TW201244924A - Glass plate with low reflective film - Google Patents

Glass plate with low reflective film Download PDF

Info

Publication number
TW201244924A
TW201244924A TW101111693A TW101111693A TW201244924A TW 201244924 A TW201244924 A TW 201244924A TW 101111693 A TW101111693 A TW 101111693A TW 101111693 A TW101111693 A TW 101111693A TW 201244924 A TW201244924 A TW 201244924A
Authority
TW
Taiwan
Prior art keywords
low
reflection film
glass plate
compound
group
Prior art date
Application number
TW101111693A
Other languages
Chinese (zh)
Other versions
TWI572481B (en
Inventor
Keisuke Abe
Yuichi Kuwahara
Yohei Kawai
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of TW201244924A publication Critical patent/TW201244924A/en
Application granted granted Critical
Publication of TWI572481B publication Critical patent/TWI572481B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • C03C1/008Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • C03C2217/452Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/465Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention relates to a glass plate (10) with a low reflective film having a low reflective film (14) of a monolayer containing a matrix and hollow fine particles on the surface of a glass plate (12), wherein the lowest reflectance of the low reflective film (14) within the range of a wavelength of 300 to 1,200 nm is 1.7% or lower, the water contact angle in the surface of the low reflective film (14) is 97 DEG or more, the oleic acid contact angle in the surface of the low reflective film (14) is 50 DEG or more, and the oleic acid sliding angle in the surface of the low reflective film (14) is 25 DEG or less. The present invention provides a glass plate with a low reflective film of a monolayer having a sufficiently low reflectance and good removal performance of oil stain, a method for producing the glass plate with a low reflective film, and a display device having the glass plate with a low reflective film.

