TW201234628A - Sensitizing agent of solar cells and the solar cells using the same - Google Patents
Sensitizing agent of solar cells and the solar cells using the same Download PDFInfo
- Publication number
- TW201234628A TW201234628A TW101101603A TW101101603A TW201234628A TW 201234628 A TW201234628 A TW 201234628A TW 101101603 A TW101101603 A TW 101101603A TW 101101603 A TW101101603 A TW 101101603A TW 201234628 A TW201234628 A TW 201234628A
- Authority
- TW
- Taiwan
- Prior art keywords
- solar cell
- layer
- sensitizer
- coating method
- power generation
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
201234628 六、發明說明: 【發明所屬之技術領域】 本發明爲有關一種太陽能電池用增感劑,其係以成膜 於太陽能電池之發電層內部或發電層之界面,藉自金屬奈 米粒子之表面電漿子效果而可期待高轉換效率之實現。 【先前技術】 現在,就環境保護之立場而言,正進行著潔淨能源( Clean Energy)之硏究開發。其中又以太陽能電池,由於 其資源之太陽光爲無限、無公害等而備受矚目。已往,對 於藉由太陽能電池之太陽光發電+,大多爲使用單晶或多晶 砂。 另一方面,使用非晶質矽等之半導體,即,所謂的薄 膜半導體太陽能電池(以下稱爲薄膜太陽能電池),只要 將所需要的光電轉換層之半導體層形成於玻璃或不銹鋼等 廉價基板上即可。因此,由於此薄膜太陽能電池薄型且輕 量、製造成本便宜、容易大面積化等,被認爲是成爲今後 太陽能電池之主流。 此等太陽能電池之發電效率,即,爲了提高光電轉換 效率,將射入的光無損失地導入於發電層內來進行利用者 爲重要的。爲達如此般之革新手法,已報告有:利用藉由 經金屬奈米粒子所誘發之表面電漿子之接近場光(near field light)之嘗試,其係於η型摻雜電荷傳輸層與p型摻 雜電荷傳輸層之各電荷傳輸層間,形成含有利用表面電漿 -5- 201234628 子或極化子機構來吸收近紅外線等之奈米粒子之感光層( 專利文獻1),或,一種具備有P型薄膜半導體層與N型薄 膜半導體層之接合體之太陽能電池,其係藉由產生表面電 漿子共鳴之金屬奈米粒子來形成金屬電極(專利文獻2) 〇 〔先前技術文獻〕 〔專利文獻〕 [專利文獻1]特表2009-533857號公報 [專利文獻2]特開2009-246025號公報 【發明內容】 〔發明所欲解決的課題〕 然而,於η型摻雜電荷傳輸層與p型摻雜電荷傳輸層之 各層間所形成的感光層,當金屬奈米粒子直接接觸於發電 層時,金屬會擴散至各電荷傳輸層中,而有無法得到長期 間之可靠性等之問題。 在具備有藉自金屬奈米粒子所形成金屬電極之太陽能 電池中,由於薄膜半導體層與金屬電極爲接觸,故金屬會 擴散至薄膜半導體層中,而有無法得到長期間之可靠性等 之問題。 另一方面,爲了不使發電層與金屬奈米粒子接觸般地 ,將含有金屬奈米粒子之膜形成於基板表面之方法時,自 金屬奈米粒子之表面電漿子共鳴所產生的接近場光與發電 層之距離爲遠,無法得到足夠的增強效果。 -6- 201234628 本發明係以提供一種太陽能電池用增感劑爲課題’其 係抑制金屬之對於發電層之擴散,且可期待藉由自金屬奈 米粒子之表面電漿子共鳴所產生的接近場光(以下稱爲^ 表面電漿子效果」)之高發電效率之實現。 〔解決課題之手段〕 本發明爲藉由如以下所示之構成,係有關於一種解決 上述課題之太陽能電池用增感劑、增感層用組成物、增感 層、及使用其所成的太陽能電池。 (1) —種太陽能電池用增感劑,其特徵係表面爲形 成有透明層之產生表面電漿子共鳴之金屬奈米粒子。 (2) 如上述(1)之太陽能電池用增感劑,其中,金 屬奈米粒子之金屬爲金、銀、銅或鈀,或自金、銀、銅及 鈀所成群組中選出之至少二種之混合金屬或合金。 (3 )如上述(1 )或(2 )之太陽能電池用增感劑, 其中’金屬奈米粒子之平均粒徑爲5〜300nm。 (4)如上述(1)〜(3)中任—項之太陽能電池用 增感劑’其中’透明層爲Si02、Ti02或Zr02,或自Si02、 Ti〇2及Zr〇2所成群組中選出之至少二種之混合物。 (5 )如上述(1 )〜(3 )中任一項之太陽能電池用 增感劑,其中’透明層爲自丙烯酸樹脂、聚碳酸酯、聚酯 、醇酸樹脂、聚胺基甲酸乙酯、丙烯酸胺基甲酸乙酯( acrylic urethane)、聚苯乙烯、聚縮醛、聚醯胺、聚乙烯 醇 '聚乙酸乙稀、纖維素及矽氧烷聚合物所成群組中選出 201234628 之至少一種。 (6) 如上述(1)〜(5)中任一項之太陽能電池用 增感劑’其中,透明層之厚度爲1〜20nm。 (7) —種太陽能電池用增感層用組成物,其係含有 如上述(1)〜(6)中任一項之太陽能電池用增感劑及分 散媒。 (8) ~種太陽能電池用增感層,其係含有如上述(1 )〜(6)中任一項之太陽能電池用增感劑。 (9) —種太陽能電池,其係具備有如上述(8)之太 陽能電池用增感層。 又,本發明爲有關於太陽能電池用增感層之製造方法 〇 (10) —種太陽能電池用增感層之製造方法,其特徵 係將如上述(7 )之太陽能電池用增感層用組成物藉由濕 式塗佈法塗佈至太陽能電池之發電層上、透明導電膜上或 電極上。 (11) 如上述(10)之太陽能電池用增感層之製造方 法,其中,濕式塗佈法爲噴霧塗佈法、點膠塗佈法、旋轉 塗佈法、刀塗佈法、狹縫塗佈法、噴墨塗佈法、網板印刷 法、平板印刷法或模具塗佈法之任一種。 〔發明效果〕 依據本發明(1),藉自金屬奈米粒子之表面電漿子 效果,發電效率變高,藉由透明層,可提供長期安定性佳 ** 8 - 201234628 之太陽能電池。又,此太陽能電池用增感劑可含有於發電 層內、發電層與電極之間之任何處。 依據本發明(7),可製造提高太陽能電池之光電轉 換效率’且長期安定性佳之太陽能電池用增感層。又,依 據本發明(9) ’可提高太陽能電池之發電效率,且爲長 期安定性佳。因此’本發明(11)之太陽能電池爲發電效 率高,且長期安定性佳。 依據本發明(12),可容易製造提高太陽能電池之發 電效率,且長期安定性佳之太陽能電池用增感層。 〔實施發明的最佳型態〕 以下爲基於實施型態來將本發明具體地進行說明。尙 ,若無特別告示,又除了固有數値之情形,%皆示爲質量 %。 對於使用本發明之太陽能電池用增感劑(以下稱爲「 增感劑」)之太陽能電池進行說明。圖1示爲使用增感劑 之矽異質接合型太陽能電池之剖面圖之一例。圖1爲在單 晶Si(n型)31上形成有a-Si(i型)32及a-Si(p型)33以 形成發電層30,並於發電層30上形成有透明導電膜60及Ag 配線70;另一方面,在單晶Si (η型)之背面形成有A1層 20。本發明之增感劑10,係形成於發電層30與透明導電膜 60之間,並藉由增感劑1〇中金屬奈米粒子之電漿子效果來 增強太陽光,以提高太陽能電池1之發電效率。在此,產 生表面電漿子共鳴之金屬奈米粒子’係認爲是對於已射入 -9- 201234628 之太陽光之中,相當於金屬奈米粒子之表面電漿子共鳴頻 率之光產生表面電漿子共鳴,局部性顯著地增強金屬奈米 粒子層附近之電場,並增加接近場光之強度,而可在發電 層內產生光電流。 圖2示爲使用增感劑之超直型太陽能電池之剖面圖之 一例。圖2爲於玻璃基板71形成有透明導電膜61、由a_Si( p型)43與a-Si(i型)42與a-Si(n型)41所構成的發電層 40、及背面電極層21,本發明之增感劑11爲形成於透明導 電膜61與發電層40之間,藉由增感劑11中金屬奈米粒子之 表面電漿子效果,可提高太陽能電池2之發電效率。 圖3示爲使用增感劑之超直型太陽能電池之剖面圖之 另外一例。由太陽光側觀看時,此例爲將增感劑形成於發 電層之背面之例。圖3爲於玻璃基板72形成有透明導電膜 63、由 a-Si(p 型)53 與 a-Si(i 型)52 與 a-Si(n 型)51 所 構成的發電層50、透明導電膜62、及背面電極層22,本發 明之增感劑12爲形成於發電層50與透明導電膜62之間,藉 由增感劑12中金屬奈米粒子之表面電漿子效果,可提高太 陽能電池3之發電效率。 如此般地,由太陽光側觀看時,不論增感劑是形成於 發電層之射入側或是形成於背面側,藉由表面電漿子效果 ,可提高太陽能電池之發電效率,亦較佳爲形成於發電層 之射入側及背面側。 〔太陽能電池用增感劑〕 -10- .201234628 本發明之增感劑,其特徵係表面爲形成有透明層之產 生表面電漿子共鳴之金屬奈米粒子。 作爲金屬奈米粒子之金屬,舉例如自金、銀、銅、鈀 、鉑、釕、鎳、錫、銦、鋅、鐵、鉻及錳所成群組中選出 之一種或二種以上之混合金屬或合金,若爲金、銀、銅或 鈀,或自金、銀、銅及鈀所成群組中選出之至少二種之混 合金屬或合金時,由於可使表面電漿子波長具有可見光, 故宜。 金屬奈米粒子之平均粒徑,較佳爲5〜3 00nm,藉由平 均粒徑與金屬之種類,可選擇表面電漿子效果爲強之波長 。 在此,平均粒徑爲藉由以QUANTACHROME AUTOSORB-1之比表面積測定之BET法所測定。若無特別 之記載,使用藉由以QUANTACHROME AUTOSORB-1之比 表面積測定之BET法進行測定。金屬奈米粒子之形狀,若 爲球狀、針狀時,就分散性、導電性之觀點而言爲宜。 透明層,係防止金屬奈米粒子之對於發電層之擴散。 又,若透明層在可見光域爲發電層或電極之中間之折射率 時,可抑制在發電層與透明層界面之射入光之反射,由於 可將射入光效率性地轉換至接近場,故宜。無機物之透明 層,較佳爲 Si02、 Ti02或 Zr02,或自 Si02、 Ti02及 Zr02所 成群組中選出之至少二種之混合物。又,有機物之透明層 ,較佳爲自丙烯酸樹脂、聚碳酸酯、聚酯、醇酸樹脂、聚 胺基甲酸乙酯、丙烯酸胺基甲酸乙酯(acrylic urethane ) 、聚苯乙烯、聚縮醛、聚醯胺、聚乙烯醇、聚乙酸乙烯、 -11 - 201234628 纖維素及矽氧烷聚合物所成群組中選出之至少一種。 透明層之厚度,較佳爲1〜20nm。若未滿lnm時,金 屬奈米粒子有擴散於發電層之虞;若超過20nm時,透明層 會過剩,變得沒有效果。在此,透明層之厚度爲使用穿透 式電子顯微鏡進行測定》 〔太陽能電池用增感層用組成物〕 本發明之太陽能電池用增感層用組成物(以下稱「增 感層用組成物」)係含有上述太陽能電池用增感劑及分散 分散媒係使太陽能電池用增感劑分散,且使太陽能電 池用增感層用組成物之成膜性提昇。作爲分散媒,較佳爲 水、醇類。作爲醇類,更佳爲自甲醇、乙醇、丙醇、丁醇 、乙二醇、丙二醇、二乙二醇、甘油、異莰基己醇及赤藻 糖醇所成群組中選出之一種或二種以上。相對於太陽能電 池用增感層用組成物:100質量份,分散媒較佳爲50〜99 質量份。 在不損及本發明目的之範圍,增感層用組成物進而視 所需地可摻合抗氧化劑、調平劑、觸變劑、塡充料、應力 緩和劑、其他添加劑等。 〔太陽能電池用增感層〕 本發明之太陽能電池用增感層(以下稱爲「增感層」 )係含有上述增感劑。例如,如圖1所示般,在增感層1 00 -12- 201234628 中,透明導電膜6 0可滲透於增感劑1 〇之間之隙間。 〔太陽能電池用增感層之製造方法〕 本發明之增感層之製造方法,其特徵爲將上述 用組成物藉由濕式塗佈法塗佈至太陽能電池之發電 電極上。 增感劑係將透明層被覆於金屬奈米粒子而製造 製造步驟之一例,舉例如以下: 步驟1:調製金屬奈米粒子分散液; 步驟2:將透明層形成用表面塗佈劑添加並混 屬奈米粒子分散液中; 步驟3 :將沈澱物(增感劑)離心分離,除去溶 步驟4:再度添加溶劑,進行攪拌並使奈米粒 » 步驟5 :將沈澱物離心分離,除去溶劑; 步驟6 :重覆步驟4與5,進行洗淨。 增感層用組成物係將所希望之成分藉由常法之 擺器(paint shaker)、球磨機、混砂機、century 三軸機等進行混合,透光性黏合劑,依情況,可使 電性粒子等分散來進行製作。當然,亦可藉由通常 操作來進行製造。 欲將增感層用組成物濕式塗佈於太陽能電池之 上、透明導電膜上、電極上之何處,只要依太陽能 構造予以適當地決定即可,例如,以如圖1般之矽 增感層 層上或 。作爲 合於金 劑; 子分散 塗料搖 mill、 透明導 之攪拌 發電層 電池之 異質接 -13- 201234628 合型太陽能電池時,較佳爲將增感層用組成物濕式塗佈於 已事先形成有單晶Si(n型)31之a-Si(p型)33上。 濕式塗佈法較佳爲噴霧塗佈法、點膠塗佈法、旋轉塗 佈法、刀塗佈法、狹縫塗佈法、噴墨塗佈法、網板印刷法 、平板印刷法或模具塗佈法之任一種,惟,不限定於此等 ,可利用所有的方法。 