TW201238647A - Water treatment system and water treatment method - Google Patents

Water treatment system and water treatment method Download PDF

Info

Publication number
TW201238647A
TW201238647A TW100139144A TW100139144A TW201238647A TW 201238647 A TW201238647 A TW 201238647A TW 100139144 A TW100139144 A TW 100139144A TW 100139144 A TW100139144 A TW 100139144A TW 201238647 A TW201238647 A TW 201238647A
Authority
TW
Taiwan
Prior art keywords
heat
water
section
water treatment
treatment system
Prior art date
Application number
TW100139144A
Other languages
Chinese (zh)
Other versions
TWI533924B (en
Inventor
Ryosuke Terashi
Yoshitaka Takahashi
Kazuhiko Kawada
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010240813A external-priority patent/JP5743489B2/en
Priority claimed from JP2010240814A external-priority patent/JP5743490B2/en
Application filed by Organo Corp filed Critical Organo Corp
Publication of TW201238647A publication Critical patent/TW201238647A/en
Application granted granted Critical
Publication of TWI533924B publication Critical patent/TWI533924B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • B01D2311/103Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • B01D2311/103Heating
    • B01D2311/1032Heating or reheating between serial separation steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/263Chemical reaction
    • B01D2311/2634Oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2649Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Abstract

This invention intends to enhance the energy efficiency and to conduct a stable temperature control in a water treatment system. The water treatment system includes a plurality of devices 1, 2, 3, 4; a plurality of pipe zones 11, 12 which connect a plurality of devices adjacent to each other, and within which flows the water, and a heat pump 21 that absorbs heat from heat absorption pipe zones comprising at least one pipe zone 11, and exhausts the heat absorbed from the pipe zone 11 into heat absorption pipe zones comprising at least another one pipe zone 12.

Description

201238647 六、發明說明 【發明所屬之技術領域】 【0001】 關耗能少的 本發明係關於水處理系統及水處理方 水處理系統。 特別有 【先前技術】 【0002】 的各ΐΐϊΐΐ'ϊί之f理系統係利用配管將用來進行水處理 的各種裝置加U連結所構成。就該等裝 处里 '逆^離㈣)裝置、過濾裝置等。各裝置 等)發揮至’(f大限度,有最佳的水溫範圍。另-:面, 百寸在使用點(似6?〇1加)上,需要例如25。(:、6〇。〇 ΐΐ的進行循環運轉的部位,由於隨著循環運轉ίίΐϊ 泵浦的入熱寺,將使循環水的溫度容易上升。如上 、 統由於裝置的溫度要求、H要求、及彡 =” 而必須在祕_各種部分進行溫度機。賊衫°種因素’ 【0003】 給的超ifim;其中,將從原水槽所供 於糟或膜裝置加以處理,並送往後續步驟。由 =〇膜裝置中之逆滲透膜的鮮設計溫度為25t,因此,為了 膜裝置人π點之處理水的溫度加以調整為此附近的溫度, 於原水槽與脫氣槽之間設有數台的熱交換器。 【0004】 專利文獻2揭示有將熱泵使用於水處理系統以進行熱交換的 ,子。,泵係已知為能量效率高的熱交換系統。熱泵從外部熱源 頌取熱能,並將所擷取的熱能供給至加熱對象部位,或者從冷卻 對象部位擷取触,並騎娜㈣能排放到外部。 【專利文獻1】日本特開2009-183800號公報 【專利文獻2】日本特開2002-16036號公報 201238647 被公報 .【專利文獻3】日本特開2006-095479 【發明内容】 [發明所欲解決的問題] 【0005】 睹,自H,對於流通在水處理系助的待處理水進行1声w 量利用效率、甚或二氧之;^, 的問題。 &寻之喊負荷面,存在有以下 【0006】 對象部位 :進;1力用卻係各別投入於加熱或冷卻 時,則製造出較冷卻對。象i位位。使用冷卻塔進行冷卻 縣熱能。又,進的冷部水’並從冷卻對象部位 對象部位所需能量的周整所而的全部能量係加熱及冷卻之各 【0007】 ‘口 以將其利用^供给到對象部位所榻取的熱能,一般難 交換器來實現麵熱能。雜料也可利用熱 而加熱對象部位為此τ齡卻對象部位為高溫側, 當的溫度差時,盈法=右二且向溫側與低溫側之間沒有相 多數部位會㈣在賴雜。於水處_統的情形, 對象部位為高㈤伽 */现的溫度,沒有太大的溫度差;且冷卻 定成立陳為低溫側的關係,也並非: 【0008】 有效车地使用熱交換器的部位實屬有限。 源。ϊί則可纖麵__高溫熱 部溫度條件而大幅之外部熱源的熱栗,其性能會依外 勤例如,於從低溫空氣吸熱的情形,吸熱 4 201238647 ίίϋΐ降。Ϊ上述’利用空氣熱等之外部熱源的齡係容易 Ξ 而難以穩統對水處理系統内的水溫進行ί ’若使得熱泵有過咖容量,雖可緩和目外部溫度條件變 動所產生的影響,但是對成本有巨大的影響。 ” 古且鑑於Ϊ種課題所設計,其目的為:提供能量效率 同了進仃穩疋之溫度控制的水處理系統及水處理方法。 [解決問題之技術手段] 【0009】 、查抹ΐίϋ之水處理系統具有:複數之裝置;及複數之配管區間, ,,互相接鄰的複數裝置之間,且水流通於内部;與熱泵,以至 。區間為吸熱配f區間,而從該吸熱配管區間吸熱,並 条之其魏管區間為排熱配管區間’而將從該吸埶配管 &間所吸收的熱能排出至該排熱配管區間。 ‘、、、 【0010】 熱泵可於吸熱對象部位擷取熱能,並使得 於核._縣魏‘熱=卩mi 二爷間-,、與須要排熱(加熱)的部位(排熱配管區間)時,可使用 ”、、泵來進行從吸熱配管區間往排熱配管區間的熱移動 如此一 因 ΐ二冷卻所廢棄的熱能利用於另-部位的加熱, 此月b,,,'貞者南能量效率。 …、 【0011】 區間與排熱配管區間分別為溫度調整部位的同 時,艾侍難以吸熱,而熱泵的性能降低。於使用 =201238647 VI. Description of the Invention [Technical Field of the Invention] [0001] The present invention relates to a water treatment system and a water treatment water treatment system. In particular, the prior art [0002] is a system in which various devices for performing water treatment are connected by U. In this installation, the 'reverse (4)) device, filter device, etc. Each device, etc.) is played to '(f limit, there is an optimum water temperature range. Another -: face, 100 inch is used at the point of use (like 6? 〇 1 plus), for example, 25 (:, 6 〇. The part of the enthalpy that is being circulated, because the pumping heat 寺 随着 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Secret _ various parts of the temperature machine. Thieves shirt ° factors [0003] to the super ifim; where the raw water tank will be treated by the bad or membrane device, and sent to the next step. Since the fresh design temperature of the reverse osmosis membrane is 25t, the temperature of the treated water at the π point of the membrane device is adjusted to the temperature in the vicinity, and a plurality of heat exchangers are provided between the raw water tank and the degassing tank. 0004] Patent Document 2 discloses that a heat pump is used in a water treatment system for heat exchange. The pump system is known as an energy efficient heat exchange system. The heat pump draws heat from an external heat source and extracts the heat. Heat is supplied to the heating target or from cooling [Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A-2002-183800 (Patent Document 2) JP-A-2006-095479 SUMMARY OF INVENTION [Problem to be Solved by the Invention] [0005] 睹, from H, for the water to be treated in the water treatment system, the utilization efficiency of one sound w, or even the second oxygen; ^, The problem. & find the load surface, there are the following [0006] object parts: into; 1 force is used to separate heating or cooling, then create a cooler pair. Like the i position. The cooling tower is used to cool the heat of the county. In addition, the cold water in the 'cooling water' is heated and cooled from the entire energy required to cool the target part of the target area. [0007] The heat energy supplied to the target part is generally difficult to convert to the surface heat energy. The miscellaneous material can also use the heat to heat the object part for the τ age but the object part is the high temperature side. When the temperature difference is, the profit method = right Second, to the temperature side and the low temperature side In the case of water, the temperature of the object is high (five) gamma*/current temperature, there is not much temperature difference; and the cooling is set to establish the relationship between Chen and the low temperature side, and it is not : [0008] The effective use of the heat exchanger in the vehicle is limited. Source. ϊί is the surface of the hot __ high temperature hot part of the temperature and the external heat source of the hot pump, its performance will depend on the field, for example, In the case of low-temperature air absorption, the heat absorption is as follows: Ϊ The above-mentioned 'uses of external heat sources such as air heat are easy to smash and it is difficult to stabilize the water temperature in the water treatment system ί 'If the heat pump has a coffee capacity, Although it can alleviate the effects of changes in external temperature conditions, it has a huge impact on costs. Designed in response to a variety of topics, the purpose is to provide a water treatment system and a water treatment method that combine energy efficiency with temperature control. [Technical means to solve the problem] [0009], smear ΐ ϋ The water treatment system has: a plurality of devices; and a plurality of piping sections, between the plurality of devices adjacent to each other, and the water flows inside; and the heat pump, and the interval is the heat absorption f interval, and the heat absorption pipe interval The heat absorption and the section of the Wei pipe are the heat exhaust pipe section ', and the heat energy absorbed between the suction pipe & is discharged to the heat pipe section. ',,, [0010] The heat pump can be used in the heat absorption target portion Take heat energy and make it use heat in the core._县魏'热=卩mi 二--, and the part that needs heat (heating) (heating piping section) The heat transfer from the piping section to the exhaust heat piping section is such that the heat energy discarded by the second cooling is utilized for the heating of the other part, this month b,,, 'the south energy efficiency. ..., [0011] When the interval and the heat-dissipating piping section are temperature-adjusting parts, respectively, it is difficult for Ai Shi to absorb heat, and the performance of the heat pump is lowered. For use =

iSESSSHiS 201238647 ίΐίίίΐ環境所左右,而能夠穩定維持良好的熱泵性能。又, 氣為熱源的熱果’當外氣溫度下降到附近時,將必 Ιίίίΐι又’若使肋地下水或海水為熱源的熱泵,將需要 蝕對策。相對於此,本發明也不會發生此種問題。 、、i明之其他實施祕’提供使用水處理系制水處理方 門曰二t理系統具有複數之裝置、及連接互相接鄰之複數裝置 間且水k通於内部的複數之配管區間。該方法包含如下之處理: 牙用熱栗ϋ少1條配官區間為吸熱配管區間,而從吸献配管 區間J熱,並以至少i條之其他配管區間為排熱配管區間、,、、而將 從吸熱配管區間所吸收的熱能排出至排熱配管區間。 [發明之效果] 【0013】 如上述,依本發明,能夠提供能量效率高且可進行穩定之溫 度控制的水處理系統及水處理方法。 【實施方式】 【0015】 (第1實施形態) &以I參照圖1〜7,說明依本發明之水處理系統的第1實施形 態。,等圖式係從構成水處理系統的各種裝置中,僅抽出與本實 施形悲有關連的部分而加以顯示。至於水處理系統的實際例子, 請見後述。 【0016】 圖1係顯示互相接鄰之第1與第2裝置i、2、及連接1等的 第1配管區間(吸熱配管區間)11。於該等裝置卜2及配管區/間n , 流體(待處理水)以從第1裝置1朝第2裝置2的方式,往圖中的右 向流通。同樣地,圖1也顯示互相接鄰之第3與第4裝置3、4、 及連接其等的第2配管區間(排熱配管區間)i2。於該等裝置3、4 及配管區間12,同樣有流體(待處理水)以從第3裝置3朝第4裝 6 201238647 =的方式’往圖中的右向流 第 種裝置,均無所妨。 主於弟1弟4裝置1〜4為何 【0017】 排熱^q。表示),並 處理7lcA刼4甘妒置4之 點的要求水溫為低,而必須將样 ,理水加熱。就其-例而言,如上 待 標準設計溫度為25。(:,但是^置之轉透膜的 處理水進入R0膜裝置前予以加敎。7 4/、為低日r必須於待 【0018】 為此目的’水處理系統設有埶泵21 (吸熱配管區間)吸熱,並排敎到第2 =配官區間11 熱泵21係與第丨S_fs,u 2熱配管區間)。 施形態中,敎泵21採用£間12熱性連接。本實 -过二”、、承1抹用瘵軋壓縮式。具體而言,埶泵21句人.iSESSSHiS 201238647 ίΐίίΐ The environment is around and can maintain stable heat pump performance. In addition, when the temperature of the outside air drops to a nearby temperature, the gas will be a heat source. If the heat pump of the rib groundwater or seawater is used as a heat source, countermeasures will be required. On the other hand, the present invention does not cause such a problem. Other implementations of i-Ming's provide water treatment system using water treatment system. The door system has a plurality of devices, and a plurality of piping sections connecting the plurality of devices adjacent to each other and the water k passing through the inside. The method includes the following treatments: one of the dental hot sputum sputum is one of the heat-dissipating piping sections, and the heat is taken from the suction piping section J, and the other piping sections of at least i are the heat-discharging piping sections, The heat energy absorbed from the heat absorption piping section is discharged to the heat exhaust piping section. [Effects of the Invention] As described above, according to the present invention, it is possible to provide a water treatment system and a water treatment method which are energy efficient and can perform stable temperature control. [Embodiment] [First Embodiment] A first embodiment of a water treatment system according to the present invention will be described with reference to Figs. The equations are displayed from the various devices constituting the water treatment system, and only the portions related to the embodiment of the present invention are extracted. For practical examples of water treatment systems, please see below. Fig. 1 shows a first piping section (endothermic piping section) 11 of the first and second devices i and 2, and the connection 1 and the like which are adjacent to each other. In the apparatus 2 and the piping area/inter-n, the fluid (water to be treated) flows to the right in the figure from the first apparatus 1 to the second apparatus 2. Similarly, FIG. 1 also shows the third and fourth devices 3 and 4 adjacent to each other, and the second pipe section (heat-dissipating pipe section) i2 that connects them. In the devices 3, 4 and the piping section 12, there is also a fluid (water to be treated) which flows from the third device 3 to the fourth device 6 201238647 = to the right-flow device of the figure, and there is no such thing. harm. Main brother 1 brother 4 device 1~4 Why [0017] Heat rejection ^q. Representation), and the treatment of 7lcA刼4 Ganzi set 4 points requires that the water temperature be low, and the sample and water must be heated. For its example, the standard design temperature is 25 as above. (:, but the treated water of the transflective membrane is added before the R0 membrane device is added. 7 4/, for the low day r must be [0018] For this purpose, the water treatment system is equipped with a pump 21 (endothermic The piping section) absorbs heat and drains to the 2nd = the officer's section 11 heat pump 21 series and the 丨S_fs, u 2 heat piping section). In the embodiment, the helium pump 21 is thermally connected with a space of 12. The actual - over two", and the 1 smear with rolling compression type. Specifically, 埶 pump 21 sentences.

