處理4(I1)、8(I2)、22(I3)小時,以誘導AblA及AblB表現,並以12.5% SDS-PAGE分離。M:彩虹標記。箭號指出被誘導之AblA(藍色)及AblB(紅色)蛋白質。Figure 3 lists M. chunghsingensis K1F9705b and M. portucalensis FDF1 AblB performance of AblA and E. coli BL (DE3) -RIL of. The E. coli transformed strains that reached the mid-log phase were treated with IPTG for 4 (I1), 8 (I2), and 22 (I3) hours, respectively, to induce AblA and AblB expression, and were separated by 12.5% SDS-PAGE. M: Rainbow mark. The arrows indicate the induced AblA (blue) and AblB (red) proteins.
圖4列示M. chunghsingensis K1F9705b及M. portucalensis FDF1的AblA及AblB於大腸桿菌BL(DE3)-RIL之共同表現。到達中對數期之大腸桿菌轉形株分別以IPTG處理2(I1)、4(I2)、8(I3)小時,以誘導AblA及AblB共同表現,並以12.5% SDS-PAGE分離。M:彩虹標記。箭號指出被誘導之AblA(藍色)及AblB(紅色)蛋白質。Figure 4 lists M. chunghsingensis K1F9705b and M. portucalensis FDF1 of AblA and AblB in E. coli BL (DE3) -RIL jointly performance. E. coli transformed plants arriving in the log phase were treated with IPTG for 2 (I1), 4 (I2), and 8 (I3) hours, respectively, to induce AblA and AblB to be co-expressed and separated by 12.5% SDS-PAGE. M: Rainbow mark. The arrows indicate the induced AblA (blue) and AblB (red) proteins.
圖5列示M. portucalensis 於所指定鹽濃度培養基下生長之AblAB 的轉錄程度,以北方轉漬進行分析。(a)以AblAB -2.1探針雜合之結果;(b)四分之一的總體RNA經變性瓊脂凝膠分離,以EtBr染色及直接由UV光偵測之結果;(c)以TINA軟體計算之相對轉錄量。Figure 5 shows the degree of transcription of AblAB grown by M. portucalensis under the specified salt concentration medium, and analyzed by northern blotting. (a) results of heterozygous AblAB- 2.1 probes; (b) one-quarter of total RNA isolated by denaturing agar gel, stained with EtBr and directly detected by UV light; (c) with TINA software Calculate the relative amount of transcription.
<110>中興大學<110>Zhongxing University
<120>甲烷古菌之相容質N ε -乙醯基-β-賴胺酸生合成基因及其應用<120>Compatible N ε -acetyl-β-lysine synthesis gene of methane archaea and its application
<160> 8<160> 8
<170> PatentIn Version 3.4<170> PatentIn Version 3.4
<210> 1<210> 1
<211> 1320<211> 1320
<212> DNA<212> DNA
<213> 耐鹽性甲烷古菌Methanocalculus chunghsingensis K1F9705b<213> Salt-tolerant methane archaea Methanocalculus chunghsingensis K1F9705b
<400> 1<400> 1
<210> 2<210> 2
<211> 439<211> 439
<212> PRT<212> PRT
<213> 耐鹽性甲烷古菌Methanocalculus chunghsingensis K1F9705b<213> Salt-tolerant methane archaea Methanocalculus chunghsingensis K1F9705b
<400> 2<400> 2
<210> 3<210> 3
<211> 858<211> 858
<212> DNA<212> DNA
<213> 耐鹽性甲烷古菌Methanocalculus chunghsingensis K1F9705b<213> Salt-tolerant methane archaea Methanocalculus chunghsingensis K1F9705b
<400> 3<400> 3
<210> 4<210> 4
<211> 285<211> 285
<212> PRT<212> PRT
<213> 耐鹽性甲烷古菌Methanocalculus chunghsingensis K1F9705b<213> Salt-tolerant methane archaea Methanocalculus chunghsingensis K1F9705b
<400> 4<400> 4
<210> 5<210> 5
<211> 1314<211> 1314
<212> DNA<212> DNA
<213> 嗜鹽甲烷古菌Methanohalophilus portucalensis FDF1<213> Methanohalophilus portucalensis FDF1
<400> 5<400> 5
<210> 6<210> 6
<211> 437<211> 437
<212> PRT<212> PRT
<213> 嗜鹽甲烷古菌Methanohalophilus portucalensis FDF1<213> Methanohalophilus portucalensis FDF1
<400> 6<400> 6
<210> 7<210> 7
<211> 831<211> 831
<212> DNA<212> DNA
<213> 嗜鹽甲烷古菌Methanohalophilus portucalensis FDF1<213> Methanohalophilus portucalensis FDF1
<400> 7<400> 7
<210> 8<210> 8
<211> 276<211> 276
<212> PRT<212> PRT
<213> 嗜鹽甲烷古菌Methanohalophilus portucalensis FDF1<213> Methanohalophilus portucalensis FDF1
<400> 8<400> 8
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101112322A TWI450964B (en) | 2008-11-28 | 2008-11-28 | Osmolyte nε-acetyl-β-lysine biosynthetic genes from methanogenic archaea and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101112322A TWI450964B (en) | 2008-11-28 | 2008-11-28 | Osmolyte nε-acetyl-β-lysine biosynthetic genes from methanogenic archaea and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201247869A TW201247869A (en) | 2012-12-01 |