藉由將以濕式塗佈所形成的增感層用組成物塗膜進行 乾燥,可得到增感層。增感層之厚度,爲了極力地抑制光 之自我吸收,較佳爲〇.〇1〜〇.3μιη。如此般地操作可製造 本發明之增感層。 將透明導電膜形成於增感層上之情形時,若爲藉由濕 式塗佈法來將透明導電膜用組成物塗佈,再進行硬化或鍛 燒之方法時,無需使用高價之設備,可簡便地以低成本進 行製造,故宜。此時,當透明導電膜組成物滲透於增感層 時,可提高增感層與發電層之密著強度。 透明導電膜組成物,只要是含有透光性黏合劑之太陽 能電池用途用之習知者即可,含有透明導電性粒子時,由 於可提昇透明導電膜之導電性,並抑制因熱及光之導電性 反射膜之劣化,故宜。作爲透光性黏合劑,舉例如丙烯酸 樹脂、聚碳酸酯、聚酯等聚合物型黏合劑或金屬皂、金屬 錯體、金屬烷氧化物、金屬烷氧化物之水解物等非聚合物 型黏合劑》作爲透明導電性粒子,舉例如ITO ( Indium Tin Oxide:銦錫氧化物)、ΑΤΟ ( Antimony Tin Oxide : 銻摻雜氧化錫)、AZO( Aluminum Zinc Oxide:銘慘雜氧 -14- 201234628 化辞)、IZO( Indium Zinc Oxide:銦摻雜氧化鋅)、 ΤΖΟ ( Tin Zinc Oxide :錫摻雜氧化鋅)等。 右透明導電膜之厚度爲0.01〜〇·5μπι時,就密著性之 觀點而言爲佳,更佳爲0.02〜Ο.ΐμπι。若透明導電膜之厚 度未滿0.03 μιη或超過0.5 μιη時’因而無法充分地得到抗反 射效果。 【實施方式】 〔實施例〕 以下係藉由實施例詳細地說明本發明,惟,本發明並 不限定於此等。 《銀奈米粒子之製作> 將硝酸銀溶解去離子水中來調製金屬鹽水溶液。又, 將檸檬酸鈉溶解於去離子水中,調製濃度爲26質量%之檸 檬酸鈉水溶液。於保持在3 5 °C之氮氣氣流中,將粒狀硫酸 亞鐵直接加入使溶解於此檸檬酸鈉水溶液中,調製含有檸 檬酸離子與亞鐵離子之莫耳比爲3 : 2之還原劑水溶液。 接著,將上述氮氣氣流保持於35 t,同時將磁攪拌器 之攪拌子至入於還原劑水溶液中,並以攪拌子之回轉速度 :lOOrpm進行攪拌,同時將上述金屬鹽水溶液滴入於此還 原劑水溶液,進行混合。在此,對於還原劑水溶液之金屬 鹽水溶液之添加量,以成爲還原劑水溶液量之1 /1 〇以下般 地,來調整各溶液之濃度,即使是滴入室溫的金屬鹽水溶 -15- 201234628 液,亦使反應溫度設定保持於40°C。又,還原劑水溶液與 金屬鹽水溶液之混合比,相對於金屬鹽水溶液中金屬離子 之總原子價數,使還原劑水溶液之檸檬酸離子與亞鐵離子 之莫耳比均設定爲3倍莫耳。在金屬鹽水溶液之對於還原 劑水溶液之滴入結束後,進而藉由持續攪拌混合液1 5分鐘 ,使混合液內部產生銀奈米粒子,得到銀奈米粒子爲分散 之銀奈米粒子分散液》銀奈米粒子分散液之pH爲5.5,分 散液中銀奈米粒子之化學計量生成量爲5 g/升。 藉由將所得到的銀.奈米粒子分散液放置於室溫,使分 散液中的銀奈米粒子沈降,將沈降的銀奈米粒子之凝聚物 藉由傾析而分離。對於已分離的銀奈米粒子凝聚物加入去 離子水來製成分散體,並藉由超過濾進行脫鹽處理後,進 而以甲醇進行取代洗淨,將金屬(銀)之含有量設定爲50 質量%。之後,使用離心分離機,調整此離心分離機之離 心力,藉由將粒徑爲超過l〇〇nm之相對大之銀粒子進行分 離,使一次粒徑爲10〜50nm之範圍內之銀奈米粒子以數平 均爲含有7 1 %般地進行調整。即,相對於以數平均爲全銀 奈米粒子之1〇〇 %,使一次粒徑爲1〇〜50nm之範圍內之銀 奈米粒子所佔之比例成爲7 1 %般地進行調整,而得到銀奈 米粒子分散原液。所得的銀奈米粒子,檸檬酸鈉之保護劑 爲已化學改質。以去離子水將此銀奈米粒子分散原液稀釋 ,得到含有平均粒徑爲20nm之銀奈米粒子5質量%之銀奈 米粒子分散液:100cm3。 -16- 201234628 〔實施例1〕 將含有5質量%之銀奈米粒子之銀奈米粒子分散液: 200cm3保持於40。(:,於進行激烈攪拌之同時’添加含有透 明膜原料之四乙氧基矽烷5質量%之乙醇溶液:100cm3後’ 作爲觸媒添加1〇質量%之氨水:5cm3 ’保持1小時’得到含 有實施例1之增感劑之分散液。將此分散液進行超過濾後 ,進行洗淨,得到實施例1之增感劑:7g。實施例1之增感 劑爲產生表面電漿子共鳴’又透明層之厚度爲2nm。 〔實施例2〕 除了添加含有四乙氧基矽烷20質量%之乙醇溶液: 100cm3以外,與實施例1進行相同之操作,得到實施例2之 增感劑:8.5g。實施例2之增感劑爲產生表面電漿子共鳴 ,又透明層之厚度爲20nm。 〔實施例3〕 除了使用氯金(III )酸來取代硝酸銀以外,與製作銀 奈米粒子進行相同之操作,得到含有平均粒徑爲1 Onm之金 奈米粒子5質量%之金奈米粒子分散液:100cm3。 將含有金奈米粒子10質量%之金奈米粒子分散液: 10cm3保持於50°C,於進行激烈攪拌之同時,添加透明膜 原料之丙烯酸:l〇cm3後,添加作爲聚合起始劑之偶氮雙 異丁腈:〇 · 5 g,保持1小時,得到含有實施例3之增感劑之 分散液。將此分散液進行離心分離並除去溶劑,將實施例 -17- 201234628 3之增感劑予以分離。之後’爲了將增感劑洗淨’再次添 加乙醇,攪拌並使增感劑分散後,進行離心分離將溶劑除 去。重覆此洗淨3次,得到實施例3之增感劑:1 g。實施例 3之增感劑爲產生表面電漿子共鳴’又透明層之厚度爲5nm 〔實施例4〜5、參考例1〜2、比較例1〕 使用如表1所示之組成來製造實施例4〜5、參考例1〜 2、比較例1增感劑。尙’作爲P d之原料爲使用氯化鈀’ C u 之原料爲使用硝酸銅,作爲聚胺基甲酸乙酯之原料爲使用 六亞甲基二異氰酸酯與聚碳酸酯多元醇’作爲聚酯之原料 爲使用對酞酸與乙二醇。尙’實施例4、5爲產生表面電漿 子共鳴,參考例1〜2及比較例1亦產生表面電漿子共鳴。 [表1] 奈米粒子 透明層 組成(質量比) 粒徑(nm) 組成(質量比) 厚度(nm) 實施例1 Ag 20 Si02 2 實施例2 Ag 250 Si02 20 實施例3 Au 20 丙烯酸樹脂 5 實施例4 Ag: Pd = 90:10 40 聚胺基甲酸乙酯 10 實施例5 Ag:Cu = 90:10 100 聚酯 20 參考例1 Ag 5 Si〇2 2 比較例1 Ag 20 一 — 參考例2 Ag 100 丙烯酸樹脂 30 《增感層用組成物之製造》 -18· 201234628 將所得到的增感劑:1 0質量份添加於含有水、乙醇及 甲醇之混合溶液90質量份中,藉由進行混合使分散’來製 作增感層用組成物。 《發電效率之評價》 表2示爲進行評價之增感層之製作條件。表2之「設置 場所」爲形成增感劑之場所’示爲表面電極側或背面電極 側;「膜厚」示爲增感層之膜厚(單位:μηι ) ; 「濕式塗 佈法j示爲塗佈增感層用組成物之方法。在此’實施例1 與4、參考例1爲如圖4所示之構造,實施例2與5、比較例1 爲如圖2所示之構造,實施例3、參考例2爲如圖3所示之構 造。 進行評價之太陽能電池之製作方法如同以下所示。 <矽異質接合型太陽能電池之情形> (光電轉換部之製作) 首先,如圖4所示光電轉換部8 00,係如同以下般所製 作。 作爲基板81,使用電阻約lQ.cm、厚度300μηι之η型單 晶矽基板,將此基板8 1使用常法進行洗淨後,藉由蝕刻使 基板81之表面81Α及背面81Β形成刻紋(texture)面。 接著,在基板81之表面81 A及背面81 B上,分別使用通 常的電漿CVD法’以形成i型非晶質矽層82、p型非晶質矽 層8 3及i型非晶質矽層8 6、n型非晶質矽層8 7。 -19- 201234628 接著,於p型非晶質矽層8 3上方形成實施例1與4、參 考例1之增感層1〇3。 接著,於η型單晶矽基板81之兩主面上所形成的η型非 晶質矽層87及增感層103上方,藉由濺鍍法來形成厚度 100nm之由ΙΤΟ所構成的背面透明電極層88及表面透明電 極層8 4。 對於由如以上般所形成的表面透明電極層84、增感層 1 0 3、p型非晶質矽層8 3、i型非晶質矽層8 2、η型單晶矽基 板81、i型非晶質矽層86、η型非晶質矽層87、背面透明電 極層88之層合體所構成的光電轉換部800之背面上及表面 上之指定領域,使用網板印刷法來形成梳子型狀之背面電 極89及表面電極85。 <超直型薄膜太陽能電池之情形> 對於本發明各實施例相關之串接式太陽能電池之製造 方法進行說明。尙,構成各實施例所述太陽能電池之該構 成要素之材質或膜厚僅示爲一例,惟,本發明並不限定於 此等。 <超直型薄膜太陽能電池之情形> 對於實施例2與5、比較例1之情形進行說明。首先, 準備已於一側之主面上形成有厚度50nm之Si02層(未示圖 )之玻璃基板71,並將透明導電膜61形成於此Si02層上。 藉由使用雷射加工法將此透明導電膜61進行圖型處理,在 -20- 201234628 形成陣列狀之同時,形成將此等以相互電連接之配線。之 後,分別將實施例2與5、比較例1之增感層101形成於透明 導電膜61上。接著,使用電漿CVD法將發電層40形成於增 感層101上。此發電層40,從基板71側爲依序層合有由p型 a-Si : Η (非晶質碳化矽)43、i型a-Si (非晶質矽)42及η 型μα-Si (微結晶碳化矽)41所構成之膜而得到。將上述發 電層40使用雷射加工法進行圖型處理後,使用聯機(in line)磁控管式濺鍍裝置,依序將厚度200nm之背面電極 層(銀電極層)21形成於發電層40上。 作爲太陽能電池晶胞之評價方法,對於使用雷射加工 法實施圖型處理之加工後之基板實施引線配線,並將在確 認IV特性曲線之際之輸出特性及短路電流之(Jsc )之値 ,使用與實施例爲相同之製造方法所得到的光電轉換層, 並將透明導電膜、背面電極層之全數爲藉由濺鍍法所形成 的太陽能電池晶胞作爲1 00,來進行相對輸出之評價。此 等結果如表2所示。 在此,將全數爲藉由濺鍍法所形成的太陽能電池使用 超直型之情形來進行說明時,所謂的超直型太陽能電池晶 胞爲由圖2將增感劑11及增感層101除去者,首先,準備已 於一側之主面上形成有厚度50nm之Si02層(未示圖)之玻 璃基板71,於此3丨02層上形成表面爲具有凹凸刻紋,且摻 雜有F (氟)之厚度800nm之透明導電膜(Sn02膜)61。 藉由使用雷射加工法將此透明導電膜61進行圖型處理,在 形成陣列狀之同時,形成將此等以相互電連接之配線。接 -21 - 201234628 著,使用電漿CVD法將發電層40形成於透明導電膜61上。 此發電層40,從基板71側爲依序層合有由?型a_Si : Η (非 晶質碳化矽)43、i型a-Si (非晶質矽)42及η型gc-Si (微 結晶碳化矽)4 1所構成之膜而得到。將上述發電層40使用 雷射加工法進行圖型處理後,使用聯機磁控管式濺鍍裝置 ,依序將厚度200nm之背面電極層(銀電極層)21形成於 發電層40上。尙,矽異質接合型太陽能電池之情形時,係 由圖1將增感劑11及增感層1〇1除去者,使用與超直型爲相 同之方法將i型a-Si (非晶質矽)32及?型μο-Si (微結晶碳 化矽)33、透明導電膜60形成於已形成有A1層20之單晶Si (η型)31上後,於使用濺鍍法形·成後,以蝕刻來形成已 圖型處理之Ag配線。 《耐久性試驗》 將進行初期發電效率測定之太陽能電池,以保持於作 爲耐久性試驗之溫度:85 °C、濕度:85%、1 000小時。之 後,測定Jsc値。