22,用來使得氨、二碳化碳、氟龍類、或以R 媒蒸發;以及將冷媒_的壓縮機Μ ί ,冷旋的冷—24、及使冷_脹轉_ 25 吏^ 序配置於_路26上。因此,冷媒—面於^^= 拯Γϋτ面接以發、魏、冷凝及膨關_環。詳古之, ^於祕器22而設有第〗配管區間U,利用冷媒轉^之 ^從流經第1配管區間Η的流體揭取熱 …化 ,熱交換的,。其後,已蒸發的冷媒由壓縮機 、甘/而成為⑥溫〶㈣氣相。接著,將冷媒輸送到冷凝器2 = 圍排放熱能而冷凝。又,接鄰於冷凝器24而設有第^ &間12,將冷凝時所排放的冷凝熱供給到流經第2配管-吕 =流體。再來,已冷凝的冷媒通過膨脹閥25而減壓冷卻。s j 熱泵21之一個循環的運轉間,從第丨配管區間u進行 ^ 往第2配管區間12進行排熱。 ,、、、並 201238647 【0019】 至少’能夠將從第1配管區間11所擷取之熱能的 。因此’不必將所挪的熱能 U的敎能Γ而且,it裝置(鋪等)產生欲供給到第2配管區間 並以取得㈣ί雜能係_"加熱或冷卻賴力為Q, 附近,斤4耗的功率為^寺,定義為Q/L)-般在3〜5 开以ί:ίί遠較所產生的熱能量為小。如上述,本實施 移ί到中’由於使得從第1配管區間11所擷取的熱能 12 ’因此不易產生熱能量的浪費。而且,由 的熱栗2卜因此可實現較少的耗能。 -般i在冷卻及加熱時,該等裝置 燃料儲存設施等多ί附帶立的位置。其中,於需要 以献其n、,種附備的峨,此麵向制強烈。因此, 的加二溫水或蒸氣等時的熱傳遞損失大’若設置追加 ’容易在能量效率及成本面上變得不利。而且, i泵52;罟;^還有需要能量大而環境負荷大的問題。藉由把 於弟1配官區間11與第2配f區間12的中間附近, 叮將熱傳遞損失抑制在最小限度。 【0021】 =且’熱泵21可無關於吸熱側及排熱側的溫 ί °=L,r更是吸熱獻水溫與排熱側之水溫大致相同^形 之水溫較吸熱側之水溫為高的情形,也能進行熱移 =„給冷水等,灿熱時供給蒸㈣, ,的方式。本發日种,由於使用熱泵21,因此不受限於= |間η與第2配管區間12的溫度,可於其間進行必要量^ 8 [0022] 201238647 源的形態/。使用可舉出使用空氣或外部水作為熱 所掏取的熱能排放到,能從空氣吸熱’並將從空氣 的加埶。但是,典if g區間12,可進行第2配管區間12 ^ 虽工氣變為低溫時’数泵的吸埶效率降低,而刼 泵能力(性能係數)下降。於 降低^熱 將必須先將熱泵的容量加大。广乱飢度下進订運轉時, 於县,π媒v i u排”、、效率降低’而熱泵能力(性能係數)下降。 ^’冋樣必須先將熱泵的容量n 職能的空氣會冷卻到。。c以下,而=空為= 進行去霜,戎去杏裒冰-罢m十i 义肩疋期性地知止運轉來 面上變得不^心又置用來去霜的設備等,在成本面或運用 【0023】 ,用外部水(海水、地下水、污水等)作為熱源時,也會發 ‘的問題。於外部水的情形,溫度之變動不如空氣般大, =的溫度姆上較為穩定,但仍會受到溫度變動的影響。j吏 4水2 ’㈣產生大量的排水,因此也可能需要大量設儀或 以進行其處理。作為污水加以排出時,亦將需要其費用。^, 於需要大量外部水的情形,還會產生地點上的限制。而且,於 用海水的情形,將需要水垢對策、或是鹽害、腐蝕對策。、更 【0024】 而且,如此使用外部熱源進行吸熱或排熱其中一者之熱 利用形態,廣義而言,與習知的鍋爐或冷卻塔並無差別。埶 泵本身的效率高’因此相較於鍋爐或冷卻塔,可抑制電費等之^ 轉成本。相反地,也為了因應年負載變化,而存在著須使其且^ 符士尖峰負載之過大容量等的問題’於水處理系統的應:用“胃切 合實際。 【0025】 相對於此’本實施形態中’熱移動係於熱源溫度穩定之水處 9 201238647 理系統的内部.進行,因此不易受外部環境的影塑. 以溫,内且溫度變動有限的情形,作 衡,因此利用外部熱源來調整熱量的過與不足。平 部熱源的_僅止於最小限度,而盡可能㈣纟=$於使外 動,因【〇此〇=於習知技術,可進行經濟且穩定的溫度控制,、、、移 圖2也顯示與圖!相同的系統。本實施形 巧11與熱泵21之間設有第!中間迴路… ^酉己官 官區間η的吸熱傳達到熱㈣。同樣地,在第2』▲自第酉己 熱泵21之間設有第2中間迴路16,用以把鉍/ 2與 達到第2配管區間12。如此藉由設置中間迴路b16 和熱泵21之設置位置的限制。亦即,於埶 ,寺I緩 間11或第2配管區間12的情形 g7管 配管區 ϊίϊί寻多台之㈣損失大的裝置,因此抑制勤^失i技術 極Ϊ重要。圖2的例子中,只要第1及第2配管區間u 距離將p裝置!與第2裝置2、第3裝置3與第刀1 予以連結,且第1及第2配管區間u、12盥埶支、 損失小的中間迴路15、16連接即可,因㈣;;H之間以壓力 f/員^而且’於熱系21遠離第1配管區間卩㈡ 2中間迴路16也可僅設置其中任一者,亦可依 j 迴路15、16構成為二重、三重迴路。又,使用 並無特別限制,不必使用腐蝕性強的"貝 體。若在中間迴路15、16填充3的;生水垢的流 有效率地搬運熱能。異充C〇2 ’則她於填充水的情形,可 【0027】 實施形態。參照圖3 201238647 2目接,之第5與第6裝置5、6、連接其等的第3配管區間 熱^區間)、及設計成從第1與第3配管區間U、13吸2 =弟巾間迴路15。务照圖4,水處理系統除了上述構成外,g 包含有設計成流體流通的下述部分:互相接鄰之第7與^ 8卜裝置 第2及第4配& £間.12、14進行排熱的第2中間迴。 【0028】 如該等實施形態所示,不論是吸熱側或排熱側,進行 的配管區間巧限於丨處,也可設有複數處。亦即,吸熱配管區 間與排熱配官區間也可為單數對單數、單數對複數、複數對單數、 複數對複數的任-種組合。由於複數之配#區間隔著巾間迴路而 連接到1台熱12卜因此可減少熱泵的台數。又,也可考量各個 吸熱與排熱配管關的位置義或㈣熱量等,*在水處理系統 設置複數之中間迴路與複數之熱泵。 【0029】 關於熱泵21的壓縮能力,一般而言,因應吸熱配管區間之吸 熱1(冷卻)的必要壓縮能力Cc、與因應排熱配管區間之排熱量(加 熱)的必要壓縮能力CH二者不會一致,係配合任一者而決定。具 體而言,可舉出下述4種形態。 /、 (形態i)cH>cc,且配合排熱(加熱)側而將壓縮能力設為Ch。 此時’由於在吸熱配管區間的吸熱(冷卻)過度,因此對吸熱配管區 間進行加熱;或者從吸熱配管區間擷取一部分熱能,並從系統外 操取其餘熱能(例如從周圍空氣擷取熱能,而將周圍空氣冷卻),以 使得在吸熱配管區間的吸熱(冷卻)不致過度。換言之,此技術也可 謂係將過剩量的冷卻能量往系統外排放。 (形態2) CH> Cc ’且配合吸熱(冷卻)側而將壓縮能力設為Cc。 此時,由於在排熱配管區間的排熱(加熱)不足,因此以追加方式對 排熱配管區間進行加熱。 (形態3) CH < Cc ’且配合排熱(加熱)侧而將壓縮能力設為cH。 此時’由於在吸熱配管區間的吸熱(冷卻)不足,因此以追加方式從 π 201238647 吸熱配管區間進行除熱。 此時(形由 間.十:# ^間的排熱(加熱)過度,因此從排熱配管區 統 了 的加熱能量往系統外排放。 配管,=2對吸熱配管區間或排熱 行熱交換。在此,就該等、$f水處理系統的系統外進 之排埶Μπ劫ΛΧ ΐ ί形參照圖5、6來對於排熱配管區間 形態Ϊ、進行i明 1、及吸熱配管區間之吸熱(冷卻)過度的 【0031】 祕惡中’為了將從熱系21往第1配管間12之排 縮能力依排熱量而適泵21相同,蝴 加熱器。熱系ίΪ 2熱果27使用作 ii力ΐ而ϋ,,而熱量q hi為熱量%加上壓縮機之 ,, Hay. 月你數 C0PH= Qhi/W = QC1/W+1 = COP广 的關係。亦即,就原理而言,埶量Qm相 埶旦 ί^^5ΓΛ?Γ]*2 s&t fal 12 q - Qc] ^ 之差值I、里Q2予以供給到第2配管間12。又 12 1 大 1=未與水㈣纖爾大氣中擷 取出k; Q '2; 【0032】 201238647 • 實為了對於熱泵21從第1配管區間η的 3以水部21a從第1配管_丨(⑽的流^ 擷取熱1 QC1,亚將熱1 (3出排放到第2配管間12。其中,供终 到第2配管間12的熱量Qm係與所希望之熱量 ^ =lb ^周,空氣練了熱量Qa與由第1配管區間】(類取$ 熱罝二者之差值的熱量Q2,並供給到第2配管間i2。換言之,敎 從第1配管區間11與大氣賴取熱能 ‘需' Ιίίί泵27 ’因此就成本觀點而言,其有利之心② 【0033】 ^泵21除了蒸氣壓縮式外,也可採用熱電子式。圖7係顯 使用,,、'電子式熱系21,的實施形態。同圖中,除ϋ 氣壓縮式熱泵21替換為熱電子式熱泵,盆愁 因此齡21,以外的說明請參上述說明。熱電 所明熱電7L件(帕耳帖兀件)之原理的熱泵。基才反34、3所二 體29與n型半導體3G係透過電極33加以連接成! Π Μ發生吸熱現象’而於幽n型的接合部 熱現象。p型半導體29與n型半導體3〇配署 毛生政 ” 31為第i配管區間U側,而p型轉上n轉二= 第2配管區間12側。圖7中顯示3個 ^刀32 ^ 半導體30,但也可交錯配置更多的p i個3 ,。另外,熱電子她 【0034】 另外,雖省略圖示,也可使用化學式、 果。例如,化學式熱果具備··填充有=以 -的反應室、及透過連通管而與反應室連接的冷 13 201238647 間11位在接鄰於反應室的位置,而第2配 =室的位置。反_所填充有之氯化鈣_水“,, ^熱,錢水合物的水奸變成水 ^官 並移動到冷凝室。移動至冷凝室的水蒸氣合 物脫離, 到位於接鄰位置的第2配管區間12。 7而液化,並排熱 【0035】 其次,針對應用以上所述熱泵21之水處 ,明的水處理系統可由超純水製』置 $、排水回收裝置等之各種裝置(單元)構 置 成依純水的要求水質、原水或排水的水質等而裝置的構 意以下所示的例子到底仍係—例。圖同:請留 本發明之全部實施形態的水處理系統進行也人。丁、歹可與依 【0036】 ' 〇 圖8Α係顯示水處理系統中之超純水製造 二^雖1水的溫度會依設置位置或季節 ^5 C,製造純水時,將原水通到除濁膜工 ^在^^ 進—步使其通過活性炭塔109後,於加執 、f除:蜀物寺, 送到RO膜裝置110。進行加熱的原因二行加熱,再輸 使用之逆參透膜的標準設計溫度為坑。u〇所 從確保透水量、防止鹽_著等_ C的“準&計溫度係 +山,. 7有寻义硯點所設定。於RO膜奘菩11Π ,出口的水溫較健設定為攻左右爾 膜裝置no所流出的原水,於离以力口f f f。;於從RO 分,並儲存到初級純水槽112。為^子成 脂的再生,在離子交換裝置u 使^樹 127將驗性化學藥液加熱,並供給到離置^ 酸性廢液中和。進粁中知你* Q , I傻π〒矛槽113使其與 加以冷卻。 ’、,且依騎需’將舰於巾和槽113 【0037】 201238647 生型離子交換單元超( =進行伽。錄未制^點 的繼續循環運轉。此時,循環中之純: 的溫度要求而將純3泵f的人熱等而上升’於是依使用點in 口側設有冷卻點119。二° ’在2線氧化裝置H4的入 si8^c- ^ -- 超純水供u二,中’從純水槽出分支出高溫 裝置122、筒式高純化力;121升溫後,通過紫外線氧化 使用點125石认1 〇〇裝置123及超過濾膜装置124,再輸送到 之前於冷卻點溫超純水,在其回到初級純水槽112 的離子ΐ P °又’由於筒式高純化器裝置123内 與超過濾、膜裝置曰佳係在筒式高純化器裝置123 【0038ί 又置加熱點121,,以取代加熱點⑵。 水處娜仔。_作可以是 經處理的排水可直_5|卜4疋7处理系統外所產生者。又, 超純細8A所示之 氣:與 的排水處理。作县太㈣二觀性裰生物與好氣性微生物 為36〜耽(中溫發 範圍。另-方面皿由於’也可設定為30〜35°C的 必須將已好處的適當溫度為坑左右,因此 行係,顯示只進 ’排水加溫到好氣性處理的最佳溫 201238647 度’即20〜3〇。(:左右。 【0040】 有加熱點。又,氨錢提裝獅人口側設 20〜35。(:左右。挺處的P越而,效率越好,其最佳溫度為 【0041】 於以上所說明的嫌氣性處理、 裎 後,不須進簡水的溫度調整Μθ 域理心祕理結束 之 的地 t ί=ί ㈣為可進行吸熱的點。反 也。 °"寻點作為以熱泵所吸收之熱能的排放目 【0042】 可使爾f系統。就 的純水等較為乾淨者H她時之晶圓清洗所使用 水輸送到紫外線氧化裝置10卜7 Ί合過氧化氫後,將該排 (T〇C,t〇tal 〇_e |要2排水中的總有機碳 冷卻後,於活性炭塔103去除有機=水於冷部·點102加以 交換裝置1G4。於紫外線氧化$ 成分,再輸送到離子 時,而溫度大幅上升。因此,^ ’有時排水會滯留數小 設有冷卻點102。 料外線氧化裝置1〇1的排出口側 【0043】 圖9係顯示從以上説明的裝置 裝置、與圖8Ε所說明之排水處理置所說明之純水製造 的例子。關於其中的各個要件,过二”冓成為一個水處理系統100 【0044】 。月以、上述說明。 圖·、細示麵修水處㈣統時進行熱水殺菌之情 16 201238647 形的過程。在此顯示如下之系統的 該 ,離子或鎂離子),並進行活性炭處理===== 後’進行過濾處理及紫外線氧化。圖10A為生m ΐϊί水的例子,聽平時從管線隔離的熱水源連接 rr腦為;於=過=;=^ ίΐ所示之迴路從熱水源供給熱水,以對腦 扞^處理結束時,將熱水冷卻並加以排出。由於進 可主冷卻熱交換器的流入賴 【0045】 圖8A 1〇B中,以粗體線顯示排熱配管區間與吸熱配管區 二。但疋,如以上所說明,水處理系統於正常運轉時,不論是否 係進行維修時’均存在有各種排減管區間與砂 。 【0046】 "、 一接^,對於依以上所說明之第i實施形態的水處理系統,進 一步以實施例進行詳細說明。圖11A〜11C係將圖9之A部分切 割而加以顯示的示意圖。圖11A係顯示依照習知技術,利用各別 的裝置(例如熱父換器)對於排熱配管區間與吸熱配管區間進行加 =部的情形。町之說明巾,將驗排熱配管區間之流體的流 设為1〇〇 t/h (嘴/小時),加熱前的水溫設為288k,加熱後的 酿度设為298K;流經吸熱配管區間之流體的流量設為1〇〇t/h (領 /小時)’冷卻前的水溫設為3〇3K,冷卻後的溫度設為298k。又, 水的比熱設定為4.2J/g.K。 【0047】 、若以上述條件求算出必要能量,於排熱配管區間的必要能量 約為1.17xl〇3kW,於吸熱配管區間的必要能量約為5 8xl〇2kW, 17 201238647 合計約需要1.8><103kW的能量。 [0048] 圖11B、11C係顯示依照本實施形態,利用熱泵從吸敎配 ,5: 6 〇 ;22, used to make ammonia, carbon dicarbonate, fluorocarbon, or R medium evaporation; and the refrigerant _ Μ ί, cold-cooled cold -24, and cold _ _ _ 25 吏 configuration On _ Road 26. Therefore, the refrigerant-surface is connected to the surface of the ^^= Γϋ Γϋ 以 to send, Wei, condense and swell _ ring. In detail, in the secret device 22, the first pipe section U is provided, and the refrigerant is transferred from the fluid flowing through the first pipe section to extract heat and heat. Thereafter, the evaporated refrigerant is turned into a 6-temperature (four) gas phase by the compressor. Next, the refrigerant is sent to the condenser 2 = condensing by discharging heat energy. Further, adjacent to the condenser 24, a first & room 12 is provided to supply the condensed heat discharged during condensation to the second pipe-Lu = fluid. Then, the condensed refrigerant passes through the expansion valve 25 and is cooled under reduced pressure. s j During the operation of one cycle of the heat pump 21, heat is exhausted from the second pipe section u to the second pipe section 12. , , , and 201238647 [0019] At least 'thermal energy that can be extracted from the first piping section 11. Therefore, it is not necessary to change the heat energy U that is moved, and the device (shopping, etc.) is generated to be supplied to the second piping section and to obtain (4) ί 杂 energy system _" heating or cooling power is Q, nearby, 4 power consumption is ^ Temple, defined as Q / L) - generally in 3 ~ 5 open to ί: ίί far less than the generated thermal energy. As described above, the present embodiment shifts to the middle because the thermal energy 12 ′ taken from the first piping section 11 is less likely to cause waste of thermal energy. Moreover, the heat pump 2 can thus achieve less energy consumption. - In the case of cooling and heating, these devices have a fuel storage facility and the like. Among them, it is necessary to provide its n, and the kind of 附, which is strong. Therefore, the heat transfer loss when adding warm water or steam is large, and if it is added, it is disadvantageous in terms of energy efficiency and cost. Moreover, the i pump 52; 罟; ^ also has the problem of requiring a large amount of energy and a large environmental load. The heat transfer loss is minimized by the vicinity of the intermediate portion 11 of the younger brother 1 and the second interval f of the second match f. [0021] = and 'the heat pump 21 can be related to the heat absorption side and the heat removal side of the temperature ί ° = L, r is the heat absorption water temperature and the heat removal side of the water temperature is about the same ^ shape of the water temperature compared to the heat absorption side of the water In the case where the temperature is high, it is also possible to carry out heat transfer = „to cold water, etc., to supply steam (4) when it is hot. This type of day, due to the use of heat pump 21, is not limited to = | between η and 2 The temperature of the piping section 12 can be carried out in the required amount. [8] The form of the source of the 201238647 source can be exemplified by the use of air or external water as heat to extract heat energy that can absorb heat from the air. The air is twisted. However, in the case of the if g interval 12, the second piping section 12 ^ can be performed. When the working gas becomes low temperature, the suction efficiency of the number pump is lowered, and the pumping capacity (performance coefficient) is lowered. Heat will have to increase the capacity of the heat pump first. When the operation is inflated under the hunger, the heat pump capacity (performance coefficient) decreases in the county. ^' The sample must first be cooled to the capacity of the heat pump n function air. . c is below, and = empty is = for defrost, 戎 裒 裒 裒 - 罢 罢 罢 罢 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 十 成本 成本 成本 成本 成本 成本When using [0023] or external water (sea water, ground water, sewage, etc.) as a heat source, it will also cause problems. In the case of external water, the temperature changes are not as large as air, and the temperature of = is relatively stable, but it is still affected by temperature changes. j吏 4 Water 2 ’ (4) Produces a large amount of drainage, so it may also require a large number of instruments or for processing. When it is discharged as sewage, its cost will also be required. ^, in the case of a large amount of external water, there will be restrictions on the location. Moreover, in the case of using sea water, scale measures, salt damage, and corrosion measures are required. Further, [0024] Moreover, the heat utilization mode in which one of the heat absorption or the heat removal is performed by using an external heat source is broadly different from a conventional boiler or cooling tower.埶 The efficiency of the pump itself is high. Therefore, compared with the boiler or the cooling tower, the cost of electricity and the like can be suppressed. On the other hand, in order to cope with the annual load change, there is a problem that the load of the crucible peak is too large, etc., in the water treatment system: "Stomach is practical. [0025] Relative to this In the embodiment, the heat transfer is performed inside the water system where the temperature of the heat source is stable. Therefore, it is difficult to be affected by the external environment. The temperature is limited, and the temperature variation is limited. Therefore, the external heat source is used. To adjust the excessive and insufficient heat. The _ of the flat heat source is only at the minimum, and as far as possible (four) 纟 = $ to make the external movement, because [〇 〇 = in the conventional technology, economic and stable temperature control can be carried out Fig. 2 also shows the same system as Fig. 2. The first intermediate circuit is provided between the present embodiment 11 and the heat pump 21. The heat absorption of the θ officer's section η is transmitted to the heat (4). In the second state, a second intermediate circuit 16 is provided between the second heat pump 21 for reaching the second pipe section 12. Thus, by setting the intermediate circuit b16 and the heat pump 21, the setting position is limited. That is, Yu Yu, Temple I tempered 11 or In the case of the second piping section 12, the g6 pipe piping area ϊίϊί finds many (4) devices with large losses, so it is extremely important to suppress the technology. In the example of Fig. 2, as long as the distance between the first and second piping sections is The p device! is connected to the second device 2, the third device 3, and the first blade 1, and the first and second pipe sections u and 12 are connected to each other, and the intermediate circuits 15 and 16 having small losses are connected, because (4); ; between the H, the pressure f / member ^ and 'the heat system 21 away from the first piping interval 卩 (2) 2 intermediate circuit 16 can also be set to only one of them, or according to the j circuit 15, 16 double, triple In addition, the use is not particularly limited, and it is not necessary to use a corrosive "shell. If the intermediate circuit 15, 16 is filled with 3; the scale flow efficiently carries heat. The charge C〇2' then she In the case of filling water, the embodiment can be described as follows: Fig. 3 201238647 2, the 5th and 6th devices 5, 6, the third pipe section heat connection section, etc., and the design 1 and the third piping section U, 13 suction 2 = the inter-bed environment loop 15. As shown in Fig. 4, the water treatment system includes the above configuration, g includes The following part is designed to circulate the fluid: the second intermediate portion of the seventh and fourth devices and the second and fourth portions of the device that are adjacent to each other. 12, 14 for heat removal. [0028] As shown in the figure, the piping section to be carried out is limited to the crucible or the heat-dissipating side, and a plurality of sections may be provided. That is, the heat-absorbing piping section and the heat-distributing section may also be singular to singular and singular pairs. Any combination of a complex number, a complex number, and a complex number, and a complex number. The position of the heat exhaust pipe is closed or (4) heat, etc., * The intermediate circuit and the plural heat pump are set in the water treatment system. [0029] Regarding the compression capacity of the heat pump 21, generally, the necessary compression capacity Cc of the heat absorption 1 (cooling) in the heat absorption piping section and the necessary compression capacity CH of the heat generation (heating) in response to the heat exhaust piping section are not Will be consistent, decided to match either. Specifically, the following four forms are mentioned. /, (Form i) cH > cc, and the heat-dissipating (heating) side is used to set the compression capacity to Ch. At this time, 'the endothermic (cooling) in the heat-absorbing piping section is excessive, so the heat-absorbing piping section is heated; or a part of the heat energy is taken from the heat-absorbing piping section, and the remaining heat energy is taken from outside the system (for example, heat energy is extracted from the surrounding air, The ambient air is cooled so that the endothermic (cooling) in the endothermic piping section is not excessive. In other words, this technique can also be said to discharge excess cooling energy out of the system. (Form 2) CH > Cc ' and the endothermic (cooling) side is used to set the compression capacity to Cc. At this time, since the heat removal (heating) in the heat exhaust pipe section is insufficient, the heat exhaust pipe section is additionally heated. (Form 3) CH < Cc ' and the heat-dissipating (heating) side is used to set the compression capacity to cH. At this time, since the endothermic (cooling) in the heat absorbing piping section is insufficient, the heat is removed from the π 201238647 endothermic piping section in an additional manner. At this time (formation between the tenth: # ^ between the heat (heating) is excessive, so the heating energy from the heat exhaust piping area is discharged to the outside of the system. Piping, = 2 pairs of heat pipe or heat exchange heat exchange Here, for the system of the $f water treatment system, the 外 ΛΧ ΛΧ ΛΧ 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 参照 排 排 排 排 排 排 排 排 排 排 排 排 排 排 排 排 排Excessive heat absorption (cooling) [0031] In the secret, in order to reduce the heat capacity from the heat system 21 to the first piping 12, the pump 21 is the same as the pump, and the heater is used. The heat system is used. The force is q 为 ϋ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,言, 埶 quantity Qm phase ί ί ^ ^ 5 ΓΛ Γ * * * * * * * * * * q q I I q q q q q I I I I I I I I I I I I Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q And water (4) 纤 撷 k ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 003 003 003 003 003 003 003 003 003 003 003 003 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 热Hot 1 QC1, Asian Heat 1 (3) The discharge is made to the second piping room 12. Among them, the amount of heat Qm from the end to the second piping 12 is the desired amount of heat = lb ^ weeks, and the air is subjected to the heat Qa and the first piping section. Take the heat Q2 which is the difference between the two, and supply it to the second pipe i2. In other words, the heat from the first pipe section 11 and the atmosphere 'requires' Ιίίί pump 27 ', therefore, from a cost point of view, Advantageous 2 [0033] The pump 21 can be of the thermoelectric type in addition to the vapor compression type. Fig. 7 shows an embodiment of the electronic heat system 21, which is the same as the xenon gas. The compression heat pump 21 is replaced by a thermoelectric heat pump, and the basin is therefore 21 years old. Please refer to the above description for the description of the heat exchanger. The heat pump is a heat pump with a principle of 7L (Peltier). The two-body 29 and the n-type semiconductor 3G-based transmission electrode 33 are connected to each other to form an endothermic phenomenon, and the junction-type thermal phenomenon occurs in the n-type semiconductor. The p-type semiconductor 29 and the n-type semiconductor 3 are associated with Mao Shengzheng 31. i piping section U side, and p-type turning n-turning two = second piping section 12 side. Figure 3 shows three ^ knives 32 ^ semiconductor 3 0, but more pi 3 can be arranged in a staggered manner. In addition, hot electrons [0034] In addition, although the illustration is omitted, chemical formulas and fruits can be used. For example, chemical formulas are filled with = The reaction chamber and the cold 13 connected to the reaction chamber through the communication tube are at the position adjacent to the reaction chamber, and the second chamber is at the position of the chamber. Anti-filled with calcium chloride _ water ",, ^ heat, money hydrated water traits into water and moved to the condensation chamber. The water vapor moving to the condensation chamber is detached, to the adjacent position The second piping section is 12. 7 and liquefied, and the heat is discharged [0035] Next, in order to apply the water of the heat pump 21 described above, the water treatment system of the water can be made of ultra-pure water, and various devices such as a drain recovery device ( The unit is configured to be in accordance with the required water quality of the pure water, the quality of the raw water or the water quality of the drainage, etc. The following examples are still in the same example. The same applies to the water treatment system of all the embodiments of the present invention. Also, Ding, 歹可和依[0036] ' 〇 Figure 8 shows the production of ultrapure water in the water treatment system. Although the temperature of the water will be set according to the set position or season ^ 5 C, when pure water is produced, The raw water is passed to the turbid film. After passing through the activated carbon tower 109, it is sent to the RO membrane device 110. The heating is performed for two reasons. The standard design temperature of the reverse osmosis membrane used is pit. _ _ Prevent the salt from the other C "quasi & count a temperature of + Hill, Yan 7 has sense to find the set point. In the RO membrane 奘 Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO ; from the RO points, and stored to the primary pure water tank 112. In order to regenerate the fat, the ion exchange device u heats the test chemical liquid and supplies it to the neutral acid waste liquid. In the middle of the road, I know you * Q, I stupid π 〒 spear groove 113 to make it cool. ',, and according to the need to ride the ship in the towel and slot 113 [0037] 201238647 raw ion exchange unit super (= carry on the gamma. Record the unprocessed point of the continuous cycle operation. At this time, the purity of the cycle: the temperature It is required to raise the person of the pure 3 pump f and so on. Then, the cooling point 119 is provided according to the use point on the side of the mouth. The second is in the siphoning device H4 into the si8^c- ^ -- ultrapure water for u Second, the middle of the branch from the pure water tank out of the high temperature device 122, the cylinder type high purification force; 121 after the temperature rise, through the ultraviolet oxidation using the point 125 stone recognition 1 〇〇 device 123 and ultrafiltration membrane device 124, and then transported to the previous cooling Point temperature ultrapure water, in its return to the primary pure water tank 112 ion ΐ P ° 'Because of the cartridge high purifier device 123 and ultrafiltration, membrane device 曰 in the cartridge high purifier device 123 [0038ί Hot spot 121, in order to replace the heating point (2). Water at the Nazi. _ can be treated by the drain can be directly _5|Bu 4疋7 processing system outside the generator. Also, ultra-pure fine 8A gas: With the drainage treatment. The county is too (four) two observing neoplasms and aerobic microorganisms are 36 ~ 耽 (medium temperature range Another-side dish because 'can also be set to 30~35 °C must have the appropriate temperature for the pit to be around, so the line shows that only the 'drain heating to the best temperature of the aerobic treatment is 201238647 degrees' 20~3〇.(: Left and right. [0040] There is a heating point. In addition, the ammonia money is installed on the side of the lion population by 20~35. (: Left and right. The more the P is, the better the efficiency, and the optimal temperature is [0041] After the anaerobic treatment described above, after the temperature adjustment, the temperature of the water is not required to be adjusted. 地 θ 理 理 理 t t 四 四 四 四 四 四 四 四 四 四 四 四 四 四 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° The search for the heat energy absorbed by the heat pump [0042] can make the system f. The pure water such as pure water, the water used for the wafer cleaning is transferred to the ultraviolet oxidation device 10 After the hydrogen peroxide, the row (T〇C, t〇tal 〇_e | is used to cool the total organic carbon in the water, and then the organic water is removed in the activated carbon column 103 to be exchanged at the cold portion/point 102 to the exchange device 1G4. When UV oxidizes the component, it is transported to the ion, and the temperature rises sharply. Therefore, ^ 'sometimes The water retention amount is small, and the cooling point 102 is provided. The discharge port side of the material external oxidation device 1〇1 [0043] Fig. 9 shows the pure water explained from the device device described above and the drainage treatment device described in Fig. 8A. An example of manufacturing. With regard to each of these requirements, the second "冓 becomes a water treatment system 100 [0044]. The month, the above description. Figure ·, the surface of the water repair station (four) unified hot water sterilization 16 201238647 The process of the shape, which shows the following system, ion or magnesium ion, and subjected to activated carbon treatment ===== after 'filtering treatment and ultraviolet oxidation. Fig. 10A is an example of the raw m ΐϊ 水 water, which is connected to the hot water source isolated from the pipeline to connect the rr brain; the circuit shown in =====^ ΐ 供给 is supplied with hot water from the hot water source to end the treatment of the cerebral palsy Cool the hot water and drain it. Due to the inflow of the main cooling heat exchanger [0045] In Fig. 8A 1B, the heat exhaust piping section and the heat absorbing piping section 2 are shown in bold lines. However, as explained above, when the water treatment system is in normal operation, there are various discharge pipe sections and sands regardless of whether or not maintenance is performed. [0046] The water treatment system according to the first embodiment described above will be further described in detail by way of examples. 11A to 11C are schematic views showing a portion A of Fig. 9 cut and shown. Fig. 11A shows a case where the heat-dissipating pipe section and the heat-absorbing pipe section are added to the portion by the respective devices (e.g., the hot parent converter) according to the prior art. In the description towel of the town, the flow of the fluid in the heat pipe section is set to 1〇〇t/h (mouth/hour), the water temperature before heating is set to 288k, and the heating degree after heating is set to 298K; The flow rate of the fluid in the piping section was set to 1 〇〇t/h (collar/hour). The water temperature before cooling was set to 3 〇 3 K, and the temperature after cooling was set to 298 k. Further, the specific heat of water was set to 4.2 J/g.K. [0047] If the necessary energy is calculated under the above conditions, the necessary energy in the heat-dissipating piping section is about 1.17xl 〇 3kW, and the necessary energy in the heat-absorbing piping section is about 5 8xl 〇 2kW, 17 201238647 totaling about 1.8 gt; <103 kW of energy. [0048] FIGS. 11B and 11C show the use of a heat pump from a suction pump, 5:6 〇 according to the embodiment;