Description

201244924 六、發明說明: c 明戶斤屬才支身軒々真】 發明領域 本發明係有關於附低反射膜之玻璃板、附低反射膜之 玻璃板的製造方法、顯示裝置以及顯示裝置用附低反射膜 之玻璃板。 發明背景 在玻璃板表面具有低反射膜的附低反射膜玻璃板,可 用以作為太陽能電池的蓋玻璃、各種顯示器及其等的前面 板、各種窗玻璃、及觸控面板的蓋破璃等。 在行動電話或PDA等小型顯示器、各種電視等大型顯 示器、或觸控面板等各種顯示裝置中,為保護顯示器並提 升美觀性’多半會在顯示元件的前面使用蓋玻璃(保護玻 璃)。而且’為了使顯示裝置所顯示之影像的辨識度向上提 升’會使用具有抗可見光反射膜的附低反射膜玻璃板。 其等之中’用於各種顯示器、自動車用窗玻璃、觸控 面板等的附低反射膜玻璃板’或用於前述顯示裝置的前述 附低反射膜玻璃板,時常會接觸到人的手,故而需要對指 紋等油脂污物的去除性。 .對附低反射膜玻璃板賦予油脂污物去除性的方法,常 見有在其表面貼附抗油污膜的方法,或在反射防止層上塗 布抗污層的方法(專利文獻1)。 然而,在附低反射膜玻璃板的表面貼附抗油污膜的情 3 201244924 況時’會產生因增加了製膜步驟、貼膜步驟等步驟所致的 生産性降低的問題、因貼附不均所致外觀品質降低的問 題、或隨著貼膜的成本上升等問題。另外,在抗反射層上 塗布防污層時’也會有生產性降低等問題發生。 先行技術文獻 專利文獻1:曰本特表2002-506887號公報 L 明内】 發明概要 發明所欲解決之課題 本發明係提供:在玻璃板表面上具有反射率夠低且油 脂污物去除性良好之單層低反射膜的附低反射膜玻璃板、 能夠製造前述附低反射膜玻璃板的製造方法、以及具有前 述附低反射膜玻璃板的顯示裝置。 解決課題的手段 本發明之附低反射膜玻璃板’係於玻璃板表面具有包 含基質與中空微粒子之單層低反射膜的附低反射膜玻璃 板,其特徵在於.在波長300〜l,200nm範圍内的前述低反射 膜之最低反射率係1.7%以下;在前述低反射膜表面的水接 觸角係97°以上;在前述低反射膜表面上的油酸接觸角係 50°以上;在前述低反射膜表面上的油酸滾落角係25。以下。 表示上述數值範圍的「〜」係以包含其前後所記載的數 值定作為下限值及上限值的意思而使用,只要沒有特別限 定’以下在本說明書之中「〜」係以同樣的意思使用。 本發明之附低反射膜玻璃板中,單層低反射膜係意指 201244924 製為提供低反射功能之均f的或實f上均質的、或不均質 的1層、構之膜。再者,本發明之附低反射膜玻璃板係意 才曰在玻璃板至少一側的表面之最外層形成有前述低反射 膜的玻璃板。因此,在前述附低反龍玻魏之未形成低 反射膜之相反嫩❹上,或在形成於最外層之低反射膜 的下層,可形成1層❹層的導電膜、抗近紅外線膜、抗電 磁波膜、色調調整膜、黏著性改善膜、耐久性提升膜、抗 靜電膜或其他各種所欲的功能膜。 經由X射線光電子光譜法所測定之在前述低反射膜表 面的氟元素比率,較佳係3〜20原子%者。 經由掃描探針顯微鏡裝置所測定之前述低反射膜表面 的算術平均粗度(Ra) ’較佳係3 〇〜5 〇nm者。 前述低反射膜之折射率,較佳係丨邛〜丨.46者。 刖述基質,較佳係以二氧化矽作為主成分,並於主鏈 具有聚(氧基全氟伸烷基)鏈,且在前述主鏈至少一側的末端 具有水解性矽烷基,以及具有源自於含氟醚化合物之結構。 前述含氟醚化合物’較佳係以下式(A)表示之化合物 ⑷。 RF1〇(CF2CF20)aCF2_(Q)b(-(CH2)d-SiLpR3.p)e …⑷。 惟’ RF1係碳數1〜20之1價全氟飽和烴基,或者係於碳 原子-碳原子間插入有醚性氧原子的碳數2〜20之1價全氟飽 和烴基’且為不含·〇(:ρ·2〇_結構之基; a係1〜200的整數; b係0或1 ; 201244924 Q係在b為0時不存在 '在b為1時為2或3價之連結基者; c係於Q不存在時或Q為2價連結基時為丨,在卩為3價連 結基時為2 ; d係2〜6的整數; L係水解性基; R係氫原子或1價煙基; p係1〜3的整數。 前述中空微粒子,較佳係中空二氧化矽微粒子。 本發明之附低反射膜玻璃板之製造方法,係製造一種 於玻璃板表面具有含基質與中空微粒子之單層低反射膜的 附低反射膜玻璃板的方法,其特徵在於:具有將含基質前 驅物、中空餘子與溶劑之塗核塗布於玻璃板之表面並 燒成的步驟,祕質前驅物係包含二氧切前驅物與含氣 醚化合物及/或其水解縮合物,其係於主鏈上具有該聚(氧基 全氟伸院基)鏈且於前述主鍵之至少—側的末端具有水解 性石夕烧基’在塗布液巾的中空微粒子對二氧切前驅物 (81〇2換算)的質1比(中空微粒子^〇2)為6/4〜4/6;塗布液中 的3敗峻化合物比率,相對於中空微粒子與二氧化石夕前驅 物(Si〇2換算)的合計_質量%),係〇.8〜3_〇質量%。 而且,上述之「含氟醚化合物及/或其水解縮合物」, 在本說明書中係意指:選自於由含氟醚化合物及含氣喊化 合物=水解縮合物所構成之群組中至少(種者。 月】述3敗_化合物,較佳係以下式⑷所表示的化合物 201244924 RFl〇(CF2CF20)aCF2-(Q)b(_(CH2)d-SiLpR3.p)e …⑷。 T>Fl 、a、b、Q、c、d、;L、R及p係與前述同義。 前述二氧化矽前驅物,較佳係烷氧基矽烷之水解縮合 物。 本發明之附低反射膜玻璃板之製造方法中的塗布液調 整之步驟方面’較佳係:將烷氧基矽烷水解後,加入化合 物(A) ’接著加入中空微粒子分散液而製得塗布液者。 别述中空微粒子’較佳係中空二氧化矽微粒子。 再者’本發明係提供一種顯示裝置,其係包括配置於 框體、顯示元件、及前述顯示元件之顯示面之附低反射膜 玻璃板者’其特徵在於:前述附低反射膜玻璃板,係於玻 璃板表面上具有含基質與中空微粒子之單層低反射膜者, 且前述低反射膜於波長之範圍内的最低反射 率為1.7%以下;於前述低反射膜表面的水接觸角為97。以 上;於前述低反射膜表面的油酸接觸角為5〇。以上;於前述 低反射膜表面的油酸滾落角為25。以下 再者,本發明係提供一種顯示裝置用附低反射膜玻璃 板,其係於玻璃板之表面具有含基質與中空微粒子的單層 低反射膜之附低反射膜玻璃板,且前述低反射膜於波長 3〇〇〜l,200nm之範圍内的最低反射率為〖7%以下;於前述低 反射膜表面的水接觸角為97。以上;於前述低反射膜表面的 油酸接觸角為50°以上;於前述低反射膜表面的油酸滾落角 為25°以下。 亦即,本發明之顯示裝置,特徵在於:包含配置於框 201244924 體、顯示元件、及前述顯示元件之顯示面的前述附低反射 膜玻璃板者。 再者,本發明係提供顯示裝置用之前述附低反射膜玻 璃板。 前述之顯示裝置之附低反射膜玻璃板以及顯示用附低 反射膜玻璃板中,前述低反射膜係形成於顯示裝置之外 側,亦即觀看者側、或操作者側的最外面。 發明的功效 本發明之附低反射膜玻璃板’係於玻璃板表面具有一 反射率夠低,且油脂污物之去除性良好的單層低反射膜。 若依據本發明之附低反射膜玻璃板之製造方法,可製 造出於玻璃板表面具有反射率夠低’且油脂污物去除性良 好之單層低反射膜的附低反射膜玻璃板。 本發明之顯示裝置,係具有玻璃板作為蓋玻璃之顯示 裝置’該玻璃板係具有反射率夠低且油脂污物去除性良好 之單層低反射臈者。 圖式簡單說明 第1圖係顯示本發明之附低反射膜玻璃板及顯示裝置 用附低反射膜破璃板之一例的剖面圖。 第2圖係例3 7 (實施例)之附低反射膜玻璃板剖面的掃瞒 式電子顯微鏡照片。 第3圖係顯示本發明之顯示裝置之一例的剖面圖。 1C 方fe 】 較佳實施例之詳細說明 8 201244924 第1圖係顯示本發明之附低反射膜玻璃板、及本發明之 顯示裝置用附低反射膜玻璃板(以下亦簡稱為附低反射膜 玻璃板)之一例的剖面圖。附低反射膜玻璃板10係具有玻璃 板12及形成於玻璃板12表面的低反射膜14。 第3圖係顯示本發明之顯示裝置1〇〇之一例的剖面圖。 顯示裝置100係包含顯示裝置用附低反射膜玻璃板1〇(以下 亦簡稱為附低反射膜玻璃板10)、顯示元件20及框體30。附 低反射膜玻璃板10係具有玻璃板12及形成於玻璃板表面的 低反射膜14。而且,低反射膜14,係形成於與玻璃板面對 顯示元件之面的相反側之面。 在第1圖及第3圖中,附低反射膜玻璃板10之低反射膜 14的上面側,為顯示裝置的外側,亦即為觀看者側或操作 者側。 本發明之顯示裝置,係包含行動電話或行動資訊終端 機等小型顯示器、各種電視等大型顯示器或觸控面板等各 種顯示裝置。尤其,行動電話、行動資訊終端機或觸控面 板等,由於顯示裝置之顯示面直接與人手接觸的機會很 多’係可列為具有指紋去除性優異之附低反射膜玻璃板的 本發明之顯示裝置的較佳具體例。 顯示元件係可舉例如液晶顯示構件、電漿顯示構件、 或有機EL顯示構件等。 框體係收納顯示元件2〇及附低反射膜玻璃板1〇的箱狀 構件’材質係可舉例如樹脂或金屬等。 (坡螭板) 201244924 玻璃板12可列舉例如鹼石灰玻璃、硼矽酸玻璃、鋁矽 酸鹽玻璃、或無驗玻璃等。另外,可為藉由浮製玻板法等 成形的平滑玻璃,或亦可為在表面具有凹凸的壓花玻璃。 又,玻璃板12之折射率,從低反射膜與折射率之關係,較 佳係1.45〜1.60者。 玻璃板I2之表面上’亦可預先形成有驗阻障層底塗 層等低反射膜14以外之層。 (低反射膜) ’利如藉由塗布一次後述之低反射膜形 成用塗布液而形成的含基質與中空微粒子之單層膜。但, 低反射膜丨4,㈣是藉由賴:欠錢”献射膜形成用 塗杨㈣成膜亦無妨’只要賴是可視為作為低反射膜 功能之¥層構造或者實f上單層構造者即可。 基質方面,由相對折射率較低、能獲得低反射率、化 =讀佳、與玻璃板12之密着性良好的觀點較佳係以 :之二:為主要成分、且具有少量的具源自於含氟鱗化合 =構之料者°謝_、自於伽化合物之結 ==’係實質上由二氧化頻成者更佳。所謂以 質量。/MW t成” ’係“二氧切的比率在基質(1〇〇 = = f%以上者,而實質上由二_成, =Γ 化合物(A)之結構及不可_ 純物外僅由二氧切所構成者。 再者,由油脂污物去除性良 係如後述的:於主鏈上呈有點出發,基質較佳 、有Κ氣基全氟伸院基)鏈、且於前 10 201244924 述主鏈之至少__側之末料有水解性魏基、並具有源自 於含氟醚化合物之結構者。 ’、 基貝方面,可例舉為選自於由下列之基質前驅物⑷、 (b)及(c)之群组中至少i種的基質前驅物的燒成物等,狄由 =:去除性良好的觀點出發,基質前驅物⑷之燒:物 係車父佳者。 ⑷包含後述之二氧切前驅物及後述之_化合物的 基質前驅物。 (b) 包含後述之二氧化石夕前驅物、後述之㈣化合物及 氟醚化合物彼此之水解縮合物的基質前驅物。 (c) 包含後述之二氧化矽前驅物、後述之氟醚化合物彼 此之水解縮合物、以及二氧化矽前驅物(烷氧基矽烷)與氟醚 化合物之水解縮合物的基質前驅物。 中空微粒子的殼材料方面,可舉例如Al2〇3、Si〇2、 Sn02、Ti〇2、Zr02、ZnO、Ce02、含 Sb之 SnOx(ATO)、含 Sn之In2〇3(iT〇)、仙02等。可單獨使用其中i種,亦可併用 2種以上。 尚且,中空微粒子的形狀方面,可舉例如:球形、橢 圓形、針形、板形、棒狀、圓錐形、圓柱形、立方體形、 長方體形、菱形、星形、不定形等。 再者,中空微粒子係各微粒子以獨立狀態存在亦可、 各微粒子以鏈狀連結亦可,各微粒子凝聚在一起亦可。 中空微粒子方面,由低反射膜14之折射率低、能得到 低反射率、化學安定性佳、與玻璃板12間密着性良好的觀 11 201244924 點出發’較佳係中空二氧化矽微粒子。 中空二氧化矽微粒子的平均一次粒徑,較佳係 5〜150nm、更佳係50〜i〇0nm。中空二氧化矽微粒子的平均 一次粒徑若在5nm以上,則低反射膜14的反射率會變得夠 低。中空二氧化矽微粒子的平均一次粒徑若在15〇〇出以下, 則低反射膜14的霧度可以被壓低。 平均一次粒徑,係從電子顯微鏡照片中隨機選出丨〇〇個 微粒子,測定各微粒子的粒徑,再平均1〇〇個微粒子的粒徑 而求出。 在波長300〜l,200nm範圍内的低反射膜14之最低反射 率’係在1.7。/。以下’以0.2〜1.7%為佳,較佳係〇 8〜11%, 更佳係0.9〜1_0%。低反射膜14之最低反射率若在i 7%以 下,則附低反射膜玻璃板10即充份滿足各種顯示器、自動 車用窗戶玻璃、或觸控面板等所要求的低反射率。低反射 膜14的最低反射率若大於1.7%,則會有低反射特性方面不 足的狀況。 在低反射膜14表面的水接觸角係97。以卜,&、, a丄,tfq以 95°〜121°為佳,97°〜109°較佳,97°~99。更佳。 在低反射膜14表面的油酸接觸角係5〇。以卜 二 A工’向以 50°〜90。為佳,52°〜87°較佳,55。〜85。更佳。 在低反射膜14表面的油酸滚落角係25。以nr 工、 M r,rfn 以 5°〜25°為佳,5°〜20°較佳,6°〜10°更佳。 若在低反射膜14表面的水接觸角、油酸接觸角及油酸 滚落角同時滿足前述範圍,則在低反射膜14表面的油脂污 12 201244924 物去除性會呈良好。 藉X射線光電子光譜法測定之低反射膜14表面的氟元 素比率,係以3〜20原子%為佳、5〜18原子%較佳、5〜16原子 %更佳。在低反射膜14表面的氟元素比率,係表示後述之 化合物(A)等之源自於含氟化合物之結構係以何種程度存 在於低反射膜14的表面及其附近。若在低反射膜14表面的 氟元素比率為3原子%以上,則油脂污物之去除性會更為顯 著。若在低反射膜14表面的氟元素比率為2〇原子%以下, 則對膜的光學設計不會有影響,能維持低反射性而屬較 佳。另外,關於X射線光電子光譜法,係一種藉由χ射線的 照射來觀察從樣本表面脫逸之光電子的方法,因此,分析 結果係可觀察得到的光電子脫逸深度的分析資訊、更具體 而言是從低反射膜的空気側最表面算起約數n m〜數十n m深 度的最表面層的分析資訊。 利用掃描探針顯微鏡裝置所測定之低反射膜14的表面 算術平均粗度(Ra),係以3.0~5.0nm為佳、3.0~4.5nm較佳、 3.0〜4.0nm更佳。低反射膜14的表面算術平均粗度(Ra)若在 3.0nm以上,則表示形成有非常微細的凹凸結構,易於提升 撥水撥油性。低反射膜14的表面算術平均粗度(Ra)若在 5.0nm以下’則油脂污物的去除性會更為提高。 低反射膜14的折射率係以1.20-1.46為佳、1.20〜1.40較 佳、1.20〜1.35更佳。低反射膜14的折射率若為1.20以上, 則低反射膜14的空隙率不會過高,故而耐久性會提升。低 反射膜14的折射率若在丨.46以下,則低反射膜14的反射率 13 201244924 會夠低。 低反射膜14的折射率n,係將單層低反射膜14形成於玻 璃板12表面,並針對該單層低反射膜14以分光光度計測得 在波長300〜l,200nm範圍内的最低反射率(亦即底部反射 率)Rmin、與玻璃板12之折射率ns,藉由下式(1)而計算出來: Rmin=(n-ns)2/(n+ns)2 • · · ⑴。 低反射膜14的厚度係以80〜100nm為佳、85~95nm較 佳。低反射膜14的厚度若為80nm以上,則低反射膜14會展 現出耐久性。低反射膜14的厚度若為l〇〇nm以下,則雖依所 使用膜之折射率而定’但作為單層膜會展現出低反射性故 而較佳。 低反射膜14的厚度,係從藉由掃瞄式電子顯微鏡觀察 低反射膜14剖面所得之影像來測定。 (附低反射膜玻璃板的製造方法) 本發明之附低反射膜玻璃板1 〇,係可藉由例如將形成 低反射膜14用之塗布液塗布於玻璃板12的表面,並依需要 加以預熱、最後燒成而製得。 塗布液係包含基質前驅物、中空微粒子與溶劑者。 塗布液亦可包含提升流平性用的界面活性剤、或提升 低反射膜I4之耐久性用的金屬化合物等。 基質削驅物係包含二氧化石夕前驅物、及含說喊化合物 及/或其水解縮合物,該含_化合物係於主鏈上具有聚(氧 基全敗慨基)鏈,且於前述主鏈之至少—側之末端具有水 解性矽烷基者。 14 201244924 别述含氟喊化合物的水解縮合物 物彼此的水解縮合物柯為含I醚化合 矽烷盥含氟—乳化矽前驅物之烷氧基 ” 3麟化合物間的水解縮合物。 基質前驅物方面,具體上可舉例 前驅物⑷、⑼及⑷切組中至少丨種之下述基貝 低反射船4之㈣旨料去除性 驅物’而由 ^ J蜆點出發,則以某皙 前驅物(a)較佳。 I則以丞買 ⑷包含:氧切前驅物及含氟料合物的基質前驅 物。 ㈨包含二氧切前驅物、含氟鱗化合物、及化合物⑷ 之水解縮合物的基質前驅物。 ⑷包=二氧切前驅物、含氣峻化合物彼此之水解縮 合物、及二氧化石夕前驅物(烧氧基魏)與含氟喊化合物之水 解縮合物的基質前驅物。 二氧化矽前驅物方面,可舉例如烷氧基矽烷、烷氧基 矽烷之水解縮合物(溶膠凝膠二氧化矽)' 或矽氧烷等;從低 反射膜14之各特性的觀點出發,較佳係烧氧基矽烧的水解 縮合物。 院軋基石夕炫方面,可舉例如:四烧氧基石夕烧(四甲氧基 矽炫、四乙氧基矽烧、四丙氧基矽烷、或四丁氧基矽烧等)、 具有全氟聚醚基之烷氧基矽烷(全氟聚醚三乙氧基矽坑 等)、具有全氟烷基之烷氧基矽烷(全氟乙基三乙氧基矽烷 等)、具有乙烯基之烷氧基矽烷(乙烯基三曱氧基矽烷、或乙 烯基三乙氧基矽烷等)、具有環氧基之烷氧基矽烷(2-(3,4- 15 201244924 環氧環己基)乙基三甲氧基石夕燒、%環氧丙氧基丙基:曱氧 =院、3-環氧丙氧基丙基甲基四乙氧基外、或3環氧丙 氧基丙基三乙氧基石夕院等)、或具有丙稀酿氧 烷(3-丙烯醯氧基丙基三甲氧基矽烷等)等。 氧土 烷氧基石夕炫之水解,以四燒氧基錢的情況而言,係 使用炫氧⑽狀4倍料^的水f錢作為觸媒 而予以贯施。酸可舉例如:無機酸(例如硝酸、硫酸或鹽酸 等= 戈有機酸(例如蟻酸、草酸、單氣醋酸、二氯醋酸、或 三氣醋酸等)。驗可舉例如··氨、氫氧化鈉、或氫氧化卸等。 從2基石夕Γ元之水解物之長期保存性的觀點出發, 以酸為宜。用於院氧基魏之水解的觸媒,係201244924 VI. Description of the invention: c. The present invention relates to a glass plate with a low reflection film, a glass plate with a low reflection film, a display device, and a display device. A glass plate with a low reflection film. Background of the Invention A low-reflection film glass plate having a low-reflection film on the surface of a glass plate can be used as a cover glass for a solar cell, a front plate of various displays and the like, various window glasses, and a cover glass for a touch panel. In various display devices such as small-sized displays such as mobile phones and PDAs, large-sized displays such as various televisions, and touch panels, in order to protect the display and improve the appearance, the cover glass (protective glass) is often used in front of the display element. Further, in order to increase the visibility of the image displayed on the display device, a low-reflection film glass plate having an anti-visible light reflecting film is used. Among them, 'the low-reflection film glass plate for various displays, automatic window glass, touch panel, etc.' or the aforementioned low-reflection film glass plate for the above display device often comes into contact with a human hand. Therefore, it is necessary to remove grease and dirt such as fingerprints. In the method of imparting grease stain removal property to a glass sheet having a low-reflection film, a method of attaching an oil-repellent film to the surface thereof or a method of coating an anti-staining layer on the anti-reflection layer is common (Patent Document 1). However, when the anti-oil film is attached to the surface of the glass sheet with a low-reflection film, the result of the decrease in productivity due to the steps such as the film-forming step and the film-coating step may occur. The problem of the deterioration of the appearance quality or the increase in the cost of the film. Further, when the antifouling layer is applied to the antireflection layer, problems such as a decrease in productivity may occur. PRIOR ART DOCUMENT Patent Document 1: 曰本特表 2002-506887A SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION The present invention provides that the reflectance is low on the surface of a glass plate and the grease and dirt removal property is good. A low-reflection film glass plate with a single-layer low-reflection film, a method for producing the glass plate with a low-reflection film, and a display device having the glass plate with a low-reflection film. Means for Solving the Problem The low-reflection film glass plate of the present invention is a low-reflection film glass plate having a single-layer low-reflection film comprising a matrix and hollow microparticles on the surface of the glass plate, characterized by being at a wavelength of 300 〜1, 200 nm. The minimum reflectance of the low-reflection film in the range is 1.7% or less; the water contact angle on the surface of the low-reflection film is 97° or more; and the oleic acid contact angle on the surface of the low-reflection film is 50° or more; The oleic acid rolling angle on the surface of the low-reflection film is 25. the following. The "~" indicating the above numerical range is used in the sense that the numerical values described before and after the numerical value are defined as the lower limit value and the upper limit value, and unless otherwise specified, the following meanings "~" in the present specification. use. In the low-reflection film-attached glass sheet of the present invention, the single-layer low-reflection film means that the film is made of a uniform or low-homogeneous or non-homogeneous one-layer film having a low reflection function. Further, the low reflection film-attached glass sheet of the present invention is intended to be a glass sheet having the above-mentioned low reflection film formed on the outermost layer of at least one surface of the glass sheet. Therefore, on the opposite side of the low-reflective film which is not formed on the anti-dragon glass, or in the lower layer of the low-reflection film formed on the outermost layer, a conductive film of a layer of tantalum, an anti-near-infrared film, Anti-electromagnetic wave film, color tone adjustment film, adhesion improving film, durability lifting film, antistatic film or other various functional films. The ratio of the fluorine element on the surface of the low-reflection film measured by X-ray photoelectron spectroscopy is preferably from 3 to 20% by atom. The arithmetic mean roughness (Ra)' of the surface of the low-reflection film measured by the scanning probe microscope apparatus is preferably 3 〇 5 5 〇 nm. The refractive index of the low-reflection film is preferably 丨邛~丨.46. The substrate is preferably a ruthenium dioxide as a main component and has a poly(oxyperfluoroalkylene) chain in the main chain, and has a hydrolyzable decyl group at the terminal of at least one side of the aforementioned main chain, and has It is derived from the structure of a fluorine-containing ether compound. The fluorine-containing ether compound ' is preferably a compound (4) represented by the following formula (A). RF1〇(CF2CF20)aCF2_(Q)b(-(CH2)d-SiLpR3.p)e (4). 'RF1 is a monovalent perfluoro saturated hydrocarbon group having a carbon number of 1 to 20 or a monovalent perfluoro saturated hydrocarbon group having 2 to 20 carbon atoms in which an etheric oxygen atom is interposed between carbon atoms and carbon atoms' and is not included ·〇(:ρ·2〇_Structure base; a is an integer from 1 to 200; b is 0 or 1; 201244924 Q is not present when b is 0' is a link of 2 or 3 when b is 1. Base; c is 丨 when Q is absent or Q is a divalent linking group, 2 when 卩 is a trivalent linking group; 2 is an integer of 2 to 6; L is a hydrolyzable group; R is a hydrogen atom Or a monovalent nicotine group; p is an integer of 1 to 3. The hollow microparticles are preferably hollow cerium oxide microparticles. The method for producing a low-reflection film glass sheet of the present invention is to produce a matrix having a surface on a glass sheet. A method for attaching a low-reflection film glass plate to a single-layer low-reflection film of hollow microparticles, comprising the steps of applying a coating core comprising a matrix precursor, a hollow coke and a solvent to a surface of a glass plate, and firing the composition. The secret precursor system comprises a dioxate precursor and a gas-containing ether compound and/or a hydrolysis condensate thereof, which has a poly(oxy group) in the main chain. The fluorine-extension-based chain has a mass-to-hydrogen ratio of hollow microparticles to a dioxo-precursor (81 〇 2 conversion) in the coating liquid towel at the end of at least the side of the primary bond (hollow microparticles) ^〇2) is 6/4 to 4/6; the ratio of the 3 disastrous compounds in the coating liquid is 相对% by mass relative to the hollow microparticles and the SiO2 precursor (in terms of Si〇2). 8~3_〇% by mass. Further, the above-mentioned "fluorine-containing ether compound and/or its hydrolysis-condensation product" means, in the present specification, a group selected from the group consisting of a fluorine-containing ether compound and a gas-containing compound = hydrolysis condensate. (Phase. Month) The compound represented by the following formula (4) is preferably 20120444 RFl(CF2CF20)aCF2-(Q)b(_(CH2)d-SiLpR3.p)e (4). T&gt ; Fl , a, b, Q, c, d, ; L, R and p are synonymous with the foregoing. The foregoing cerium oxide precursor, preferably a hydrolyzed condensate of alkoxy decane. In the step of adjusting the coating liquid in the method for producing a glass sheet, it is preferred to: after the alkoxydecane is hydrolyzed, the compound (A) is added, and then the hollow fine particle dispersion is added to prepare a coating liquid. Further, the present invention provides a display device including a low-reflection film glass plate disposed on a display surface of a frame, a display element, and the display element. : The aforementioned low-reflection film glass plate is attached to the surface of the glass plate a single-layer low-reflection film comprising a matrix and hollow microparticles, wherein the lowest reflectance of the low-reflection film in the wavelength range is 1.7% or less; and the water contact angle on the surface of the low-reflection film is 97 or more; The oleic acid contact angle of the surface of the low-reflection film is 5 Å or more; the oleic acid roll-off angle on the surface of the low-reflection film is 25. Hereinafter, the present invention provides a glass plate with a low-reflection film for a display device. a low-reflection film glass plate having a single-layer low-reflection film containing a matrix and hollow microparticles on the surface of the glass plate, and the lowest reflectance of the low-reflection film in the range of wavelength 3 〇〇 l, 200 nm is 7 % or less; the water contact angle on the surface of the low-reflection film is 97 or more; the oleic acid contact angle on the surface of the low-reflection film is 50° or more; and the oleic acid roll-off angle on the surface of the low-reflection film is 25° or less That is, the display device of the present invention includes the low-reflection film glass plate disposed on the display surface of the frame 201244924, the display element, and the display element. Further, the present invention provides The low-reflection film glass plate with the low-reflection film glass plate and the low-reflection film glass plate for display of the display device described above, wherein the low-reflection film is formed on the outer side of the display device, that is, the viewer The outermost side of the side or the operator side. EFFECT OF THE INVENTION The low-reflection film-attached glass sheet of the present invention has a single-layer low-reflection film having a low reflectance on the surface of the glass sheet and good removability of grease and dirt. According to the method for producing a low-reflection film glass sheet according to the present invention, it is possible to produce a low-reflection film glass sheet having a single-layer low-reflection film having a sufficiently low reflectance on the surface of the glass sheet and having good grease stain removal property. The display device of the present invention has a glass plate as a display device for a cover glass. The glass plate has a single-layer low-reflection flaw having a low reflectance and good grease stain removal property. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an example of a low-reflection film glass plate and a low-reflection film glass plate for use in a display device of the present invention. Fig. 2 is a broom-type electron micrograph of a cross section of a low-reflection film glass plate (Example). Fig. 3 is a cross-sectional view showing an example of a display device of the present invention. 1C square fe 】 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 8 201244924 Fig. 1 shows a low reflection film glass plate of the present invention, and a low reflection film glass plate for a display device of the present invention (hereinafter also referred to as a low reflection film) A cross-sectional view of an example of a glass plate). The low-reflection film glass plate 10 has a glass plate 12 and a low-reflection film 14 formed on the surface of the glass plate 12. Fig. 3 is a cross-sectional view showing an example of the display device 1 of the present invention. The display device 100 includes a low reflection film glass plate 1 for display devices (hereinafter also referred to simply as a low reflection film glass plate 10), a display element 20, and a frame body 30. The low reflection film glass plate 10 has a glass plate 12 and a low reflection film 14 formed on the surface of the glass plate. Further, the low-reflection film 14 is formed on the surface opposite to the surface of the glass plate facing the display element. In Figs. 1 and 3, the upper surface side of the low-reflection film 14 to which the low-reflection film glass sheet 10 is attached is the outer side of the display device, that is, the viewer side or the operator side. The display device of the present invention includes various display devices such as a small display such as a mobile phone or a mobile information terminal, a large display such as various televisions, or a touch panel. In particular, mobile phones, mobile information terminals, touch panels, and the like have many opportunities for direct contact with the human hand on the display surface of the display device. The display of the present invention can be classified as a low-reflection film glass plate excellent in fingerprint removal. A preferred embodiment of the device. The display element may be, for example, a liquid crystal display member, a plasma display member, or an organic EL display member. The frame system accommodates the display element 2A and the box-shaped member with the low-reflection film glass plate 1', and the material thereof may be, for example, a resin or a metal. (Slope plate) 201244924 The glass plate 12 may, for example, be soda lime glass, borosilicate glass, aluminosilicate glass, or non-glass. Further, it may be a smooth glass formed by a floating glass plate method or the like, or may be an embossed glass having irregularities on its surface. Further, the refractive index of the glass plate 12 is preferably from 1.45 to 1.60 in terms of the relationship between the low-reflection film and the refractive index. A layer other than the low-reflection film 14 such as the barrier undercoat layer may be formed in advance on the surface of the glass plate I2. (Low-reflection film) A single-layer film containing a matrix and hollow fine particles formed by coating a coating liquid for forming a low-reflection film described later. However, the low-reflection film 丨4, (4) is formed by coating the film with the coating of the film (4) by the Lai: owing money, as long as the film is regarded as a low-reflection film function or a single layer on the real f The structure is preferably a material having a low relative refractive index, a low reflectance, a good readability, and a good adhesion to the glass plate 12. The second component is a main component and has A small amount of material derived from the fluorine-containing scalar compound = _ _, from the gamma compound knot = = ' is essentially better by the frequency of the dioxide. So-called ". MW t" "The ratio of dioxotomy is in the matrix (1 〇〇 = = f% or more, and substantially consists of _ _, = 化合物 compound (A) structure and not _ pure material only consists of dioxin Furthermore, the grease-removing strains are as follows: a matrix starting from the main chain, a matrix having a helium-based perfluorocarbon-based chain, and at least the first 10 201244924 The end of the __ side has a hydrolyzable Wei group and has a structure derived from a fluorine-containing ether compound. ', the Kebe aspect, may be exemplified by The following matrix precursors (4), (b), and (c) are at least one type of matrix precursor burned material, etc., and the matrix precursor (4) is burned from the viewpoint of good removability. (4) A matrix precursor comprising a dioxate precursor described later and a compound described later. (b) Hydrolytic condensation of a compound of the above-described (2) compound and a fluoroether compound, which will be described later. (c) a hydrolyzed condensate comprising a ceria precursor described later, a hydrolyzed condensate of a fluoroether compound described later, and a hydrolyzed condensate of a ceria precursor (alkoxydecane) and a fluoroether compound. Matrix precursor. Examples of the shell material of the hollow fine particles include Al2〇3, Si〇2, Sn02, Ti〇2, Zr02, ZnO, Ce02, Sb-containing SnOx (ATO), and Sn-containing In2〇3 (iT). 〇), 仙02, etc. One of them may be used alone or two or more kinds may be used alone. Further, the shape of the hollow fine particles may be, for example, a spherical shape, an elliptical shape, a needle shape, a plate shape, a rod shape, or a conical shape. Cylindrical, cubic, cuboid, diamond, star, Further, the fine particles of the hollow microparticles may be present in an independent state, and the microparticles may be connected in a chain shape, and the microparticles may be aggregated together. In terms of the hollow microparticles, the refractive index of the low-reflection film 14 is low and energy It has a low reflectance, good chemical stability, and good adhesion to the glass plate 12. 11 201244924 Point is preferred as a hollow hollow cerium oxide microparticle. The average primary particle diameter of the hollow cerium oxide microparticles is preferably 5~ 150 nm, more preferably 50 to 100 nm. When the average primary particle diameter of the hollow ceria particles is 5 nm or more, the reflectance of the low-reflection film 14 is sufficiently low. The average primary particle diameter of the hollow ceria particles If it is 15 or less, the haze of the low-reflection film 14 can be depressed. The average primary particle diameter was determined by randomly selecting one microparticle from an electron micrograph, measuring the particle diameter of each microparticle, and averaging the particle diameter of one microparticle. The lowest reflectance of the low-reflection film 14 in the range of 300 to 1,200 nm is 1.7. /. The following is preferably from 0.2 to 1.7%, more preferably from 8 to 11%, more preferably from 0.9 to 1%. When the minimum reflectance of the low-reflection film 14 is less than 7%, the low-reflection film glass sheet 10 satisfies the low reflectance required for various displays, window glass for automobiles, or touch panels. When the minimum reflectance of the low-reflection film 14 is more than 1.7%, there is a case where the low reflection characteristics are insufficient. The water contact angle 97 on the surface of the low reflection film 14. Preferably, &, a, tfq is preferably 95° to 121°, preferably 97° to 109°, and 97° to 99. Better. The oleic acid contact angle on the surface of the low-reflection film 14 is 5 Å. Take the two A workers' direction to 50 ° ~ 90. Preferably, 52° to 87° is preferred, 55. ~85. Better. The oleic acid roll angle 25 on the surface of the low-reflection film 14 is obtained. Preferably, nr, M r, rfn is preferably 5° to 25°, 5° to 20°, and more preferably 6° to 10°. When the water contact angle, the oleic acid contact angle, and the oleic acid roll-off angle on the surface of the low-reflection film 14 satisfy the above range, the oil-repellency on the surface of the low-reflection film 14 12 201244924 is excellent. The ratio of the fluorine element on the surface of the low-reflection film 14 measured by X-ray photoelectron spectroscopy is preferably 3 to 20% by atom, more preferably 5 to 18% by atom, still more preferably 5 to 16% by atom. The ratio of the fluorine element on the surface of the low-reflection film 14 indicates how much the structure derived from the fluorine-containing compound such as the compound (A) to be described later exists on the surface of the low-reflection film 14 and its vicinity. When the fluorine element ratio on the surface of the low-reflection film 14 is 3 atom% or more, the grease stain removal property is more remarkable. When the fluorine element ratio on the surface of the low-reflection film 14 is 2 Å or less, the optical design of the film is not affected, and it is preferable to maintain low reflectance. In addition, regarding X-ray photoelectron spectroscopy, a method of observing photoelectrons that are released from the surface of a sample by irradiation of x-rays, therefore, the analysis result is an analysis information of the observed depth of photoelectron escape, more specifically It is analysis information of the outermost layer of the depth of about several nm to several tens of nm from the outermost surface of the open side of the low-reflection film. The arithmetic mean roughness (Ra) of the surface of the low-reflection film 14 measured by the scanning probe microscope device is preferably 3.0 to 5.0 nm, more preferably 3.0 to 4.5 nm, and more preferably 3.0 to 4.0 nm. When the arithmetic mean roughness (Ra) of the surface of the low-reflection film 14 is 3.0 nm or more, it means that a very fine uneven structure is formed, and it is easy to improve the water-repellent property. When the arithmetic mean roughness (Ra) of the surface of the low-reflection film 14 is 5.0 nm or less, the removal of grease stains is further improved. The refractive index of the low-reflection film 14 is preferably from 1.20 to 1.46, more preferably from 1.20 to 1.40, more preferably from 1.20 to 1.35. When the refractive index of the low-reflection film 14 is 1.20 or more, the void ratio of the low-reflection film 14 is not excessively high, and durability is improved. When the refractive index of the low-reflection film 14 is 丨.46 or less, the reflectance of the low-reflection film 14 13 201244924 may be sufficiently low. The refractive index n of the low-reflection film 14 is such that a single-layer low-reflection film 14 is formed on the surface of the glass plate 12, and the lowest reflection in the range of 300 to 1,200 nm is measured by a spectrophotometer for the single-layered low-reflection film 14. The rate (i.e., the bottom reflectance) Rmin and the refractive index ns of the glass plate 12 are calculated by the following formula (1): Rmin = (n - ns) 2 / (n + ns) 2 • · · (1). The thickness of the low-reflection film 14 is preferably 80 to 100 nm and preferably 85 to 95 nm. When the thickness of the low-reflection film 14 is 80 nm or more, the low-reflection film 14 exhibits durability. When the thickness of the low-reflection film 14 is 10 nm or less, it depends on the refractive index of the film to be used, but it is preferable to exhibit low reflectance as a single-layer film. The thickness of the low-reflection film 14 was measured from an image obtained by observing the cross section of the low-reflection film 14 by a scanning electron microscope. (Manufacturing Method of Low-Reflective Film Glass Plate) The low-reflection film glass plate 1 of the present invention can be applied to the surface of the glass plate 12 by, for example, applying a coating liquid for forming the low-reflection film 14 and, if necessary, Preheated and finally fired. The coating liquid contains a matrix precursor, hollow fine particles, and a solvent. The coating liquid may also contain an interface activity for improving leveling properties, or a metal compound for improving the durability of the low-reflection film I4. The matrix splicing system comprises a SiO2 precursor, and a screaming compound and/or a hydrolyzed condensate thereof, the _ compound having a poly(oxygen-all-generating) chain in the main chain, and the main At least one of the ends of the chain has a hydrolyzable alkyl group. 14 201244924 The hydrolyzed condensate of the hydrolyzed condensate of the fluorine-containing compound is a hydrolyzed condensate between the 3 lining compounds of the fluorinated-emulsified ruthenium precursor containing the ether I. In particular, the precursors (4), (9), and (4) can be exemplified by at least the following types of kebab low-reflection vessels 4 (4) Preferably, the substance (a) comprises a matrix precursor comprising: an oxygen-cut precursor and a fluorine-containing compound. (9) a hydrolysis condensate comprising a dioxic precursor, a fluorine-containing scalar compound, and the compound (4). Matrix precursors. (4) Substrate precursors of sulphur dioxide precursors, hydrolyzed condensates containing gas compounds, and hydrolyzed condensates of sulphur dioxide precursors (azepine) and fluorine-containing compounds The cerium oxide precursor may, for example, be a hydrolyzed condensate of alkoxy decane or alkoxy decane (sol-gel cerium oxide) or a siloxane, or the like, from the viewpoint of each characteristic of the low-reflection film 14. , preferably a hydrolyzed shrinkage of alkoxypyrene For the purpose of the court rolling base stone, for example, four kinds of oxy-ceramics (tetramethoxy oxime, tetraethoxy oxime, tetrapropoxy decane, or tetrabutoxy oxime), Alkoxy decane having a perfluoropolyether group (perfluoropolyether triethoxy crater, etc.), alkoxy decane having a perfluoroalkyl group (perfluoroethyl triethoxy decane, etc.), having ethylene Alkoxy decane (vinyl trimethoxy decane, or vinyl triethoxy decane, etc.), alkoxy decane having an epoxy group (2-(3,4- 15 201244924 epoxycyclohexyl) Ethyltrimethoxy oxalate, % glycidoxypropyl: oxime = hospital, 3-glycidoxypropylmethyltetraethoxy, or 3 glycidoxypropyl triethyl Oxygen stone kiln, etc.), or acrylonitrile (3-propenyloxypropyl trimethoxy decane, etc.), etc. Oxygen alkoxy oxysyl sulphate hydrolysis, in the case of four-burning oxygen In other words, the water is used as a catalyst by using water (10) in the form of a catalyst. The acid may be, for example, a mineral acid (for example, nitric acid, sulfuric acid or hydrochloric acid, etc. = organic acid (for example, formic acid, Oxalic acid, mono-glycolic acid, dichloroacetic acid, or tri-acetic acid, etc.), for example, ammonia, sodium hydroxide, or hydrazine dehydration, etc. From the viewpoint of long-term preservation of the hydrolysate of the base stone Starting from acid, suitable for the catalyst of the hydrolysis of the oxime

空微粒子的分散者為宜β T =㈣合物’可於主鏈—側之末端具有水解性石夕烧 基亦可於主鏈兩側之末端均具有水解 末鳊具有水解性矽烷基者較佳。 前述低反射層,係形成於膜最表面 物會直接接觸的膜最表面部分。 m可 含氟醚化合㈣、可為單-化麵 伸院基)鏈、末端某兀了為κ氧基全說 物。 、或連結基等相異之2種類以上的混合 含氟醚化合物的f 佳、_,較佳。數;平均=量/系:, 时摩擦性良好_量右在刖述圍内,則 …且成基賭驅物其他成分間之相溶性 16 201244924 的觀點出發’前述化合物的數量平均分子量係以_〜2,_ 特佳。 一觳5忍為,含氟醚化合物在數量平均分子量較小時, 與基材間的化學鍵結會變㈣。其原因係認為是於每單位 分子量存在的水解性矽烷基數量變多之故。不過,本發明 人已確右數量平均分子量未達前述範圍的下限値時, 則財摩擦性會容易變差。再者,若數量平均分子量超過前 述$巳圍的上限値時,則耐摩擦性降低^其理由係認為是每 單位分子罝所存在的水解性矽烷基數量減少所致的影響變 大之故。 含氟醚化合物由於具有聚(氧基全氟伸烷基)鏈,因此氟 原子的含有量較多。因此,含㈣化合物能夠形成初期撥 水撥油性咼、耐摩擦性或指紋污物去除性佳的低反射層。 含氟醚化合物中的水解性矽烷基(_SiLmR3m)係藉由水 解反應形成矽醇基(Si-OH),前述矽醇基以分子間反應而形 成Si-0-Si鍵結、或前述矽醇基與基材表面的羥基(基材_〇H) 行脱水縮合反應而形成化學鍵結(基材_〇_Si)。亦即,本發 明的低反射層’係以本化合物之水解性矽烷基的一部或全 部經水解性反應的狀態來包含本化合物。 含氟醚化合物可舉例如化合物(A)。 化合物(A)係以下式(A)表示的化合物。 RF10(CF2CF20)aCF2-(Q)b(.(CH2)d.SiLpR3.p)c ...(A) 〇 RF1為碳數1〜20之1價全氟飽和烴基,或是已在碳原子_ 碳原子間插入醚性氧原子的碳數2〜2 0之1價全氟飽和烴 17 201244924 基,且Rn為不含_OCF2〇_結構的基。 a為1〜200的整數’以2〜1〇〇的軟奴达7土, 的整數為佳、3〜50的整數較 佳、5〜25的整數更佳。 b為0或卜較佳為J。 Q在b為0時不存在,在_時係如價的連結基。 C在Q不存在時或Q為2價連結基時為卜在收3價連結 基時為2。 d為2〜6的整數。 R為氫原子或1價的煙基; L為水解絲。水解性基係因Si_L基的水解而能夠形成 Si-OH基的基團。 L可舉例如:烷氧基、丙烯醯氧基、酮肟基、烯氧基、 胺基、胺氧基、酿胺基、異氰酸g旨基、或函素原子等,從 兼顧化合物(A)的安定性與易於水解性的觀點出發,以烧氧 基、異氰酸酯基及函素原子(尤其是氯原子)為佳。烷氧基方 面係以碳數1〜3的烷氧基為佳、甲氧基或乙氧基較佳。含氟 化合物中L為2以上存在的情況下,L可為相同基亦可為相異 基’相同基者由取得容易性之觀點係屬較佳。 P為1〜3的整數。卩為丨以上時,藉由Si-ΟΗ基彼此縮合, 源自於化合物(A)之結構能夠與基質強固地鍵結。p係以2或 3較佳、3特佳。 化合物(A)方面,從油脂污物去除性或化合物(A)的合 成容易性的觀點出發,係以下述的化合物(A-1)或化合物 (A-2)較佳。 201244924 CF30(CF2CF20)alCF2C(0)NH-(CH2)3-Si(0CH3)3 ... (A-l)。 CF3〇(CF2CF20)a2CF2CH20(CH2)3Si(OCH3)3 …(/^)。 惟al及a2係5〜25的整數。 化合物(A)中,由於不存在-〇CF2〇-結構,故可形成即 便於1觸媒的存在及置於商溫條件下,财劣化性仍良好的 低反射膜14。 再者,化合物(A)的(CF2CF2〇)a結構,係一不存在會使 为子運動性低下之CF3基的伸烧基氧基結構。故而,化合物 (A)自體的分子運動性會較高,而由含化合物(A)之基質前 驅物所形成的低反射膜14 ,會是對油脂污物去除性良好的 膜。 塗布液中,中空微粒子對二氧化矽前驅物(Si〇2換算) 的質量比(中空微粒子/Si〇2) ’較佳係6/4〜4/6。中空微粒子 的比率若低於6/4,則低反射膜14的表面算術平均粗度(Ra) 變小,低反射膜14的油脂污物去除性會提升。中空微粒子 的比率若較4/6更高,則低反射膜14的折射率會較低,低反 射膜14的反射率會夠低。 塗布液中,含氟醚化合物的比率,相對於中空微粒子 與一氧化石夕刖驅物(Si〇2換算)的合計(1 〇〇質量%),係以 0.8〜3.0質量%為佳、1.〇〜ι_8質量。/〇較佳。含氟醚化合物的 比率若為0.8質量%以上,則油脂污物的去除性會更為提 升。含氟醚化合物的比率若為2.〇質量%以下,則不會發生 含氟醚化合物在膜表面的局部性偏在所致的霧度上昇等問 201244924 題,故屬較佳。 溶劑方面,可列舉基質前驅物 初,合及的溶劑、中空微粒 子分散液的分散媒。 烧氧基錢的水解縮合物溶液的溶劑方面,較佳係水 和醇類(例如甲醇、乙醇、異丙醇、 ^ 丁知或二丙酮醇等)的混 合溶劑。 含_化合物溶液的溶劑方面,較佳係有機溶劑。有 機溶劑係可騎系有機溶劑,亦可為魏㈣機溶劑,亦 y同時含有兩種溶劑。前述溶劑係可舉例如甲醇、或乙醇 等。 / ,係可舉例如水、醇類、 醇_、含氮化合物、或 中空微粒子分散液的分散媒 酮類、醚類、溶纖素類、酯類、 含硫化合物等。 塗布液_製料,係可舉够從下述 方二^於玻璃板12的表面時,含氟=物 +上塗膜的表面,燒成後源自於含㈣化合物之結構偏重 存在於低反射膜14的表面,而可發揮優良的油脂污物去除 性’由此觀點出發’較佳係方法(P)。再者中空微粒子的 分散液,從抑制中空微粒子凝聚的觀點出發,將基質前驅 物溶液稀釋後再加入者較佳。 (α)將溶液中的烷氧基矽烷及含氟醚化合物水解後,視 需求以溶劑稀釋,接著加入中空微粒子分散液的方、去。 (β)將溶液中的烧氧基石夕烧水解後(較佳係從水解開始 經過2小時以上之後)、加入含氟醚化合物溶液,依需求以 20 201244924 溶劑稀釋,接著加入中空微粒子分散液的方法。 (γ)將溶液中的烷氧基矽烷水解之後,以溶劑稀釋,隨 後加入含氟醚化合物溶液,接著加入中空微粒子分散液的 方法。 塗布方法方面,可舉例如周知的濕式塗布法(例如旋轉 塗布法、喷霧塗布法、浸潰塗布法、模具塗布法、簾式塗 布法、網版塗布法、喷墨法、流動式塗布法、凹版塗布法、 棒式塗布法、膠版塗布法、狹縫塗布法、輥式塗布法等)等。 塗布溫度係以室溫〜200。〇為佳、室溫〜150。(:較佳。 燒成溫度係以30°C以上為佳、100〜180。(:較佳,因應玻 璃板、微粒子或基質材料而適當決定為宜。 燒成時間係3分以上較佳、1〇分〜60分更佳,因應玻璃 板、微粒子或基質材料而適當決定為宜。 本發明之附低反射膜玻璃板,係於玻璃板之表面具有 含基質與中空微粒子的單層低反射膜者,較佳係前述基質 為具有源自於前述含氟醚化合物之結構、且前述中空微粒 子為刖述中空二氧化矽微粒子者,而更佳係前述含氟醚化 合物為以下式(A)表示之化合物(a)者。 本發明之附低反射膜玻璃板,係藉由將含基質前驅 物、中空微粒子及溶劑的塗布液於玻璃板表面上塗布而製 造。 亦即,本發明之附低反射膜玻璃板,係於表面具有低 反射膜,且前述低反射臈係包含基質前驅物及中空微粒 子。前述低反㈣,較佳係由包含基f前驅物(含二氧化石夕 21 201244924 前驅物、含氟醚化合物及/或其水解縮合物)、中空二氧化矽 微粒子及溶劑之塗布液所形成;更佳係所用塗布液為包含 基質前驅物(含有烷氧基矽烷與以下式(A)表示之化合物(A) 的水解縮合物者)、中空二氧化矽微粒子及溶劑者;特佳係 包含基質前驅物(含有四乙氧基矽烷與以下式(A)表示之化 合物(A)的水解縮合物者)、中空二氧化矽微粒子及溶劑者。 RH0(CF2CF20)aCF2-(Q)b(-(CH2)d-SiLpR3.p)e ...(a)。 RH、a、b、Q、c、d、L、R及p係具有與前述相同之意 義。 (作用功效) 以上所說明的本發明之附低反射膜玻璃板,係於玻璃 板之表面具有含基質與中空微粒子的單層低反射膜的附低 反射膜玻璃板’在波長300〜l,200nm的範圍内,前述低反射 膜的最低反射率為1.7%以下,在前述低反射膜表面的水接 觸角為97以上,在刖述低反射膜表面的油酸接觸角為5〇〇 以上,在前述低反射膜表面的油酸滾落角為25〇以下,因此 低反射膜的反射率足夠低且油脂污物的去除性良好。 以上所說明的本發明之附低反射膜玻璃板之製造方 法,係具有步驟:將含基質前驅物、中空微粒子及溶劑的 塗布液於玻璃板的表面上塗布並燒成;基質前驅物係具有 二氧化矽前驅物及含氟醚化合物及/或其水解縮合物,該含 氟醚化合物係於主鏈具有聚(氧基全氟伸烷基)鏈且於前1 主鏈之至少一側的末端具有水解性矽烷基者;塗布液中的 中空微粒子對二氧化矽前驅物(Si〇2換算)的質量比(中空微 22 201244924 p #,相對 粒子/Si〇2)係6/4〜4/6 ;塗布液中的含氟醚化合物必’ 裙 对(1〇0隽 於中空微粒子與二氧化矽前驅物(Si02換算)的含 量%)係0·8~3.0質量%,因此’本方法係能製造〆5f 士G 矣石I 治"一* /5 *6:1* Ηίί AA 44* :¾ 夕At α,丨_ 〇匕if"勿 好之單層低反射膜的附低反射膜玻璃板。 以上所說明的本發明之顯示裝置,係包含附低反射膜 玻璃板,其係於玻璃表面具有含基質與中空微粒子之單層 低反射膜者。而且前述附低反射膜玻璃板’其在波長 300〜1,200nm範圍内之前述低反射膜的最低反射率為1.7% 以下,在前述低反射膜表面的水接觸角為97。以上,在前述 低反射膜表面的油酸接觸角為50。以上,在前述低反射膜表 面的油酸滾落角為25。以下,因此低反射膜的反射率足夠低 且油脂污物的去除性良好。 實施例 以下,以實施例進一步詳細說明本發明。 例 15〜18、21〜23、26〜28、31〜34、37〜42、45〜50、53〜58 及61〜66為實施例;例 1〜14、19、20、24、25、29、30、35、 36、43、44、51、52、59及60為比較例。 (視感反射率) 低反射膜的反射率係使用分光光度計(日立製作所公 司製造,型號:U-4100)測定。視感反射率係對波長 380〜780nm之反射率乘上權重並平均化的反射率。 (最低反射率) 使用分光光度計(曰立製作所公司製、型號:U-4100) 23 201244924 測定波長300〜1,200nm之低反射膜的反射率,求出反射率的 最小値(最低反射率)。 (霧度) 附低反射膜玻璃板的霧度,係使用霧度測定裝置 (BYK-Gardner公司製、Haze-Gard Plus)測定。 (水接觸角) 在低反射膜的表面上,將約48μί的蒸餾水置於3處,使 用接觸角計(協和界面科學公司製、FAMAS)測定各個接觸 角,求出3個値的平均値。 (油酸接觸角) 在低反射膜的表面上,將約48kL的油酸置於3處,使用 接觸角計(協和界面科學公司製、FACE SLIDING ANGLE METER)測定各個油酸接觸角,求出3個値的平均値。 (油酸滾落角) 將附低反射膜玻璃板保持水平,在低反射膜的表面滴 下48μί的油酸後,將附低反射膜玻璃板慢慢傾斜,測定當 油酸開始滾落時的附低反射膜玻璃板與水平面間的角度 (滾落角)。測定結果方面,「無法測定」係表示:油酸在基 板上攤散,即便傾斜附低反射膜玻璃板亦無法觀察到油酸 的移動等狀態。 (氟元素的比率) 例11、23及35的三個附低反射膜玻璃板,係使用X射線 光電子分光裝置(Ulvac-phi公司製、Quantera SXM),求出 在低反射膜表面的氟元素比率。從3點之測定結果,作成低 24 201244924 反射膜表面的氟元素比率相對於塗布液中的化合物(A)比 率的檢量線。除了例11、23及35之外,其他例的附低反射 膜玻璃板,係使用檢量線而由塗布液中化合物(A)的比率, 求出在低反射膜表面的氟j元素比率。 (算術平均粗度) 低反射膜表面的算術平均粗度(Ra),係使用掃招探針 顯微鏡裝置(SII奈米科技公司製、SPA400DFM)測定。 (折射率) 低反射膜的折射率η’係從以分光光度計對該單層低反 射膜測付在波長300〜1200nm的範圍内的最低反射率 Rmin、與玻璃板之折射率ns,藉由下式(1)而計算出來。The disperser of the empty microparticles is preferably β T = (tetra) compound. It may have a hydrolyzable core at the end of the main chain side, or may have a hydrolyzed end at both ends of the main chain. good. The aforementioned low-reflection layer is formed on the outermost surface portion of the film where the outermost surface of the film directly contacts. m can be a fluorine-containing ether compound (four), can be a single-formed surface, and the end of the chain is a κ oxy group. It is preferable that the mixed fluorine-containing ether compound of two or more types having different types of linking groups or the like is preferable. Number; average = quantity / system:, when the friction is good _ the amount is right inside the narration, then... and the compatibility between the other components of the gambling repeller 16 201244924 From the viewpoint of the number average molecular weight of the aforementioned compound _~2, _ Very good. One 觳5 is that the chemical bond between the fluorinated ether compound and the substrate changes when the number average molecular weight is small (4). The reason for this is considered to be that the amount of hydrolyzable decyl group per unit molecular weight is increased. However, the inventors have confirmed that when the right average molecular weight does not reach the lower limit of the above range, the frictional property is likely to be deteriorated. In addition, when the number average molecular weight exceeds the upper limit 前 of the above-mentioned range, the friction resistance is lowered. The reason for this is that the influence of the decrease in the number of hydrolyzable decyl groups per unit molecular enthalpy is increased. Since the fluorine-containing ether compound has a poly(oxyperfluoroalkylene) chain, the fluorine atom is contained in a large amount. Therefore, the compound containing (d) can form a low-reflection layer which is excellent in initial water-repellent oil enthalpy, abrasion resistance or fingerprint dirt removal property. The hydrolyzable decyl group (_SiLmR3m) in the fluorine-containing ether compound forms a sterol group (Si-OH) by a hydrolysis reaction, and the sterol group forms an Si-0-Si bond by intermolecular reaction, or the aforementioned sterol The base and the hydroxyl group on the surface of the substrate (substrate_〇H) undergo a dehydration condensation reaction to form a chemical bond (substrate_〇_Si). That is, the low reflection layer ' of the present invention contains the present compound in a state in which one or all of the hydrolyzable alkylene group of the present compound is hydrolyzed. The fluorine-containing ether compound may, for example, be a compound (A). The compound (A) is a compound represented by the following formula (A). RF10(CF2CF20)aCF2-(Q)b(.(CH2)d.SiLpR3.p)c (A) 〇RF1 is a monovalent perfluoro saturated hydrocarbon group having a carbon number of 1 to 20, or has been in a carbon atom. _ A carbon-based 2- to 2-monovalent perfluoro saturated hydrocarbon 17 201244924 group having an etheric oxygen atom interposed between carbon atoms, and Rn is a group having no _OCF2〇 structure. a is an integer of 1 to 200', and is preferably an integer of 2 to 1 Å, and an integer of 3 to 50 is preferable, and an integer of 5 to 25 is more preferable. b is 0 or bu is preferably J. Q does not exist when b is 0, and is a linkage base of valence at _. C is 2 when Q is not present or when Q is a divalent linking group. d is an integer of 2 to 6. R is a hydrogen atom or a monovalent nicotine group; L is a hydrolyzed filament. The hydrolyzable group is a group capable of forming a Si-OH group by hydrolysis of a Si_L group. L may, for example, be an alkoxy group, an acryloxy group, a ketoximino group, an alkenyloxy group, an amine group, an amine group, a brewing amine group, an isocyanate group, or a nut atom, and the like. From the viewpoint of stability and ease of hydrolysis of A), an alkoxy group, an isocyanate group, and a hydroxyl atom (particularly a chlorine atom) are preferred. The alkoxy group is preferably an alkoxy group having 1 to 3 carbon atoms, preferably a methoxy group or an ethoxy group. In the case where L is 2 or more in the fluorine-containing compound, L may be the same group or may be a hetero group. The same group is preferred from the viewpoint of availability. P is an integer of 1 to 3. When 卩 is 丨 or more, the structure derived from the compound (A) can be strongly bonded to the substrate by condensing the Si-fluorenyl groups with each other. Preferably, p is 2 or 3, and 3 is particularly preferred. In the case of the compound (A), the following compound (A-1) or compound (A-2) is preferred from the viewpoint of the grease stain removal property or the ease of synthesis of the compound (A). 201244924 CF30(CF2CF20)alCF2C(0)NH-(CH2)3-Si(0CH3)3 (A-l). CF3〇(CF2CF20)a2CF2CH20(CH2)3Si(OCH3)3 (/^). Only al and a2 are integers of 5 to 25. In the compound (A), since the -〇CF2〇-structure is not present, it is possible to form the low-reflection film 14 which is convenient for the presence of the catalyst and is placed under commercial temperature conditions and which is excellent in deterioration of the acid. Further, the (CF2CF2〇)a structure of the compound (A) is a structure in which the CF3 group of the CF3 group which is low in mobility is not present. Therefore, the molecular mobility of the compound (A) itself is high, and the low-reflection film 14 formed of the matrix precursor containing the compound (A) is a film excellent in grease stain removal. In the coating liquid, the mass ratio of the hollow fine particles to the ceria precursor (in terms of Si〇2) (hollow fine particles/Si〇2)' is preferably 6/4 to 4/6. When the ratio of the hollow fine particles is less than 6/4, the arithmetic mean roughness (Ra) of the surface of the low-reflection film 14 becomes small, and the grease stain removal property of the low-reflection film 14 is improved. If the ratio of the hollow fine particles is higher than 4/6, the refractive index of the low-reflection film 14 will be low, and the reflectance of the low-reflection film 14 will be sufficiently low. In the coating liquid, the ratio of the fluorine-containing ether compound is preferably 0.8 to 3.0% by mass, based on the total amount (1% by mass) of the hollow fine particles and the oxidized rock oxide (in terms of Si 〇 2). .〇~ι_8 quality. /〇 is better. When the ratio of the fluorine-containing ether compound is 0.8% by mass or more, the removal of grease and dirt is more enhanced. When the ratio of the fluorine-containing ether compound is not more than 2.5% by mass, the haze of the fluorine-containing ether compound which is locally localized on the surface of the film does not occur, and it is preferable. The solvent may, for example, be a solvent for the initial preparation of the matrix precursor or a dispersion medium for the hollow fine particle dispersion. The solvent of the hydrolyzed condensate solution of the oxygenated money is preferably a mixed solvent of water and an alcohol (e.g., methanol, ethanol, isopropanol, tetrabutyl or diacetone). The solvent of the _ compound-containing solution is preferably an organic solvent. The organic solvent can be used as an organic solvent, or it can be a Wei (4) machine solvent, and y contains both solvents. The solvent may, for example, be methanol or ethanol. Further, for example, water, alcohols, alcohols, nitrogen-containing compounds, or dispersion ketones of hollow particle dispersions, ethers, cellosolves, esters, sulfur-containing compounds, and the like can be mentioned. The coating liquid_material can be obtained from the surface of the glass plate 12, the surface of the fluorine-containing material + the upper coating film, and the structure derived from the compound containing (4) after baking is present in a low weight. The surface of the reflective film 14 is excellent in grease stain removal property. From the viewpoint of the present invention, the method (P) is preferred. Further, the dispersion of the hollow fine particles is preferably added after the matrix precursor solution is diluted from the viewpoint of suppressing aggregation of the hollow fine particles. (α) After hydrolyzing the alkoxysilane and the fluorine-containing ether compound in the solution, it is diluted with a solvent as needed, and then added to the hollow fine particle dispersion. (β) After hydrolyzing the alkoxylate in the solution (preferably after 2 hours or more from the start of hydrolysis), adding a solution of the fluorine-containing ether compound, diluting with a solvent of 20 201244924 as required, and then adding the hollow fine particle dispersion method. (γ) After the alkoxydecane in the solution is hydrolyzed, it is diluted with a solvent, and then a fluorine-containing ether compound solution is added, followed by a method of adding a hollow fine particle dispersion. The coating method may, for example, be a known wet coating method (for example, a spin coating method, a spray coating method, a dip coating method, a die coating method, a curtain coating method, a screen coating method, an inkjet method, or a flow coating method). Method, gravure coating method, bar coating method, offset coating method, slit coating method, roll coating method, etc.). The coating temperature is from room temperature to 200. 〇 is better, room temperature ~ 150. (: Preferably, the firing temperature is preferably 30 ° C or higher, 100 to 180. (: Preferably, it is preferably determined in accordance with the glass plate, the fine particles or the matrix material. The firing time is preferably 3 or more. Preferably, it is preferably 1 to 60 minutes, and it is preferably determined according to the glass plate, the microparticles or the matrix material. The low reflection film glass plate of the present invention has a single layer low reflection containing a matrix and hollow microparticles on the surface of the glass plate. In the film, it is preferred that the substrate has a structure derived from the fluorine-containing ether compound, and the hollow fine particles are hollow hollow ceria particles, and more preferably the fluorine-containing ether compound is represented by the following formula (A). The compound (a) shown in the present invention is produced by coating a coating liquid containing a matrix precursor, hollow fine particles, and a solvent on the surface of a glass plate, that is, the present invention. The low-reflection film glass plate has a low-reflection film on the surface, and the low-reflection lanthanum system comprises a matrix precursor and hollow microparticles. The low-reverse (four), preferably consists of a precursor containing a base f (including a dioxide dioxide eve 21 201244924)a coating liquid, a fluorine-containing ether compound and/or a hydrolysis condensate thereof, a hollow cerium oxide microparticle and a solvent coating solution; more preferably, the coating liquid used is a matrix precursor (containing alkoxy decane and the following formula ( A) a hydrolyzed condensate of the compound (A), a hollow cerium oxide microparticle, and a solvent; and a particularly preferred matrix precursor (containing tetraethoxy decane and a compound represented by the following formula (A) (A) RH0(CF2CF20)aCF2-(Q)b(-(CH2)d-SiLpR3.p)e (a) RH, a, b , Q, c, d, L, R, and p have the same meanings as described above. (Effective effect) The low-reflection film glass plate of the present invention described above has a matrix and hollow microparticles on the surface of the glass plate. The low-reflection film glass plate of the single-layer low-reflection film has a minimum reflectance of 1.7% or less in the range of 300 to 1,200 nm, and a water contact angle of 97 on the surface of the low-reflection film. In the above, the oleic acid contact angle on the surface of the low-reflection film is 5 〇〇 or more, which is low in the foregoing. Since the oleic acid roll-off angle on the surface of the reflective film is 25 Å or less, the reflectance of the low-reflection film is sufficiently low and the grease stain removal property is good. The method for producing the low-reflection film glass plate of the present invention described above is The method comprises the steps of: coating and baking a coating liquid containing a matrix precursor, hollow fine particles and a solvent on a surface of a glass plate; the matrix precursor having a ceria precursor and a fluorine-containing ether compound and/or a hydrolysis condensate thereof; The fluorine-containing ether compound is a compound having a poly(oxyperfluoroalkylene) chain in the main chain and having a hydrolyzable alkyl group at the terminal of at least one side of the former main chain; hollow fine particles in the coating liquid for cerium oxide The mass ratio of the precursor (as measured by Si〇2) (hollow micro 22 201244924 p #, relative particle / Si〇2) is 6/4 to 4/6; the fluorine-containing ether compound in the coating liquid must be skirted (1〇) 0% of the hollow microparticles and the ceria precursor (in terms of Si02) are 0. 8 to 3.0% by mass, so 'this method can produce 〆5f 士 G 矣石 I 治&&;;**/5 * 6:1* Ηίί AA 44* :3⁄4 夕At α,丨_ 〇匕if"不好之单Low-reflection film attached to the glass plate of the low-reflection film. The display device of the present invention described above includes a low-reflection film glass plate having a single-layer low-reflection film containing a matrix and hollow fine particles on the surface of the glass. Further, the low-reflection film glass plate of the low-reflection film has a minimum reflectance of 1.7% or less in the range of 300 to 1,200 nm, and a water contact angle of 97 on the surface of the low-reflection film. As described above, the oleic acid contact angle on the surface of the low-reflection film was 50. As described above, the oleic acid roll angle on the surface of the low-reflection film was 25. Hereinafter, the reflectance of the low-reflection film is sufficiently low and the removal of grease and dirt is good. EXAMPLES Hereinafter, the present invention will be described in further detail by way of examples. Examples 15 to 18, 21 to 23, 26 to 28, 31 to 34, 37 to 42, 45 to 50, 53 to 58 and 61 to 66 are examples; and examples 1 to 14, 19, 20, 24, 25, 29 30, 35, 36, 43, 44, 51, 52, 59 and 60 are comparative examples. (Visual reflectance) The reflectance of the low-reflection film was measured using a spectrophotometer (manufactured by Hitachi, Ltd., model: U-4100). The visual reflectance is a reflectance obtained by multiplying the reflectance at a wavelength of 380 to 780 nm by a weight and averaging. (Minimum reflectance) Using a spectrophotometer (manufactured by Hitachi, Ltd., model: U-4100) 23 201244924 Measure the reflectance of a low-reflection film with a wavelength of 300 to 1, 200 nm, and obtain the minimum 反射 of the reflectance (minimum reflectance) ). (Haze) The haze of the glass plate with a low reflection film was measured using a haze measuring device (manufactured by BYK-Gardner Co., Ltd., Haze-Gard Plus). (Water contact angle) On the surface of the low-reflection film, about 48 μL of distilled water was placed at three places, and each contact angle was measured using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., FAMAS) to determine the average enthalpy of three enthalpies. (Oleic acid contact angle) On the surface of the low-reflection film, about 48 kL of oleic acid was placed at three places, and the contact angle of each oleic acid was measured using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., FACE SLIDING ANGLE METER). The average number of 3 値. (Oleic acid rolling angle) Keep the glass plate with low reflection film horizontal, and after dropping 48 μL of oleic acid on the surface of the low-reflection film, slowly tilt the glass plate with low reflection film to measure when oleic acid starts to roll off. Attach the angle between the low-reflection film glass plate and the horizontal plane (rolling angle). In the measurement results, "unable to measure" means that oleic acid is spread on the substrate, and the movement of oleic acid cannot be observed even if the glass plate is tilted with a low reflection film. (Ratio of Fluorine Elements) The three low-reflection film glass sheets of Examples 11, 23, and 35 were obtained by using an X-ray photoelectron spectroscope (Quanta SXM, manufactured by Ulvac-phi Co., Ltd.) to obtain fluorine on the surface of the low-reflection film. ratio. From the measurement results at 3 o'clock, a calibration curve of the ratio of the fluorine element on the surface of the reflective film to the ratio of the compound (A) in the coating liquid was made. In addition to Examples 11, 23 and 35, the glass plate with a low reflection film of another example was obtained from the ratio of the compound (A) in the coating liquid using a calibration curve, and the ratio of the fluorine element on the surface of the low reflection film was determined. (Arithmetic mean roughness) The arithmetic mean roughness (Ra) of the surface of the low-reflection film was measured using a sweep probe microscope apparatus (SII Nanotech Co., Ltd., SPA400DFM). (Refractive index) The refractive index η' of the low-reflection film is obtained by measuring the minimum reflectance Rmin in the range of 300 to 1200 nm and the refractive index ns of the glass plate on the single-layer low-reflection film by a spectrophotometer. It is calculated by the following formula (1).

Rmin=(n-ns)2/(n+ns)2 ...(1)。 (油脂污物的附著性) 使用油性馬克筆(斑馬公司製、Mckee(註冊商標)),在 低反射膜表面晝直線,依下述標準予以評價。 A :線條全部變成水滴狀,完全無法明確書寫的狀態。 B :線條部分變成水滴狀,但仍可辨識線條的狀態。 C :可畫線條,可明確辨識線條。 (油脂污物的去除性) 作完油脂污物的附著性評價後,將低反射膜表面的油 性墨水以擦拭紙(kimwipe)拭去,依下述標準予以評價。 A .僅擦拭3次即完全去除油性墨水。 B.擦拭1G:欠時大致去除,但㈣冑些微油性墨水痕。 C _擦栻30次時有些油性墨水的顏色變薄,但幾乎無法 25 201244924 去除。 D :擦拭100次時有些油性墨水的顏色變薄,但幾乎無 法去除。 E:即使擦拭100次,油性墨水的顏色仍完全沒有變化。 (玻璃板) 玻璃板方面’準備鹼石灰玻璃(旭硝子公司製、尺寸: 100mmxl〇〇mm、厚度:3 2mm、折射率:丨52、可見光透 過率:90.4%)。 (化合物(A)) 化合物(A)方面,準備化合物(A-1)。 化合物(A-1)係使用在國際公開第2009/008380號之實 施例1及2揭示之方法所製造者。 (烧氧基矽院) 烧氧基石夕烷方面,準備四乙氧基矽烷(以下表示為 TEOS)溶液(純正化學公司製,換算固形物濃度:5質量 〇/〇、異丙基醇:3〇質量%、2-丁醇:25質量%、乙醇:8質量 /〇 ' 一丙_醇:15質量%、曱醇:17質量%)。 (中空微粒子) 中空微粒子方面,準備以下所述者。 中空二氧化矽微粒子(C-1)的分散液:旭硝子公司製、 中二粒子浴膠、Si〇2換算固形物濃度:20質量%、平均一次 粒^ . 1〇nm、水:40質量%、醇:40質量%。 中空—氧化矽微粒子(C-2)的分散液:日揮觸媒化成公 司製、中空粒子溶膠、Si02換算固形物濃度:20質量%、平 26 201244924 均一次粒徑:20mn、醇:80質量%。 [例1] 於l〇g的TEOS浴液中加入8m〇1/L>肖酸水溶液〇吻,攪 拌2小時’得到TE〇S水解縮合物的溶液。 在TEOS水解縮合物的溶液中加入化合物(A i)的溶液 0.005g,獅15分鐘後,加人混合溶劑(異丙基醇:3〇質量 %、2-丁醇·· 25質量。/。、乙醇:8質量。/。、二丙酮醇:15質量 %、甲醇.17質量0/〇)12g,攪拌12〇分鐘,得到基質前驅物 的溶液。 在基質前驅物溶液中,加入中空二氧化矽微粒子(C4) 的分散液6g,攪拌15分鐘,得到塗布液。塗布液的組成顯 示於第1表。 於玻璃板表面’將塗布液以旋轉塗布法(18〇rpm、60秒 間)塗布後’以150°C燒成30分鐘,得到附低反射膜玻璃板。 附低反射膜玻璃板的評價結果顯示於第2表。 [例2] 除了將旋轉塗布的轉速從180rpm變更至250rpm以外, 以和例1相同方式得到附低反射膜玻璃板。塗布液的組成顯 示於第1表。附低反射膜玻璃板的評價結果顯示於第1表。 [例3〜12] 除了塗布液組成變更為顯示於第1表之組成以外,以和 例1或例2相同方式得到附低反射膜玻璃板。評價前述附低 反射膜玻璃板。結果示於第2表。 27 201244924Rmin = (n - ns) 2 / (n + ns) 2 (1). (Adhesiveness of grease stains) Using an oil-based marker (Mckee (registered trademark) manufactured by Zebra Co., Ltd.), a straight line was formed on the surface of the low-reflection film, and evaluated according to the following criteria. A: All the lines become water droplets, and it is impossible to clearly write the state. B: The line part becomes a drop, but the state of the line is still recognized. C : Lines can be drawn to clearly identify lines. (Removability of grease stain) After the adhesion evaluation of the grease stain was evaluated, the oil ink on the surface of the low-reflection film was wiped off with a wim paper, and evaluated according to the following criteria. A. Only remove the oily ink completely by wiping it 3 times. B. Wipe 1G: It is roughly removed when it is under, but (4) some slightly oily ink marks. Some oil-based inks become thinner when C _ is rubbed 30 times, but it is almost impossible to remove them. D: Some oily inks become thinner when wiped 100 times, but they are almost impossible to remove. E: Even if it is wiped 100 times, the color of the oily ink does not change at all. (Glass plate) Glass plate' Preparation of soda lime glass (manufactured by Asahi Glass Co., Ltd., size: 100 mm x l 〇〇 mm, thickness: 32 mm, refractive index: 丨52, visible light transmittance: 90.4%). (Compound (A)) In terms of the compound (A), the compound (A-1) was prepared. The compound (A-1) was produced by the methods disclosed in Examples 1 and 2 of International Publication No. 2009/008380. (Alkoxy sulphate) A solution of tetraethoxy decane (hereinafter referred to as TEOS) was prepared for the production of alkoxy oxalate (produced by Pure Chemical Co., Ltd., and the solid concentration was converted: 5 mass 〇/〇, isopropyl alcohol: 3) 〇% by mass, 2-butanol: 25% by mass, ethanol: 8 masses/〇'-propanol-alcohol: 15% by mass, decyl alcohol: 17% by mass). (Hollow microparticles) In terms of hollow microparticles, the following are prepared. Dispersion of hollow cerium oxide microparticles (C-1): Asahi Glass Co., Ltd., medium two-particle bath gel, Si〇2 conversion solid concentration: 20% by mass, average primary particle ^. 1〇nm, water: 40% by mass Alcohol: 40% by mass. Dispersion of hollow-cerium oxide microparticles (C-2): manufactured by Nippon Chemical Co., Ltd., hollow particle sol, SiO2 conversion solid concentration: 20% by mass, flat 26 201244924 Primary primary particle size: 20mn, alcohol: 80% by mass . [Example 1] A solution of a TE〇S hydrolysis condensate was obtained by adding 8 m〇1/L> aqueous solution of aqueous acetic acid to a TEOS bath of l〇g and stirring for 2 hours. To the solution of the TEOS hydrolysis condensate, 0.005 g of a solution of the compound (A i) was added, and after 15 minutes, a mixed solvent (isopropyl alcohol: 3 〇 mass%, 2-butanol··25 mass) was added. Ethanol: 8 mass%, diacetone alcohol: 15% by mass, methanol. 17 mass 0/〇) 12 g, and stirred for 12 minutes to obtain a solution of a matrix precursor. 6 g of a dispersion of hollow ceria fine particles (C4) was added to the matrix precursor solution, and the mixture was stirred for 15 minutes to obtain a coating liquid. The composition of the coating liquid is shown in Table 1. The coating liquid was applied to the surface of the glass plate by spin coating (18 rpm, 60 seconds) and fired at 150 ° C for 30 minutes to obtain a glass plate with a low reflection film. The evaluation results of the glass plate with a low reflection film are shown in Table 2. [Example 2] A glass sheet with a low reflection film was obtained in the same manner as in Example 1 except that the number of revolutions of the spin coating was changed from 180 rpm to 250 rpm. The composition of the coating liquid is shown in Table 1. The evaluation results of the glass plate with a low reflection film are shown in Table 1. [Examples 3 to 12] A glass plate with a low reflection film was obtained in the same manner as in Example 1 or Example 2 except that the composition of the coating liquid was changed to the composition shown in Table 1. The aforementioned low-reflection film glass plate was evaluated. The results are shown in Table 2. 27 201244924

m 化合物(A-1)/ (中空微粒子+TEOS (Si02換算)) [質量%] 〇 \她 ^ 〇 «Η g -B- 2 CO CO ΙΟ ΙΟ CO <〇 ΙΟ ιη 化合物 (A-1) [ppm] Ο ο ο ο ο ο 中空Si02微粒子 [ppm] 6300 5400 4500 6300 5400 4500 種類 Τ Ο CNJ 1 ο TEOS (Si02換算) Cppm] 2700 3600 4500 2700 3600 4500 1 旋塗轉速 [rpm] s 250 180 250 § 250 § 250 180 250 180 250 CM CO 寸 in κ〇 00 σ> ο CVJ 28 201244924 表 2 第m Compound (A-1) / (Hollow microparticles + TEOS (Si02 conversion)) [% by mass] 〇\她^ 〇«Η g -B- 2 CO CO ΙΟ ΙΟ CO <〇ΙΟ ιη Compound (A-1) [ppm] Ο ο ο ο ο ο Hollow SiO 2 particles [ppm] 6300 5400 4500 6300 5400 4500 Type Τ Ο CNJ 1 ο TEOS (Si02 conversion) Cppm] 2700 3600 4500 2700 3600 4500 1 Spin coating speed [rpm] s 250 180 250 § 250 § 250 180 250 180 250 CM CO inch in κ〇00 σ> ο CVJ 28 201244924 Table 2

評價結果 ㈣S 攸I LU ui UJ αι LU Lll UJ LU LU LU LU UJ 鸽赛£ Ο 〇 Ο Ο 〇 Ο 〇 Ο 〇 〇 〇 〇 掛 m 波長 [nm] in CNl <〇 o co in in <〇 ιο 00 CO § CO 运 CO m IT) r- ο <〇 in 〇 o o o o § CO r*-i m CO o ⑦ CM o 卜 <〇 ο οο 1〇 CO OJ 呂 o § c> CO ο <D CO o 0.44 0.57 視感 反射率 [%] Oi l〇 o 00 c〇 〇 0.94 CO in σ> to CM csi T— CSj 0.54 κο Ο g T~ CO r-· T~ T— r^; 霧度 [%] 5 5 5 Cst ο 5 CM d CSJ σ C^J 5 d d 5 油酸 滾落角 Γ ] 無法測定 I無法測定 無法測定 1無法測定| 無法測定 無法測定i 無法測定j 無法測定| 無法測定J 無法測定 無法測定 無法測定 β®匕 ..、球 p r~ 卜 CO σ> C3 〇> G0 CO ο d s-*· 卜 S 水 接觸角 [° ] <〇 1 39.4 J 67.3 53.6 00 64.0 48.7 1 49_2 I 47.4 53.6 62.2 0>l s 折射率. <Xi CO T— τ— 5 5 Τ— co τ~· T~ 00 CO 7" ο 5 CO T— g 00 σ> CO 3.87 4.23 3.78 3.66 1 3.45 I 1 3.87 3.62 00 co CO co CO 3.98 4.22 氟原子 [原子%] 〇 ο ο 〇 〇 o Ο 〇 o o o o CSI m CO 卜 CO σ> o CSJ 29 201244924 [例13〜23] 除了將化合物(A-1)的比率變更為如第3表所示之比率 外,與例1〜12相同方式得到附低反射膜玻璃板。評價前述 附低反射膜玻璃板。結果顯示於第4表。 201244924Evaluation results (4) S 攸I LU ui UJ αι LU Lll UJ LU LU LU LU UJ pigeon race £ Ο Ο 〇Ο 〇Ο 〇〇〇〇 m m wavelength [nm] in CNl <〇o co in in <〇 Ιο 00 CO § CO CO CO IT IT) r- ο <〇in 〇oooo § CO r*-im CO o 7 CM o 卜<〇ο οο 1〇CO OJ 吕o § c> CO ο <D CO o 0.44 0.57 Visual reflectance [%] Oi l〇o 00 c〇〇0.94 CO in σ> to CM csi T— CSj 0.54 κο Ο g T~ CO r-· T~ T— r^; Haze [ %] 5 5 5 Cst ο 5 CM d CSJ σ C^J 5 dd 5 Oleic acid rolling angle Γ ] Unable to measure I cannot be measured Unmeasured 1 Unable to measure | Unmeasurable cannot be measured i Cannot be measured j Cannot be measured | Unable to measure J Unable to measure, unable to measure, unable to measure β®匕.., ball pr~ Bu CO σ> C3 〇> G0 CO ο d s-*· Bu S water contact angle [° ] <〇1 39.4 J 67.3 53.6 00 64.0 48.7 1 49_2 I 47.4 53.6 62.2 0>ls refractive index. <Xi CO T— τ— 5 5 Τ— co τ~· T~ 00 CO 7" ο 5 CO T— g 00 σ> CO 3.87 4.23 3.78 3.66 1 3.45 I 1 3.87 3.62 00 co CO co CO 3.98 4.22 Fluorine atom [Atomic %] 〇ο ο 〇〇o Ο 〇oooo CSI m CO Bu CO σ> o CSJ 29 201244924 [Example 13 to 23] In addition to changing the ratio of the compound (A-1) to A low-reflection film glass plate was obtained in the same manner as in Examples 1 to 12 except for the ratio shown in Table 3. The aforementioned low-reflection film glass plate was evaluated. The results are shown in Table 4. 201244924

塗布液組成 g 截 \§ 5 :^ _ ^ + μ 15 r 義 创 * 2.52 2.16 1.80 2.52 2.16 1.80 \ W 齒〇 €- 2 \- co 寸 in CO CO m in 化合物 (A-1) [ppm] 227 CM CO 227 194 162 中空Si02微粒子 [ppm] 6300 5400 4500 6300 5400 4500 種類 1 Ο C-2 TEOS (Si02換算) [ppm] 2700 3600 4500 '2700 3600 4500 旋塗轉速 [rpm] g 250 180 250 180 250 § 250 250 180 250 CO 寸 LO CO 卜 00 σ> CM CNJ CO CM 31 201244924 表 4第Coating composition g § 5 :^ _ ^ + μ 15 r Yichuang * 2.52 2.16 1.80 2.52 2.16 1.80 \ W 〇 - € - 2 \- co inch in CO CO m in compound (A-1) [ppm] 227 CM CO 227 194 162 Hollow SiO 2 particles [ppm] 6300 5400 4500 6300 5400 4500 Type 1 Ο C-2 TEOS (Si02 conversion) [ppm] 2700 3600 4500 '2700 3600 4500 Spin coating speed [rpm] g 250 180 250 180 250 § 250 250 180 250 CO inch LO CO 00 σ gt CM CNJ CO CM 31 201244924 Table 4

評價结果 JS^ -、,r、屮 D a < < < < Q LU 00 < < 油脂 污知 附著性 〇 o < < < < ϋ 〇 ω < < 最低反射率 波長 [nm] § (Ο § in s 寸 in 〇y c〇 § CO s co in <〇 to in in l〇 in o co § CO s CO r~i σ> 5 <〇 CSJ 00 in C>J O (D 00 d CSJ CSI ο o d 5 co co o 5 o 00 m o 視感 反射率 [%] r- 00 d 00 CO d CO 〇> o CO r~ o csi K d m T—· d o CM CSJ 00 霧度 [%] d d 5 5 5 5 5 •F· d 5 5 5 油酸 滾落角 [。] 無法測定 無法測定 in σ> to T— CsJ ai r- od 1無法測定J 無法測定 CM σ> r- in 油酸 接觸角 [° ] CO T— c6 Ο ir> CO CO <Ni in 卜 CO CO 卜 ίο p T— co CNi ο CD in CO in CO o s 水 接觸角 Γ ] 寸 ed c〇 00 112.9 100.9 105.0 (Ο ε> CO έ o s' I 103.4 1 109.3 I 103.0 折射率. Γ- ΓΟ r* <〇 CO 00 CO O) CO 产 CSJ 1; 5 τ— σ> co CO 产 5 5 9 ml η迪 CM 〇> CO CO <〇 CO CO m CO § CO l〇 CO CO ΙΟ ΙΟ C0 § CO CM <〇 CO co ir> co CO 〇> c6 ci 氟原子 [原子%] CN 〇 T"* CM o 卜 od 5 CO CO 卜· CN d eg O 卜 οό 〇> <0 σ> cb CO 寸 \n (O T— 卜 00 σ> & CM CsJ co CMEvaluation result JS^ -,,r,屮D a <<<< Q LU 00 << grease stain adhesion &o <<<< ϋ 〇ω << Reflectance wavelength [nm] § (Ο § in s inch in 〇yc〇§ CO s co in <〇to in in l〇in o co § CO s CO r~i σ> 5 <〇CSJ 00 in C&gt ;JO (D 00 d CSJ CSI ο od 5 co co o 5 o 00 mo Visual reflectance [%] r- 00 d 00 CO d CO 〇> o CO r~ o csi K dm T—· do CM CSJ 00 Haze [%] dd 5 5 5 5 5 •F· d 5 5 5 Oleic acid rolling angle [.] Unable to measure in σ> to T—CsJ ai r- od 1 Unable to measure J Cannot measure CM σ&gt ; r- in oleic acid contact angle [° ] CO T— c6 Ο ir> CO CO <Ni in 卜CO CO 卜ίο p T- co CNi ο CD in CO in CO os water contact angle Γ ] inch ed c〇 00 112.9 100.9 105.0 (Ο ε> CO έ os' I 103.4 1 109.3 I 103.0 refractive index. Γ- ΓΟ r* <〇CO 00 CO O) CO production CSJ 1; 5 τ- σ> co CO production 5 5 9 Ml η迪CM 〇> CO CO <〇CO CO m CO § CO l〇CO CO ΙΟ ΙΟ C0 § CO CM < CO co ir> co CO 〇> c6 ci fluorine atom [atomic %] CN 〇T"* CM o od 5 CO CO 卜· CN d eg O 卜 ό 〇><0σ> cb CO inch\n (OT- 00 00 σ >& CM CsJ co CM

[例24〜34]除了將化合物(A-1)的比率變更為如第5表所示之比率 32 201244924 以外,以與例1〜12相同方式得到附低反射膜玻璃板。評價 前述附低反射膜玻璃板。結果顯示於第6表。 第5表[Examples 24 to 34] A glass film with a low reflection film was obtained in the same manner as in Examples 1 to 12 except that the ratio of the compound (A-1) was changed to the ratio 32 201244924 shown in Table 5. The aforementioned low-reflection film glass plate was evaluated. The results are shown in Table 6. Table 5

塗布液組成 化合物(A-1)/ (中空微粒子+TEOS (Si02換算)) [質量%] 3.50 3.00 2.50 3.50 2.50 中空微粒子/ TEOS (Si02換算) CO 卜 <〇 LO CO 卜 CO to 化合物 (A-1) [ppm] 315 270 225 η I 270 225 中空Si02微粒子 [ppm] 6300 5400 4500 6300 5400 I 4500 j 種類 1 〇 CSI 〇 TEOS (Si02換算) [ppm] 2700 3600 4500 2700 3600 4500 旋塗轉速 [rpm] § 250 180 180 250 180 250 180 250 180 250 1〇 OJ <〇 CM σ> CSJ 33 201244924 表 6 第Coating liquid composition compound (A-1) / (hollow fine particles + TEOS (Si02 conversion)) [% by mass] 3.50 3.00 2.50 3.50 2.50 Hollow fine particles / TEOS (Si02 conversion) CO Bu <〇LO CO Bu CO to compound (A -1) [ppm] 315 270 225 η I 270 225 Hollow SiO 2 particles [ppm] 6300 5400 4500 6300 5400 I 4500 j Type 1 〇CSI 〇TEOS (Si02 conversion) [ppm] 2700 3600 4500 2700 3600 4500 Spin coating speed [ Rpm] § 250 180 180 250 180 250 180 250 180 250 1〇OJ <〇CM σ> CSJ 33 201244924 Table 6

評價結果 油脂 污物 去除性 Q 山 < < < 〇 o < m < < 油脂 污知 附著性 〇 〇 < < < o o < Q0 < < 最低反射率 波長 [nm] IT) CO to o CO in m § lO § CO m t— 卜 g in in 吞 o 5 o o 00 CO r~ί to CM d CO CM d <〇 (〇 (O o O’ § 00 〇 d CO CM d CO CM o' CNJ o o 視感 反射率 [%] CM s d in d ° T— CO in a> o a> 5 3 o ΙΛ <〇 in T-* 霧度 [%] 5 5 d 5 o d d ^― o d 5 T~* c> 油酸 滾落角 [° ] 無法測定 無法測定 od T— CO d S 無法測定 無法測定 p 卜· in 卜·· T-* 〇> c>i T-- 油酸 ‘觸角 [° ] p si CO ut> T"· o 卜 CO CO o <£> CO esi r- c\i r*» — CO CO 00 iO r> (O o c\i CO 水 接觸角 Γ ] 卜 έ <〇 00 111,0 108.0 102.7 00 00 OJ CNJ 00 111.7 102.8 106.8 I 103.6 折射率 00 CO r* ° f—· CO r— 5 卜 CO CO CO CO CO O) CO 5 ίΓ £ Η逋 CO in o ir> 守 CO in CO CO o 00 CO CM <£> CO 00 CO CO CO CD CO 卜 <D CO 00 σ> CO CM CM r- <〇 CO 氟原子 [原子%] CM CM sr cJ d 5 CSJ eg 勺: esi ^r d r~ 'T d T~· CM CO CM 00 CM O) CM CNJ co CO CO 34 201244924 [例3 5〜42] 除了將塗布液的組成變更為於第7表所示之組成、及將 添加化合物(A-1)的時間點變更為TEOS水解前以外,以與例 1〜12相同方式得到附低反射膜玻璃板。評價前述附低反射 膜玻璃板。結果顯示於第8表。 [例43〜50] 除了將化合物(A-1)的添加時間點變更為TEOS水解1小 時後以外,以與例35〜42相同方式得到附低反射膜玻璃板。 評價前述附低反射膜玻璃板。結果顯示於第8表。 35 201244924 第 塗布液組成 化合物(A-1)/ (中空微粒子+TEOS (Si02換算)) [質量%] CO in 00 in 〇> in in T— 00 in 〇> in \ W m q 趙扮 丑· 2 Η CO r- CO in ir> <〇 CO 卜 CO Lrt l〇 CD 化合物 (Α-1) tppm] 00 CO 5 CO 00 CO 5 r·— 5 1— 中空Si02微粒子 [ppm] o CO <D o § 〇 \n o CD CO o CO (O o § o in o (〇 CO 馘 w CSI 〇 TEOS (Si02換算) [ppm] O o CNJ o s CO o s i in I 8 <〇 co o in o o to 化合物 (A-1) 添加 時間點 TEOS 水解前 8途i P_H 旋塗 轉速 [rpm] s s CM § s eg s CM s t·"· o m CM s o lO eg 〇 LO CM s s cvi s <NJ in CO <£> CO CO 〇0 CO 〇> CO o 5 5 in <〇 OT s 36 201244924 8 第 評價結果 油脂 污物 去除性 〇 ◦ < < < < < < 〇 〇 < < < < < < 油脂 污物 附著性 〇 a < < < < < < a 〇 < < < < < < 最低反射率 波長 [nm] S c〇 in LO L〇 § 寸 守 o § CO § CO § CO O CM <〇 s LO o 5 § CO o a> co 0 00 c〇 § c〇 S co 1—^ £ in CM d d s o s σ C£> LO o P- to d LO 卜 ο CO CM d CNJ o CO l〇 o CO iq CM lO d <0 r^; CSJ CSj r-· CO CO o esi σ> co ir> d CO o 卜 d o o evi 00 iq T— CO 寸 o CO CO o CsJ CO o l£3 d σ> jq 穿 T-· 0 霧度 [%] o T~ o d d o 5 o o 5 5 o 5 o 5 5 油酸 i落角 Γ ] I無法測定 |無法測定 00 d CSJ esi 寸 cd 〇 O’ T™ CO cd in 卜· I無法測定I 無法測定 T—· s co 〇· <0 d co cb CM 油酸 接觸角 [° ] CO CO 卜 Γ ιο CO 卜 esi 卜 CO in <〇 CO 卜 o in <〇 Ο Ο p 5 2 o evi 卜 Γ ΟΟ 卜 〇 卜 co 10 d 卜 水 接觸角 Γ ] o in σ> 101.3 | 113.3 106.0 108.7 105.0 107.3 105.3 卜 c; ! 103.7 116.7 113.3 115.0 111.3 113Ό 109.0 折射率 m CO 〇〇 CO cn CO oj T·"· 5 CO T*· 寸 CO 寸 CO CO <〇 CO ο 5 算術平均 粗度Ra [nm] 00 CO CO CO CO CO r- «〇 CO 00 O) CO CM CM 卜 <〇 CO in co CO in to CO § CO CO CO CO <〇 CO CO in CD CO in ιο ci s co cvj CD co 00 co CO 氟原子 [原子%] eg <d CM cb CO <0 CO cd 寸 CO 寸 <ό 寸 cd 甘 CD CM cd CsJ cd CO <d co cd ^r ¢0 2 寸 CD 2 m in CO <〇 CO 00 co 05 CO ο 3 5 in <〇 $ a; s 5 37 201244924 [例51〜58] 除了將添加化合物(A-1)的時間點變更為TEOS水解2yJ、 時後以外,以與例35〜42相同方式得到附反射膜玻璃板。評 價前述附低反射膜玻璃板。結果顯示於第10表。 [例5 9〜66] 除了將化合物(A-1)的添加時間點變更為TEOS水解2小 時後及溶劑稀釋後以外,以與例35〜42相同方式得到附低反 射膜玻璃板。評價前述附低反射膜玻璃板。結果顯示於第 10表。 38 201244924 表 塗布液組成 化合物(A-1)/ (中空微粒子+TEOS (Si02換算)) [質量%] CO iq C5 ▼—· 00 in σ> in CO LO r- ΙΛ 00 ΙΟ <J5 iq \ « 起〇 m δ 创ο s· 2 CO 沁 CO in CO CO 卜 <£> Λ Ϊϊ <〇 化合物 (A-1) [ppm] 00 CO GO CO T— 中空Si02微粒子 [ppm] o co <〇 o s 8 JO O c〇 CO o CO CO Ο § ο o to CO 職 CM 1 o TEOS (Si02換算) [ppm] o o CM o CO CO o s 寸 o s o o CM Ο CO C0 ο in o o s 化合物 (A-1) 添加 時間點 C<l TEOS 水解 2小時後 + 溶劑稀釋後 旋塗 轉速 [rpm] § S CNJ g s eg s T" o in CM § r· s CM § S CVJ § S CM § s CSi § T-· s csi 5 CM lf> CO l〇 5 in CO in LO 00 lO σ> ιο § CVJ <〇 CO CO s LO CO CO <〇 39 201244924 第ίο表Evaluation result Grease soil removal property Q Mountain <<<< 〇o < m << grease stain adhesion 〇〇 <<< oo < Q0 << Lowest reflectance wavelength [ Nm] IT) CO to o CO in m § lO § CO mt - 卜 g in in 吞 o 5 oo 00 CO r~ί to CM d CO CM d <〇 (〇 (O o O' § 00 〇d CO CM d CO CM o' CNJ oo Visual reflectance [%] CM sd in d ° T— CO in a> o a> 5 3 o ΙΛ <〇in T-* Haze [%] 5 5 d 5 odd ^― od 5 T~* c> Oleic acid rolling angle [° ] Unmeasurable cannot be measured od T—CO d S Cannot be measured cannot be measured p · in · · · · T - * 〇 > c > i T-- Oleic acid 'antenna angle [° ] p si CO ut> T"· o Bu CO CO o <£> CO esi r- c\ir*» — CO CO 00 iO r> (O oc\i CO water contact angle Γ ] έ έ <〇00 111,0 108.0 102.7 00 00 OJ CNJ 00 111.7 102.8 106.8 I 103.6 Refractive index 00 CO r* ° f—· CO r— 5 CO CO CO CO CO CO) CO 5 Γ £ Η逋CO in o ir> Keep CO in CO CO o 00 CO CM <£> CO 00 CO CO CO CD CO 卜<D CO 00 σ≫ CO CM CM r- < 〇CO fluorine atom [atomic %] CM CM sr cJ d 5 CSJ eg spoon: esi ^rdr~ 'T d T~· CM CO CM 00 CM O) CM CNJ co CO CO 34 201244924 [Example 3 5 to 42] In addition to changing the composition of the coating liquid to the composition shown in Table 7, and changing the time point of adding the compound (A-1) to TEOS before hydrolysis, and Examples 1 to 12 A glass plate with a low reflection film was obtained in the same manner. The aforementioned low reflection film glass plate was evaluated. The results are shown in Table 8. [Examples 43 to 50] A glass sheet with a low reflection film was obtained in the same manner as in Examples 35 to 42 except that the addition time of the compound (A-1) was changed to TEOS hydrolysis for 1 hour. The aforementioned low-reflection film glass plate was evaluated. The results are shown in Table 8. 35 201244924 Composition liquid composition compound (A-1) / (hollow fine particles + TEOS (Si02 conversion)) [% by mass] CO in 00 in 〇> in in T— 00 in 〇> in \ W mq · 2 Η CO r- CO in ir> <〇CO 卜CO Lrt l〇CD compound (Α-1) tppm] 00 CO 5 CO 00 CO 5 r·— 5 1—hollow SiO 2 particles [ppm] o CO &lt ;D o § 〇\no CD CO o CO (O o § o in o (〇CO 馘w CSI 〇TEOS (Si02 conversion) [ppm] O o CNJ os CO osi in I 8 <〇co o in oo to Compound (A-1) Adding time point TEOS before hydrolysis 8 i P_H Spin coating speed [rpm] ss CM § s eg s CM st·"· om CM so lO eg 〇LO CM ss cvi s <NJ in CO <£> CO CO 〇0 CO 〇> CO o 5 5 in <〇OT s 36 201244924 8 Evaluation result Grease soil removal 〇◦ <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Nm] S c〇in LO L〇§ Instinct o § CO § CO § C OO CM <〇s LO o 5 § CO o a> co 0 00 c〇§ c〇S co 1—^ £ in CM ddsos σ C£> LO o P- to d LO ο CO CM d CNJ o CO l〇o CO iq CM lO d <0 r^; CSJ CSj r-· CO CO o esi σ> co ir> d CO o 卜 doo evi 00 iq T—CO inch o CO CO o CsJ CO ol£3 d σ> jq wear T-· 0 haze [%] o T~ oddo 5 oo 5 5 o 5 o 5 5 oleic acid i falling angle Γ ] I cannot be measured | cannot be determined 00 d CSJ esi inch cd 〇O' T TM CO cd in I·I can't measure I Can't measure T—· s co 〇· <0 d co cb CM Oleic acid contact angle [° ] CO CO Bu Γ ιο CO 卜i 卜 CO in <〇CO 卜o In <〇Ο Ο p 5 2 o evi Γ ΟΟ 〇 〇 co co 10 10 卜 水 contact angle Γ ] o in σ > 101.3 | 113.3 106.0 108.7 105.0 107.3 105.3 卜 c; ! 103.7 116.7 113.3 115.0 111.3 113 Ό 109.0 Refraction Rate m CO 〇〇CO cn CO oj T·"· 5 CO T*· inch CO inch CO CO <〇CO ο 5 arithmetic mean roughness Ra [nm] 00 CO CO CO CO CO r- «〇CO 00 O) CO CM CM 卜<〇CO in co CO in to CO § CO CO CO C O <〇CO CO in CD CO in ιο ci s co cvj CD co 00 co CO fluorine atom [ato%] eg <d CM cb CO <0 CO cd inch CO inch<ό inch cd 甘 CD CM cd CsJ cd CO <d co cd ^r ¢0 2 inch CD 2 m in CO <〇CO 00 co 05 CO ο 3 5 in <〇$ a; s 5 37 201244924 [Example 51~58] In addition to adding The reflective film glass plate was obtained in the same manner as in Examples 35 to 42 except that the time point of the compound (A-1) was changed to TEOS hydrolysis of 2 μJ. The aforementioned low-reflection film glass plate was evaluated. The results are shown in Table 10. [Example 5 9 to 66] A glass plate with a low reflection film was obtained in the same manner as in Examples 35 to 42 except that the addition time of the compound (A-1) was changed to TEOS hydrolysis for 2 hours and after the solvent was diluted. The aforementioned low-reflection film glass plate was evaluated. The results are shown in Table 10. 38 201244924 Table coating liquid composition compound (A-1) / (hollow fine particles + TEOS (Si02 conversion)) [% by mass] CO iq C5 ▼—· 00 in σ> in CO LO r- ΙΛ 00 ΙΟ <J5 iq \ « 起〇 m δ 创ο s· 2 CO 沁CO in CO CO 卜<£> Λ Ϊϊ <〇 compound (A-1) [ppm] 00 CO GO CO T- Hollow SiO 2 particles [ppm] o co <〇os 8 JO O c〇CO o CO CO Ο § ο o to CO CM 1 o TEOS (Si02 conversion) [ppm] oo CM o CO CO os inch osoo CM Ο CO C0 ο in oos compound (A- 1) Add time point C<l TEOS hydrolysis for 2 hours + solvent dilution after spin coating speed [rpm] § S CNJ gs eg s T" o in CM § r· s CM § S CVJ § S CM § s CSi § T -· s csi 5 CM lf> CO l〇5 in CO in LO 00 lO σ> ιο § CVJ <〇CO CO s LO CO CO <〇39 201244924 第ίο

評價結果 油脂 污知 去除性 〇 〇 < < < < < < 〇 o < < < < < < Si| 〇 〇 < < < < < < o o < < < < < < 最低反射率 波長 [nm] in <〇 g ιο o ra o ιο 导 § CO § CO 〇 co CO o csi <〇 o l〇 o o 00 CO o σ> co o CO CO o GO CO o co CO 1_1 <〇 d co O’ 5 o σ> CO o in in o d d g CO csi o r- eg 〇 in d ra o in lO o oo i〇 o O) 卜 ό s 視感 反射率 [%] d CO CO d S d CS| CO d tn 卜 d pj o d CO s d CO d ιο cd d 卜 ο 落 o CO CJ> d (Ο CO o 霧度 [%] CO CO d CO d CO 〇 CM o CO d CM d co o o 5 5 5 5 s 5 油酸 滾落角 Γ ] δ o csi co o a <〇 <6 CO σ) d T— 00 o 〇d |無法測定I I無法測定I 〇i co s CO o r- d 1" 寸 油酸 接觸角 r ] p O) 卜 g o GO 〇 § CO 00 o s 卜 cvj 00 q S co 'cr 寸 CO CO o CO GO o CO co 卜 P- 00 CO 水 接觸角 Γ ] 120.3 I | 123.0 1 120.3 116.7 115.7 I 113.3 J 115.0 114.0 101.7 101.7 120.3 I 113.0 112.3 108.3 J 110.3 107.0 折射率 CO CO 寸 CO CO CO 卜 CO 5 CM T-· CO T* CSJ co Tj· CO T·" <Ji CO co CO · co T~ co o 算術平均 粗度Ra [nm] in 々 CO in <〇 CO in in CO s CO CM co co in CO lO co LO in CO § CO CM <〇 CO 00 CO CO oo σ> co CSI 寸 卜 CD CO 00 o CO CM 氟原子 [原子%] CO <〇 co <0 CO cd <d 5 寸 C£> co CM <d CM <d CO <6 co cb 寸 cd 寸 CD 寸 cd 寸 cd eg in CO in s in in s CO m 〇> LO s CSI co co <〇 S lO CO co CO 40 201244924 例37的附低反射膜玻璃板之剖面的掃瞄式電子顯微鏡 照片係顯示於第2圖。第2圖係顯示將附低反射膜之玻璃以 聚焦電子束切斷後膜剖面方向之倍率1〇〇,〇〇〇倍的SEm影 像。低反射膜係膜厚為大約100nm,且由中空粒子及基質成 分(一氧化石夕與氟化合物)所成。在膜中可辨識為空孔的部分 係中空粒子被切斷而看見中空粒子内部之空孔的位置。 産業上可利用性 本發明的附低反射膜玻璃板、及以本發明之製造方法 可得之附低反射膜玻璃板’係有用於作為能用於各種顯示 器、自動車用窗戶玻璃、或觸控面板等之玻璃板。 本發明之顯示裝置,係有用於各種電視、觸控面板、 行動電話、或行動資訊終端機等。 此外’將已於2011年4月1日在日本提出申請的日本專 利申請案特願2011-081719號 '已於2011年4月1日在日本提 出申請之曰本專利申請案特願2011-081720號、及已於2〇u 年4月1日在日本提出申請之日本專利申請案特願 2011-081833號的說明書、申請專利範圍、圖式及發明摘要 的全部内容引用於此,並併入作為本發明之揭示内容。 【圖式簡單說明】 第1圖係顯示本發明之附低反射膜玻璃板及顯示裝置 用附低反射膜玻璃板之一例的剖面圖。 第2圖係例37(實施例)之附低反射膜玻璃板剖面的掃瞄 式電子顯微鏡照片。 第3圖係顯示本發明之顯示裝置之一例的剖面圖。 41 201244924 【主要元件符號說明】 10...附低反射膜玻璃板 20. 12···玻璃板 30· 14…低反射膜 100…顯示裝置 •顯示元件 •框體 42Evaluation result Grease stain removal 〇〇 <<<<<<<<<<<<<<<<<<<<; oo <<<<<<<<<<<<<<<<<<<<<<<>< 〇g ιο o ra o ιο § CO § CO 〇co CO o csi <〇ol〇oo 00 CO o σ> co o CO CO o GO CO o co CO 1_1 <〇d co O' 5 o σ> CO o in in oddg CO csi o r- eg 〇in d ra o in lO o oo i〇o O) ό s visual reflectance [%] d CO CO d S d CS| CO d tn 卜 d pj od CO sd CO d ιο cd d ο o o CO CJ> d (Ο CO o haze [%] CO CO d CO d CO 〇CM o CO d CM d co oo 5 5 5 5 s 5 oleic acid rolling angle Γ ] δ o csi co oa <〇<6 CO σ) d T— 00 o 〇d | II can not determine I 〇i co s CO o r- d 1" oleic acid contact angle r ] p O) 卜go GO 〇§ CO 00 os 卜 cvj 00 q S co 'cr inch CO CO o CO GO o CO co卜 P- 00 CO water contact angle Γ 120.3 I | 123.0 1 120.3 116.7 115.7 I 113.3 J 115.0 114.0 101.7 101.7 120.3 I 113.0 112. 3 108.3 J 110.3 107.0 Refractive index CO CO Inch CO CO CO Bu CO 5 CM T-· CO T* CSJ co Tj· CO T·"<Ji CO co CO · co T~ co o Arithmetic mean roughness Ra [ Nm] in 々CO in <〇CO in in CO s CO CM co co in CO lO co LO in CO § CO CM <〇CO 00 CO CO oo σ> co CSI inch CD CO 00 o CO CM fluorine atom [Atomic %] CO <〇co <0 CO cd <d 5 inch C£> co CM <d CM <d CO <6 co cb inch cd inch CD inch cd inch cd eg in CO in s in in s CO m 〇> LO s CSI co co <〇S lO CO co CO 40 201244924 The scanning electron micrograph of the cross section of the low-reflection film glass plate of Example 37 is shown in Fig. 2 . Fig. 2 is a view showing an SEm image with a magnification of 1 〇〇 and a magnification of a film having a low reflection film after being cut by a focused electron beam. The low-reflection film has a film thickness of about 100 nm and is composed of hollow particles and a matrix component (one oxidized stone and a fluorine compound). The portion which can be recognized as a void in the film is a position where the hollow particles are cut to see the pores inside the hollow particles. INDUSTRIAL APPLICABILITY The low-reflection film glass plate of the present invention and the low-reflection film glass plate which can be obtained by the production method of the present invention are used as a window glass for various displays, automatic vehicles, or touch. A glass plate such as a panel. The display device of the present invention is used in various televisions, touch panels, mobile phones, or mobile information terminals. In addition, 'Japanese Patent Application No. 2011-081719, which was filed in Japan on April 1, 2011, has been filed in Japan on April 1, 2011. Patent Application No. 2011-081720 The entire contents of the specification, the patent application, the drawings and the abstract of the Japanese Patent Application No. 2011-081833, filed on Jan. As a disclosure of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an example of a glass plate with a low reflection film and a glass plate with a low reflection film for use in a display device of the present invention. Fig. 2 is a scanning electron micrograph of a cross section of a low-reflection film glass plate of Example 37 (Example). Fig. 3 is a cross-sectional view showing an example of a display device of the present invention. 41 201244924 [Description of main component symbols] 10...with low reflection film glass plate 20. 12···glass plate 30· 14...low reflection film 100...display device •display element •frame 42

Claims (1)