結果如表2之「耐久性試驗後」之欄所示 -22- 201234628 [表2] I® s葙罟osr ou ε9 CO9201234628 VI. Description of the Invention: [Technical Field] The present invention relates to a sensitizer for a solar cell, which is formed by forming a film in the interior of a power generation layer of a solar cell or an interface of a power generation layer, by means of a metal nanoparticle. Surface plasmon effect can be expected to achieve high conversion efficiency. [Prior Art] Now, in terms of environmental protection, research and development of Clean Energy is underway. Among them, solar cells are attracting attention because of the unlimited sunlight and pollution. In the past, for solar power generation by solar cells, most of them used single crystal or polycrystalline sand. On the other hand, a semiconductor such as amorphous germanium, that is, a so-called thin film semiconductor solar cell (hereinafter referred to as a thin film solar cell) is used, and a semiconductor layer of a desired photoelectric conversion layer is formed on an inexpensive substrate such as glass or stainless steel. Just fine. Therefore, this thin film solar cell is considered to be the mainstream of solar cells in the future because it is thin and lightweight, inexpensive to manufacture, and easy to increase in area. The power generation efficiency of these solar cells, that is, in order to improve the photoelectric conversion efficiency, it is important to introduce the incident light into the power generation layer without loss. In order to achieve such a revolutionary approach, attempts have been made to utilize the near field light of surface plasmons induced by metallic nanoparticles, which are tied to the n-type doped charge transport layer. Between each of the charge transport layers of the p-type doped charge transport layer, a photosensitive layer containing a nanoparticle that absorbs near-infrared rays or the like using a surface plasma-5-201234628 or a polaron mechanism is formed (Patent Document 1), or a type A solar cell comprising a bonded body of a P-type thin film semiconductor layer and an N-type thin film semiconductor layer, which is formed by metal nanoparticles which generate surface plasmon resonance (Patent Document 2) 〇 [Prior Art Document] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2009-533025 [Patent Document 2] JP-A-2009-246025 SUMMARY OF INVENTION [Problems to be Solved by the Invention] However, an n-type doped charge transport layer is used. The photosensitive layer formed between the layers of the p-type doped charge transport layer, when the metal nanoparticles directly contact the power generation layer, the metal diffuses into each of the charge transport layers, and the long period of time cannot be obtained. Problems such as reliability. In a solar cell including a metal electrode formed by metal nanoparticles, since the thin film semiconductor layer is in contact with the metal electrode, the metal diffuses into the thin film semiconductor layer, and there is a problem that reliability in a long period of time cannot be obtained. . On the other hand, in order to form a film containing metal nanoparticles on the surface of the substrate without contacting the power generation layer with the metal nanoparticles, the proximity field generated from the surface plasmon resonance of the metal nanoparticles The distance between the light and the power generation layer is far, and sufficient enhancement cannot be obtained. -6- 201234628 The present invention provides a sensitizer for a solar cell, which is a method for suppressing diffusion of a metal to a power generation layer, and is expected to be close by surface plasmon resonance of metal nanoparticles. The realization of high power generation efficiency of field light (hereinafter referred to as "surface plasmon effect"). [Means for Solving the Problem] The present invention relates to a sensitizer for a solar cell, a composition for a sensitizing layer, a sensitizing layer, and a method for using the same according to the configuration described below. Solar battery. (1) A sensitizer for a solar cell characterized in that the surface is a metal nanoparticle which forms a transparent layer and which resonates on the surface plasmon. (2) The sensitizer for a solar cell according to the above (1), wherein the metal of the metal nanoparticles is gold, silver, copper or palladium, or at least selected from the group consisting of gold, silver, copper and palladium. Two kinds of mixed metals or alloys. (3) The sensitizer for a solar cell according to (1) or (2) above, wherein the metal nanoparticles have an average particle diameter of 5 to 300 nm. (4) The sensitizer for a solar cell according to any one of the above (1) to (3), wherein the transparent layer is SiO 2 , TiO 2 or Zr 02 , or is grouped from SiO 2 , Ti 〇 2 and Zr 〇 2 A mixture of at least two of the selected ones. (5) The sensitizer for a solar cell according to any one of the above (1) to (3) wherein the transparent layer is an acrylic resin, a polycarbonate, a polyester, an alkyd resin, or a polyurethane. , at least a group of 201234628 selected from the group consisting of acrylic urethane, polystyrene, polyacetal, polyamidamine, polyvinyl alcohol 'polyvinyl acetate, cellulose and decane polymer One. (6) The sensitizer for a solar cell according to any one of the above (1) to (5) wherein the transparent layer has a thickness of 1 to 20 nm. (7) A sensitizing layer for a solar cell, comprising the sensitizer for a solar cell according to any one of the above (1) to (6), and a dispersing medium. (8) A sensitizing layer for a solar cell, comprising the sensitizer for a solar cell according to any one of the above (1) to (6). (9) A solar cell comprising the sensitization layer for a solar cell according to (8) above. Moreover, the present invention relates to a method for producing a sensitized layer for a solar cell, and a method for producing a sensitized layer for a solar cell, which is characterized in that the sensitizing layer for a solar cell according to the above (7) is used. The material is applied to the power generation layer of the solar cell, the transparent conductive film or the electrode by a wet coating method. (11) The method for producing a sensitized layer for a solar cell according to the above (10), wherein the wet coating method is a spray coating method, a