201242033 1六、發明說明: 【發明所屬之技術領域】 [0001]本發明是有關於半導體元件及其製造方法,且特別是有 關於非揮發性記憶體及其製造方法。 【先前技術】 [0002 ]非揮發性記憶體例如是可電抹除可程式唯讀記憶體 (EEPROM)不會因電源供應中斷而使儲存在其中之資料消 失的記憶體,其可進行多次資料之程式化、讀取、抹除 等動作,因而廣泛用於各種個人電腦和電子設備。201242033 1. Description of the Invention: TECHNICAL FIELD OF THE INVENTION [0001] The present invention relates to semiconductor devices and methods of fabricating the same, and more particularly to non-volatile memory and methods of fabricating the same. [Prior Art] [0002] A non-volatile memory is, for example, a memory that can erase a programmable read-only memory (EEPROM) without causing the data stored therein to disappear due to a power supply interruption, which can be performed multiple times. The stylization, reading, erasing, etc. of the data are widely used in various personal computers and electronic devices.
L0003JL0003J
隨著積體電路的迅速發展,元件積㈣的要求愈來愈高 ,而隨著線寬的縮減,短通道效應的影響將會更加顯著 。為了避免短通道效應的產生’必_可能地減少源極 以及汲極摻雜區的深度以及濃度,也就是淺接面 (shallower junction depth) 沒極摻雜區。然而,這麼-來,勢必會導致源極以及没 極掺雜區阻值過高,造成記憶體元件的讀取電流變小’ 而影響其效能。此外’對於邏輯元件”,源極以及没 極摻雜區電阻值過高也會減損其驅動電流。 【發明内容】 [0004] 本發明提供數種料體元件可―免短通道效應 而且可以降低源極以及汲極摻雜區的阻值。 的產生 [0005] 100112123 本發明提出-種半導體元件,包括基底、 型之第—摻雜區、具有第二導電型之第二 以及介電層。具有第一導電型之第 ’第一摻雜區中具有溝渠。具有第 表單編號Α0101 第3頁/共75頁 具有第一導電 推雜區、開極 摻雜區位於基底中 導電型之第二摻雜 1002020232-0 201242033 區,位於上述溝渠底部,將上述第一摻雜區分隔成分離 的兩個源極或汲極摻雜區,上述源極摻雜區與上述汲極 摻雜區之間為通道區。閘極位於上述溝渠之中。介電層 位於上述閘極與上述溝渠的上述基底之間。 [0006] 依照本發明一實施例所述,上述各源極或汲極摻雜區從 上述溝渠的底部接近底角之處沿著側壁延伸至上述基底 的表面。 [0007] 依照本發明一實施例所述,上述第二摻雜區包括兩個深 度不同的第一區域與第二區域,其中遠離上述溝渠底部 的上述第二區域的面積大於一接近上述溝渠底部的上述 第一區域的面積,使上述源極或汲極摻雜區成階梯狀。 [0008] 依照本發明一實施例所述,上述半導體元件更包括間隙 壁,位於上述溝渠的側壁的上述介電層與上述基底之間 〇 [0009] 依照本發明一實施例所述,上述第二摻雜區從上述溝渠 的底部延伸至溝渠的侧壁接近底角之處,使各源極或汲 極摻雜區未包覆上述溝渠的底部以及底角,而從上述溝 渠的側壁延伸至上述基底的表面。 [0010] 依照本發明一實施例所述,上述半導體元件更包括一半 導體層,完全覆蓋上述源極或汲極摻雜區並與之接觸。 [0011] 依照本發明一實施例所述,上述半導體層包括摻雜單晶 矽層、掺雜多晶矽層、摻雜磊晶矽層、摻雜矽化鍺層或 其組合。 100112123 表單編號A0101 第4頁/共75頁 1002020232-0 201242033 • 1 [0012] [0013] [0014] [0015] Ο [0016] [0017] [0018] [0019]With the rapid development of the integrated circuit, the requirements of the component product (4) are getting higher and higher, and as the line width is reduced, the influence of the short channel effect will be more significant. In order to avoid the occurrence of short channel effects, it is necessary to reduce the depth and concentration of the source and drain doping regions, that is, the gap junction depth. However, in this case, the source and the immersion doped region are too high in resistance, resulting in a small read current of the memory device, which affects its performance. In addition, for 'logic elements', the source and the doping region resistance value is too high, which will detract from its driving current. [0004] The present invention provides several material elements that can avoid short channel effects and can be reduced Generation of Resistance of Source and Deuterium Doped Regions [0005] 100112123 The present invention provides a semiconductor device comprising a substrate, a first doped region, a second having a second conductivity type, and a dielectric layer. The first doped region having the first conductivity type has a trench therein. The first form number Α0101, page 3/75 has a first conductive doping region, and the open doping region is located at a second conductivity type in the substrate. Doping 1002020232-0 201242033, located at the bottom of the trench, separating the first doped region into two separated source or drain doped regions, between the source doped region and the drain doped region The gate region is located in the trench. The dielectric layer is located between the gate and the substrate of the trench. [0006] According to an embodiment of the invention, the source or drain doping region From the bottom of the above ditch Adjacent to the bottom corner, the sidewall extends to the surface of the substrate. [0007] According to an embodiment of the invention, the second doped region includes two first regions and a second region having different depths, wherein the distance from the second region The area of the second region at the bottom of the trench is larger than the area of the first region near the bottom of the trench, so that the source or drain doping region is stepped. [0008] According to an embodiment of the invention, the above The semiconductor device further includes a spacer between the dielectric layer on the sidewall of the trench and the substrate. [0009] According to an embodiment of the invention, the second doped region extends from the bottom of the trench to the trench Where the sidewalls are near the bottom corner, the source or drain doped regions are not covered by the bottom and bottom corners of the trench and extend from the sidewall of the trench to the surface of the substrate. [0010] In accordance with an embodiment of the present invention For example, the semiconductor device further includes a semiconductor layer completely covering and contacting the source or drain doped region. [0011] According to an embodiment of the invention, the The bulk layer includes a doped single crystal germanium layer, a doped poly germanium layer, a doped epitaxial germanium layer, a doped germanium germanium layer, or a combination thereof. 100112123 Form No. A0101 Page 4 of 75 1002020232-0 201242033 • 1 [0012] [0014] [0019] [0019] [0019] [0019]
[0020] 依照本發明一實施例所述,上述半導體元件更包括金屬 矽化物層位於上述半導體層上。 依照本發明一實施例所述,上述半導體元件更包括硬罩 幕層,位於上述半導體層上。 依照本發明一實施例所述,上述更包括硬罩幕層,位於 上述源極或汲極摻雜區上。 依照本發明一實施例所述,上述介電層更延伸位於上述 源極或汲極摻雜區上。 依照本發明一實施例所述,上述閘極更延伸覆蓋於上述 源極或汲極摻雜區上方。 依照本發明一實施例所述,上述半導體元件為金氧半導 體電晶體,上述介電層為閘介電層。 依照本發明一實施例所述,上述半導體元件為非揮發性 記憶胞,上述介電層為穿隧介電層。 依照本發明一實施例所述,上述閘極為浮置閘,且更包 括控制閘與閘間介電層。控制閘位於上述浮置閘上方。 閘間介電層位於上述浮置閘與上述控制閘之間。 依照本發明一實施例所述,上述浮置閘凸出於上述基底 的表面上。 依照本發明一實施例所述,上述浮置閘、上述閘間介電 層以及上述控制閘更延伸至上述源極或汲極摻雜區上方 〇 100112123 表單編號Α0101 第5頁/共75頁 1002020232-0 [0021] 201242033 [0022] 依照本發明一實施例所述,上述浮置閘之表面為平坦表 面或具有凹槽的表面。 [0023] 依照本發明一實施例所述,上述半導體元件更包括電荷 儲存介電層,位於上述穿隧介電層與上述閘極之間。 [0024] 依照本發明一實施例所述,上述電荷儲存介電層更延伸 至上述源極或汲極摻雜區上方。 [0025] 依照本發明一實施例所述,上述半導體元件更包括頂介 電層,位於上述電荷儲存介電層與上述閘極之間。 [0026] 本發明還提出一種半導體元件的製造方法,包括提供基 底,在上述基底中形成具有第一導電型之第一摻雜區, 接著移除部份上述第一摻雜區,以在上述第一摻雜區中 形成溝渠。於上述溝渠底部形成具有第二導電型之第二 摻雜區,將上述第一摻雜區分隔成兩個源極或汲極摻雜 區。於上述溝渠中形成閘極,於上述閘極與上述溝渠的 上述基底之間形成一介電層。 [0027] 依照本發明一實施例所述,上述半導體元件的製造方法 更包括於上述溝渠的侧壁形成一間隙壁。 [0028] 依照本發明一實施例所述,上述第二掺雜區的形成方法 包括以上述間隙壁為罩幕進行單一離子植入製程,使所 分隔之上述各源極或汲極掺雜區從上述基底的表面,沿 著側壁,延伸至上述溝渠的底部接近底角之處。 [0029] 依照本發明一實施例所述,上述第二摻雜區的形成方法 包括以上述間隙壁為罩幕進行一第一離子植入製程與一 100112123 表單編號A0101 第6頁/共75頁 1002020232-0 201242033 [0030] [0031] Ο [0032] [0033]According to an embodiment of the invention, the semiconductor device further includes a metal halide layer on the semiconductor layer. According to an embodiment of the invention, the semiconductor device further includes a hard mask layer on the semiconductor layer. According to an embodiment of the invention, the method further includes a hard mask layer on the source or drain doping region. According to an embodiment of the invention, the dielectric layer is further extended on the source or drain doping region. According to an embodiment of the invention, the gate further extends over the source or drain doping region. According to an embodiment of the invention, the semiconductor element is a MOS transistor, and the dielectric layer is a thyristor layer. According to an embodiment of the invention, the semiconductor component is a non-volatile memory cell, and the dielectric layer is a tunneling dielectric layer. According to an embodiment of the invention, the gate is a floating gate, and further includes a control gate and a gate dielectric layer. The control gate is located above the floating gate. The inter-gate dielectric layer is located between the floating gate and the control gate. According to an embodiment of the invention, the floating gate protrudes from the surface of the substrate. According to an embodiment of the invention, the floating gate, the inter-gate dielectric layer and the control gate extend above the source or drain doping region 〇100112123 Form No. 1010101 Page 5 / Total 75 Page 1002020232 [0021] 201242033 [0022] According to an embodiment of the invention, the surface of the floating gate is a flat surface or a surface having a groove. According to an embodiment of the invention, the semiconductor device further includes a charge storage dielectric layer between the tunneling dielectric layer and the gate. [0024] According to an embodiment of the invention, the charge storage dielectric layer extends over the source or drain doping region. According to an embodiment of the invention, the semiconductor device further includes a top dielectric layer between the charge storage dielectric layer and the gate. The present invention also provides a method of fabricating a semiconductor device, comprising: providing a substrate, forming a first doped region having a first conductivity type in the substrate, and then removing a portion of the first doped region to A trench is formed in the first doped region. A second doped region having a second conductivity type is formed at the bottom of the trench, and the first doped region is divided into two source or drain doped regions. A gate is formed in the trench, and a dielectric layer is formed between the gate and the substrate of the trench. According to an embodiment of the invention, the method for fabricating the semiconductor device further includes forming a spacer on a sidewall of the trench. According to an embodiment of the invention, the method for forming the second doped region includes performing a single ion implantation process with the spacer as a mask to separate the source or drain doping regions. From the surface of the substrate, along the side walls, extend to the bottom of the trench near the bottom corner. According to an embodiment of the invention, the method for forming the second doped region includes performing a first ion implantation process with the spacer as a mask and a 100112123 form number A0101, page 6 of 75 1002020232-0 201242033 [0030] [0033] [0033]