201244924 七、申請專利範圍: 1. 一種附低反射膜之玻璃板,係於玻璃板之表面具有含基 質與中空微粒子的單層低反射膜者, 前述低反射膜於波長300〜l,200nm之範圍内的最低 反射率為1.7%以下; 於前述低反射膜表面的水接觸角為97°以上; 於前述低反射膜表面的油酸接觸角為50°以上; 於前述低反射膜表面的油酸滚落角為25°以下。 2. 如申請專利範圍第1項之附低反射膜之玻璃板,其中前 述含基質與中空微粒子的單層低反射膜係形成於前述 玻璃板之至少一側之面的最外層。 3. 如申請專利範圍第1或2項之附低反射膜之玻璃板,其利 用X射線光電子光譜法所測得之前述低反射膜表面的氟 元素比率為3〜20原子%。 4. 如申請專利範圍第1至3項中任一項之附低反射膜之玻 璃板,其利用掃描探針顯微鏡裝置所測得之前述低反射 膜表面之算術平均粗度(Ra)為3.0~5.0nm。 5. 如申請專利範圍第1至4項中任一項之附低反射膜之玻 璃板,其中前述低反射膜的折射率為1.20〜1.46。 6. 如申請專利範圍第1至5項中任一項之附低反射膜之玻 璃板,其中前述基質係以二氧化矽為主成分且具有源自 於含氟醚化合物之結構,該含氟醚化合物係於主鏈具有 聚(氧基全氟伸烷基)鏈,且於前述主鏈之至少一側的末 端具有水解性碎烧基。 43 201244924 7.如申請專利範圍第1至6項中任—項之附低反射膜之破 璃板,其中前述含_化合物係下式⑷所示之化合物 (A) · R 〇(CF2CF2〇)aCF2_(Q)b(-(CH2)d-SiLpR3.p)e ···(△) 其中’ RH為碳數UOU價全氟飽和煙基,或是已 在碳原子·碳原子_人醚性氧原子的碳數㈣之^賈 全氟餘和烴基,且RFI為不含-〇CF2〇-結構的基;只 a為1〜200的整數; b為0或1 ; 基時為2 Q在b為〇時不存在,在_時係2或3價的連結基; C在Q不存在或Q為2價連結基時為i,在⑽價^結 d為2〜6的整數; L為水解性基; R為氫原子或1價的烴基; P為1〜3的整數。 8. 如申請專利範圍第⑴項中任-項之附低反_之破 璃板,其中前述中空微粒子為中空二氧切微粒子。 9. -種隨反射膜之玻璃板的製造方法,_低反射膜之 玻璃板係於玻璃板表面具有含基質與中空微粒子的單 層低反射膜者,該製造方法具有: 將含有基質前驅物、中空微粒子及溶_塗佈液塗 佈於玻璃板表面並予以燒成的步驟; 其中,前述基質前驅物包含二氧切前驅物與含氟 44 201244924 醚化合物及/或其水解縮合物,該含氣鍵化合物傳於主 鏈上具有聚(氧基全氟伸烧基)鍵且於前述主鏈之复少〜 側的末端具有水解性石夕烧基者· 在則述塗佈液中,中空微粒子與二氧化石夕前驅物 (Si02換算)的質量比(中空微粒子/si〇2)為6/4〜4/6 ; 相對於中空微教子與二氧化矽前驅物(s i 〇 2換算)的 合计0〇〇質s %),塗佈液中含氟醚化合物的比率為 0.8〜3.0質量%。 10.如申請專利範圍第9項之附低反射膜之玻璃板的製造方 法,其中則述含氟醚化合物為下式(A)所示之化合物 ⑷: RF1〇(CF2CF2〇)aCF2.(Q)b(.(CH2)d.SiLpR3.p)c · · - (A) 其中’ rF1為碳數1〜20之1價全氟飽和烴基,或是已 於碳原子-¼原子間插入醚性氧原子的碳數2〜2〇之i價 全氟飽和烴基,且RFI為不含-〇CF2〇-結構的基; a為1〜200的整數; b為0或1 ; Q在b為〇時不存在,在⑻時係如價的連結基; c在Q不存在或q為2價連結基時為1,在卩為3價連結 基時為2 ; d為2〜6的整數; L為水解性基; R為氫原子或1價的烴基; P為1〜3的整數。 45 201244924 11. 如申請專利範圍第9或10項之附低反射膜之玻璃板的製 造方法,其中前述二氧化矽前驅物為烷氧基矽烷之水解 縮合物。 12. 如申請專利範圍第11項之附低反射膜之玻璃板的製造 方法,其更具有: 使烧氧基碎烧水解後,加入前述化合物(A),再加 入中空微粒子之分散液而調製出塗佈液的步驟。 13. 如申請專利範圍第9至12項中任一項之附低反射膜之玻 璃板的製造方法,其中前述中空微粒子為中空二氧化矽 微粒子。 14. 一種顯示裝置,包含: 框體; 顯示元件;及 如申請專利範圍第1至8項中任一項之附低反射膜 之玻璃板,其配置於前述顯示元件之顯示面。 15. 如申請專利範圍第1至8項中任一項之附低反射膜之玻 璃板,其係用於顯示裝置者。 46201244924 VII. Patent application scope: 1. A glass plate with a low reflection film, which is a single-layer low-reflection film containing a matrix and hollow microparticles on the surface of the glass plate. The low-reflection film is at a wavelength of 300~l, 200nm. The minimum reflectance in the range is 1.7% or less; the water contact angle on the surface of the low-reflection film is 97° or more; the oleic acid contact angle on the surface of the low-reflection film is 50° or more; and the oil on the surface of the low-reflection film The acid roll angle is 25° or less. 2. The glass sheet with a low-reflection film according to the first aspect of the invention, wherein the single-layer low-reflection film comprising the matrix and the hollow fine particles is formed on the outermost surface of at least one side of the glass sheet. 3. The glass plate with a low-reflection film of claim 1 or 2, which has a fluorine element ratio of 3 to 20 atom% as measured by X-ray photoelectron spectroscopy. 4. The glass plate with a low reflection film according to any one of claims 1 to 3, wherein the arithmetic mean roughness (Ra) of the surface of the low reflection film measured by a scanning probe microscope device is 3.0. ~5.0nm. 5. The glass plate with a low-reflection film according to any one of claims 1 to 4, wherein the low-reflection film has a refractive index of 1.20 to 1.46. 6. The glass plate with a low-reflection film according to any one of claims 1 to 5, wherein the substrate is mainly composed of cerium oxide and has a structure derived from a fluorine-containing ether compound, the fluorine-containing The ether compound has a poly(oxyperfluoroalkylene) chain in the main chain, and has a hydrolyzable calcining group at the terminal of at least one side of the main chain. 43 201244924. The glass plate with a low-reflection film according to any one of claims 1 to 6, wherein the compound containing the compound (A) is represented by the following formula (4): R 〇 (CF2CF2〇) aCF2_(Q)b(-(CH2)d-SiLpR3.p)e ···(△) where 'RH is a carbon number UOU valence perfluoro-saturated smoky group, or has been in a carbon atom·carbon atom _ human ether The carbon number of the oxygen atom (4) is the total fluorine residue and the hydrocarbon group, and the RFI is a group containing no -〇CF2〇-structure; only a is an integer of 1 to 200; b is 0 or 1; b is not present when 〇, and is a 2 or 3 valent linkage at _; C is i when Q is absent or Q is a divalent linkage, and is an integer of 2 to 6 at (10) valence d; Hydrolyzable group; R is a hydrogen atom or a monovalent hydrocarbon group; P is an integer of 1 to 3. 8. The low-reflection glass plate according to any one of the items (1) of the patent application, wherein the hollow fine particles are hollow dioxo particles. 9. A method for producing a glass plate with a reflective film, wherein the glass plate of the low-reflection film has a single-layer low-reflection film comprising a matrix and hollow microparticles on the surface of the glass plate, the manufacturing method having: comprising a matrix precursor And the step of coating the hollow microparticles and the solution-coating solution on the surface of the glass plate and firing the mixture; wherein the matrix precursor comprises a dioxic precursor and a fluorine-containing 44 201244924 ether compound and/or a hydrolysis condensate thereof, The gas-containing bond compound has a poly(oxyperfluoroalkylene group) bond in the main chain, and has a hydrolyzable group at the end of the side of the main chain. The mass ratio of the hollow fine particles to the silica dioxide precursor (in terms of Si02) is 6/4 to 4/6; compared to the hollow micro-teacher and the ceria precursor (si 〇 2 conversion) The total amount of the enamel s %) is from 0.8 to 3.0% by mass in the ratio of the fluorine-containing ether compound in the coating liquid. 10. The method for producing a glass sheet with a low-reflection film according to claim 9, wherein the fluorine-containing ether compound is a compound (4) represented by the following formula (A): RF1〇(CF2CF2〇)aCF2.(Q b(.(CH2)d.SiLpR3.p)c · · - (A) where 'rF1 is a monovalent perfluoro saturated hydrocarbon group having a carbon number of 1 to 20, or an ether has been inserted between carbon atoms and 1⁄4 atom The oxygen atom has a carbon number of 2 to 2 Å of an i-valent perfluoro saturated hydrocarbon group, and RFI is a group having no -〇CF2〇-structure; a is an integer of 1 to 200; b is 0 or 1; Q is b at 〇 When it is not present, it is a linking group at the time of (8); c is 1 when Q is absent or q is a divalent linking group, 2 is when 卩 is a trivalent linking group; d is an integer of 2 to 6; Is a hydrolyzable group; R is a hydrogen atom or a monovalent hydrocarbon group; and P is an integer of 1 to 3. The method of producing a glass sheet with a low-reflection film according to claim 9 or 10, wherein the cerium oxide precursor is a hydrolyzed condensate of alkoxy decane. 12. The method for producing a glass sheet with a low-reflection film according to claim 11 further comprising: dissolving the alkoxy group after the hydrolysis, adding the compound (A), and adding the dispersion of the hollow fine particles to prepare The step of applying the coating liquid. The method for producing a glass sheet with a low-reflection film according to any one of claims 9 to 12, wherein the hollow fine particles are hollow ceria microparticles. A display device comprising: a frame; a display element; and a glass plate with a low-reflection film according to any one of claims 1 to 8, which is disposed on a display surface of the display element. 15. A glass plate with a low-reflection film as claimed in any one of claims 1 to 8, which is for use in a display device. 46
TW101111693A 2011-04-01 2012-04-02 Glass plate with low reflective film TWI572481B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011081720 2011-04-01
JP2011081719 2011-04-01
JP2011081833 2011-04-01

Publications (2)

Publication Number Publication Date
TW201244924A true TW201244924A (en) 2012-11-16
TWI572481B TWI572481B (en) 2017-03-01

Family

ID=46969142

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101111693A TWI572481B (en) 2011-04-01 2012-04-02 Glass plate with low reflective film

Country Status (6)

Country Link
JP (1) JP6020444B2 (en)
KR (1) KR101884961B1 (en)
CN (1) CN103476726B (en)
DE (1) DE112012001546B4 (en)
TW (1) TWI572481B (en)
WO (1) WO2012137744A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104216032A (en) * 2013-05-30 2014-12-17 琳得科株式会社 Anti-dazzling hard coating film
US9206322B2 (en) 2013-09-27 2015-12-08 National Taiwan University Of Science And Technology Non-fluorinated coating materials with anti-fingerprint property, and evaluation method thereof
TWI793168B (en) * 2017-11-06 2023-02-21 日商琳得科股份有限公司 coating film

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957609B2 (en) 2011-11-30 2018-05-01 Corning Incorporated Process for making of glass articles with optical and easy-to-clean coatings
US10077207B2 (en) 2011-11-30 2018-09-18 Corning Incorporated Optical coating method, apparatus and product
TWI564409B (en) 2011-11-30 2017-01-01 康寧公司 Optical coating method, apparatus and product
JP6617699B2 (en) * 2014-05-08 2019-12-11 Agc株式会社 Glass article
CN111747659A (en) * 2014-07-16 2020-10-09 Agc株式会社 Cover glass
CN105647363B (en) * 2016-01-18 2018-03-16 杭州启俄科技有限公司 A kind of low-surface-energy composition and its application
JP2018075783A (en) * 2016-11-10 2018-05-17 東レ株式会社 Laminate
JP2018197183A (en) * 2017-05-23 2018-12-13 Agc株式会社 Glass article, and display unit
KR102075687B1 (en) * 2019-06-05 2020-02-10 주식회사 이건창호 Architectural glass panel with uniform color
US20230149913A1 (en) * 2020-03-11 2023-05-18 Nippon Sheet Glass Company, Limited Greenhouse and glass sheet with coating film
WO2021229338A1 (en) * 2020-05-14 2021-11-18 3M Innovative Properties Company Fluorinated coupling agents and fluorinated (co)polymer layers made using the same
KR20220147377A (en) 2021-04-27 2022-11-03 주식회사 에스폴리텍 Functional sheet with excellent uv protection and anti-reflection properties
JP2023177176A (en) * 2022-06-01 2023-12-13 日本板硝子株式会社 Low reflective member, and coating liquid of low reflective film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269337A (en) * 1988-09-05 1990-03-08 Matsushita Electric Ind Co Ltd Surface-treated glass
US5742118A (en) * 1988-09-09 1998-04-21 Hitachi, Ltd. Ultrafine particle film, process for producing the same, transparent plate and image display plate
US6277485B1 (en) 1998-01-27 2001-08-21 3M Innovative Properties Company Antisoiling coatings for antireflective surfaces and methods of preparation
JPH11292571A (en) * 1999-01-11 1999-10-26 Central Glass Co Ltd Water-repellent low-reflection glass
JP4046921B2 (en) * 2000-02-24 2008-02-13 触媒化成工業株式会社 Silica-based fine particles, method for producing the fine particle dispersion, and coated substrate
EP1294652B1 (en) 2000-06-20 2010-12-15 Asahi Glass Co., Ltd. Transparent film-coated substrate, coating liquid for transparent film formation, and display device
JP4031624B2 (en) 2000-06-23 2008-01-09 株式会社東芝 Substrate with transparent coating, coating liquid for forming transparent coating, and display device
US20050109238A1 (en) * 2001-10-25 2005-05-26 Takeyuki Yamaki Coating material composition and article having coating film formed therewith
TWI388876B (en) * 2003-12-26 2013-03-11 Fujifilm Corp Antireflection film, polarizing plate, method for producing them, liquid crystal display element, liquid crystal display device, and image display device
JP4792732B2 (en) 2004-11-18 2011-10-12 株式会社日立製作所 Antireflection film, optical component using antireflection film, and image display device using antireflection film
JP4883383B2 (en) * 2005-06-02 2012-02-22 旭硝子株式会社 Dispersion containing hollow SiO2, coating composition, and substrate with antireflection coating
JP4969893B2 (en) * 2006-04-04 2012-07-04 新日本製鐵株式会社 Coated substrate and method for producing the same
WO2009008380A1 (en) * 2007-07-06 2009-01-15 Asahi Glass Company, Limited Surface treating agent, article, and novel fluorine-containing ether compound
WO2010050263A1 (en) * 2008-10-31 2010-05-06 旭硝子株式会社 Hollow particle, method for producing the same, coating composition and article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104216032A (en) * 2013-05-30 2014-12-17 琳得科株式会社 Anti-dazzling hard coating film
CN104216032B (en) * 2013-05-30 2018-07-20 琳得科株式会社 Anti-dazzle hardness film coating
US9206322B2 (en) 2013-09-27 2015-12-08 National Taiwan University Of Science And Technology Non-fluorinated coating materials with anti-fingerprint property, and evaluation method thereof
TWI793168B (en) * 2017-11-06 2023-02-21 日商琳得科股份有限公司 coating film
TWI794107B (en) * 2017-11-06 2023-02-21 日商琳得科股份有限公司 coating film

Also Published As

Publication number Publication date
KR101884961B1 (en) 2018-08-02
CN103476726A (en) 2013-12-25
TWI572481B (en) 2017-03-01
DE112012001546T5 (en) 2014-01-16
JP6020444B2 (en) 2016-11-02
WO2012137744A1 (en) 2012-10-11
KR20140011348A (en) 2014-01-28
JPWO2012137744A1 (en) 2014-07-28
DE112012001546B4 (en) 2023-02-16
CN103476726B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
TW201244924A (en) Glass plate with low reflective film
TWI591072B (en) Silane compounds containing perfluoro(poly)ether groups
JP6133277B2 (en) Substrate elements for coating with easy clean coating
JP5880769B2 (en) Composition comprising perfluoro (poly) ether-modified amidosilane compound
TWI476166B (en) Method for manufacturing anti - reflective tempered glass
JP6653171B2 (en) Substrate with anti-reflection layer
JP6838614B2 (en) Fluoro (poly) ether group-containing silane compound
JPWO2015041257A1 (en) Tempered glass plate with low reflection film and method for producing the same
JP2014522433A (en) Substrate elements for coating with easy clean coating
KR102159595B1 (en) Composition containing perfluoro (poly) ether-modified amide silane compound
JP5572803B2 (en) Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument
KR102155040B1 (en) Antifouling article
US8216670B2 (en) Heat ray shielding glass for vehicle and process for producing the same
TW202336023A (en) Surface treatment agent
JP2007121786A (en) Method of manufacturing coating liquid, and method of manufacturing antireflection film using the coating liquid
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP2011048356A (en) Method for producing optical film, optical film and optical component
JPWO2020100760A1 (en) Method for manufacturing base material with water- and oil-repellent layer, vapor-deposited material and base material with water- and oil-repellent layer
WO2017159867A1 (en) Coating
CN101234854A (en) Infrared shielding film-coated glass plate and production process therefor
JP7415951B2 (en) Substrate with water- and oil-repellent layer, vapor deposition material, and manufacturing method of substrate with water- and oil-repellent layer
JP7428142B2 (en) Vapor deposition material, and method for producing a base material with a base layer and a base material with a water- and oil-repellent layer using the same
WO2013118483A1 (en) Coating material composition and coated article coated with such coating composition
JP2006265344A (en) Silicon oxide-based film-forming composition and method for producing substrate material attached with silicon oxide-based film
WO2018154915A1 (en) Non-transparent film attached member