dispensing method, a spin coating method, a knife coating method, or a slit Any one of a coating method, an inkjet coating method, a screen printing method, a lithography method, or a die coating method. [Effect of the Invention] According to the invention (1), the surface plasmon effect of the metal nanoparticles is used to increase the power generation efficiency, and the transparent layer can provide a solar cell having long-term stability and good stability ** 8 - 201234628. Further, the solar cell sensitizer may be contained in the power generation layer, anywhere between the power generation layer and the electrode. According to the invention (7), it is possible to manufacture a sensitized layer for a solar cell which improves the photoelectric conversion efficiency of the solar cell and has good long-term stability. Further, according to the invention (9)', the power generation efficiency of the solar cell can be improved, and the long-term stability is good. Therefore, the solar cell of the invention (11) has high power generation efficiency and good long-term stability. According to the invention (12), it is possible to easily produce a sensitized layer for a solar cell which improves the power generation efficiency of the solar cell and has good long-term stability. [Best Mode for Carrying Out the Invention] Hereinafter, the present invention will be specifically described based on an embodiment.尙 If there is no special notice, in addition to the inherent number of cases, % is shown as mass %. A solar cell using the sensitizer for a solar cell of the present invention (hereinafter referred to as "sensitizer") will be described. Fig. 1 shows an example of a cross-sectional view of a germanium heterojunction solar cell using a sensitizer. 1 shows that a-Si (i type) 32 and a-Si (p type) 33 are formed on a single crystal Si (n type) 31 to form a power generation layer 30, and a transparent conductive film 60 is formed on the power generation layer 30. And the Ag wiring 70; on the other hand, the A1 layer 20 is formed on the back surface of the single crystal Si (n-type). The sensitizer 10 of the present invention is formed between the power generation layer 30 and the transparent conductive film 60, and enhances the sunlight by the plasmonic effect of the metal nanoparticles in the sensitizer 1 以 to enhance the solar cell 1 Power generation efficiency. Here, the metal nanoparticle which generates the surface plasmon resonance is considered to be a light-generating surface corresponding to the surface plasmon resonance frequency of the metal nanoparticle which has been incident into the sunlight of -9-201234628. The plasmonic resonance resonates significantly to enhance the electric field near the metal nanoparticle layer and increase the intensity of the near-field light, which can generate photocurrent in the power generation layer. Fig. 2 shows an example of a cross-sectional view of a super-straight type solar cell using a sensitizer. 2 is a transparent conductive film 61 formed on a glass substrate 71, a power generation layer 40 composed of a_Si (p type) 43 and a-Si (i type) 42 and a-Si (n type) 41, and a back electrode layer. 21. The sensitizer 11 of the present invention is formed between the transparent conductive film 61 and the power generation layer 40, and the surface plasmon effect of the metal nanoparticles in the sensitizer 11 can improve the power generation efficiency of the solar cell 2. Fig. 3 shows another example of a cross-sectional view of a super-straight type solar cell using a sensitizer. When viewed from the sunlight side, this example is an example in which a sensitizer is formed on the back surface of the power generating layer. 3 is a transparent conductive film 63 formed on a glass substrate 72, a power generation layer 50 composed of a-Si (p type) 53 and a-Si (i type) 52 and a-Si (n type) 51, and transparent conductive The film 62 and the back electrode layer 22, the sensitizer 12 of the present invention is formed between the power generation layer 50 and the transparent conductive film 62, and can be improved by the surface plasmon effect of the metal nanoparticles in the sensitizer 12. The power generation efficiency of the solar cell 3. In this way, when viewed from the sunlight side, whether the sensitizer is formed on the incident side of the power generation layer or on the back side, the surface plasmon effect can improve the power generation efficiency of the solar cell, and is also preferable. It is formed on the incident side and the back side of the power generation layer. [The sensitizer for solar cells] -10-.201234628 The sensitizer of the present invention is characterized in that the surface is a metal nanoparticle which is formed with a transparent layer and which generates surface plasmon resonance. The metal of the metal nanoparticle is, for example, one or a mixture of two or more selected from the group consisting of gold, silver, copper, palladium, platinum, rhodium, nickel, tin, indium, zinc, iron, chromium, and manganese. a metal or alloy, if it is gold, silver, copper or palladium, or a mixed metal or alloy of at least two selected from the group consisting of gold, silver, copper and palladium, since the surface plasmonic wavelength can be made visible. Therefore, it is appropriate. The average particle diameter of the metal nanoparticles is preferably 5 to 300 nm, and the surface plasmon effect can be selected to be a strong wavelength by the average particle diameter and the kind of the metal. Here, the average particle diameter is measured by the BET method measured by the specific surface area of QUANTACHROME AUTOSORB-1. Unless otherwise specified, the measurement was carried out by the BET method measured by the specific surface area of QUANTACHROME AUTOSORB-1. When the shape of the metal nanoparticles is spherical or needle-shaped, it is preferable from the viewpoint of dispersibility and conductivity. The transparent layer prevents the diffusion of metal nanoparticles to the power generation layer. Further, when the transparent layer has a refractive index in the middle of the power generation layer or the electrode in the visible light region, reflection of incident light at the interface between the power generation layer and the transparent layer can be suppressed, and the incident light can be efficiently converted to the near field. It is appropriate. The transparent layer of the inorganic material is preferably Si02, Ti02 or Zr02, or a mixture of at least two selected from the group consisting of SiO2, Ti02 and Zr02. Further, the transparent layer of the organic substance is preferably an acrylic resin, a polycarbonate, a polyester, an alkyd resin, a polyurethane, an acrylic urethane, a polystyrene or a polyacetal. At least one selected from the group consisting of polyamine, polyvinyl alcohol, polyvinyl acetate, -11 - 201234628 cellulose and a siloxane polymer. The thickness of the transparent layer is preferably from 1 to 20 nm. When it is less than 1 nm, the metal nanoparticles have a diffusion in the power generation layer; if it exceeds 20 nm, the transparent layer is excessive and has no effect. Here, the thickness of the transparent layer is measured by a transmission electron microscope. [Composition for sensitized layer for solar cell] The composition for sensitized layer for solar cell of the present invention (hereinafter referred to as "the composition for sensitized layer" In addition, the sensitizer for a solar cell and the dispersion-dispersing medium are used to disperse the sensitizer for a solar cell, and the film-forming property of the composition for a sensitizing layer for a solar cell is improved. As the dispersing medium, water or alcohol is preferred. More preferably, the alcohol is selected from the group consisting of methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol, glycerin, isodecylhexanol, and erythritol. More than two. The composition for the sensitized layer for the solar battery is preferably from 50 to 99 parts by mass based on 100 parts by mass of the dispersion medium. The composition for the sensitized layer may be optionally blended with an antioxidant, a leveling agent, a thixotropic agent, a ruthenium, a stress relieving agent, other additives, etc., without departing from the scope of the object of the present invention. [The sensitizing layer for solar cells] The sensitizing layer for solar cells of the present invention (hereinafter referred to as "sensitizing layer") contains the above sensitizing agent. For example, as shown in FIG. 1, in the sensitized layer 1 00 -12 - 201234628, the transparent conductive film 60 can penetrate between the gaps between the sensitizers 1 。. [Method for Producing Sensitized Layer for Solar Cell] The method for producing a sensitized layer according to the present invention is characterized in that the composition for use is applied to a power generating electrode of a solar cell by a wet coating method. The sensitizer is an example of a manufacturing process in which a transparent layer is coated on the metal nanoparticles, and the following steps are as follows: Step 1: Preparation of a metal nanoparticle dispersion; Step 2: Adding and mixing a surface coating agent for forming a transparent layer In the nanoparticle dispersion; Step 3: Centrifuge the precipitate (sensitizer) to remove the solvent. Step 4: Add the solvent again, stir and make the nanoparticles. Step 5: Centrifuge the precipitate to remove the solvent; Step 6: Repeat steps 4 and 5 to wash. The sensitizing layer uses a composition system to mix the desired components by a conventional paint shaker, a ball mill, a sand mixer, a century triaxial machine, etc., and a translucent adhesive, depending on the situation, can be made electrically The particles are dispersed and produced. Of course, it is also possible to manufacture by normal operation. If the composition of the sensitizing layer is wet-coated on the solar cell, on the transparent conductive film, or on the electrode, it may be appropriately determined according to the solar energy structure, for example, as shown in FIG. On the layer of sensation or. As a gold-binding agent; a sub-dispersed paint shake mill, a transparent conductive power generation layer battery heterojunction-13-201234628, in combination with a solar cell, it is preferred to wet-coat the sensitized layer composition to have been formed beforehand There is a single Si (n type) 31 on a-Si (p type) 33. The wet coating method is preferably spray coating, dispensing, spin coating, knife coating, slit coating, inkjet coating, screen printing, lithography or Any of the die coating methods is not limited thereto, and all methods can be utilized. The sensitized layer can be obtained by drying the sensitized layer formed by wet coating with a composition coating film. The thickness of the sensitized layer is preferably 〇.〇1 to 〇.3μιη in order to suppress the self-absorption of light as much as possible. The sensitized layer of the present invention can be produced in such a manner. When the transparent conductive film is formed on the sensitized layer, if the composition for a transparent conductive film is applied by a wet coating method and then hardened or calcined, it is not necessary to use expensive equipment. It is convenient to manufacture at a low cost. At this time, when the transparent conductive film composition penetrates the sensitized layer, the adhesion strength between the sensitized layer and the power generation layer can be improved. The transparent conductive film composition may be used as long as it is used for a solar cell containing a light-transmitting adhesive. When the transparent conductive particles are contained, the conductivity of the transparent conductive film can be improved, and heat and light can be suppressed. It is preferable that the conductive reflective film is deteriorated. Examples of the light-transmitting adhesive include non-polymer type adhesives such as a polymer type binder such as an acrylic resin, a polycarbonate, or a polyester, or a metal soap, a metal complex, a metal alkoxide, or a hydrolyzate of a metal alkoxide. "Agent" as transparent conductive particles, for example, ITO (Indium Tin Oxide), antimony Tin Oxide (Antimony Tin Oxide), AZO (Aluminum Zinc Oxide: Ming Zhan Oxygen-14-201234628 Word), IZO (Indium Zinc Oxide), ΤΖΟ (Tin Zinc Oxide). When the thickness of the right transparent conductive film is 0.01 to 〇·5 μm, it is preferably from the viewpoint of adhesion, and more preferably 0.02 to Ο.ΐμπι. If the thickness of the transparent conductive film is less than 0.03 μm or more than 0.5 μm, the antireflection effect cannot be sufficiently obtained. [Embodiment] [Embodiment] Hereinafter, the present invention will be described in detail by way of examples, but the invention is not limited thereto. <<Preparation of Silver Nanoparticles> Silver nitrate was dissolved in deionized water to prepare an aqueous metal salt solution. Further, sodium citrate was dissolved in deionized water to prepare a sodium citrate aqueous solution having a concentration of 26% by mass. The ferrous ferrous sulfate was directly added to dissolve in the aqueous solution of sodium citrate while maintaining a nitrogen gas flow at 35 ° C to prepare a reducing agent having a molar ratio of citrate ion to ferrous ion of 3:2. Aqueous solution. Next, the nitrogen gas stream was maintained at 35 t while the stirrer of the magnetic stirrer was introduced into the reducing agent aqueous solution, and stirred at a swing speed of the stirrer: 100 rpm, while the above aqueous metal salt solution was dropped into the reduced form. The aqueous solution is mixed and mixed. Here, the addition amount of the metal salt aqueous solution of the reducing agent aqueous solution is adjusted so that the concentration of each solution is equal to or less than 1/1 量 of the amount of the reducing agent aqueous solution, and even if it is dropped into the room temperature, the metal salt dissolves -15- The liquid of 201234628 also kept the reaction temperature set at 40 °C. Further, the mixing ratio of the reducing agent aqueous solution and the metal salt aqueous solution is set to 3 times the molar ratio of the citrated ion and the ferrous ion of the reducing agent aqueous solution with respect to the total atomic valence of the metal ion in the aqueous metal salt solution. . After the dropwise addition of the aqueous solution of the metal salt to the aqueous solution of the reducing agent is completed, the mixture is continuously stirred for 15 minutes to generate silver nanoparticles inside the mixed solution, thereby obtaining silver nanoparticle as a dispersed silver nanoparticle dispersion. The pH of the silver nanoparticle dispersion was 5.5, and the stoichiometric amount of silver nanoparticles in the dispersion was 5 g/liter. By placing the obtained silver nanoparticle dispersion at room temperature, the silver nanoparticles in the dispersion were sedimented, and the aggregates of the settled silver nanoparticles were separated by decantation. Deionized water is added to the separated silver nanoparticle aggregate to prepare a dispersion, and desalted by ultrafiltration, and then washed with methanol, and the content of metal (silver) is set to 50 mass. %. Thereafter, using a centrifugal separator, the centrifugal force of the centrifugal separator is adjusted, and silver nanoparticles having a primary particle diameter of 10 to 50 nm are separated by separating relatively large silver particles having a particle diameter of more than 10 nm. The particles were adjusted to have a number average of 71%. In other words, the ratio of the silver nanoparticles in the range of 1 〇 to 50 nm in the primary particle diameter is adjusted to 7 1% with respect to 1% by mass of the total silver nanoparticles. A silver nanoparticle dispersion stock solution is obtained. The obtained silver nanoparticles and the protective agent for sodium citrate are chemically modified. This silver nanoparticle dispersion dispersion was diluted with deionized water to obtain a silver nanoparticle dispersion liquid containing 100 mass% of silver nanoparticles having an average particle diameter of 20 nm: 100 cm3. -16-201234628 [Example 1] A silver nanoparticle dispersion liquid containing 5% by mass of silver nanoparticles was kept at 40 cm 3 . (: Adding an ethanol solution containing 5 wt% of tetraethoxy decane containing a transparent film raw material after vigorous stirring: 100 cm3 after adding 1% by mass of ammonia water as a catalyst: 5 cm3 'keep for 1 hour' to obtain The dispersion of the sensitizer of Example 1. The dispersion was subjected to ultrafiltration and then washed to obtain 7 g of the sensitizer of Example 1. The sensitizer of Example 1 was used to generate surface plasmon resonance. Further, the thickness of the transparent layer was 2 nm. [Example 2] A sensitizer of Example 2 was obtained in the same manner as in Example 1 except that an ethanol solution containing 20% by mass of tetraethoxysilane was added: 100 cm3. g. The sensitizer of Example 2 is a surface plasmon resonance, and the thickness of the transparent layer is 20 nm. [Example 3] In addition to using silver (III) acid instead of silver nitrate, silver nanoparticle is prepared. In the same operation, a gold nanoparticle dispersion liquid containing 5% by mass of the gold nanoparticles having an average particle diameter of 1 Onm was obtained: 100 cm 3 . The gold nanoparticle dispersion liquid containing 10% by mass of the gold nanoparticles was kept at 10 cm 3 . 