[0034] [0035] [0036] 第二離子植入製程,其中上述第二離子植入製程的能量 高於上述第一離子植入製程的能量,使上述第二離子植 入製程所形成的一遠離上述溝渠底部的區域的面積大於 上述第一離子植入製程所形成的一接近上述溝渠底部的 區域的面積。 依照本發明一實施例所述,在形成上述第二摻雜區之後 且形成上述介電層之前,更包括移除上述間隙壁。 依照本發明一實施例所述,上述第二摻雜區的形成方法 包括以上述溝渠為罩幕,進行一離子植入製程,使上述 第二摻雜區從上述溝渠的底部延伸至側壁接近底角之處 〇 依照本發明一實施例所述,上述半導體元件的製造方法 ,更包括在形成上述溝渠之前,在上述基底上形成一半 半導體層,上述半導體層與上述第一摻雜區接觸。 依照本發明一實施例所述,上述半導體元件的製造方法 ,更包括在形成上述半導體層之後且形成上述溝渠之前 ,在上述半導體層上形成一硬罩幕層。 依照本發明一實施例所述,上述半導體元件的製造方法 ,更包括在形成上述溝渠之後以及形成上述介電層之前 ,移除上述硬罩幕層。 依照本發明一實施例所述,上述半導體元件的製造方法 ,更包括在形成上述閘極之後移除上述硬罩幕層。 依照本發明一實施例所述,上述半導體元件的製造方法 100112123 表單編號Α0101 第7頁/共75頁 1002020232-0 201242033 更包括在移除上述硬罩幕層之後,於上述半導體層上形 成石夕化金屬層。 [0037] 依照本發明一實施例所述,上述半導體元件的製造方法 更包括在形成上述溝渠之前,在上述基底上形成一硬罩 幕層。 [0038] 依照本發明一實施例所述,上述半導體元件的製造方法 更包括在形成上述介電層之前,移除上述硬罩幕層。 [0039] 依照本發明一實施例所述,上述半導體元件為金氧半導 體電晶體,上述介電層為閘介電層。 [0040] 依照本發明一實施例所述,上述半導體元件為非揮發性 記憶胞,上述介電層為穿隧介電層。 [0041] 依照本發明一實施例所述,上述閘極為浮置閘,且上述 方法更包括於上述浮置閘上形成控制閘,並於上述浮置 閘與上述控制閘之間形成閘間介電層。 [0042] 依照本發明一實施例所述,上述半導體元件的製造方法 ,更包括在形成該溝渠之前,在上述基底上形成硬罩幕 層,使上述溝渠中的上述閘極之上表面低於上述硬罩幕 層之上表面,上述硬罩幕層之側壁裸露出來。在上述硬 罩幕層側壁以及上述閘極上形成閘極材料層,以形成具 有凹槽表面的浮置閘。於浮置閘上形成控制閘,並於浮 置閘與控制閘之間形成閘間介電層。 [0043] 依照本發明一實施例所述,上述浮置閘、上述閘間介電 層以及上述控制閘更延伸至上述源極或汲極摻雜區上方 100112123 表單編號A0101 第8頁/共75頁 1002020232-0 201242033 Ο [0044] 依照本發明一實施例所述,上述半導體元件的製造方法 ’更包括在上述穿随介電層與上述閑極之間形成電荷倚 存介電層。 [0045] [0046] Ο [0047] 依照本發明-實施例所述,上述電荷料介電層更延伸 至上述源極或没極摻雜區上方。 依照本發明-實施例所述,上述半導體元件的製造方法 ’更包括於上述電荷儲存介電層與上述閘極之間形成頂 介電層。 [0048] [0049] 〇 [0050] 本發明之半«元件可㈣免料道絲的產生而且可 以降低源極以及汲極摻雜區的阻值。 為讓本發蚊上述特徵和優點能更_諸,下文特舉 實施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖1係繪示本發明之半導體元件的原型。 100112123 ^參照圖1Α’本發明之半導體元制原型包括基底10且 有第-導電型之第-摻雜區14、具有第二導電型之k =22—W㈠雜區u位於一基 位;^蓋、且第#雜&14中具有溝渠32。第二摻雜區22 位於溝渠32底部32c,第—你Μ ,丄 摻雜區14被分隔,形成分離的 ^源極纽極摻雜區l4am4b,源極摻雜區 極摻雜區14a與14b之間” ]為通道區34。閘極30位於溝渠32 中"電層24覆蓋'冓渠32的側壁32a與底部32c表 ’分隔閘極30與基底1〇。 表單蝙號A0101 ί 面上 頁/共75 頁 1002020232-0 201242033 [0051] [0052] [0053] [0054] 本發明實_侧閘極_人於織1Q之中,透過閘極 3〇垂直方向位置的改變來製作出具有抬升效果之源極播 雜區14a與没極摻雜區l4b。由於源極摻雜區—與汲極 摻雜區Ub位於閘極3〇下方的部分相當淺,因此,可以具 有淺接面的效果’達_免料道效職线目的。另 一方面’由於源極摻雜區14a與汲極掺雜區⑽還向上延 伸包覆於閘極30的側壁周圍,因此,其具有抬升式源極 與汲極可以降低阻值的優點。 上述之半導體元件可以是金氧半電晶體非揮發性記憶 胞如快閃記憶胞或氮切唯讀記憶體等。當半導體元件 為金氧半電晶體時,介電層24為閘介電層。當半導體元 件非揮發性記憶胞時’介電層24為穿隧介電層。 閘極30可以僅位於溝渠32之中,也可以向上延伸而突出 於基底ίο的表面’甚域向延伸而覆蓋於基底1〇上方。 當上述半導體元件為快閃記憶料,則上述閘極3〇為浮 置閑。當上述半導體元件為氮化石夕唯讀記憶體時 ,則上 述閘極3 0會連接字元線。 各源極或沒極摻雜區l4am4b的輪廓可以是從溝渠32的 底部32c沿著接近底角32b之處側壁32a延伸至基底1〇的 表面。或者,各源極或汲極摻雜區14&與1413也可以是未 包覆溝渠32的底部32c以及底角32b,而從溝渠32的側壁 32a延伸至基底10的表面。 以下舉數個實施例來說明之,然而,其並非用以限定本 發明。 100112123 表單編號A0101 第10頁/共75頁 1002020232-0 [0055] 201242033 ' .[0056] 圖2A至2D-1是依照本發明第一實施例所繪示之一種氮化 矽唯讀記憶體之製造方法的流程剖面圖。 [0057] 請參照圖2A,在基底10中形成井區12並在井區12中形成 第一摻雜區14。基底10例如是整體為半導體基底10、整 體為半導體化合物基底10或是絕緣層52上有半導體基底 I0(semiconduc1;or over insulator,SOI)。半導體 例如是IV A族的原子例如石夕或録。以石夕來說,其可以是石夕 晶圓或是磊晶矽。半導體化合物例如是IVA族的原子所形 成之半導體化合物,例如是碳化矽或是矽化鍺。基底10 可以具有摻雜,基底10的摻雜可以是第二導電型。第二 導電型例如是P型或N型。P型的摻雜可以是IIIA族離子, 例如是硼離子。N型摻雜可以是VA族離子例如是砷或是磷 [0058] 井區12係透過單次離子植入製程或是多次離子植入製程 ,之後,再進行回火製程來實施。用來形成井區12的摻 雜,其導電型與欲形成之快閃記憶胞的導電型不同,當 、快閃記憶胞之通道的導電型為第一導電型,則井區12的 ) 掺雜為第二導電型離子。也就是,快閃記憶胞為P型通道 ,則井區12為N型;快閃記憶胞為N型通道,則井區12為P 型。在一實施例中,井區12為P型,所植入的離子為硼, 離子植入製程的能量例如是5 0至5 0 0 K e V,劑量例如是1X 1012至3xl013/cm2。 [0059] 在一實施例中,第一摻雜區14的形成方法同樣是透過離 子植入製程36,之後,再進行回火製程。用來形成第一 摻雜區14中的摻雜例如是第一導電型離子。第一導電型 100112123 表單編號 A0101 第 11 頁/共 75 頁 1002020232-0 201242033 與第二導電型不同,例如以型或P型。第—摻雜區14可 以透過離子植入製程來形成。進行離子植入製程36的次 數與預定形成之源極或沒極摻雜區14a與14b(圖2C)的濃 度以及接面深度«’可以是單次或是多次。在本實施 例中’由於基底1G上方並未額外形成以下實施例所述的 半導體層4G,以降低接觸阻值,因此,可關用多次離 子植入製程來形成具有不同深度與濃度的第—摻雜區14 在實細例中,第一摻雜區14為N型,且是進行單次離 子植入製程36來形成,所植入離子例如為砷,離子植入 製程的能量例如是15至4〇KeV,劑量例如是1)<1〇15至4>< i〇15/cm2。在另一實施例中,第一摻雜區14為~型,且係 進行兩次離子植入製程36來形成,兩次植入離子皆例如 為砷。其中第一次離子植入製程的能量例如是5i15KeV ,劑量例如是lxl〇15至4xl〇15/cm2。第二次離子植入製 程的能量例如是15至50KeV,劑量例如是3χΐ〇14至2χ lOis/cin ’使得形成之源極或没極摻雜區143與14|:)接近 基底1 0表面的摻雜濃度高於溝渠32下方者,藉以同時達 到降低接觸阻值以及淺接面之功效。 [0060] [0061] 之後,請參照圖2B ’在基底10上形成硬罩幕層16。硬罩 幕層16可以是單材料層、雙材料層或更多層材料層所構 成。硬罩幕層16之材質例如是氡化石夕、氮化;E夕、氮氧化 石夕或其組合。硬罩幕層1 6的形成方法例如是物理氣相沈 積(PVD)或化學氣相沈積(CVD)。硬罩幕層16的厚度 例如是300埃至1〇〇〇埃。 然後’在硬罩幕層16上形成具有開口 42的光阻層38。光 100112123 表單編號A0101 第12頁/共75頁 1002020232-0 201242033 阻層38可以是正光阻或是負光阻。光阻層38的開口 42暴 露出下方的硬罩幕層16。開口42的寬度wl略大於預定形 成之閘極30(圖2D-1 )的寬度w2。在一實施例中,開口42 的寬度wl例如是550埃至1 500埃。 [0062] Ο 其後,請參照圖2C,以光阻層38為罩幕,移除開口 42所 暴露出的硬罩幕層16,並再移除硬罩幕層16下方一部分 基底10,以在硬罩幕層16以及基底1〇的第一摻雜區14中 升>成溝渠32,之後,再將光阻層38移除。移除硬罩幕層 16及其下方的部分基底1〇的方法可以是蝕刻製程,例如 是乾式蝕刻製程。所形成之溝渠32的側壁32a可以是垂直 面、傾斜面或是曲面。溝渠32的底角32b可以是垂直角, 但並不限定於垂直角’也可以是圓 corner)或是多角形(p〇iyg0nai c〇rner)。位於基底 1〇中的溝渠32的深度hi例如是4〇〇埃至700埃。 [0063] Ο 之後,在溝渠32的側壁32a形成間隙壁18。間隙壁18的 形成方法例如是在硬罩幕層16以及溝渠32的表面上形成 間隙壁材料層,然後再透過非等向性蝕刻製程以移除部 分的間隙壁材料層。間隙壁18可以是單材料層、雙材料 層或更多層材料層所構成。間隙壁18之材質例如是氧化 矽、氮化矽、氮氧化矽或其組合。然後,在溝渠32底部 32c,間隙壁18所裸露的基底1()中形成第二摻雜區^, 第二摻雜區22從第-摻雜區14向下延伸至井區。,將第 一摻雜區14分隔成分離的兩個源極或汲極摻雜區l4a與 14b。所形成之源極或沒極摻雜區Ua與Ub的輪廟從溝 渠32的底部32c接近底角32b之處,沿著側壁仏延伸至 100112123 表單編號A0101 第13頁/共75頁 1002020232-0 201242033 該基底10的表面。源極摻雜區14a與汲極摻雜區i4b之間 為通道區34。所形成之通道區34寬度與間隙壁18的寬度 有關。當間隙壁18的寬度w3愈小/大’則所形成之通道區 34寬度W4愈大/小。在一實施例中,第二摻雜區22的形成 方法可以利用硬罩幕層16以及間隙壁18為罩幕,透過離 子植入製程20來形成。用來形成第二摻雜區22的摻雜例 如是第二導電型離子◊第二導電型,例如是p型或N型。 在一實施例中,第一摻雜區14為N型,第二摻雜區22!p 型。第二摻雜區22所植入的離子例如為π〗,離子植入製 程的能量例如是1至15KeV,劑量例如是5χ1〇ΐ3至9χ 1014/cm2。 [0064] [0065] 之後,請參照圖2D-卜移除間隙壁18。移除間隙壁以的 方法可以採用蝕刻製程,例如是濕式蝕刻製程或是乾式 姓刻製程。接著,將硬罩幕層16移除。移除硬罩幕祕 的方法可以採賴刻製程,例如是濕式#刻製㈣是乾 式蝕刻製程。 之後’在基底及溝渠32的财32績底部咖表面 上形成穿隧介電層24、 28。穿隧介電層24可以 電荷儲存介電層26以及頂介電層 疋由單材料層所構成。單材料層 例如是低介電常數材料或是高介電常數材料。低介電常 數材料是指介電常數低於4的介電材料,例如是二氧切 或氣氧化石夕(Sl〇xNy),其中χ以及y為任何可能的數值。 而介電常數材料是指介電常數高於4的介電材料,例如是 ΜΑΙΟ Hf〇2、Al2〇3或。穿隨介電層24也可以依 據能隙工程理論(band_gap叫-打叫⑽) 100112123 表單編號A0101 第丨4頁/共75頁 1002020232-0 201242033 〇α)選擇可讀高注 結構或是多層堆疊結構。替^ 式化更快的雙層堆疊 數材料與高介電常數材料所::4結構例如是低介電常 電常數材料/高介電常數;雙層堆叠結構(以低介 HfSi〇、氧化石夕/_或是氧化々-例如是氧化石夕/ 構例如是低介電常數化矽。多層堆疊結 Ο 常數村料所組成之多層堆叠結;(以常_電料以及低介電 介電常數材料/低介電常數材料籌表(干乂^電常數材料/高 化石夕/氧切或是氧化石夕/A1 〇 /氧、,例如是氧切/氮 層26例如是氮化石夕或是Ηί〇 2 =化石夕°電荷錯存介電 層所構成。單材料層例如β2低八介電層28以是由單材料 :數材料。低介電常數材料二是高介電 料,例如是二氧切或氮氧切、電的介電材 指介電當勃古认, 同"電常數材料是 s•常數祕4的介電材料,例如是咖0、Αί 〇 ο 二=二:Γ電層28也可以依據能隙心_ 構或是多層堆疊::構使====議 :::::常數材料所組成之雙層—構(:高:數電 。多數材料表示)’例如是氮化石夕/氧化石夕 料以:二構例如是低介電常數材料、高介電常數材 常ΖΖ電:數材料所組成之多層堆疊結構(以低介電 β长 電常數材料/低介電常數材料表示),例如 乳化夕/减梦/氧化梦或是氧化梦Ύ氧化石夕。 f的材質例如是摻雜多晶矽、金屬或是摻雜多晶 100112123 表單編號A0101 1002020232-0 第15頁/共75頁 [0066] 201242033 矽與金屬所形成之堆疊結構。閘極3〇的形成方法例如是 在基底10上形成閘極30材料層,覆蓋於頂介電層28上, 亚且填滿溝渠32。然後,再移除溝渠32以外且位於頂介 電層28以上的閑極30材料層,移除的方法可以採用蝕刻 製程或是化學機械研磨製程(CMP)。 [0067] [0068] 本發明上述實施例中,源極摻雜區14a以及汲極摻雜區 14b(第一摻雜區14)的回火製程是在穿隧介電層24以及 閘極30形成之前形成,因此,可以確保穿隧介電層以(特 別是尚介電常數材料之穿隧介電層)以及閘極3〇 (特別是 金屬閘)等材料的穩定性並不會受到源極摻雜區14a以及 汲極摻雜區14b(第一摻雜區η)的回火製程的影響。 圖2D-1所示之氮化矽唯讀記憶體包括基底1〇、井區12、 具有第一導電型之第一摻雜區14、具有第二導電型之第 二摻雜區22、閘極30、穿隧介電層24、電荷儲存介電層 26以及頂介電層28。井區12與第一摻雜區丨4位於基底1〇 中,第一摻雜區14中具有溝渠32。第二摻雜區22位於溝 渠32底部32c,使第一摻雜區14被分隔,形成分離的兩個 源極或汲極摻雜區14a與14b。源極摻雜區14a與沒極摻 雜區14b之間為通道區34。閘極3〇埋入於基底1〇的溝渠 32之中,其厚度tl與基底中的溝渠32的深度hl大致相 當。閘極30的厚度tl例如是約為400至7〇〇埃。閘極3〇的 側壁32a可以是垂直面、傾斜面或是曲面。閘極3〇的底角 32b可以是垂直角,但並不限定於垂直角,也可以是圓角 (rounded corner)或是多角(p〇iyg0nai corner)。 穿隧介電層24、電荷儲存介電層26以及頂介電層28覆蓋 100112123 表單編號A0101 第16頁/共75頁 1002020232-0 201242033 溝渠32的侧壁32a與底部32c表面上,分隔閘極3〇與基底 ίο ’且延伸到源極摻雜區14a與汲極摻雜區14b上方,並 與之直接接觸。 [0069] ❹ Ο 本發明透過將閘極30埋入於基底1〇的溝渠32之中之方式 ’使得源極摻雜區14a與汲極摻雜區i4b不僅位於閘極30 的下方’而且還延伸包覆於閘極3〇的侧壁32a周圍。由於 源極摻雜區14a與汲極摻雜區141}位於閘極3〇下方的部分 相當淺’因此’可以具有淺接面的效果,達到避免短通 道效應產生的目的。另一方面,由於源極摻雜區l4a與汲 極摻雜區14b還延伸包覆於閘極3〇的側壁32a周圍,因此 ,其具有抬升式源極與汲極可以降低阻值的優點。值得 一提的是’本發明實施例係將閘極3〇埋入於基底1〇之中 ’而源極摻雜區14&與汲極摻雜區i4b也是製作於基底10 之中,透過閘極3〇垂直方向位置的改變來製作出具有抬 升效果之源極摻雜區14a與汲極摻雜區14b,而並不是將 閘極30直接製作於基底10的表面之上,透過額外形成的 磊晶層以製作出抬升源極與汲極,因此本發明之具有抬 升效果的源極摻雜區14a與汲極摻雜區14b係完全由基底 10摻雜而成,位於閘極30下方的部分以及包覆於閘極3〇 周圍的部分為同樣材質且這兩部分之間並無任何的介面 [0070] 圖2D 2緣不第二實施例之一種氮化石夕唯讀記憶體的剖面 圖。 100112123 請參照圖2D、2,依照上述對應圖2A至圖2(:的製造方法完 成部分的氮化矽唯讀記憶體製作之後,同樣移除間隙壁 表單編號A0101 第17頁/共75頁 1002020232-0 [0071] 201242033 18。接著,但是,並不移除硬罩幕層16,而是直接在硬 罩幕層16上形成穿隧介電層24、電荷儲存介電層26以及 頂介電層28。之後,依照上述方法,在溝渠32剩餘的空 間中形成連接字元線的閘極30。 [0072] 圖2D-2所示之氮化矽唯讀記憶體的結構與圖2D-1所示之 氮化矽唯讀記憶體相似,但是穿隧介電層24、電荷儲存 介電層26以及頂介電層28覆蓋溝渠32的側壁32a與底部 32c表面上,分隔閘極30與基底10,且延伸到源極摻雜區 14a與汲極摻雜區14b上方的硬罩幕層16上。閘極30則位 於基底10與硬罩幕層16的溝渠32之中,若硬罩幕層16上 的穿隧介電層24、電荷儲存介電層26以及頂介電層28的 厚度與溝渠32底部32c的穿隧介電層24、電荷儲存介電層 26以及頂介電層28的厚度相當,則閘極30的厚度與基底 10以及硬罩幕層16中的溝渠32的深度hl+h2大致相當。 若圖2D-1與圖2D-2中,位於基底10的溝渠32深度hi相同 ,由於圖2D-2所示之氮化矽唯讀記憶體的溝渠32還向上 延伸到硬罩幕層16,其深度為hl+h2,較大於圖2D-1中 溝渠32深度僅為hi者,因此,2D-2所示之氮化矽唯讀記 憶體的閘極30的厚度t2會大於圖2D-1所示之氮化矽唯讀 記憶體的閘極30厚度tl。換言之,若是圖2D-2中閘極30 的厚度t2與圖2D-1中閘極30厚度tl相當,則圖2D-2中位 於基底10的溝渠32深度hi就可以製作成略淺於圖2D-1中 位於基底10的溝渠32深度hi。 [0073] 圖2D-3繪示第三實施例之一種氮化矽唯讀記憶體的剖面 圖。 100112123 表單編號A0101 第18頁/共75頁 1002020232-0 201242033 '[0074] 請參照圖2D-3,依照上述對應圖2A至圖2C的製造方法完 成部分的氮化矽唯讀記憶體製作之後,同樣移除間隙壁 18,且不將硬罩幕層16移除,而是直接在硬罩幕層16上 以及溝渠32的側壁32a與底部32c表面上形成穿隧介電層 ‘24、電荷儲存介電層26以及頂介電層28。之後,同樣在 硬罩幕層16上以及溝渠32的侧壁32a與底部32c表面上形 成穿隧介電層24、電荷儲存介電層26以及頂介電層28, 並且在溝渠32剩餘的空間中形成連接字元線的閘極30。 但是,在形成閘極30之前先將硬罩幕層16上的穿隧介電 Q 層24、電荷儲存介電層26以及頂介電層28移除,其移除 的方法例如是以硬罩幕層16為蝕終止層,透過蝕刻製程 或是化學機械研磨製程來達成。 [0075] 圖2D-3所示之氮化矽唯讀記憶體的結構與圖2D-2所示之 氮化矽唯讀記憶體相似,但是穿隧介電層24、電荷儲存 介電層26以及頂介電層28僅覆蓋溝渠32的側壁32a與底 部32c表面上,分隔閘極30與基底10,並未延伸到源極摻 雜區14&與汲極摻雜區14b上方的硬罩幕層16上,因此, 0 此結構的硬罩幕層16的表面會裸露出來。閘極30的厚度 t3大約是與基底10以及硬罩幕層16中的溝渠32的深度 hl+h2扣除穿隧介電層24、電荷儲存介電層26以及頂介 電層28的厚度。換言之,若是圖2D-3中閘極30的厚度t3 與圖2D-1中閘極30厚度tl相當,則圖2D-3中位於基底10 的溝渠32深度hi就可以製作成略淺於圖2D-1中位於基底 10的溝渠32深度hi。 [0076] 圖3A至3D-1是依照本發明第四實施例所繪示之一種氮化 100112123 表單編號A0101 第19頁/共75頁 1002020232-0 201242033 :唯讀記憶體之製造方法的流程剖面 毛明第五實施例之-種氮切唯讀記憶 〜2繪不本 3D'3綠示本發明第六實施例之—種。i面圖。圖 剖面圖。 矽唯讀記憶體的 [0077] =照圖3A至3D],依照上述圖㈣ 蛻氮化矽唯讀記憶體,但 裏造方法製 在井區12中形成第一松紐 土 _ 〇中形成井區12並 U中形成第摻雜區14之後,在 卫 之前,先在基底10上形成半導體層40。罩幕層16 續形成溝渠32的過程中被圖案化,如圖體層4〇在後 後的半導體層40被保留下來,做為源極^圖案化 半導體⑽中具有摻雜。半導體㈣的;;^接觸區。 區Ha以及沒極摻雜區⑷具有相同的導…原極摻雜 4〇的摻雜濃度大於或接近源 。半導體層 地,可⑽⑽叫及;錄摻雜區 步降低接觸阻值。半導體 晶矽層 '摻雜多晶矽層、摻 匕括摻雜早 或苴组人層、摻㈣化鍺層 …5。+¥體層4〇中的摻雜可以在沈積的過程中臨 場摻雜(ln-situdoped),或是在半導體沈積之後再 經由離子植人製程來實施H施例中,源極推雜區 14a以及沒極摻雜區14b中的掺雜為N型半導體層心可 以疋臨場掺雜N型離子的接雜單晶石夕層、臨場換雜n型離 子的夕bb石夕、臨場摻雜n型離子的蟲晶石夕層、或推雜N型 離子的#化鍺或其組合。在另—實施例中,源極換雜區 14a以及汲極摻雜區14b中的摻雜為p型,半導體層4〇可 以是場摻雜P型離子的摻雜單晶矽層、臨場摻雜p梨離子 的矽化鍺、臨場摻雜P型離子磊晶矽層、臨場摻雜p型離 100112123 表單編號A0101 第20頁/共75頁 1002020232-0 201242033 Ο [0078] [0079] ❹ 100112123 子的多晶矽或其組合 度以及基底嶋度財物層40的厚 mMAn 募渠32的深度hl有關。也# θ 體層4〇的存在,可 自也砘疋,半導 Μ減小。在—實^。二^_32的深度 hl例如是約糊埃至5_,;_^嶋32的深度 約為3〇〇埃至5〇〇 、 θ 40的厚度例如是 Γ. . ^ 但並不以此為限,扃营 从依據所轉叙料 用時可 _的深度來調整尽度以及基底10中所形成之溝 的源極與歧極摻雜區,半導體層4G可以視為是升起 推雜區14a以及沒極因此’位於溝渠32下方的源極 摻雜區⑽可以製作成接面更淺者。 、灸,依照類似於上述 成氮切唯讀記憶體的㈣。 卜1的製程方法完 Γ有V所不之氮切唯讀記憶體包括基底1()、井區12 具有第-導電型之第—摻雜區14 M2' 二摻雜F99 Ba 、有第一導電型之第 :’——閘極30、穿随介電層24、電荷儲 M及頂介電層28之外,還有半導體層4G。第_#雜^ 14位於基幻。中’且半導體層4〇以及第一換雜區"中: 有溝渠32。溝渠32在半導體層4〇之深度為h3,溝渠3/在 第—摻雜區14之深度灿卜第二摻雜區22位於溝渠如 部32c ’第-摻雜區14被分隔,形成分離的兩個源極或沒 極摻雜區14a與i4b。源極摻雜區14a與汲極摻雜區Ub之 間為通道區34。源極摻雜區14a與汲極摻雜區14b從溝渠 32的底部32c,沿著底角32b,再延伸到溝渠32的側壁 32a,包覆於閘極3〇的側壁周圍。半導體層4〇位於源極摻 雜區14a與沒極摻雜區14b上,包覆於閘極3〇的側壁周圍 表單編號A0101 第21頁/共75頁 1002020232-0 201242033 。換言之’閘極30位於半導體層40以及基底ι〇的溝渠32 之中。閘極30的厚度與基底1〇以及半導體層4〇中的溝渠 32的深度hl+h3大致相當(若穿隧介電層24、電荷儲存介 電層26以及頂介電層28的厚度可忽略時)^穿隧介電層24 、電荷儲存介電層26以及頂介電層28覆蓋溝渠32的側壁 32a與底部32c表面上,分隔閘極30與基底1〇,且延伸到 源極摻雜區143與汲極摻雜區14b上方的半導體層40上, 並與之直接接觸。若圖3D-1與圖2D-1的基底1〇中的溝渠 32深度hi相同’由於圖3D-1所示之氮化石夕唯讀記憶體的 溝渠32還向上延伸到半導體層4〇,其深度為hl+h3,因 此,3D-1所示之氮化矽唯讀記憶體的閘極3〇的厚度會大 於圖2D-1所示之氮化矽唯讀記憶體的閘極30厚度。 [_]同樣地,圖3D-2與圖3D-3分別類似於圖2D-2與圖2D-3 ’其差異同樣是在基底10中形成井區12並在井區12中形 成第一摻雜區14之後’在形成硬罩幕層16之前,先在基 底10上形成半導體層40,做為源極與汲極接觸區。 [ΟΟδΙ]圖4Α至4D-1是依照本發明第七實施例所繪示之一種氮化 石夕唯讀記憶體之製造方法的流程剖面圖。圖4D-2繪示本 發明第八實施例之一種氮化矽唯讀記憶體的剖面圖。圖 4D-3繪示本發明第九實施例之一種氮化矽唯讀記憶體的 剖面圖。圖5Α至5D-1是依照本發明第十實施例所繪示之 一種氮化矽唯讀記憶體之製造方法的流程剖面圖。圖 5D-2繪示本發明第十一實施例之一種氮化矽唯讀記憶體 的剖面圖。圖5D-3繪示本發明第十二實施例之一種氮化 矽唯讀記憶體的剖面圖。 100112123 表單編號Α0101 第22頁/共75頁 10020202324 201242033 [0082]圖4A至4D-1 以及圖 4D-2、4D-u 氣 a 05之鼠化矽唯讀記憶體的製 造方法分別與上述圖2A至心以及圖m3之氣化 石夕唯讀記憶體的製造方法相似,圖以及圖5D_2 、5D-3之氮化矽唯讀記憶體的製造方法分別與上述圖3A 至3D-1以及圖3D-2、3D-3之氮化矽唯讀記憶體的製造方 法相似。但是,請參照圖4C、5C、6C,在硬罩幕層16與 基底10中形成溝渠32之後,並不在溝渠32的側壁32a形 成間隙壁18(圖2C與3C)。第二摻雜區22是直接以硬罩幕 層16(無間隙壁18)做為罩幕,進行離子植入製程2〇,例 Ο 如是垂直式離子植入製程,而形成在溝渠32下方的第一 摻雜區14中,並向下延伸至井區12中,側向延伸至溝渠 32底角32b,向上延伸至溝渠32的下侧壁32a。第二摻雜 區22自第一摻雜區14延伸至井區12中,將第一摻雜區14 分隔成分離的兩個源極或沒極摻雜區14a與14b。第二摻 雜區22自溝渠32的底部32c沿著溝渠32底角32b再向上延 伸至溝渠32側壁32a的下部,則可以使得所形成源極或汲 極摻雜區14a與14b未包覆溝渠32的底部32c以及底角32b 〇 ’而從溝渠32的側壁32a的上部延伸至基底10的表面。換 言之,源極摻雜區14a與汲極摻雜區14b之間的通道區34 ,不僅位於溝渠32的底部32c還沿著溝渠32底角32b再向 上延伸至溝渠32側壁32a的下部,使得通道34的長度變大 。此外,由於源極或汲極摻雜區14a與14b未包覆溝渠32 的底部32c以及底角32b,因此,在元件進行操作時,在 所裸露出來的底角32b處具有高的電場,可以提載子的注 入效率。 100112123 表單編號A0101 第23頁/共75頁 1002020232-0 201242033 [0083] 在形成源極或汲極摻雜區14a與14b之後,則依照圖2D-1 、2D-2、2D_3、3D-1、3D-2、3D_3之方法完成氣化石夕 唯讀記憶體的製造,所形成之氮化矽唯讀記憶體如圖 4D -1、4D-2、4D-3、5D-1、5D-2、5D-3戶斤示。 [0084] 在以上的實施例中,請參照圖4C與5C,第二摻雜區22是 在溝渠32形成之後,穿隧介電層24形成之後,透過離子 植入製程來形成。然而,本發明並不以此為限。在一實 施中,第二掺雜區22也可以在穿隧介電層24形成之後, 電荷儲存介電層26形成之前,透過離子植入製程20來形 成。第二摻雜區22。在另一實施中,第二摻雜區22亦可 以在穿隧介電層24以及電荷儲存介電層26形成之後,頂 介電層28形成之前,透過離子植入製程20來形成。在又 一實施中,第二摻雜區22亦可以在穿隧介電層24、電荷 儲存介電層26以及頂介電層28均形成之後,閘極30材料 層形成之前,透過離子植入製程20來形成。 [0085] 圖6A至6F是依照本發明第十三實施例所繪示之一種快閃 記憶胞之製造方法的流程剖面圖。 [0086] 請參照圖6A與6B,依照上述對應圖3A至圖3C的製造方法 ,形成井區12、第一摻雜區14、半導體層40、硬罩幕層 16、溝渠32、間隙壁18,並利用間隙壁18以及硬罩幕層 16為罩幕,在溝渠32下方形成第二摻雜區22,將第一摻 雜區14分隔成分離的兩個源極或汲極摻雜區14a與14b。 [0087] 接著,請參照圖6C,同樣依照上述方法移除間隙壁18。 之後,在硬罩幕層16上以及溝渠32的側壁32a與底部32c 100112123 表單編號A0101 第24頁/共75頁 1002020232-0 201242033 [0088] ❹ [0089] [0090] 〇 表面上形成穿隧介電層24。然後,在基底10上形成浮置 閘材料層30a ’浮置閘材料層3〇a覆蓋於硬罩幕層16之上 ,並且填入於溝渠32之中。浮置閘材料層3〇a的材質例如 是推雜多晶石夕。 然後,請參照圖6D,移除半導體層4〇以上的浮置閘材料 層3〇a、穿隧介電層24以及硬罩幕層16,移除的方法可以 採用姓亥丨製程或是化學機械研磨製程(CMp),直到半導體 層40裸露出來。留在半導體層4〇以及基底1〇的溝渠“之 中的浮置閘材料層3〇a做為快閃記憶胞的浮置閘。浮置 閘30表面與半導體層40的表面大致齊平。 其後,請參照圖6E,在基底1〇上依序形成閘間介電層48 以及控制閘材料層5〇a。 閘間電層48可以是由高介電常數單材料層,單材料層 材質例如是HfG2i間介電層48也可以使用雙層堆叠結 構或是多層堆疊結構來增加閘極耗合電壓(gate c〇up_ lmg =tl。)以提高程式化及抹除效率。雙層堆養結構 例如是高介電常數材料與低介電常數材料職成之雜層 高介電常數材料/低介電常數材料表示),例 料、高介電二::。多層堆疊結構例如是低介電常數材 堆憂結構(以低介介電常數材料所組成之多層 數材料表示),例如=崎電常數材料/低介電常 /Al2〇3/氧切。控制二/虱:_氧切或是氧化石夕 晶梦。 抑50a的材質例如是摻雜多 100112123 表單編號A0I01 第25耳/共75 頁 1002020232-0 201242033 [0091] 之後,請參照圖6F,圖案化控制閘材料層50a以及閘間介 電層48。圖案化之控制閘材料層50a做為快閃記憶胞的控 制閘50。其後,在控制閘50以及閘間介電層48周圍形成 絕緣層52。絕緣層52的形成方法例如是在基底10上形成 絕緣材料層(未繪示),覆蓋半導體層40以及控制閘50 ,之後,再進行平坦化製程,移除控制閘50上的絕緣材 料層。平坦化製程例如是化學機械研磨製程(CMP)。 [0092] 圖6F所示之快閃記憶胞包括基底10、半導體層40、井區 12、具有第一導電型之第一摻雜區14、具有第二導電型 之第二摻雜區22、浮置閘極30、穿隧介電層24、閘間介 電層48以及控制閘50。半導體層40位於基底10上。井區 12與第一摻雜區14位於基底10中。半導體層40與基底10 的第一摻雜區14中具有溝渠32。第二摻雜區22位於溝渠 32底部32c,使第一摻雜區14被分隔,形成分離的兩個源 極或汲極摻雜區14a與14b,源極掺雜區14a與及極摻雜 區14b之間為通道區34。浮置閘30位於半導體層40與基 底10的溝渠32之中,其表面大致平坦,且與半導體層40 的表面大致齊平。穿隧介電層24覆蓋溝渠32的側壁32a與 底部32c表面上,分隔浮置閘極30與基底10。控制閘50 位於浮置閘30及其周圍的部分半導體層40上。閘間介電 層48位於控制閘50與浮置閘30之間且位於控制閘50與半 導體層40之間。 [0093] 圖7A至7F是依照本發明第十四實施例所繪示之一種快閃 記憶胞之製造方法的流程剖面圖。 [0094] 圖7A至7F的快閃記憶胞的製造方法與圖6A至6F相似,但 100112123 表單編號A0101 第26頁/共75頁 1002020232-0 201242033 ‘ ,請參照圖7D,在溝渠32中形成浮置閘材料層30a之後, 係以回蝕刻製程,移除部分的浮置閘材料層30a,使穿隧 介電層24裸露出來,之後將硬罩幕層16上方的穿隧介電 層24移除。然後,使用對於浮置閘材料層30a移除速率低 於硬罩幕層16之蝕刻溶液或蝕刻氣體,移除部分的浮置 閘材料層30a以及部分的硬罩幕層16,使留下來的浮置閘 材料層30a的表面突出於硬罩幕層16的表面,做為浮置閘 30。在一實施例中,硬罩幕層16的材質與穿隧介電層24 之材質相同,上述的回蝕刻製程則僅需經由一道蝕刻製 Q 程,使用對於浮置閘材料層30a移除速率低於硬罩幕層16 之蝕刻溶液或蝕刻氣體來進行即可。 [0095] 圖7E與7F,依照上述圖6E與6F之方法,在基底10上依序 形成閘間介電層48以及控制閘材料層50a,並將其圖案化 。圖案化之控制閘材料層5 0 a做為快閃記憶胞的控制閘5 0 。其後,在控制閘50以及閘間介電層48周圍形成絕緣層 52 ° [0096] 本實施例是藉由浮置閘的表面突出於硬罩幕層的表面來 增加浮置閘以及控制閘之間的耦合面積,以提升元件的 耦合率。 [0097] 圖8A至8F是依照本發明第十五實施例所繪示之一種快閃 記憶胞之製造方法的流程剖面圖。 [0098] 圖8A至8F的快閃記憶胞的製造方法與圖6A至6F相似,但 ,請參照圖8D,在溝渠32中形成浮置閘材料層30a之後, 以回蝕刻製程,移除部分的浮置閘材料層30a,使穿隧介 100112123 表單編號A0101 第27頁/共75頁 1002020232-0 201242033 電層24裸露出來,之後將穿隧介電層24移除。然後,使 用對於浮置閘材料層30a移除速率高於硬罩幕層16之蝕刻 溶液或蝕刻氣體,移除部分的浮置閘材料層30a,使留下 來的浮置閘材料層3 0 a的表面低於硬罩幕層1 6的表面。在 一實施例中,硬罩幕層16的材質與穿隧介電層24之材質 相同,上述的回#刻製程則僅需經由一道#刻製程,選 擇浮置閘材料層30a移除速率高於硬罩幕層16之蝕刻溶液 或蝕刻氣體來進行即可。 [0099] 之後,請參照圖8E與8F,依照上述圖6E之方法,在基底 10上形成閘間介電層48之前,先在基底10上形成另一層 浮置閘材料層30b,覆蓋硬罩幕層16且覆蓋留在溝渠32中 的浮置材料層30a。浮置閘材料層30b並不會將溝渠32填 滿,在溝渠32之中具有凹槽表面54。之後,依照上述圖 6E與6F之方法,在基底10上依序形成閘間介電層48以及 控制閘材料層50a,並將其圖案化。圖案化後的浮置閘材 料層30a與浮置閘材料層30b,做為浮置閘30。 [0100] 本實施例是藉由雙層浮置閘材料層30a與30b來製作具有 凹槽表面54的浮置閘30,藉以增加浮置閘30以及控制閘 50之間的搞合面積,以提升元件的搞合率。 [0101] 圖9A至9F是依照本發明第十六實施例所繪示之一種快閃 記憶胞之製造方法的流程剖面圖。圖10A至10F是依照本 發明第十七實施例所繪示之一種快閃記憶胞之製造方法 的流程剖面圖。圖11A至11F是依照本發明第十八實施例 所繪示之一種快閃記憶胞之製造方法的流程剖面圖。 100112123 表單編號A0101 第28頁/共75頁 1002020232-0 201242033 ''[0102] ❹ 圖9Α至9F的快閃記憶胞的製造方法與圖6Α至6F相似;圖 10Α至10F的快閃記憶胞的製造方法與圖7Α至7F相似;圖 11Α至11F的快閃記憶胞的製造方法與圖8Α至8F相似,但 ,請參照圖9Β、10Β、11Β,在硬罩幕層16與基底10中形 成溝渠32之後,並不在溝渠32的側壁32a形成間隙壁18( 圖6B、7B、8B)。第二摻雜區22是直接以硬罩幕層16(無 間隙壁18)做為罩幕,進行離子植入製程20,例如是垂直 式的離子植入製程,而形成在溝渠32下方的第一摻雜區 14中,並向下延伸至井區12中,側向延伸至溝渠32底角 32b,向上延伸至溝渠32的下側壁32a。第二摻雜區22自 第一摻雜區14延伸至井區12中,將第一摻雜區14分隔成 分離的兩個源極或汲極摻雜區14a與14b。第二掺雜區22 自溝渠32的底部32c沿著溝渠32底角32b再向上延伸至溝 渠32的下側壁32a,則可以使得所形成源極或汲極摻雜區 14a與14b未包覆溝渠32的底部32c以及底角32b,而從溝 渠32的上側壁32a延伸至基底10的表面。 [0103] ϋ [0104] 圖12A至12F是依照本發明第十八實施例所繪示之一種金 氧半導體場效電晶體的之製造方法的流程剖面圖。 依照上述對應圖3A至圖3C的製造方法,形成井區12、第 一掺雜區14、半導體層40、硬罩幕層16、溝渠32之後, 先形成間隙壁材料層44。然後,利用間隙壁材料層44以 及硬罩幕層16為罩幕,在溝渠32下方形成第二摻雜區22 ,將第一摻雜區14分隔成分離的兩個源極或汲極摻雜區 14a與14b。但是,在此實施例中,第二摻雜區22包括兩 個具有相同導電型但深度不同的第一區域22a與第二區域 100112123 表單編號A0101 第29頁/共75頁 1002020232-0 201242033 =b。其中接近溝渠32底部32c的區域為第—區域“a, 遠離溝渠32底部32c的區域為第二區域細,且第二區域 22b的面積大於第一區域22a的面積,使上述源極或没極 推雜區Uam4b的輪磨呈階梯狀。第二摻雜區22的第-區域22a與第二區域22b的形成方法可以透過離子植入製 程透過離子能4賴整來形成之。第二摻雜的第-品或a的離子植人製程2Qa的植人能量較低,第二區域 22b的離子植入製程隱的離子植入能量較高。在一實施 J中第摻雜區14為N型,第二摻雜區以是卩型。第二 ^雜區22的第—區域22a所植人的離子例如是抓 如是1Kev,劑量例如細1仏[0036] [0036] a second ion implantation process, wherein the energy of the second ion implantation process is higher than the energy of the first ion implantation process, so that the second ion implantation process forms a The area of the area away from the bottom of the trench is larger than the area of the area formed by the first ion implantation process close to the bottom of the trench. According to an embodiment of the invention, before the forming the second doping region and forming the dielectric layer, the spacer layer is further removed. According to an embodiment of the present invention, the method for forming the second doped region includes performing an ion implantation process using the trench as a mask to extend the second doped region from the bottom of the trench to the sidewall. According to an embodiment of the invention, the method of fabricating the semiconductor device further includes forming a semiconductor layer on the substrate before the trench is formed, and the semiconductor layer is in contact with the first doped region. According to an embodiment of the invention, the method of fabricating the semiconductor device further includes forming a hard mask layer on the semiconductor layer after forming the semiconductor layer and forming the trench. According to an embodiment of the invention, the method of fabricating the semiconductor device further includes removing the hard mask layer after forming the trench and before forming the dielectric layer. According to an embodiment of the invention, the method of fabricating the semiconductor device further includes removing the hard mask layer after forming the gate. According to an embodiment of the present invention, the method for manufacturing the above-mentioned semiconductor device 100112123, the form number Α0101, the seventh page, the total of 75 pages, the 2020, the 2020, the 2020, the 420 Metal layer. According to an embodiment of the invention, the method of fabricating the semiconductor device further includes forming a hard mask layer on the substrate before forming the trench. According to an embodiment of the invention, the method of fabricating the semiconductor device further includes removing the hard mask layer before forming the dielectric layer. According to an embodiment of the invention, the semiconductor component is a MOS transistor, and the dielectric layer is a thyristor layer. According to an embodiment of the invention, the semiconductor component is a non-volatile memory cell, and the dielectric layer is a tunneling dielectric layer. [0041] According to an embodiment of the invention, the gate is a floating gate, and the method further includes forming a control gate on the floating gate, and forming a gate between the floating gate and the control gate. Electrical layer. According to an embodiment of the invention, the method for fabricating the semiconductor device further includes forming a hard mask layer on the substrate before forming the trench, such that an upper surface of the gate in the trench is lower than The upper surface of the hard mask layer is exposed on the sidewall of the hard mask layer. A gate material layer is formed on the sidewall of the hard mask layer and the gate to form a floating gate having a grooved surface. A control gate is formed on the floating gate, and a dielectric layer between the gate is formed between the floating gate and the control gate. According to an embodiment of the invention, the floating gate, the inter-gate dielectric layer and the control gate extend over the source or drain doping region 100112123. Form No. A0101 Page 8 of 75 According to an embodiment of the invention, the method for fabricating the semiconductor device further includes forming a charge-dependent dielectric layer between the pass-through dielectric layer and the idle electrode. [0046] In accordance with embodiments of the invention, the charge dielectric layer extends further above the source or electrodeless doped regions. According to the invention, the method of fabricating the semiconductor device further includes forming a top dielectric layer between the charge storage dielectric layer and the gate. [0049] The half-element of the present invention can (4) avoid the generation of the filament and can reduce the resistance of the source and the drain doping region. In order to make the above features and advantages of the present invention more specific, the following embodiments are described in detail with reference to the accompanying drawings. [Embodiment] FIG. 1 is a view showing a prototype of a semiconductor element of the present invention. 100112123^ Referring to FIG. 1A, the semiconductor element prototype of the present invention includes a substrate 10 and has a first-doped region 14 of a first conductivity type, and a k = 22-W (a) hetero region u having a second conductivity type is located at a base; The cover has a ditch 32 in the #1 & The second doped region 22 is located at the bottom 32c of the trench 32. The first doped region 14 is separated to form a separate source source doped region l4am4b, and the source doped region is doped regions 14a and 14b. The "" is the channel region 34. The gate 30 is located in the trench 32 " the electrical layer 24 covers the sidewall 32a and the bottom 32c of the trench 32. The gate is separated from the substrate 1 and the substrate 1 〇. Form bat A0101 ί Page 5 of 1002002020232-0 201242033 [0054] [0054] In the present invention, the actual side-side gate is formed by the change of the position of the gate 3〇 in the vertical direction. The source doping region 14a and the electrodeless doping region 14b of the lifting effect. Since the source doping region-the portion of the gate doping region Ub under the gate 3〇 is relatively shallow, it may have a shallow junction The effect is as follows: since the source doped region 14a and the drain doped region (10) also extend upwardly around the sidewall of the gate 30, it has a raised source. The pole and the drain can reduce the resistance. The above semiconductor component can be a gold oxide semi-transistor non-volatile memory cell such as fast The memory cell or the nitrogen cut only reads the memory, etc. When the semiconductor component is a gold oxide semi-transistor, the dielectric layer 24 is a gate dielectric layer. When the semiconductor component is a non-volatile memory cell, the dielectric layer 24 is a tunneling dielectric. The gate 30 may be located only in the trench 32, or may extend upwardly and protrude from the surface of the substrate ί to extend over the substrate 1 。. When the above semiconductor component is a flash memory material, the above The gate 3〇 is floating idle. When the semiconductor component is a nitride-only read memory, the gate 30 is connected to the word line. The outline of each source or electrodeless doping region l4am4b may be The bottom portion 32c of the trench 32 extends along the side wall 32a near the bottom corner 32b to the surface of the substrate 1's. Alternatively, the source or drain doping regions 14& and 1413 may also be the bottom portion 32c of the uncovered trench 32 and The bottom corner 32b extends from the side wall 32a of the trench 32 to the surface of the substrate 10. The following embodiments are described, however, it is not intended to limit the invention. 100112123 Form No. A0101 Page 10 of 75 1002020232 -0 [0055] 201242033 ' . [0056] 2A to 2D-1 are flow cross-sectional views showing a method of manufacturing a tantalum nitride read-only memory according to a first embodiment of the present invention. [0057] Referring to FIG. 2A, a well region 12 is formed in the substrate 10 and A first doped region 14 is formed in the well region 12. The substrate 10 is, for example, a semiconductor substrate 10 as a whole, a semiconductor compound substrate 10 as a whole, or a semiconductor substrate I0 (semiconduc 1; or over insulator (SOI)). The semiconductor is, for example, an atom of Group IV A such as Shi Xi or Lu. In the case of Shi Xi, it can be a Shi Xi wafer or an epitaxial wafer. The semiconductor compound is, for example, a semiconductor compound formed of atoms of Group IVA, such as ruthenium carbide or ruthenium telluride. The substrate 10 may have a doping, and the doping of the substrate 10 may be a second conductivity type. The second conductivity type is, for example, a P type or an N type. The P-type doping may be a Group IIIA ion, such as a boron ion. The N-type doping may be a VA group ion such as arsenic or phosphorus. [0058] The well region 12 is implemented by a single ion implantation process or a multiple ion implantation process, and then subjected to a tempering process. The doping used to form the well region 12 is different from the conductivity type of the flash memory cell to be formed. When the conductivity type of the channel of the flash memory cell is the first conductivity type, the well region 12 is doped. The impurity is a second conductivity type ion. That is, the flash memory cell is a P-type channel, and the well region 12 is an N-type; the flash memory cell is an N-type channel, and the well region 12 is a P-type. In one embodiment, the well region 12 is P-type, the implanted ions are boron, and the energy of the ion implantation process is, for example, 50 to 500 K e V, and the dose is, for example, 1×10 12 to 3×l013/cm 2 . In one embodiment, the first doped region 14 is formed by the ion implantation process 36, after which the tempering process is performed. The doping used to form the first doping region 14 is, for example, a first conductivity type ion. First conductivity type 100112123 Form number A0101 Page 11 of 75 1002020232-0 201242033 Unlike the second conductivity type, for example, type or P type. The first doped region 14 can be formed by an ion implantation process. The number of times the ion implantation process 36 is performed and the concentration of the source or electrodeless doping regions 14a and 14b (Fig. 2C) and the junction depth «' which are to be formed may be single or multiple. In the present embodiment, the semiconductor layer 4G described in the following embodiments is not additionally formed on the substrate 1G to reduce the contact resistance. Therefore, multiple ion implantation processes can be used to form the layers having different depths and concentrations. - Doped region 14 In a practical example, the first doped region 14 is N-type and is formed by a single ion implantation process 36, such as arsenic implanted, and the energy of the ion implantation process is, for example, 15 to 4 〇 KeV, the dose is for example 1) <1〇15 to 4>< i〇15/cm2. In another embodiment, the first doped region 14 is of the ~-type and is formed by two ion implantation processes 36, both of which are, for example, arsenic. The energy of the first ion implantation process is, for example, 5i15KeV, and the dose is, for example, lxl〇15 to 4xl〇15/cm2. The energy of the second ion implantation process is, for example, 15 to 50 KeV, and the dose is, for example, 3 χΐ〇 14 to 2 χ lOis/cin ' such that the formed source or electrodeless doping regions 143 and 14|:) are close to the surface of the substrate 10 The doping concentration is higher than that of the trench 32, thereby simultaneously reducing the contact resistance and the effect of the shallow junction. [0061] Thereafter, a hard mask layer 16 is formed on the substrate 10 with reference to FIG. 2B'. The hard mask layer 16 can be a single material layer, a dual material layer, or a plurality of layers of material. The material of the hard mask layer 16 is, for example, bismuth fossil, nitriding; E eve, oxynitride or a combination thereof. The formation method of the hard mask layer 16 is, for example, physical vapor deposition (PVD) or chemical vapor deposition (CVD). The thickness of the hard mask layer 16 is, for example, 300 angstroms to 1 angstrom. A photoresist layer 38 having an opening 42 is then formed on the hard mask layer 16. Light 100112123 Form Number A0101 Page 12 of 75 1002020232-0 201242033 The resist layer 38 can be either positive or negative. The opening 42 of the photoresist layer 38 exposes the underlying hard mask layer 16. The width w1 of the opening 42 is slightly larger than the width w2 of the gate 30 (Fig. 2D-1) which is to be formed. In an embodiment, the width w1 of the opening 42 is, for example, 550 angstroms to 1,500 angstroms. [0062] Thereafter, referring to FIG. 2C, the photoresist layer 38 is used as a mask to remove the hard mask layer 16 exposed by the opening 42 and then remove a portion of the substrate 10 under the hard mask layer 16 to In the hard mask layer 16 and the first doping region 14 of the substrate 1 升, the trench 32 is formed, and then the photoresist layer 38 is removed. The method of removing the hard mask layer 16 and a portion of the substrate 1 下方 below it may be an etching process such as a dry etching process. The side wall 32a of the formed trench 32 may be a vertical surface, an inclined surface or a curved surface. The bottom corner 32b of the trench 32 may be a vertical angle, but is not limited to a vertical angle 'or a round corner' or a polygon (p〇iyg0nai c〇rner). The depth hi of the trench 32 located in the substrate 1 is, for example, 4 angstroms to 700 angstroms. [0063] Thereafter, the spacers 18 are formed in the side walls 32a of the trenches 32. The spacer 18 is formed by, for example, forming a layer of spacer material on the surface of the hard mask layer 16 and the trench 32, and then passing through an anisotropic etching process to remove a portion of the spacer material layer. The spacer 18 may be a single material layer, a double material layer or a plurality of layers of material. The material of the spacers 18 is, for example, ruthenium oxide, tantalum nitride, ruthenium oxynitride or a combination thereof. Then, at the bottom 32c of the trench 32, a second doped region is formed in the exposed substrate 1 () of the spacer 18, and the second doped region 22 extends downward from the first doped region 14 to the well region. The first doped region 14 is separated into two separate source or drain doped regions 14a and 14b. The wheel temple of the formed source or electrodeless doping regions Ua and Ub extends from the bottom portion 32c of the trench 32 to the bottom corner 32b, and extends along the sidewall 仏 to 100112123. Form No. A0101 Page 13 of 75 2020 2020232-0 201242033 The surface of the substrate 10. Between the source doped region 14a and the drain doped region i4b is a channel region 34. The width of the channel region 34 formed is related to the width of the spacer 18. When the width w3 of the spacer 18 is smaller/larger, the width W4 of the channel region 34 formed is larger/smaller. In one embodiment, the second doped region 22 can be formed by a hard mask layer 16 and a spacer 18 as a mask through the ion implantation process 20. The doping used to form the second doping region 22 is, for example, a second conductivity type ion ◊ second conductivity type, for example, a p-type or an N-type. In one embodiment, the first doped region 14 is N-type and the second doped region is 22!p-type. The ions implanted in the second doping region 22 are, for example, π, and the energy of the ion implantation process is, for example, 1 to 15 KeV, and the dose is, for example, 5 χ 1 〇ΐ 3 to 9 χ 1014 / cm 2 . [0065] Thereafter, please refer to FIG. 2D to remove the spacers 18. The method of removing the spacers may be an etching process such as a wet etching process or a dry process. Next, the hard mask layer 16 is removed. The method of removing the hard mask can be done by etching, for example, wet #刻 (4) is a dry etching process. Thereafter, tunneling dielectric layers 24, 28 are formed on the surface of the substrate and trench 32. The tunneling dielectric layer 24 may be formed of a charge storage dielectric layer 26 and a top dielectric layer. The single material layer is, for example, a low dielectric constant material or a high dielectric constant material. A low dielectric constant material refers to a dielectric material having a dielectric constant of less than 4, such as dioxo or gas oxidized oxide (Sl〇xNy), where χ and y are any possible values. The dielectric constant material refers to a dielectric material having a dielectric constant higher than 4, such as ΜΑΙΟHf〇2, Al2〇3 or . The wearable dielectric layer 24 can also be based on the energy gap engineering theory (band_gap call-call (10)) 100112123 Form number A0101 Page 4 / Total 75 pages 1002020232-0 201242033 〇α) Select readable high-note structure or multi-layer stack structure. Faster double-layer stacking material and high dielectric constant material: 4 structure is, for example, low dielectric constant constant material / high dielectric constant; double layer stacked structure (with low dielectric HfSi 〇, oxidation Shi Xi / _ or yttrium oxide - for example, oxidized stone / / structure, for example, low dielectric constant 矽. Multi-layer stacked Ο constant constant village material composed of multi-layer stack junction; (constant _ electric material and low dielectric Electro-constant material / low dielectric constant material sheet (dry 乂 ^ electric constant material / high fossil oxime / oxygen cut or oxidized stone eve / A1 〇 / oxygen, for example, oxygen cut / nitrogen layer 26 such as nitrite Or a 介ί〇2 = fossil eve ° charge-discharge dielectric layer. A single material layer such as β2 low-eight dielectric layer 28 is made of a single material: a number of materials. A low dielectric constant material is a high dielectric material. For example, it is a dioxotomy or a oxynitride. The dielectric material refers to a dielectric material that is the same as the dielectric constant material. The electrical constant material is a dielectric material of s• constant 4, such as coffee 0, Αί 〇ο 2 = Second: the electric layer 28 can also be based on the energy gap _ structure or multi-layer stack:: structure ==== discussion::::: constant material composed of double-layer structure: high: several electricity. Most materials indicate that 'for example, nitrite/oxidized stone: two structures such as a low dielectric constant material, a high dielectric constant material, and a multi-layer stacked structure composed of several materials (low dielectric β) Long electric constant material / low dielectric constant material), such as emulsified eve / dream / oxidized dream or oxidized nightmare oxidized stone eve. f material such as doped polysilicon, metal or doped poly 100112123 form number A0101 1002020232-0 Page 15 of 75 [0066] 201242033 Stacked structure formed of tantalum and metal. The gate 3 is formed by, for example, forming a material layer of gate 30 on the substrate 10 to cover the top dielectric layer. 28, sub-filling the trench 32. Then, the material layer of the idler 30 outside the trench 32 and above the top dielectric layer 28 is removed, and the removal method may be an etching process or a chemical mechanical polishing process (CMP). [0068] In the above embodiment of the present invention, the tempering process of the source doping region 14a and the drain doping region 14b (the first doping region 14) is in the tunneling dielectric layer 24 and the gate 30 is formed before formation, thus ensuring tunneling dielectric layer (especially the tunneling dielectric layer of the dielectric constant material) and the stability of the material such as the gate 3 (especially the metal gate) are not affected by the source doping region 14a and the drain doping region 14b (the The effect of the tempering process of a doped region η). The tantalum nitride read-only memory shown in FIG. 2D-1 includes a substrate 1 , a well region 12 , a first doped region 14 having a first conductivity type, and a second doped region 22 of the second conductivity type, a gate 30, a tunneling dielectric layer 24, a charge storage dielectric layer 26, and a top dielectric layer 28. The well region 12 and the first doped region 丨4 are located on the substrate 1 In the crucible, the first doped region 14 has a trench 32 therein. The second doped region 22 is located at the bottom 32c of the trench 32 such that the first doped region 14 is separated to form separate source or drain doped regions 14a and 14b. Between the source doped region 14a and the electrodeless doped region 14b is a channel region 34. The gate 3 is buried in the trench 32 of the substrate 1 and has a thickness t1 which is substantially equivalent to the depth hl of the trench 32 in the substrate. The thickness t1 of the gate 30 is, for example, about 400 to 7 angstroms. The side wall 32a of the gate 3〇 may be a vertical surface, an inclined surface or a curved surface. The bottom corner 32b of the gate 3〇 may be a vertical angle, but is not limited to a vertical angle, and may be a rounded corner or a multi-angle (p〇iyg0nai corner). The tunneling dielectric layer 24, the charge storage dielectric layer 26, and the top dielectric layer 28 cover 100112123. Form No. A0101 Page 16 of 75 1002020232-0 201242033 The sidewall 32a and the bottom 32c of the trench 32 are separated from each other. 3〇 and the substrate ίο' and extend over and in direct contact with the source doping region 14a and the drain doping region 14b. [0069] The present invention allows the source doping region 14a and the gate doping region i4b not only to be located below the gate 30 but also to embed the gate 30 in the trench 32 of the substrate 1' The cover is wrapped around the side wall 32a of the gate 3〇. Since the portion of the source doping region 14a and the drain doping region 141} under the gate electrode 3 is relatively shallow 'hence', it is possible to have a shallow junction effect for the purpose of avoiding the short channel effect. On the other hand, since the source doping region 14a and the gate doping region 14b also extend around the sidewall 32a of the gate 3A, it has the advantage that the raised source and the drain can lower the resistance. It is worth mentioning that 'the embodiment of the invention embeds the gate 3〇 in the substrate 1' and the source doped region 14& and the drain doped region i4b are also fabricated in the substrate 10, through the gate The change of the position of the pole 3 in the vertical direction is performed to produce the source doped region 14a and the drain doped region 14b having the lift effect, and the gate 30 is not directly formed on the surface of the substrate 10, and is additionally formed. The epitaxial layer is formed to raise the source and the drain. Therefore, the source doping region 14a and the drain doping region 14b of the present invention having the lifting effect are completely doped by the substrate 10 and are located under the gate 30. The portion and the portion wrapped around the gate 3〇 are of the same material and there is no interface between the two portions. [0070] FIG. 2D is a cross-sectional view of a nitride-free read memory of the second embodiment. . 100112123 Referring to FIG. 2D and FIG. 2, after the fabrication of the tantalum nitride read-only memory corresponding to the manufacturing method of FIG. 2A to FIG. 2 is completed, the spacer form number A0101 is also removed. Page 17 of 75 pages 1002020232 -0 [0071] 201242033 18. Next, however, the hard mask layer 16 is not removed, but the tunneling dielectric layer 24, the charge storage dielectric layer 26, and the top dielectric are formed directly on the hard mask layer 16. Layer 28. Thereafter, in accordance with the above method, a gate 30 connecting the word lines is formed in the remaining space of the trench 32. [0072] The structure of the tantalum nitride read-only memory shown in FIG. 2D-2 and FIG. 2D-1 The nitrided germanium read only memory is similar, but the tunnel dielectric layer 24, the charge storage dielectric layer 26, and the top dielectric layer 28 cover the sidewalls 32a and 32c of the trench 32, separating the gate 30 from the substrate. 10, and extending to the hard mask layer 16 above the source doping region 14a and the drain doping region 14b. The gate 30 is located in the trench 32 of the substrate 10 and the hard mask layer 16, if the hard mask The thickness of the tunneling dielectric layer 24, the charge storage dielectric layer 26, and the top dielectric layer 28 on the layer 16 is the same as the bottom 32c of the trench 32. The thickness of the tunnel dielectric layer 24, the charge storage dielectric layer 26, and the top dielectric layer 28 are comparable, and the thickness of the gate 30 is substantially equivalent to the depth hl+h2 of the trench 32 in the substrate 10 and the hard mask layer 16. 2D-1 and 2D-2, the depth 32 of the trench 32 in the substrate 10 is the same, since the trench 32 of the tantalum nitride read-only memory shown in FIG. 2D-2 also extends upward to the hard mask layer 16, The depth is hl+h2, which is larger than the depth of the trench 32 in FIG. 2D-1. Therefore, the thickness t2 of the gate 30 of the tantalum nitride read-only memory shown by 2D-2 is greater than that of FIG. 2D-1. The thickness of the gate 30 of the silicon nitride read-only memory is t1. In other words, if the thickness t2 of the gate 30 in Fig. 2D-2 is equivalent to the thickness t1 of the gate 30 in Fig. 2D-1, it is located in Fig. 2D-2. The depth of the trench 32 of the substrate 10 can be made shallower than the depth of the trench 32 of the substrate 10 in Fig. 2D-1. [0073] FIG. 2D-3 illustrates a tantalum nitride read-only memory of the third embodiment. Sectional view: 100112123 Form No. A0101 Page 18 of 75 1002020232-0 201242033 '[0074] Please refer to FIG. 2D-3, in accordance with the above-mentioned manufacturing method corresponding to FIG. 2A to FIG. 2C. After the morphological read-only memory is fabricated, the spacers 18 are also removed, and the hard mask layer 16 is not removed, but is formed directly on the hard mask layer 16 and on the surfaces of the sidewalls 32a and 32c of the trench 32. Tunneling dielectric layer '24, charge storage dielectric layer 26 and top dielectric layer 28. Thereafter, a tunneling dielectric layer 24 is also formed on the hard mask layer 16 and on the surfaces of the sidewalls 32a and 32c of the trench 32, The charge storage dielectric layer 26 and the top dielectric layer 28, and the gates 30 connecting the word lines are formed in the remaining space of the trenches 32. However, the tunneling dielectric Q layer 24, the charge storage dielectric layer 26, and the top dielectric layer 28 on the hard mask layer 16 are removed prior to forming the gate 30, such as a hard mask. The curtain layer 16 is an etch stop layer, which is achieved by an etching process or a chemical mechanical polishing process. [0075] The structure of the tantalum nitride read-only memory shown in FIG. 2D-3 is similar to that of the tantalum nitride read-only memory shown in FIG. 2D-2, but the tunnel dielectric layer 24 and the charge storage dielectric layer 26 are formed. And the top dielectric layer 28 covers only the sidewalls 32a and 32b of the trench 32, separating the gate 30 from the substrate 10, and does not extend to the source doped region 14& and the hard mask over the drain doped region 14b. On the layer 16, therefore, the surface of the hard mask layer 16 of this structure will be exposed. The thickness t3 of the gate 30 is approximately the thickness hl+h2 of the trench 32 in the substrate 10 and the hard mask layer 16 minus the thickness of the tunneling dielectric layer 24, the charge storage dielectric layer 26, and the top dielectric layer 28. In other words, if the thickness t3 of the gate 30 in FIG. 2D-3 is equivalent to the thickness t1 of the gate 30 in FIG. 2D-1, the depth hi of the trench 32 in the substrate 10 in FIG. 2D-3 can be made slightly shallower than that in FIG. 2D. The depth of the trench 32 in the substrate 10 is -hi. 3A to 3D-1 are diagrams showing a nitridation according to a fourth embodiment of the present invention. 100112123 Form No. A0101 Page 19/75. 1002020232-0 201242033: Flow profile of a manufacturing method of read-only memory The fifth embodiment of the present invention - the nitrogen cut only read memory ~ 2 draws the 3D '3 green shows the sixth embodiment of the present invention. i side view. Figure Sectional view.矽 read-only memory [0077] = according to Figures 3A to 3D], according to the above figure (4) 蜕 蜕 矽 read-only memory, but the internal method is formed in the well zone 12 to form the first pine _ 〇 形成After the first doped region 14 is formed in the well region 12 and U, the semiconductor layer 40 is formed on the substrate 10 before the immersion. The mask layer 16 is patterned during the continuation of the trench 32, and the semiconductor layer 40 is removed as the source layer 4 is doped, as doping in the patterned semiconductor (10). Semiconductor (four);; ^ contact area. The region Ha and the immersed doped region (4) have the same conductivity. The doping concentration of the ruins of the ruins is greater than or close to the source. The semiconductor layer can be called (10) (10); the doping region reduces the contact resistance. The semiconductor germanium layer is doped with a polycrystalline germanium layer, doped with a doped early or germanium layer, and doped with a (tetra) germanium layer. +¥Doping in the bulk layer 4〇 can be ln-situdoped during deposition, or after the semiconductor deposition is performed by the ion implantation process, the source doping region 14a and The doping in the electrodeless doping region 14b is an N-type semiconductor layer core, which can be doped with N-type ions, and the N-type ions can be mixed with n-type ions. An ionic phosphatite layer, or a sputum of a N-type ion or a combination thereof. In another embodiment, the doping in the source doping region 14a and the drain doping region 14b is p-type, and the semiconductor layer 4〇 may be a doped single crystal germanium layer with field doped P-type ions.矽 梨 梨 梨 锗 锗 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 100112123 The polycrystalline germanium or a combination thereof is related to the depth hl of the thick mMAn collection channel 32 of the substrate temperature property layer 40. Also #θ The existence of the body layer 4〇 can be self-contained and the semi-conducting Μ is reduced. In - true ^. The depth hl of the second ^ _ 32 is, for example, about paste to 5 _,; the depth of _ 嶋 32 is about 3 〇〇 to 5 〇〇, and the thickness of θ 40 is, for example, Γ. . . ^ but not limited thereto. The camper adjusts the source and the doped region of the trench formed in the substrate 10 according to the depth at which the material can be transferred, and the semiconductor layer 4G can be regarded as the rising doping region 14a and The source doped region (10) located below the trench 32 can be made shallower junctions. , moxibustion, in accordance with the above-mentioned nitrogen-cut only read memory (four). The processing method of Bu 1 is completed by V. The read-only memory includes the substrate 1 (), the well region 12 has the first conductivity type - the doping region 14 M2' is doped with F99 Ba, has the first The conductivity type: '——the gate 30, the dielectric layer 24, the charge storage M and the top dielectric layer 28, and the semiconductor layer 4G. The first _# miscellaneous ^ 14 is located in the base illusion. In the middle of the semiconductor layer 4 and the first impurity-changing region, there is a trench 32. The trench 32 has a depth h3 at the semiconductor layer 4, and the trench 3/the depth of the first doped region 14 is separated from the second doped region 22 at the trench 32 such as the portion 32c', and the first doped region 14 is separated to form a separate trench. Two source or electrodeless doped regions 14a and i4b. Between the source doped region 14a and the drain doped region Ub is a channel region 34. The source doped region 14a and the drain doped region 14b extend from the bottom portion 32c of the trench 32 along the bottom corner 32b to the sidewall 32a of the trench 32 to be wrapped around the sidewall of the gate 3. The semiconductor layer 4 is located on the source doping region 14a and the non-polar doping region 14b, and is wrapped around the sidewall of the gate 3A. Form No. A0101 Page 21 of 75 1002020232-0 201242033. In other words, the gate 30 is located in the trench 32 of the semiconductor layer 40 and the substrate ι. The thickness of the gate 30 is substantially equivalent to the depth hl+h3 of the substrate 1〇 and the trench 32 in the semiconductor layer 4〇 (if the thickness of the tunneling dielectric layer 24, the charge storage dielectric layer 26, and the top dielectric layer 28 is negligible) The tunneling dielectric layer 24, the charge storage dielectric layer 26, and the top dielectric layer 28 cover the sidewalls 32a and 32c of the trench 32, separating the gate 30 from the substrate 1 and extending to the source doping The region 143 is on and in direct contact with the semiconductor layer 40 above the drain doped region 14b. If the depth of the trench 32 in the substrate 1A of FIG. 3D-1 and FIG. 2D-1 is the same as the depth hi, the trench 32 of the nitride-only read memory shown in FIG. 3D-1 also extends upward to the semiconductor layer 4? The depth is hl+h3. Therefore, the thickness of the gate 3〇 of the tantalum nitride read-only memory shown by 3D-1 is greater than the thickness of the gate 30 of the tantalum nitride read-only memory shown in FIG. 2D-1. [_] Similarly, FIGS. 3D-2 and 3D-3 are similar to FIG. 2D-2 and FIG. 2D-3 respectively, the difference is also that the well region 12 is formed in the substrate 10 and the first blend is formed in the well region 12. After the impurity region 14 is formed, a semiconductor layer 40 is formed on the substrate 10 as a source-drain contact region before the hard mask layer 16 is formed. [ΟΟδΙ] Figs. 4A to 4D-1 are cross-sectional views showing the flow of a method for manufacturing a nitride-reading memory according to a seventh embodiment of the present invention. 4D-2 is a cross-sectional view showing a tantalum nitride read only memory according to an eighth embodiment of the present invention. 4D-3 is a cross-sectional view showing a tantalum nitride read only memory according to a ninth embodiment of the present invention. 5A to 5D-1 are cross-sectional views showing the flow of a method for fabricating a tantalum nitride read-only memory according to a tenth embodiment of the present invention. Fig. 5D-2 is a cross-sectional view showing a tantalum nitride read only memory according to an eleventh embodiment of the present invention. Figure 5D-3 is a cross-sectional view showing a tantalum nitride read only memory according to a twelfth embodiment of the present invention. 100112123 Form No. 101 0101 Page 22 / Total 75 Pages 10020202324 201242033 [0082] FIGS. 4A to 4D-1 and FIGS. 4D-2, 4D-u, and a manufacturing method of the mouse-only read-only memory of FIG. The manufacturing method of the fossilized fossil memory of the heart and the m3 is similar, and the manufacturing method of the nitrided read-only memory of FIG. 5D_2 and 5D-3 respectively and the above-mentioned FIG. 3A to 3D-1 and FIG. 3D- 2. The manufacturing method of the nitrided germanium read-only memory of 3D-3 is similar. However, referring to Figures 4C, 5C, and 6C, after the trench 32 is formed in the hard mask layer 16 and the substrate 10, the spacers 18 are not formed in the side walls 32a of the trench 32 (Figs. 2C and 3C). The second doping region 22 is directly coated with a hard mask layer 16 (with no spacers 18) as an mask for performing an ion implantation process, such as a vertical ion implantation process, but under the trench 32. The first doped region 14 extends downwardly into the well region 12 and extends laterally to the bottom corner 32b of the trench 32 and extends upwardly to the lower sidewall 32a of the trench 32. The second doped region 22 extends from the first doped region 14 into the well region 12, separating the first doped region 14 into separate source or electrodeless doped regions 14a and 14b. The second doped region 22 extends from the bottom portion 32c of the trench 32 along the bottom corner 32b of the trench 32 to the lower portion of the sidewall 32a of the trench 32, so that the formed source or drain doped regions 14a and 14b are not covered with trenches. The bottom portion 32c of the 32 and the bottom corner 32b'' extend from the upper portion of the side wall 32a of the trench 32 to the surface of the substrate 10. In other words, the channel region 34 between the source doped region 14a and the drain doped region 14b extends not only at the bottom 32c of the trench 32 but also along the bottom corner 32b of the trench 32 to the lower portion of the sidewall 32a of the trench 32, such that the channel The length of 34 becomes larger. In addition, since the source or drain doping regions 14a and 14b do not cover the bottom portion 32c and the bottom corner 32b of the trench 32, a high electric field is present at the exposed bottom corner 32b when the device is operated. The injection efficiency of the carrier. 100112123 Form No. A0101 Page 23 of 75 1002020232-0 201242033 [0083] After forming the source or drain doped regions 14a and 14b, according to Figures 2D-1, 2D-2, 2D_3, 3D-1, The method of 3D-2 and 3D_3 completes the manufacture of the gasification stone read-only memory, and the formed silicon nitride read-only memory is as shown in Figs. 4D-1, 4D-2, 4D-3, 5D-1, 5D-2, 5D-3 households show. In the above embodiment, referring to FIGS. 4C and 5C, the second doping region 22 is formed after the trench 32 is formed, after the tunneling dielectric layer 24 is formed, and is formed by an ion implantation process. However, the invention is not limited thereto. In one implementation, the second doped region 22 may also be formed by the ion implantation process 20 after the formation of the tunneling dielectric layer 24 prior to formation of the charge storage dielectric layer 26. Second doped region 22. In another implementation, the second doped region 22 can also be formed through the ion implantation process 20 after the formation of the tunnel dielectric layer 24 and the charge storage dielectric layer 26 prior to formation of the top dielectric layer 28. In still another implementation, the second doping region 22 may also be formed after the tunneling dielectric layer 24, the charge storage dielectric layer 26, and the top dielectric layer 28 are formed, before the gate layer 30 is formed. Process 20 is formed. 6A to 6F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to a thirteenth embodiment of the present invention. 6A and 6B, in accordance with the above-described manufacturing method corresponding to FIGS. 3A to 3C, the well region 12, the first doping region 14, the semiconductor layer 40, the hard mask layer 16, the trench 32, and the spacer 18 are formed. And using the spacer 18 and the hard mask layer 16 as a mask, a second doping region 22 is formed under the trench 32, and the first doping region 14 is divided into two separated source or drain doping regions 14a. With 14b. [0087] Next, referring to FIG. 6C, the spacers 18 are also removed in accordance with the above method. Thereafter, on the hard mask layer 16 and the side walls 32a and the bottom portion 32c of the trench 32, and the bottom portion 32c 100112123, the form number A0101, page 24/75, 1002020232-0 201242033 [0088] [0090] Electrical layer 24. Then, a floating gate material layer 30a' is formed on the substrate 10, and a floating gate material layer 3a is overlaid on the hard mask layer 16, and is filled in the trench 32. The material of the floating gate material layer 3〇a is, for example, a doped polycrystalline stone. Then, referring to FIG. 6D, the floating gate material layer 3a, the tunneling dielectric layer 24, and the hard mask layer 16 above the semiconductor layer 4〇 are removed, and the method of removing may be performed by using a surname process or a chemical process. The mechanical polishing process (CMp) is performed until the semiconductor layer 40 is exposed. The floating gate material layer 3〇a remaining in the semiconductor layer 4 and the trenches of the substrate 1 is used as a floating gate of the flash memory cell. The surface of the floating gate 30 is substantially flush with the surface of the semiconductor layer 40. Thereafter, referring to FIG. 6E, the inter-gate dielectric layer 48 and the control gate material layer 5A are sequentially formed on the substrate 1. The inter-gate electrical layer 48 may be a high dielectric constant single material layer, a single material layer. The material such as the HfG2i dielectric layer 48 may also use a two-layer stacked structure or a multi-layer stacked structure to increase the gate breakdown voltage (gate c〇up_lmg = tl.) to improve stylization and erase efficiency. The growth structure is, for example, a high dielectric constant material and a low dielectric constant material, and a high dielectric constant material/low dielectric constant material is represented by a high dielectric constant material. Dielectric constant material stack structure (represented by multi-layer material composed of low dielectric constant material), for example = Saki constant material / low dielectric constant / Al2 〇 3 / oxygen cut. Control 2 / 虱: _ Oxygen cut or oxidized stone Xijing dream. The material of 50a is, for example, doped more than 100112123 Form No. A0I01 25th/total 75 pages 1002020232-0 201242033 [0091] Thereafter, referring to FIG. 6F, the gate material layer 50a and the inter-gate dielectric layer 48 are patterned. The patterned gate material layer 50a is used as a flash memory cell. The control gate 50. Thereafter, an insulating layer 52 is formed around the control gate 50 and the inter-gate dielectric layer 48. The insulating layer 52 is formed by, for example, forming an insulating material layer (not shown) on the substrate 10 to cover the semiconductor layer. 40 and the control gate 50, after which the planarization process is performed to remove the insulating material layer on the control gate 50. The planarization process is, for example, a chemical mechanical polishing process (CMP). [0092] The flash memory cell shown in FIG. 6F A substrate 10, a semiconductor layer 40, a well region 12, a first doped region 14 having a first conductivity type, a second doped region 22 having a second conductivity type, a floating gate 30, and a tunneling dielectric layer 24 are included. The inter-gate dielectric layer 48 and the control gate 50. The semiconductor layer 40 is located on the substrate 10. The well region 12 and the first doping region 14 are located in the substrate 10. The semiconductor layer 40 and the first doping region 14 of the substrate 10 have Ditch 32. The second doping region 22 is located at the bottom 32c of the trench 32 to make the first doping 14 is separated to form separate source or drain doped regions 14a and 14b, and between the source doped region 14a and the doped region 14b is a channel region 34. The floating gate 30 is located on the semiconductor layer 40 and The trench 32 of the substrate 10 has a substantially flat surface and is substantially flush with the surface of the semiconductor layer 40. The tunneling dielectric layer 24 covers the sidewalls 32a and 32c of the trench 32, separating the floating gate 30 from the substrate. 10. The control gate 50 is located on the floating gate 30 and a portion of the semiconductor layer 40 therearound. The inter-gate dielectric layer 48 is located between the control gate 50 and the floating gate 30 and between the control gate 50 and the semiconductor layer 40. 7A to 7F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to a fourteenth embodiment of the present invention. 7A to 7F are similar to FIGS. 6A to 6F, but 100112123 Form No. A0101 Page 26 of 75 pages 1002020232-0 201242033 ', please refer to FIG. 7D, formed in the trench 32 After the floating gate material layer 30a is followed by an etch back process, a portion of the floating gate material layer 30a is removed to expose the tunnel dielectric layer 24, and then the tunnel dielectric layer 24 is over the hard mask layer 16. Remove. Then, using a etching solution or etching gas having a lower removal rate than the hard mask layer 16 for the floating gate material layer 30a, a portion of the floating gate material layer 30a and a portion of the hard mask layer 16 are removed, leaving the remaining The surface of the floating gate material layer 30a protrudes from the surface of the hard mask layer 16 as a floating gate 30. In one embodiment, the material of the hard mask layer 16 is the same as that of the tunneling dielectric layer 24. The etchback process described above requires only one etching process to use the removal rate of the floating gate material layer 30a. It may be carried out below the etching solution or etching gas of the hard mask layer 16. 7E and 7F, in accordance with the above-described methods of FIGS. 6E and 6F, the inter-gate dielectric layer 48 and the control gate material layer 50a are sequentially formed on the substrate 10 and patterned. The patterned control gate material layer 5 0 a acts as a control gate for the flash memory cell 5 0 . Thereafter, an insulating layer 52 is formed around the control gate 50 and the inter-gate dielectric layer 48. [0096] In this embodiment, the floating gate and the control gate are added by the surface of the floating gate protruding from the surface of the hard mask layer. The coupling area between them to increase the coupling ratio of the components. 8A to 8F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to a fifteenth embodiment of the present invention. The manufacturing method of the flash memory cell of FIGS. 8A to 8F is similar to that of FIGS. 6A to 6F. However, referring to FIG. 8D, after the floating gate material layer 30a is formed in the trench 32, the etchback process is performed to remove the portion. The floating gate material layer 30a exposes the via layer 100112123 Form No. A0101 page 27/75 page 1002020232-0 201242033, and then removes the tunneling dielectric layer 24. Then, using the etching solution or etching gas for the floating gate material layer 30a to be removed at a higher rate than the hard mask layer 16, the portion of the floating gate material layer 30a is removed, leaving the remaining floating gate material layer 30 a The surface is lower than the surface of the hard mask layer 16. In one embodiment, the material of the hard mask layer 16 is the same as that of the tunneling dielectric layer 24. The above-mentioned etching process only needs to pass through a #etch process, and the floating gate material layer 30a is selected to have a high removal rate. The etching solution or etching gas of the hard mask layer 16 may be performed. 8E and 8F, another layer of floating gate material layer 30b is formed on the substrate 10 to cover the hard mask before the inter-gate dielectric layer 48 is formed on the substrate 10 according to the method of FIG. 6E. The curtain layer 16 covers the layer of floating material 30a remaining in the trench 32. The floating gate material layer 30b does not fill the trench 32 and has a groove surface 54 in the trench 32. Thereafter, the inter-gate dielectric layer 48 and the gate material layer 50a are sequentially formed on the substrate 10 in accordance with the above-described methods of Figs. 6E and 6F, and patterned. The patterned floating gate material layer 30a and the floating gate material layer 30b are used as the floating gates 30. [0100] In this embodiment, the floating gate 30 having the groove surface 54 is formed by the double-layer floating gate material layers 30a and 30b, thereby increasing the area of the floating gate 30 and the control gate 50. Improve the engagement rate of components. 9A to 9F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to a sixteenth embodiment of the present invention. 10A through 10F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to a seventeenth embodiment of the present invention. 11A to 11F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to an eighteenth embodiment of the present invention. 100112123 Form No. A0101 Page 28 of 75 1002020232-0 201242033 ''[0102] ❹ The manufacturing method of the flash memory cells of FIGS. 9A to 9F is similar to that of FIGS. 6A to 6F; FIG. 10 to 10F of the flash memory cell The manufacturing method is similar to that of FIGS. 7A to 7F; the manufacturing method of the flash memory cells of FIGS. 11A to 11F is similar to FIGS. 8A to 8F, but please refer to FIGS. 9A, 10B, and 11B to form in the hard mask layer 16 and the substrate 10. After the trench 32, the spacers 18 are not formed in the side walls 32a of the trenches 32 (Figs. 6B, 7B, 8B). The second doped region 22 is directly covered by the hard mask layer 16 (with no spacers 18) as an mask, and is subjected to an ion implantation process 20, such as a vertical ion implantation process, and formed under the trench 32. A doped region 14 extends downwardly into the well region 12 and extends laterally to the bottom corner 32b of the trench 32 and extends upwardly to the lower sidewall 32a of the trench 32. The second doped region 22 extends from the first doped region 14 into the well region 12, separating the first doped region 14 into separate source or drain doped regions 14a and 14b. The second doped region 22 extends from the bottom portion 32c of the trench 32 along the bottom corner 32b of the trench 32 to the lower sidewall 32a of the trench 32, so that the formed source or drain doped regions 14a and 14b are not covered with trenches. The bottom portion 32c of the 32 and the bottom corner 32b extend from the upper side wall 32a of the trench 32 to the surface of the substrate 10. 12A to 12F are cross-sectional views showing the steps of a method of fabricating a MOS field effect transistor according to an eighteenth embodiment of the present invention. After forming the well region 12, the first doping region 14, the semiconductor layer 40, the hard mask layer 16, and the trench 32 in accordance with the above-described manufacturing method corresponding to Figs. 3A to 3C, the spacer material layer 44 is formed first. Then, using the spacer material layer 44 and the hard mask layer 16 as a mask, a second doping region 22 is formed under the trench 32 to separate the first doping region 14 into two separated source or drain electrodes. Zones 14a and 14b. However, in this embodiment, the second doping region 22 includes two first regions 22a and second regions 100112123 having the same conductivity type but different depths. Form No. A0101 Page 29/75 pages 1002020232-0 201242033 =b . The area near the bottom 32c of the trench 32 is the first area "a", the area away from the bottom 32c of the trench 32 is thinner than the second area, and the area of the second area 22b is larger than the area of the first area 22a, so that the source or the pole is The wheel grinding of the ramming zone Uam4b is stepped. The forming method of the first region 22a and the second region 22b of the second doping region 22 can be formed by the ion implantation process through the ion implantation process. The ion implantation process of the first product or the ion implantation process 2Qa has a lower implantation energy, and the ion implantation process of the second region 22b has a higher ion implantation energy. In the implementation J, the first doping region 14 is N-type. The second doped region is of a 卩 type. The ions implanted in the first region 22a of the second impurity region 22 are, for example, 1Kev, and the dose is, for example, fine.
