TW201242761A - Laminated body for solder joint and jointed body - Google Patents

Laminated body for solder joint and jointed body Download PDF

Info

Publication number
TW201242761A
TW201242761A TW100147385A TW100147385A TW201242761A TW 201242761 A TW201242761 A TW 201242761A TW 100147385 A TW100147385 A TW 100147385A TW 100147385 A TW100147385 A TW 100147385A TW 201242761 A TW201242761 A TW 201242761A
Authority
TW
Taiwan
Prior art keywords
layer
metal
mass
sintered
sintered body
Prior art date
Application number
TW100147385A
Other languages
Chinese (zh)
Other versions
TWI597160B (en
Inventor
Kazuhiko Yamasaki
Fuyumi Mawatari
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of TW201242761A publication Critical patent/TW201242761A/en
Application granted granted Critical
Publication of TWI597160B publication Critical patent/TWI597160B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Conductive Materials (AREA)
  • Laminated Bodies (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Led Device Packages (AREA)
  • Powder Metallurgy (AREA)

Abstract

This laminated body for solder joint includes in series: a sintered body layer of metal nanoparticles; a barrier containing metal particles or metal oxide particles; and a solder joint layer. This jointed body includes in series: a first jointed object; the above-described laminated body for solder joint; and a second jointed object.

Description

201242761 六、發明說明: 【發明所屬之技術領域】 本發明關於焊接合用層合體及含有此焊接合層合體_ 接合體。此焊接合用層合體及接合體尤其非常適合於led 光源等的發光源或太陽電池。 【先前技術】 近年來,LED光源係隨著高亮度化等而利用於各式各 樣的領域。特別地,由於可實現白色LED光源,LED光 源係使用於照明器具或液晶顯示器的背光等用途。 爲了更提高此LED光源的亮度等,檢討更高效率地 利用來自LED元件的發光。例如,有揭示一種在Ag鍍敷 電極膜上具有鈦薄膜的LED光源,其具備(支持)基板、搭 載於基板上的LED元件、與含有螢光劑的密封劑,在基 板與LED元件之間,具備將LED元件的發光反射之Ag 鍍敷電極膜(專利文獻1)。 於此LED光源中,藉由在基板與LED元件之間,設 置含有Ag鍍敷電極膜之導電性反射膜層,以使來自發光 體的光有效率地反射而增加發光強度。此處,Ag薄膜(Ag 鍍敷電極膜)與鈦薄膜係藉由鍍敷法或濺鍍法等的真空成 膜法來形成。 一般地’於鍍敷法中’預料繁雜的步驟及廢液的發生 。於真空成膜法中’爲了維持、運轉大型的真空成膜裝置 ’需要很大的成本。於上述LED光源中,由於僅Ag鏟敷 -5- 201242761 電極膜會發生熱降解或光降解,故需要鈦薄膜,必須倂用 鍍敷法與真空成膜法》 又,於LED光源中,需要使基板與LED元件接合之 構造,一般多使用金屬糊或焊料等來接合,特別地藉由使 用Au-Sn合金焊料等,而得到的散熱特性(專利文獻2)» 另一方面,於此專利文獻2的方法中,爲了防此LED 元件電極的焊料浸蝕(solder leach),必須藉由鍍敷法或真 空成膜法設置Ni、Ti等複數的障壁層,有需要很大的成 膜成本之缺點。再者,防止此焊料浸蝕用的障壁層,在使 用Au-Sn合金焊料以外的無鉛焊料等時亦需要。 再者,於LED元件的背面,亦有使用以往的濺鍍法 或真空成膜法,設置具有含複層的透明膜之增反射構造的 反射膜,而且設置散熱特性高的金屬接合構造之情況。此 時,由於透明膜與金屬接合構造的金屬膜之間的接合不良 ,而亦有難以提高密接性的問題。 [先前技術文獻] [專利文獻] [專利文獻1]特開2009-231568號公報 [專利文獻2 ]特開2 0 0 8 - 1 0 5 4 5號公報 【發明內容】 [發明所欲解決的問題] 本發明之課題爲提供藉由簡便的步驟可製造,可進行 -6- 201242761 襯裏成本的大幅改善之焊接合用層合體,及含有該焊 用層合體,可使用於LED元件等的高可靠性之接合 於上述焊接合用層合體中,代替藉由以往的鏟敷法或 成膜法等所成膜的高價Ni障壁層,使用以金屬粒子 劑爲主成分的金屬糊等,藉此可使製造步驟成簡便, 行襯裏成本的大幅改善。 此焊接合用層合體亦可利用於其它用途的接合體 別地對於使用反射膜的太陽電池中所使用的接合體, 常適合。 [解決問題的手段] 本發明的態樣關於可藉由以下所示的構成來解決 問題的焊接合用層合體及接合體。 (1) 一種焊接合用層合體,其特徵爲依順序具備 屬奈米粒子燒結體層,含有金屬粒子或金屬氧化物粒 障壁層,與焊接合層。 (2) 如上述(1)記載的焊接合用層合體,其中在前 屬奈米粒子燒結體層的Γ-主面側設置前述障壁層,在 金屬奈米粒子燒結體層的另一主面側更具備透明層》 (3) 如上述(2)記載的焊接合用層合體,其中前述 層含有因加熱而硬化的聚合物型黏結劑或非聚合物型 劑中的至少1種。 (4) 如上述(1)〜(3)中任一項記載的焊接合用層合, 其中在前述金屬奈米粒子燒結體層與前述障壁層之間 接合 體。 真空 與溶 可進 ,特 亦非 上述 :金 子的 述金 前述 透明 黏結 ,更 201242761 具備黏結劑層。 (5) 如上述(4)記載的焊接合用層合體,其中前述黏結 劑層前述黏結劑層含有因加熱而硬化的聚合物型黏結劑或 非聚合物型黏結劑中的至少1種。 (6) 如上述(1)〜(5)中任一項記載的焊接合用層合體, 其中前述金屬奈米粒子燒結體層含有75質量%以上的銀 ,而且含有選自由金、銅、錫、鋅、鉬及錳所成之群組的 至少1種。 (7) 如上述(1)〜(6)中任一項記載的焊接合用層合體, 其中前述金屬奈米粒子燒結體層含有黏結劑。 (8) 如上述(1)〜(7)中任一項記載的焊接合用層合體, 其中前述金屬奈米粒子燒結體層的厚度爲0.01〜0.5 μηι ^ (9) 如上述(1)〜(8)中任一項記載的焊接合用層合體, 其中藉由濕式塗佈法進行成膜,接著藉由在130〜250 °C焙 燒而形成各層。 (10) 如上述(9)記載的焊接合用層合體,其中前述濕式 塗佈法係噴灑塗佈法、分配器塗佈法、旋塗法、刀塗法、 縫塗法、噴墨塗佈法、網版印刷法、平版印刷法或口模塗 佈法中的任一者。 (Π)—種接合體’其特徵爲依順序具備:第1被接合 體,上述(1)〜(10)之焊接合用層合體,與第2被接合體。 (12)如上述(11)記載的接合體,其中前述第1被接合 體係能發光或能光電轉換的元件,前述焊接合用層合體的 金屬奈米粒子燒結體層係可反射來自前述第1被接合體的 -8 - 201242761 光,前述第2被接合體係基板。 (13) 如上述(12)記載的接合體,其中前述第1被接合 體係能發光的元件,作爲發光源使用。 (14) 如上述(I2)記載的接合體,其中第1被接合體係 能光電轉換的元件,作爲太陽電池使用。 [發明的效果] 若依照上述(1)記載的態樣,則可得到因焊料(焊接合 層)所致的高接合可靠性。又,成膜層的數少,不需要高 價的成膜裝置,可謀求大幅的低成本化。另外,於上述 (2)記載的態樣中,與鍍敷法或真空成膜法比較下,由於 透明層所可使用的材料之自由度高,可任意地設定透明層 的折射率。藉此,可控制金屬奈米粒子燒結體層所致的增 反射效果。 若依照上述(11)記載的態樣,則可容易提供具有因焊 料所致的高接合可靠性之接合體。又’若依照上述(13)記 載的態樣,則可提供led元件所發出的光之利用效率高 的發光源。若依照上述(1 4)記載的態樣’則可提供光電轉 換效率高的太陽電池。 【實施方式】 [實施發明的形態] 以下,以實施形態爲基礎來具體說明本發明。惟’表 示含量的單位之% ’只要沒有特別指示’則爲質量%。201242761 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a welding combined laminate and a welded laminate-bonded body. This welding combined laminate and joined body are particularly suitable for a light source or a solar cell such as a led light source. [Prior Art] In recent years, LED light sources have been used in various fields in accordance with high brightness. In particular, since a white LED light source can be realized, the LED light source is used for a backlight of a lighting fixture or a liquid crystal display. In order to further increase the brightness and the like of the LED light source, it is reviewed to utilize the light emission from the LED element more efficiently. For example, there is disclosed an LED light source having a titanium thin film on an Ag-plated electrode film, comprising: a (support) substrate, an LED element mounted on the substrate, and a sealant containing a fluorescent agent, between the substrate and the LED element An Ag-plated electrode film that reflects the light emission of the LED element (Patent Document 1). In the LED light source, a conductive reflective film layer containing an Ag-plated electrode film is provided between the substrate and the LED element to efficiently reflect light from the illuminant to increase the luminescence intensity. Here, the Ag thin film (Ag plating electrode film) and the titanium thin film are formed by a vacuum film forming method such as a plating method or a sputtering method. Generally, in the plating method, complicated steps and waste liquid are expected to occur. In the vacuum film forming method, a large cost is required in order to maintain and operate a large vacuum film forming apparatus. In the above-mentioned LED light source, since only the Ag scraping -5-201242761 electrode film may undergo thermal degradation or photodegradation, a titanium film is required, and a plating method and a vacuum film forming method must be used. The structure in which the substrate and the LED element are bonded to each other is generally bonded by using a metal paste or solder, and the heat dissipation property obtained by using an Au-Sn alloy solder or the like (Patent Document 2). In the method of Document 2, in order to prevent solder leaching of the electrode of the LED element, it is necessary to provide a plurality of barrier layers such as Ni and Ti by a plating method or a vacuum film forming method, which requires a large film forming cost. Disadvantages. Further, it is also required to prevent the barrier layer for solder etching from using lead-free solder other than Au-Sn alloy solder. Further, in the back surface of the LED element, a conventional sputtering method or a vacuum film formation method is used, and a reflection film having a reflection-increasing structure including a transparent film of a plurality of layers is provided, and a metal bonding structure having high heat dissipation characteristics is provided. . At this time, there is a problem that it is difficult to improve the adhesion due to poor bonding between the transparent film and the metal film of the metal bonded structure. [PRIOR ART DOCUMENT] [Patent Document 1] JP-A-2009-231568 (Patent Document 2) JP-A-2002-001A [Problem] The object of the present invention is to provide a welding-use laminate which can be manufactured by a simple process, which can greatly improve the cost of lining from 6 to 201242761, and a laminate for welding, which can be used for high reliability of LED elements and the like. In the above-described welding-use laminate, it is possible to use a metal paste containing a metal particle as a main component instead of a high-priced Ni barrier layer formed by a conventional shovel method or a film formation method. The manufacturing steps are simple and the lining costs are greatly improved. This welding-use laminate can also be used in a joint body for other uses, and is often suitable for a joint body used in a solar battery using a reflective film. [Means for Solving the Problems] The aspect of the present invention relates to a welding-use laminate and a joined body which can solve the problems by the configuration shown below. (1) A welding-use laminate comprising a sintered body layer of a nanoparticle in sequence, containing a metal particle or a metal oxide grain barrier layer, and a welded layer. (2) The welding-use laminate according to the above aspect, wherein the barrier layer is provided on the Γ-main surface side of the sintered body layer of the precursor nanoparticle, and the other main surface side of the sintered layer of the metal nanoparticle is further provided. (3) The welding-use laminate according to the above (2), wherein the layer contains at least one of a polymer-type binder or a non-polymer type agent which is cured by heating. (4) The welding combined lamination according to any one of the above aspects, wherein the metal nanoparticle sintered body layer and the barrier layer are bonded to each other. Vacuum and solution can be entered, especially the above: gold deposits mentioned above, transparent bonding, and 201242761 has a layer of adhesive. (5) The solder-bonding laminate according to the above (4), wherein the binder layer contains at least one of a polymer binder or a non-polymer binder which is cured by heating. (6) The welded composite laminate according to any one of the above aspects, wherein the sintered metal nanoparticle sintered body layer contains 75 mass% or more of silver, and contains gold, copper, tin, and zinc. At least one of the group consisting of molybdenum and manganese. (7) The welding combined laminate according to any one of the above aspects, wherein the sintered metal nanoparticle sintered body layer contains a binder. The welding combined laminate according to any one of the above aspects, wherein the thickness of the sintered body layer of the metal nanoparticles is 0.01 to 0.5 μηι ^ (9) as in the above (1) to (8) The solder-use laminate according to any one of the preceding claims, wherein the film is formed by a wet coating method, and then each layer is formed by firing at 130 to 250 °C. (10) The welding-use laminate according to the above (9), wherein the wet coating method is a spray coating method, a dispenser coating method, a spin coating method, a knife coating method, a slit coating method, or an inkjet coating method. Any of a method, a screen printing method, a lithography method, or a die coating method. (Π)—The bonded body ′ is characterized by the first joined body, the welding combined laminate of the above (1) to (10), and the second joined body. (12) The bonded body according to the above (11), wherein the first bonded system is capable of emitting light or photoelectrically convertible, and the sintered metal laminate sintered body layer is reflective from the first bonded body. Body -8 - 201242761 Light, the second bonded system substrate. (13) The joined body according to the above (12), wherein the element capable of emitting light in the first bonded system is used as a light source. (14) The joined body according to the above (I2), wherein the element that can be photoelectrically converted by the first bonded system is used as a solar cell. [Effects of the Invention] According to the aspect described in the above (1), high joint reliability due to solder (welded layer) can be obtained. Further, since the number of film formation layers is small, an expensive film formation apparatus is not required, and a large cost can be achieved. Further, in the aspect described in the above (2), the refractive index of the transparent layer can be arbitrarily set in comparison with the plating method or the vacuum film forming method because the degree of freedom of the material which can be used for the transparent layer is high. Thereby, the effect of enhancing the reflection by the sintered body layer of the metal nanoparticles can be controlled. According to the aspect described in the above (11), the bonded body having high joint reliability due to the solder can be easily provided. Further, according to the aspect described in the above (13), it is possible to provide a light-emitting source having high utilization efficiency of light emitted from the LED element. According to the aspect described in the above (1), a solar cell having high photoelectric conversion efficiency can be provided. [Embodiment] [Embodiment of the Invention] Hereinafter, the present invention will be specifically described based on an embodiment. However, the % of the unit indicating the content is % by mass unless otherwise indicated.

S -9- 201242761 [焊接合用層合體] 本實施形態的焊接合用層合體係依順序具備金屬奈米 粒子燒結體層、含有金屬粒子或金屬氧化物粒子的障壁層 、與焊接合層。以下,依金屬奈米粒子燒結體層、障壁層 、焊接合層之順序進行說明。 《金屬奈米粒子燒結體層》 金屬奈米粒子燒結體層係對焊接合層賦予導電性、反 射性及密接性。金屬奈米粒子燒結體層係可藉由以下的方 法來形成。藉由濕式塗佈法,將金屬奈米粒子燒結體層用 組成物成膜而形成塗膜。然後,將塗膜乾燥,接著焙燒。 藉由以上,可形成金屬奈米粒子燒結體層。 從導電性、反射性之觀點來看,金屬奈米粒子燒結體 層含有75質量%以上的銀,而且含有選自由金、鉑 '鈀 、釕、鎳、銅、錫、銦、鋅、鐵、鉻、鉬及錳所成之群組 的至少1種。更佳爲含有選自由金、銅、錫、鋅、鉬及錳 所成之群組的至少1種。 從導電性的觀點來看,金屬奈米粒子燒結體層的厚度 較佳爲0.01〜0.5μιη。 金屬奈米粒子燒結體層用組成物含有金屬奈米粒子。 金屬奈米粒子較佳含有75質量%以上、更佳含有80質量 %以上的銀奈米粒子。相對於金屬奈米粒子燒結體層: 100質量%而言,當銀奈米粒子的含量低於75質量%時’ 使用此組成物所形成的電極(金屬奈米粒子燒結體層)之導 電率、反射率會降低。因此,相對於金屬奈米粒子燒結體 -10- 201242761 層:100質量%而言,銀奈米粒子的含量較佳爲75質量% 以上。 金屬奈米粒子較佳係經碳骨架爲碳數:1〜3的有機 分子主鏈之保護劑所化學修飾。爲了形成金屬奈米粒子燒 結體層,在基材上塗佈金屬奈米粒子燒結體層用組成物以 形成塗膜,接著若將塗膜焙燒,則保護金屬奈米粒子的表 面之保護劑中的有機分子係脫離或分解,或脫離且分解。 因此,容易得到實質上不含有對電極(金屬奈米粒子燒結 體層)的導電性及反射率造成不良影響的有機物殘渣,而 以金屬爲主成分的電極(金屬奈米粒子燒結體層)。當將金 屬奈米粒子化學修飾的保護劑之有機分子主鏈的碳骨架之 碳數爲4以上時,則焙燒時的熱係難以使保護劑脫離或分 解(分離•燃燒),在金屬奈米粒子燒結體層內容易殘留許 多的有機殘渣。此有機殘漆係對金屬奈米粒子燒結體層的 導電性及反射率造成不良影響。因此,較佳爲使將金屬奈 米粒子化學修飾的保護劑之有機分子主鏈的碳骨架之碳數 成爲1〜3的範圍。 再者,保護劑,即對金屬奈米粒子表面進行化學修飾 的保護分子,更佳爲含有羥基(-OH)或羰基(-C = 0)中的任 —者或兩者。羥基(-OH)若含於將銀奈米粒子等的金屬奈 米粒子化學修飾之保護劑中,則組成物的分散安定性優異 ,即使在塗膜的低溫燒結,也有效果地作用。羰基(-C = 0) 若含於將銀奈米粒子等的金屬奈米粒子化學修飾之保護劑 中’則金屬奈米粒子燒結體層組成物的分散安定性優異, -11 - 201242761 即使在金屬奈米粒子燒結體層的低溫燒結,也有效果地作 金屬奈米粒子較佳爲以數平均計含有70%以上的一次 粒徑·· 10〜50nm之範圍內的金屬奈米粒子,更佳爲含有 7 5 %以上。此處,所謂的數平均,就是意味個數基準的粒 度分布中之量。一次粒徑爲1〇〜50 nm的範圍內之金屬奈 米粒子的含量,以數平均計相對於全部的金屬奈米粒子 1〇〇 %而言,當未達 70%時,金屬奈米粒子的比表面積增 大,保護劑的佔有比例變大。因焙燒時之熱而容易脫離或 分解(分離•燃燒)的有機分子,亦因此有機分子的佔有比 例多,而在電極內有機殘渣許多殘留。因此,此有機殘渣 係變質或劣化,電極的導電性及反射率會降低。又,金屬 奈米粒子的粒度分布變廣,電極的密度容易降低,電極的 導電性及反射率會降低。因此,一次粒徑爲10〜5 〇nm的 範圍內之金屬奈米粒子的含量,以數平均計相於全部的金 屬奈米粒子100%而言,較佳爲70%以上。再者,以數平 均計70%以上的金屬奈米粒子之一次粒徑爲10〜50nm的 範圍內時,可得到良好的經時安定性(經年安定性)。此處 ,一次粒徑係藉由堀場製作所製LB-55 0的動態光散射法 進行測定。以下,除了特別記載時,平均粒徑係同樣地測 定。 如上述,金屬奈米粒子含有75質量%以上的銀奈米 粒子,而且較佳爲更含有選自由金、鉑、鈀、釕、鎳、銅 、錫、銦、鋅、鐵、鉻、鉬及錳所成之群組的1種之奈米 -12- 201242761 粒子或2種以上之奈米粒子的混合物,或選自上述群的2 種以上之元素所成的合金組成之奈米粒子。此等銀奈米粒 子以外的奈米粒子之含量,相對於全部的金屬奈米粒子: 100質量%而言,較佳爲0.02質量%以上且未達25質量% ,更佳爲0.03質量%〜20質量%。相對於全部的金屬奈米 粒子100質量%而言,當銀奈米粒子以外的奈米粒子之含 量未達0.02質量%時,沒有特別大的問題。當銀奈米粒子 以外的奈米粒子之含量爲〇.〇2質量%以上且未達25質量 %時,耐候性試驗後的金屬奈米粒子燒結體層之導電性及 反射率,與耐候性試驗前比較下,得到不惡化的效果。此 處,所謂的耐候性試驗,就是在溫度l〇〇°C且濕度50%的 恆溫恆濕槽中保持1 000小時的試驗。當銀奈米粒子以外 的奈米粒子之含量爲2 5質量%以上時,焙燒後立即的金 屬奈米粒子燒結體層之導電性及反射率係降低。又’耐候 性試驗後的金屬奈米粒子燒結體層之導電性及反射率會低 於耐候性試驗前。 又,金屬奈米粒子燒結體層用組成物可更含有選自由 金屬氧化物、金屬氫氧化物、有機金屬化合物及聚矽氧油 所成之群組的1種或2種以上之添加物。當金屬奈米粒子 燒結體層用組成物含有上述1種或2種以上的添加物時’ 由於進一步抑制金屬奈米粒子間之燒結所造成的粒成長’ 可製作符合目的的表面形狀。添加物的添加比例’相對於 金屬奈米粒子燒結體層用組成物:100質量%而言’較佳 爲0.1〜20質量%的範圍內,更佳爲1〜5質量%的範圍內 -13- 201242761 作爲添加物所使用的金屬氧化物,較佳爲含有選自由 鋁、矽、鈦、鉻、錳、鐵、鈷'鎳、銀、銅'鋅、鉬、錫 、銦及銻所成之群組的至少1種之氧化物或複合氧化物。 所謂的複合氧化物,具體地爲氧化銦-氧化錫系複合氧化 物(Indium Tin Oxide: ITO)、氧化鍊-氧化錫系複合氧化 物(Antimony Tin Oxide: AT^O)、氧化銦-氧化鋅系複合氧 化物(Indium Zinc Oxide: IZO)等。 作爲添加物使用的金屬氫氧化物,較佳爲含有選自由 鋁、矽、鈦、鉻、錳、鐵、鈷、鎳、銀、銅、鋅、鉬、錫 、銦及銻所成之群組的至少1種之氫氧化物。 作爲添加物使用的有機金屬化合物,較合適爲含有選 自由砂、欽、絡、鐘、鐵、姑、錬、銀、銅、辞、|目及錫 所成之群組的至少1種之金屬皂、金屬錯合物或金屬烷氧 化物。例如,作爲金屬皂,可舉出醋酸鉻、甲酸錳、檸檬 酸鐵、甲酸鈷、醋酸鎳、檸檬酸銀、醋酸銅、檸檬酸銅、 醋酸錫、醋酸鋅、草酸鋅、醋酸鉬等。作爲金屬錯合物, 可舉出乙醯丙酮鋅錯合物、乙醯丙酮鉻錯合物、可舉出乙 醯丙酮鎳錯合物等。作爲金屬烷氧化物,可舉出異丙氧化 鈦、矽酸甲酯、異氰酸酯基丙基三甲氧基矽烷、胺基丙基 三甲氧基矽烷等。 作爲添加物使用的聚矽氧油,可使用直鏈聚矽氧油及 改性聚矽氧油中的任一者或兩者。作爲改性聚矽氧油,更 且可使用在聚矽氧烷的側鏈之一部分導入有有機基者(側 -14- 201242761 鏈型)、在聚矽氧烷的兩末端導入有有機基者(兩末端型) 、在聚矽氧烷的兩末端中之任一端導入有有機基者(一末 端型)及在聚矽氧烷的側鏈之一部分與兩末端導入有有機 基者(側鏈兩末端型)。於改性聚矽氧油中,有反應性聚矽 氧油與非反應性聚矽氧油,可同時使用該兩種類。再者, 所謂的反應性聚矽氧油,就是表示胺基改性聚矽氧油、環 氧基改性聚矽氧油、羧基改性聚矽氧油、卡必醇改性聚矽 氧油、锍基改性聚矽氧油及異種官能基改性(環氧基、胺 基、聚醚基)聚矽氧油。所謂的非反應性聚矽氧油,就是 表示聚醚改性聚矽氧油、甲基苯乙烯基改性聚矽氧油、烷 基改性聚矽氧油、高級脂肪酸酯改性聚矽氧油、氟改性聚 矽氧油及親水特殊改性聚矽氧油。 金屬奈米粒子燒結體層用組成物中的金屬奈米粒子之 含量,相對於由金屬奈米粒子及分散介質所成的分散體: 100質量%而言,較佳爲2.5〜95.0質量%,更佳爲3.5〜 90.0質量% 9相對於由金屬奈米粒子及分散介質所成的分 散體:1〇〇質量%而言,當金屬奈米粒子的含量未達2.5 質量%時,特別地雖然對焙燒後的電極(金屬奈米粒子燒結 體層)的特性沒有影響,但難以得到必要厚度的電極。當 金屬奈米粒子的含量超過95.0質量%時,在金屬奈米粒子 燒結體層用組成物的濕式塗佈時,喪失作爲油墨或糊的必 要流動性。因此,金屬奈米粒子的含量,相對於由金屬奈 米粒子及分散介質所成的分散體:1〇〇質量%而言,較佳 爲2.5〜95.0質量%的範圍。 -15- 201242761 又,構成金屬奈米粒子燒結體層用組成物的分散介質 ,相對於全部的分散介質:100質量%而言,含有1質量 %以上且較佳2質量%以上的水與2質量%以上且較佳3 質量%以上的醇類係合適。例如,當分散介質僅由水及醇 類所構成時,若含2質量%的水’則含有9 8質量%的醇類 。若含有2質量%的醇類,則含98質量%的水。相對於全 部的分散介質1 〇〇質量%而言’當水的含量未達1質量% 時,藉由濕式塗佈法塗佈組成物而得之膜係難以在低溫下 燒結,而且焙燒後的金屬奈米粒子燒結體層之導電性與反 射率會降低。因此,相對於全部的分散介質100質量%而 言,水的含量合適爲1質量%以上的範圍。相對於全部的 分散介質:100質量%而言,當醇類的含量未達2質量% 時,與上述同樣地藉由濕式塗佈法塗佈組成物而得之膜係 難以在低溫下燒結,而且焙燒後的金屬奈米粒子燒結體層 之導電性與反射率會降低。因此,相對於全部的分散介質 :100質量%而言,醇類的含量合適爲2質量%以上的範 圍。作爲分散介質所用的醇類,較佳爲選自由甲醇、乙醇 、丙醇、丁醇、乙二醇、丙二醇、二乙二醇'甘油'異冰 片基己醇及赤蘚醇所成之群組的1種或2種以上。 醇類的添加係爲了改善與基材的潤濕性,可配合基材 的種類而自由地改變水與醇類的混合比例。 以常用的方法,藉由油漆搖動器、球磨機、砂磨機、 離心磨機 '三輥等來混合所欲的成分,使金屬奈米粒子等 分散,可製造金屬奈米粒子燒結體層用組成物。當然,亦 -16- 201242761 可藉由通常的攪拌操作來製造。 將金屬奈米粒子燒結體層用組成物成膜的濕式塗佈法 ’較佳爲噴灑塗佈法、分配器塗佈法、旋塗法、刀塗法' 縫塗法、噴墨塗佈法、網版印刷法、平版印刷法或口模塗 佈法中的任一者’但不受此所限定,可利用一切的方法。 噴灑塗佈法係藉由壓縮空氣使金屬奈米粒子燒結體層 用組成物成爲霧狀而塗佈於基材上,或將分散體(金屬奈 米粒子燒結體層用組成物)本身加壓成爲霧狀而塗佈於基 材上之方法。分配器塗佈法例如是將金屬奈米粒子燒結體 層用組成物置入注射器中,藉由按壓此注射器的活塞,而 自注射器前端的微細噴嘴吐出分散體(金屬奈米粒子燒結 體層用組成物),塗佈於基材上之方法。旋塗法係將金屬 奈米粒子燒結體層用組成物滴下至旋轉的基材上,藉由離 心力將該滴下的金屬奈米粒子燒結體層用組成物擴散至基 材周緣之方法。刀塗法係將與刀的前端留有指定間隙的基 材設置在水平方向中能移動,對此刀的上游側之基材上, 供應金屬奈米粒子燒結體層用組成物,使基材朝向下游側 水平移動之方法。縫塗法係使金屬奈米粒子燒結體層用組 成物自狹縫流出而塗佈於基材上之方法。噴墨塗佈法係在 市售的噴墨印刷機的墨匣中塡充金屬奈米粒子燒結體層用 組成物,於基材上進行噴墨印刷之方法。網版印刷法係使 用紗當作圖型指示材,通過其上所製作的版圖像,使金屬 奈米粒子燒結體層用組成物轉移至基材之方法。平版印刷 法係使附於版的金屬奈米粒子燒結體層用組成物不直接附 -17- 201242761 著於基材上,而自版一次轉印至橡膠薄片,再自橡膠薄片 轉移至基材之印刷方法,利用金屬奈米粒子燒結體層用組 成物的撥水性。口模塗佈法係藉由歧管來將供應給口模內 的金屬奈米粒子燒結體層用組成物分配,由狹縫壓出至薄 膜上,塗佈於行進的基材之表面上的方法。於口模塗佈法 中,有狹縫塗佈方式或滑動塗佈方式'簾幕塗佈方式。 所成膜的金屬奈米粒子燒結體層用組成物之塗膜的乾 燥溫度,係不對被接合體的led元件等造成影響之溫度 以下,例如宜爲60°c以下。 乾燥後的塗膜之焙燒溫度較佳爲130〜250 °C的範圍。 若未達130°C,則在金屬奈米粒子燒結體層中,發生硬化 不足的不良狀況。又,若超過250°C,則不發生低溫製程 的生產上之優點。即,製造成本增加,生產性降低。又, 作爲被接合體的候補之LED元件、或非晶矽、微結晶矽 或使用此等的混合型矽太陽電池,係在熱下比較弱,會由 於焙燒步驟而使轉換效率降低。 塗膜的焙燒時間較佳爲5〜60分鐘的範圍。焙燒時間 若未達下限値的5分鐘,則在金屬奈米粒子燒結體層中, 發生焙燒不充分的不良狀況。焙燒時間若超過上限値的 6〇分鐘,則超出需要地,製造成本增大,生產性會降低 9又,發生LED元件的發光效率或太陽電池單元的轉換 效率降低之不良狀況。 《'障壁層》 -18- 201242761 障壁層係在形成焊接合層之際或老化之際,抑制金屬 奈米粒子燒結體層的焊料浸蝕(solder leach)。此障壁層係 可藉由以下的方法來形成。藉由濕式塗佈法將障壁層用組 成物成膜而形成塗膜。然後,將塗膜乾燥,接著焙燒。經 由以上,可形成障壁層。再者,障壁層亦可藉由鍍敷法或 濺鍍法等的真空成膜法來形成。 從金屬奈米粒子燒結體層的焊料浸蝕防止、密接性之 觀點來看,障壁層的厚度較佳爲0.1〜10 μιη。 作爲障壁層用組成物,可使用金屬奈米粒子基礎的障 壁層用組成物及金屬化合物基礎的障壁層用組成物中之任 —者或兩者。以下,依(Α)金屬奈米粒子基礎的障壁層用 組成物、(Β)金屬化合物基礎的障壁層用組成物之順序進 行說明。 (Α)金屬奈米粒子基礎的障壁層用組成物 (Α)金屬奈米粒子基礎的障壁層用組成物含有金屬奈 米粒子。作爲金屬奈米粒子所含有的金屬,例如可舉出鐵 、鎳、鈷、釕、鍺、鈀 '銥、鉑等的週期表第8族金屬; 鈦、銷、給等的週期表第4Α族金屬:釩、鈮、鉬等的週 期表第5Α族金屬;鉻、鉬、鎢等的週期表第6Α族金屬 :錳等的週期表第7Α族金屬;銅、銀、金等的週期表第 1Β族金屬;鋅、鎘等的週期表第2Β族金屬;鋁、鎵、銦 等的週期表第3Β族金屬:鍺、錫、鉛等的週期表第4Β 族金屬;銻 '鉍等的週期表第5Β族金屬等。作爲金屬奈 -19- 201242761 米粒子,可爲由此等金屬單體所成的金屬奈米粒子或由此 等金屬的2種以上之合金所成的金屬奈米粒子中之任一者 。於此等金屬或合金之中,可依照焊料的材質等來適宜選 擇。例如,對於Au-Sn焊料,較佳爲鎳、銀、金、鈦等。 金屬奈米粒子係可爲單獨或組合二種以上使用。 金屬奈米粒子具有奈米尺寸的粒徑。例如,金屬奈米 粒子的平均粒徑(平均一次粒徑)較佳爲1〜l〇〇nm,更佳 爲1.5〜80nm,尤佳爲2〜70nm,特佳爲3〜50nm,通常 爲1〜40nm(例如2〜30nm)左右。 金屬奈米粒子較佳爲經保護膠體所被覆。藉此,在室 溫下的分散性、保存安定性變良好。作爲此保護膠體,可 舉出有機化合物或高分子分散劑。 作爲保護膠體所使用的有機化合物,較佳爲具有1〜 3個羧基的有機化合物,更佳爲單羧酸、多羧酸、羥基羧 酸等的羧酸。 作爲保護膠體使用的高分子分散劑,可舉出含有以親 水性單體所構成的親水性單元(或親水性嵌段)之樹脂(或 水溶性樹脂、水分散性樹脂)。作爲親水性單體,例如可 舉出含有羧基或酸酐基的單體、含有羥基的單體等之加成 聚合系單體;環氧烷等的縮合系單體等。作爲含有羧基或 酸酐基的單體,可舉出丙烯酸、甲基丙烯酸等的(甲基)丙 烯酸系單體、馬來酸等的不飽和多元羧酸、馬來酸酐等。 作爲含有羥基的單體,可舉出基(甲基)丙烯酸2-羥乙酯等 的(甲基)丙烯酸羥烷酯、乙烯基苯酚等。作爲環氧烷,可 -20- 201242761 舉出環氧乙烷等。 金屬奈米粒子基礎的障壁層用組成物若含有分散介質 ,則由於可藉由濕式塗佈法容易塗佈而較佳。作爲分散介 質,只要是藉由與金屬奈米粒子或保護膠體的組合’可產 生充分的黏度之溶劑’則沒有特別的限定’可使用通用的 溶劑。作爲溶劑,可舉出水、醇類。分散介質的比例係可 依照濕式塗佈法的塗佈容易性等來適宜選擇。 金屬奈米粒子基礎的障壁層用組成物中之相對於固體 成分全體而言的金屬奈米粒子之比例’係可依照濕式塗佈 法的塗佈容易性、金屬奈米粒子的燒結密度等來適宜選擇 。作爲一例,金屬奈米粒子基礎的障壁層用組成物中之相 對於固體成分全體而言的金屬奈米粒子之比例,較佳爲 70〜99質量%,更佳爲85〜99質量%,尤佳爲90〜99質 量%。 保護膠體的比例係可依照金屬奈米粒子的分散性等來 適宜選擇。例如,相對於金屬奈米粒子:100質量份而言 ,保護膠體的比例較佳爲0.5〜20質量份,更佳爲1〜15 質量份。有機化合物與高分子分散劑的比例亦可依照金屬 奈米粒子的分散性等來適宜選擇。 將藉由眾所周知的方法所製造的金屬奈米粒子等,與 金屬奈米粒子燒結體層用組成物的製造方法同樣地使分散 ,可製造金屬奈米粒子基礎的障壁層用組成物。 (B)金屬化合物基礎的障壁層用組成物 -21 - 201242761 金屬化合物基礎的障壁層用組成物含有金屬化合物。 作爲金屬化合物’可舉出金屬氧化物、金屬氫氧化物、金 屬硫化物、金屬碳化物、金屬氮化物、金屬硼化物等。作 爲構成金屬化合物的金屬,係與構成上述(A)金屬奈米粒 子基礎的障壁層用組成物中之金屬奈米粒子的金屬同樣。 此等金屬化合物係可爲單獨或組合二種以上使用。構成金 屬化合物的金屬較佳爲至少含有銀等的貴金屬(尤其週期 表第1B族金屬)之金屬(金屬單體及金屬合金),尤其更佳 爲貴金屬單體(例如銀單體等)。以下,說明銀化合物的情 況。 作爲銀化合物,可舉出氧化亞銀、氧化銀、碳酸銀、 醋酸銀、乙醯丙酮銀錯合物等。此等銀化合物係可爲單獨 或組合二種以上使用。作爲此銀化合物,可使用市售者。 銀化合物的平均粒徑較佳爲0.01〜Ιμιη,更佳爲0.01 〜0·5μιη的範圍,可按照還原反應條件或加熱溫度等來適 宜選擇。 金屬化合物基礎的障壁層用組成物含有分散介質。作 爲分散介質,可使用水;甲醇、乙醇、丙醇等的醇類:異 佛爾酮、萜品醇、三乙二醇單丁醚、丁基溶纖劑乙酸酯等 的有機溶劑。分散介質的比例係可依照濕式塗佈法的塗佈 容易性等來適宜選擇。 爲了使銀化合物良好地分散於分散介質中,較佳爲添 加分散劑。作爲分散劑,可舉出羥丙基纖維素、聚乙烯吡 咯啶酮、聚乙烯醇等。分散劑的含量,一般相對於銀化合 -22- 201242761 物:100質量份而言,爲0〜300質量份。 爲了提高濕式塗佈法的塗佈容易性,金屬化合物基礎 的障壁層用組成物亦可含有黏結劑樹脂。作爲黏結劑樹脂 ,可舉出丙燃酸樹脂、乙嫌基樹脂、聚醋樹脂、聚胺基甲 酸酯樹脂、酚樹脂、環氧樹脂等,亦可爲此等的單體。 再者,金屬化合物基礎的障壁層用組成物亦可含有能 將金屬化合物還原的還原劑。作爲還原劑,可舉出乙二醇 、福馬林、聯氨、抗壞血酸、各種的醇等。 與金屬奈米粒子燒結體層用組成物的製造方法同樣地 ’可使市售的金屬化合物等分散,而製造金屬化合物基礎 的障壁層用組成物。 (障壁層之製作方法) 藉由濕式塗佈法將(Α)金屬奈米粒子基礎的障壁層用 組成物或(Β)金屬化合物基礎的障壁層用組成物成膜以形 成塗膜之方法’使塗膜乾燥之方法,及焙燒之方法,係與 金屬奈米粒子燒結體層的製作方法同樣。 《焊接合層》 焊接合層較佳爲將焊料糊熔融而形成。藉此,可精密 控制厚度。再者,當焊接合層係由焊料糊所構成時,藉由 使焊接合用層合體的焊接合層熔融,而將焊接合用層合體 接合於被接合體’以製作接合體。如此地,藉由使焊料糊 熔融,可形成接合體’故可使製程簡單化。S-9-201242761 [Welding laminated layer] The welding combined lamination system of the present embodiment includes a sintered layer of a metal nanoparticle, a barrier layer containing metal particles or metal oxide particles, and a welded layer in this order. Hereinafter, the description will be given in the order of the sintered body layer of the metal nanoparticles, the barrier layer, and the welded layer. <<Metal Nanoparticle Sintered Body Layer>> The metal nanoparticle sintered body layer imparts conductivity, reflectivity, and adhesion to the welded joint layer. The sintered metal layer of the metal nanoparticles can be formed by the following method. The metal nanoparticle sintered body layer is formed into a film by a wet coating method to form a coating film. Then, the coating film is dried, followed by baking. From the above, a sintered body layer of a metal nanoparticle can be formed. From the viewpoint of conductivity and reflectivity, the sintered body layer of the metal nanoparticle contains 75% by mass or more of silver, and contains a metal selected from the group consisting of gold, platinum 'palladium, rhodium, nickel, copper, tin, indium, zinc, iron, and chromium. At least one of the group consisting of molybdenum and manganese. More preferably, it contains at least one selected from the group consisting of gold, copper, tin, zinc, molybdenum and manganese. The thickness of the sintered body layer of the metal nanoparticles is preferably from 0.01 to 0.5 μm from the viewpoint of conductivity. The metal nanoparticle sintered body layer composition contains metal nanoparticles. The metal nanoparticles preferably contain 75% by mass or more, more preferably 80% by mass or more of silver nanoparticles. With respect to the sintered body layer of the metal nanoparticle: 100% by mass, when the content of the silver nanoparticle is less than 75% by mass, the conductivity (reflection of the electrode (metal nanoparticle sintered body layer) formed using the composition) The rate will decrease. Therefore, the content of the silver nanoparticles is preferably 75% by mass or more based on 100% by mass of the layer of the sintered metal nanoparticle sintered body-10-201242761. The metal nanoparticle is preferably chemically modified by a protective agent of an organic molecular main chain having a carbon number of 1 to 3 carbon atoms. In order to form a sintered body layer of a metal nanoparticle, a composition for a sintered body layer of a metal nanoparticle is coated on a substrate to form a coating film, and then, if the coating film is fired, the organic layer in the protective agent for protecting the surface of the metal nanoparticle is protected. The molecular system is detached or decomposed, or detached and decomposed. Therefore, it is easy to obtain an organic material residue which does not substantially adversely affect the conductivity and reflectance of the counter electrode (the metal nanoparticle sintered body layer), and an electrode (metal nanoparticle sintered body layer) mainly composed of a metal. When the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent chemically modified with the metal nanoparticles is 4 or more, the heat system at the time of baking is difficult to detach or decompose the protective agent (separation and combustion) in the metal nano Many organic residues are likely to remain in the sintered body layer of the particles. This organic residual paint adversely affects the electrical conductivity and reflectance of the sintered body layer of the metal nanoparticles. Therefore, it is preferred that the carbon number of the carbon skeleton of the organic molecular main chain of the protective agent chemically modifying the metal nanoparticles is in the range of 1 to 3. Further, the protective agent, i.e., the protective molecule which chemically modifies the surface of the metal nanoparticles, more preferably contains either or both of a hydroxyl group (-OH) or a carbonyl group (-C = 0). When the hydroxyl group (-OH) is contained in a protective agent for chemically modifying metal nanoparticles such as silver nanoparticles, the composition is excellent in dispersion stability, and functions effectively even at low temperature sintering of the coating film. The carbonyl group (-C = 0) is contained in a protective agent for chemically modifying metal nanoparticles such as silver nanoparticles, and the metal nanoparticle sintered body layer composition is excellent in dispersion stability, -11 - 201242761 even in metal In the low-temperature sintering of the sintered body layer of the nanoparticle, it is preferable that the metal nanoparticle is preferably a metal nanoparticle having a primary particle diameter of 10% or more in a range of 10 to 50 nm, more preferably contained. 7 5 % or more. Here, the so-called number average means the amount in the particle size distribution of the number basis. The content of the metal nanoparticles in the range of primary particle diameters from 1 〇 to 50 nm is, in terms of number average, relative to the total of 1% of the metal nanoparticles, when less than 70%, the metal nanoparticles The specific surface area increases, and the proportion of the protective agent becomes large. The organic molecules which are easily separated or decomposed (separated/burned) by the heat at the time of calcination also have a large proportion of organic molecules, and many organic residues remain in the electrodes. Therefore, the organic residue is deteriorated or deteriorated, and the conductivity and reflectance of the electrode are lowered. Further, the particle size distribution of the metal nanoparticles is widened, the density of the electrode is liable to lower, and the conductivity and reflectance of the electrode are lowered. Therefore, the content of the metal nanoparticles in the range of the primary particle diameter of 10 to 5 〇 nm is preferably 70% or more in terms of the number average of 100% of all the metal nanoparticles. Further, when the primary particle diameter of 70% or more of the metal nanoparticles is in the range of 10 to 50 nm, good stability with time (year-old stability) can be obtained. Here, the primary particle diameter was measured by a dynamic light scattering method of LB-55 0 manufactured by Horiba, Ltd. Hereinafter, the average particle diameter is measured in the same manner unless otherwise specified. As described above, the metal nanoparticle contains 75% by mass or more of silver nanoparticles, and more preferably contains gold, platinum, palladium, rhodium, nickel, copper, tin, indium, zinc, iron, chromium, molybdenum and A nanoparticle of one type of nano-12-201242761 particles or a mixture of two or more kinds of nanoparticles, or an alloy composed of two or more elements selected from the group. The content of the nanoparticles of the nanoparticles other than the silver nanoparticles is preferably 0.02% by mass or more and less than 25% by mass, and more preferably 0.03% by mass based on 100% by mass of the total of the metal nanoparticles. 20% by mass. When the content of the nanoparticles other than the silver nanoparticles is less than 0.02% by mass, it is not particularly problematic with respect to 100% by mass of all the metal nanoparticles. When the content of the nanoparticles other than the silver nanoparticles is 〇.〇2% by mass or less and less than 25% by mass, the conductivity and reflectance of the sintered body layer of the metal nanoparticles after the weather resistance test, and the weather resistance test Before the comparison, the effect is not deteriorated. Here, the so-called weather resistance test is a test which is maintained for 1 000 hours in a constant temperature and humidity chamber having a temperature of 10 ° C and a humidity of 50%. When the content of the nanoparticles other than the silver nanoparticles is 25 mass% or more, the electrical conductivity and reflectance of the sintered body layer of the metal nanoparticles immediately after the calcination are lowered. Further, the electrical conductivity and reflectance of the sintered body layer of the metal nanoparticles after the weather resistance test were lower than those before the weather resistance test. In addition, the metal nanoparticle sintered body layer composition may further contain one or more additives selected from the group consisting of metal oxides, metal hydroxides, organometallic compounds, and polyoxygenated oils. When the metal nanoparticle sintered body layer composition contains the above-mentioned one or more kinds of additives, 'the grain growth caused by the sintering between the metal nanoparticles is further suppressed' can be produced to achieve a desired surface shape. The addition ratio of the additive is preferably in the range of 0.1 to 20% by mass, more preferably in the range of 1 to 5% by mass, based on 100% by mass of the composition for the sintered body layer of the metal nanoparticle. 201242761 The metal oxide used as an additive preferably contains a group selected from the group consisting of aluminum, tantalum, titanium, chromium, manganese, iron, cobalt 'nickel, silver, copper 'zinc, molybdenum, tin, indium and antimony. At least one oxide or composite oxide of the group. The composite oxide is specifically an indium tin oxide-based composite oxide (Indium Tin Oxide: ITO), an oxidized chain-tin oxide-based composite oxide (Antimony Tin Oxide: AT^O), or indium oxide-zinc oxide. A composite oxide (Indium Zinc Oxide: IZO) or the like. The metal hydroxide used as the additive preferably contains a group selected from the group consisting of aluminum, tantalum, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium, and antimony. At least one of the hydroxides. The organometallic compound used as an additive is preferably a metal containing at least one selected from the group consisting of sand, chin, ketone, bell, iron, agar, yttrium, silver, copper, yttrium, yttrium, and tin. Soap, metal complex or metal alkoxide. For example, examples of the metal soap include chromium acetate, manganese formate, iron citrate, cobalt formate, nickel acetate, silver citrate, copper acetate, copper citrate, tin acetate, zinc acetate, zinc oxalate, and molybdenum acetate. The metal complex compound may, for example, be an ethyl acetoacetate zinc complex or an acetonitrile acetone chromium complex, and examples thereof include an ethyl acetonate nickel complex. Examples of the metal alkoxide include titanium isopropoxide, methyl decanoate, isocyanatopropyltrimethoxydecane, and aminopropyltrimethoxydecane. As the polyoxygenated oil to be used as an additive, either or both of a linear polysiloxane oil and a modified polyoxyxylene oil can be used. As the modified polyoxyxene oil, those in which an organic group is introduced into one side chain of the polyoxyalkylene (side-14-201242761 chain type) and an organic group introduced at both ends of the polyoxyalkylene can be used. (both end type), an organic group introduced at either end of both ends of the polyoxyalkylene (one end type), and one of the side chains of the polyoxyalkylene and an organic group introduced at both ends (side chain) Both end types). Among the modified polyoxyxides, there are reactive polyoxygenated oils and non-reactive polyasoxylated oils, which can be used simultaneously. Furthermore, the so-called reactive polyoxyxide oil means an amine-modified polyoxyxide oil, an epoxy-modified polyoxyxene oil, a carboxyl-modified polyoxyxene oil, a carbitol-modified polyoxyxide oil. , fluorenyl modified polyoxyxide oil and heterofunctional functional group modified (epoxy, amine, polyether based) polyoxygenated oil. The so-called non-reactive polyoxo-oxygen oil is a polyether modified polyoxyxide oil, a methylstyryl modified polyoxyxide oil, an alkyl modified polyoxyxene oil, a higher fatty acid ester modified polyfluorene. Oxygen oil, fluorine modified polyoxyxide oil and hydrophilic special modified polyoxyxide oil. The content of the metal nanoparticles in the composition for the sintered body layer of the metal nanoparticles is preferably from 2.5 to 95.0% by mass based on 100% by mass of the dispersion of the metal nanoparticles and the dispersion medium. Preferably, it is 3.5 to 90.0% by mass of the dispersion of the metal nanoparticles and the dispersion medium: when the content of the metal nanoparticles is less than 2.5% by mass, particularly The characteristics of the electrode (the sintered metal nanoparticle sintered body layer) after baking have no effect, but it is difficult to obtain an electrode having a necessary thickness. When the content of the metal nanoparticles is more than 95.0% by mass, the wet flow of the composition for the sintered body layer of the metal nanoparticles is lost, and the necessary fluidity as an ink or a paste is lost. Therefore, the content of the metal nanoparticles is preferably in the range of 2.5 to 95.0% by mass based on the dispersion of the metal nanoparticles and the dispersion medium: 1% by mass. -15-201242761 Further, the dispersion medium constituting the composition for the sintered body layer of the metal nanoparticles contains 1% by mass or more, preferably 2% by mass or more of water and 2% by mass based on 100% by mass of the entire dispersion medium. An alcohol of more than % and preferably more than 3% by mass is suitable. For example, when the dispersion medium is composed only of water and an alcohol, if it contains 2% by mass of water, it contains 98% by mass of an alcohol. When it contains 2 mass % of alcohol, it contains 98 mass % of water. When the content of water is less than 1% by mass based on 1% by mass of the entire dispersion medium, the film obtained by coating the composition by the wet coating method is difficult to be sintered at a low temperature, and after baking The electrical conductivity and reflectance of the sintered body layer of the metal nanoparticles are lowered. Therefore, the content of water is suitably in the range of 1% by mass or more based on 100% by mass of the entire dispersion medium. When the content of the alcohol is less than 2% by mass based on 100% by mass of the entire dispersion medium, the film obtained by coating the composition by the wet coating method in the same manner as described above is difficult to be sintered at a low temperature. Moreover, the electrical conductivity and reflectance of the sintered metal nanoparticle sintered body layer are lowered. Therefore, the content of the alcohol is suitably in the range of 2% by mass or more based on 100% by mass of the entire dispersion medium. The alcohol used as the dispersion medium is preferably selected from the group consisting of methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol 'glycerol' isobornyl hexanol, and erythritol. One or two or more. The addition of the alcohol is carried out in order to improve the wettability with the substrate, and the mixing ratio of water and alcohol can be freely changed in accordance with the type of the substrate. A composition for sintering a metal nanoparticle sintered body layer can be produced by mixing a desired component with a paint shaker, a ball mill, a sand mill, a centrifugal mill 'three rolls, or the like in a usual manner to disperse metal nanoparticles or the like. . Of course, -16-201242761 can also be manufactured by a usual stirring operation. The wet coating method for forming a metal nanoparticle sintered body layer composition film is preferably a spray coating method, a dispenser coating method, a spin coating method, a knife coating method, a slit coating method, or an inkjet coating method. Any of the screen printing method, the lithography method, or the die coating method' is not limited thereto, and all methods can be utilized. In the spray coating method, the metal nanoparticle sintered body layer composition is applied to the substrate by a compressed air by a compressed air, or the dispersion (the metal nanoparticle sintered body layer composition) itself is pressurized into a mist. A method of coating on a substrate. In the dispenser coating method, for example, a composition for sintering a metal nanoparticle sintered body layer is placed in a syringe, and a piston of the syringe is pressed to discharge a dispersion from a fine nozzle at the tip end of the syringe (a composition for a sintered body layer of a metal nanoparticle) , a method of coating on a substrate. In the spin coating method, a composition for sintering a metal nanoparticle sintered body layer is dropped onto a rotating substrate, and the molten metal nanoparticle sintered body layer is diffused to the periphery of the substrate by centrifugal force. The knife coating method is capable of moving a substrate having a predetermined gap with a predetermined gap at the front end of the blade to move in the horizontal direction. On the substrate on the upstream side of the blade, a composition for sintering a layer of the metal nanoparticle is supplied to orient the substrate. The method of horizontal movement on the downstream side. The slit coating method is a method in which a composition for sintering a metal nanoparticle sintered body layer is applied from a slit and applied to a substrate. The inkjet coating method is a method in which a composition for sintering a metal nanoparticle sintered body layer is filled in an ink cartridge of a commercially available ink jet printer, and inkjet printing is performed on a substrate. The screen printing method uses a yarn as a pattern indicating material, and a method of transferring a composition for sintering a metal nanoparticle sintered body layer to a substrate by using a plate image produced thereon. The lithographic printing method is such that the composition for sintering the metal nanoparticle sintered body layer attached to the plate is not directly attached to the substrate, but is transferred from the plate to the rubber sheet and then transferred from the rubber sheet to the substrate. The printing method utilizes the water repellency of the composition for sintering the body layer of the metal nanoparticle. The die coating method is a method in which a sintered body layer of a metal nanoparticle supplied to a die is distributed by a manifold, and is extruded onto a film by a slit, and is applied onto a surface of a traveling substrate. . Among the die coating methods, there are a slit coating method or a slide coating method 'curtain coating method. The drying temperature of the coating film of the composition for forming a metal nanoparticle sintered body layer to be formed is a temperature which does not affect the LED element or the like of the bonded body, and is preferably 60 ° C or less. The baking temperature of the dried coating film is preferably in the range of 130 to 250 °C. If it is less than 130 °C, a problem of insufficient hardening occurs in the sintered layer of the metal nanoparticles. Further, if it exceeds 250 °C, the production advantage of the low-temperature process does not occur. That is, the manufacturing cost increases and the productivity is lowered. Further, the LED element as a candidate for the bonded body, the amorphous germanium, the microcrystalline germanium, or the hybrid solar cell using the same is weak under heat, and the conversion efficiency is lowered by the baking step. The baking time of the coating film is preferably in the range of 5 to 60 minutes. When the calcination time is less than 5 minutes of the lower limit 値, a problem of insufficient baking is caused in the sintered layer of the metal nanoparticles. When the baking time exceeds the upper limit of 〇6 minutes, the manufacturing cost is increased and the productivity is lowered. In addition, the luminous efficiency of the LED element or the conversion efficiency of the solar cell unit is lowered. "Baffle Layer" -18- 201242761 The barrier layer suppresses the solder leach of the sintered layer of the metal nanoparticles when the weld layer is formed or aged. This barrier layer can be formed by the following method. A coating film is formed by forming a film for a barrier layer by a wet coating method. Then, the coating film is dried, followed by baking. With the above, a barrier layer can be formed. Further, the barrier layer may be formed by a vacuum film formation method such as a plating method or a sputtering method. The thickness of the barrier layer is preferably from 0.1 to 10 μm from the viewpoint of solder erosion prevention and adhesion of the sintered body layer of the metal nanoparticles. As the composition for the barrier layer, any one or both of the composition for a barrier layer based on the metal nanoparticles and the composition for the barrier layer based on the metal compound can be used. Hereinafter, the composition for the barrier layer based on the (N) metal nanoparticles and the composition for the barrier layer based on the (metal) metal compound will be described. (Α) Metal nanoparticle-based barrier layer composition (Α) Metal nanoparticle-based barrier layer composition contains metal nanoparticles. Examples of the metal contained in the metal nanoparticles include metals of Group 8 of the periodic table such as iron, nickel, cobalt, rhodium, ruthenium, palladium rhodium, and platinum; and the fourth group of the periodic table of titanium, pin, and the like. Metal: Group 5 metal of the periodic table such as vanadium, niobium, molybdenum, etc.; metal of the 6th group of the periodic table of chromium, molybdenum, tungsten, etc.: metal of the seventh group of the periodic table of manganese, etc.; periodic table of copper, silver, gold, etc. 1 lanthanum metal; zinc, cadmium, etc. periodic table 2 lanthanum metal; aluminum, gallium, indium, etc. periodic table 3 lanthanum metal: lanthanum, tin, lead, etc. periodic table 4 Β group metal; 锑 '铋 cycle Table 5 metal and the like. The metal nanoparticles of the metal -19-201242761 may be any of the metal nanoparticles formed by the metal nanoparticles or the alloy of two or more of the metals. Among these metals or alloys, it can be appropriately selected depending on the material of the solder or the like. For example, for the Au-Sn solder, nickel, silver, gold, titanium, or the like is preferable. The metal nanoparticle system may be used alone or in combination of two or more. The metal nanoparticle has a particle size of a nanometer size. For example, the average particle diameter (average primary particle diameter) of the metal nanoparticles is preferably from 1 to 10 nm, more preferably from 1.5 to 80 nm, still more preferably from 2 to 70 nm, particularly preferably from 3 to 50 nm, usually 1 ~40nm (for example, 2~30nm) or so. The metal nanoparticle is preferably coated with a protective colloid. Thereby, the dispersibility at room temperature and the storage stability are improved. As the protective colloid, an organic compound or a polymer dispersant can be given. The organic compound used as the protective colloid is preferably an organic compound having 1 to 3 carboxyl groups, more preferably a carboxylic acid such as a monocarboxylic acid, a polycarboxylic acid or a hydroxycarboxylic acid. The polymer dispersant used as the protective colloid includes a resin (or a water-soluble resin or a water-dispersible resin) containing a hydrophilic unit (or a hydrophilic block) composed of a hydrophilic monomer. The hydrophilic monomer may, for example, be an addition polymerization monomer such as a carboxyl group or an acid anhydride group-containing monomer or a hydroxyl group-containing monomer; or a condensation monomer such as an alkylene oxide. Examples of the monomer having a carboxyl group or an acid anhydride group include a (meth)acrylic acid monomer such as acrylic acid or methacrylic acid, an unsaturated polycarboxylic acid such as maleic acid, and maleic anhydride. The hydroxyl group-containing monomer may, for example, be a hydroxyalkyl (meth)acrylate such as 2-hydroxyethyl (meth)acrylate or a vinyl phenol. As the alkylene oxide, -20-201242761 may be exemplified by ethylene oxide or the like. When the composition for a barrier layer of the metal nanoparticle-based composition contains a dispersion medium, it can be easily applied by a wet coating method. The dispersion medium is not particularly limited as long as it is a solvent which can produce a sufficient viscosity by a combination with a metal nanoparticle or a protective colloid. A general-purpose solvent can be used. Examples of the solvent include water and alcohol. The ratio of the dispersion medium can be appropriately selected in accordance with the ease of coating by a wet coating method or the like. The ratio of the metal nanoparticle to the entire solid content in the composition for the barrier layer of the metal nanoparticle based on the ease of coating by the wet coating method, the sintered density of the metal nanoparticle, etc. Come to choose. As an example, the ratio of the metal nanoparticle to the solid content of the composition for the barrier layer based on the metal nanoparticle is preferably 70 to 99% by mass, more preferably 85 to 99% by mass. Good for 90 to 99% by mass. The proportion of the protective colloid can be appropriately selected in accordance with the dispersibility of the metal nanoparticles or the like. For example, the ratio of the protective colloid is preferably from 0.5 to 20 parts by mass, more preferably from 1 to 15 parts by mass, per 100 parts by mass of the metal nanoparticles. The ratio of the organic compound to the polymer dispersant can be appropriately selected depending on the dispersibility of the metal nanoparticles or the like. Metal nanoparticle or the like produced by a well-known method is dispersed in the same manner as in the method for producing a composition for sintering a metal nanoparticle sintered body layer, and a composition for a barrier layer based on a metal nanoparticle can be produced. (B) Metal compound-based barrier layer composition -21 - 201242761 The metal compound-based barrier layer composition contains a metal compound. The metal compound 'is a metal oxide, a metal hydroxide, a metal sulfide, a metal carbide, a metal nitride, a metal boride or the like. The metal constituting the metal compound is the same as the metal of the metal nanoparticle in the composition for the barrier layer constituting the metal nanoparticle base of the above (A). These metal compounds may be used alone or in combination of two or more. The metal constituting the metal compound is preferably a metal (metal monomer and metal alloy) containing at least a noble metal such as silver (particularly a metal of Group 1B of the periodic table), and more preferably a noble metal monomer (e.g., a silver monomer or the like). Hereinafter, the case of the silver compound will be described. Examples of the silver compound include silver oxide, silver oxide, silver carbonate, silver acetate, and silver acetylacetate complex. These silver compounds may be used alone or in combination of two or more. As the silver compound, a commercially available one can be used. The average particle diameter of the silver compound is preferably from 0.01 to Ιμηη, more preferably from 0.01 to 0.5 μm, and may be appropriately selected depending on the reduction reaction conditions, heating temperature and the like. The composition for a barrier layer based on a metal compound contains a dispersion medium. As the dispersion medium, water, an alcohol such as methanol, ethanol or propanol: an organic solvent such as isophorone, terpineol, triethylene glycol monobutyl ether or butyl cellosolve acetate can be used. The ratio of the dispersion medium can be appropriately selected in accordance with the easiness of coating by a wet coating method or the like. In order to disperse the silver compound well in the dispersion medium, it is preferred to add a dispersant. Examples of the dispersant include hydroxypropylcellulose, polyvinylpyrrolidone, and polyvinyl alcohol. The content of the dispersant is generally 0 to 300 parts by mass relative to the silver compound -22-201242761: 100 parts by mass. In order to improve the easiness of coating by the wet coating method, the composition for a barrier layer of a metal compound may further contain a binder resin. Examples of the binder resin include a acryl oleic acid resin, an ethyl styrene resin, a polyester resin, a polyurethane resin, a phenol resin, an epoxy resin, and the like. Further, the composition for the barrier layer of the metal compound may also contain a reducing agent capable of reducing the metal compound. Examples of the reducing agent include ethylene glycol, formalin, hydrazine, ascorbic acid, and various alcohols. In the same manner as in the production method of the composition for the sintered body layer of the metal nanoparticles, a commercially available metal compound or the like can be dispersed to produce a composition for a barrier layer based on a metal compound. (Method for Producing a Barrier Layer) A method for forming a film by using a composition for a barrier layer of a (N) metal nanoparticle base or a barrier layer for a (metal) compound based on a wet coating method to form a coating film The method of drying the coating film and the method of baking are the same as the method of producing the sintered body layer of the metal nanoparticle. "Welding the layer" The solder layer is preferably formed by melting a solder paste. This allows precise control of thickness. Further, when the solder joint layer is composed of a solder paste, the solder joint layer of the solder joint laminate is melted, and the solder joint laminate is bonded to the joint body ′ to form a joint body. Thus, by melting the solder paste, the bonded body can be formed, so that the process can be simplified.

S -23- 201242761 作爲焊料糊,可舉出Au-Sn合金焊料、錫基礎的無鉛 焊料等’較佳爲得到良好的散熱特性之Au-Sn焊料。S -23- 201242761 The solder paste includes Au-Sn alloy solder, tin-based lead-free solder, etc., and Au-Sn solder which is excellent in heat dissipation characteristics is preferable.

Au-Sn合金焊料較佳爲含有Sn : 15〜25質量%,更佳 爲具有共晶組成的Sn接近20質量%之組成(Sn: 17〜23 質量%)。 藉由使Au-Sn合金焊料糊熔融而形成焊接合層時,使 上述組成的Au-Sn合金焊料粉末中含有助熔劑。此助熔劑 係可爲市售者,於助熔劑中一般含有松香、活性劑、溶劑 及增黏劑。作爲市售的助熔劑,可舉出RMA型的松香系 助熔劑。Au-Sn合金焊料的熔融溫度較佳爲270〜400°C, 更佳爲300〜350 °C » 《焊接合用層合體》 更詳細說明焊接合用層合體。 圖1顯示焊接合用層合體1的截面之模型圖。如由圖 1可知,焊接合用層合體1係依順序具備金屬奈米粒子燒 結體層11、障壁層12與焊接合層13。圖1中,在金屬奈 米粒子燒結體層1 1的一主面側設置與一主面相接的障壁 層12,在障壁層12的一主面側設置與一主面相接的焊接 合層1 3。 焊接合用層合體較佳爲在金屬奈米粒子燒結體層的另 一主面側(與障壁層不相接的主面側)更具備透明層。藉此 ,可控制金屬奈米粒子燒結體層所致的增反射效果。從反 射率提高的觀點來看,透明層的厚度較佳爲0.01〜0.5μιη -24- 201242761 。圖2顯示含有透明層24的焊接合用層合體2之截面的 模型圖之一例。如由圖2可知,在金屬奈米粒子燒結體層 21的一主面側設置與一主面相接的障壁層22,在金屬奈 米粒子燒結體層21的另一主面側設置與另一主面相接的 透明層24。透明層24係形成在金屬奈米粒子燒結體層21 的另一主面上’形成在與障壁層22相反側的主面上。 焊接合用層合體較佳爲在金屬奈米粒子燒結體層與障 壁層之間’更具備黏結劑層。藉此,可更確實地抑制金屬 奈米粒子燒結體層的焊料浸蝕。從密接性提高的觀點來看 ’黏結劑層的厚度較佳爲0.001〜Ιμιη。圖3顯示含有黏 結劑層35的焊接合用層合體3之截面的模型圖之一例。 圖3中,在金屬奈米粒子燒結體層31的一主面側設置與 一主面相接的黏結劑層3 5,在黏結劑層3 5的一主面側設 置與一主面相接的障壁層32,在障壁層32的一主面側設 置與一主面相接的焊接合層3 3。如由圖3可知,黏結劑 層35係形成在金屬奈米粒子燒結體層31與障壁層32之 間。 《透明層及黏結劑層》 透明層24及黏結劑層3 5係各自如以下地製作。藉由 濕式塗佈法將黏結劑組成物成膜而形成塗膜。然後,將塗 膜乾燥,接著焙燒。藉由以上,可形成透明層24及黏結 劑層3 5。此處,透明層24及黏結劑層3 5含有黏結劑。 較佳爲含有藉由加熱而硬化的聚合物型黏結劑及非聚合物 -25- 201242761 型黏結劑中之至少1種。因此,藉由濕式塗佈法,可容易 製造透明層2 4及黏結劑層3 5。 作爲聚合物型黏結劑,可舉出丙烯酸樹脂、聚碳酸酯 、聚酯、醇酸樹脂、聚胺基甲酸酯、丙烯酸聚胺基甲酸酯 、聚苯乙烯 '聚縮醛、聚醯胺、聚乙烯醇、聚醋酸乙烯酯 、纖維素及矽氧烷聚合物。又,聚合物型黏結劑較佳爲含 有選自由鋁、矽、鈦、鉻、錳、鐵、鈷、鎳、銀、銅、鋅 、鉬及錫的金屬皂、金屬錯合物、金屬烷氧化物及金屬烷 氧化物的水解體所成之群組的至少1種》 作爲非聚合物型黏結劑,可舉出金屬皂、金屬錯合物 、金屬烷氧化物、烷氧基矽烷、鹵矽烷類、2-烷氧基乙醇 、β-二酮及乙酸烷酯等。又,金屬皂、金屬錯合物或金屬 烷氧化物中所含有的金屬較佳爲鋁、矽、鈦、鉻、錳、鐵 、鈷、鎳、銀、銅、鋅、鉬、錫、銦或銻,更佳爲矽、鈦 的烷氧化物。作爲矽的烷氧化物,例如可舉出四乙氧基矽 烷、四甲氧基矽烷、丁氧基矽烷。作爲鹵矽烷類,可舉出 三氯矽烷。此等聚合物型黏結劑、非聚合物型黏結劑係可 藉由加熱而硬化,形成具有高密接性的防反射膜。 使金屬烷氧化物硬化時,與使水解反應開始用的水分 —起’較佳爲含有作爲觸媒的鹽酸、硝酸、磷酸(η3ρο4) 、硫酸等的酸、或氨水、氫氧化鈉等的鹼,從加熱硬化後 ’觸媒容易揮發而不易殘存,鹵素不殘留,耐水性弱的Ρ 等不殘存,硬化後的密接性等之觀點來看,更佳爲硝酸。 黏結劑組成物中的黏結劑之含有比例,相對於分散介 -26- 201242761 質以外的黏結劑組成物:1 〇〇質量份而言,較佳爲1 〇〜90 質量份,更佳爲3 0〜80質量份。若爲1 0質量份以上,則 與透明導電膜黏著力變良好,若爲90質量份以下,則成 膜時不易發生膜不均。又,使用金屬烷氧化物當作黏結劑 ,使用硝酸當作觸媒時,相對於金屬烷氧化物:1 00質量 份而言,若硝酸爲1〜10質量份,則從黏結劑的硬化速度 、硝酸的殘存量之觀點來看係較佳。 再者,黏結劑組成物較佳爲含有透明氧化物微粒子。 藉此,可調整透明層的折射率,可抑制金屬奈米粒子燒結 體層所致的增反射效果。此透明氧化物微粒子若爲高折射 率,則可藉由透明氧化物微粒子的含量來容易調整焙燒或 硬化後的透明膜之折射率而更佳。作爲透明氧化物微粒子 ,可舉出 Si〇2 ' Ti〇2 ' Zr〇2 ' ITO(Indium Tin Oxide :銦 錫氧化物)、ZnO、ATO(Antimony Tin Oxide:鍊摻雜氧化 錫)等的微粉末,從折射率的觀點來看較佳爲ITO或Ti〇2 。又,透明氧化物微粒子的平均粒徑,爲了在分散介質中 保持安定性,較佳爲1〇〜l〇〇nm的範圍內,更佳爲20〜 6 0nm的範圍內。此處,平均粒徑係藉由動態光散射法來 測定。再者,較佳爲預先使透明氧化物微粒子分散於分散 介質中,接著混合黏結劑組成物的其它成分。藉此,可使 透明氧化物微粒子均勻分散。 透明氧化物微粒子的含量,相對於分散介質以外的黏 結劑組成物:100質量份而言,較佳爲10〜90質量份, 更佳爲20〜70質量份。透明氧化物微粒子的含量若爲1 0 -27- 201242761 質量份以上,則可期待來自透明導電膜(透明層)的回光返 回到透明導電膜側之效果。透明氧化物微粒子的含量若爲 90質量份以下,則可維持透明層本身的強度以及透明層 與金屬奈米粒子燒結體層的黏著力、透明層與被接合體的 黏著力。 又,黏結劑組成物較佳爲配合所使用的其它成分而含 有偶合劑。藉此,可提高透明層的低霧度化、透明層與金 屬奈米粒子燒結體層的黏著力、透明層與被接合體的黏著 力。再者,當含有透明氧化物微粒子時,亦提高透明氧化 物微粒子與透光性黏結劑(黏結劑)之密接性。作爲偶合劑 ,可舉出矽烷偶合劑、鋁偶合劑及鈦偶合劑等。 作爲矽烷偶合劑,可舉出乙烯基三乙氧基矽烷、γ-環 氧丙氧基丙基三甲氧基矽烷、γ-甲基丙烯醯氧基丙基三甲 氧基矽烷等°作爲鋁偶合劑’可舉出以下的化學式(1)所 示之含有乙醯烷氧基的化合物。 【化1】 3 _ CIC I _3 c o—a、 0、◦=0〆The Au-Sn alloy solder preferably contains Sn: 15 to 25% by mass, more preferably a composition having a eutectic composition of Sn of approximately 20% by mass (Sn: 17 to 23% by mass). When the weld layer is formed by melting the Au-Sn alloy solder paste, the flux is contained in the Au-Sn alloy solder powder having the above composition. The fluxing agent is commercially available and generally contains rosin, an active agent, a solvent and a tackifier in the flux. As a commercially available flux, an RMA type rosin-based flux can be mentioned. The melting temperature of the Au-Sn alloy solder is preferably 270 to 400 ° C, more preferably 300 to 350 ° C. "Welding laminated body" The welding combined laminate is described in more detail. Fig. 1 shows a model diagram of a cross section of a welding combined laminate 1. As is apparent from Fig. 1, the welding combined laminate 1 includes the metal nanoparticle sintered body layer 11, the barrier layer 12, and the welded layer 13 in this order. In FIG. 1, a barrier layer 12 that is in contact with a main surface is provided on one main surface side of the sintered metal oxide layer 1 1 , and a welded layer that is in contact with a main surface is provided on one main surface side of the barrier layer 12 1 3. It is preferable that the welding-use laminate further has a transparent layer on the other main surface side of the sintered metal oxide layer (the main surface side not in contact with the barrier layer). Thereby, the antireflection effect by the sintered body layer of the metal nanoparticle can be controlled. The thickness of the transparent layer is preferably from 0.01 to 0.5 μm - 24 to 201242761 from the viewpoint of improvement in reflectance. Fig. 2 shows an example of a model diagram of a cross section of the welded composite laminate 2 containing the transparent layer 24. As shown in Fig. 2, a barrier layer 22 that is in contact with one main surface is provided on one main surface side of the sintered metal oxide layer 21, and is disposed on the other main surface side of the sintered metal oxide layer 21 and the other main surface. The transparent layer 24 is joined to the surface. The transparent layer 24 is formed on the other main surface of the sintered metal oxide body layer 21, and is formed on the main surface opposite to the barrier layer 22. Preferably, the solder-bonded laminate has a binder layer between the sintered layer of the metal nanoparticles and the barrier layer. Thereby, the solder corrosion of the sintered body layer of the metal nanoparticles can be more reliably suppressed. The thickness of the binder layer is preferably from 0.001 to Ιμιη from the viewpoint of improving the adhesion. Fig. 3 shows an example of a model diagram of a cross section of the welded composite laminate 3 containing the adhesive layer 35. In Fig. 3, a binder layer 35 which is in contact with a main surface is provided on one main surface side of the sintered metal layer 31 of the metal nanoparticle, and a main surface is provided on the main surface side of the binder layer 35. The barrier layer 32 is provided with a solder joint layer 33 that is in contact with a main surface on one main surface side of the barrier layer 32. As is apparent from Fig. 3, the adhesive layer 35 is formed between the sintered metal oxide layer 31 and the barrier layer 32. <<Transparent Layer and Adhesive Layer>> Each of the transparent layer 24 and the adhesive layer 35 is produced as follows. The coating composition is formed into a film by a wet coating method to form a coating film. Then, the coating film was dried, followed by baking. By the above, the transparent layer 24 and the adhesive layer 35 can be formed. Here, the transparent layer 24 and the adhesive layer 35 contain a binder. It is preferable to contain at least one of a polymer type binder which is hardened by heating and a non-polymer type -25-201242761 type binder. Therefore, the transparent layer 24 and the binder layer 35 can be easily produced by the wet coating method. Examples of the polymer type binder include acrylic resin, polycarbonate, polyester, alkyd resin, polyurethane, acrylic urethane, polystyrene polyacetal, and polyamine. , polyvinyl alcohol, polyvinyl acetate, cellulose and siloxane polymers. Further, the polymer type binder preferably contains a metal soap selected from the group consisting of aluminum, barium, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, and tin, metal complex, and metal alkoxide. At least one of the group of the hydrolyzate of the metal alkoxide and the metal alkoxide is a non-polymer type binder, and examples thereof include a metal soap, a metal complex, a metal alkoxide, an alkoxy decane, and a halogenated decane. Classes, 2-alkoxyethanol, β-diketone, and alkyl acetate. Further, the metal contained in the metal soap, the metal complex or the metal alkoxide is preferably aluminum, bismuth, titanium, chromium, manganese, iron, cobalt, nickel, silver, copper, zinc, molybdenum, tin, indium or Helium, more preferably an alkoxide of bismuth or titanium. Examples of the alkoxide of ruthenium include tetraethoxy decane, tetramethoxy decane, and butoxy decane. Examples of the halodecanes include trichlorodecane. These polymer type binders and non-polymer type binders can be hardened by heating to form an antireflection film having high adhesion. When the metal alkoxide is hardened, it is preferable to contain a hydrochloric acid, a nitric acid, a phosphoric acid (η3ρο4), an acid such as sulfuric acid, or a base such as ammonia or sodium hydroxide as a catalyst. It is more preferably nitric acid from the viewpoint that the catalyst is easily volatilized and does not easily remain after heat hardening, the halogen does not remain, the water resistance is weak, and the like, and the adhesion after curing is preferable. The content of the binder in the binder composition is preferably from 1 90 to 90 parts by mass, more preferably from 3 parts by mass, based on the binder composition other than the dispersion medium -26-201242761. 0 to 80 parts by mass. When the amount is 10 parts by mass or more, the adhesion to the transparent conductive film is good, and when it is 90 parts by mass or less, film unevenness is less likely to occur at the time of film formation. Further, when a metal alkoxide is used as a binder and nitric acid is used as a catalyst, the curing rate of the binder is 1 to 10 parts by mass with respect to the metal alkoxide: 100 parts by mass. The viewpoint of the residual amount of nitric acid is preferred. Further, the binder composition preferably contains transparent oxide fine particles. Thereby, the refractive index of the transparent layer can be adjusted, and the effect of enhancing the reflection by the sintered body layer of the metal nanoparticles can be suppressed. When the transparent oxide fine particles have a high refractive index, the refractive index of the transparent film after baking or curing can be easily adjusted by the content of the transparent oxide fine particles. Examples of the transparent oxide fine particles include micro SiO 2 'Ti〇 2 ' Zr 〇 2 ' ITO (Indium Tin Oxide), ZnO, ATO (Antimony Tin Oxide), and the like. The powder is preferably ITO or Ti〇2 from the viewpoint of refractive index. Further, the average particle diameter of the transparent oxide fine particles is preferably in the range of 1 Å to 10 nm, more preferably in the range of 20 to 60 nm, in order to maintain stability in the dispersion medium. Here, the average particle diameter is measured by a dynamic light scattering method. Further, it is preferred that the transparent oxide fine particles are dispersed in the dispersion medium in advance, and then the other components of the binder composition are mixed. Thereby, the transparent oxide fine particles can be uniformly dispersed. The content of the transparent oxide fine particles is preferably 10 to 90 parts by mass, more preferably 20 to 70 parts by mass, per 100 parts by mass of the binder composition other than the dispersion medium. When the content of the transparent oxide fine particles is from 10 -27 to 201242761 parts by mass, the effect of returning light from the transparent conductive film (transparent layer) back to the transparent conductive film side can be expected. When the content of the transparent oxide fine particles is 90 parts by mass or less, the strength of the transparent layer itself, the adhesion between the transparent layer and the sintered body layer of the metal nanoparticles, and the adhesion between the transparent layer and the bonded body can be maintained. Further, the binder composition preferably contains a coupling agent in combination with other components used. Thereby, the low haze of the transparent layer, the adhesion between the transparent layer and the sintered body layer of the metal nanoparticles, and the adhesion between the transparent layer and the joined body can be improved. Further, when the transparent oxide fine particles are contained, the adhesion between the transparent oxide fine particles and the light-transmitting adhesive (adhesive) is also improved. Examples of the coupling agent include a decane coupling agent, an aluminum coupling agent, and a titanium coupling agent. Examples of the decane coupling agent include vinyl triethoxy decane, γ-glycidoxypropyl trimethoxy decane, γ-methyl propylene methoxy propyl trimethoxy decane, and the like as an aluminum coupling agent. 'A compound containing an ethoxylated alkoxy group represented by the following chemical formula (1) is mentioned. [Chemical 1] 3 _ CIC I _3 c o-a, 0, ◦ = 0〆

Η3 C 3 -Η Η CIC \/Η3 C 3 -Η Η CIC \/

H3CH3C

c—H 35 8h C1 1 式 2 學 式化 學的 化下 的以 下及 以物 出合 舉化 可的 , 基 劑酸 合磷 偶焦 鈦基 爲烷 作二 , 有 又具 之 示 所所 -28- (2) 201242761 示之具有二烷基磷酸基的化合物 【化2】 0II C-0-Tic-H 35 8h C1 1 Equation 2 Under the chemical chemistry of the following and the combination of the object, the base acid phosphate phosphorus pyrolysis titanium base is an alkane two, there is also a description of the -28- (2) 201242761 shows a compound having a dialkyl phosphate group [Chemical 2] 0II C-0-Ti

H2C •0H2C • 0

Ο 0II II 〇—Ρ—Ο-Ρ~^0〇8Ηΐ7^Ο 0II II 〇—Ρ—Ο-Ρ~^0〇8Ηΐ7^

OH 2 【化3】 H2C—Ο—Τί h2c-οOH 2 【化3】 H2C—Ο—Τί h2c-ο

ο οII II ί—o-p-o-p-^oc8h17) )OH 2 ⑶ 2 【化4】 CH3 H3C一CH ~0—Ti. 0 0II II 〇—P-〇—ρ· OC8H17 …⑷ο οII II ί—o-p-o-p-^oc8h17) )OH 2 (3) 2 [Chemical 4] CH3 H3C-CH~0-Ti. 0 0II II 〇-P-〇-ρ· OC8H17 (4)

OH 【化5】 (〇8Η! 7〇)4Ti [P (0C13H27)2〇 Η] …⑸ 偶合劑的含量,相對於黏結劑組成物:1 00質量份而 言,較佳爲0.01〜5質量份,更佳爲0.1〜2質量份。偶 合劑的含量若爲0.〇 1質量份以上,則得到提高透明層(或 黏結劑層)與金屬奈米粒子燒結體層的黏著力、透明層與 被接合體的黏著力,及顯著提高粒子的分散性之效果。偶 合劑的含量若多於5質量份,則容易發生膜不均。 爲了良好地成膜,黏結劑組成物較佳爲含有分散介質 。作爲分散介質,可舉出水;甲醇、乙醇、異丙醇、丁醇 -29- 201242761 等的醇類;丙酮、甲基乙基酮、環己酮、異佛爾酮等的酮 類:甲苯、二甲苯、己烷、環己烷等的烴類;N,N_二甲基 甲醯胺、N,N-二甲基乙醯胺等的醯胺類;二甲亞颯等的亞 颯類;乙二醇等的二醇類;乙基溶纖劑等的二醇醚類等。 分散介質的含量’爲了得到良好的成膜性,相對於黏結劑 組成物:100質量份而言,較佳爲80〜99質量份。 又’較佳爲按照所使用的成分,添加水溶性纖維素衍 生物。水溶性纖維素衍生物雖然是非離子化界面活性劑, 但與其它界面活性劑相比,即使少量的添加也使導電性氧 化物粉末(透明氧化物微粒子)分散的能力極高,而且藉由 水溶性纖維素衍生物的添加,亦提高所形成的透明層之透 明性。作爲水溶性纖維素衍生物,可舉出羥丙基纖維素、 羥丙基甲基纖維素等。水溶性纖維素衍生物的添加量,相 對於黏結劑組成物:100質量份而言,較佳爲0.2〜5質量 份。 再者,黏結劑組成物亦較佳爲含有低電阻化劑。作爲 低電阻化劑,可使用由Co、Fe、In、Ni、Pb、Sn、Ti、 及Zn的礦酸鹽及有機酸鹽中選出的金屬鹽。作爲礦酸鹽 ,可舉出鹽酸鹽、硫酸鹽、硝酸鹽等。作爲有機酸鹽,可 舉出醋酸鹽、丙酸鹽、丁酸鹽、辛酸鹽、乙醯乙酸鹽、環 烷酸鹽、苯甲酸鹽等。低電阻化劑的添加量,相對於黏結 劑組成物:100質量份而言,較佳爲0.5〜10質量份。 製造黏結劑組成物之方法,藉由濕式塗佈法將黏結劑 組成物成膜以形成塗膜之方法,將塗膜乾燥之方法,及焙 -30- 201242761 燒方法,係與金屬奈米粒子燒結體層用組成物及金屬奈米 粒子燒結體層的製作方法同.樣。 再者,於金屬奈米粒子燒結體層具有空穴的情況,當 在金屬奈米粒子燒結體層上塗佈黏結劑組成物時,黏結劑 組成物浸透金屬奈米粒子燒結體層的空孔。而且,於黏結 劑組成物硬化後,金屬奈米粒子燒結體層含有黏結劑。此 含有黏結劑的金屬奈米粒子燒結體層由於抑制金屬奈米粒 子燒結體層的焊料浸蝕而較佳。 [接合體] 本實施形態的接合體係依順序具備第1被接合體、上 述本實施形態的焊接合用層合體、與第2被接合體。 圖4顯示本實施形態的接合體4之截面的模型圖之一 例。再者,圖4係具備透明層44及黏結劑層4 5之例。如 由圖4可知,接合體4係依順序具備第1被接合體46、 焊接合用層合體40與第2被接合體47。焊接合用層合體 4〇係依順序具備透明層44、金屬奈米粒子燒結體層4 1、 黏結劑層45、障壁層42與焊接合層43。詳細地,在透明 層44的一主面側設置與一主面相接的金屬奈米粒子燒結 體層4 1,在金屬奈米粒子燒結體層41的一主面側設置與 —主面相接的黏結劑層45。在黏結劑層45的一主面側設 置與一主面相接的障壁層42,在障壁層42的一主面側設 置與一主面相接的焊接合層43。因此,透明層44係以在 金屬奈米粒子燒結體層41的另一主面側上與另一主面相 -31 - 201242761 接的方式來形成。又,黏結劑層45係設置於金屬奈米粒 子燒結體層41與障壁層42之間。圖4中,第1被接合體 46係以在焊接合用層合體40的透明層44之另一主面側 上與另一主面相接的方式來設置,第2被接合體47係以 在焊接合用層合體40的焊接合層43之一主面側上與一主 面相接的方式來設置。 此處’第1被接合體係能發光或能光電轉換的元件, 金屬奈米粒子燒結體層係可將來自第1被接合體的光反射 ,當第2被接合體爲基板時,適用於將接合體使用於光學 用途。具體地’當第1被接合體爲能發光的元件時,可使 用接合體當作LED等的發光源。當第丨被接合體爲能光 電轉換的元件時,可使用接合體當作太陽電池。 [實施例] 以下’藉由實施例來詳細說明本發明,惟本發明不受 此等所限定。 《透明層用黏結劑組成物之製作》 [材料1-1之調製] 混合1 〇質量份的作爲黏結劑之非聚合物型黏結劑的 2 -正氧基乙醇與3_異丙基_2,4戊二醇之混合液(質量比 5’5)與90質量份的作爲分散介質之異丙醇。藉由將混合 物在室溫下以200 rpm的旋轉速度攪拌丨小時,以調製 l〇g 材料 1-1。 -32- 201242761 [材料1-2之調製] 混合10質量份的作爲黏結劑之非聚合物型黏結劑的 2-正丙氧基乙醇與90質量份的作爲分散介質之異丙醇與 丁醇的混合液(質量比40:60)。藉由將混合物在室溫下以 200rpm的旋轉速度攪拌!小時,以製作1〇g材料ι_2。 [材料1-3之調製] 藉由混合10質量份的作爲黏結劑之Si〇2結合劑與90 質量份的作爲分散介質之乙醇與丁醇的混合液(質量比 98:2),以調製l〇g材料1-3。再者,作爲黏結劑使用的 Si〇2結合劑係藉由以下的方法來製造。首先,將11.〇g HC1(濃度12mol/l)溶解於25g純水中以製作HC1水溶液。 使用500cm3的玻璃製之4 口燒瓶,混合140g四乙氧基矽 烷與240g乙醇。邊攪拌混合物邊一次添加前述HC1水溶 液。然後,藉由在80°C使反應6小時,以製造Si02結合 劑。此S i Ο 2結合劑係矽的烷氧化物之聚合物,爲非聚合 物型黏結劑。 [材料1 -4之調製] 混合5質量份的作爲黏結劑之明膠、1質量份的作爲 水溶性纖維素衍生物之羥丙基纖維素、94質量份的作爲 分散介質之水。將混合物在30°C的溫度下以200rpm的旋 轉速度攪拌1小時’以調製10g材料1-4。 -33- ☆ 201242761 《障壁層用組成物之製作》 [材料4-1之調製] 作爲(A)金屬奈米粒子基礎的障壁層用組成物,將含 有銀奈米粒子與金奈米粒子的混合金屬奈米粒子分散液 (Ag: Au = 80%:20%)離心分離。以相對於金屬奈米粒子 95 質量份而言’聚乙二醇成爲5質量份之方式,在離心分離 後的沈澱物中添加聚乙二醇以製作混合物。藉由行星攪拌 型混合機進一步將混合物混合,以調製障壁層用組成物。 此處,含有銀奈米粒子與金奈米粒子的混合金屬奈米粒子 分散液係如以下地製作。 《銀奈米粒子分散液之製作》 將硝酸銀溶解於去離子水中,以調製濃度爲2 5質量 %的金屬鹽水溶液。又,將檸檬酸鈉溶解於去離子水中, 以製作濃度爲26質量%的檸檬酸鈉水溶液。於此檸檬酸 鈉水溶液中,在經保持3 5 t的氮氣流下,直接添加粒狀的 硫酸亞鐵及使溶解,調製以3:2的莫耳比含有檸檬酸離子 與亞鐵離子之還原劑水溶液。 其次,於還原劑水溶液中,置入磁性攪拌器的攪拌棒 。將上述氮氣流保持在35°C,一邊以lOOrpm的攪拌棒之 旋轉速度進行攪拌,一邊在此還原劑水溶液中滴下上述金 屬鹽水溶液,進行混合。此處,金屬鹽水溶液對還原劑水 溶液的添加量係以成爲還原劑水溶液的量之1 /1 〇以下的 方式,調整各溶液的濃度。藉此,即使滴下室溫的金屬鹽 -34- 201242761 水溶液,也將反應溫度保持在40t。又,還原劑水溶液的 檸檬酸離子之莫耳數與亞鐵離子之莫耳數,係以各自成爲 將金屬鹽水溶液中之金屬離子全部還原所需要用的還原劑 之莫耳數的3倍量之方式,調整還原劑水溶液與金屬鹽水 溶液的混合比。於金屬鹽水溶液對還原劑水溶液的滴下之 結束後,更繼續攪拌混合液1 5分鐘。藉此,在混合液內 部產生銀奈米粒子。經由以上,得到1 00cm3的分散有銀 奈米粒子之銀奈米粒子分散液。銀奈米粒子分散液的pH 爲5.5,分散液中的銀奈米粒子之化學計算量的生成量爲 5 g/升。 藉由將所得之銀奈米粒子分散液在室溫下放置,以使 分散液中的銀奈米粒子沈降,藉由傾析來分離已沈降的銀 奈米粒子之凝聚物。於所分離的銀奈米粒子凝聚物中,添 加去離子水以成爲分散體,藉由超濾進行脫鹽處理。其次 ,更以甲醇置換洗淨銀奈米粒子凝聚物,以使銀的含量成 爲5 0質量% »然後,使用離心分離機,調整此離心分離 機的離心力,分離粒徑超過1 〇〇nm的比較大之銀粒子。 藉此,將一次粒徑10〜50nm的範圍內之銀奈米粒子的含 量以數平均計調整至7 1 %。即,以相對於數平均計全部的 銀奈米粒子100%而言,一次粒徑10〜50nm的範圍內之 銀奈米粒子的佔有比例成爲7 1 %的方式進行調整,而得到 銀奈米粒子分散液。所得之銀奈米粒子係經檸檬酸鈉的保 護劑所化學修飾。 -35- 3 201242761 《金奈米粒子分散液之製作》 除了使用氯金酸代替硝酸銀以外’與銀奈米粒子分散 液的製作方法同樣地,得到l〇〇cm3的含有平均粒徑爲 lOnm的金奈米粒子5質量%之金奈米粒子分散液。 《混合金屬奈米粒子分散液之製作》 以質量比計成爲Ag 80%,Au 20%之方式,混合所得 之銀奈米粒子分散液與金奈米粒子分散液,而得到 100cm3的混合金屬奈米粒子分散液^ [材料4-2之製作] 作爲(B)金屬化合物基礎的障壁層用組成物,混合Ag 粒子(平均粒徑:0·1μηι)7()質量份、氧化亞銀(平均粒徑: Ο.ίμιη) : 5質量份、碳酸銀(平均粒徑:〇·4μιη) : 5質量份 、萜品醇:20質量份》詳細地,將各原料預備混合,接 著藉由行星攪拌型混合機將混合物進一步混合,而得到糊 狀的障壁層用組成物。 《焊接合層用的材料及焊接合層之製作》 [材料5-1之製作] 使用三菱材料製Au-Sn合金焊料(針轉印用焊料)。組 成爲Au:Sn = 22:78(質量比)。藉由針轉印法將此材料5-1 的焊料糊在元件的表面(障壁層或金屬奈米粒子燒結體層 的表面)上成膜而形成塗膜。於使塗膜與基板接觸的狀態 -36- 201242761 下,將塗膜加熱至310 °C爲止,以使元件與基板接合。 [材料5-2之製.作] 使用三菱材料製Au-Sn合金焊料(針轉印用焊料)。組 成爲Au:Sn = 78:22(質量比)。藉由針轉印法將此材料5-2 的焊料糊在元件的表面(障壁層或金屬奈米粒子燒結體層 的表面)上成膜而形成塗膜。於使塗膜與基板接觸的狀態 下’將塗膜加熱至3 5 0 °C爲止,以使元件與基板接合。 《金屬奈米粒子燒結體層用組成物之製作》 以表1、2中記載的組成來混合,而調製金屬奈米粒 子燒結體層用組成物。此處,銀奈米粒子及金奈米粒子係 與材料4-1所用的奈米粒子之製造方法同樣地進行製作。 再者’使用氯金酸當作Au的原料,使用硝酸銀當作Ag 的原料。 [實施例1] 準備在長度:5mm、寬度:5mm、厚度:5mm的藍寶 石基板上將發光層成膜之元件。於支持基板上,準備長度 :20mm'寬度:20mm、厚度:0.5mm且在表面上已進行 Ni/Au鍍敷的Si製基板。首先,在元件的接合處理面上 ,藉由旋塗法塗佈金屬奈米粒子燒結體層用組成物,以 13(TC焙燒10分鐘,而形成厚度:0.3μιη的金屬奈米粒子 燒結體層。於此金屬奈米粒子燒結體層上,藉由旋塗法塗 -37- 201242761 佈材料4-1’以200 eC焙燒20分鐘,而形成厚度:ΐμηι的 障壁層。於此障壁層上,藉由針轉印法將材料5-1成膜》 接著,於此成膜面與基板的Ni面貼合的狀態下,以310°C 加熱10分鐘,而將元件與基板接合。 [實施例2、比較例丨、2] 除了表1、2中記載的條件以外,與實施例1同樣地 ,製作實施例2、比較例1、2的接合體。如由表1、2可 知,實施例2係更形成透明層。首先,在元件的接合處理 面上,藉由旋塗法塗佈透明層用黏結劑組成物(材料1-1) ,以130°C焙燒30分鐘,而形成厚度:Ο.ΟΙμπι的透明層 。然後,於透明層上,依順序形成金屬奈米粒子燒結體層 、障壁層及焊接合層》比較例1係不形成障壁層與黏結劑 層,比較例2係不形成金屬奈米粒子燒結體層與黏結劑層 [實施例3] 使用與實施例1相同的元件、基板。首先,於元件的 接合面上,藉由網版印刷法塗佈金屬奈米粒子燒結體層用 組成物,以15〇t焙燒5分鐘,而形成厚度:Ο.ίμιη的金 屬奈米粒子燒結體層。於此金屬奈米粒子燒結體層上,藉 由浸塗法塗佈材料1-4後,乾燥而形成厚度:0.1 μπι的黏 結劑層。於此黏結劑層上,藉由噴墨法塗佈材料4-1,以 200 °C焙燒20分鐘,而形成厚度:Ιμιη的障壁層。於此障 -38- 201242761 壁層上,藉由針轉印法將材料5-1成膜。接著,於此成膜 面與基板的Ni面貼合之狀態下,以310°C加熱1〇分鐘, 而將元件與基板接合。 [實施例4、5] 除了表1、2中記載的條件以外,與實施例2,3同樣 地製作實施例4、5的接合體。 [接合強度之評價] 藉由精密萬能試驗機Autograph AG-Xplus來測定實 施例1〜5、比較例1、2的接合體之接合強度(剪切強度) 。測定條件係根據JI S Z 3 1 9 8 _ 5進行。 [發光強度的評價] 藉由Labsphere公司LSA-3000裝置來測定實施例1 〜5、比較例1、2的接合體之發光強度(相對強度)^ -39- 201242761 【一漱】 實施例5 CO 1 寸 d Ο &lt;Ν ο τ~ lil S ® a- u 寸 〇 Ο οα CM ΙΟ r— C0 1 04 〇 1 1 eg 1 寸 10 CN4 300 Ο Φ τ- Ι u&gt; in Ο 产 CO Ο r— ο ο ο CO τ-* 實施例4 &lt;N 1 τ- τ- Ο 2 0 0 ο &lt;Μ e W 1¾¾ ^c;ti〇 1 CM 6 Ο Is- r- eg τ- 1 in 〇 〇 1 1 CSI 1 寸 in CM 3 0 0 Ο (D τ- Ι ΙΟ in ο Ύ— CO Ο r* Ο 广 Ι-* ο CS4 r- 實施例3 m 1 1 ι g^Sg H 刺 ® lfS|〇 00的黎5 -|1 r- 6 Ο \Ρ ι— U5 寸 ' T— τ— 6 1 1 1 寸 η· Ο ο CM Ο OJ 产 1 to in ο τ-· C0 Ο τ— ο Ν τ— Ο 严 實施例2 1 T- Τ Ο d ο τ— Ο C0 e 5? £ i&quot;J S S麥? g: 〇 ® &lt;&gt; 2 ft- CO to ο 1 200 1 Ο &lt;NJ m 1 1 1 T— 1 r- 2 00 Ο CSI CVJ 1 to o 严 ο in (Ο ιό to σ&gt; Ο ¢0 Τ^· 實施例1 m 1 1 I 1 Ag 100質量% (0 d 1__130__1 Ο r— 摧 1 1 1 Τ Ι 2 00 Ο CSJ r* 1 l〇 LO ο τ— (0 ο Τ—' 00 σ&gt; ο τ— 分類 材料 膜厚(μιη) 焙燒溫度(°c) 焙燒時間(分鐘) 材料 膜厚(μπι&gt; 焙燒溫度rc) 焙燒時間(分鐘) 材料 膜®(μ«!) 焙燒溫度re) 焙燒時間(分鐘) 材料 腹厚(μιη) 焙燒溫度(艺) 焙燒時間(分鐘) 材料 膜厚_) 焙燒溫度ΓΟ 焙燒時間(分鐘) 剪切強度(_2) 相對強度 透明層 金屬奈米粒子 燒結體層 黏結劑層 障壁層 焊接合層 接合強度 發光強度 -40- 201242761 [表2] 分類 比較例1 比較例2 透明層 材料 1-2 膜厚(μιη) 0.06 一 焙燒溫度(°C) 170 — 焙燒時間(分鐘) 5 — 金屬奈米粒子燒結 體層 材料 Ag 100質量% Μ /1、、 膜厚(μηι) 0.05 — 焙燒溫度(。〇 180 — 焙燒時間(分鐘) 5 — 黏結劑層 材料 Μ j\w y μ、 膜厚(μιη) — — 焙燒溫度(°C) — — 焙燒時間(分鐘) — — 障壁層 材料 Μ 4-2 膜厚(μιη) — 2.5 焙燒溫度(°C) — 300 焙燒時間(分鐘) — 60 焊接合層 材料 5-1 5-1 膜厚(μηι) 5 5 焙燒溫度(°C) 310 310 焙燒時間(分鐘) 20 10 接合強度 剪切強度(N/mm2) 10 90 發光強度 相對強度 (焊料浸蝕) 100 如由表1、2可明知,於所有的實施例1〜5中,接合 強度及發光強度高。相對於此,於不形成障壁層的比較例 1中,接合強度低,由於焊料浸触(s ο 1 d e r 1 e a c h)而無法測 定發光強度。又,於比較例2中,接合強度及發光強度稍 低。 · -41 - 201242761 [產業上的利用可能性] 本發明的焊接合用層合體,係代替以往高價的Ni障壁贖’ 使用以金屬粒子與溶劑爲主成分的金屬糊等來形成。因此,可以 簡便的步驟來製造,可進行襯裏成本的大幅改善。含有此焊接合 用層合體的接合體,係具有高的可靠性,可適用於LED元件等。 【圖式簡單說明】 圖1係本發明的焊接合用層合體之截面的模型圖之一例。 圖2係本發明之含有透明層的焊接合用層合體之截面 的模型圖之一例》 圖3係本發明之含有障壁層的焊接合用層合體之截面 的模型圖之一例。 圖4係本發明的接合體之截面的模型.圖之一例。 【主要元件符號說明】 I、 2、3、40 :焊接合用層合體 4 :接合體 II、 21、31、41:金屬奈米粒子燒結體層 12、 22、32、42:障壁層 13、 23、33、43 :焊接合層 24、44 :透明層 35 ' 45 :黏結劑層 46 :第1被接合體 47 :第2被接合體 -42-OH [Chemical 5] (〇8Η! 7〇) 4Ti [P (0C13H27)2〇Η] (5) The content of the coupling agent is preferably 0.01 to 5 by mass based on the composition of the binder: 100 parts by mass. More preferably, it is 0.1 to 2 parts by mass. When the content of the coupling agent is 0.1 part by mass or more, the adhesion between the transparent layer (or the binder layer) and the sintered body layer of the metal nanoparticles, the adhesion between the transparent layer and the bonded body, and the particles are remarkably improved. The effect of dispersibility. When the content of the coupling agent is more than 5 parts by mass, film unevenness is likely to occur. In order to form a film well, the binder composition preferably contains a dispersion medium. Examples of the dispersion medium include water; alcohols such as methanol, ethanol, isopropanol, and butanol-29 to 201242761; and ketones such as acetone, methyl ethyl ketone, cyclohexanone, and isophorone: toluene Hydrocarbons such as xylene, hexane, cyclohexane, etc.; amides such as N,N-dimethylformamide, N,N-dimethylacetamide; Glycols such as ethylene glycol; glycol ethers such as ethyl cellosolve; The content of the dispersion medium is preferably from 80 to 99 parts by mass based on 100 parts by mass of the binder composition in order to obtain good film formability. Further, it is preferred to add a water-soluble cellulose derivative in accordance with the components used. Although the water-soluble cellulose derivative is a nonionic surfactant, it has a very high ability to disperse conductive oxide powder (transparent oxide fine particles) even when added in a small amount compared with other surfactants, and is soluble in water. The addition of the cellulose derivative also increases the transparency of the formed transparent layer. Examples of the water-soluble cellulose derivative include hydroxypropylcellulose and hydroxypropylmethylcellulose. The amount of the water-soluble cellulose derivative to be added is preferably 0.2 to 5 parts by mass based on 100 parts by mass of the binder composition. Further, the binder composition preferably also contains a low resistance agent. As the low resistance agent, a metal salt selected from mineral salts and organic acid salts of Co, Fe, In, Ni, Pb, Sn, Ti, and Zn can be used. Examples of the mineral acid salt include a hydrochloride, a sulfate, and a nitrate. The organic acid salt may, for example, be an acetate, a propionate, a butyrate, an octylate, an acetamidine acetate, a naphthenate or a benzoate. The amount of the low-resistance agent to be added is preferably 0.5 to 10 parts by mass based on 100 parts by mass of the binder composition. A method for producing a binder composition, a method for forming a film by a wet coating method to form a coating film, a method for drying a coating film, and a baking method, and a method for baking a metal film with a metal -30-201242761 The composition for the sintered particle layer and the method for producing the sintered body layer of the metal nanoparticles are the same. Further, in the case where the sintered body layer of the metal nanoparticles has holes, when the binder composition is applied to the sintered layer of the metal nanoparticles, the binder composition saturates the pores of the sintered layer of the metal nanoparticles. Further, after the binder composition is hardened, the sintered body layer of the metal nanoparticles contains a binder. The sintered body layer of the metal nanoparticle containing the binder is preferable because it suppresses solder etching of the sintered layer of the metal nanoparticle. [Joining body] The joining system of the present embodiment includes the first joined body, the welded joint laminate of the present embodiment, and the second joined body in this order. Fig. 4 shows an example of a model diagram of a cross section of the joined body 4 of the present embodiment. 4 shows an example in which the transparent layer 44 and the adhesive layer 45 are provided. As is apparent from Fig. 4, the joined body 4 includes the first joined body 46, the welded joint laminate 40, and the second joined body 47 in this order. The welding combined laminate 4 is provided with a transparent layer 44, a sintered metal layer 4 1 , a binder layer 45, a barrier layer 42 and a welded layer 43 in this order. Specifically, a metal nanoparticle sintered body layer 4 1 that is in contact with a main surface is provided on one main surface side of the transparent layer 44, and a main surface side of the sintered metal oxide layer 41 is provided on the main surface side of the transparent layer 44. Adhesive layer 45. A barrier layer 42 that is in contact with a main surface is provided on one main surface side of the adhesive layer 45, and a solder joint layer 43 that is in contact with a main surface is provided on one main surface side of the barrier layer 42. Therefore, the transparent layer 44 is formed on the other main surface side of the sintered metal body layer 41 to be connected to the other main surface -31 - 201242761. Further, the binder layer 45 is provided between the metal nanoparticle sintered body layer 41 and the barrier layer 42. In FIG. 4, the first joined body 46 is provided so as to be in contact with the other main surface on the other main surface side of the transparent layer 44 of the welding combined laminate 40, and the second joined body 47 is attached thereto. One of the welded joint layers 43 of the welding-use laminated body 40 is provided on the main surface side so as to be in contact with one main surface. Here, the 'first bonded system can emit light or photoelectrically convertible elements, and the metal nanoparticle sintered body layer can reflect light from the first bonded body. When the second bonded body is a substrate, it is suitable for bonding. The body is used for optical purposes. Specifically, when the first joined body is an element capable of emitting light, the bonded body can be used as a light-emitting source such as an LED. When the second joined body is a photo-electrically convertible element, the bonded body can be used as a solar cell. [Examples] Hereinafter, the present invention will be described in detail by way of examples, but the invention is not limited thereto. <<Preparation of a binder composition for a transparent layer>> [Preparation of a material 1-1] Mixing 1 〇 by mass of a non-polymeric binder as a binder, 2-n-oxyethanol and 3-isopropyl-2 A mixture of 4 pentanediol (mass ratio 5'5) and 90 parts by mass of isopropyl alcohol as a dispersion medium. The material 1-1 was prepared by stirring the mixture at room temperature for 2 hours at a rotation speed of 200 rpm. -32- 201242761 [Preparation of Material 1-2] Mixing 10 parts by mass of 2-n-propoxyethanol as a non-polymer type binder as a binder and 90 parts by mass of isopropyl alcohol and butanol as a dispersion medium Mixture (mass ratio 40:60). Stir the mixture at room temperature with a rotation speed of 200 rpm! Hours to make 1〇g material ι_2. [Preparation of materials 1-3] by mixing 10 parts by mass of a Si〇2 binder as a binder and 90 parts by mass of a mixture of ethanol and butanol (mass ratio 98:2) as a dispersion medium to prepare L〇g material 1-3. Further, the Si〇2 binder used as the binder was produced by the following method. First, 11. 