50 ° C, at While vigorously stirring, a transparent film raw material acrylic acid: l〇cm3 was added, and azobisisobutyronitrile as a polymerization initiator was added: 〇·5 g for 1 hour to obtain a sensitizer containing Example 3. The dispersion was centrifuged and the solvent was removed, and the sensitizer of Example-17-201234628 3 was separated. Then, in order to "wash the sensitizer", ethanol was added again, and the sensitizer was stirred and stirred. After dispersion, the solvent was removed by centrifugation, and the washing was repeated three times to obtain the sensitizer of Example 3: 1 g. The sensitizer of Example 3 was to produce surface plasmon resonance 'the thickness of the transparent layer 5 nm [Examples 4 to 5, Reference Examples 1 to 2, and Comparative Example 1] The compositions shown in Table 1 were used to produce Examples 4 to 5, Reference Examples 1 to 2, and Comparative Example 1 sensitizers. As a raw material of P d , a raw material using palladium chloride ' C u is copper nitrate, and a raw material of polyethyl urethane is hexamethylene diisocyanate and polycarbonate polyol as a raw material of polyester. Use p-citric acid and ethylene glycol. 实施 'Examples 4 and 5 are the production tables The plasmonic resonance, the surface plasmon resonance was also produced in Reference Examples 1 to 2 and Comparative Example 1. [Table 1] Nanoparticle transparent layer composition (mass ratio) Particle size (nm) Composition (mass ratio) Thickness (nm) Example 1 Ag 20 SiO 2 2 Example 2 Ag 250 SiO 2 20 Example 3 Au 20 Acrylic Resin 5 Example 4 Ag: Pd = 90: 10 40 Polyurethane 10 Example 5 Ag: Cu = 90:10 100 Polyester 20 Reference Example 1 Ag 5 Si〇2 2 Comparative Example 1 Ag 20 I - Reference Example 2 Ag 100 Acrylic Resin 30 <<Manufacture of Composition for Sensitized Layer>> -18· 201234628 The obtained sensitizer: 10 parts by mass of the mixture was added to 90 parts by mass of a mixed solution containing water, ethanol and methanol, and the mixture was dispersed and mixed to prepare a composition for a sensitized layer. "Evaluation of Power Generation Efficiency" Table 2 shows the production conditions of the sensitized layer for evaluation. The "installation place" in Table 2 is the place where the sensitizer is formed, which is shown as the surface electrode side or the back electrode side; the "film thickness" is shown as the film thickness of the sensitized layer (unit: μηι); "Wet coating method j The method of applying the composition for sensitizing layer is shown here. 'Examples 1 and 4, Reference Example 1 is the structure shown in FIG. 4, Examples 2 and 5, and Comparative Example 1 are shown in FIG. The structure of the third embodiment and the reference example 2 is as shown in Fig. 3. The method for producing the solar cell to be evaluated is as follows. <Case of Heterojunction Junction Solar Cell> (Production of Photoelectric Conversion Unit) First, the photoelectric conversion unit 8 00 is produced as follows. As the substrate 81, an n-type single crystal germanium substrate having a resistance of about 1 Q.cm and a thickness of 300 μm is used, and the substrate 8 1 is subjected to a usual method. After the cleaning, the surface 81 of the substrate 81 and the back surface 81 are formed by etching to form a texture surface. Next, on the surface 81 A and the back surface 81 B of the substrate 81, a normal plasma CVD method is used to form The i-type amorphous germanium layer 82, the p-type amorphous germanium layer 83 and the i-type amorphous germanium layer 8 6 N-type amorphous tantalum layer 87. -19- 201234628 Next, the sensitized layers 1〇3 of Examples 1 and 4 and Reference Example 1 were formed over the p-type amorphous germanium layer 8 3. Next, in the n-type On the n-type amorphous germanium layer 87 and the sensitized layer 103 formed on both main surfaces of the single crystal germanium substrate 81, a back transparent electrode layer 88 and a surface composed of germanium having a thickness of 100 nm are formed by sputtering. Transparent electrode layer 84. For surface transparent electrode layer 84, sensitized layer 103, p-type amorphous germanium layer 83, i-type amorphous germanium layer 8, 2, n-type single In the designated area on the back surface and the surface of the photoelectric conversion unit 800 including the laminate of the wafer substrate 81, the i-type amorphous germanium layer 86, the n-type amorphous germanium layer 87, and the back transparent electrode layer 88, the network is used. The back surface electrode 89 and the surface electrode 85 of the comb shape are formed by a plate printing method. <The case of a super-straight type thin film solar cell> A method of manufacturing a tandem solar cell according to each embodiment of the present invention will be