1〇14:Γ。子植入能量例如是喻,劑量例如是3X1〇14: Hey. The sub-implant energy is, for example, a dose, for example, 3X
[0105] [0106] 100112123 θ ^ .、、、圖12D,非等向性蝕刻間 在溝渠32的側壁咖形 ㈣㈣’以 形成問介電声24 η人壁46。接著,在基底上 化〜;:: :,的材質例如是氧-夕 '氮 溝渠32之巾形成㈣材料層料或其組合。繼之,在 例如是摻雜多晶㈣是金屬或^㈣料層3〇a的材質 其後,請參照圖12E,移 30a以及閘介電層24。罩幕層16上的閘極材料廣 。移除硬罩幕層上的閑:極材料層3〇a做為間極30 法例如是以硬罩幕層16做為以及閘介電層24的方 製程或是贿刻製程。2、、、切,進行化學機械研磨 半導體層40裸露出來^硬^硬罩幕層16移除,使 表單蝙號麵第心罩幕層16的方法可以採用 第30頁/共75頁 201242033 例如是乾式餘刻製程或是濕式钱刻製程。 [0107] 之後,請參照圖12F,進行自行對準 層40以及咖〇的表面上形成金心^ ’於半導體 物之材質例如是耐火金屬 6 °金屬矽化 、鈷、鈦、銅、銦、,、鶴:二火金屬例如是錄 合金。 釔、鉑或這些金屬的 [0108] 騎閘極埋入於美麻夕 Ο ==與—也是製作於基底二 透過閘垂直方向位置的改變來製作出具有抬升效果之 源極掺雜區該極掺魄。由於__ 區位Π下方的部分相當淺,因此,可以具有淺接面 的效果’達到避免短通道效應產生的目的。另—方面, 由於源極摻雜區與汲極摻雜區還延伸包覆於閘極的側壁 周圍’因此’其具有抬升式絲與祕可⑽低阻值的 優點另外在源極摻雜區與沒極摻雜區也可以進一步 形成尚換雜濃度的半導體層,以進―步降低接觸阻值。 Ο [0109] 本發明上述其他數個實施例中,用來分隔源極或沒極推 雜區的第—摻雜區自溝渠的底部沿著溝渠底角再向上延 伸至溝渠的m則可以使得源極或汲極摻雜區未包 覆溝渠的底部以及底角,不僅可以延伸通道的長度,而 且由於裸露出來的底角處在元件進行操作時具有高的電 場,因此可以提載子的注入效率。 此外,本發明上述實絲丨巾,__區以及汲極推雜 區(第一摻雜區的回火製程是在介電層(穿隧介電層)以及 100112123[0106] 100112123 θ ^ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Next, the material of the substrate ~~::, is, for example, a towel of the oxygen-Xi's nitrogen channel 32 (4) material layer or a combination thereof. Next, for example, the doped polysilicon (4) is a material of the metal or the (4) layer 3〇a. Thereafter, referring to Fig. 12E, the gate 30a and the gate dielectric layer 24 are removed. The gate material on the mask layer 16 is wide. Removing the free layer on the hard mask layer: the pole material layer 3〇a is used as the interpole 30 method, for example, by the hard mask layer 16 as the gate dielectric layer 24 or the briber process. 2,,, cut, chemical mechanical polishing semiconductor layer 40 exposed to ^ hard ^ hard mask layer 16 removed, so that the form of the bat surface of the core mask layer 16 can be used page 30 / a total of 75 pages 201242033 It is a dry engraving process or a wet money engraving process. [0107] Thereafter, referring to FIG. 12F, the self-aligned layer 40 and the surface of the curry are formed with gold metal. The material of the semiconductor material is, for example, refractory metal 6 ° metal deuterium, cobalt, titanium, copper, indium, Crane: The second fire metal is, for example, an alloy.钇, platinum or these metals [0108] riding gates buried in the meixi Ο == and - also made in the vertical direction of the base two transmission gates to create a source-doped region with a lifting effect soul. Since the portion below the __ location 相当 is relatively shallow, it can have the effect of a shallow junction to achieve the purpose of avoiding the short channel effect. On the other hand, since the source doping region and the drain doping region are also extended around the sidewall of the gate, it has the advantage of having a raised wire and a low resistance value (10) in the source doping region. Further, a semiconductor layer which is still in a mixed concentration can be formed with the electrodeless doping region to further reduce the contact resistance. [0109] In the other embodiments of the present invention, the first doped region for separating the source or the immersed doping region may extend from the bottom of the trench along the bottom corner of the trench to the m of the trench. The source or drain doping region does not cover the bottom and the bottom corner of the trench, and not only can extend the length of the channel, but also can provide carrier injection because the exposed bottom corner has a high electric field when the device is operated. effectiveness. In addition, the above-mentioned silk scarf of the present invention, the __ region and the drain region (the tempering process of the first doping region is in the dielectric layer (tunnel dielectric layer) and 100112123
表單編號A010I 第31頁/共75頁 1002020232-0 [0110] 201242033 閘極形成之前形成,因此,可以確保介電層(穿隧介電層 )以及閘極等材料的穩定性並不會受到源極摻雜區以及汲 極摻雜區(第一摻雜區)的回火製程的影響。 [0111] 雖然本發明已以實施例揭露如上,然其並非用以限定本 發明,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故 本發明之保護範圍當視後附之申請專利範圍所界定者為 準。 【圖式簡單說明】 [0112] 圖1係繪示本發明之半導體元件的原型。 [0113] 圖2A至2D-1是依照本發明第一實施例所繪示之一種氮化 矽唯讀記憶體之製造方法的流程剖面圖。 [0114] 圖2D-2繪示第二實施例之一種氮化矽唯讀記憶體的剖面 圖。 [0115] 圖2D-3繪示第三實施例之一種氮化矽唯讀記憶體的剖面 圖。 [0116] 圖3A至3D-1是依照本發明第四實施例所繪示之一種氮化 矽唯讀記憶體之製造方法的流程剖面圖。 [0117] 圖3D-2繪示本發明第五實施例之一種氮化矽唯讀記憶體 的剖面圖。 [0118] 圖3 D - 3繪示本發明第六實施例之一種氮化矽唯讀記憶體 的剖面圖。 [0119] 圖4A至4D-1是依照本發明第七實施例所繪示之一種氮化 100112123 表單編號A0101 第32頁/共75頁 1002020232-0 201242033 [0120] [0121] [0122] [0123] Ο [0124] [0125] [0126]Form No. A010I Page 31 of 75 1002020232-0 [0110] 201242033 The gate is formed before the formation of the gate, thus ensuring the stability of the dielectric layer (via dielectric layer) and the gate and other materials without being affected by the source The effect of the tempering process of the pole doped region and the drain doped region (first doped region). The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any one of ordinary skill in the art can make a few changes without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0112] FIG. 1 is a view showing a prototype of a semiconductor element of the present invention. 2A to 2D-1 are cross-sectional views showing a process of manufacturing a tantalum nitride read-only memory according to a first embodiment of the present invention. 2D-2 is a cross-sectional view showing a tantalum nitride read-only memory of the second embodiment. 2D-3 is a cross-sectional view showing a tantalum nitride read-only memory of the third embodiment. 3A to 3D-1 are cross-sectional views showing a process of manufacturing a tantalum nitride read-only memory according to a fourth embodiment of the present invention. 3D-2 is a cross-sectional view showing a tantalum nitride read-only memory according to a fifth embodiment of the present invention. 3 is a cross-sectional view showing a tantalum nitride read only memory according to a sixth embodiment of the present invention. 4A to 4D-1 illustrate a nitriding 100112123 according to a seventh embodiment of the present invention. Form No. A0101 Page 32 of 75 1002020232-0 201242033 [0120] [0121] [0123] [0123] ] Ο [0124] [0126] [0126]
[0127] [0128] [0129] [0130] 矽唯讀記憶體之製造方法的流程剖面圖。 圖4D-2繪示本發明第八實施例之一種氮化矽唯讀記憶體 的剖面圖。 圖4D-3繪示本發明第九實施例之一種氮化矽唯讀記憶體 的剖面圖。 圖5Α至5D-1是依照本發明第十實施例所繪示之一種氮化 矽唯讀記憶體之製造方法的流程剖面圖。 圖5D-2繪示本發明第十一實施例之一種氮化矽唯讀記憶 體的剖面圖。 圖5D-3繪示本發明第十二實施例之一種氮化矽唯讀記憶 體的剖面圖。 圖6A至6F是依照本發明第十三實施例所繪示之一種快閃 記憶胞之製造方法的流程剖面圖。 圖7A至7F是依照本發明第十四實施例所繪示之一種快閃 記憶胞之製造方法的流程剖面圖。 圖8A至8F是依照本發明第十五實施例所繪示之一種快閃 記憶胞之製造方法的流程剖面圖。 圖9A至9F是依照本發明第十六實施例所繪示之一種快閃 記憶胞之製造方法的流程剖面圖。 圖10A至10F是依照本發明第十七實施例所繪示之一種快 閃記憶胞之製造方法的流程剖面圖。 圖11A至11F是依照本發明第十八實施例所繪示之一種快 100112123 表單編號A0101 第33頁/共75頁 1002020232-0 201242033 閃記憶胞之製造方法的流程刳面圖。 [0131] [0132] [0133] [0134] [0135] [0136] [0137] [0138] [0139] [0140] [0141] [0142] [0143] [0144] [0145] [0146] [0147] 圖12A至12F是依照本發明第十九實施例所繪示之一種金 氧半導體場效電晶體的之製造方法的流程剖面圖。 【主要元件符號說明】 10 :基底 12 :井區 14 :第一摻雜區 14a、14b :源極或没極掺雜區 16 :硬罩幕層 1 8 :間隙壁 20、20a、20b、36 :離子植入製程 22 :第二摻雜區 22a、22b :區域 24 :介電層、穿隧介電層 26:電荷儲存介電層 28 :頂介電層 3 0 :閘極、浮置閘 30a、30b :浮置閘材料層 32 :溝渠 32a :側壁 100112123 表單編號A0101 第34頁/共75頁 1002020232-0 201242033 [0148] 32b :底角 [0149] 32c :底部 [0150] 34 :通道區 [0151] 38 :光阻層 [0152] 40 :半導體層 [0153] 42 :開口 [0154] 44 :間隙壁材料層 Ο [0155] 46 :間隙壁 [0156] 50a :控制閘材料層 [0157] 50 :控制閘 [0158] 52 :絕緣層 [0159] 54 :凹槽表面 [0160] 5 6 :金屬石夕化物 〇 [0161] wl、w2、w3、w4 :寬度 [0162] hl、h2、h3:深度 [0163] tl ' t2 ' t3 :厚度 100112123 表單編號A0101 第35頁/共75頁 1002020232-0[0130] [0130] A cross-sectional view of a process for manufacturing a read-only memory. 4D-2 is a cross-sectional view showing a tantalum nitride read only memory according to an eighth embodiment of the present invention. 4D-3 is a cross-sectional view showing a tantalum nitride read only memory according to a ninth embodiment of the present invention. 5A to 5D-1 are cross-sectional views showing a process of manufacturing a tantalum nitride read-only memory according to a tenth embodiment of the present invention. Fig. 5D-2 is a cross-sectional view showing a tantalum nitride read only memory according to an eleventh embodiment of the present invention. Figure 5D-3 is a cross-sectional view showing a tantalum nitride read only memory in accordance with a twelfth embodiment of the present invention. 6A to 6F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to a thirteenth embodiment of the present invention. 7A to 7F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to a fourteenth embodiment of the present invention. 8A through 8F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to a fifteenth embodiment of the present invention. 9A to 9F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to a sixteenth embodiment of the present invention. 10A through 10F are cross-sectional views showing the flow of a method of manufacturing a flash memory cell according to a seventeenth embodiment of the present invention. 11A to 11F are flow diagrams showing a method of manufacturing a flash memory cell according to an eighteenth embodiment of the present invention. 100112123 Form No. A0101 Page 33 of 75 1002020232-0 201242033. [0133] [0137] [0146] [0146] [0146] [0146] [0146] [0147] [0147] 12A to 12F are cross-sectional views showing the steps of a method of fabricating a MOS field effect transistor according to a nineteenth embodiment of the present invention. [Main component symbol description] 10: Substrate 12: Well region 14: First doped region 14a, 14b: Source or electrodeless doped region 16: Hard mask layer 18: Clearance walls 20, 20a, 20b, 36 : Ion implantation process 22: second doped regions 22a, 22b: region 24: dielectric layer, tunneling dielectric layer 26: charge storage dielectric layer 28: top dielectric layer 3 0: gate, floating gate 30a, 30b: floating gate material layer 32: trench 32a: side wall 100112123 Form No. A0101 Page 34/75 page 1002020232-0 201242033 [0148] 32b: bottom angle [0149] 32c: bottom [0150] 34: channel area 38: photoresist layer [0152] 40: semiconductor layer [0153] 42: opening [0154] 44: spacer material layer Ο [0155] 46: spacer [0156] 50a: control gate material layer [0157] 50: control gate [0158] 52: insulating layer [0159] 54: groove surface [0160] 5 6 : metal lithium 〇 [0161] wl, w2, w3, w4: width [0162] hl, h2, h3 :depth [0163] tl ' t2 ' t3 : thickness 100112123 form number A0101 page 35 / total page 752020232-0