1 ^成如下之構成·以吸熱側的必要除熱量來決定H t ’並_2熱泵27(0中表記為贈) 將排熱側所不足的熱1献丨 分熱能。在此,關於熱泵21、27在, u Μ σ丨 能係數,係加熱時設為5,冷卻C〜25C^_内的性 【0049】 5 8xlt2^I2i 實施例1}’用來取得吸熱側之必要除孰量(約 5^8x10 kW)的必要壓縮能力約為146><1〇2娜 _=、·勺 會於排熱側取得約7.3xl〇2kW納排勒旦匕&縮此力’ 排熱量(約U㈣)的差異量:^ 熱泵的必要壓縮能力約為〇胸2娜,合; 要2.3=7的電能量。此為圖11A所示比較例(習知‘ 排敎,圖3UC的情形(實施例2) ’用來取得排敎側之必要 能力,會對吸熱側進行必kw。若以此壓縮 是將剩餘量使用於大氣冷卻。,因f上的除熱’但 相同,亦約為2.3xl〇2kW。▲要電月匕讀圖11B的情形 【0051】 冷卻時泵:J二形’使用熱泵進行加熱及 量、與冷卻_ ^増3的必要加熱 的必要壓縮能力約為2.3χ1〇2]^=熱^。由於加熱側之熱泵 力約為1.5xl〇2kW,於是入斗JI冷部f之熱系的必要壓縮能 車乂糾為有利,但相較於實施例,其結果仍是多_以上 18 201238647 的消耗能量。在此’將以上說明總結而顯示於表1 【0052】 操作 必要熱量丨kWl 消耗能量[kW] 比較例 加溫機 水之加溫 1167 1167 冷卻機 水之冷卻 583 583 合計 1750 操作 必要熱量[kWl cop 壓縮能力[kW] 參考例 熱泵 水之加溫 1167 ' 5 233 第2熱泵 水之冷卻 583 4 146 合計 379 貫施例1 熱泵 水之加溫 729 5 水之冷卻 583 4 146 第2熱泵 水之加溫 438 5 88 合計 233 實施例2 熱泵 水之加溫 1167 —α α 1 5 水之冷卻 583 233 (墙~ 外部冷卻 L-___.....-丨一 . 350 —般將熱果的熱循環設計成高溫狀態(冷凝時)與低溫狀 =、m的溫度差取較大值。其原因為^往之水加溫用熱泵的 鍋爐,而將其設計成與鍋爐同樣地排出高溫水。 般而言’於水處理线中,多將流通於内部之水的 rs於極端高溫或低溫。若是加溫 【0054】 此直:i成:交isr,增加壓縮機的壓縮功, 的散熱損失也變大。因此,冷媒的溫度差=必ί 【〇〇55】 第2實施形態係有馨於此種課題,提供能量效率高且可進行 19 201238647 穩定gif制的水處料、統及水處理方法。 態係中示:乍為熱泵2卜本實施形 熱配管區間)在熱泵===的字f2配管區間_ 亦。實^f中加以控制在上述溫度範園。 般係第2配管‘ΐ/:己厂係設計成减泵之出口側(-131之出,的水溫為行熱交換的部位 作動時,能量效率會_式地提高。田U於此種溫度條件下 【0057】 述,環的莫利爾線圖。如上 凝及膨脹的熱循環。且體而=,於^77媒接文条發、壓縮、冷 其高溫的流體進行熱&奐(“被加執冷媒:與較 ™^de:V^ 從外部流體擷取熱能=}°,: b的區間 加熱時的性能係數為如/w,上 =q c/w。因此w越小,性能係數越增加,且能量效率ib 【0058】 猶環ABCD對應於冷凝溫度與基 ,二對應於以往一般之較高的冷凝溫^度發溫相度對固於循環 w 2Qh,/W,,因此當冷凝溫产“古B士如f J,所不,由於Qh/ 同樣地,由於Qc/W >〇 円 時的性能係數下降。 崎QC/W^Qg/W,,因此#冷凝溫度 20 201238647 時的性能係數下降。 【0059】 度的月高^數’盡可能使冷凝溫度與蒸發溫 ^合六允+二有/、效放。再者,於水處理系統中,水的溫度 變動,而僅於至多和常溫附近溫度相差數十度 動1於是’藉由將溫度控制對象之水的目標水溫設定 溫附可抑制冷媒之冷凝溫度與蒸發溫度的差異。對於1 ^ is as follows: H t ' is determined by the necessary heat removal on the heat absorption side, and 2 heat pump 27 (indicated as a gift in 0) distributes heat 1 which is insufficient on the heat removal side. Here, regarding the heat pumps 21 and 27, the u Μ σ 丨 energy coefficient is set to 5 when heated, and the property in the cooling C 〜 25 C _ _ [0049] 5 8xlt2 ^ I2i Example 1} ' is used to obtain the heat absorbing side The necessary compression capacity (about 5^8x10 kW) is about 146><1〇2 Na_=,· spoon will get about 7.3xl〇2kW in the heat removal side. The difference between this force 'exhaust heat (about U (four)): ^ The necessary compression capacity of the heat pump is about 2 ,, 合; to 2.3 = 7 electric energy. This is the comparative example shown in Fig. 11A (the conventional 'discharge, the case of Fig. 3UC (Example 2)' is used to obtain the necessary ability of the drainage side, and the heat absorption side must be kw. If this compression is left The amount is used for atmospheric cooling. Because the heat removal on f is the same, it is also about 2.3xl 〇 2kW. ▲The situation is as follows: [0051] Cooling pump: J dimorphism 'heating with heat pump' The necessary compression capacity of the amount and the necessary heating for cooling _ ^ 増 3 is about 2.3 χ 1 〇 2] ^ = heat ^. Since the heat pumping force on the heating side is about 1.5 x 1 〇 2 kW, then the heat of the JI cold part f The necessary compression energy of the system is advantageous, but compared with the example, the result is still more energy consumption of the above-mentioned 18 201238647. Here, the above description is summarized and shown in Table 1 [0052] Operation necessary heat丨kWl Energy consumption [kW] Comparative example Heating machine water heating 1167 1167 Cooling machine water cooling 583 583 Total 1750 Operation necessary heat [kWl cop Compressibility [kW] Reference example Heat pump water heating 1167 ' 5 233 2 Heat pump water cooling 583 4 146 Total 379 Example 1 Heat pump Heating 729 5 Water cooling 583 4 146 2nd heat pump water heating 438 5 88 Total 233 Example 2 Heat pump water heating 1167 —α α 1 5 Water cooling 583 233 (Wall ~ External cooling L-___ .....-丨一. 350 The heat cycle of hot fruit is generally designed to be a high temperature state (during condensation) and the temperature difference between low temperature = m and m. The reason is that the water is heated. The boiler of the heat pump is designed to discharge high-temperature water in the same manner as the boiler. Generally speaking, in the water treatment line, the rs that will flow through the internal water are extremely high or low. If it is heated [0054] :i into: paying isr, increasing the compression work of the compressor, the heat loss is also increased. Therefore, the temperature difference of the refrigerant = ί55 [ 第55] The second embodiment is fragrant to provide energy efficiency. High and can be used to carry out the water treatment, water treatment and water treatment methods of the 2012 2012 647 stable gif system. The state system shows: 乍 is the heat pump 2, the implementation of the heat pipe section) in the heat pump === word f2 piping section _ also. The actual ^f is controlled in the above temperature range. The second type of piping 'ΐ/: the factory is designed When the outlet temperature of the pump (the outlet of -131 is operated by the heat exchange part, the energy efficiency will increase _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The above thermal cycle of condensation and expansion. And the body =, in the ^ 77 medium to send the article, compress, cold the high temperature of the fluid for heat & 奂 ("added refrigerant: and TM^de: V ^ The coefficient of performance when heating from the external fluid =}°, : b is such as /w, upper = qc/w. Therefore, the smaller the w, the higher the coefficient of performance, and the energy efficiency ib [0058] The helium ring ABCD corresponds to the condensation temperature and the base, and the second corresponds to the previous higher condensing temperature, the temperature phase is fixed to the cycle w 2Qh , /W,, therefore, when the condensing temperature production "the ancient B Shi as f J, no, because Qh / Similarly, due to Qc / W > 〇円 performance coefficient decreased. Saki QC / W ^ Qg / W, Therefore, the coefficient of performance of the #condensing temperature 20 201238647 is decreased. [0059] The monthly high degree of the degree 'as much as possible to make the condensation temperature and the evaporation temperature fit six + two have / effect. In addition, in the water treatment system In the middle, the temperature of the water fluctuates, and only the temperature difference between the temperature and the ambient temperature is several tens of degrees. Thus, the difference between the condensation temperature and the evaporation temperature of the refrigerant can be suppressed by setting the target water temperature of the water to be controlled by the temperature. for

