TW201246218A - Method of programming memory - Google Patents

Method of programming memory Download PDF

Info

Publication number
TW201246218A
TW201246218A TW100116292A TW100116292A TW201246218A TW 201246218 A TW201246218 A TW 201246218A TW 100116292 A TW100116292 A TW 100116292A TW 100116292 A TW100116292 A TW 100116292A TW 201246218 A TW201246218 A TW 201246218A
Authority
TW
Taiwan
Prior art keywords
memory cell
voltage
region
memory
applying
Prior art date
Application number
TW100116292A
Other languages
Chinese (zh)
Other versions
TWI469147B (en
Inventor
Ping-Hung Tsai
Jyun-Siang Huang
Wen-Jer Tsai
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW100116292A priority Critical patent/TWI469147B/en
Publication of TW201246218A publication Critical patent/TW201246218A/en
Application granted granted Critical
Publication of TWI469147B publication Critical patent/TWI469147B/en

Links

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A method of programming a memory, wherein the memory has a first cell, which has a first S/D region and shares a second S/D region with a second cell that has a third S/D region opposite to the second S/D region. When programming process is performed to the first cell, a first voltage is applied to the control gate of the first cell, a second voltage is applied to the control gate of the second cell to slightly turn on the channel of the second cell, a third voltage and a fourth voltage are respectively applied to the first S/D region and third S/D region, and the second S/D region is floating. The carriers flow from the third S/D region to the first S/D region and is injected into the charge storage layer of the first cell by source side injection.

Description

201246218 六、發明說明: [0001] 【發明所屬之技術領域】 本發明有關於記憶體元件的操作,更特別有關於一 種記憶體(陣列)中記憶胞的程式化方法,以及利用該 方法的一種記憶體裝置。 / [0002] 【先前技術】 非揮發性記憶體(_,1&1:]^ mem。…由於具有 可進行多次資料之存入、讀取、抹除等動作,且存入之 資料在斷電後也不會消失的優點,因此許多電器產品中 必須具備此類記,it體,以維持電n產品職時的正常操 作,而成為個人電腦和電子設備所廣泛採用的一種記憶 體元件。 典型的非揮發性圮憶體元件,一般是被設計成具有 堆疊式閘極(Stacked-Gate)結構,其中包括以摻雜多晶 石夕製作的浮置閘極(F1 〇ating Gate)與控制閘極 (Control Gate)。浮置閘極位於控制閘極和基底之間, 且處於浮置狀態,沒有和任何電路相連接,而控制閘極 則與子元線(Word Line)相接,此外還包括穿随氧化層 (Tunneling Oxide)和閘間介電層(Inter_Gate Dielectric Layer)分別位於基底和浮置閘極之間以及 浮置閘極和控制閘極之間。 另一種典型的揮發性記憶體,則是使用電荷捕捉 (charge trapping)作為資料儲存型態的氮化矽唯讀記 憶體(Nitride read only memory)。利用由氧化物層 -氮化物層-氧化物層所構成的電荷捕捉結構(即熟知的 100116292 表單編號A0101 第4頁/共36頁 1002027339-0 201246218 ΟΝΟ層)可儲存二位元的資料。—般來說二位元的資料 可分別儲存於電荷捕捉結構中的氮化物層的左側(即左位 元)或右側(即右位元)。 [0005] Ο [0006] [0007] 〇 [0008] 在目前提高元件積集度的趨勢下,會依據設計規則 縮小元件的尺寸。隨著記憶體及其記憶胞的尺寸越做越 小’ s己憶胞之間的擊穿電流(punch-through current )會越來越顯著,由未選定的記憶胞所提供之擊穿電流 會影響到對選定記憶胞進行程式化操作時的穩定性,而 會明顯降低記憶胞的效能。 【發明内容】 本發明之一實施例提供一種記憶體的程式化方法’ 該記憶體中的第一記憶胞與相鄰之第二記憶胞共用一S/D 區,該S/D區在程式化時為浮置,將第二記憶胞作為開關 電晶體,藉由使第二記憶胞的通道區處於微開啟狀態, 以利用源極侧注入效應程式化第一記憶胞。 本發明之一實施例還提供一種記憶體陣列中記憶胞 的程式化方法,其是結合源極側注入效應與通道熱載子 注入效應,以程式化記憶體陣列中上述記憶胞的方法。 本發明之一實施例更提供一種記憶體裝置,包括記 憶體陣列和電路單元’其中本發明之一實施例之程式化 方法可應用到此記憶體陣列,且此電路單元可進行本發 明之一實施例之程式化方法的步驟。 本發明之一實施例提出一種記憶體的程式化方法。 記憶體具有第一記憶胞’第一記憶胞具有第一S/D區並與 100116292 表單編號A0101 第5頁/共36頁 1002027339-0 [0009] 201246218 弟一δ己憶胞共用第二s/D區,且第二記憶胞具有與第二s/ D區相對的第三S/D區。在程式化第一記憶胞時,施加第 一電壓到第一記憶胞的第一控制閘極;施加第二電壓到 第一 5己憶胞的第二控制閘極,使第二記憶胞的通道區處 於微開啟狀態;以及施加第三電壓到第一 S/D區,而第二 S/D區為浮置,施加第四電壓到第三s/〇區,且第三電壓 與第四電壓使得載子從第三S/D區流至第一s/D區,以利 用源極側注入效應將載子注入第一記憶胞的電荷儲存層 〇 [0010] [0011] [0012] [0013] 根據本發明之一實施例,上述第二電壓為接近第二 記憶胞的起始電壓。 根據本發明之一實施例,上述第一記憶胞及第二記 憶胞皆為N型記憶胞,且第三電壓在正值方向上高於第四 電壓。 根據本發明之一實施例,上述電荷儲存層是電荷捕 陷層,載子被捕陷在第一記憶胞之電荷捕陷層中靠近第 二S/D區的位置。 本發明之一實施例提出一種記憶體的程式化方法。 記憶體具有第一記憶胞,第一記憶胞具有第一S/D區並與 第一 s己憶胞共用第二S/D區,且第二記憶胞具有與第二s/ D區相對的第三S/D區。在程式化第一記憶胞時,施加第 一電壓到第一記憶胞的第一控制閘極;施加第二電壓到 第二記憶胞的第二控制閘極,使第二記憶胞的通道區在 微開啟狀態與完全開啟狀態之間變換;施加第三電壓到 100116292 表單編號A0101 第6頁/共36頁 1002027339-0 201246218 [0014] [0015] [0016]201246218 VI. Description of the Invention: [0001] The present invention relates to the operation of a memory element, and more particularly to a method for staging a memory cell in a memory (array), and a method using the same Memory device. [0002] [Prior Art] Non-volatile memory (_, 1 & 1:] ^ mem....Because it has the ability to store, read, erase, etc. multiple times, and the data stored in it The advantage of not disappearing after power off, so many electrical products must have such a record, it body, in order to maintain the normal operation of the electric product, and become a memory component widely used in personal computers and electronic devices. A typical non-volatile memory component is generally designed to have a stacked-gate structure, including a floating gate (F1 〇ating Gate) fabricated with doped polysilicon. Control gate: The floating gate is located between the control gate and the substrate, and is in a floating state, not connected to any circuit, and the control gate is connected to the Word Line. In addition, a tunneling Oxide and an Inter_Gate Dielectric Layer are respectively disposed between the substrate and the floating gate and between the floating gate and the control gate. Another typical volatility Memory, it is electricity Charge trapping as a data storage type of Nitride read only memory. Using a charge trapping structure composed of an oxide layer-nitride layer-oxide layer (ie, the well-known 100116292 form) No. A0101 Page 4 of 36 page 1002027339-0 201246218 Layer 2 can store two-bit data. Generally, the two-bit data can be stored on the left side of the nitride layer in the charge trapping structure (ie left) Bits) or right side (ie, right bit) [0005] Ο [0006] [0007] 〇 [0008] In the current trend of increasing the degree of component integration, the size of components will be reduced according to design rules. The size of the memory cell is getting smaller and smaller. The punch-through current between the cells is more and more obvious. The breakdown current provided by the unselected memory cells will affect the selection. The stability of the memory cell during the stylization operation can significantly reduce the performance of the memory cell. SUMMARY OF THE INVENTION One embodiment of the present invention provides a method for staging a memory 'the first memory cell in the memory The adjacent second memory cells share an S/D region, the S/D region is floating during programming, and the second memory cell is used as a switching transistor, by making the channel region of the second memory cell slightly open. The first memory cell is programmed by the source side injection effect. One embodiment of the present invention further provides a program method for memory cells in a memory array, which combines a source side injection effect and a channel hot carrier injection effect. To program the above memory cells in a memory array. An embodiment of the present invention further provides a memory device, including a memory array and a circuit unit, wherein a stylized method of an embodiment of the present invention is applicable to the memory array, and the circuit unit can perform one of the present invention The steps of the stylized method of the embodiment. One embodiment of the present invention provides a stylized method of memory. The memory has a first memory cell' the first memory cell has a first S/D region and is associated with 100116292 Form No. A0101 Page 5 / Total 36 Page 1002027339-0 [0009] 201246218 Zone D, and the second memory cell has a third S/D zone opposite the second s/D zone. When staging the first memory cell, applying a first voltage to the first control gate of the first memory cell; applying a second voltage to the second control gate of the first 5 memory cells to make the channel of the second memory cell The region is in a micro-on state; and a third voltage is applied to the first S/D region, and the second S/D region is floating, applying a fourth voltage to the third s/〇 region, and the third voltage and the fourth voltage The carrier is caused to flow from the third S/D region to the first s/D region to inject the carrier into the charge storage layer of the first memory cell by the source side injection effect [0010] [0012] [0013] According to an embodiment of the invention, the second voltage is a starting voltage close to the second memory cell. According to an embodiment of the invention, the first memory cell and the second memory cell are all N-type memory cells, and the third voltage is higher than the fourth voltage in the positive direction. According to an embodiment of the invention, the charge storage layer is a charge trapping layer, and the carrier is trapped in a position in the charge trapping layer of the first memory cell near the second S/D region. One embodiment of the present invention provides a stylized method of memory. The memory has a first memory cell, the first memory cell has a first S/D region and shares a second S/D region with the first s memory cell, and the second memory cell has a second s/D region The third S/D area. When staging the first memory cell, applying a first voltage to the first control gate of the first memory cell; applying a second voltage to the second control gate of the second memory cell, causing the channel region of the second memory cell to be Switching between the micro-on state and the fully-on state; applying a third voltage to 100116292 Form No. A0101 Page 6/36 pages 1002027339-0 201246218 [0015] [0016]

[0017] [0018] [0019] 第一 S/D區,而第二S/D區為浮置,施加第四電壓到第三 S/D區,且第三電壓與’第四電壓使得載子從第三S/D區流 至第一S/D區,以利用源極側注入效應及通道熱載子效應 將載子注入第一記憶胞的電荷儲存層。 根據本發明之一實施例,上述施加第二電壓到第二 記憶胞的第二控制閘極的方法包括施加具有不同強度的 多個電壓脈波(Voltage Pulse)至第二控制閘極、施加 三角形電壓脈波(Vol tage Pul se)至第二控制閘極或施 加梯形電壓脈波(Volt age Pulse)至第二控制閘。 根據本發明之一實施例,上述電壓脈波的值從小至大逐 漸增加或從大至小逐漸減少。 根據本發明之一實施例,上述施加第二電壓到第二 記憶胞的第二控制閘極的方法包括施加三角形電壓脈波 (Voltage Pulse)至第二控制閘極。 根據本發明之一實施例,上述三角形電壓脈波的值 從小至大逐漸增加或從大至小逐漸減少。 根據本發明之一實施例,上述施加第二電壓到第二 記憶胞的第二控制閘極的方法包括施加梯形電壓脈波 (Voltage Pulse)至第二控制閘極。 根據本發明之一實施例,上述梯形電壓脈波的值從 小至大逐漸增加至最大值並維持一段時間後逐漸減少或 梯形電壓脈波的值從大至小逐漸減少至最小值並維持一 段時間後逐漸增加。 根據本發明之一實施例,上述第一記憶胞及第二記 100116292 表單編號A0101 第7頁/共36頁 1002027339-0 201246218 憶胞皆為N型記憶胞,且第三電壓在正值方向 電壓。 。馬於第四 [0020] 極、 根據本發明之一實施例,上述電荷儲存層是 電荷捕陷層或奈米結晶層其中之一。 辱置閘 [0021] 根據本發明之一實施例,上述電荷館存層是。 陷層,載子被捕陷在第一記憶胞的該電荷捕陷層何捕 第一 S/D區及第二S/D區的位置。 罪近 [0022] 尽發明之一實施例提出一種記憶體陣列中纪隱 程式化方法。在進行程式化操作時,經由第—〜胞的 子元線, 施加第一電壓至第一記憶胞的第一控制閘極;經由第一 子元線,施加第二電壓至與第一記憶胞相鄰的第一^ 胞的第二控制閘極,使第二記憶胞的通道區處於微門: 狀態或完全開啟狀態,其中第一記憶胞具有第_S/D區並 與第二記憶胞共用第二S/D區,且第二記憶胞具有與第-S/D區相對的第三s/D區;經由第一位元線,施加第三電 壓到該第一S/D區;而第二S/D區為浮置;以及經由第二 位元線,施加第四電壓到該第三S/D區,其中第三電壓與 第四電壓使得載子從第三S/D區流至第一S/D區,以利用 源極侧注入效應或通道熱載子效應將載子注入第—記憶 胞的電荷儲存層。 [0023] 根據本發明之一實施例,上述電荷儲存層是電荷捕 陷層,使載子被捕陷在第一記憶胞之電荷捕陷層中靠近 第一S/D區的位置、第一記憶胞之電荷捕陷層中靠近第— S/D區的位置、或第一記憶胞之電荷捕陷層中靠近第_s/ 100116292 表單編號A0101 第8頁/共36頁 1002027339-〇 201246218 D區的位置及靠近第二S/D區的位置。 [0024] 根據本發明之一實施例,上述記憶體陣列中記憶胞 的程式化方法,更包括施加第五電壓到鄰近第一位元線 的第三位元線,以抑制與第一記憶胞共用第一字元線與 第一位位元線的非選定記憶胞被程式化。 [0025] 根據本發明之一實施例,上述記憶體陣列中記憶胞 的程式化方法,更包括施加第六電壓到鄰近第二位元線 的第四位元線,以抑制與第一記憶胞共用第一字元線與 第二位位元線的非選定記憶胞被程式化。 [0026] 根據本發明之一實施例所述的程式化方法,藉由利 用源極侧注入效應程式化記憶胞,因此所施加的偏壓較 低,而且可以提升程式化速度。 [0027] 根據本發明之一實施例所述的程式化方法,藉由組 合使用源極側注入效應及通道熱電子注入效應來程式化 記憶胞,當用於由兩個記憶胞組成的記憶胞組時,可以 達成單一記憶胞組四位元資料儲存。 [0028] 根據本發明之一實施例所述的程式化方法,可以加 快記憶胞的程式化速度、提高元件集積度以及較大的記 憶體裕度。 [0029] 爲達到上述和其他目的,以及理解本發明的特徵和 優點,下文參考附圖詳細說明較佳的實施例。 【實施方式】 [0030] 本發明之一實施例提供一種非揮發性記憶體中記憶 胞的程式化方法,適用由兩個記憶胞串聯連接而構成的 100116292 表單編號A0101 第9頁/共36頁 201246218 記憶胞組。在記憶胞組中,其中一個記憶胞作為欲程式 化的記憶胞,另一個記憶胞則做為開關電晶體。藉由控 制作為開關電晶體的記憶胞的通道區的狀態(微開啟狀態 或70全開啟狀態),以利用源極側注入效應或通道熱載子 效應將載子注入欲程式化的記憶胞的電荷儲存層。 [0031] [0032] [0033] 圖1繪不根據本發明之一實施例的非揮發性記憶體中 記憶胞的程式化方法。在下述說明中,係以N型記憶胞為 例做說明。 請參照圖1,在此非揮發性記憶體中,記憶胞組由記 憶胞10 2與記憶胞10 4串接而成。記憶胞1 〇 2具有電荷儲 存層106a和在基底1〇〇中的n型源極/汲極區(以下稱§/1) 區)108,並與相鄰記憶胞1〇4共用1^型8/1)區11() ^記憶胞 104具有電荷儲存層1〇此和與s/D區110相對的n型s/D區 112。§己憶胞1〇2、104的電荷儲存層i〇6a、i〇6b可為浮 置閘極、電荷捕陷層或奈米結晶層。當電荷儲存層1〇63 、:l〇6b是浮置閘極時,其可以⑽〇複合層與控制閘極 114a、114b相隔。當電荷儲存層106a、1〇6b是電荷捕 陷層時,其材質可包括氮化矽(SiN)、氧化鋁或其他高介 電常數材料。當電荷儲存層l〇6a、l〇6b是奈米結晶層時 ,其是含有矽、鍺或金屬等奈米結晶。 此實施例是以對記憶胞1〇2進行程式化為例,其中記 憶胞10 4作為開關電晶體。在此例示之程式化操作中,閘 極電壓Vga施加到控制閘極114&。閘極電壓vga須足夠大 ,以使熱電子注入電荷儲存層! 〇6a。而且,藉由控制閘 極電壓Vga大小,也可以控制記憶胞102的程式化位準,· 100116292 表單編號A0101 第1〇頁/共36頁 1002027339-0 201246218 Ο [0034] 使έ己憶胞可儲存多位元資料。閘極電壓vgb施加到控制閘 極114b ’以使電荷儲存層1〇6b下的通道區處於微開啟狀 態。在本實施例中’所謂通道區處於微開啟狀態是指通 道Q沒有元全開啟而只有小部分電子可以流通過通道區 。閘極電壓Vgb為接近記憶胞1〇4的起始電壓,較佳為記 憶胞104的起始電壓值±5% ^電壓Vs和在正值方向上高於 Vs的電壓Vd分別施加到S/D區112、108,且S/D區110為 浮置。電壓Vd須足夠大,用於在水平方向上加熱熱電子 ’以使熱電子能夠克服矽與氧化矽之間的能障高度 (Si/Si〇2barrier height)。電壓Vs、Vd使得電子從 S/D區 112流至S/D區 108。 由於記憶胞104的通道區處於微開啟狀態,只有小部 分電子可以流通過記憶胞104的通道區,亦即形成較小的 程式化電流。而且,浮置的S/D區110的電位將會提高, 而在靠近記憶胞104的汲極側(S/D區11 0)引起明顯的加 熱電場(heating field)。如此,即可利用源極側注入 效應’於記憶胞102的源極側(S/D區110)將電子注入記 憶胞102的電荷儲存層l〇6a。在一實例中,閘極電壓 Vga = l〇V、閘極電壓Vgb=Vth±5%、電壓Vs=接地或0V、 電壓Vd = 3-5V。 [0035] 另一方面,當要對記憶胞104進行程式化時,其中記 憶胞102作為開關電晶體。將閘極電壓Vga施加到控制閘 極114b。閘極電壓Vgb施加到控制閘極114a,電壓Vs和 在正值方向上高於Vs的電壓Vd分別施加到S/D區108、 112,且S/D區110為浮置。即可利用源極側注入效應, 100116292 表單編號A0101 第11頁/共36頁 1002027339-0 201246218 於記憶胞1 0 4的源極倒( 的電荷儲存層l〇6b。 區11〇)將 電子注入記憶胞1〇4 [0036] 在一實施例中,當恭— 陷層時,電子被捕陷在^存層1G6a、觸是電荷捕 的位置_以及電㈣=儲存層106a中靠近S/D區no U6b〇 ,存層⑽中靠近S/D區11〇的位置 [0037] 根據本發明之一實称如 因此所施加的偏壓較低 ^ ’由於利用源極侧注入效應 程式化記憶胞102或記愫胞丨以, 〜 ’而且可以提升程式化迷度。 [0038] 之另一 圖2繪示根據本發明 中記憶胞的程式化方法t 實施例的非揮發性記憶體 圃 請參照圖2 ’此實施例是以對記憶胞102進行程式化 為例,其中記憶胞1 〇4作為開關電晶體。在此例示之程式 化操作中’間極電壓Vga施加到控制問則⑷。間極電壓 Vga須足夠大’以使熱電子注人電荷儲存層1Q6a。而且, 藉由控制閘極電壓Vga大小,也可以控制記憶胞1〇2的程 式化位準,使δ己憶胞可儲存多位元資料。閘極電壓Vgb施 加到控制閘極丨14b ’以使電荷儲存層丨〇 6b下的通道區處 於微開啟狀態、完全開啟狀態或在微開啟狀態與完全開 啟狀態之間變換。在本實施例中,所謂通道區處於微開 啟狀態是指通道區沒有完全開啟而只有小部分電子可以 流通過通道區,此時閘極電壓Vgb為接近記憶胞104的起 始電壓,較值爲記憶胞104的起始電壓值±5% ;所謂通道 區處於完全開啟狀態是指大部分電子可以流通過通道區 100116292 表單編號A0101 第12頁/共36 1 1002027339-0 201246218 [0040][0019] [0019] a first S/D region, and the second S/D region is floating, applying a fourth voltage to the third S/D region, and the third voltage and the fourth voltage cause The substream flows from the third S/D region to the first S/D region to inject the carrier into the charge storage layer of the first memory cell using the source side injection effect and the channel hot carrier effect. According to an embodiment of the invention, the method for applying the second voltage to the second control gate of the second memory cell includes applying a plurality of voltage pulses (Voltage Pulses) having different intensities to the second control gate, applying a triangle Voltage pulse (Voltage Pulse) to the second control gate or apply a trapezoidal voltage pulse (Volt age Pulse) to the second control gate. According to an embodiment of the present invention, the value of the voltage pulse wave gradually increases from small to large or gradually decreases from large to small. In accordance with an embodiment of the present invention, the method of applying a second voltage to a second control gate of a second memory cell includes applying a triangular voltage pulse to a second control gate. According to an embodiment of the present invention, the value of the triangular voltage pulse wave gradually increases from small to large or gradually decreases from large to small. In accordance with an embodiment of the present invention, the method of applying a second voltage to a second control gate of a second memory cell includes applying a trapezoidal voltage pulse to a second control gate. According to an embodiment of the invention, the value of the trapezoidal voltage pulse wave is gradually increased from small to large and gradually decreased after a period of time or the value of the trapezoidal voltage pulse wave is gradually reduced from a large to a small value and maintained for a period of time. After gradually increasing. According to an embodiment of the present invention, the first memory cell and the second cell 100116292 form number A0101 page 7/36 page 1002027339-0 201246218 are all N-type memory cells, and the third voltage is in the positive direction voltage. . . According to an embodiment of the invention, the charge storage layer is one of a charge trapping layer or a nanocrystalline layer. Insulting the Gate [0021] According to an embodiment of the present invention, the above-mentioned charge library layer is. In the trap layer, the carrier is trapped in the charge trapping layer of the first memory cell to capture the position of the first S/D region and the second S/D region. Sinning [0022] One embodiment of the invention proposes a method of staging stylization in a memory array. During the stylization operation, applying a first voltage to the first control gate of the first memory cell via the sub-line of the first cell; applying a second voltage to the first memory cell via the first sub-line a second control gate of the adjacent first cell, such that the channel region of the second memory cell is in a micro gate: state or fully on state, wherein the first memory cell has a _S/D region and is associated with the second memory cell Sharing a second S/D zone, and the second memory cell has a third s/D zone opposite to the first-S/D zone; applying a third voltage to the first S/D zone via the first bit line; And the second S/D region is floating; and applying a fourth voltage to the third S/D region via the second bit line, wherein the third voltage and the fourth voltage cause the carrier to pass from the third S/D region Flowing into the first S/D region to inject the carrier into the charge storage layer of the first memory cell using the source side injection effect or the channel hot carrier effect. [0023] According to an embodiment of the invention, the charge storage layer is a charge trapping layer, such that the carrier is trapped in the charge trapping layer of the first memory cell near the first S/D region, first The position of the charge trapping layer of the memory cell near the first S/D region, or the charge trapping layer of the first memory cell is close to the _s/100116292 Form No. A0101 Page 8/36 Page 1002027339-〇201246218 D The location of the zone and the location close to the second S/D zone. [0024] According to an embodiment of the invention, the method for programming a memory cell in the memory array further includes applying a fifth voltage to a third bit line adjacent to the first bit line to suppress the first memory cell. The unselected memory cells sharing the first word line and the first bit line are programmed. [0025] According to an embodiment of the invention, the method for programming a memory cell in the memory array further includes applying a sixth voltage to a fourth bit line adjacent to the second bit line to suppress the first memory cell. The unselected memory cells sharing the first word line and the second bit line are programmed. According to the stylized method of one embodiment of the present invention, the memory cell is programmed by the source side injection effect, so that the applied bias voltage is low and the program speed can be increased. [0027] According to a stylized method according to an embodiment of the present invention, a memory cell is programmed by combining a source side injection effect and a channel hot electron injection effect, when used for a memory cell composed of two memory cells. In the group, a single memory cell four-dimensional data storage can be achieved. [0028] According to the stylized method of an embodiment of the present invention, the stylized speed of the memory cell can be increased, the component accumulation degree, and a larger memory margin can be increased. The above and other objects, and features and advantages of the present invention are described in detail with reference to the accompanying drawings. [Embodiment] [0030] An embodiment of the present invention provides a stylized method for a memory cell in a non-volatile memory, which is applicable to a 100116292 formed by two memory cells connected in series. Form No. A0101 Page 9 of 36 201246218 Memory cell group. In the memory cell group, one memory cell is used as a memory cell to be programmed, and the other memory cell is used as a switching transistor. By injecting the state of the channel region (micro-on state or 70-on state) of the memory cell as the switching transistor, the carrier is injected into the memory cell to be programmed by the source side injection effect or the channel hot carrier effect. Charge storage layer. [0033] FIG. 1 depicts a stylized method of memory cells in a non-volatile memory, not according to an embodiment of the present invention. In the following description, an N-type memory cell is taken as an example for explanation. Referring to Fig. 1, in the non-volatile memory, the memory cell group is formed by connecting the memory cell 102 and the memory cell 104 in series. The memory cell 1 〇 2 has a charge storage layer 106a and an n-type source/drain region (hereinafter referred to as §/1) region 108 in the substrate 1〇〇, and is shared with the adjacent memory cell 1〇4. 8/1) Region 11 () ^ The memory cell 104 has a charge storage layer 1 and an n-type s/D region 112 opposite to the s/D region 110. § The charge storage layers i 〇 6a, i 〇 6b of the cells 1, 2, 104 may be floating gates, charge trap layers or nanocrystalline layers. When the charge storage layers 1 〇 63 , : l 〇 6b are floating gates, they can be separated from the control gates 114a, 114b by the (10) 〇 composite layer. When the charge storage layers 106a, 1b, 6b are charge trapping layers, the material may include tantalum nitride (SiN), aluminum oxide or other high dielectric constant materials. When the charge storage layers 10a, 6b, 6b are nanocrystalline layers, they are nanocrystals containing ruthenium, osmium or a metal. This embodiment is exemplified by the stylization of the memory cell 1 , 2 in which the cell 104 is used as a switching transistor. In the stylized operation of this illustration, the gate voltage Vga is applied to the control gates 114 & The gate voltage vga must be large enough to allow hot electrons to be injected into the charge storage layer! 〇6a. Moreover, by controlling the magnitude of the gate voltage Vga, the programmed level of the memory cell 102 can also be controlled, · 100116292 Form No. A0101 Page 1 of 36 page 1002027339-0 201246218 Ο [0034] Store multi-bit data. The gate voltage vgb is applied to the control gate 114b' such that the channel region under the charge storage layer 1?6b is in a micro-open state. In the present embodiment, the so-called channel region is in the micro-on state, meaning that the channel Q is not fully turned on and only a small portion of electrons can flow through the channel region. The gate voltage Vgb is a starting voltage close to the memory cell 1〇4, preferably a starting voltage value of the memory cell 104±5% ^ voltage Vs and a voltage Vd higher than Vs in the positive direction are respectively applied to the S/ D zones 112, 108, and S/D zone 110 are floating. The voltage Vd must be large enough to heat the hot electrons in the horizontal direction so that the hot electrons can overcome the Si/Si 2 barrier height between the tantalum and the tantalum oxide. The voltages Vs, Vd cause electrons to flow from the S/D region 112 to the S/D region 108. Since the channel region of the memory cell 104 is in a micro-on state, only a small portion of the electrons can flow through the channel region of the memory cell 104, i.e., a smaller stylized current is formed. Moreover, the potential of the floating S/D region 110 will increase, and a significant heating field will be caused near the drain side of the memory cell 104 (S/D region 110). Thus, electrons can be injected into the charge storage layer 16a of the memory cell 102 on the source side (S/D region 110) of the memory cell 102 by the source side injection effect. In one example, the gate voltage Vga = l〇V, the gate voltage Vgb = Vth ± 5%, the voltage Vs = ground or 0V, and the voltage Vd = 3-5V. [0035] On the other hand, when the memory cell 104 is to be programmed, the memory cell 102 is used as a switching transistor. The gate voltage Vga is applied to the control gate 114b. The gate voltage Vgb is applied to the control gate 114a, the voltage Vs and the voltage Vd higher than Vs in the positive direction are applied to the S/D regions 108, 112, respectively, and the S/D region 110 is floating. The source side injection effect can be utilized, 100116292 Form No. A0101 Page 11 / Total 36 Page 1002027339-0 201246218 The source of the memory cell 104 is inverted (the charge storage layer l〇6b. Area 11〇) is injected into the electron Memory cell 1 〇 4 [0036] In an embodiment, when the layer is trapped, electrons are trapped in the memory layer 1G6a, the charge is trapped in the position _, and the electricity (4) = the storage layer 106a is near the S/D. The region no U6b〇, the position in the memory layer (10) close to the S/D region 11〇 [0037] According to one aspect of the present invention, the bias voltage thus applied is lower. 'Because the source side injection effect is used to program the memory cell 102 or remember the cell to ~, and can improve the stylization. [0038] Another FIG. 2 illustrates a non-volatile memory of an embodiment of a memory cell in accordance with the present invention. Referring to FIG. 2, this embodiment is an example of programming a memory cell 102. Among them, the memory cell 1 〇 4 is used as a switching transistor. In the illustrated stylized operation, the inter-electrode voltage Vga is applied to the control (4). The inter-electrode voltage Vga must be large enough to allow hot electrons to be injected into the charge storage layer 1Q6a. Moreover, by controlling the magnitude of the gate voltage Vga, it is also possible to control the programming level of the memory cell 1〇2 so that the delta memory can store multi-bit data. The gate voltage Vgb is applied to the control gate 丨 14b ′ such that the channel region under the charge storage layer 丨〇 6b is in a micro-on state, a fully-on state, or a transition between a micro-on state and a fully-on state. In this embodiment, the so-called channel region in the micro-on state means that the channel region is not fully turned on and only a small portion of electrons can flow through the channel region. At this time, the gate voltage Vgb is close to the initial voltage of the memory cell 104, and the value is The initial voltage value of the memory cell 104 is ± 5%; the so-called channel region is in the fully open state, meaning that most of the electrons can flow through the channel region 100116292. Form No. A0101 Page 12 / Total 36 1 1002027339-0 201246218 [0040]

[0041] Ο [0042] ’此時閘極電壓Vgb為遠大於記憶胞104的起始電壓。電 壓Vs和在正值方向上高於Vs的電壓Vd分別施加到s/d區 112、108,且S/D區110為浮置。電壓Vs、Vd使得電子 從S/D區Π2流至S/D區108。電壓Vd須足夠大,以使加熱 的熱電子能夠克服矽與氧化矽之間的能障高度 (Sl/Si02barrier height)。 當記憶胞104的通道區處於微開啟狀態,只有小部分 電子可以流通過記憶胞1〇4的通道區,亦即形成較小的程 式化電流。而且’由於浮置的S/d區11〇的電位將會提高 ’而在靠近記憶胞104的汲極侧(S/D區110)引起明顯的 加熱電場(heating field)。如此,即可利用源極側注 入效應’於記憶胞1〇2的源極侧(S/D區11〇)將電子注入 記憶胞102的電荷儲存層106a ^ 當記憶胞104的通道區處於完全開啟狀態,大部分電 子可以流通過記憶胞1〇4的通道區,亦即形成較大的程式 化電流。而且’由於浮置的S/D區no的電位將會拉低, 而在靠近記憶胞102的汲極側(s/D區108)引起明顯的加 熱電場(heating field)。如此,即可利用通道熱電子 注入效應,於記憶胞1〇2的汲極侧(s/D區108)將電子注 入記憶胞102的電荷儲存層i〇6a。 當記憶胞1 0 4的通道區在微開啟狀態與完全開啟狀態 之間變換,即可利用通道熱電子注入效應及源極側注入 效應,於記憶胞102的汲極側(S/D區108)及源極側(S/D 區110)將電子注入記憶胞102的電荷儲存層i〇6a。 100116292 表單编號A0101 第13頁/共36頁 1002027339-0 201246218 [0043] 另一方面,當要對記憶胞104進行程式化時,其中纪 憶胞10 2作為開關電晶體。將閘極電壓v g a施加到控制間 極114b。閘極電壓Vgb施加到控制閘極114a,以使電荷 儲存層106a下的通道區處於微開啟狀態、完全開啟狀態 或在微開啟狀態與完全開啟狀態之間變換。電壓Vs和在 正值方向上高於Vs的電壓Vd分別施加到S/D區108、 ’且S / D區11 〇為浮置。即可利用源極侧注入效應、通道 熱電子注入效應或源極側注入效應及通道熱電子注入效 應兩者,於記憶胞104的源極側(S/D區110)、汲極側 (S/D區11 2 )或源極側(S/D區11 〇 )與汲極側(s/D區11 2) 兩者將電子注入記憶胞104的電荷儲存層1〇此。 [_] 在一實施例中,當電荷儲存層106a、106b是電荷捕 陷層時,利用源極侧注入效應進行程式化,使電子被捕 陷在電荷儲存層l〇6a中靠近S/D區110的位置2以及電荷 儲存層106b中靠近S/D區110的位置3 ;利用通道熱電子 注入效應進行裎式化,使電子被捕陷在電荷儲存層l〇6a 中靠近S/D區1 〇8的位置1以及電荷儲存層丨〇6b中靠近S/D 區110的位置4。 當採用使電荷儲存層l〇6b下的通道區在微開啟狀態 與完全開啟狀態之間變換時,則可以在一個程式化步驟 中,利用源極側注入效應及通道熱電子注入效應,使電 子被捕陷在電荷儲存層1〇63中靠近3/1)區11()的位置2以 及電荷儲存層l〇6a中靠近S/D區108的位置1。當採用使 電荷儲存層106a下的通道區在微開啟狀態與完全開啟狀 態之間變換時,則可以在一個程式化步驟中,利用源極 1002027339-0 100116292 表單編號A0101 第U頁/共36頁 201246218 側注入效應及通道熱電子注入效應,使電子被捕陷在電 荷儲存層106b中靠近S/D區110的位置3以及電荷儲存層 106b中靠近S/D區11 2的位置4。藉由此種方式來達成單 一記憶胞組四位元資料儲存。 [0046] 根據本發明之一實施例的非揮發性記憶體中記憶胞 的程式化方法,將電子注入位置1、2、3、4時,程式化 偏壓設定如表1所示。 [0047]表 1 控制閘極 控制間極 S/D區 S/D區 114a 114b 108 112 位置1 Vga 高Vgb Vd Vs(接地) 位置2 Vga 低Vgb Vd Vs(接地) 位置3 低Vgb Vga V s (接地) Vd 位置4 高Vgb Vga V s (接地) Vd[0041] At this time, the gate voltage Vgb is much larger than the initial voltage of the memory cell 104. The voltage Vs and the voltage Vd higher than Vs in the positive direction are applied to the s/d regions 112, 108, respectively, and the S/D region 110 is floating. The voltages Vs, Vd cause electrons to flow from the S/D zone Π2 to the S/D zone 108. The voltage Vd must be large enough so that the heated hot electrons can overcome the barrier height (Sl/Si02 barrier height) between the tantalum and the tantalum oxide. When the channel region of the memory cell 104 is in a micro-on state, only a small portion of electrons can flow through the channel region of the memory cell 1〇4, that is, a smaller process current is formed. Moreover, the apparent heating field is caused by the potential of the floating S/d region 11 将会 being increased toward the drain side (S/D region 110) close to the memory cell 104. Thus, the source side injection effect can be used to inject electrons into the charge storage layer 106a of the memory cell 102 at the source side (S/D region 11A) of the memory cell 1〇2. When the channel region of the memory cell 104 is completely In the on state, most of the electrons can flow through the channel region of the memory cell 1, which forms a large stylized current. Moreover, since the potential of the floating S/D region no will be pulled low, a significant heating field is caused near the drain side (s/D region 108) of the memory cell 102. Thus, electrons can be injected into the charge storage layer i 〇 6a of the memory cell 102 on the drain side (s/D region 108) of the memory cell 1 〇 2 by the channel hot electron injection effect. When the channel region of the memory cell 104 is changed between the micro-on state and the fully-on state, the channel hot electron injection effect and the source side injection effect can be utilized on the drain side of the memory cell 102 (S/D region 108). And the source side (S/D area 110) injects electrons into the charge storage layer i〇6a of the memory cell 102. 100116292 Form No. A0101 Page 13 of 36 1002027339-0 201246218 [0043] On the other hand, when the memory cell 104 is to be programmed, the memory cell 10 is used as a switching transistor. A gate voltage v g a is applied to the control terminal 114b. The gate voltage Vgb is applied to the control gate 114a such that the channel region under the charge storage layer 106a is in a micro-on state, a fully-on state, or a transition between a micro-on state and a fully-on state. The voltage Vs and the voltage Vd higher than Vs in the positive direction are applied to the S/D region 108, respectively, and the S/D region 11 is floated. The source side injection effect, the channel hot electron injection effect or the source side injection effect and the channel hot electron injection effect can be utilized on the source side (S/D area 110) and the drain side (S) of the memory cell 104. The /D region 11 2 ) or the source side (S/D region 11 〇) and the drain side (s/D region 11 2) both inject electrons into the charge storage layer 1 of the memory cell 104. [_] In one embodiment, when the charge storage layers 106a, 106b are charge trapping layers, the source side injection effect is used to program the electrons to be trapped in the charge storage layer 16a near the S/D. Position 2 of the region 110 and the position 3 of the charge storage layer 106b adjacent to the S/D region 110; the channel is hot-injected to cause the electrons to be trapped in the charge storage layer 16a near the S/D region. Position 1 of 〇8 and position 4 of the charge storage layer 丨〇6b near the S/D area 110. When the channel region under the charge storage layer 10b is changed between the micro-on state and the fully-on state, the source-side injection effect and the channel hot electron injection effect can be used in a stylization step to make the electron It is trapped in the charge storage layer 1〇63 in the position 2 near the 3/1) region 11() and in the charge storage layer 16a near the position 1 of the S/D region 108. When the channel region under the charge storage layer 106a is changed between the micro-on state and the fully-on state, the source 1002027339-0100116292 may be utilized in a stylization step. Form number A0101 U-page/total 36 pages The 201236218 side implant effect and the channel hot electron injection effect cause electrons to be trapped in the charge storage layer 106b at a position 3 near the S/D region 110 and a position 4 in the charge storage layer 106b near the S/D region 112. In this way, a single memory cell four-bit data storage is achieved. [0046] According to an embodiment of the present invention, a method of staging a memory cell in a non-volatile memory, when the electrons are injected into the positions 1, 2, 3, and 4, the stylized bias is set as shown in Table 1. [0047] Table 1 Control Gate Control Interpole S/D Zone S/D Zone 114a 114b 108 112 Position 1 Vga High Vgb Vd Vs (Ground) Position 2 Vga Low Vgb Vd Vs (Ground) Position 3 Low Vgb Vga V s (ground) Vd position 4 high Vgb Vga V s (ground) Vd

根據本發明之一實施例的非揮發性記憶體中記憶胞 的讀取方法,在讀取記憶胞的位置1、2、3、4時的偏壓 設定如表2所示。 [0049]表 2 控制閘極 114a 控制閘極 114b S/D區 108 S/D區 112 位置1 Vr >>Vth 接地 Vdr 位置2 Vr >>Vth Vdr 接地 位置3 >>Vth Vr 接地 Vdr 位置4 >>Vth Vr Vdr 接地 表單編號A0101 第15頁/共36頁 1002027339-0 100116292 201246218 根據本發明之一實施例,藉由組合使用源極側注入 效應及通道熱電子注入效應來程式化具有電荷捕陷層的 記憶胞,當用於由兩個記憶胞組成的記憶胞組時,可以 達成單一記憶胞組四位元資料儲存。而且,根據本發明 之一實施例的方法可以加快記憶胞的程式化速度以及較 大的記憶體裕度(memory window)。 [0051] [0052] [0053] 圖3為繪示根據本發明之一實施例的作為開關電晶體 之記憶胞的起始電壓分佈的示意圖。藉由圖3以說明如何 取得閘極電壓Vgb的電壓值範圍。 在圖3中,作為開關電晶體之記憶胞的原始起始電壓 分佈曲線200。當使用源極侧注入效應進行程式化時,可 得到低邊界起始電壓分佈曲線202與高邊界起始電壓分佈 曲線204。根據低邊界起始電壓分佈曲線202取得對應的 最小閘極電壓Vgb的電壓值XI ;根據高邊界起始電壓分佈 曲線204取得對應的最大閘極電壓Vgb的電壓值X2。當利 用通道熱電子注入效應進行程式化時,可得到低邊界起 始電壓分佈曲線206以及高邊界起始電壓分佈曲線208。 根據低邊界起始電壓分佈曲線206取得對應的最小閘極電 壓Vgb的電壓值X3 ;根據高邊界起始電壓分佈曲線208取 得對應的最小閘極電壓Vgb的電壓值X4。 為了使作為開關電晶體之記憶胞在微開啟狀態,較 佳是將閘極電壓Vgb的電壓值範圍設在電壓值XI至電壓值 X2之間(表1中所示的低Vgb)。當然,閘極電壓Vgb的電 壓值的最小值可以略小於電壓值XI ;閘極電壓Vgb的電壓 值的最大值可以略大於電壓值X2,且小於電壓值X3。藉 100116292 表單編號A0101 第16頁/共36頁 1002027339-0 201246218 [0054] [0055] Ο [0056]The reading method of the memory cell in the non-volatile memory according to an embodiment of the present invention is set as shown in Table 2 when the positions 1, 2, 3, and 4 of the memory cell are read. [0049] Table 2 Control Gate 114a Control Gate 114b S/D Zone 108 S/D Zone 112 Location 1 Vr >> Vth Ground Vdr Position 2 Vr >>Vth Vdr Ground Position 3 >>Vth Vr Ground Vdr Position 4 > Vth Vr Vdr Ground Form No. A0101 Page 15 / Total 36 Page 1002027339-0 100116292 201246218 According to one embodiment of the present invention, source side injection effect and channel hot electron injection are used in combination The effect is to program a memory cell with a charge trapping layer. When used in a memory cell group composed of two memory cells, a single memory cell group of four-dimensional data storage can be achieved. Moreover, the method according to an embodiment of the present invention can speed up the stylization speed of the memory cell and a larger memory window. 3 is a schematic diagram showing an initial voltage distribution of a memory cell as a switching transistor in accordance with an embodiment of the present invention. [0053] FIG. Fig. 3 shows how the voltage value range of the gate voltage Vgb is obtained. In Fig. 3, the original starting voltage distribution curve 200 of the memory cell as a switching transistor. When programmed using the source side injection effect, a low boundary start voltage profile 202 and a high boundary start voltage profile 204 are obtained. The voltage value XI of the corresponding minimum gate voltage Vgb is obtained according to the low boundary starting voltage distribution curve 202; the voltage value X2 of the corresponding maximum gate voltage Vgb is obtained according to the high boundary starting voltage distribution curve 204. When programmed by the channel hot electron injection effect, a low boundary start voltage distribution curve 206 and a high boundary start voltage distribution curve 208 are obtained. The voltage value X3 of the corresponding minimum gate voltage Vgb is obtained according to the low boundary starting voltage distribution curve 206; the voltage value X4 of the corresponding minimum gate voltage Vgb is obtained according to the high boundary starting voltage distribution curve 208. In order to make the memory cell as the switching transistor in the micro-on state, it is preferable to set the voltage value range of the gate voltage Vgb between the voltage value XI and the voltage value X2 (low Vgb shown in Table 1). Of course, the minimum value of the voltage value of the gate voltage Vgb may be slightly smaller than the voltage value XI; the maximum value of the voltage value of the gate voltage Vgb may be slightly larger than the voltage value X2 and smaller than the voltage value X3. Borrow 100116292 Form No. A0101 Page 16 of 36 1002027339-0 201246218 [0055] [0055] [0056]

[0057] [0058] 100116292 由使閘極電壓V§b的電壓範圍涵蓋了電壓值XI與電壓值Χ2 ’且不超過電壓值Χ3,可以限制只利用源極側注入效應 來程式化記憶體。 為了使作為開關電晶體之記憶胞在完全開啟狀態, 較佳是將閘極電壓Vgb的電壓值設為大於電壓值χ3(表1中 所示的高Vgb)。 為了使作為開關電晶體之記憶胞在微開啟狀態與完 全開啟狀態之間變換’較佳是操作區域21〇設在電壓值χι 至電壓值X4之間,亦即將閘極電壓Vgb的電壓值範圍設在 XI至X4之間。當然’閘極電壓vgb的電壓值的最小值可以 略小於電壓值XI ;閘極電壓Vgb的電壓值的最大值可以略 大於電壓值X4。藉由使閘極電sVgb的電壓範圍涵蓋了電 壓值XI與電壓值X4,可以結合源極侧注入效應以及通道 熱電子注入效應來程式化記憶體。 接著,說明將閘極電壓Vgb施加到控制閘極丨丨“、 114b,以使電荷儲存層l〇6a、1〇6b下的通道區在微開啟 狀態與完全開啟狀態之間變換的方法。 圖4A係繪示根據本發明之一實施例之記憶胞的程式 化操作時施加電壓脈波的時序圖。圖牝係繪示根據本發 明之一實施例之記憶胞的程式化操作時施加電壓脈波次 數與電壓的關係圖H錢電子被捕陷在電荷儲存 層106a中靠近S/D區110的位置2以及電荷儲存層1〇6&中 靠近S/D區108的位置1為例作說明。 參考圖2、圖4A及圖4B,閘極電壓Vga施加到控制閘 表單編號A0101 第17頁/共36頁 1002027339-0 201246218 極114a。電壓Vs和在正值方向上高於Vs的電壓Vd分別施 加到S/D區112、108,且S/D區110為浮置。閘極電壓 Vgb施加到控制閘極114b,以使電荷儲存層106b下的通 道區在微開啟狀態與完全開啟狀態之間變換。其中施加 閘極電壓Vgb施加到控制閘極114b的方法包括施加具有不 同強度的多個電壓脈波(Voltage Pulse)至控制閘極 114b。 [0059] [0060] [0061] [0062] 如圖4A、圖4B所示,將閘極電壓Vgb以方形的電壓脈 波形式施加到控制閘極114b。在進行程式化操作時,每 一電壓脈波的強度會以一常數增加,例如是以0.5V為常 數。 在只利用源極側注入效應進行程式化的情況下,當 第一次輸入的閘極電壓Vgb的值為VI,則電壓值VI例如是 略小於電壓值XI ;最後一次輸入的閘極電壓Vgb的值為V2 ,則電壓值V2例如是大於電壓值X2且小於電壓值X3。 在結合源極側注入效應以及通道熱電子注入效應進 行程式化的情況下,當第一次輸入的閘極電壓Vgb的值為 VI,則電壓值VI例如是小於電壓值XI ;最後一次輸入的 閘極電壓Vgb的值為V2,則電壓值V2例如是大於電壓值 X4 ° 當然,不同強度的多個電壓脈波(Voltage Pulse) 可以根據任何組合之不同的變化強度施加。 圖5A、圖5B係繪示根據本發明之一實施例之記憶胞 的程式化操作時施加電壓脈波的時序圖。 100116292 表單編號A0101 第18頁/共36頁 1002027339-0 [0063] 201246218 [0064] [0065] 〇 [0066] [0067] [0068][0058] 100116292 By causing the voltage range of the gate voltage V§b to cover the voltage value XI and the voltage value Χ2' and not exceeding the voltage value Χ3, it is possible to limit the use of the source side injection effect to program the memory. In order to make the memory cell as the switching transistor fully open, it is preferable to set the voltage value of the gate voltage Vgb to be larger than the voltage value χ3 (high Vgb shown in Table 1). In order to change the memory cell as the switching transistor between the micro-on state and the fully-on state, it is preferable that the operation region 21 is disposed between the voltage value χι and the voltage value X4, that is, the voltage value range of the gate voltage Vgb. Set between XI and X4. Of course, the minimum value of the voltage value of the gate voltage vgb may be slightly smaller than the voltage value XI; the maximum value of the voltage value of the gate voltage Vgb may be slightly larger than the voltage value X4. By making the voltage range of the gate sVgb cover the voltage value XI and the voltage value X4, the memory can be programmed in combination with the source side injection effect and the channel hot electron injection effect. Next, a method of applying the gate voltage Vgb to the control gate 丨丨 ", 114b to change the channel region under the charge storage layers 10a, 6b, 6b between the micro-on state and the fully-on state will be described. 4A is a timing diagram showing a voltage pulse applied during a stylized operation of a memory cell according to an embodiment of the present invention. The figure shows a voltage pulse applied during a programmatic operation of a memory cell according to an embodiment of the present invention. The relationship between the wave number and the voltage is shown in the position 2 of the charge storage layer 106a near the S/D region 110 and the position 1 near the S/D region 108 in the charge storage layer 1〇6& Referring to FIG. 2, FIG. 4A and FIG. 4B, the gate voltage Vga is applied to the control gate form No. A0101, page 17 / page 36, 1002027339-0 201246218 pole 114a. Voltage Vs and voltage Vd higher than Vs in the positive direction Applied to the S/D regions 112, 108, respectively, and the S/D region 110 is floating. The gate voltage Vgb is applied to the control gate 114b such that the channel region under the charge storage layer 106b is in a micro-on state and a fully-on state. The transition between the application of the gate voltage Vgb applied to the control gate The method of 114b includes applying a plurality of voltage pulses having different intensities to the control gate 114b. [0062] [0062] As shown in FIGS. 4A and 4B, the gate voltage Vgb is applied. It is applied to the control gate 114b in the form of a square voltage pulse. During the stylization operation, the intensity of each voltage pulse is increased by a constant, for example, by 0.5 V. The source side injection effect is used only. In the case of stylization, when the value of the gate voltage Vgb input for the first time is VI, the voltage value VI is, for example, slightly smaller than the voltage value XI; the value of the last input gate voltage Vgb is V2, and the voltage value is V2 is, for example, greater than the voltage value X2 and smaller than the voltage value X3. In the case of combining the source side injection effect and the channel hot electron injection effect, when the value of the first input gate voltage Vgb is VI, the voltage The value VI is, for example, smaller than the voltage value XI; the value of the last input gate voltage Vgb is V2, and the voltage value V2 is, for example, greater than the voltage value X4 °. Of course, a plurality of voltage pulses of different intensities can be used according to any Combination difference Figure 5A, Figure 5B is a timing diagram showing the application of a voltage pulse during a stylized operation of a memory cell in accordance with an embodiment of the present invention. 100116292 Form No. A0101 Page 18 of 36 1002027339-0 [0063] [0068] [0068] [0068] [0068]

[0069] 如圖5Α、圖5Β所示,將閘極電壓Vgb以三角形電壓脈 波形式施加到控制閘極114b。舉例來說,在進行程式化 操作時,三角形電壓脈波的值從電壓值VI逐漸增加至電 壓值V2或從電壓值V2逐漸減少至電壓值VI。其中,三角 形電壓脈波的斜率越小越好。 在只利用源極側注入效應進行程式化的情況下,電 壓值V1例如是小於電壓值X1,電壓值V 2例如是大於電Μ 值Χ2且小於電壓值Χ3。 在結合源極側注入效應以及通道熱電子注入效應進 行程式化的情況下,電壓值VI例如是小於電壓值XI,電 壓值V2例如是大於電壓值Χ4。 圖6Α、圖6Β係繪示根據本發明之一實施例之記憶胞 的程式化操作時施加電壓脈波的時序圖。 如圖6Α、圖6Β所示,將閘極電壓Vgb以梯形電壓脈波 形式施加到控制閘極114b。在進行程式化操作時,梯形 電壓脈波的值從電壓值VI逐漸增加至電壓值V2並維持一 段時間後逐漸減少至電壓值VI,或梯形電壓脈波的值從 電壓值V2逐漸減少至電壓值VI並維持一段時間後逐漸增 加至電壓值V2。 在只利用源極侧注入效應進行程式化的情況下,電 壓值VI例如是小於電壓值XI,電壓值V2例如是大於電壓 值X2且小於電壓值X3。 在結合源極侧注入效應以及通道熱電子注入效應進 行程式化的情況下,電壓值VI例如是小於電壓值XI,電 100116292 表單編號A0101 第19頁/共36頁 1002027339-0 [0070] 201246218 壓值V2例如是大於電壓值χ4。 [0071] 本發明之一實施例中舉了方形電壓脈波、三角形電 壓脈波以及梯形電壓脈波為例子作說明。當然只要將閘 極電壓Vgb設定成包含操作區域21〇,也可以採用其他型 式的電壓脈波。 圖7鳍示根據本發明之一實施例之一種非揮發性記憶 體陣列的電路圖。本發明之一實施例之程式化方法適用 於此非揮發性記憶體陣列。 0073 凊參照圖7,記憶體陣列包括排成行/列陣列的多個 記憶胞Mil〜M54、多條字元線WL1〜wu及多條位元線 BL1〜BL6 。 [0074] 各記憶胞Mil〜M54分別具有控制閘極。同一列中記 憶胞Ml 1〜M54以S/D區串接在一起構成記憶胞列〜 MR5,且以每相鄰兩記憶胞為記憶胞組cl〜cl〇。在記憶 胞組C1〜C10中兩記憶胞之間的s/D區為浮置。舉例來說 ,記憶胞Mil〜Ml4以S/D區串接在一起構成記憶胞列mr 1 ,s己憶胞M21〜M24以S/D區串接在一起構成記憶胞列MR2 ;依此類推’記憶胞M51〜M54以S/D區串接在一起構成 記憶胞列MR5。記憶胞Mil及記憶胞M12構成一記憶胞組 C1 ;記憶胞M13及記憶胞M14構成一記憶胞組C2 ;依此類 推’記憶胞M53及記憶胞M54構成一記憶胞組C10。 [0075] 多條字元線WL1〜WL4在行方向上平行排列。每一字 元線WL1〜WL4與一行記憶胞的控制閘極耦接。舉例來說 ’字元線WL1與一行記憶胞Mil〜M51的控制閘極柄接; 1002027339-0 100116292 表單編號A0101 第20頁/共36頁 201246218 字元線WL2與一行記憶胞M12〜M52的控制閘極耦接;依 此類推’字元線WL4與一行記憶胞M14〜M54的控制閘極 耦接。 [0076] 多條位元線BL1〜BL4在列方向上平行排列。在同一 列中,串接記憶胞組C1〜C10的S/D區交替地耦接至二位 元線。舉例來說,串接記憶胞組C1〜C2的S/D區交替地耦 接至位元線BL1及BL2 ;串接記憶胞組C3〜C4的S/D區交 替地耦接至位元線BL2及BL3 ;依此類推,串接記憶胞組 C9〜C10的S/D區交替地耦接至位元線BL5及BL6。而且, 相鄰的兩記憶胞列MR1〜MR5會共用一條位元線。舉例來 說’記憶胞列MR2與記憶胞列MR1共用位元線BL2,且記 憶胞列MR2與記憶胞列MR3共用位元線BL3 ;依此類推, 記憶胞列MR4與記憶胞列MR3共用位元線BL4,且記憶胞 列MR4與記憶胞列MR5共用位元線BL5。 [0077] 當程式化記憶胞M31時,在與其控制閘極耦接的字元 線WL1上施加閘極電壓Vga,且與其屬於同一個記憶胞組 C5的相鄰記憶胞M32的控制閘極所輕接的字元線wl2上施 加閘極電壓Vgb,以使記憶胞M32的通道區在微開啟狀態 與完全開啟狀態之間變換,並分別從耦接的位元線BL3及 位元線BL4施加電壓Vd及電壓Vs ’記憶胞M31與記憶胞 M32共用的S/D區為浮置’其中位元線此3耦接被選記憶 胞M31的S/D區、位元線BL4耦接相鄰記憶胞M32的S/D區 。如此可以利用源極側注入效應及通道熱電子注入效應 ,使電子注入電荷儲存層。 [0078] 100116292 如圖7所示,當各記憶胞的電荷儲存層是電荷捕陷層 表單編號A0101 第21頁/共36頁 1002027339-0 201246218 時,可儲存二位元(位元A及位元B )在一個記憶胞中。藉 由操控閘極電壓Vgb,以使記憶胞M32的通道區處於微開 啟狀態、完全開啟狀態或在微開啟狀態與完全開啟狀態 之間變換,而程式化記憶胞M31的位元A、位元B或位元a 及位元B兩者。 [0079] [0080] [0081] [0082] 另一方面’為了抑制與記憶胞組C5共用字元線wli、 WL2與位元線BL3的記憶胞組C3中的非選定記憶胞M21被 程式化,可施加電壓Va到鄰近位元線BL3的位元線BL2。 電壓Va例如是等於〇. 5倍至1倍的電壓vd。 在一實施例中,若電壓Va值夠大,使位元線BL2與位 元線BL1之間形成大的電壓差,而可能使記憶胞Mu被程 式化。在此情況下,藉由在位於位元線BL3—側的位元線 BL2、位元線BL1都施加電壓va,可以抑制非選定記憶胞 M21、記憶胞μ 11被程式化。 在另一實施例中,若電壓Va約等於〇· 5倍電壓Vd,則 位元線BL3與位元線BL2之間的電壓差及位元線BL2與位 元線BL1之間的電壓差都很小,因此可以抑制非選定記憶 胞M21、記憶胞Mil被程式化。 此外,為了抑制與記憶胞組共用字元線wli、WL2 與位π線BL4的記憶胞組C7中的非選定記憶胞M4丨被程式 化,可施加電壓Vb到鄰近位元線Bl4的位元線BL5。電壓 Vb例如是等於電壓。(例如,〇v或接地),因此可以抑制 非選定s己憶胞M41被程式化。而且,藉由使位元線BL4一 側的位元線BL5、位元線BL6都施加電壓Vb(接地),可以 100116292 表單編號A0101 第22頁/共36頁 1002027339-0 201246218 抑制非選定記憶胞M41、記憶胞M51被程式化。 [0083] 根據本發明之一實施例之記憶體陣列中記憶胞的程 式化方法,藉由具表3所示偏壓設定來例示。 [0084]表 3 位元A 位元B 位元A及B WL1 Vga Vga Vga WL2 Vgb〇X3) Vgb Vgb (>X2且<X3) (X1-X4) BL3 Vd Vd Vd BL4 Vs Vs Vs (ov或接地) (0V或接地) (0V或接地) 未選取之BL1 Va Va Va 〜BL2 (0. 5~1倍的 (0. 5~1倍的 (0· 5~1倍的 Vd) Vd) Vd) 未選取之BL5 Vb Vb Vb 〜BL6 (0V或接地) (0V或接地) (0V或接地) 未選取之WL3 (0V或接地) (0V或接地) (0V或接地) 〜WL4As shown in FIGS. 5A and 5B, the gate voltage Vgb is applied to the control gate 114b in the form of a triangular voltage pulse. For example, during the stylization operation, the value of the triangular voltage pulse gradually increases from the voltage value VI to the voltage value V2 or gradually decreases from the voltage value V2 to the voltage value VI. Among them, the smaller the slope of the triangular voltage pulse wave, the better. In the case where the source side injection effect is used for stylization, the voltage value V1 is, for example, smaller than the voltage value X1, and the voltage value V 2 is, for example, greater than the electric value Χ2 and smaller than the voltage value Χ3. In the case of combining the source side injection effect and the channel hot electron injection effect into the stroke, the voltage value VI is, for example, smaller than the voltage value XI, and the voltage value V2 is, for example, greater than the voltage value Χ4. 6A and FIG. 6 are timing charts showing voltage pulse waves applied during a programmatic operation of a memory cell according to an embodiment of the present invention. As shown in Fig. 6A and Fig. 6B, the gate voltage Vgb is applied to the control gate 114b as a trapezoidal voltage pulse wave. During the stylization operation, the value of the trapezoidal voltage pulse wave gradually increases from the voltage value VI to the voltage value V2 and gradually decreases to the voltage value VI after a period of time, or the value of the trapezoidal voltage pulse wave gradually decreases from the voltage value V2 to the voltage. The value VI is gradually increased to the voltage value V2 after a period of time. In the case where the source side injection effect is used for stylization, the voltage value VI is, for example, smaller than the voltage value XI, and the voltage value V2 is, for example, greater than the voltage value X2 and smaller than the voltage value X3. In the case of combining the source side injection effect and the channel hot electron injection effect to be programmed, the voltage value VI is, for example, less than the voltage value XI, electricity 100116292 Form No. A0101 Page 19 / Total 36 Page 1002027339-0 [0070] 201246218 Pressure The value V2 is, for example, greater than the voltage value χ4. [0071] In one embodiment of the present invention, a square voltage pulse wave, a triangular voltage pulse wave, and a trapezoidal voltage pulse wave are described as an example. Of course, as long as the gate voltage Vgb is set to include the operation region 21A, other types of voltage pulse waves can be used. Figure 7 shows a circuit diagram of a non-volatile memory array in accordance with an embodiment of the present invention. The stylized method of one embodiment of the present invention is applicable to this non-volatile memory array. Referring to Fig. 7, the memory array includes a plurality of memory cells Mil to M54 arranged in a row/column array, a plurality of word lines WL1 to wu, and a plurality of bit lines BL1 to BL6. [0074] Each of the memory cells Mil to M54 has a control gate. In the same column, the memory cells M1 1 to M54 are connected in series by the S/D region to form a memory cell array ~ MR5, and each adjacent two memory cells is a memory cell group cl~cl〇. The s/D regions between the two memory cells in the memory cell groups C1 to C10 are floating. For example, the memory cells Mil~Ml4 are connected in series by the S/D region to form a memory cell array mr1, and the memory cells M21~M24 are connected in series by the S/D region to form a memory cell array MR2; and so on. The memory cells M51 to M54 are connected in series by the S/D region to form a memory cell array MR5. The memory cell Mil and the memory cell M12 constitute a memory cell group C1; the memory cell M13 and the memory cell M14 constitute a memory cell group C2; and the like, the memory cell M53 and the memory cell M54 constitute a memory cell group C10. [0075] The plurality of word lines WL1 to WL4 are arranged in parallel in the row direction. Each of the word lines WL1 WL WL4 is coupled to a control gate of a row of memory cells. For example, the word line WL1 is connected to the control gate of a row of memory cells Mil~M51; 1002027339-0 100116292 Form No. A0101 Page 20/36 pages 201246218 Character line WL2 and control of one line of memory cells M12~M52 The gate is coupled; and so on, the word line WL4 is coupled to the control gates of the row of memory cells M14 to M54. [0076] The plurality of bit lines BL1 to BL4 are arranged in parallel in the column direction. In the same column, the S/D regions of the series memory cells C1 to C10 are alternately coupled to the two bit lines. For example, the S/D regions of the series memory cells C1 C C2 are alternately coupled to the bit lines BL1 and BL2; the S/D regions of the series memory cells C3 C C4 are alternately coupled to the bit lines. BL2 and BL3; and so on, the S/D regions of the serial memory cells C9 to C10 are alternately coupled to the bit lines BL5 and BL6. Moreover, the adjacent two memory cell columns MR1 to MR5 share one bit line. For example, the memory cell array MR2 shares the bit line BL2 with the memory cell column MR1, and the memory cell column MR2 shares the bit line BL3 with the memory cell column MR3; and so on, the memory cell column MR4 shares the bit with the memory cell column MR3. The element line BL4, and the memory cell array MR4 and the memory cell column MR5 share the bit line BL5. [0077] When the memory cell M31 is programmed, a gate voltage Vga is applied to the word line WL1 coupled to the control gate thereof, and a control gate of the adjacent memory cell M32 belonging to the same memory cell group C5 is applied. The gate voltage Vgb is applied to the lighted word line wl2 to change the channel region of the memory cell M32 between the micro-on state and the fully-on state, and is respectively applied from the coupled bit line BL3 and the bit line BL4. The voltage Vd and the voltage Vs 'the memory cell M31 and the memory cell M32 share the S/D area are floating'. The bit line 3 is coupled to the S/D area of the selected memory cell M31, and the bit line BL4 is coupled adjacently. The S/D region of the memory cell M32. Thus, the source side injection effect and the channel hot electron injection effect can be used to inject electrons into the charge storage layer. 100116292 As shown in FIG. 7, when the charge storage layer of each memory cell is a charge trap layer form number A0101 page 21/36 pages 1002027339-0 201246218, two bits (bit A and bit) can be stored. Element B) is in a memory cell. By manipulating the gate voltage Vgb, the channel region of the memory cell M32 is in a micro-on state, a fully-on state, or a transition between a micro-on state and a fully-on state, and the bit A and the bit of the memory cell M31 are programmed. B or both bit a and bit B. [0082] On the other hand, in order to suppress the unselected memory cells M21 in the memory cell group C3 in which the word lines wli, WL2, and the bit line BL3 are shared with the memory cell group C5, it is stylized. The voltage Va can be applied to the bit line BL2 adjacent to the bit line BL3. The voltage Va is, for example, a voltage vd equal to 0.5 times to 1 time. In one embodiment, if the value of the voltage Va is sufficiently large, a large voltage difference is formed between the bit line BL2 and the bit line BL1, and the memory cell Mu may be programmed. In this case, by applying a voltage va to both the bit line BL2 and the bit line BL1 on the side of the bit line BL3, it is possible to suppress the unselected memory cell M21 and the memory cell 11 from being programmed. In another embodiment, if the voltage Va is approximately equal to 〇·5 times the voltage Vd, the voltage difference between the bit line BL3 and the bit line BL2 and the voltage difference between the bit line BL2 and the bit line BL1 are both It is small, so it can suppress the unselected memory cell M21 and the memory cell Mil from being stylized. Further, in order to suppress the unselected memory cell M4 in the memory cell group C7 sharing the word line wli, WL2 and the bit π line BL4 with the memory cell group, the voltage Vb may be applied to the bit of the adjacent bit line B14. Line BL5. The voltage Vb is, for example, equal to the voltage. (for example, 〇v or ground), so it is possible to suppress the unselected sinter M41 from being programmed. Further, by applying a voltage Vb (ground) to both the bit line BL5 and the bit line BL6 on the bit line BL4 side, 100116292 Form No. A0101 Page 22 / Total 36 Page 1002027339-0 201246218 suppresses unselected memory cells M41 and memory cell M51 are programmed. A method of programming a memory cell in a memory array according to an embodiment of the present invention is exemplified by a bias setting as shown in Table 3. [0084] Table 3 Bit A Bit B Bit A and B WL1 Vga Vga Vga WL2 Vgb 〇 X3) Vgb Vgb (>X2 and <X3) (X1-X4) BL3 Vd Vd Vd BL4 Vs Vs Vs ( Ov or ground) (0V or ground) (0V or ground) Unselected BL1 Va Va Va ~BL2 (0. 5~1 times (0. 5~1 times (0·5~1 times Vd) Vd Vd) Unselected BL5 Vb Vb Vb ~BL6 (0V or ground) (0V or ground) (0V or ground) Unselected WL3 (0V or ground) (0V or ground) (0V or ground) ~ WL4

圖8為根據本發明之一實施例的記憶體裝置800的功 能方塊圖。 [0086] 請參考圖8,記憶體裝置800包括一控制器810(電路 單元)以及一非揮發性記憶體820。其中控制器810會依據 本發明之一實施例之方法來程式化非揮發性記憶體820内 的記憶胞。 100116292 表單編號A0101 第23頁/共36頁 1002027339-0 201246218 [0087] 綜上所述,本發明之一實施例因利用源極侧注入效 應程式化記憶胞,因此所施加的偏壓較低,而且可以提 升程式化速度。本發明之一實施例組合使用源極側注入 效應及通道熱電子注入效應來程式化記憶胞,當用於由 兩個記憶胞組成的記憶胞組時,可以達成單一記憶胞組 四位元資料儲存。本發明之一實施例的方法可以加快記 憶胞的程式化速度、提高元件集積度以及較大的記憶體 裕度。 [0088] 雖然本發明已以較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍内,當可作些許之更動與潤飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 [0089] 圖1繪示根據本發明之一實施例的非揮發性記憶體中 記憶胞的程式化方法。 [0090] 圖2繪示根據本發明之另一實施例的非揮發性記憶體 中記憶胞的程式化方法。 [0091] 圖3為繪示根據本發明之一實施例的作為開關電晶體 之記憶胞的起始電壓分佈的示意圖。 [0092] 圖4A係繪示根據本發明之一實施例之記憶胞的程式 化操作時施加電壓脈波的時序圖。 [0093] 圖4B係繪示根據本發明之一實施例之記憶胞的程式 化操作時施加電壓脈波次數與電壓的關係圖。 [0094] 圖5A、圖5B係繪示根據本發明之一實施例之記憶胞 100116292 表單編號A0101 第24頁/共36頁 1002027339-0 201246218 [0095] [0096] [0097]FIG. 8 is a functional block diagram of a memory device 800 in accordance with an embodiment of the present invention. Referring to FIG. 8, the memory device 800 includes a controller 810 (circuit unit) and a non-volatile memory 820. The controller 810 programs the memory cells in the non-volatile memory 820 in accordance with an embodiment of the present invention. 100116292 Form No. A0101 Page 23/36 Page 1002027339-0 201246218 [0087] In summary, one embodiment of the present invention stylizes a memory cell by utilizing a source side injection effect, so that a bias voltage is applied, And can increase the speed of stylization. One embodiment of the present invention combines a source side injection effect and a channel hot electron injection effect to program a memory cell. When used in a memory cell group composed of two memory cells, a single memory cell group of four bits can be achieved. Store. The method of an embodiment of the present invention can speed up the programming speed of the memory cell, increase the component accumulation, and have a large memory margin. [0088] While the invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0089] FIG. 1 illustrates a stylized method of memory cells in a non-volatile memory in accordance with an embodiment of the present invention. 2 illustrates a stylized method of memory cells in a non-volatile memory in accordance with another embodiment of the present invention. 3 is a schematic diagram showing an initial voltage distribution of a memory cell as a switching transistor in accordance with an embodiment of the present invention. 4A is a timing diagram of applying a voltage pulse wave during a programmatic operation of a memory cell in accordance with an embodiment of the present invention. 4B is a diagram showing the relationship between the number of applied voltage pulses and voltage during a program operation of a memory cell according to an embodiment of the present invention. 5A and FIG. 5B illustrate a memory cell 100116292 according to an embodiment of the present invention. Form No. A0101 Page 24 of 36 1002027339-0 201246218 [0096] [0097]

[0098] [0099] [0100] [0101] [0102] [0103][0103] [0103] [0103]

[0104] [0105] [0106] [0107] [0108] [0109] [0110] 的程式化操作時施加電壓脈波的時序圖。 圖6A、圖6B係繪示根據本發明之一實施例之記憶胞 的程式化操作時施加電壓脈波的時序圖。 圖7繪示根據本發明之一實施例之一種非揮發性記憶 體陣列的電路圖。 圖8為根據本發明之一實施例的記憶體裝置的功能方 塊圖。 【主要元件符號說明】1、2、3、4、116a、116b :位置 100 :基底102、104、Mil 〜M54 :記憶胞106a、106b :電荷儲存層108 、 110 、 112 : S/D區114a、114b :控制閘極 800 :記憶體裝置 810 :控制器 A、B :位元BL1〜BL6 :位元線 C1〜C10 :記憶胞組 MR1〜MR5 :記憶胞列VI、V2、XI、X2、X3、X4 :電壓值 100116292 表單編號A0101 第25頁/共36頁 1002027339-0 201246218 [0111] Va、Vd、Vs :電壓 [0112] Vga、Vgb :閘極電壓 [0113] WL1 〜WL4 :字元線 1002027339-0 100116292 表單編號A0101 第26頁/共36頁[0106] [0109] [0109] [0110] A timing diagram of a voltage pulse applied during a stylized operation. 6A and FIG. 6B are timing diagrams showing voltage pulse waves applied during a stylized operation of a memory cell according to an embodiment of the present invention. 7 is a circuit diagram of a non-volatile memory array in accordance with an embodiment of the present invention. Figure 8 is a functional block diagram of a memory device in accordance with an embodiment of the present invention. [Description of main component symbols] 1, 2, 3, 4, 116a, 116b: Position 100: Substrate 102, 104, Mil ~ M54: Memory cells 106a, 106b: Charge storage layer 108, 110, 112: S/D area 114a 114b: control gate 800: memory device 810: controller A, B: bit BL1~BL6: bit line C1~C10: memory cell group MR1~MR5: memory cell VI, V2, XI, X2 X3, X4: Voltage value 100116292 Form number A0101 Page 25 / Total 36 page 1002027339-0 201246218 [0111] Va, Vd, Vs: Voltage [0112] Vga, Vgb: Gate voltage [0113] WL1 ~ WL4: Character Line 1002027339-0 100116292 Form Number A0101 Page 26 of 36

Claims (1)