〇g HC1 (concentration: 12 mol/l) was dissolved in 25 g of pure water to prepare an aqueous HCl solution. A 500-cm3 glass 4-necked flask was used, and 140 g of tetraethoxy decane and 240 g of ethanol were mixed. The above aqueous HCl solution was added at once while stirring the mixture. Then, the reaction was carried out at 80 ° C for 6 hours to produce a SiO 2 binder. The polymer of the alkoxide of this S i Ο 2 binder is a non-polymeric binder. [Preparation of the materials 1 - 4] 5 parts by mass of gelatin as a binder, 1 part by mass of hydroxypropylcellulose as a water-soluble cellulose derivative, and 94 parts by mass of water as a dispersion medium were mixed. The mixture was stirred at a rotation speed of 200 rpm for 1 hour at a temperature of 30 ° C to prepare 10 g of materials 1-4. -33- ☆ 201242761 "Production of a barrier layer composition" [Modulation of material 4-1] As a composition for a barrier layer based on (A) metal nanoparticles, silver nanoparticle and gold nanoparticles are contained. The mixed metal nanoparticle dispersion (Ag: Au = 80%: 20%) was centrifuged. Polyethylene glycol was added to the precipitate after centrifugation to prepare a mixture in such a manner that the polyethylene glycol was 5 parts by mass based on 95 parts by mass of the metal nanoparticles. The mixture was further mixed by a planetary agitating mixer to modulate the composition for the barrier layer. Here, a mixed metal nanoparticle dispersion containing silver nanoparticles and gold nanoparticles is produced as follows. <<Preparation of Silver Nanoparticle Dispersion>> Silver nitrate was dissolved in deionized water to prepare a metal salt aqueous solution having a concentration of 25 mass%. Further, sodium citrate was dissolved in deionized water to prepare a sodium citrate aqueous solution having a concentration of 26% by mass. In this aqueous sodium citrate solution, granulated ferrous sulfate is directly added and dissolved in a nitrogen stream maintained at 35 Torr, and a reducing agent containing citrate ions and ferrous ions in a molar ratio of 3:2 is prepared. Aqueous solution. Next, a stir bar of a magnetic stirrer was placed in the aqueous solution of the reducing agent. The above-mentioned nitrogen gas stream was kept at 35 ° C, and while stirring at a rotation speed of a stirring bar of 100 rpm, the aqueous metal salt solution was dropped into the aqueous reducing agent solution and mixed. Here, the amount of the aqueous solution of the metal salt to be added to the aqueous solution of the reducing agent is adjusted so that the concentration of each solution is equal to or less than 1 / 1 Torr of the amount of the reducing agent aqueous solution. Thereby, even if the room temperature metal salt -34-201242761 aqueous solution was dropped, the reaction temperature was maintained at 40t. Further, the number of moles of citrate ions and the number of moles of ferrous ions in the aqueous solution of the reducing agent are three times the number of moles of the reducing agent required to reduce all of the metal ions in the aqueous solution of the metal salt. In this manner, the mixing ratio of the reducing agent aqueous solution to the metal salt aqueous solution is adjusted. After the dropwise addition of the aqueous solution of the metal salt to the aqueous solution of the reducing agent, the mixture was further stirred for 15 minutes. Thereby, silver nanoparticles are generated inside the mixed solution. Through the above, a silver nanoparticle dispersion in which silver nanoparticles were dispersed at 100 cm3 was obtained. The pH of the silver nanoparticle dispersion was 5.5, and the amount of the stoichiometric amount of the silver nanoparticles in the dispersion was 5 g/liter. The obtained silver nanoparticle dispersion was allowed to stand at room temperature to precipitate the silver nanoparticles in the dispersion, and the agglomerates of the settled silver nanoparticles were separated by decantation. Deionized water was added to the separated silver nanoparticle aggregates to form a dispersion, and desalting treatment was carried out by ultrafiltration. Next, the silver nanoparticle aggregates were washed with methanol to have a silver content of 50% by mass. Then, the centrifugal force of the centrifugal separator was adjusted using a centrifugal separator to separate the particles having a particle diameter of more than 1 〇〇 nm. Compare large silver particles. Thereby, the content of the silver nanoparticles in the range of the primary particle diameter of 10 to 50 nm was adjusted to 71% by the number average. In other words, 100% of all the silver nanoparticles with respect to the number average are adjusted so that the ratio of the silver nanoparticles in the range of 10 to 50 nm in the primary particle diameter is 71%, and silver nanoparticles are obtained. Particle dispersion. The obtained silver nanoparticles were chemically modified with a sodium citrate protective agent. -35- 3 201242761 "Preparation of a gold nanoparticle dispersion liquid" In addition to the use of chloroauric acid instead of silver nitrate, in the same manner as in the production method of the silver nanoparticle dispersion liquid, the average particle diameter of l〇〇cm3 is obtained as lOnm. Gold nanoparticle dispersion of 5 mass% of the gold nanoparticles. <<Preparation of Mixed Metal Nanoparticle Dispersion Liquid>> A silver nanoparticle dispersion liquid and a gold nanoparticle dispersion liquid obtained by mixing Ag 80% and Au 20% by mass ratio to obtain a mixed metal naphthalene of 100 cm 3 Rice particle dispersion liquid [Production of material 4-2] As a composition for a barrier layer based on (B) a metal compound, Ag particles (average particle diameter: 0·1μηι) 7 () parts by mass, silver oxide (average Particle size: Ο.ίμιη) : 5 parts by mass, silver carbonate (average particle diameter: 〇·4μιη): 5 parts by mass, terpineol: 20 parts by mass. In detail, each raw material is premixed, followed by planetary stirring. The mixture was further mixed to obtain a paste-like barrier layer composition. "Material for welding layer and production of welded layer" [Production of material 5-1] Au-Sn alloy solder (solder for needle transfer) made of Mitsubishi material was used. The group becomes Au:Sn = 22:78 (mass ratio). The solder paste of the material 5-1 was formed on the surface of the element (the surface of the barrier layer or the sintered body layer of the metal nanoparticles) by a needle transfer method to form a coating film. In a state where the coating film is brought into contact with the substrate -36-201242761, the coating film is heated to 310 ° C to bond the device to the substrate. [Production of Material 5-2.] Au-Sn alloy solder (solder for needle transfer) made of Mitsubishi material was used. The group becomes Au:Sn = 78:22 (mass ratio). The solder paste of the material 5-2 is formed on the surface of the element (the surface of the barrier layer or the sintered body layer of the metal nanoparticles) by a needle transfer method to form a coating film. The coating film was heated to 350 ° C in a state where the coating film was brought into contact with the substrate to bond the device to the substrate. <<Preparation of Composition for Sintered Layer of Metal Nanoparticles>> The compositions for the sintered metal nanoparticles were prepared by mixing the compositions described in Tables 1 and 2. Here, the silver nanoparticle and the gold nanoparticle are produced in the same manner as the method for producing the nanoparticle used in the material 4-1. Furthermore, chloroauric acid was used as a raw material for Au, and silver nitrate was used as a raw material for Ag. [Example 1] An element in which a light-emitting layer was formed on a sapphire substrate having a length of 5 mm, a width of 5 mm, and a thickness of 5 mm was prepared. On the support substrate, a Si substrate having a length of 20 mm' width: 20 mm and a thickness of 0.5 mm and having Ni/Au plating on the surface was prepared. First, a composition for sintering a metal nanoparticle sintered body layer was applied by a spin coating method on a bonding surface of a device, and 13 (TC was baked for 10 minutes to form a sintered metal nanoparticle layer having a thickness of 0.3 μm. On the sintered body layer of the metal nanoparticle, the coating material was coated by -43-201242761 cloth material 4-1' at 200 eC for 20 minutes to form a barrier layer having a thickness of ΐμηι. On the barrier layer, the needle was used. In the transfer method, the material 5-1 was formed into a film. Next, the film formation surface was bonded to the Ni surface of the substrate, and heated at 310 ° C for 10 minutes to bond the device to the substrate. [Example 2 EXAMPLES 2] The bonded bodies of Example 2 and Comparative Examples 1 and 2 were produced in the same manner as in Example 1 except for the conditions described in Tables 1 and 2. As is apparent from Tables 1 and 2, Example 2 was further improved. A transparent layer is formed. First, a transparent layer binder composition (material 1-1) is applied by spin coating on the bonding surface of the element, and baked at 130 ° C for 30 minutes to form a thickness: Ο.ΟΙμπι a transparent layer. Then, on the transparent layer, a sintered layer of metal nanoparticles is formed in sequence. Comparative Example 1 does not form a barrier layer and a binder layer, and Comparative Example 2 does not form a sintered body layer of a metal nanoparticles and a binder layer. [Example 3] The same components as in Example 1 were used. First, a composition for sintering a metal nanoparticle sintered body layer is applied on a bonding surface of a device by a screen printing method, and baked at 15 Torr for 5 minutes to form a metal nanoparticle having a thickness of Ο.ίμιη. A sintered body layer is coated on the sintered metal layer of the metal nanoparticle by a dip coating method, and then dried to form a layer of a binder having a thickness of 0.1 μm. On the layer of the binder, by an inkjet method The coating material 4-1 was baked at 200 ° C for 20 minutes to form a barrier layer having a thickness of Ιμιη. On the barrier layer of -38 to 201242761, the material 5-1 was formed into a film by a needle transfer method. In the state where the film formation surface is bonded to the Ni surface of the substrate, the element is bonded to the substrate by heating at 310 ° C for 1 minute. [Examples 4 and 5] Except the conditions described in Tables 1 and 2 The joined bodies of Examples 4 and 5 were produced in the same manner as in Examples 2 and 3. [Joint strength Evaluation] The joint strength (shear strength) of the joined bodies of Examples 1 to 5 and Comparative Examples 1 and 2 was measured by a precision universal testing machine Autograph AG-Xplus. The measurement conditions were based on JI SZ 3 1 9 8 _ 5 [Evaluation of Luminous Intensity] The luminous intensity (relative intensity) of the bonded bodies of Examples 1 to 5 and Comparative Examples 1 and 2 was measured by a Labsphere LSA-3000 apparatus. ^ -39- 201242761 [Example] Example 5 CO 1 inch d Ο &lt;Ν ο τ~ lil S ® a- u inch 〇Ο οα CM ΙΟ r— C0 1 04 〇1 1 eg 1 inch 10 CN4 300 Ο Φ τ- Ι u&gt; in 产 CO Ο R— ο ο ο CO τ-* Example 4 &lt;N 1 τ- τ- Ο 2 0 0 ο &lt;Μ e W 13⁄43⁄4 ^c;ti〇1 CM 6 Ο Is- r- eg τ- 1 in 〇 〇1 1 CSI 1 inch in CM 3 0 0 Ο (D τ- Ι ΙΟ in ο Ύ - CO Ο r* Ι 广Ι-* ο CS4 r- Example 3 m 1 1 ι g^Sg H thorn® lfS| 〇00的黎5 -|1 r- 6 Ο \Ρ ι— U5 inch ' T— τ— 6 1 1 1 inch η· Ο ο CM Ο OJ production 1 to in ο τ-· C0 Ο τ— ο Ν τ — Ο Strictly Example 2 1 T- Τ Ο d ο τ — Ο C0 e 5? £ i&quot;JSS Mai? g: 〇® &lt;&gt; 2 ft- CO to ο 1 200 1 Ο &lt;NJ m 1 1 1 T-1 r- 2 00 Ο CSI CVJ 1 to o 严ο in (Ο ιό to σ&gt; Ο ¢0 Τ^· Example 1 m 1 1 I 1 Ag 100% by mass (0 d 1__130__1 Ο r- destroy 1 1 1 Τ Ι 2 00 Ο CSJ r* 1 l〇LO ο τ—(0 ο Τ—' 00 σ&gt; ο τ—Classification material film thickness (μιη) Calcination temperature (°c) Calcination time (minutes) Material film thickness (μπι&gt; Calcination temperature rc) Calcination time (minutes) Material film® (μ«!) Calcination temperature re) Calcination time (minutes) Abdominal thickness (μιη) Roasting temperature (Art) Roasting time (minutes) Material thickness _) Roasting temperature 焙 Roasting time (minutes) Shear strength (_2) Relative strength Transparent layer Metal nanoparticle Sintered layer binder Layer barrier layer solder joint bonding strength Luminous intensity-40-201242761 [Table 2] Classification Comparative Example 1 Comparative Example 2 Transparent layer material 1-2 Film thickness (μιη) 0.06 One calcination temperature (°C) 170 — Baking time (minutes 5 — Metal nanoparticle sintered body layer material Ag 100% by mass Μ /1, film thickness (μηι) 0.05 — roasting Temperature (.〇180 - calcination time (minutes) 5 - binder layer material Μ j\wy μ, film thickness (μιη) — roasting temperature (°C) — roasting time (minutes) — — barrier layer material Μ 4 -2 Film thickness (μιη) — 2.5 Calcination temperature (°C) — 300 Calcination time (minutes) — 60 Welding layer material 5-1 5-1 Film thickness (μηι) 5 5 Calcination temperature (°C) 310 310 Calcination Time (minutes) 20 10 Bonding strength Shear strength (N/mm2) 10 90 Luminous intensity relative strength (solder etch) 100 As can be seen from Tables 1 and 2, in all of Examples 1 to 5, joint strength and luminescence In Comparative Example 1 in which the barrier layer was not formed, the bonding strength was low, and the luminescence intensity could not be measured by the solder immersion (s ο 1 der 1 each). Further, in Comparative Example 2, the bonding strength was obtained. And the light-emitting intensity is slightly lower. - 41 - 201242761 [Industrial Applicability] The welding-use laminate of the present invention is a metal paste containing metal particles and a solvent as a main component instead of the conventional high-priced Ni barrier. form. Therefore, it can be manufactured in a simple step, and the lining cost can be greatly improved. The bonded body including the solder-use laminate has high reliability and can be applied to LED elements and the like. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing an example of a model diagram of a cross section of a welding combined laminate of the present invention. Fig. 2 is a view showing an example of a cross section of a cross section of a welded composite laminate containing a transparent layer of the present invention. Fig. 3 is a view showing an example of a cross section of a cross section of a welded composite laminate containing a barrier layer of the present invention. Fig. 4 is a view showing a model of a cross section of the joined body of the present invention. [Description of main component symbols] I, 2, 3, 40: Soldering laminated body 4: joined body II, 21, 31, 41: sintered metal layers of ceramic nanoparticles 12, 22, 32, 42: barrier layers 13, 23, 33, 43: welded joint layer 24, 44: transparent layer 35' 45: adhesive layer 46: first joined body 47: second joined body - 42-