ϊΐίίΐ處(例如R0膜裝置),—般多將其溫度控制在 工、乾圍。因此’若將特定部位的水溫調整成20〜35°C 制冷凝溫度與蒸發溫度的差異,而得以進行能量效 【0060】 壓縮加2充如下。於一般的水加溫或熱水供給用蒸氣 、人…泵中’厂、源大致區分為水與空氣。熱源為水時,主要以 ^ ^對,’熱源為空氣時,以外氣為對象。水的情形自不待言, 、:更ί外氣的情形’也有内含水分在〇。。附近結束之虞。因此,冷 =度會較〇c為高’以致無法實際上使線处沿縱軸方向而往下 ^移於此,線CD(C,D,)的位置係依壓縮機的壓縮功而 區間12在蒸氣壓縮式熱泵之出口側的水溫設 ΪΞΐ自:^ 可使冷凝溫度降低’絲便能減少壓縮機 ,ι°ιΓ將熱泵的性能係數提高,而提升運轉效率。 ριιΛ將^熱^官區間11在熱栗21之入口侧(—般係、第1配管區 ί設進行熱交換的部位132之人口側)的溫 22 可’”、、泵1之冷凝溫度與蒸發溫度的差異有時 會變小,可進一步提高能量效率。 ^ ^ 【0062】 上述’無論是圖1〜6所示的任—實施形態,以第2配管區 =(或14)為溫度控制對象配管時,均只要將第2配管區 14)中之與蒸氣壓縮式熱泵進行熱 31 = 201238647 以設定為20〜35°C即可。 【0063】 =,即,是設置中間迴路的情形,使用於中間迴路的介質 溫’中間迴路的散熱損失大。但是,本實施形態中,由 縮式熱泵之出π側的溫度為2G〜饥的低溫,因此介質 的>JDL度也可抑制得較低,能夠抑制散熱損失。 【0064】 …、、 一斗接ί ;_對於依!!上所說明之第2實施形態的水處理祕,進 之明。如圖13所示’利用具有輸出為l,5kw 在ς氣泵’將流經第2配管區間12的水加熱成 ίίίΐΐ 的溫度為2G〜35°c。本實施例中,未 、:為2'。「和沾ί:虱ί熱源。加熱對象水之熱泵入口側的水 ^=為23t °藉由改變該加熱對象水的流 耗能量及性能係數(COP)如下。t各机里的出口側水溫、4 【0065】 [表2]Ϊΐίίΐ (such as the R0 membrane device), as usual, control its temperature in the work and dry circumference. Therefore, if the water temperature at a specific portion is adjusted to a difference between the condensation temperature and the evaporation temperature of 20 to 35 ° C, the energy efficiency can be performed. [0060] The compression plus 2 charge is as follows. In the general water heating or hot water supply steam, the human ... pump, the factory, the source is roughly divided into water and air. When the heat source is water, it is mainly ^ ^, and when the heat source is air, the outside air is the object. The situation of water is self-evident, and: the situation of being more suffocating is also in the water. . The end of the neighborhood. Therefore, the cold=degree will be higher than 〇c so that the line cannot be actually moved downward along the longitudinal axis. The position of the line CD(C, D,) depends on the compression work of the compressor. 12 The water temperature at the outlet side of the vapor compression heat pump is set from: ^ The condensing temperature can be lowered. 'The wire can reduce the compressor, and the performance coefficient of the heat pump is increased to improve the operating efficiency. ρ Λ Λ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The difference in evaporation temperature may be small, and the energy efficiency may be further improved. ^ ^ [0062] The above-described "any embodiment shown in Figs. 1 to 6 is controlled by the second piping area = (or 14). When the pipe is to be piped, it is only necessary to set the heat in the second pipe section 14) to the vapor compression heat pump 31 = 201238647 to be 20 to 35 ° C. [0063] = that is, the intermediate circuit is provided. The medium temperature of the intermediate circuit has a large heat loss in the intermediate circuit. However, in the present embodiment, the temperature on the π side of the heat pump is 2 G to the low temperature of the hunger, so that the JDL of the medium can be suppressed. Lower, it is possible to suppress heat loss. [0064] ...,, and a bucket, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ For l, 5kw in the helium pump 'heats the water flowing through the second piping section 12 to ίίίΐΐ The temperature is 2G to 35° C. In the present embodiment, the following is: 2'. “And the heat source of the heat pump. The water on the inlet side of the heat pump for heating the object water is 23t ° by changing the heating object. The water consumption energy and coefficient of performance (COP) of water are as follows. t The outlet side water temperature in each machine, 4 [0065] [Table 2]

習=:中2將^Μ 侧的水溫設定得 較高。相對於此,當把加執對象水出 低時,COP顯著獲得改善。、若在^熟f出口側的水溫設定得較 特別高的COP。此可認為俦、由於=5°c的溫度範圍内,可得到 、、皿度與蒸發溫度的差異已變 22 201238647 【0066】 (第3實施形態) 自以往,對於水處理系統内所流通的待處理水等進 产 整時’一般會設置冷卻塔或鍋爐等設備。例如,使用鍋爐進行加 熱時,利用所投入鍋爐的熱量,製造出較加熱對象部位高溫的溫 水或蒸氣’將熱介質即溫水或蒸氣所具有的熱能予以供給到加熱 對象部位。使用冷卻塔進行冷卻時,則製造出較冷卻^部位& 溫的冷卻水’從冷卻對象部位擷取熱能。 — 【0067】 於水處理系統的情形,將多數部位控制在接近常溫的溫度, 例如以锅爐所製得之溫水或蒸氣的溫度遠較水處理系統内的水严 為高。因此,以配管輪送溫水或蒸氣時,可能產生乂量的散熱^ 失。 ’ ' 【0068】 熱泵則不同於鍋爐等,無須將熱介質加熱到過度的高溫,因 此作為水處理系統的溫度調整機構,實有其效益。又,相較於鍋 爐导,熱泵的此I效率南,也容易抑制消耗電力。但是,水處理 系統内的水溫會由於例如一天晝夜間之溫度變化等各種原因,而 有所變動。對於此點,必須將水處理系統内的各種裝置構成為在 最佳水溫範圍内進行作動,利用熱泵來適當因應溫度條件的變 動。至於使用點所要求的溫度範圍,也.依照使用用途而加以嚴密 地管理。若使得熱泵有過剩的容量(壓縮容量),雖可缓和因溫度條 件變動所產生的影響,但是對成本有巨大的影塑。 【0069】 " 第3〜第6實施形滤中,提供容易抑制熱泵容量增加的水處理 系統、及使用該系統的水處理方法。 【_】 夢照圖14A,水處,系統201a具有:將互相接鄰之複數褒置 Dl、D2連接的第1配官區間2〇2(吸熱配管區間)、與第}配管區 23 201238647 間202之-部分熱性連接的熱泵2〇3、第!熱儲存機構綱、及 1分流管205。第i配管關2〇2為水處理系統内之須要冷卻= 意配官區間。第1配管區間202通常設計成水流通其間,但 設計成含有水以外之液體或氣體的任意流體流通盆間。 【0071】 八 水處理系統201a還具有:將互相接鄰之複數褒置 接的第2配管區間222(排熱配管區間)、第2熱儲存機構— 第2分流管225。第2配管區間222也設計成水流通其間。 203於第1配管區間202的連接部206與第1配管區間2〇2埶性 接,可與流經第1配管區間202的水之間進行熱量的授受‘;;又, 熱泵203也與第2配管區間222的一部分於連接部226熱性連接, 可與流經第2配管區間222的水之間進行熱量的授受。因此,可 透過熱泵203’於第1配管區間202與第2配管區間222之 熱量的授受。 【0072】 一本實施形態中,熱泵203採用蒸氣壓縮式。圖14B係圖14八 所示之熱泵203的部分詳細圖。熱泵203包含:蒸發器2〇3a ,用 ,使得氨二二碳化碳、氟龍類、或以R410A為首之氟龍替代品類 等的冷媒蒸發;以及將冷媒壓縮的壓縮機2〇3b、使冷媒冷凝的冷 凝益203c、及使冷媒膨脹的膨脹閥2〇3d。該等要件係以此順序配 置於,迴路203e上。冷媒一面於閉迴路2〇3e内進行循環,'一面 接受蒸發、壓縮、冷凝及膨脹的熱循環。詳言之,蒸發器於 連接部206與第1配管區間202熱性連接,利用冷媒蒸發時的氣 化熱’從流經第1配管區間202的水擷取熱能QC。其彳1,已蒸發 的冷媒由壓縮機203b進行壓縮,而成為高溫高壓的氣相。接著, 將冷媒輸送到冷凝器203c。冷凝器203c於連接部226與第2配管 區=222熱性連接’將冷凝時所排放的冷凝熱QH供給到流經第2 配官區間222的水。再來,已冷凝的冷媒通過膨脹閥2〇兇而減壓 冷卻。如此於熱泵203之一個循環的運轉間,進行第丨配管區間 202的冷卻與第2配管區間222的加熱。 24 201238647 • 【0073】 2〇3除了蒸氣壓縮式外,也可使用敎電子式、介與4 吸附式或吸收式的熱泵。 叩:、'、包十式、化學式、 【0074】 、 栗』區間202中之比起與熱 存機構204的下游側,設有第!流量 2 ϋτ211,可使用—般的流量調_ 八古第管205於連接部施的上游側從第1配奸門2⑺ 义丨0又有二方閥208 ’可對於洁至丨丨笛1耐A广ηβ =流官205之水的流量比進行調整。又在 與弟1配管區間202的人产泣罟—乜了在第1 /刀流官205 機構2!卜 的口一5又置二方閥’以取代第1流量調整 【0076】 於第1配管區間202中之比起盥第1分、、L人▲ 下游側,設有第!溫度感測器20f:、第1刀^ 205的合流部為 【0077】 娜第^制部210依第1溫度感測器209所測定之水的ί Τ2 調整二方閥的開度,而對於流入第的/皿度Τ2, =’並且調整第!流量調整機“二;= 機構204流出之水的流量進行控制。 崎於攸第1熱儲存 【0078】 i J 2儲存機構224設置於第2配管區間222中之比起絲 —部分。第2熱儲存機構224與第之水的至少 存槽。在第2熱儲存:構⑦Γί 娜機構⑶。作為第2流量調整機細,二 25 201238647 ..調整閥。 【0079】 第2分流管225於連接部226的上游側從第2配管區間222 分支,並於第2熱儲存機構224的下游側與第2配管區間222合 流。在分歧部設有三方閥228,可對於流到第2配管區間222與^ 2分流管225之水的流量比進行調整。又,也可在第2分流管225 與第2配管區間222的合流部設置三方閥,以取代第2流量續替 機構231。 ^ 【0080】 於第2配管區間222中之比起與第2分流管225的合流部為 下游側,設有第2溫度感測器229。 【0081】 ,第2控制部23〇依第2溫度感測器229所測定之水的溫度 T2’,而對於流入第2分流管225之水的流量、及從第2熱 & 構=24流出之水的流量進行控制。又,第2控制部23〇可構成為 與第1控制部210共通的控制部。 【0082】 f,,針對以上所述之水處理系統2〇1&的作動進行說明。在 t入第簡單實例,舉出如下之情形:溫度τι,的水以固定流量 區間222,於三方閥228分支成第2配管區間222 3 225 ’然後合流而供給作溫度T2,的溫水。其中,將Xi =: Medium 2 sets the water temperature on the side of the Μ to be higher. On the other hand, when the water of the adhering object is lowered, the COP is remarkably improved. If the water temperature on the exit side of the ^ cooked f is set to a particularly high COP. Therefore, it can be considered that the difference between the degree of the dish and the evaporation temperature is obtained in the temperature range of =5 ° C. 201238647 [Third embodiment] Since the circulation of the water treatment system When the water to be treated enters the production, the equipment such as a cooling tower or a boiler is generally installed. For example, when heating is performed using a boiler, warm water or steam which is higher in temperature than the portion to be heated is produced by the heat of the boiler to be supplied. 'The heat energy of the heat medium, i.e., warm water or steam, is supplied to the heating target portion. When cooling is performed using a cooling tower, the cooling water which is cooled and cooled is extracted from the cooling target portion. — [0067] In the case of a water treatment system, most of the parts are controlled to a temperature close to normal temperature, for example, the temperature of the warm water or steam produced by the boiler is much higher than the water in the water treatment system. Therefore, when piping water is supplied with warm water or steam, heat loss of the amount of heat may be generated. ’ ' [0068] The heat pump is different from the boiler and so on. It does not need to heat the heat medium to excessively high temperature. Therefore, it is effective as a temperature adjustment mechanism for the water treatment system. Moreover, compared with the boiler guide, the I efficiency of the heat pump is south, and it is easy to suppress power consumption. However, the temperature of the water in the water treatment system may vary due to various reasons such as temperature changes during the day and night. At this point, it is necessary to construct various devices in the water treatment system to operate within the optimum water temperature range, and use a heat pump to appropriately respond to changes in temperature conditions. As for the temperature range required for the point of use, it is also strictly managed according to the intended use. If the heat pump has an excess capacity (compression capacity), the influence due to temperature fluctuations can be alleviated, but the cost is greatly affected. [0069] In the third to sixth embodiments, a water treatment system that easily suppresses an increase in heat pump capacity and a water treatment method using the system are provided. [_] Dream Figure 14A, water system, system 201a has: a first officer section 2〇2 (endothermic piping section) connected to a plurality of adjacent nodes D1 and D2, and a piping area 23 201238647 202 - part of the heat pump 2 〇 3, the first! Thermal storage mechanism, and 1 shunt tube 205. The i-pipe connection 2〇2 is required for cooling in the water treatment system. The first piping section 202 is generally designed to allow water to flow therebetween, but is designed to contain any fluid flowing between the basins other than water or gas. The eighth water treatment system 201a further includes a second piping section 222 (heat exhaust piping section) and a second heat storage mechanism - a second bypass pipe 225 which are disposed adjacent to each other. The second piping section 222 is also designed to allow water to flow therebetween. 203 is connected to the first pipe section 2〇2 in the connection portion 206 of the first pipe section 202, and can exchange heat with the water flowing through the first pipe section 202; and the heat pump 203 is also A part of the piping section 222 is thermally connected to the connecting portion 226, and heat can be transferred between the water flowing through the second piping section 222. Therefore, the heat transfer from the first pipe section 202 and the second pipe section 222 can be transmitted through the heat pump 203'. In one embodiment, the heat pump 203 is of a vapor compression type. Fig. 14B is a partial detailed view of the heat pump 203 shown in Fig. 14B. The heat pump 203 includes: an evaporator 2〇3a for evaporating a refrigerant such as ammonia carbon dicarbonate, a fluorocarbon, or a fluorolong substitute such as R410A; and a compressor 2〇3b for compressing the refrigerant, and a refrigerant Condensation condensation benefit 203c, and expansion valve 2〇3d for expanding the refrigerant. These elements are placed in this order on circuit 203e. The refrigerant circulates in the closed circuit 2〇3e, and receives a thermal cycle of evaporation, compression, condensation, and expansion. In detail, the evaporator is thermally connected to the first pipe section 202 at the connection portion 206, and the heat of heat QC is extracted from the water flowing through the first pipe section 202 by the heat of vaporization at the time of evaporation of the refrigerant. Further, the evaporated refrigerant is compressed by the compressor 203b to become a high-temperature high-pressure gas phase. Next, the refrigerant is sent to the condenser 203c. The condenser 203c is thermally connected to the second piping area = 222 at the connecting portion 226 to supply the condensation heat QH discharged during the condensation to the water flowing through the second dispensing section 222. Further, the condensed refrigerant is cooled by the expansion valve 2 under reduced pressure. In the operation of one cycle of the heat pump 203, the cooling of the second piping section 202 and the heating of the second piping section 222 are performed. 24 201238647 • 【0073】 In addition to the vapor compression type, it is also possible to use a 敎 electronic type, a 4 adsorption type or an absorption type heat pump.叩:, ', package 10, chemical formula, [0074], and chestnut section 202 are compared with the downstream side of the heat storage mechanism 204, and the first flow rate 2 ϋτ211 is provided, and the flow rate adjustment can be used. The first tube 205 is adjusted from the first tying door 2 (7) to the upstream side of the connecting portion, and the two-way valve 208 ' can be adjusted for the flow ratio of the water to the squid 1 . In addition, the person who is in the piping section 202 with the brother 1 has a weeping sputum - 乜 在 第 第 第 第 第 第 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 205 007 007 007 007 In the piping section 202, the first point and the lower side of the L person ▲ are provided, and the first is provided! The temperature sensor 20f: the junction of the first blade 205 is [0077] The phase control unit 210 adjusts the opening degree of the two valves according to the water 测定 2 measured by the first temperature sensor 209, and Flow into the first / degree Τ 2, = ' and adjust the second! Flow adjustment machine "two; = the flow of water flowing out of the mechanism 204 to control. Saki Yuki first heat storage [0078] i J 2 storage mechanism 224 is set at 2 in the piping section 222, the filament-part portion. The second heat storage mechanism 224 and at least the storage tank of the first water. In the second heat storage: the structure 7(3). As the second flow rate adjusting machine, the second 25 201238647 The second branch pipe 225 branches from the second pipe section 222 on the upstream side of the connection portion 226, and merges with the second pipe section 222 on the downstream side of the second heat storage mechanism 224. The three-way valve 228 is provided to adjust the flow rate ratio of the water flowing to the second pipe section 222 and the second branch pipe 225. Alternatively, the three-way pipe 225 and the second pipe section 222 may be provided in a three-way flow. The valve replaces the second flow rate renewal mechanism 231. ^ [0080] The comparison between the second piping section 222 and the second The merging portion of the flow tube 225 is on the downstream side, and the second temperature sensor 229 is provided. [0081] The second control unit 23 depends on the temperature T2' of the water measured by the second temperature sensor 229, and flows in. The flow rate of the water in the second shunt tube 225 and the flow rate of the water flowing out from the second heat & configuration = 24 are controlled. Further, the second control unit 23A can be configured as a control unit common to the first control unit 210. [0082] f, the operation of the water treatment system 2〇1& described above is explained. In the simple example of t, the following is the case: the water of the temperature τι is in the fixed flow interval 222, in the three-way valve 228 branches into a second piping section 222 3 225 'and then merges to supply warm water as temperature T2.

ϋ著時定的目,度,相對於此,將溫度T1,假定 ^ jtm ^ 交動又,將彳文熱泵203所接受的供給熱量QH ^ 224 201a ^ 【0083】 一 管區間222 t而^ ’先將二方闕228調整成流入第2配 單化,假定為、H,L 比率成為既定值。在此,為求簡 構224之旦第2分流管225。又,先將第2熱儲存機 机里凋整機構231設定為不進行流量調整的狀態, 26 201238647 '亦即水的全量直接通過第2熱儲存機構224的狀能。秋後,將敎 泵203啟動,以溫度T1,供給水流,並 ^ ^ ^ 於出口侧之水的溫度T2,進行連續測定。用弟2 /皿度威測益229對 【0084】 於溫度T2,超過目標溫度的情形,進行以下摔作。首 二方閥=28,使水流的-部分流入第2分流管225。但 錄 此,只疋流經第2配管區間222之水的 $ = 流而_溫度T2,,故溫心: 用第2 ‘,,、儲存機構224之出口側所設有的第2流 縮減第2熱儲存機構224之出口側的流量 整機構況的水、與流經第2分流管225的水二 到與所供給至合流水之總熱量減少者相同的效果,能^ ^ ,低’且將溫度T2’控制為目標溫度。進行以上操作的結= 第2熱儲存機構224儲存溫水即熱量。 ’、' ° ; 【0085】 ’、、、 來3爾^溫度Τ2,從目標溫度下降的情形進行探討。於此情 Τ2’_在目標溫度所需的熱量不^,因此控 旦辦力機f 231 ’而使得從第2熱儲存機構224流出的流 产ΐ 回復到目標溫度時,繼續維持此狀態;温 Ϊ的、、上度時,則進一步使得從第2熱儲存機構创流 ^形:此意味著將第2熱儲存麟224 夂 補足不足部分的熱量。如此可將從μ 2Q 二 以上白量^給至水流,以將溫度T2,控制為目^^ 圖15Α、15Β係示意地顯示以上所說明的事項。15八 ιΤηΐ^ϊΖ^ 5 ® 15Β 2 内之狐水儲存I的關係。於溫度71,較高的情 言^儲存於第2熱儲存機構224之溫水的量增加(ί 儲存熱里)。亦即,第2熱儲存機構224能將熱泵203鱼第2 1 Ρ 27 201238647 區間222之間可進行熱交換的熱量之一 依溫度T1,的不㈤,也會有將可進行熱交^存,而且 情形。當溫度ΤΓ變低時,由於加熱量不足° =暫時儲存的 存機構224之溫水的量減少(即消耗熱量)。 诸存於第2熱儲 [0087] ’’、、里 對於第1配管區間202的溫度T2,也 口側的溫度Ti較低時,將因冷卻而溫度 制。入 2〇4所儲存的低溫水,以將水冷卻到所希望巧,機構 構204能將熱泵203與第i配管 g 存機 量之至少一部分(即-部分或全部)加以暫時父換的熱 Γ取 1實严存者為冷水’該冷水可從流經第1配管區間 此’第1熱儲存軸4可謂係儲存有用來i: 【_】 如本實施形態般,將在水處理系統内從一條配 =該熱能將其他配管區間加熱的方式,加以與厶存以 二下糟此可大幅提高能量效率。針對此點,參照圖16A〜16F說明 【0089】 令,左側係顯示須要加熱之配管Taking the time and degree of the time, in contrast, the temperature T1 is assumed to be ^jtm ^, and the heat supply QH ^ 224 201a ^ [0083] received by the heat pump 203 is used. 'The two squares 228 are first adjusted to flow into the second distribution, and the ratio of H, L is assumed to be a predetermined value. Here, the second shunt tube 225 is simplified for the purpose of 224. Further, the second heat storage machine cleaning mechanism 231 is first set to a state in which the flow rate adjustment is not performed, and 26 201238647 'that is, the total amount of water directly passes through the shape of the second heat storage mechanism 224. After the autumn, the pump 203 is started, and the continuous measurement is carried out at a temperature T1, a water supply, and a temperature T2 of the water on the outlet side. Using the brother 2 / dish to measure 229 pairs [0084] At the temperature T2, exceed the target temperature, the following fall. The first two square valves = 28, so that the - part of the water flow flows into the second shunt tube 225. However, it is recorded that only the water flowing through the second piping section 222 has a flow rate of _ _ temperature T2, so the temperament: with the second ',, the second flow reduction of the outlet side of the storage mechanism 224 The water in the flow rate of the second heat storage mechanism 224 on the outlet side and the water flowing through the second branch pipe 225 have the same effect as the total heat loss to the combined water, and can be low. And the temperature T2' is controlled to the target temperature. The junction that performs the above operation = the second heat storage mechanism 224 stores warm water, that is, heat. ', ' ° ; [0085] ‘,,, and 3 ^ ^ temperature Τ 2, from the situation where the target temperature drops. In this case, 2'_the heat required at the target temperature is not enough, so the control unit f 231 ' is such that when the aborted 流出 flowing out of the second heat storage mechanism 224 is returned to the target temperature, the state is maintained; In the case of Ϊ, , the upper heat storage mechanism is further created by the second heat storage mechanism: this means that the second heat storage lining 224 夂 fills up the insufficient heat. In this way, the white amount of μ 2Q or more can be supplied to the water flow, and the temperature T2 can be controlled to be the same as that shown in the figure. 15 eight ιΤηΐ^ϊΖ^ 5 ® 15Β 2 The relationship between the fox water storage I. At a temperature of 71, the higher the amount of warm water stored in the second heat storage mechanism 224 is increased (in the heat of storage). In other words, the second heat storage mechanism 224 can heat one of the heat exchangeable between the heat pump 203 and the second portion of the heat exchanger 203. The heat exchange can be performed according to the temperature T1. And the situation. When the temperature enthalpy becomes low, the amount of warm water in the storage mechanism 224 is temporarily reduced (i.e., heat consumption) due to insufficient heating amount. When the temperature T2 of the first piping section 202 is lower than the temperature T2 of the first piping section 202, the temperature is lowered by cooling. The low temperature water stored in 2〇4 is used to cool the water to the desired level, and the mechanism 204 can temporarily heat the heat pump 203 and at least a part of the storage capacity of the i-th pipe g (ie, part or all). 1 is a cold water. The cold water can flow from the first piping section. The first thermal storage shaft 4 can be stored as i: [_] as in the present embodiment, it will be in the water treatment system. It is possible to greatly improve the energy efficiency by heating and cooling the other piping sections from one of the heat exchangers. In this regard, referring to Figs. 16A to 16F, the left side shows the piping to be heated.

Hi ft須要冷卻之配管區間的必要吸熱熱量。ί求簡、單、 著時間而變動,必要吸熱熱量則設為固定而 …可^=;Λ。拉處理純中之必要加熱熱量變動的原因而 ° 了舉出原水溫度在晝夜間的變動等。 【0090】 ㈣圖係顯示配合必要加熱熱量之最健而構成熱泵203的 二對iti!7對象擷取熱量qc,並利用熱泵加以移送,而對 i詈it;: iqh’因此相較於個別進行冷卻及加熱的情形, 月b •…阿。但是此例中’由於吸熱熱量QC較必要吸熱熱量 28 201238647 為小,因此必須如圖16C所示般,以其他冷卻機構將不足量的吸 力足同樣地’不足量的加熱熱量QH’也必須用其他 【0091】 圖16D係顯示配合必要加熱熱量之平均值而構成熱果2〇3的 。今例中’由於以絲203移送的熱量增加,因此相較於圖 -列子,能量效率更加提高。但是此例中,由於吸熱執 =QC仍然較必要吸熱熱量為小,因此必須如圖16E所示般,二 機構將不^量的吸熱熱量QC”補足。同樣地,不足量的 加熱機構加以補足。而且,過剩的加 ……必須予以廢棄,而成為能量效率下降的原因。 示存圖應之例中所廢棄的_^@ 例^此例係顯示過剩加熱熱量QH,”與不足量I加祕 使假定兩者不-致,也可將㈣f曰構;:乂進仃加熱。但是,即 作不足量之加熱^量的至ί一部分利用 高。雖然吸熱熱量QC”必須以構因率得以提 (第4實施形態) 參A?、圖17 ’弟4實施形態的水處理车 形態以外還具有第1返流管215,用來===第3實施 2〇4返流到:位於連接部施之上游存機構 ΐΓϊϊ,ί^:^ 1 204 29 201238647 的冷卻能力。 【0094】 Π,構224,也可設置同樣的返流管。參照圖 位於第2配管區間22^m返流管235,用來使得水返流到: 225之分歧部為下、故勺連接部226之上游側,且較第2分流管 所儲存的溫水t二貝^第^崎區間222。第2熱儲存機構224 利用熱泵203 目^ ^行熱交換而溫度下降。因此,可 u J.X^ 9 Aj, 、々丨L管235而溫度下降的水進行再力σ熱, IS】儲存機構224所儲存之剩餘的絲^ 佳係二 _ 2返流管235的流出部L較 △始a 目弟2配官區間222的流入部η為下方。#1,户 的最上Ϊ吕的流入部Η較佳係設於第2熱儲存機構224 上側的*ϋ 轉時,由熱泵加所加熱的溫水從位於 224戶^存入第2熱儲存機構224,因此第2熱儲存機構 224短暫地產^部。由於在第2熱儲存機構 水右水與低▲水二者成層化的狀態,因此可將低溫 ^有效率地攸第2熱儲存機構224供給到熱㈣3,而提高加熱效 【0096】 (第5實施形態) 門%2實Ϊί態與第3、4實施形態相同,應用於從一條配管區 其他配管關加熱的情形,蚊就設有中間 m 同於該等實施形態。*照圖18,水處理系統2他 形悲相具有設計成水流通其間的第1配管區間 、/、…、泵203。本實施形態中,水處理系統2〇lc還且有 =路212。第1中間迴路212係與第i配管區間2〇2 ^一部分及 熱泵203分別於連接部206、216熱錢接。第】中間迴路212設 201238647 =以間:用來於流經第1配管區 無特別限制,不必使用顧的^。又,第1熱介質並 若能在第1中_路2=/=趙、絲㈣生水垢的流體。 有效率地搬運熱能。、充〇2’即相較於填充水的情形’可 【0097】 218從二中系上\中間迴路分流管214 ’其於三方閥 ^ f 11 M212 ^ 而於熱泵203側之連接邻/σ者弟1熱介質的流動方向, 並於第1配管下游側從第1中間迴路212分支, 212合流:在第°°·| φρν/'之連接部206的上游側與第1中間迴路 用來將流經第i 3熱儲存機構213, 游侧著第1齡雜動方向的下 【0098】 接邱二配管區間2〇2中之比起與第1中間迴路212的連 接游側,設有第1溫度感湘挪。' 2 第1控制部210依第i溫度感測器2〇 =對於流入第!中間迴路分流管214之第i敎介二二 ΐΞί構Μ3流出之第1熱介質的流量進行控^里枚 另-方面’水處理系統2〇lc更具有第2配管 =間迴路232、第4熱儲存機構233、及第2中 八、ώ f 弟2中間迴路232係與第2配管區間您的—二官234: 別於連接部226、236熱性連接。第2中間刀=系203 /刀 介質流通其間,該第2埶介質用來於、、*妳第'A/又叶成第2熱 與熱栗2〇3之間進行熱量間 配管區間2〇2與第2配管區間222之間進行熱量“受而 31 201238647 .利用:u熱介質,可與第1熱細樣地製備。· 具體而古,第2^ 刀支,亚於下游與第2中間迴路232合流。 而於敎分辭234沿著第2熱介質的流動方向, 並於第、2配管的下游側從第2中間迴路232分支, 232合流。在第2中pv,之連接,226的上游側與第2中間迴路 用來將流經第2中間2^J第機構233, 時儲存。在第4 _存機 著、▲分加以暫 游側,設有第2流量調整機構23=者第2熱,I貝流動方向的下 【0102】 接部^管|=:= 機構233流出之第2熱介質的流量進行it、 【0105】 弟1只知形態之中間迴路的構成。 敎泵lot 迴路212及第2中間迴路232,有時可缓和 言,水處理系統中,丨熱泵203。-般 2失大賴置,因物之壓 ί Ϊ配ίΪ= 2。2以最短的配管長度來ΚΙ 連接即可’因此可抑制水處理系統的壓力損失。而且 32 201238647 203遠離第1配管區間202等的情形,此優點 示,第!中間迴路212也可依所需,者^省略圖 又,第2中間迴路232亦同。 —重、二重迴路。 【0106】 另外,雖省略圖示,第1中間迴路212與帛 的至少其中一者也可與複數之配管區間埶 二、路32 著第2中間迴路232 ’而設置須要加熱的其伽f管^ 配管區間222 -同加熱。由於中間迴路的 ^=弟2 = _岐雜卩,‘對 【0107】 其次,針對以上所述之水處理系統2〇 之水以固 =222,並供給作溫度T2,之溫水的情形。其中 j ^ 門,達到-定的目標溫度,相對於此,將溫度T1,假== T熱泵203所接受的熱量QH設ί二Γ 熱則予=統第2^^^^==233 ;!散 =中間迴路232的第2熱介質係由熱i2G3 !弟2配管區間222的水進行熱交換而 〜亚一 【0108】 首先,就初期狀態而言,先將三方閥2 中的r成為既定值。在此,⑽ + ί 第中間迴路分流管234。又,先將第4埶儲在嬙谨 後,將的第2流量調整機構231設定為關閉狀態。然 器229 3出Τ1^給水流’並利用第2溫度感測 败水的溫度τ2,進行連續測定。 三方=3ί,Ϊ第超 = 標的情形,進行以下操作。首先,調整 第一;丨貝的一部分流入第2中間迴路分流管234。 33 201238647 一藉此·,使得循環於第2中間迴路232之第2熱介質的流量減少, 而單位時間内對水供給的熱量下降。其結果,能使溫度T2,降低, 且將溫度T2,控制為目標溫度。進行以上操作的結果,係於第4熱 儲存機構233儲存已升溫的第2熱介質即熱量。 … 【0110】 ' 乂接著,對於溫度T2’從目標溫度下降的情形進行探討。於此情 形,由於用來將溫度Τ2’維持在目標溫度所需的埶量不足,因此抑 制第2流量調整機構231,而使得第4熱儲存機構'所儲存的第 ^熱介質以既定之流量排放。排放的流量取決於不足的熱量,可依 ίίΓΙ的測定結果來決定。如此可將第4熱儲存機構233所儲存 而觀不^部分的熱量,因此能將溫度τ2,控制為目 【0111】 的區間202亦同。第1配管區間202係於入口側 的皿度Τ1較低時,將冷卻而溫度下降之第丨埶 :’於溫度T1較高時,則排觸;^ 度鼻斤绪•子之低溫的第1熱介質,以將水冷卻到所希望之溫 【0112] (第6實施形態) ^參照圖19,水處理系統2〇ld具有 計成與第1配管區間2〇2及轨泵 路217,其設 經第1配管區間202的水盘性,且用來於流 ^流通其間’·及第3熱儲存機構213 的第1熱 的至少-部分。第3中間迴路2 用來=日存弟i熱介質 劃分為第1循環迴路217a7 者第3熱儲存機構213,而 咖設計撕丨循環迴路 經由第3熱儲存機構213而循環°二第熱二連接,且第1 熱儲存機_而猶環其且口,介質經由第3 又第2舰迴路2nb包含有用來 34 201238647 補給第1熱介質的補給管219a。 【0113】 同樣地,水處理系統201d還具有: 計成與第2配管區間222及熱泵2〇3 路237,其設 經第2配管區間222的水與熱泵2〇3之間進、且用來於流 介質流通其間;及第4熱儲存機構233,用來暫雙的第2熱 的至少-部分。第4中間迴路237夹隔著= 存第2熱介質 劃分為第3循環迴路237a與第4循環J路存機構233,而 計成於連接部挪與第2 ==3循環迴路 ,計成於連接部236與熱泵期熱^4俩迴路皿 熱儲存機構233而循環其間。又,第^且^ 2熱介質經由第4 補給第2熱介質的補給管239a。 衣k路237b包含有用來 【0114】 配管區間222之入口側的 J上升之第2熱介f的—部 土日:,將加熱而溫 « 233 2 【0115】 於第1配管區間202之入口側的、、θ + 213 【0116】 較佳it,流往第4循環迴路挪的流出部L 第4循環迴路的流f 的流人部H為下方。尤其,流自 部,而流往第4循/⑽車乂佳係位於第4熱儲存機構233的最 弟4觀迴路的流出部L較佳係位於第4熱儲存取 201238647 233的低部。其理由與第5實施 【0117】 供认所說明’於第3〜第6的各實施形態中,從執节2ΓΠ 供,.。的熱量相胁配管 203 ==;存該剩餘熱量,並於需 而匕;孰機有餘’也無須為了因應負荷變動, 的容量熱量運轉。另-方面,亦無須増加熱果 【0118】 (實施例) w在1匕’,用圖20戶斤示之具有中間迴路的系統,進行以下的 機?係使用容量為5m3的儲存槽,絲則使用壓縮Hi ft requires the necessary heat absorption heat of the piping section to be cooled.求 Simplify, single, change with time, the necessary heat absorption is set to be fixed ... can ^ =; Λ. The reason for the fluctuation of the necessary heating heat in the pure processing is to increase the temperature of the raw water at night and the like. [0090] (4) The figure shows that the two pairs of iti! 7 objects constituting the heat pump 203, which are the most suitable for the heat of the necessary heat, are taken up by the heat pump, and are transferred by the heat pump, and i詈it;: iqh' is therefore compared with the individual Cooling and heating, month b •...A. However, in this example, since the endothermic heat QC is smaller than the necessary endothermic heat 28 201238647, it is necessary to use the same amount of suction heat as the other type of cooling mechanism, as shown in Fig. 16C. Others [0091] Fig. 16D shows that the average of the necessary heating heat is combined to constitute the hot fruit 2〇3. In this case, since the heat transferred by the wire 203 is increased, the energy efficiency is further improved as compared with the figure-column. However, in this example, since the heat absorption is still relatively small, the heat absorption heat is required to be small. Therefore, as shown in Fig. 16E, the two mechanisms must make up the amount of heat absorption heat QC. Similarly, an insufficient amount of heating mechanism is used to make up. Moreover, the excess addition must be discarded and become the cause of the decline in energy efficiency. The _^@ example of the example of the deposit diagram should be discarded. This example shows the excess heating heat QH," plus the shortage I The secret agent assumes that the two are not-induced, and that the (four) f-structure can also be used; However, even if the amount of heating is insufficient, the amount is high. In addition to the water treatment vehicle form of the embodiment of FIG. 17 and the embodiment of the water treatment vehicle of the embodiment 4 of FIG. 17 , the heat absorption heat amount QC ′′ is required to be the first embodiment. 3Implement 2〇4 backflow to: The cooling capacity of the upstream storage mechanism ΐΓϊϊ, ί^:^ 1 204 29 201238647 at the connection section. [0094] Π, 224, can also be provided with the same return pipe. The second pipe section 22^m return pipe 235 is used to make the water flow back to: the branching portion of the 225 is the lower side, so the upstream side of the spoon connecting portion 226, and the warm water t2 stored by the second shunt tube The second heat storage mechanism 224 uses the heat pump 203 to heat exchange and the temperature is lowered. Therefore, the temperature of the water can be reduced by the water of the JJ^9 Aj, 々丨L tube 235. σ热, IS] The remaining portion of the wire stored in the storage mechanism 224 is lower than the inflow portion η of the Δ start a 2 brother 2 interval 226. #1, The uppermost inflow portion Η is preferably disposed on the upper side of the second heat storage mechanism 224, and the warm water heated by the heat pump is stored in 224 households. Since the second heat storage mechanism 224 is in a short-lived condition, the second heat storage mechanism 224 is in a state of being layered by both the right water and the low water in the second heat storage mechanism, so that the low temperature can be efficiently (2) The heat storage mechanism 224 is supplied to the heat (4) 3 to improve the heating efficiency. [0096] (Fifth Embodiment) The door %2 is the same as the third and fourth embodiments, and is applied to the case where heating is performed from another piping in one piping area. The mosquito is provided with the intermediate m in the same embodiment. * As shown in Fig. 18, the water treatment system 2 has a first piping section, /, ..., pump 203 which is designed to allow water to flow therebetween. In this embodiment The water treatment system 2〇lc also has a = road 212. The first intermediate circuit 212 is partially connected to the i-th pipe section 2〇2^ and the heat pump 203 is connected to the connection parts 206 and 216, respectively. The intermediate circuit 212 is set to 201238647. = Between: There is no special restriction on the flow through the first piping area, and it is not necessary to use the ^. Also, if the first heat medium can be in the first middle _ road 2 = / = Zhao, silk (four) scale-forming fluid Efficiently carry heat energy. Filling 2' is better than filling water. '0097 218 from the middle of the second intermediate system / intermediate circuit shunt tube 214 'the three-way valve ^ f 11 M212 ^ and the heat pump 203 side of the connection adjacent / σ brother 1 heat medium flow direction, and on the downstream side of the first pipe from The first intermediate circuit 212 branches and 212 merges: the upstream side of the connecting portion 206 of the first °°·| φρν/' and the first intermediate circuit are used to flow through the i-th heat storage mechanism 213, and the first side is swam. [0098] The first temperature sense is set in the connection side of the second intermediate pipe 212 to the second intermediate pipe 212. ' 2 The first control unit 210 depends on the i-th temperature sensor 2 〇 = for the inflow! The flow rate of the first heat medium flowing out of the intermediate circuit shunt pipe 214 is controlled by the flow rate of the first heat medium flowing out of the third pipe. The water treatment system 2〇lc has the second pipe = the intermediate circuit 232, the fourth The heat storage mechanism 233 and the second middle eight, the second intermediate circuit 232 are connected to the second pipe section, and the second officer 234 is thermally connected to the connecting portions 226 and 236. The second intermediate knife = the 203 / knife medium is in the middle of the flow, and the second medium is used for the interval between the heat and the heat between the second and the second heat and the hot chest 2〇3. 2 and the second piping section 222 between the heat "accepted 31 201238647. Use: u heat medium, can be prepared with the first heat fine sample. · Specific and ancient, the second ^ knife branch, sub- downstream and the second The intermediate circuit 232 merges, and the branching word 234 branches along the flow direction of the second heat medium, and branches from the second intermediate circuit 232 on the downstream side of the second pipe, and merges 232. In the second, pv, the connection, The upstream side of the 226 and the second intermediate circuit are used to flow through the second intermediate mechanism 233. The fourth flow rate adjusting mechanism 23 is provided on the temporary side of the fourth intermediate storage unit ▲. = the second heat, the lower flow direction of the I shell [0102] The joint portion of the tube|=:= The flow rate of the second heat medium flowing out of the mechanism 233 is performed, [0105] The structure of the intermediate circuit of the first form is known. The pump tank circuit 212 and the second intermediate circuit 232 can sometimes be moderated. In the water treatment system, the heat pump 203 is used. The general 2 is too large, and the pressure is ί Ϊ Ϊ Ϊ = 2. 2 The connection can be made with the shortest pipe length. Therefore, the pressure loss of the water treatment system can be suppressed. Moreover, 32 201238647 203 is away from the first piping section 202 and the like, and this advantage shows that the middle intermediate circuit 212 can also be used as needed. In addition, the second intermediate circuit 232 is the same as the second intermediate circuit 232. - Heavy and double circuit. [0106] Further, although not shown, at least one of the first intermediate circuit 212 and the cymbal may be combined with a plurality of pipes. The interval 埶2, the road 32 is the second intermediate circuit 232' and the gamma tube tube 222 that needs to be heated is heated. Since the middle circuit is ^=2 = _ 岐 卩, '[0107] For the water treatment system 2 described above, the water is solid = 222, and is supplied as the warm water of the temperature T2, wherein the j ^ gate reaches the target temperature, and the temperature T1 is False == The heat QH received by the heat pump 203 is set to ί二Γ The heat is given to the second 2^^^^==233; The second heat medium of the intermediate circuit 232 is the heat i2G3 222 water exchanges heat ~ Ya Ya [0108] First, in terms of initial state, first three parties The r in 2 becomes a predetermined value. Here, (10) + ί the intermediate circuit branch pipe 234. Further, after the fourth bank is stored, the second flow rate adjusting mechanism 231 is set to the off state. 3 Τ 1 1 feed water flow ' and use the second temperature to sense the temperature τ 2 of the water loss, continuous measurement. Three parties = 3 ί, Ϊ first super = target situation, the following operations. First, adjust the first; a part of the mussel inflow The second intermediate circuit shunt tube 234. 33 201238647 By this, the flow rate of the second heat medium circulating in the second intermediate circuit 232 is reduced, and the amount of heat supplied to the water per unit time is lowered. As a result, the temperature T2 can be lowered, and the temperature T2 can be controlled to the target temperature. As a result of the above operation, the fourth heat storage means 233 stores the heat amount of the second heat medium which has been heated. [0110] ' Next, the temperature T2' is lowered from the target temperature. In this case, since the amount of enthalpy required to maintain the temperature Τ2' at the target temperature is insufficient, the second flow rate adjusting mechanism 231 is suppressed, so that the first heat storage medium stored in the fourth heat storage mechanism ′ is at a predetermined flow rate. emission. The flow rate of the discharge depends on the amount of heat that is insufficient, which can be determined by the measurement results. Thus, the heat stored in the fourth heat storage means 233 can be observed, so that the temperature τ2 can be controlled to be the same as the section 202 of the target [0111]. When the first pipe section 202 is lower than the inlet side, the temperature is lowered and the temperature is lowered: 'when the temperature T1 is high, the first touch is made; 1 heat medium to cool the water to a desired temperature [0112] (Sixth embodiment) Referring to Fig. 19, the water treatment system 2〇ld has a calculated first pipe section 2〇2 and a rail pump path 217, It is provided with the water-disc property of the first piping section 202, and is used to flow at least a portion of the first heat of the 'and the third heat storage mechanism 213. The third intermediate circuit 2 is used to divide the heat medium into the first heat storage mechanism 213 of the first circulation circuit 217a7, and the tear circulation circuit of the coffee design is cycled through the third heat storage mechanism 213. The first heat storage device is connected to the first heat storage device, and the medium includes a supply pipe 219a for supplying the first heat medium to 34 201238647 via the third and second ship circuit 2nb. In the same manner, the water treatment system 201d further includes a metering and second piping section 222 and a heat pump 2〇3 path 237 which are provided between the water passing through the second piping section 222 and the heat pump 2〇3, and are used. The fourth heat storage mechanism 233 is used to temporarily double at least a portion of the second heat. The fourth intermediate circuit 237 is divided into a third circulation circuit 237a and a fourth cycle J storage mechanism 233 via the second heat medium, and is calculated as a second ==3 cycle in the connection portion. The connecting portion 236 is circulated with the heat pump period heat storage mechanism 233. Further, the second and second heat mediums are supplied to the supply pipe 239a of the second heat medium via the fourth. The clothing k-way 237b includes a second soil heat-f for the second rising of the J on the inlet side of the piping section 222. The heating is performed and the temperature is «233 2 [0115] on the inlet side of the first piping section 202. , θ + 213 [0116] Preferably, the flow-out portion L flowing to the fourth circulation loop is lower than the flow portion H of the flow f of the fourth circulation loop. In particular, the flow out of the fourth portion of the fourth heat storage unit 233 is preferably located at the lower portion of the fourth heat storage take-up 201238647 233. The reason and the fifth embodiment are described in the following descriptions of the third to sixth embodiments. The heat phase threatening pipe 203 ==; the remaining heat is stored, and it is needed when needed; there is no need to operate the heat in order to cope with the load fluctuation. On the other hand, there is no need to heat the fruit. [0118] (Example) w At 1匕', use the system with the intermediate circuit shown in Figure 20 to carry out the following machine? Use a storage tank with a capacity of 5m3, and use a compression for the wire.

Lfi生能係數為4(加熱時)者。不依負荷來進行熱泵的 整’而使供給熱量固定於30kw(=75kWx性能係數4),並 將,、,、栗的出口溫度(出水溫度)T4設定為65〇c。排熱配管區間中之 加熱對象水的入口溫度T1設定為一日之中隨著時段而變動,出口 ίϋ則控制為25°c。又,來自熱儲存機構之熱介質的排放流 里係依據溫度感測器的測定結果而加以控制。 【0119】 水的入口溫度T1與出口溫度T2設定為如表3所示。 【0120】 表3. 時刻(時) 8時 10時 12時 14時 16時 18時 20時 22時 0時 2時 4 8$ 6時 水溫Tl(t) 21 22 22 23 22 22 21 20 20 19 20 20 水溫T2fc) 25 25 25 25 25 25 25 25 25 25 25. 25 25The Lfi energy efficiency coefficient is 4 (when heating). The heat supply was not adjusted according to the load, and the supply heat was fixed at 30 kw (= 75 kW x coefficient of performance 4), and the outlet temperature (outlet water temperature) T4 of the,,,,,,, was set to 65 〇c. The inlet temperature T1 of the heating target water in the heat exhaust piping section is set to vary with the time of day, and the outlet ί is controlled to 25 °c. Further, the discharge flow of the heat medium from the heat storage means is controlled in accordance with the measurement result of the temperature sensor. [0119] The inlet temperature T1 and the outlet temperature T2 of water were set as shown in Table 3. [0120] Table 3. Time (hours) 8:10:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:20 22 22 23 22 22 21 20 20 19 20 20 Water temperature T2fc) 25 25 25 25 25 25 25 25 25 25 25. 25 25

w »-3=. ^ ^ W’J 予以顯示於表4。此表中,「流量(L/h)」為水的供給流量, δ史疋為6500 L/h的固定值。「必要熱量(kv/)」表示將水加溫到 25°C所需的熱量,係隨著時間(即入口溫度τι)而變動。「過與不足 熱l(kW)」為熱泵之供給熱量與必要熱量的差異量,且以熱量有 餘的情形為正,熱量不足的情形為負。「儲存熱量(kwh)」為熱儲 36 201238647 子機構所儲存的熱量。熱泵的供給熱量30kW中有剩餘量時,加 =儲存到熱儲存機構,因此當餘剩的狀態持續時,儲存熱量會增 ^ ^,圖21A係將實施例中之過與不足熱量的歷時性變化顯示 於圖表者。 【0121】 6時 8時 20 21 25 25 6500 6500 35 30 -5 0 5 0 [表4]w »-3=. ^ ^ W’J is shown in Table 4. In this table, "flow rate (L/h)" is the supply flow rate of water, and δ history is a fixed value of 6500 L/h. "Required heat (kv/)" means the amount of heat required to warm the water to 25 ° C, which varies with time (ie, inlet temperature τι). "Over and underheating heat (kW)" is the difference between the amount of heat supplied by the heat pump and the amount of heat required, and the case where the amount of heat is sufficient is positive, and the case where the amount of heat is insufficient is negative. "Storage of heat (kwh)" is the heat stored in the thermal storage 36 201238647 sub-organization. When there is a remaining amount of heat pump 30 kW, the addition is stored in the heat storage mechanism, so when the remaining state continues, the stored heat is increased, and FIG. 21A is a diachronic change of the excess and the insufficient heat in the embodiment. Shown on the chart. [0121] 6:00 8:20 21 25 25 6500 6500 35 30 -5 0 5 0 [Table 4]