TWI450964B true TWI450964B (en) | 2014-09-01 |
Family
ID=48138540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101112322A TWI450964B (en) | 2008-11-28 | 2008-11-28 | Osmolyte nε-acetyl-β-lysine biosynthetic genes from methanogenic archaea and application thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI450964B (en) |
-
2008
- 2008-11-28 TW TW101112322A patent/TWI450964B/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
Pfluger, K ET AL :Lysine-2,3-aminomutase and beta-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of N-epsilon-acetyl-beta-lysine and growth at high salinity. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003-10; 6047-6055 2004年01月(國家圖書館編目錄時間) 林珀丞(指導教授:賴美津), 滾環型複製的嗜鹽甲烷古生菌質體pML之rep基因及其表現蛋白質的分析, 國立中興大學生命學研究所. * |
Also Published As
Publication number | Publication date |
---|---|
TW201247869A (en) | 2012-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5486029B2 (en) | Increased lysine production by gene amplification | |
Eichler et al. | Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coii | |
CN101715490B (en) | Method for production of glutathione or gamma-glutamylcysteine | |
CA2571528C (en) | Biochemical synthesis of 1,4-butanediamine | |
CN102080062B (en) | An l-cysteine-producing bacterium and a method for producing l-cysteine | |
CN113234652B (en) | Construction method and application of engineering bacteria for efficiently synthesizing ergothioneine | |
CA2571531C (en) | Biochemical synthesis of 1,4-butanediamine | |
KR20140043804A (en) | A microorganism for methionine production with enhanced glucose import | |
KR20220139351A (en) | Modified Microorganisms and Methods for Improved Production of Ectoins | |
JP2005137369A (en) | Method for producing l-cysteine using bacteria belonging to genus escherichia | |
RU2215782C2 (en) | Method for preparing l-amino acids, strain escherichia coli as producer of l-amino acid (variants) | |
Malla et al. | A novel efficient L-lysine exporter identified by functional metagenomics | |
Jiang et al. | A serine hydroxymethyltransferase from marine bacterium Shewanella algae: Isolation, purification, characterization and l-serine production | |
KR20120070411A (en) | New o-acetylhomoserine sulfhydrylase or mutants, and l-methionine conversion method uging the enzyme | |
Zhang et al. | Functional dissection and modulation of the BirA protein for improved autotrophic growth of gas‐fermenting Clostridium ljungdahlii | |
CN114540261A (en) | Genetically engineered bacterium for producing aminoadipic acid | |
TWI450964B (en) | Osmolyte nε-acetyl-β-lysine biosynthetic genes from methanogenic archaea and application thereof | |
BR102019026898A2 (en) | METHOD FOR FERMENTATIVE PRODUCTION OF L-LYSINE USING C. GLUTAMICUM STRAPS WITH A MUTATED KUP TRANSPORTER | |
WO2022049116A1 (en) | Microorganism and method for the improved production of alanine | |
KR101863239B1 (en) | Microorganism Capable of Using Acetic Acid as Sole Carbon Source | |
BR102020001442A2 (en) | METHOD FOR FERMENTATIVE PRODUCTION OF L-LYSINE | |
CN117402846B (en) | L-alanine dehydrogenase mutant and preparation method and application thereof | |
EA020184B1 (en) | PROTEIN HAVING A ROLE IN THE DEGRADATION OF A SUBSTRATE THAT IS n-ALKANE OR A FUNCTIONAL FRAGMENT THEREOF, NUCLEIC ACID MOLECULE, CODING THEM, CHIMERIC GENE, VECTOR AND MICROORGANISM COMPRISING SAID MOLECULE, AND METHOD OF DEGRADATING SAID n-ALKANE | |
Malla et al. | A Novel Efficient L-Lysine Exporter Identified by Functional | |
TWI410493B (en) | Application of Methanophilic Lysine 2,3 - Amino - transposase Gene in Drug Synthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |