TW201245599A - Hydrodynamic mechanical seal surface texture, a device for making the same and a method therefor - Google Patents

Hydrodynamic mechanical seal surface texture, a device for making the same and a method therefor Download PDF

Info

Publication number
TW201245599A
TW201245599A TW100116824A TW100116824A TW201245599A TW 201245599 A TW201245599 A TW 201245599A TW 100116824 A TW100116824 A TW 100116824A TW 100116824 A TW100116824 A TW 100116824A TW 201245599 A TW201245599 A TW 201245599A
Authority
TW
Taiwan
Prior art keywords
depth
femtosecond laser
rotating ring
ring
stationary ring
Prior art date
Application number
TW100116824A
Other languages
Chinese (zh)
Other versions
TWI435990B (en
Inventor
Wang-Long Li
Bo-Xiong Wu
Chong-Ren Chung
Chien-Yu Chen
Chih-Wei Chien
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100116824A priority Critical patent/TWI435990B/en
Publication of TW201245599A publication Critical patent/TW201245599A/en
Application granted granted Critical
Publication of TWI435990B publication Critical patent/TWI435990B/en

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

A hydrodynamic mechanical seal surface texture, a device for making the same and a method therefor are provided. The hydrodynamic mechanical seal includes a housing, a stationary ring, a rotating ring, a flow passage, and grooved patterns. The stationary ring is connected to the housing and has a first surface, the rotating ring is located on a side of the stationary ring and has a second surface, and the flow passage covers the space between the stationary ring and the rotating ring. Besides, the grooved patterns are formed on a part or a whole area of the at least one of the first surface and the second surface, and the texturing of the grooved patterns have different depth levels. In addition, the rotating ring is against the stationary ring by an outer pressure so as to make the first surface contact the second surface. Also, the rotating ring can coaxially rotate relative to the stationary ring.

Description

201245599 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種流體動壓車由 裝置、製造方法,特別是有關於一種在=面結構及其製造 形成不同深度的刻痕及其製造骏 ,凌體動壓軸封表面 、、製造方法。 【先前技術】 在非接觸機械軸封特別是轉 封兀件藉由彈簧及壓力差達成其六軸封在轉軸靜止時,軸 需要一個額外的供氣系統,:政果"轉軸啟動時則 以減低啟動扭力及降低磨損。"壓協助將軸封元件撐開 在業界已證實’於軸鉍 雜认士 如美國專利US55〇l47〇公開了 一 力,U相樣式的方式降錄封表面的摩擦 係。―“利並未揭叫封表面㈣的深度與摩擦力的關 【發明内容】 本發明係提供一種且古 括殼體、靜止環、旋轆;有表面結構的流體_封,包 轉衣、流道與刻紋圖案。靜止環係連 向該第-表面的—第t / —第—表面;旋轉環係具有面 内,並位^該靜止淨 Φ,㊅旋轉環係配置於該殼體 該流道涵魏靜止環_=流道,係設置於該殼體内,201245599 VI. Description of the Invention: [Technical Field] The present invention relates to a fluid dynamic vehicle manufacturing apparatus, a manufacturing method, and particularly to a marking having a different depth in a surface structure and its manufacture and manufacturing thereof Jun, Ling body dynamic pressure shaft seal surface, manufacturing method. [Prior Art] In the non-contact mechanical shaft seal, especially the circlip element, the six-axis seal is achieved by the spring and the pressure difference. When the shaft is stationary, the shaft needs an additional air supply system: when the shaft is started To reduce the starting torque and reduce wear. "Pressure assisted in the expansion of the shaft sealing element. It has been confirmed in the industry that the shaft is 杂 杂 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如― “There is no disclosure of the depth and friction of the surface (4). SUMMARY OF THE INVENTION The present invention provides an ancient housing, a stationary ring, a rotating cymbal; a fluid having a surface structure, a package, and a coating. a flow path and a embossed pattern. The stationary ring is connected to the t-th surface of the first surface; the rotating ring system has an in-plane, and the static net Φ, the six-rotating ring system is disposed in the housing The flow channel culverts a static ring _=flow channel, which is disposed in the casing,

S 係形成於該第-表面及=轉環之間的㈣。刻紋圖案, 久该第二表面至少其中一者的全部或 201245599 科區域,且形成該刻紋圖案之複數個刻痕 淺。其中’於該流道填充—循環流體以潤滑ς =的深 旋轉環,該旋轉環藉由一外部壓力抵向該靜止::與該 -表面接觸該第二表面’該旋轉環並可相對於ς = 同軸轉動,並於相對轉動時,該第—表㈣ 衣作 間可保持非接觸的狀態。 〃^弟一表面之 本^另提供-種流體祕軸封表面刻紋圖案的製造 裝置’包3•平台、脈衝雷射系統以及聚焦單S。平台, 用以供流體動壓軸封的靜止環或旋轉環固定。脈衝雷: 統,,用以產生—飛秒雷射。聚鮮元,係設置於飛秒雷射 之光束路徑,用以引導飛秒雷射照射於第一表面或第二表 面’以形成該些刻痕。 / — 本發明另提供一種流體動壓軸封表面刻紋圖案的製造 方法,包含:固定該靜止環或該旋轉環於一平台,使該第 一表面或該第二表面朝外設置,該平台具有驅動單元以產 生位移運動。照射飛秒雷射於該.第一表面或該第二表面以 形成該刻紋圖案。以及該飛秒雷射形成該刻紋圖案之最大 半徑外緣時,該平台的位移運動較該飛秒雷射形成該刻紋 圖案之最小半徑内緣時的移動速度為慢,以在該外緣形成 較深的刻痕。 【實施方式】 請參照圖1、圖2、圖3至圖4所示。圖1本發明一實 施例之流體動壓轴封剖面示意圖。本實施例中的流體動壓 軸封10包含殼體2〇、靜止環30、旋轉環40、流道50、刻 201245599 紋圖案60。殼體20係提供各元件配置之用。靜止環3〇係 連接於該殼體20,該靜止環30具有一第一表面31。旋轉 ,40係具有面向該第一表面31的一第二表面41,該旋轉 % 40係配置於該殼體2〇内部並位於該靜止環3〇之一旁 側。流道50形成於殼體加内,涵蓋了該靜止環3〇盥該旋 轉環40之間的空間。刻紋圖案6〇係形 及該第二表面41之至少其中—者的全部(如圖2所表示面)或 部分區域(如圖3所示)’且形成該刻纹圖案之複數個刻痕 具有不同㈣淺(如圖4所示)。其中,於該流道5〇填充 =循環流體L以潤滑該靜止環3〇與該旋轉環4〇,該旋轉 環40藉由一外部壓力F抵向該靜止環3〇,使該第一表面 31接觸該第二表® 41 ’該旋轉;裒4〇並可相對於該靜止環 3一〇作同軸轉動,並於相對轉動時,該第一表面3ι與該第 表面41之間產生空餘現象而保持非接觸,進而可減少摩 再請參照圖4所緣示的第一表面或第二表面的部㈣ 成刻紋圖案的立體圖。其中該刻紋圖案6G係包含以該㈣ 痕61對應形成的二個以上的不同半徑群^ ㈣些群組63具有一最靠近該靜止環3。圓心或 最内緣區域631及—最遠離該靜止環30圓心 二二轉壤40圓心的最外緣區域632,且該最内緣區域 、、/’痕深度62最淺而最外緣區域632的刻痕深度6 最外緣區域632的刻痕至該最内緣區域631的 冰度62係呈遞減之曲線變化(如圖5、圖6所示,又 凹或上凸之曲線)或直線變化(如圖7所示)。另外,該刻 201245599 圖案係$成於該第—表面及該第 分區域,且該部分呙祕在ώ 王少八甲者口丨 度獅_平均吩佈,如 域為有2個群組63時,則形成互為刚度分佈㈠口 圖 ),有3個群組63時,則形成互為1.20度分佈。 ^述-貫_中’刻紋圖案6〇基本上係該最内緣區域 的刻痕深度62最淺而最外緣區域632的刻痕深度62 最深’惟其最内緣區域631至最外緣區域63 則可以;各種變化,如目8Α所示’其中刻痕深度在内緣 ,域之則段深度不,,後段深度為曲線變化的實施例(前 段、後段之間的比例不拘)、或如圖8Β所示,其中刻痕深 f在最内緣區域之前段深度不變,後段深度為直線變化/前 段、後段之間的比例不拘)’或者是如圖8C所示,其刻痕 深度在最内緣區域之前段深度為直線變化,後段深度也為 直線變化,中間段深度為曲線變化(前段、中間段、後段 之間的比例不拘)。 如圖9所繪示本發明一實施例之刻紋圖案的製造裝置 示意圖以及圖10所繪示本發明一實施例之平台移動示咅、 圖。本實施例中的刻紋圖案的製造裝置包含:平台7〇及脈 衝雷射系統80。其平台70 ’係用以供該靜止環3〇或該旋 轉環40固定,以便加工之用’該平台70可包含一驅動單 元(圖中未示出)’用以驅動該平台產生位移運動(如二維 之X軸及y軸)。脈衝雷射系統80係包括:雷射本體81, 用以產生飛秒雷射,當然也可含有產生飛秒雷射的能量的 調整裝置,以便控制所產生的飛秒雷射811的能量大小。 一雷射波長調整裝置82’設置於該飛秒雷射811之光束8〇1 201245599 路徑’用以調整該飛秒雷射811脈衝之波長。一雷射頻率 調整裝置83 ’係設置於該飛秒雷射811之光束801路徑, 用以調整該飛秒雷射811脈衝之頻率。一偏振調整裝置 84 ’係設置於該飛秒雷射811之光束801路徑,用以調整 飛秒雷射811之偏振方向,以利控制刻痕61的方向。一聚 焦單元85,係設置於該偏振調整裝置84後端之該飛秒雷 射811之光束801路徑,用以引導該飛秒雷射811照射於 該第一表面31或該第二表面41,以形成該些刻痕61。特 別需指出者,前揭雷射波長調整裝置82以及雷射 裝置83的先棱設置關係可以互換,而不限於何者^羊^ 後。上述之該飛秒雷射811脈衝之波長範圍可為2〇〇至11〇〇 nm。該脈衝寬度短於5〇〇飛秒。該飛秒雷射脈衝之頻率 單發至2MHz。 立續請參照圖10所示之本發明一實施例之平台移動示 意圖、圖11之本發明一實施例之利用平台移動速度變化以 改變刻痕深淺的刻紋圖案的製造方法流程圖。本實施例之 如前述的刻紋圖案6G的製造方法包含··步驟SH),固定該 ,止環30或該旋轉環4〇於一平台7〇,使該第一表面η ^第二表面41朝外設置’該平台7G具有驅動單元以產 3?=表7:;照射飛秒雷射811於該第-表面 以形成該刻紋圖案60;以及步驟S12, f過該飛秒雷射811形成該刻紋圖案6G之最大半徑的最外 Γ該平台70的位移運動較該飛秒雷射811形 产為^以在最小半徑的最外緣區域631時的移動速 ^在该外緣形成較深的刻痕6】,並遞減刻痕深度 201245599 62至最内緣。 續請參照圖12所!會示本發明一實施例之利用改變雷 射掃瞄速度以改變刻痕深淺的刻紋圖案的製造方法流^ =。本實施例之如前述的刻紋圖.案6〇的另一製造方=包 含:步驟S21,固定該靜止環3〇或該旋轉環4〇於一平台 7〇,使該第-表面31或該第二表面41朝外設置,該平^ 7〇具有驅動單元以產生位移運動。步驟S2卜照射飛秒^ =811於該第-表面31或該第二表面41卩形成該刻紋圖 ^ 6〇 ;以及步,驟S22,透過該飛秒雷射811形成該刻紋圖 案60之最大半徑的最外緣區域632時,該飛秒雷射Μ〗掃 瞄速度較該飛秒雷射811形成該刻紋圖f 60之最小抑的 最内緣區域631時的飛秒雷射811 _速度為慢,以在該 外緣幵^成較深的刻痕61,並遞減職深度62至最内緣。 上述實施例經實驗得知’ t射掃聪速度之範圍為每秒 mm 2〇mm對軸封表面刻痕,變化其雷射掃猫速度, 可使刻痕」木度62在間,與刻紋圖案6〇(表面 微結構)兩度1 〇nm〜1 # m間變化。 、、㈣參照圖13所纟會示本發明—實施例之利用改變雷 固產生5數以改變刻痕深淺的刻紋圖案的製造方法流程 ^本實施例之如前述的刻紋圖t 60的再一製造方法包 3 .步驟^30,固定該靜止環30或該旋轉環4〇於一平台 使該第—表面31或該第二表面41朝外設置,該平台 70具有驅動單元以產生位移運動。步驟如,照射飛秒雷 安於該第表面31或該第二表面斗丨以形成該刻紋圖 ;以及步驟S32,透過該飛秒雷射811形成該刻紋圖 201245599 案60之最大半徑的最外緣區域632時,該飛秒雷射811發 數較該飛秒雷射811形成該刻紋圖案60之最小半徑的最内 緣區域631時的飛秒雷射811發數為多,以在最外緣形成 較深的刻痕61,並遞減刻痕深度62至最内緣。 上述實施例中,經對軸封外型做有限元素模擬分析, 模擬其改善摩擦係數之情形,其摩擦係數公式為# =TV(NR),其中T為摩擦力,N為負載,R為接觸區域半徑。 其結果顯示,在一般的水潤滑操作條件下,本實施例刻痕 61外深内淺之摩擦係數為0.061,確實比一般平滑軸封表 » 面之摩擦係數(>0.1)降低。 本發明之特點係在於,本發明利用飛秒雷射(或其他 加工方式)對軸封表面形成刻痕深度深淺的變化以降低摩 擦力。本發明將可調變波長、能量、重複頻率及偏振方向 的飛秒雷射光束,透過對轴封表面進行飛秒雷射照射,不 會產生過大熱影響區及結構孔洞毛邊,而影響轴封密封程 度。 綜上所述,乃僅記載本發明為呈現解決問題所採用的 技術手段之實施方式或實施例而已,並非用來限定本發明 專利實施之範圍。即凡與本發明專利申請範圍文義相符, 或依本發明專利範圍所做的均等變化與修飾,皆為本發明 專利範圍所涵蓋。 201245599 【圖式簡單說明】 圖1繪示本發明一實施例之流體動壓 圖2繪示本發明一實施例之第一表面坌4面不意圖; 成刻紋圖案的俯視圖; s第二表面的全部形 圖3繪示本發明一實施例之第一表 成刻紋圖案的俯視圖;面^二表面的部分形 圖4繪示沿圖3之4-4剖面線的移轉剖視圖. 圖5 t本下發明;ff例之刻紋圖案的刻痕深度與形成位 置的下凹曲線變化關係座標圖; 取位 圖6繪示本發明-實補之職__痕深度與 置的上凸曲線變化關係座標圖; 圖7 I會示本發明-實施例之·目_㈣深度與形成位 置的直線變化關係座標圖; 圖8A繚示本發明—實施例之刻紋圖案的刻痕深度與形& 位置的變化關係座標圖,其中刻痕深度在内緣區域之 前段深度不變,後段為曲線變化; 圖8B繪示本發明一實施例之刻紋圖案的刻痕深度與形成 位置的變化關係座標圖,其中刻痕深度在最内緣區域 之前段深度不變’後段為直線變化; 圖8C繪不本發明一實施例之刻紋圖案的刻痕深度與形成 位置的變化關係座標圖,其中刻痕深度在最内緣區域 之前段深度為直線變化,後段也為直線變化,中間段 為曲線變化; 圖9繪示本發明一實施例之刻紋圖案的製造裝置示意圖; 圖10繪示本發明一實施例之平台移動示意圖; 圖11繪示本發明一實施例之利用平台移動速度變化以改 201245599 變刻痕深淺的刻紋圖案的製造方法流程圖; 圖12繪示本發明一實施例之利用改變雷射掃瞄速度以改 變刻痕深淺的刻紋圖案的製造方法流程圖;以及 圖13繪示本發明一實施例之利用改變雷射產生發數以改 變刻痕深淺的刻紋圖案的製造方法流程圖。 【主要元件符號說明】 10 流體動壓軸封 20 殼體 30 .靜止環 31 第一表面 40 旋轉環 41 第二表面 50 流道 60 刻紋圖案 61 刻痕 62 刻痕深度 63 群組 631 最内緣區域 632 最外緣區域 70 平台 80 脈衝雷射系統 801 光束 81 雷射本體 811 飛秒雷射 82 雷射波長調整裝置 12 201245599 83 雷射頻率調整裝置 84 偏振調整裝置 85 聚焦單元 F 外部壓力 L 流體 R 半徑 步驟S10〜步驟S12 製造方法步驟 步驟S20〜步驟S22 製造方法步驟 步驟S30〜步驟S32 製造方法步驟 13S is formed between (four) between the first surface and the = rotating ring. The engraved pattern has a long history of at least one of the second surfaces or a region of 201245599, and the plurality of scores forming the engraved pattern are shallow. Wherein 'the flow channel is filled with a circulating fluid to lubricate the deep rotating ring of ς =, the rotating ring is abutted against the stationary by an external pressure: the second surface is in contact with the surface - the rotating ring is relative to ς = coaxial rotation, and in the relative rotation, the first (four) clothing room can remain non-contact. 〃 弟 一 一 一 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 制造 制造 制造 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体 流体The platform is fixed for the stationary ring or the rotating ring of the fluid dynamic pressure shaft seal. Pulse Ray: System, used to generate - femtosecond laser. The concentrating element is disposed on the beam path of the femtosecond laser to guide the femtosecond laser to the first surface or the second surface to form the nicks. The present invention further provides a method for manufacturing a hydrodynamic shaft seal surface engraving pattern, comprising: fixing the stationary ring or the rotating ring to a platform such that the first surface or the second surface is outwardly disposed, the platform having Drive the unit to produce a displacement motion. A femtosecond laser is irradiated onto the first surface or the second surface to form the embossed pattern. And when the femtosecond laser forms a maximum radius outer edge of the engraved pattern, the displacement movement of the platform is slower than the movement speed of the femtosecond laser forming the minimum radius inner edge of the engraved pattern, so as to be outside The edge forms a deeper nick. [Embodiment] Please refer to Fig. 1, Fig. 2, Fig. 3 to Fig. 4. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a fluid dynamic pressure shaft seal of an embodiment of the present invention. The fluid dynamic pressure shaft seal 10 in this embodiment comprises a housing 2, a stationary ring 30, a rotating ring 40, a flow path 50, and a 201245599 pattern 60. Housing 20 is provided for each component configuration. A stationary ring 3 is attached to the housing 20, the stationary ring 30 having a first surface 31. Rotating, the 40 series has a second surface 41 facing the first surface 31, and the rotation % 40 is disposed inside the casing 2〇 and located beside one of the stationary rings 3〇. A flow passage 50 is formed in the casing plus to cover the space between the stationary ring 3 and the rotating ring 40. a embossed pattern 6 and at least one of the second surface 41 (as shown in FIG. 2) or a partial region (shown in FIG. 3) and forming a plurality of nicks of the embossed pattern Have different (four) shallow (as shown in Figure 4). Wherein, the flow path 5〇 is filled with the circulating fluid L to lubricate the stationary ring 3〇 and the rotating ring 4〇, and the rotating ring 40 abuts the stationary ring 3〇 by an external pressure F, so that the first surface 31 contacting the second watch® 41' the rotation; 裒4〇 and being coaxially rotatable relative to the stationary ring 3, and when relatively rotated, the first surface 3ι and the first surface 41 are free While remaining non-contact, it is possible to reduce the angle of the engraved pattern of the portion (4) of the first surface or the second surface as shown in FIG. The embossed pattern 6G includes two or more different radii groups corresponding to the (four) marks 61. (4) The groups 63 have a closest to the stationary ring 3. The center or the innermost edge region 631 and the outermost edge region 632 which is farthest from the center of the center of the stationary ring 30, and the innermost edge region, /' mark depth 62 is the shallowest and outermost edge region 632 The scoring depth 6 is the score of the outermost edge region 632 to the ice extent 62 of the innermost edge region 631, which is a decreasing curve (as shown in FIG. 5 and FIG. 6, a concave or convex curve) or a straight line. Change (as shown in Figure 7). In addition, at the moment 201245599, the pattern is formed on the first surface and the first sub-area, and the part is secretly ώ 少 少 少 少 , , , , , , , , , , , , , , , , , , At the same time, a mutual stiffness distribution (a) port map is formed, and when there are three groups of 63, a mutual distribution of 1.20 degrees is formed. The description of the stencil pattern 6 〇 is basically the shallowest depth 62 of the innermost edge region and the deepest nick portion 62 of the outermost edge region 632 is the deepest 'only the innermost edge region 631 to the outermost edge The area 63 can be; various changes, as shown in Fig. 8', where the depth of the score is at the inner edge, the depth of the domain is not, and the depth of the latter is a curve change (the ratio between the front and the back is not limited), or As shown in Fig. 8A, the depth of the score f is constant in the depth of the front edge of the innermost edge region, the depth of the rear section is a straight line change/the ratio between the front section and the back section is not uniform) or the depth of the score is as shown in Fig. 8C. In the innermost edge region, the depth of the segment changes linearly, the depth of the latter segment also changes linearly, and the depth of the middle segment changes as a curve (the ratio between the front segment, the middle segment, and the rear segment is not limited). FIG. 9 is a schematic view showing a manufacturing apparatus of a embossed pattern according to an embodiment of the present invention, and FIG. 10 is a diagram showing a platform moving diagram and an embodiment of the present invention. The manufacturing apparatus of the engraved pattern in this embodiment includes a stage 7A and a pulse laser system 80. The platform 70' is used for fixing the stationary ring 3 or the rotating ring 40 for processing. The platform 70 can include a driving unit (not shown) for driving the platform to generate a displacement motion ( Such as two-dimensional X-axis and y-axis). The pulsed laser system 80 includes a laser body 81 for generating a femtosecond laser and, of course, an adjustment device for generating energy of the femtosecond laser to control the amount of energy of the generated femtosecond laser 811. A laser wavelength adjusting device 82' is disposed on the beam of the femtosecond laser 811, 8〇1 201245599, to adjust the wavelength of the femtosecond laser 811 pulse. A laser frequency adjusting device 83' is disposed on the path of the beam 801 of the femtosecond laser 811 for adjusting the frequency of the femtosecond laser 811 pulse. A polarization adjusting device 84' is disposed on the path of the beam 801 of the femtosecond laser 811 for adjusting the polarization direction of the femtosecond laser 811 to control the direction of the notch 61. A focusing unit 85 is disposed on a path of the beam 801 of the femtosecond laser 811 disposed at the rear end of the polarization adjusting device 84 for guiding the femtosecond laser 811 to the first surface 31 or the second surface 41. To form the scores 61. In particular, it is noted that the relationship between the front edge of the laser wavelength adjusting device 82 and the laser device 83 can be interchanged, and is not limited to which one. The above-described femtosecond laser 811 pulse may have a wavelength ranging from 2 〇〇 to 11 〇〇 nm. The pulse width is shorter than 5 〇〇 femtoseconds. The frequency of the femtosecond laser pulse is single to 2MHz. Referring to the platform movement illustration of an embodiment of the present invention shown in FIG. 10, a flowchart of a manufacturing method for changing the depth of the scribe pattern by using the movement speed of the platform is changed according to an embodiment of the present invention. The manufacturing method of the embossed pattern 6G as described above includes the step SH), and the ring 30 or the rotating ring 4 is fixed to a platform 7 〇 so that the first surface η ^ the second surface 41 Setting outwardly 'the platform 7G has a driving unit to produce 3?=Table 7:; irradiating the femtosecond laser 811 on the first surface to form the engraved pattern 60; and step S12, f passing the femtosecond laser 811 The outermost ridge of the maximum radius of the embossed pattern 6G is formed. The displacement movement of the platform 70 is formed by the femtosecond laser 811 to form a moving speed at the outermost edge region 631 of the minimum radius. Deeper nicks 6], and decrement the depth of the score 201245599 62 to the innermost edge. Continuing to refer to Fig. 12, a manufacturing method for changing the scanning pattern speed to change the depth of the scribed pattern is shown in an embodiment of the present invention. Another manufacturing method of the present embodiment, as described above, includes: step S21, fixing the stationary ring 3〇 or the rotating ring 4 to a platform 7〇, such that the first surface 31 or The second surface 41 is disposed outwardly and has a drive unit to generate a displacement motion. Step S2, irradiating femtoseconds ^=811 forms the embossed pattern on the first surface 31 or the second surface 41卩; and step S22, forming the embossed pattern 60 through the femtosecond laser 811 The femtosecond laser Μ 扫 扫 Μ , , Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞 飞811 _ The speed is slow to make a deeper score 61 on the outer edge and decrement the depth 62 to the innermost edge. The above embodiment has been experimentally found that the range of the speed of the sweeping wiper is in the range of mm 2 〇mm per second to the surface of the shaft seal, and the speed of the laser sweeping cat is changed, so that the score is "wood" 62, and engraved The pattern 6 〇 (surface microstructure) changes between two degrees 1 〇 nm~1 # m. Referring to FIG. 13 , a flow chart of the manufacturing method of the present invention, which uses the method of changing the number of slags to change the depth of the scribes, and the embossing pattern of the present embodiment is as described above. Further, in a manufacturing method package 3, step 30, fixing the stationary ring 30 or the rotating ring 4 to a platform such that the first surface 31 or the second surface 41 is outwardly disposed, the platform 70 having a driving unit to generate displacement motion. a step of, for example, irradiating a femtosecond Rayon on the first surface 31 or the second surface to form the embossed pattern; and in step S32, forming a maximum radius of the embossed pattern 201245599 by the femtosecond laser 811 In the outermost edge region 632, the number of femtosecond lasers 811 is greater than the number of femtosecond lasers 811 when the femtosecond laser 811 forms the innermost edge region 631 of the minimum radius of the engraved pattern 60, A deeper score 61 is formed at the outermost edge and the scored depth 62 is decremented to the innermost edge. In the above embodiment, the finite element simulation analysis is performed on the shaft seal external shape to simulate the improvement of the friction coefficient. The friction coefficient formula is #=TV(NR), where T is the friction force, N is the load, and R is the contact. Area radius. As a result, under the general water-lubrication operating conditions, the coefficient of friction of the outer portion of the score 61 in the present embodiment was 0.061, which was indeed lower than that of the general smooth shaft seal table (> 0.1). The present invention is characterized in that the present invention utilizes a femtosecond laser (or other processing method) to form a change in the depth of the score of the shaft seal surface to reduce the frictional force. The invention adopts a femtosecond laser beam with adjustable wavelength, energy, repetition frequency and polarization direction, and performs femtosecond laser irradiation on the surface of the shaft seal without excessive heat affected zone and structural hole burr, thereby affecting the shaft seal The degree of sealing. In the above, it is merely described that the present invention is an embodiment or an embodiment of the technical means for solving the problem, and is not intended to limit the scope of the practice of the present invention. That is, the equivalent changes and modifications made in accordance with the scope of the patent application of the present invention or the scope of the invention are covered by the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a fluid dynamic pressure according to an embodiment of the present invention. FIG. 2 is a plan view showing a first surface 坌4 surface according to an embodiment of the present invention; a plan view of a scribed pattern; 3 is a top view of the first surface of the engraved pattern according to an embodiment of the present invention; FIG. 4 is a partial cross-sectional view of the surface of FIG. 3 taken along line 4-4 of FIG. 3. FIG. t under the invention; ff example of the scribed pattern of the scribe line depth and the formation of the concave curve change relationship coordinate map; take the picture Figure 6 shows the present invention - the actual __ mark depth and the set of convex curve FIG. 7I shows the coordinate diagram of the linear relationship between the depth and the formation position of the present invention - the embodiment of the present invention; FIG. 8A shows the depth and shape of the score of the embossed pattern of the present invention. & position change relationship coordinate map, wherein the depth of the scoring depth is constant in the previous section of the inner edge region, and the rear section is a curve change; FIG. 8B illustrates the variation of the scoring depth and the formation position of the engraved pattern according to an embodiment of the present invention. Relationship coordinate graph, where the depth of the score is in the innermost edge region The segment depth is constant, and the rear segment is a linear change; FIG. 8C is a graph showing the relationship between the depth of the nick and the formation position of the embossed pattern according to an embodiment of the present invention, wherein the depth of the scribe depth is a straight line before the innermost edge region. FIG. 9 is a schematic view showing a device for manufacturing a embossed pattern according to an embodiment of the present invention; FIG. 10 is a schematic view showing a movement of a platform according to an embodiment of the present invention; A flowchart of a method for manufacturing a stencil pattern using a change in the moving speed of the platform to change the depth of the score of 201245599 according to an embodiment of the present invention; FIG. 12 is a diagram showing the use of changing the scanning speed of the laser to change the depth of the scribe layer according to an embodiment of the present invention. A flow chart of a method for manufacturing a embossed pattern; and FIG. 13 is a flow chart showing a method of manufacturing a embossed pattern using a change in the number of generations of lasers to change the depth of the scribe. [Main component symbol description] 10 Fluid dynamic pressure shaft seal 20 Housing 30. Static ring 31 First surface 40 Rotating ring 41 Second surface 50 Flow path 60 Engraving pattern 61 Scoring 62 Scoring depth 63 Group 631 Innermost edge Area 632 Outer edge area 70 Platform 80 Pulsed laser system 801 Beam 81 Laser body 811 Femtosecond laser 82 Laser wavelength adjustment device 12 201245599 83 Laser frequency adjustment device 84 Polarization adjustment device 85 Focus unit F External pressure L Fluid R Radius Step S10 to Step S12 Manufacturing Method Steps Step S20 to Step S22 Manufacturing Method Steps Step S30 to Step S32 Manufacturing Method Step 13

Claims (1)

201245599 七、申請專利範圍: 種流體動壓轴封内靜止環或旋轉環之表面結構, 含: 包 圖案’係形成於該表面的全部或部分 淺形成該刻紋圖案之複數個刻痕深度係真有不同的深 it::::流體_封内靜止環或 双體,該靜止環’係連接於該殼體,該靜止環具 _第-表面’該旋轉環’具有面向該第丄表面的 止環 一表面,該旋轉環係配置於該殼體内,並位於 之一側; 砰 一流道,係設置於該殼體内,該流道涵蓋該 與該旋轉環之間的空間;以及 " 小一刻紋圖案,係形成於該第一表面及該第二表面至 >、其中者的全部或部分區域,且形成該刻紋圖案之複 數個刻痕深度係具有不同的深淺; 其中,於該流道填充一循環流體以潤滑該靜止環與 該旋轉環,該旋轉環藉由一外部壓力抵向該靜止環,使 °亥ΐ一表面接觸該第二表面,該旋轉環並可相對於該靜 止%作同軸轉動,並於相對轉動時,該第一表面與該第 二表面之間產生空蝕現象而保持非接觸。 3.如申請專利範圍第丨項所述之流體動壓軸封内靜止環或 旋轉環之表面結構,其中該刻紋圖案係包含以該些刻痕 對應形成的數個不同半徑的同心曲線群組,該些群組具 有一最靠近該靜止環圓心或該旋轉環圓心的最内緣區 201245599 域及一最遠離該靜止環圓心或該旋轉環圓心的最外 區域,且該最内緣區域的刻痕深度最淺而最 、, 刻痕深度最深。 攻外緣£域的 4.如申請專利範圍第3項所述之流體動壓軸封内靜止产 ,轉環之表面結構’其中該些同心曲線群組:兩二 上。 5·如申請專利範圍第3項所述之流體動壓軸封内靜止产 旋轉環之表面結構,其中最外緣區域的刻痕深 = 内緣區域的刻痕深度係呈遞減之曲線變化。 / 6.如申請專利範圍第3項所述之流體動‘壓 ,之表面結構,其中最外緣區域的刻痕深 内緣區域的刻痕深度係呈遞減之直線變化。 Ί申,專利範圍第3項所述之流體動壓轴封内靜止環或 疋轉%之表面結構,其中該刻紋圖案係形成於該第 :及T第二表面至少其中-者部分區域,且該部分區域 係以360度環形陣列平均分佈。· 刀L域 外緣面結構,其中最内緣區域的刻痕深度至該最 線痕深度係呈前段深度不變、後段深度為曲 ,申。:專利範圍第3項所述之流體動壓轴封内靜止 線遞增之變;! 係呈讀深度不變、紐深度為直 10.==第3項所述之流體動壓轴封内靜止環或 "、面…構,其中最内緣區域的刻痕深度至該最 15 201245599 外緣區域的刻痕深度係呈前段深度直線遞增、後段深度 為直線遞增以及前段、後段之中間段深度為曲線遞增之 變化。 11. 如申請專利範圍第3項至第10項之任一項所述之流體 動壓軸封内靜止環或旋轉環之表面結構,其中該刻痕深 度在 0.1μιη~12μιη 之間。 12. —種流體動壓軸封内靜止環或旋轉環之表面結構製造 裝置,包含: 一平台,用以供該靜止環或該旋轉環固定;以及 一脈衝雷射系統,包括: 一雷射本體,用以產生一飛秒雷射; 一雷射波長調整裝置,設置於該飛秒雷射之光 束路徑,用以調整飛秒雷射脈衝之波長; 一雷射頻率調整裝置,係設置於該飛秒雷射之 光束路徑,用以調整該飛秒雷射脈衝之頻率; 一偏振調整裝置,係設置於該飛秒雷射之光束 路徑,用以調整飛秒雷射之偏振方向;以及 一聚焦單元,係設置於該偏振調整裝置後端之 該飛秒雷射之光束路徑,用以引導該飛秒雷射照射 於該第一表面或該第二表面,以形成該些刻痕。 13. 如申請專利範圍第12項所述之製造裝置,其中該平台 包含一驅動單元,用以驅動該平台產生位移運動。 14. 如申請專利範圍第13項所述之製造裝置,其中該飛秒 雷射脈衝之波長範圍為200至1100 nm。 15. 如申請專利範圍第13項所述之製造裝置,其中該飛秒 雷射脈衝寬度短於500飛秒。 16 201245599 16·如申請專利範圍帛13項所述之製造裝置,其中該飛秒 雷射脈衝之頻率為單發至2MHz。 Π.-種流體動壓㈣内#止環或旋轉環《表面結構製造 方法,包含: 固定該靜止環或該旋轉環於一平台,使該第一表面 或該第二表面朝外設置,該平台具有驅動單元以產生位 移運動; 照射飛秒雷射於該第一表面或該第二表面以形成 該刻紋圖案;以及 透過該飛秒雷射形成該刻紋圖案之最大半徑的最 外緣區域時,該平台的位移運動較該飛秒雷射形成該刻 紋圖案之最小半㈣最内緣區域時的移動速度為慢,以 在該外緣形成較深的刻痕深度。 18.-種流體動壓軸封内靜止環或旋轉環之表面結構製造 移運動 固定該靜止環或該旋轉環於一平台,使該第一表面 或該第二表面朝外設置’該平台具有驅動單元以產生位 該刻紋圖案;以及 透過該飛秒雷射形成該刻紋圖案之最大半 外緣區域時’該飛秒雷射掃瞒速度較該飛秒雷射ς成該 刻紋圖案之最小半徑的最内绫 人 以内緣£域時的飛秒雷射掃猫 速度為忮,以在該外緣形成較深的刻痕深度。 19;:流f:壓軸封内靜止環或旋轉環之表面結構製造 17 201245599 固定該靜止環或該旋轉環於一平台,使該第一表面 或該第一表面朝外設置,該平台具有驅動單元以產生位 移運動; 照射飛秒雷射於該第一表面或該第二表面以形成 該刻紋圖案;以及 透過該飛秒雷射形成該刻紋圖案之最大半徑的最 外緣區域時’該飛秒雷射發數較該飛秒雷射形成該刻紋 圖案之最小半徑的最内緣區域時的飛秒雷射發數為 多,以在該外緣形成較深的刻痕深度。 s 18201245599 VII. Patent application scope: The surface structure of a static ring or a rotating ring in a fluid dynamic pressure shaft seal, comprising: a package pattern 'all or part of the surface formed on the surface to form a plurality of depth depths of the embossed pattern There is really a deep deep it::::fluid_sealed stationary ring or double body, the stationary ring' is connected to the housing, the stationary ring has a _th-surface 'the rotating ring' has a surface facing the second surface a ring-shaped surface, the rotating ring is disposed in the housing and located on one side; a first-class track is disposed in the casing, the flow path covers the space between the rotating ring; and &quot a small one-grain pattern formed on the first surface and the second surface to > all or part of the region, and the plurality of scribe depths forming the embossed pattern have different shades; Filling a flow of a circulating fluid to lubricate the stationary ring and the rotating ring, the rotating ring abutting against the stationary ring by an external pressure, so that a surface contacts the second surface, and the rotating ring can be opposite At this static % The coaxial rotation is performed, and when relatively rotated, a cavitation phenomenon occurs between the first surface and the second surface to maintain non-contact. 3. The surface structure of the stationary ring or the rotating ring in the fluid dynamic pressure shaft seal according to the above-mentioned claim, wherein the engraved pattern comprises a plurality of concentric curve groups formed by the scores corresponding to the plurality of different radii. The groups have an innermost edge region 201245599 domain closest to the center of the stationary ring or the center of the rotating ring and an outermost region farthest from the center of the stationary ring or the center of the rotating ring, and the innermost edge region The depth of the score is the shallowest and the most, and the depth of the score is the deepest. 4. Attacking the outer edge of the field 4. As shown in the third paragraph of the patent application, the hydrodynamic shaft seal is statically produced, and the surface structure of the swivel is the group of concentric curves: two or two. 5. The surface structure of the stationary rotating ring in the fluid dynamic pressure shaft seal as described in claim 3, wherein the depth of the outermost region is deeper than the depth of the inner edge region. / 6. The surface structure of the fluid dynamic pressure as described in claim 3, wherein the depth of the nick of the outermost region of the outermost region is in a decreasing linear relationship. The surface structure of the stationary ring or the 疋% of the fluid dynamic pressure shaft seal described in the third aspect of the patent, wherein the embossed pattern is formed on at least a portion of the second surface of the first and the second surface, And the partial regions are evenly distributed in a 360 degree annular array. · Knife L domain The outer edge surface structure, in which the depth of the innermost edge region is to the depth of the most line mark, the depth of the front section is constant, and the depth of the back section is curved. : The change of the static line in the fluid dynamic pressure shaft seal mentioned in the third paragraph of the patent scope; the depth of the read depth is constant, and the depth of the new line is straight 10. == The fluid dynamic pressure shaft seal described in item 3 is still Ring or ", face...the depth of the innermost edge of the nick is the depth of the smear. The depth of the smear is the linear increase of the front depth, the linear increase of the back depth, and the depth of the middle of the front and back. The change in the curve is incremental. 11. The surface structure of a stationary ring or a rotating ring in a fluid dynamic pressure shaft seal according to any one of claims 3 to 10, wherein the depth of the score is between 0.1 μm and 12 μm. 12. A surface structure manufacturing apparatus for a stationary ring or a rotating ring in a fluid dynamic pressure shaft seal, comprising: a platform for fixing the stationary ring or the rotating ring; and a pulsed laser system comprising: a laser body For generating a femtosecond laser; a laser wavelength adjusting device disposed on the beam path of the femtosecond laser for adjusting the wavelength of the femtosecond laser pulse; a laser frequency adjusting device is disposed at the a beam path of the femtosecond laser for adjusting the frequency of the femtosecond laser pulse; a polarization adjusting device disposed on the beam path of the femtosecond laser for adjusting the polarization direction of the femtosecond laser; The focusing unit is a beam path of the femtosecond laser disposed at a rear end of the polarization adjusting device for guiding the femtosecond laser to the first surface or the second surface to form the scores. 13. The manufacturing apparatus of claim 12, wherein the platform comprises a drive unit for driving the platform to generate a displacement motion. 14. The manufacturing apparatus of claim 13, wherein the femtosecond laser pulse has a wavelength in the range of 200 to 1100 nm. 15. The manufacturing apparatus of claim 13, wherein the femtosecond laser pulse width is shorter than 500 femtoseconds. 16 201245599. The manufacturing apparatus of claim 13, wherein the femtosecond laser pulse has a frequency of one to two MHz. Π.- The fluid dynamic pressure (4) #止环 or rotating ring "surface structure manufacturing method, comprising: fixing the stationary ring or the rotating ring on a platform, such that the first surface or the second surface is outwardly disposed, The platform has a driving unit to generate a displacement motion; irradiating a femtosecond laser to the first surface or the second surface to form the engraved pattern; and forming an outermost edge of a maximum radius of the engraved pattern through the femtosecond laser In the region, the displacement movement of the platform is slower than the minimum half (four) innermost edge region of the engraved pattern of the femtosecond laser to form a deeper depth of the score on the outer edge. 18. The surface structure of the stationary ring or the rotating ring in the fluid dynamic pressure shaft seal is manufactured to move the stationary ring or the rotating ring to a platform such that the first surface or the second surface is disposed outwardly. The unit is configured to generate the engraved pattern; and when the femtosecond laser is formed to form a maximum half outer edge region of the engraved pattern, the femtosecond laser broom speed is compared to the femtosecond laser to form the engraved pattern The innermost person with the smallest radius has a femtosecond laser sweeping speed at the inner edge of the field to form a deeper depth of the score on the outer edge. 19;: flow f: surface structure of the stationary ring or the rotating ring in the press shaft seal 17 201245599 Fixing the stationary ring or the rotating ring on a platform such that the first surface or the first surface is outwardly disposed, the platform has a drive The unit is configured to generate a displacement motion; irradiating a femtosecond laser to the first surface or the second surface to form the engraved pattern; and when the femtosecond laser is formed to form an outermost region of a maximum radius of the engraved pattern The number of femtosecond lasers emitted is greater than the femtosecond laser forming the innermost region of the minimum radius of the engraved pattern to form a deeper depth of the score on the outer edge. s 18
TW100116824A 2011-05-13 2011-05-13 Hydrodynamic mechanical seal surface texture, a device for making the same and a method therefor TWI435990B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100116824A TWI435990B (en) 2011-05-13 2011-05-13 Hydrodynamic mechanical seal surface texture, a device for making the same and a method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100116824A TWI435990B (en) 2011-05-13 2011-05-13 Hydrodynamic mechanical seal surface texture, a device for making the same and a method therefor

Publications (2)

Publication Number Publication Date
TW201245599A true TW201245599A (en) 2012-11-16
TWI435990B TWI435990B (en) 2014-05-01

Family

ID=48094344

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116824A TWI435990B (en) 2011-05-13 2011-05-13 Hydrodynamic mechanical seal surface texture, a device for making the same and a method therefor

Country Status (1)

Country Link
TW (1) TWI435990B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110792777A (en) * 2019-10-27 2020-02-14 蒋立宪 Graphite stationary ring for mechanical sealing device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110792777A (en) * 2019-10-27 2020-02-14 蒋立宪 Graphite stationary ring for mechanical sealing device and manufacturing method thereof

Also Published As

Publication number Publication date
TWI435990B (en) 2014-05-01

Similar Documents

Publication Publication Date Title
EP3270016B1 (en) Method of processing a sliding component
KR100769697B1 (en) Method and device for producing glass plates of any desired contour from sheet glass
JP5122607B2 (en) Flat sliding mechanism
CN106029294B (en) Slide unit
JPWO2011115073A1 (en) Sliding member
US20130004717A1 (en) Method for producing a pattern of depressions in the friction surface of a friction component and a friction component for a frictionally operating device having such a pattern of depressions
JP7120576B2 (en) Method for controlling wettability of metal surface
JP2000320544A (en) Dynamic pressure bearing device, manufacture thereof and manufacture of coining punch used in the manufacture of dynamic pressure bearing device
JP2016539005A (en) Method and apparatus for marking inside a substrate having a rough surface
JP6612053B2 (en) Sliding surface structure
TW201245599A (en) Hydrodynamic mechanical seal surface texture, a device for making the same and a method therefor
CN114131208B (en) Laser-induced plasma profiling device and method
JP2005321048A (en) Rolling slide part, and method for manufacturing the same
JP2012233541A (en) Sliding surface structure
KR20120108752A (en) Laser processing method for formation of microspike
JP2012224531A (en) Laser beam machining device of glass substrate
JP5726673B2 (en) Sliding surface structure
JP2006194220A (en) Manufacturing method of sliding member
JP5923765B2 (en) Laser processing equipment for glass substrates
JP2010196884A (en) Plane sliding mechanism
JP6339748B1 (en) Segment, combination oil ring, and method of manufacturing segment
JP7052472B2 (en) Grooving method, grooving equipment and steel sheet
JP2012218963A (en) Laser processing apparatus for glass substrate
JP2013143169A (en) Surface planarization method of translucent substrate
JPH03257117A (en) Method for working dynamic pressure generating groove