表5係顯示中間迴路中之各種參數的變化。溫度乃設定為與 水的出口溫度Τ2相等。「熱介質儲存機構儲水量(L/h)」表示每 小時=存到熱儲存機構之熱介質的量,「熱介質機構排水量(L/h)」 表不每小時從熱儲存機構所排放之熱介質的量。相對於此,表4 的「儲存熱量(kWh)」為在此之前已蓄積於熱儲存機構之熱量的累 積值。 【0122】 時刻(時) 8時 10時 12時 14時 16時 18時 20時 22時 0時 2時 4時 6時 溫度T3(eC) 25 25 25 25 25 25 25 25 25 25 25 25 出水溫度T4(°C) 65 65 65 65 65 65 65 65 65 65 65 65 出水溫水 650 650 650 650 650 650 650 650 650 650 650 熱介質儲存機構排水 0 0 0 0 0 0 0 108 217 325 *217 108 熱介質儲存機構儲水 0 108 217 325 217 • 108 0 0 0 0 0 0Table 5 shows the changes in various parameters in the intermediate circuit. The temperature is set equal to the outlet temperature Τ2 of the water. "The amount of water stored in the heat medium storage unit (L/h)" means the amount of heat medium stored in the heat storage mechanism per hour. The "heat medium discharge capacity (L/h)" is not discharged from the heat storage mechanism every hour. The amount of heat medium. On the other hand, the "heat storage (kWh)" in Table 4 is the cumulative value of the heat that has accumulated in the heat storage mechanism before that. [0122] Time (hour) 8:10:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00 T2 (eC) 25 25 25 25 25 25 25 25 25 25 25 25 T4(°C) 65 65 65 65 65 65 65 65 65 65 65 65 effluent warm water 650 650 650 650 650 650 650 650 650 650 650 Heat medium storage mechanism drain 0 0 0 0 0 0 108 217 325 *217 108 heat Media storage mechanism water storage 0 108 217 325 217 • 108 0 0 0 0 0 0

' ' 刀口’恐傻1*逍者>益度I I 下降而逐漸消耗,且最後變成〇。因此,無須以其他熱源將不足量 巧^。又’全部的必要加熱熱量為72〇 kWh,至於實際已消耗的 月包篁5若換算成壓縮機的功率時為18〇 kWh。來自熱泵的供給熱 量30kW可謂係熱泵與排熱配管區間之間可進行熱交換的熱量。 從8時至20時之間,僅將可進行熱交換之熱量的一部分使用於熱 37 201238647 交換,剩餘的熱量則暫時儲存到_ 之間,使用熱儲存機構所暫時儲存的熱旦 之排熱的不足量予以填補。 i I。至於從22時至8時 ,來將往排熱配管區間 【0123】 (比較例1) 形:相中設置熱儲存 ^構的情 源的供給熱量(kw)」為加熱熱量不足時圖表f °「來自其他熱 的熱量,且以不足的情形為負。前半^;=冓(銷爐等)補足 必要熱量’因此不需要來自其他熱源“ 足量全部須要從 ~此,藉由設置 【0124】 [表6]' 'Knife' is a stupid 1* & & 益 益 益 益 益 益 益 益 益 I I I I I I I I I I I I Therefore, there is no need to use other heat sources to reduce the amount of power. In addition, all the necessary heating heat is 72 〇 kWh, and the actual monthly consumption of the package 5 is 18 〇 kWh when converted to the power of the compressor. The supply of 30 kW from the heat pump is the amount of heat that can be exchanged between the heat pump and the heat-dissipating piping section. Between 8:00 and 20:00, only a portion of the heat that can be exchanged for heat is used for heat exchange, and the remaining heat is temporarily stored between _, and the heat of the heat stored temporarily by the heat storage mechanism is used. The shortage is filled. i I. As for the time from 22 o'clock to 8 o'clock, the heat pipe distribution section [0123] (Comparative example 1): the heat supply (kw) of the heat source of the heat storage system is set as the heating factor when the heat is insufficient. "From other hot heat, and negative in the negative situation. The first half ^; = 冓 (pin furnace, etc.) make up the necessary heat 'so do not need to come from other heat sources" Fully all need to go from ~ this, by setting [0124] [Table 6]

換為鍋爐等熱 7 °圖21C係 圖表者。此情 是必要能量也 在此,已使用在實施例之裝置構成中將熱泵替 源的構成,進行相同的測定,並將其結果顯示於表 將比較例2中之過與不足熱量的歷時性變化顯示於 形與實施例相同,全部的必要熱量為720 kWh,但 38 201238647 為720 kWh',相較於實施例係需要4倍的能量。 【0125】 [表7] 時刻(時) 8時 10時 12時 14時 16時 18時 20時 22時 0時 2時 4時 6時 ——— 入口水溫(°c) 21 22 22 23 22 22 21 20 20 19 20 __20^ 25 21 ——— 出口水溫(°c) 25 25 25 25 25 25 25 25 25 25 25 流 t(L) 6500 6500 6500 6500 6500 6500 6500 6500 6500 ] 6500 一 45 6500 6500 35 25 _65〇〇^ *3Λ 必要熱量〇c\V) 30 25 20 15 20 25 30 【圖式簡單說明】 【0014】 圖1係顯示本發明之水處理系統的第丨及第2實施形離 念圖。 〜、 間的所示之水處理系統設有複數钱熱配管區 配管水處理系統設有複數之吸熱及排熱 施形於圖1所示之水處理系統設有輔助加熱機構的實 態之示於圖1所示之水處理线财第2熱泵的實施形 施』於圖1所示之水處理系統使用熱電子式熱果的實 S水f里系統之構成的 一例之概略圖。 圖ΐ顯示^的其他例之概略圖。 之概略圖。 水處理系統之熱水殺菌時的線構成 圖11A係顯示參考例之構成的概略圖。 39 201238647 圖1 IB、11C係顯示實施例之構成的概略圖。 .圖12係用 線圖)。 以°兒明本發明之第2貫施形態的效果之線圖(莫利爾 圖13係顯示本發明之水處理系統的一實施例之概念圖。 圖14A、14B係顯示本發明之水處理系統的第3實施形態之 概念圖。 圖、15B係概念性地顯不圖14A、14B所示水處理系統之 作用的示意圖。 … /圖16A〜16F係顯示圖14A、14B所示水處理系統與其他水處 理糸統之能1利用效率的示意圖。 圖17係顯示本發明之水處理系統的第4實施形態之概念圖。 圖18係顯示本發明之水處理系統的第5實施形態之概念圖。 圖19係顯示本發明之水處理系統的第6實施形態之概念圖。 圖20係顯示實施例之水處理系統的構成之概略圖。 圖21A係顯示實施例中之過與不足熱量的歷時性變化之圖 表。 圖21B係顯示比較例中之過與不足熱量的歷時性變化之圖 表。 圖21C係顯示比較例中之必要熱量的歷時性變化之圖表。 【主要元件符號說明】 【0126] 1〜8〜第ι〜8裝置 11、 13〜第卜第3配管區間(吸熱配管區間) 12、 14〜第2、第4配管區間(排熱配管區間) 15、16〜第1、第2中間迴路 21 '21’、27〜熱泵 21a〜水熱交換部 2lb〜空氣熱交換部 22〜蒸發器 201238647 23〜壓縮機 24〜冷凝器 25〜膨脹閥 26〜閉迴路 29〜p型半導體 30〜η型半導體 31〜η型轉ρ型的接合部分 32〜ρ型轉η型的接合部分 33〜電極 34、35〜基板 101〜紫外線氧化裝置 102〜冷卻點 103〜活性炭塔 104〜離子交換裝置 105〜加熱點 108〜除濁膜 109〜活性炭塔 100〜水處理系統 110〜逆滲透膜裝置 111〜離子交換裝置 112〜初級純水槽 113〜中和槽 114〜紫外線氧化裝置 115〜筒式高純化器裝置 116〜超過濾膜裝置 117〜使用點 118〜循環迴路 119〜冷卻點 120〜高溫超純水供給線 121、12Γ〜加熱點 41 201238647 - 122〜紫外線氧化裝置 123〜筒式高純化器裝置 124〜超過濾膜裝置 125〜使用點 126、128〜冷卻點 127〜加熱點 131、132〜配管區間中之進行熱交換的部位 201a、201b、201c、201d〜水處理系統 202〜第1配管區間(吸熱配管區間) 203〜熱泵 203a〜蒸發器 203b〜壓縮機 203c〜冷凝器 203d〜膨脹閥 203e〜閉迴路 204〜第1熱儲存機構 205〜第1分流管 206〜連接部 208〜三方閥 209〜第1溫度感測器 210〜第1控制部 211〜第1流量調整機構 212〜第1中間迴路 213〜第3熱儲存機構 214〜第1中間迴路分流管 215〜第1返流管 216〜連接部 217〜第3中間迴路 217a〜第.1循環迴路 217b〜第2循環迴路 42 201238647 ' 218〜三方閥 219a〜補給管 222〜第2配管區間(排熱配管區間) 224〜第2熱儲存機構 225〜第2分流管 226〜連接部 228〜三方閥 229〜第2溫度感測器 230〜第2控制部 231〜第2流量調整機構 232〜第2中間迴路 233〜第4熱儲存機構 234〜第2中間迴路分流管 235〜第2返流管 236〜連接部 237〜第4中間迴路 237a〜第3循環迴路 '237b〜第4循環迴路 238〜三方閥 239a〜補給管 D1〜D4〜裝置 Η〜流入部 L〜流出部 Q〜熱量 Q2〜差值的熱量 Qc、QC、Qci〜吸熱熱5 QC’、QC”〜不足吸熱熱量 Qh、Qh’、QH、Qhi〜加熱(排熱)熱量 QH’、QH”〜不足加熱熱量 r QH’”〜過剩加熱熱量 43 201238647 ΤΙ、ΤΓ〜入口溫度 Τ2、Τ2’〜出口溫度 Τ3〜溫度 Τ4〜出水溫度 W、W’〜壓縮功Change to the heat of the boiler, etc. 7 ° Figure 21C is the charter. In this case, the necessary energy is also here. The same measurement has been carried out using the configuration in which the heat pump is replaced in the apparatus configuration of the embodiment, and the results are shown in the table. The diachronicity of the excess heat and the excess heat in Comparative Example 2 is shown. The variation is shown in the same form as the embodiment, with all necessary heat being 720 kWh, but 38 201238647 is 720 kWh', which requires 4 times more energy than the embodiment. [0125] [Table 7] Time (hour) 8:10:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00 pm ———— inlet water temperature (°c) 21 22 22 23 22 22 21 20 20 19 20 __20^ 25 21 ——— Outlet water temperature (°c) 25 25 25 25 25 25 25 25 25 25 25 Flow t(L) 6500 6500 6500 6500 6500 6500 6500 6500 6500 ] 6500 a 45 6500 6500 35 25 _65〇〇^ *3Λ Necessary heat 〇c\V) 30 25 20 15 20 25 30 [Simplified illustration] [0014] Fig. 1 shows the second and second embodiments of the water treatment system of the present invention. Departure picture. The water treatment system shown in the section is provided with a plurality of money heat pipe area. The pipe water treatment system is provided with a plurality of heat absorption and heat removal modes. The water treatment system shown in Fig. 1 is provided with an auxiliary heating mechanism. In the water treatment system shown in Fig. 1, the water treatment system shown in Fig. 1 is a schematic diagram showing an example of a configuration of a real S water system in which hot metal type hot fruit is used. Figure ΐ shows an overview of other examples of ^. Schematic diagram. Line configuration at the time of hot water sterilization of the water treatment system Fig. 11A is a schematic view showing the configuration of a reference example. 39 201238647 Fig. 1 IB and 11C show schematic views of the configuration of the embodiment. Figure 12 is a line drawing). A line drawing showing the effect of the second embodiment of the present invention (Mollier diagram 13 is a conceptual diagram showing an embodiment of the water treatment system of the present invention. Figs. 14A and 14B are diagrams showing the water treatment of the present invention. Fig. 15B is a schematic view showing the function of the water treatment system shown in Figs. 14A and 14B. Fig. 16A to Fig. 16F show the water treatment system shown in Figs. 14A and 14B. Fig. 17 is a conceptual diagram showing a fourth embodiment of the water treatment system of the present invention. Fig. 18 is a view showing the concept of the fifth embodiment of the water treatment system of the present invention. Fig. 19 is a conceptual view showing a sixth embodiment of the water treatment system of the present invention. Fig. 20 is a schematic view showing the configuration of the water treatment system of the embodiment. Fig. 21A shows the excessive and insufficient heat in the embodiment. Fig. 21B is a graph showing the diachronic change of the excess heat and the insufficient heat in the comparative example. Fig. 21C is a graph showing the diachronic change of the necessary heat in the comparative example. [Description of main component symbols] [0126 ] 1 ~8~第1~8 device 11, 13~3rd pipe section (heat absorption piping section) 12, 14~2nd, 4th piping section (heating piping section) 15, 16~1st, 2nd middle Circuit 21 '21', 27 to heat pump 21a to water heat exchange unit 11b1 to air heat exchange unit 22 to evaporator 201238647 23 to compressor 24 to condenser 25 to expansion valve 26 to closed circuit 29 to p type semiconductor 30 to η Type semiconductor 31 to n-type turn p-type joint portion 32 to p-type to n-type joint portion 33 to electrode 34, 35 to substrate 101 to ultraviolet oxidizer 102 to cooling point 103 to activated carbon column 104 to ion exchange device 105~ Heating point 108 to turbid film 109 to activated carbon column 100 to water treatment system 110 to reverse osmosis membrane device 111 to ion exchange device 112 to primary pure water tank 113 to neutralization tank 114 to ultraviolet oxidizing device 115 to cylindrical high purifier device 116~Ultrafiltration membrane device 117~Use point 118~Circulation circuit 119~Cooling point 120~High temperature ultrapure water supply line 121,12Γ~Heating point 41 201238647 - 122~UV oxidation device 123~Tube type high purifier device 124~ Ultrafiltration membrane device 125 The points 201a, 201b, 201c, and 201d to the water exchange system 202 to the first piping section (the heat absorption piping section) 203 to the heat pump using the points 126 and 128 to the cooling point 127 to the heating points 131 and 132 to the piping section. 203a to evaporator 203b to compressor 203c to condenser 203d to expansion valve 203e to closed circuit 204 to first heat storage mechanism 205 to first branch pipe 206 to connecting portion 208 to three-way valve 209 to first temperature sensor 210 The first control unit 211 to the first flow rate adjustment unit 212 to the first intermediate circuit 213 to the third heat storage unit 214 to the first intermediate circuit branch pipe 215 to the first return flow pipe 216 to the connection portion 217 to the third intermediate circuit 217a to 1st loop circuit 217b to second loop circuit 42 201238647 '218 to tripartite valve 219a to supply pipe 222 to second pipe section (heat exhaust pipe section) 224 to 2nd heat storage mechanism 225 to 2nd branch pipe 226 From the connection portion 228 to the three-way valve 229 to the second temperature sensor 230 to the second control unit 231 to the second flow rate adjustment mechanism 232 to the second intermediate circuit 233 to the fourth heat storage mechanism 234 to the second intermediate circuit branch pipe 235 ~2nd return pipe 236~connection part 237 The fourth intermediate circuit 237a to the third circulation circuit '237b to the fourth circulation circuit 238 to the three-way valve 239a to the supply pipes D1 to D4 to the device Η to the inflow portion L to the outflow portion Q to the heat amount Q2 to the difference heat Qc, QC , Qci ~ endothermic heat 5 QC ', QC" ~ insufficient heat absorption heat Qh, Qh', QH, Qhi ~ heating (heat removal) heat QH', QH" ~ insufficient heating heat r QH'" ~ excess heating heat 43 201238647 ΤΙ , ΤΓ ~ inlet temperature Τ 2, Τ 2' ~ outlet temperature Τ 3 ~ temperature Τ 4 ~ water temperature W, W' ~ compression work

Claims (1)