201246218 七、申請專利範圍: 1 . 一種記憶體的程式化方法,該記憶體包括一第一記憶胞, 該第一記憶胞具有一第一S/D區並與一第二記憶胞共用— 第二S/D區,且該第二記憶胞具有與該第二s/])區相對的 —第三S/D區,該方法包括: 施加一第一電壓到該第一記憶胞的一第一控制閘極; 施加一第二電壓到該第二記憶胞的一第二控制閘極, 使該第二記憶胞的通道區處於微開啟狀態;以及 0 施加一第三電壓到該第一S/D區,將該第二S/D區浮 置’施加一第四電壓到該第三S/D區,使得載子從該第三 S/D區流至該第一S/D區,以利用源極侧注入效應將载子 注入該第一記憶胞的一電荷儲存層。 2 .如申請專利範圍第1項所述之記憶體的程式化方法,其中 該第二電壓為接近該第二記憶胞的起始電壓。 3 .如申請專利範圍第1項所述之記憶體的程式化方法,其中 該電荷儲存層是電荷捕陷層,載子被捕陷在該第一記憶胞 Q 的該電荷捕陷層中靠近該第二S/D區的位置。 4 . 一種記憶體的程式化方法,該記憶體包括一第一記憶胞, 該第一記憶胞具有一第一S/D區並與一第二記憶胞共用一 第二S/D區’且該第二記憶胞具有與該第二s/D區相對的 —第三S/D區,該方法包括: 施加一第一電壓到該第一記憶胞的一第一控制閘極; 施加一第二電壓到該第二記憶胞的一第二控制閘極, 使該第二記憶胞的通道區在微開啟狀態與完全開啟狀態之 間變換;以及 100116292 表單編號A0101 第27頁/共36頁 1002027339-0 201246218 施加一第三電壓到該第一S/D區,將該第二s/D區浮 置施加第四電壓到該第三s/D區,使得載子從該第三 D區抓至該第—S/j)區,以利用源極側注入效應及通道 熱載子效應將載子注入該第一記憶胞的該電荷儲存層。 5 ·如申請專利範圍第4項所述之記憶體的程式化方法其中 把力。玄第一電壓至,!该第二記憶胞的該第二控制間極的方法 係選自施加具有不同強度的多個電壓脈波(Voltage Pulse)至”玄第—控制閘極、施加一三角形電壓脈波 (Voltage Pulse)至該第二控制閘極與施加一梯形電壓 脈波(Voltage pulse)至該第二控制閘極所組的族群之 其中之一。 6 .如申請專利範圍第5項所述之記憶體的程式化方法,其中 該電荷儲存層是一電荷捕陷層,載子被捕陷在該第一記憶 胞的該電荷捕陷層中靠近該第一S/D區及該第二s/j)區的 位置。 7 . —種記憶體陣列中記憶胞的程式化方法,包括: 經由一第一字元線,施加一第一電壓至一第一記憶胞 的一第一控制閘極; 經由一第二字元線,施加一第二電壓至與該第一記憶 胞相鄰的一第二記憶胞的一第二控制閘極,使該第二記慎 胞的通道區處於微開啟狀態或完全開啟狀態,其中該第一 記憶胞具有一第一 S/D區並與該第二記憶胞共用—第二 S/D區’且該第二記憶胞具有與該第二s/D區相對的一第 二 S / D 區, 經由一第一位元線’施加一第三電壓到該第—S/D區 100116292 表單編號A0101 第28頁/共36頁 1002027339-0 201246218 將該第二S/D區為浮置;以及 經由一第二位元線,施加一第四電壓到該第三S/D區 > 其中載子從該第三S/D區流至該第一S/D區,以利用 源極侧注入效應或通道熱載子效應將栽子注入該第一記憶 胞的一電荷儲存層。 8 .如申請專利範圍第7項所述之記憶體陣列中記憶胞的程式 化方法,其中該電荷儲存層是電荷捕陷層,載子被捕陷在 該第一記憶胞的該電荷捕陷層中靠近該第二S/D區的位置 、該第一記憶胞的該電荷捕陷層中靠近該第一S/D區的位 置或該第一記憶胞的該電荷捕陷層中靠近該第一S/D區的 位置及靠近該第二S/D區的位置。 •如申明專利範圍第7項所述之記憶體陣列中記憶胞的程式 化方法,更包括: 施加一第五電壓到鄰近該第一位元線的一第三位元線 以抑制與s玄第一記憶胞共用該第一字元線與該第一位元 線的非選定記憶胞被程式化。 1〇 .如申凊專利範圍第7項所述之記憶體陣列中記憶胞的程式 化方法,更包括: 施加一第六電壓到鄰近該第二位元線的一第四位元線 ,以抑制與該第一記憶胞共用該第一字元線與該第二位元 線的非選定記憶胞被程式化。 100116292 表單編號A0101 第29頁/共36頁 1002027339-0201246218 VII. Patent application scope: 1. A program for staging a memory, the memory comprising a first memory cell having a first S/D region and shared with a second memory cell - a second S/D region, and the second memory cell has a third S/D region opposite to the second s/]) region, the method comprising: applying a first voltage to a first of the first memory cells a control gate; applying a second voltage to a second control gate of the second memory cell to cause the channel region of the second memory cell to be in a micro-on state; and 0 applying a third voltage to the first S /D zone, floating the second S/D zone to apply a fourth voltage to the third S/D zone, so that carriers are flowed from the third S/D zone to the first S/D zone, The carrier is injected into a charge storage layer of the first memory cell by a source side injection effect. 2. The method of staging a memory according to claim 1, wherein the second voltage is a starting voltage close to the second memory cell. 3. The method of staging a memory according to claim 1, wherein the charge storage layer is a charge trapping layer, and the carrier is trapped in the charge trapping layer of the first memory cell Q. The location of the second S/D zone. 4. A method of staging a memory, the memory comprising a first memory cell having a first S/D region and sharing a second S/D region with a second memory cell and The second memory cell has a third S/D region opposite to the second s/D region, the method comprising: applying a first voltage to a first control gate of the first memory cell; applying a first Passing a voltage to a second control gate of the second memory cell to change a channel region of the second memory cell between a micro-on state and a fully-on state; and 100116292 Form No. A0101 Page 27 of 36 page 1002027339 -0 201246218 applying a third voltage to the first S/D region, floating the second s/D region to apply a fourth voltage to the third s/D region, so that the carrier is caught from the third D region To the -S/j) region, the carrier is injected into the charge storage layer of the first memory cell by using a source side injection effect and a channel hot carrier effect. 5 · The stylized method of memory as described in claim 4 of the patent scope. The first voltage of the second memory cell is selected from the group consisting of applying a plurality of voltage pulses having different intensities to the "Xuandi-control gate, applying a triangle" a voltage pulse (Voltage Pulse) to the second control gate and applying a trapezoidal voltage pulse to one of the groups of the second control gate group. The memory staging method, wherein the charge storage layer is a charge trapping layer, and the carrier is trapped in the charge trapping layer of the first memory cell near the first S/D region and The position of the second s/j) region. The stylized method of the memory cell in the memory array, comprising: applying a first voltage to a first memory cell via a first word line Controlling a gate; applying a second voltage to a second control gate of a second memory cell adjacent to the first memory cell via a second word line to make the channel region of the second cell In a micro-on state or a fully-on state, wherein the first memory cell has a first The S/D zone is shared with the second memory cell - the second S/D zone ' and the second memory cell has a second S / D zone opposite to the second s/D zone, via a first bit The line 'applies a third voltage to the first-S/D area 100116292 Form No. A0101 Page 28/36 pages 1002027339-0 201246218 The second S/D area is floated; and via a second bit a line, applying a fourth voltage to the third S/D region > wherein a carrier flows from the third S/D region to the first S/D region to utilize a source side injection effect or a channel hot carrier The method of injecting a device into a charge storage layer of the first memory cell. The method of staging a memory cell in the memory array according to claim 7, wherein the charge storage layer is a charge trapping layer. The carrier is trapped in the charge trapping layer of the first memory cell near the second S/D region, and the charge trapping layer of the first memory cell is adjacent to the first S/D region a position or a position in the charge trapping layer of the first memory cell adjacent to the first S/D region and a position close to the second S/D region. The method for staging a memory cell in the memory array according to the seventh aspect, further comprising: applying a fifth voltage to a third bit line adjacent to the first bit line to suppress sharing with the first memory cell of the s Xuan The first character line and the unselected memory cell of the first bit line are programmed. The method for staging the memory cell in the memory array according to claim 7 of the patent application scope includes: Applying a sixth voltage to a fourth bit line adjacent to the second bit line to suppress a non-selected memory cell program sharing the first word line and the second bit line with the first memory cell Chemical. 100116292 Form No. A0101 Page 29 of 36 1002027339-0
TW100116292A 2011-05-10 2011-05-10 Method of programming memory TWI469147B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100116292A TWI469147B (en) 2011-05-10 2011-05-10 Method of programming memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100116292A TWI469147B (en) 2011-05-10 2011-05-10 Method of programming memory

Publications (2)

Publication Number Publication Date
TW201246218A true TW201246218A (en) 2012-11-16
TWI469147B TWI469147B (en) 2015-01-11

Family

ID=48094517

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116292A TWI469147B (en) 2011-05-10 2011-05-10 Method of programming memory

Country Status (1)

Country Link
TW (1) TWI469147B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151248A (en) * 1999-06-30 2000-11-21 Sandisk Corporation Dual floating gate EEPROM cell array with steering gates shared by adjacent cells
US6925007B2 (en) * 2001-10-31 2005-08-02 Sandisk Corporation Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements
US6687154B2 (en) * 2002-02-25 2004-02-03 Aplus Flash Technology, Inc. Highly-integrated flash memory and mask ROM array architecture

Also Published As

Publication number Publication date
TWI469147B (en) 2015-01-11

Similar Documents

Publication Publication Date Title
TWI736763B (en) Memory circuits, methods of operating a memory circuit and memory arrays
US10192622B2 (en) Systems, methods, and apparatus for memory cells with common source lines
US9171636B2 (en) Hot carrier generation and programming in NAND flash
JPH11177068A (en) Nonvolatile semiconductor storage device and its driving method
US8797804B2 (en) Vertical memory with body connection
US20190279729A1 (en) Suppression of Program Disturb with Bit Line and Select Gate Voltage Regulation
CN103390427B (en) Semiconductor storage and the driving method of this semiconductor storage
US10262747B2 (en) Method to reduce program disturbs in non-volatile memory cells
US9355725B2 (en) Non-volatile memory and method of operating the same
JP6069054B2 (en) Nonvolatile semiconductor memory device
TWI489465B (en) Low voltage programming in nand flash with two stage source side bias
TWI469147B (en) Method of programming memory
JP4256736B2 (en) Nonvolatile semiconductor memory device and erase method thereof
TWI489593B (en) Hot carrier programming of nand flash memory
CN102779552B (en) The method for programming of memory cell in the method for programming of memory body and memory array
JPH11273387A (en) Non-volatile semiconductor memory device
US20180137918A1 (en) Method for operating memory array
TWI473098B (en) Low voltage programming in nand flash