Claims (1)

201242761 七、申請專利範圍: 1·一種焊接合用層合體,其特徵爲依順序具備: 金屬奈米粒子燒結體層, 含有金屬粒子或金屬氧化物粒子的障壁層,與 焊接合層。 2.如申請專利範圍第1項之焊接合用層合體,其中在 前述金屬奈米粒子燒結體層的一主面側設置前述障壁層, 在前述金屬奈米粒子燒結體層的另一主面側更具備透明層 〇 3 ·如申請專利範圍第2項之焊接合用層合體,其中前 述透明層含有因加熱而硬化的聚合物型黏結劑或非聚合物 型黏結劑中的至少1種。 4. 如申請專利範圍第1項之焊接合用層合體,其中在 前述金屬奈米粒子燒結體層與前述障壁層之間,更具備^ 結劑層。 5. 如申請專利範圍第4項之焊接合用層合體,其中_ 述黏結劑層含有因加熱而硬化的聚合物型黏結劑或非聚合_ 物型黏結劑中的至少1種。 6. 如申請專利範圍第1項之焊接合用層合體,其中@ 述金屬奈米粒子燒結體層含有75質量%以上的銀,而且 有選自由金、銅、錫、鋅、鉬及錳所成之群組的至少 〇 7. 如申請專利範圍第1項之焊接合用層合體,其中_ 述金屬奈米粒子燒結體層含有黏結劑。 201242761 8.如申請專利範圍第1項之焊接合用層合體,其中前 述金屬奈米粒子燒結體層的厚度爲0.01〜〇.5μιη。 9_如申請專利範圍第1項之焊接合用層合體,其中藉 由濕式塗佈法進行成膜,接著藉由在130〜250 °C焙燒而形 成各層。 10·如申請專利範圍第9項之焊接合用層合體,其中 前述濕式塗佈法係噴灑塗佈法、分配器塗佈法、旋塗法、 刀塗法、縫塗法、噴墨塗佈法、網版印刷法、平版印刷法 或口模塗佈法中的任一者。 11·一種接合體,其特徵爲依順序具備: 第1被接合體, 如申請專利範圍第1項至第1 〇項中任一項之焊接合 用層合體,與 第2被接合體。 1 2 .如申請專利範圍第1 1項之接合體,其中 前述第1被接合體係能發光或能光電轉換的元件, 前述焊接合用層合體的金屬奈米粒子燒結體層係可反 射來自前述第1被接合體的光, 前述第2被接合體係基板。 13. 如申請專利範圍第12項之接合體,其中前述第i 被接合體係能發光的元件,作爲發光源使用。 14. 如申請專利範圍第12項之接合體,其中第1被接 合體係能光電轉換的元件,作爲太陽電池使用^ -44-201242761 VII. Patent application scope: 1. A welding combined laminate, which is characterized by: a sintered layer of a metal nanoparticle, a barrier layer containing metal particles or metal oxide particles, and a welded layer. 2. The welding-use laminate according to the first aspect of the invention, wherein the barrier layer is provided on one main surface side of the sintered metal nanoparticle sintered body layer, and the other main surface side of the sintered metal nanoparticle sintered body layer is further provided. The transparent layer 〇3, wherein the transparent layer contains at least one of a polymer type binder or a non-polymer type binder which is hardened by heating, according to the second aspect of the invention. 4. The welding-use laminate according to the first aspect of the invention, further comprising a binder layer between the sintered metal nanoparticle sintered body layer and the barrier layer. 5. The welding-use laminate according to claim 4, wherein the binder layer contains at least one of a polymer-type binder or a non-polymerization-type binder which is hardened by heating. 6. The welding-use laminate according to claim 1, wherein the sintered body layer of the metal nanoparticle contains 75% by mass or more of silver, and is selected from the group consisting of gold, copper, tin, zinc, molybdenum and manganese. At least 7. The combination of the welding composition of claim 1, wherein the sintered body layer of the metal nanoparticle contains a binder. The welding composition laminate according to the first aspect of the invention, wherein the thickness of the sintered body layer of the metal nanoparticles is 0.01 to 0.5 μm. 9_ The welding-use laminate according to claim 1, wherein the film is formed by a wet coating method, and then each layer is formed by firing at 130 to 250 °C. 10. The welding-use laminate according to claim 9, wherein the wet coating method is a spray coating method, a dispenser coating method, a spin coating method, a knife coating method, a slit coating method, or an inkjet coating method. Any of a method, a screen printing method, a lithography method, or a die coating method. 11. A joined body, comprising: a first joined body, wherein the welded joint laminate according to any one of claims 1 to 1 and the second joined body. The bonded body according to the first aspect of the invention, wherein the first bonded system is capable of emitting light or photoelectrically convertible, and the sintered metal laminate sintered body layer is reflective from the first The light of the bonded body is the second bonded system substrate. 13. The joined body of claim 12, wherein the element capable of emitting light in the i-th bonded system is used as a light source. 14. The joint body of claim 12, wherein the first component that can be photoelectrically converted by the system is used as a solar cell ^ -44-
TW100147385A 2011-02-10 2011-12-20 Laminated body for solder joint and jointed body TWI597160B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011027502A JP5899623B2 (en) 2011-02-10 2011-02-10 Laminate for solder joint and joined body

Publications (2)

Publication Number Publication Date
TW201242761A true TW201242761A (en) 2012-11-01
TWI597160B TWI597160B (en) 2017-09-01

Family

ID=46617315

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100147385A TWI597160B (en) 2011-02-10 2011-12-20 Laminated body for solder joint and jointed body

Country Status (4)

Country Link
JP (1) JP5899623B2 (en)
KR (1) KR101704082B1 (en)
CN (1) CN102632651B (en)
TW (1) TWI597160B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543265B2 (en) 2013-03-25 2017-01-10 Hitachi, Ltd. Joint material, and jointed body

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619603B (en) * 2012-09-07 2017-08-15 凸版印刷株式会社 Cover material and packing container
JP6132716B2 (en) * 2013-09-10 2017-05-24 株式会社東芝 Metal particle paste, cured product using the same, and semiconductor device
KR102208961B1 (en) 2013-10-29 2021-01-28 삼성전자주식회사 Semiconductor device package and method of manufacturing the same
CN103737204B (en) * 2013-12-23 2016-01-20 苏州宏泉高压电容器有限公司 A kind of preparation method of silver oxide welding material
JP6176224B2 (en) * 2013-12-25 2017-08-09 日亜化学工業株式会社 Semiconductor element, semiconductor device including the same, and method for manufacturing semiconductor element
WO2017077824A1 (en) * 2015-11-05 2017-05-11 株式会社村田製作所 Joining member and manufacturing method for joining member
CN105552165B (en) * 2015-12-16 2017-11-24 张家港市东大工业技术研究院 A kind of spraying manufacture method of photovoltaic welding belt
JP6624930B2 (en) * 2015-12-26 2019-12-25 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
KR101964968B1 (en) * 2016-03-28 2019-04-03 엘지전자 주식회사 Solar cell panel
JP6815133B2 (en) 2016-08-31 2021-01-20 日東電工株式会社 Sheet for heat bonding and sheet for heat bonding with dicing tape
CN110167695A (en) * 2017-01-11 2019-08-23 日立化成株式会社 Engagement copper thickener, conjugant and semiconductor device without pressurization
CN107186373B (en) * 2017-06-09 2019-05-10 华北水利水电大学 A kind of titanium-based multilayer film solder and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1051033A (en) * 1996-07-30 1998-02-20 Showa Denko Kk Semiconductor light-emitting and-receiving element
JP4788852B2 (en) * 2000-07-25 2011-10-05 住友金属鉱山株式会社 Transparent conductive substrate, manufacturing method thereof, transparent coating layer forming coating solution used in the manufacturing method, and display device to which transparent conductive substrate is applied
JP2002158238A (en) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp Method for connecting electronic component, electronic device and method for manufacturing the same
KR100951726B1 (en) * 2001-12-27 2010-04-07 가부시키가이샤후지쿠라 Electroconductive composition, electroconductive coating and method for forming electroconductive coating
JP4002469B2 (en) * 2002-05-21 2007-10-31 触媒化成工業株式会社 Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device
JP3895254B2 (en) * 2002-10-07 2007-03-22 シャープ株式会社 Method for manufacturing solar battery cell
JP2005117035A (en) * 2003-09-19 2005-04-28 Showa Denko Kk Flip-chip gallium-nitride-based semiconductor light-emitting element and method of fabricating same
JP5491682B2 (en) * 2004-08-13 2014-05-14 日立金属株式会社 Flat conductor for solar cell, method for manufacturing the same, and lead wire for solar cell
JP2006068765A (en) * 2004-09-01 2006-03-16 Toshiba Corp Joint and joining method
JP4924920B2 (en) 2006-06-28 2012-04-25 三菱マテリアル株式会社 Method for bonding the entire bonding surface of an element to a substrate using an Au-Sn alloy solder paste
JP2008091831A (en) * 2006-10-05 2008-04-17 Toshiba Corp Submount substrate for led, manufacturing method thereof, and light emitting device using the substrate
JP5006102B2 (en) * 2007-05-18 2012-08-22 株式会社東芝 Light emitting device and manufacturing method thereof
EP2190027B1 (en) * 2007-09-12 2016-04-13 Mitsubishi Materials Corporation Process for producing a composite membrane for superstrate solar cell
JP2009231568A (en) 2008-03-24 2009-10-08 Citizen Holdings Co Ltd Led light source
JP2009302229A (en) * 2008-06-12 2009-12-24 Mitsubishi Materials Corp Method of joining substrate and object to be mounted using solder paste with superior positioning property
JP2010087479A (en) * 2008-08-08 2010-04-15 Mitsubishi Materials Corp Composite film for substraight type solar cell and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9543265B2 (en) 2013-03-25 2017-01-10 Hitachi, Ltd. Joint material, and jointed body

Also Published As

Publication number Publication date
CN102632651B (en) 2015-08-05
JP2012169355A (en) 2012-09-06
JP5899623B2 (en) 2016-04-06
TWI597160B (en) 2017-09-01
KR20120092010A (en) 2012-08-20
KR101704082B1 (en) 2017-02-22
CN102632651A (en) 2012-08-15

Similar Documents

Publication Publication Date Title
TW201242761A (en) Laminated body for solder joint and jointed body
JP5810553B2 (en) Laminate for bonding and bonded body
TWI399759B (en) Composition for forming electrode of solar cell, method for forming same electrode, and solar cell employing electrode formed by same method
JP5856038B2 (en) Conductive adhesive for screen printing, joined body of inorganic material, and manufacturing method thereof
JP5309440B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP5630549B2 (en) Metal particle dispersion, article using the metal particle dispersion, sintered film, and method for producing sintered film
KR20090063265A (en) Composition for electrode formation and method for forming electrode by using the composition
KR101836551B1 (en) Reflective film composition for light-emitting element, light-emitting element, and method for producing light-emitting element
JP5163715B2 (en) Electromagnetic wave transmissive coating film having glitter, electromagnetic wave transmissive coating composition for forming the same, and electromagnetic wave transmissive film forming method using the same
JP7131908B2 (en) Metal-containing particles, connecting material, connected structure, and method for producing connected structure
JP2013045750A (en) Organic electroluminescent element and method for manufacturing the same
TWI737643B (en) Bonding composition and electronic component assembly
JP2013045752A (en) Organic electroluminescent element and method for manufacturing the same
JP5741810B2 (en) REFLECTIVE FILM COMPOSITION FOR LIGHT EMITTING ELEMENT, LIGHT EMITTING ELEMENT, AND METHOD FOR PRODUCING LIGHT EMITTING ELEMENT
JP2013149910A (en) Light emitter and manufacturing method of the same
TWI682827B (en) Bonding composition and electronic component assembly
JP2013045749A (en) Organic electroluminescent element and method for manufacturing the same
JP2013045751A (en) Organic electroluminescent element and method for manufacturing the same
JP5760913B2 (en) Organic electroluminescence device and method for producing the same
JP2013077416A (en) Organic electroluminescent element and manufacturing method of the same