201238647 七、申請專利範圍: 1. 一種水處理系統,具有 複數之裝置; 且水流 通於1間’連細嗎的該複數裝置之間, 配管為::間,而從該吸熱 而將從該吸熱配管__的熱能排間’ 2·如申請專利範圍第1項之水處理 配^間或排熱配管區_t加熱或除熱的機構:、|·者=處1 i熱或者往該排熱配_的排熱不足或過度 2熱泵 ^如申請專利範圍g 2項之水處理系統,其中,該機構為第 4. 如申請專利範圍第j項之水處理系統且 至少任-者··第i中間迴路,設在該吸熱配管區間的 =以=自該吸熱^管區間的吸熱傳達到該熱泵;及第2中‘ 路’汉在_熱|&官㈣與賴泵之間,用 熱傳達觸娜配管區間。 木目挪泵的排. 5. 如申請專利細第1項之水處_統,其中,該吸敎配其 =設,處’且在該複數吸歸區間與該熱泵之間設有第〜 中間迴路,用以把來自該魏吸熱配管區間的吸鱗制該熱果。 45 1 如申請專利範圍第〗項之水處理系統,其中,神 區間設有魏處’且在該複數排細管區間與雜泵之^設有第^ 201238647 w ^自該熱果的排熱傳達到該複數排熱配管區間。 7.如申請專利範圍第丨項之水處 氣麵式、吸收式、吸附式、熱電子式或化學式^壬=系為蒸 構,用統’其具有熱儲存機 交換的熱量之至少—部f熱紗該排熱配管區間之間可進行熱 t =請專利範圍第8項之水處理系統m 的連接部為構及設置於該吸熱配管區間中之比起與該熱泵 廿少^分流管,於該連接部的上游側從該吸熱配管區門八士 〜、儲存機構的下游側與該吸熱配管區間合流。s刀, 如申睛專利範圍第8項之水處理系統,其具有: 並於$莖二=s,於該連接部的上游側從該吸熱配管區間分支, 、存機構的下游側與該吸熱配管區間合流;及 該連接部用來使得水從該第1熱儲存機構返流到:位於 熱配管區^ 卜且較該第1分流f之分歧部為下游側的該吸 如申請專利範圍第8項之水處理系統,其具有: 的連接部構及設置於該排熱配管區間中之比起與該熱泵 熱配管,於該排熱配管區間之該連接部的上游側從該排 '、、、S。。間分支,並於該第2熱儲存機構的下游側與該排熱配管 46 201238647 區間合流。 12. 如申請專利範圍第8項之水處理系統,並具有. _ί=ΐΓ於該排熱配管區間之該連接部的上_從該排 1於該第2熱儲存機構的下游側與該排熱配管 ,排使得水從該第2熱儲存機構返流到:位於 部為下游側的該排熱配管區間。j 2細代分歧 13. 如申請專利範圍帛8項之水處理系统,盆 第2分流管,於該排熱配管區間之 間Γ,並於該第2熱儲存機構的下游側與 ,排 Li二之 :, 部為下游側的該排熱配管區間;且 以刀伽·管之分歧 該第2熱儲存機構中,流往該第2 总 流自該排熱配管區間的流人部為τ方。*5 U部係'位於較 請專利範圍第8項之水處理系統 弟1中間迴路,設計成與該吸埶配 ―二有· 連接,且用來於流經該吸熱配管區“熱泵分別熱性 授受的第1熱介質流通其間; 〃δΛ,,、、泵之間進行熱量 第1中間迴路分流管,沿著該第丨埶 該第1中間迴路中之與該熱栗的連接部:下 201238647 ”管區間的連接部之上游 a 經 第3熱儲存機構,設於該第丨 二二 該第1中間迴路之該第1熱介質的至,用來將流 刀加以暫時儲存。 1 第5·3=請專利範圍苐8項之水處理系統,发I右. 第3中間迴路,設計成與該吸熱配 =有. 連接,朋來於流經該吸熱配管區齡分別熱性 授受的第1熱介質流通其間;及 笊/、該熱泵之間進行熱量 其中第3熱儲存機構’用來暫時儲存該第i熱介質的至少一部分; 該第3中間迴路包含··第j循 區間熱性連接,且該第1熱介質經由^ λ 吸熱配管 間’·及第2循環迴路’設計成與泵存機構而循環其 質經由第3熱儲存機構而循環其間:、、泵熱^生連接,且該第i熱介 :的 該第介質的流動,而於 與該排熱配管區間的連接部之上游側進行2側^仃分支,並在 第4熱儲存機構,設於該第2巾間迴流 該第2中間迴路之該第2熱介質的至少—部分加以暫時 广如申請專利顧第8項之水處理系統,其: 雜第’設計成與該排熱配管區間及該熱泵分別孰性 ίί沾it,經該排熱配管區間的水與該熱泵之間進行孰量 授觉的弟2熱介質流通其間;及 …| 第4熱儲存機構,用來暫時儲存該第2熱介質的至少一部分; 48 201238647 其中. .該第4中間迴路.包含: 區間熱性連接,且該第技=迴路’設計成與該排熱配管 間;及第4循環迴路,設計盘第4熱儲存機構而循環其 質經由該第4熱儲存機構而循^ =熱性連接,且該第2熱介 18.如申請專利範圍第8項 第4中間迴路,設計成*兮排$系·統,其具有: =,且用來於流經該排熱配;該熱泵分別熱性 授又的第2熱介質流通其間;及 一 泵之間進行熱量 其中第4熱儲存機構,絲暫時儲存該第2齡質的至少一部分; 該第4中間迴路包含:第3循 < 區間熱性連接,且該第2熱介質經由該I 該排熱配管 循環鱗,設計成與該 質經由該第4熱儲存機構而循環其n ^韻2熱介 該第4熱儲存機構中,流往該第4循回 較流自該第4循環迴路的流入部為下方。、〜、机㈤邛係位於 ϋ如申請專利範圍第丨項之水處理系^ 氣壓縮式熱泵,且在該排熱配管區間之與該熱栗、Ί'、',為蒸 部位之出口側的水溫度為2〇〜35°C。 ^ S行…、父換的 味2〇·如申請專利範圍第19項之水處理系統,其中,兮明献阶 換二部二之人口側 Ο '' ^ 機構 21.如申請專利範圍第19項之水處理系統,其於該孰 另夕卜具有對該排熱配管區間或該吸熱配管區間進行加=或;;卻卜的 49 201238647 - 22. 如申請專利範圍第19項之水處理系統,其具有如下之中 間迴路:.設在該排熱配管區間與該熱泵之間、或該吸熱配管區間 與該蒸氣壓縮式熱泵之間的至少一方,用以於該排熱配管區間或 該吸熱配管區間與該熱泵之間進行熱交換。 23. 如申請專利範圍第19項之水處理系統,其中,該熱泵將 流經逆滲透膜裝置之入口側配管區間的水加熱成水溫為23〜 25〇C。 24·如申請專利範圍第19項之水處理系統,其中,該熱泵將 流經紫外線氧化裝置之入口側配管區間的水加熱成水溫為20〜 30°C。 土 如申請專利範圍第19項之水處理系統,其中,該熱泵將 流經氨氣提裝置之入口側配管區間的水加熱成水溫為2〇〜35t。 _26丄如申請專利範圍第19項之水處理系統,其中,該熱泵將 流,好氣性處理裝置之入口側配管區間的水加熱成水溫為2〇〜 30 P. 〇 要Λ7.、二種水處严方法,其採用的水處理系統具有:複數之裝 甘…ΐ數之配管區間,連接於互相接鄰之該複數裝置間,並於 其内部有水流通;且 孰配ΐίΐ理湘熱泵’以至少1條細己管區間為吸 :,、酉間,而從該吸熱配管區間吸熱,並以至少丨條之豆 二::^:間’而將從該吸熱配管區間所吸收的“ 28. —種水處理方法,包含: 通水步驟,將水通到與蒸氣壓縮式熱泵齡連接的排熱配管 50 201238647 區間及吸熱配管區間;及 縮式紐運轉’令該紐麵式熱雜行轉,俾於 以上蒸ίίϊ進ϊ冷媒的冷凝步驟’並於吸熱配管區間進行該 之與該轉包含:進行控制以使該排熱配管區間 20〜35。=⑽式熱制進行齡_部位1 _的水溫度為 51201238647 VII. Scope of application for patents: 1. A water treatment system having a plurality of devices; and the water is circulated between the plurality of devices that are connected to each other, the piping is::, and from the endothermic Heat-dissipating pipe of heat-absorbing pipe __ '2. If the water treatment room or heat-dissipating pipe area of the first application of the patent scope _t heats or removes heat: , ·· == 1 i heat or to Insufficient heat dissipation or excessive heat pumping of the heat-dissipating _ 2 such as the water treatment system of the patent scope g 2, wherein the mechanism is the fourth. The water treatment system of the j-th aspect of the patent application and at least - The i-th intermediate circuit is provided in the heat-absorbing pipe section = by the heat absorption from the heat-absorbing pipe section to the heat pump; and the second middle road 'han is between the_heat|& official (four) and the Lai pump Use heat to convey the contact area of the Na. The row of the wood suction pump. 5. If the application of the patent item 1 is in the water system, the suction is matched with the setting, and the middle is provided between the plural suction interval and the heat pump. a circuit for squeezing the hot fruit from the wicking section of the Wei endothermic piping section. 45 1 For example, in the water treatment system of the application scope of the patent scope, in the Shen section, there is Wei's and the heat pump is conveyed from the hot fruit in the multiple tube section and the miscellaneous pump. To the multiple heat exhaust piping section. 7. For example, the water surface type, absorption type, adsorption type, thermoelectric type or chemical type of the water in the application scope of the patent scope is the steaming structure, and the system has at least the heat exchanged by the heat storage machine. f hot yarn can be heated between the heat-dissipating pipe sections. t = the connection part of the water treatment system m of the eighth item of the patent range is configured and disposed in the heat-absorbing pipe section, and the heat pump is less than the heat pump. The upstream side of the connecting portion merges with the heat absorbing pipe area door october to the downstream side of the storage mechanism and the heat absorbing pipe section. The s knife, as in the water treatment system of the eighth aspect of the patent application, has: and the stem 2 = s, branches from the endothermic piping section on the upstream side of the connecting portion, and the downstream side of the storage mechanism and the endothermic The piping section merges; and the connecting portion is configured to return water from the first heat storage mechanism to: the suction application area in the hot piping area and the downstream side of the first partial flow f The water treatment system of the eighth aspect has: a connection portion structure and a heat pipe which is disposed in the heat storage pipe section, and the row side from the upstream side of the connection portion in the heat exhaust pipe section, ,, S. . The branch branches and merges with the heat exhaust pipe 46 201238647 in the downstream side of the second heat storage means. 12. The water treatment system according to claim 8 of the patent scope, having: _ ί ΐΓ 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该The heat pipe is arranged such that water flows back from the second heat storage means to the heat exhaust pipe section located on the downstream side. j 2 fine divergence 13. If the water treatment system of the patent scope 帛8 is applied, the second shunt of the basin is smashed between the heat-dissipating sections, and on the downstream side of the second heat storage mechanism, Li In the second part, the part is the heat-discharging section on the downstream side; and in the second heat storage means, the flow of the second total flow from the heat-discharging section is τ in the second heat storage means square. *5 U Department 'is located in the intermediate circuit of the water treatment system of the 8th item of the patent scope, designed to be connected to the suction and distribution, and used to flow through the heat absorption pipe area. The first heat medium to be exchanged is in between; 〃δΛ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The upstream a of the connection portion of the pipe section is provided to the first heat medium of the first intermediate circuit of the second and second heat storage means via the third heat storage means for temporarily storing the flow knife. 1 No. 5·3=Please request a water treatment system with a scope of 苐8, send I right. The third intermediate circuit is designed to be connected with the heat absorption. Yes, the friends come through the heat-absorbing pipe. The first heat medium flows therebetween; and 笊/, heat is transferred between the heat pumps, wherein the third heat storage mechanism 'is temporarily stored at least a portion of the ith heat medium; the third intermediate circuit includes ··j Thermally connected, the first heat medium is designed to be circulated with the pumping mechanism via the λ heat absorbing pipe 'and the second circulation circuit', and the material is circulated through the third heat storage mechanism: And the flow of the first medium of the i-th heat medium is performed on the upstream side of the connection portion with the heat-dissipating pipe section, and the second heat storage mechanism is provided in the second towel. At least a portion of the second heat medium that flows back between the second intermediate circuits is temporarily as wide as the water treatment system of the application of the eighth aspect of the invention, wherein: the miscellaneous 'designed to be separate from the heat-dissipating pipe section and the heat pump Sexually ίί, the water and the heat passing through the heat pipe section The fourth heat storage mechanism is used to temporarily store at least a portion of the second heat medium; 48 201238647 wherein the fourth intermediate circuit includes: Interval thermal connection, and the first technical circuit is designed to be connected with the heat exhaust pipe; and the fourth circulation circuit is designed to circulate the fourth heat storage mechanism and circulate the material through the fourth heat storage mechanism. And the second heat medium 18. The fourth intermediate circuit of the eighth aspect of the patent application is designed as a * 兮 $ system, which has: =, and is used to flow through the heat distribution; the heat pump respectively The second heat medium is thermally distributed; and a heat is exchanged between the pumps, wherein the fourth heat storage mechanism temporarily stores at least a portion of the second age; the fourth intermediate circuit includes: a third cycle < Thermally connected, and the second heat medium is circulated through the heat-discharging pipe of the I, and is designed to circulate the material through the fourth heat storage mechanism through the fourth heat storage mechanism. The fourth cycle flows from the inflow portion of the fourth circulation circuit Below. , ~, machine (5) 邛 is located in the water treatment system of the scope of the patent application, the gas compression type heat pump, and in the heat pipe section and the hot chestnut, Ί ', ', is the outlet side of the steaming part The water temperature is 2 〇 ~ 35 ° C. ^ S line..., the father's taste of 2〇·If you apply for the water treatment system of the 19th item of the patent scope, the section of the population of the second part of the section of the Ming Dynasty is changed to '' ^ ^ Institution 21. If the scope of patent application is 19 In the water treatment system of the item, the water treatment system of the heat treatment pipe section or the heat absorption pipe section is added to or otherwise;; 201224647 - 22. The water treatment system of claim 19 The intermediate circuit is provided between: the heat-dissipating pipe section and the heat pump, or at least one of the heat-absorbing pipe section and the vapor compression heat pump, for the heat-dissipating pipe section or the heat absorbing section The piping section exchanges heat with the heat pump. 23. The water treatment system of claim 19, wherein the heat pump heats the water flowing through the inlet side piping section of the reverse osmosis membrane device to a water temperature of 23 to 25 〇C. [24] The water treatment system of claim 19, wherein the heat pump heats the water flowing through the inlet side piping section of the ultraviolet oxidizing apparatus to a water temperature of 20 to 30 °C. Soil The water treatment system of claim 19, wherein the heat pump heats the water flowing through the inlet side piping section of the ammonia stripping device to a water temperature of 2 〇 35 Torr. _26. For example, the water treatment system of claim 19, wherein the heat pump heats the water in the inlet side piping section of the aerobic treatment device to a water temperature of 2 〇 to 30 P. 〇 Λ 7. The water treatment method adopts a water treatment system which has a plurality of piping sections of a plurality of packages, which are connected between the plurality of devices adjacent to each other, and have water circulation therein; and the 孰 ΐ ΐ ΐ 湘 湘 heat pump 'At least one thin tube section is sucked:,, and the heat is absorbed from the endothermic piping section, and is absorbed from the endothermic piping section by at least the bean 2::^: 28. A method for treating water, comprising: a water passing step of passing water to a heat-discharging pipe 50 connected to a vapor-compressed heat pumping stage; 201238647 section and an endothermic piping section; and a shrinking-type operation to make the noodle type hot In the above-mentioned steaming, the condensing step of the refrigerant is carried out, and the heat transfer piping section is carried out in the heat-absorbing piping section. The control is performed to make the heat-discharging piping section 20 to 35. = (10) type heating process age _ part 1 _ water temperature is 51
TW100139144A 2010-10-27 2011-10-27 Water treatment system and water treatment method TWI533924B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010240813A JP5743489B2 (en) 2010-10-27 2010-10-27 Water treatment system
JP2010240814A JP5743490B2 (en) 2010-10-27 2010-10-27 Water treatment system and water treatment method

Publications (2)

Publication Number Publication Date
TW201238647A true TW201238647A (en) 2012-10-01
TWI533924B TWI533924B (en) 2016-05-21

Family

ID=45993806

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100139144A TWI533924B (en) 2010-10-27 2011-10-27 Water treatment system and water treatment method

Country Status (4)

Country Link
KR (1) KR101577125B1 (en)
CN (1) CN103209928B (en)
TW (1) TWI533924B (en)
WO (1) WO2012057098A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781329B (en) * 2018-07-06 2022-10-21 日商栗田工業股份有限公司 Reverse osmosis treatment method and system
TWI830883B (en) * 2019-03-28 2024-02-01 日商栗田工業股份有限公司 Pure water production device and pure water production method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998324B2 (en) * 2016-12-22 2022-01-18 オルガノ株式会社 Deionized water production system, electric deionized water production equipment and deionized water production method
CN109210836A (en) * 2017-06-29 2019-01-15 上海微电子装备(集团)股份有限公司 Liquid temperature controlling device and method
CN108569808A (en) * 2018-02-01 2018-09-25 上海未来环保科技有限公司 water purification system
JP7112226B2 (en) * 2018-03-28 2022-08-03 オルガノ株式会社 Exhaust heat recovery and reuse system for water treatment equipment in semiconductor manufacturing equipment
KR102417161B1 (en) * 2021-12-21 2022-07-05 대한공조(주) Vapor compression cycle apparatus and water treatment system having the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575780A (en) * 1978-12-01 1980-06-07 Hisaka Works Ltd Heat pump type water making equipment
JPH03181302A (en) * 1989-12-12 1991-08-07 Hitachi Ltd Distilling apparatus
JP3647636B2 (en) * 1998-02-16 2005-05-18 株式会社クラレ Method for purifying circulating cold / hot water for air conditioning and purification device and purification device used therefor
US6539728B2 (en) * 2000-12-04 2003-04-01 Amos Korin Hybrid heat pump
JP2007021300A (en) 2005-07-13 2007-02-01 Toshiba Plant Systems & Services Corp Liquid warming/temperature-reducing system
CN101581462B (en) * 2008-05-12 2012-05-09 张建平 Ecological bath system
US8323457B2 (en) * 2008-10-30 2012-12-04 Kellogg Brown & Root Llc Dividing wall column with a heat pump
JP5775267B2 (en) * 2010-05-26 2015-09-09 オルガノ株式会社 Water treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781329B (en) * 2018-07-06 2022-10-21 日商栗田工業股份有限公司 Reverse osmosis treatment method and system
TWI830883B (en) * 2019-03-28 2024-02-01 日商栗田工業股份有限公司 Pure water production device and pure water production method

Also Published As

Publication number Publication date
WO2012057098A1 (en) 2012-05-03
CN103209928B (en) 2015-08-05
CN103209928A (en) 2013-07-17
KR101577125B1 (en) 2015-12-11
TWI533924B (en) 2016-05-21
KR20130102088A (en) 2013-09-16

Similar Documents

Publication Publication Date Title
TW201238647A (en) Water treatment system and water treatment method
TW482743B (en) Desalination method and desalination apparatus
JP5775267B2 (en) Water treatment system
RU2508453C2 (en) Accumulation system of thermoelectric energy with intermediate storage tank, and accumulation method of thermoelectric energy
JP5092186B2 (en) Fuel cell cogeneration system
US4708849A (en) Process for energy storage and recovery
EA004968B1 (en) Process and plant for multi-stage desalination of water
JP2007309295A (en) Desalination power generation plant
JP5743490B2 (en) Water treatment system and water treatment method
JPWO2010026953A1 (en) Method and apparatus for producing energy-efficient distilled water and / or concentrated water
JP5150785B2 (en) Pure liquid production equipment
JP4139597B2 (en) Desalination equipment
Yao et al. A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery
JP2008300059A (en) Fuel cell device
KR20110080215A (en) Water furification plant adopting vacuum evaporation method
KR20100102902A (en) Fresh water generator and fresh water generating method using solar energy
JP5743489B2 (en) Water treatment system
JP2010169364A (en) Thermosiphon type steam generator
US10532934B1 (en) Energy recycling and heat exchange systems
JP5687036B2 (en) Hot spring water supply system and hot spring water supply method
JP2011075206A (en) Heat pump system generating a plurality of systems of warm water with different temperature
RU2342322C2 (en) Method of leaching for bauxite pulp, facility (versions) and heat-exchanger for its inmplementation
JP5105796B2 (en) Multi-stage flash water generator
JP5721408B2 (en) Hot spring water supply system and hot spring water supply method
JP4112772B2 (en) Desalination equipment