described. The material or film thickness of the constituent elements constituting the solar cell according to each of the examples is merely an example, but The invention is not limited to this. <In the case of a super-straight-type thin film solar cell> The cases of the second and fifth embodiments and the comparative example 1 will be described. First, a thickness of 50 nm is formed on the main surface of one side. a glass substrate 71 of a SiO 2 layer (not shown), and a transparent conductive film 61 is formed on the SiO 2 layer. This transparent conductive film 61 is patterned by a laser processing method, and is formed at -20-201234628. At the same time as the array, wirings which are electrically connected to each other were formed. Thereafter, the sensitized layers 101 of Examples 2 and 5 and Comparative Example 1 were formed on the transparent conductive film 61, respectively. Next, the power generation layer 40 is formed on the sensitization layer 101 by a plasma CVD method. In the power generation layer 40, p-type a-Si: Η (amorphous tantalum carbide) 43, i-type a-Si (amorphous germanium) 42, and n-type μα-Si are laminated in this order from the substrate 71 side. It is obtained by a film composed of (microcrystalline niobium carbide) 41. After the power generation layer 40 is subjected to pattern processing by a laser processing method, a back electrode layer (silver electrode layer) 21 having a thickness of 200 nm is sequentially formed on the power generation layer 40 by using an in-line magnetron sputtering apparatus. on. As a method for evaluating a solar cell unit cell, a lead wire is processed on a substrate subjected to a pattern processing by a laser processing method, and after the output characteristic and the short-circuit current (Jsc) at the time of confirming the IV characteristic curve, The photoelectric conversion layer obtained by the same manufacturing method as in the example was used, and the total number of the transparent conductive film and the back electrode layer was determined as a solar cell cell formed by sputtering, and the relative output was evaluated. . These results are shown in Table 2. Here, when all the solar cells formed by the sputtering method are described as being ultra-straight, the so-called super-straight solar cell unit is the sensitizer 11 and the sensitizing layer 101 from FIG. For the first step, a glass substrate 71 having a 50 nm-thick SiO 2 layer (not shown) is formed on the main surface of one side, and the surface of the 3 丨 02 layer is formed with irregularities and doped with A transparent conductive film (Sn02 film) 61 having a thickness of F (fluorine) of 800 nm. This transparent conductive film 61 is subjected to pattern processing by a laser processing method, and wirings which are electrically connected to each other are formed while forming an array. The power generation layer 40 is formed on the transparent conductive film 61 by a plasma CVD method, in connection with -21 - 201234628. The power generation layer 40 is laminated on the substrate 71 side in order. The type a_Si is obtained by a film composed of Η (non-crystalline lanthanum carbide) 43, i-type a-Si (amorphous yttrium) 42 and η-type gc-Si (microcrystalline yttrium carbide) 41. After the power generation layer 40 was subjected to pattern processing by a laser processing method, a back electrode layer (silver electrode layer) 21 having a thickness of 200 nm was sequentially formed on the power generation layer 40 by using an on-line magnetron sputtering apparatus. In the case of a heterojunction type solar cell, the sensitizer 11 and the sensitized layer 1〇1 are removed from FIG. 1, and i-type a-Si (amorphous) is used in the same manner as the super-straight type.矽) 32 and? The type of μο-Si (microcrystalline yttrium carbide) 33 and the transparent conductive film 60 are formed on the single crystal Si (n-type) 31 on which the A1 layer 20 has been formed, and then formed by etching after being formed by sputtering. Ag wiring that has been patterned. "Durability Test" A solar cell in which the initial power generation efficiency was measured was maintained at a temperature of 85 ° C, humidity: 85%, and 1,000 hours as a durability test. Thereafter, Jsc値 was measured. The results are shown in the column after "Endurance Test" in Table -22- 201234628 [Table 2] I® s葙罟osr ou ε9 CO9
loOL s 86 ζ,ιη mlr 00 _·loOL s 86 ζ,ιη mlr 00 _·
S 09 ssS 09 ss
OLL s ε(ο wen £ laor- 1(0 sOLL s ε(ο wen £ laor- 1(0 s
OOL 0(0 09 *w劍拭藤OOL 0 (0 09 *w sword wiping vine
$0S «ϋ 囊劍蠢$0S «ϋ Sword sword stupid
«I«I
«II 坩摩劁赚修 班蠢— E^ttgl lood 0.0 εο.ο L.o«II 坩摩劁 earning class stupid — E^ttgl lood 0.0 εο.ο L.o
No «0.0 noNo «0.0 no
SO hhs账 -isSO hhs account -is
I^ESI^ES
II^ES -is -is § 圉圈as 莓圈m§ 【|題鯽§II^ES -is -is § 圉 as as raspberry m§ [|title §§
1WS 屋圈s* 麗itfB«1WS house s* 丽itfB«
S0S 屋圈aas 摧 摧 摧 ilx 到w® §© 到㈣圈 _«© 到啦^«€訟S0S house aas destroys and destroys ilx to w® §© to (four) circle _«©到啦^«€
SS 到㈣掘 L 雲κ cvl震* ssm is _·Ιΰ ΝΓΚ9## Ν—ΰ ia -23- 201234628 由表1可得知,以實施例1〜5時,初期性能之Jsc値爲 高,於耐久試驗後Jsc値亦未有變化,爲良好之結果。另 一方面,金屬奈米粒子爲未形成有透明層之比較例1,無 法得到抑制Ag擴散之效果,比較例2則無法觀察到藉由表 面電漿子共鳴之太陽能電池之增感效果。又,未含有增感 劑之比較例2,相較於實施例1初期性能爲低;比較例3, 相較於實施例2初期性能爲低;比較例4,相較於實施例3 初期性能爲低。尙,金屬奈米粒子之平均粒徑爲5nm之參 考例1與lOOnm之參考例2,抑制Ag擴散之效果無法稱得上 爲足夠。 如此般可得知,藉由本發明之增感劑,可提供發電效 率高,且長期安定性佳之太陽能電池。 【圖式簡單說明】 [圖1]使用增感劑之矽異質接合型太陽能電池之剖面圖 之一例。 [圖2]超直型太陽能電池之剖面圖之一例。 [圖3]超直型太陽能電池之剖面圖之另外一例。 [圖4]矽異質接合型太陽能電池之剖面圖之一例。 【主要元件符號說明】 1:矽異質接合型太陽能電池 2、3 :超直型太陽能電池 1 〇、π、1 2 :太陽能電池用增感劑 • 24 - 201234628 100、101、102、103:太陽能電池用增感層 20 : A1層 2 1、22 :背面電極層 30、40、50:發電層 31 :單晶Si ( η型) 41、 51: a-Si ( η型) 32、 42、52 : a-Si ( i型) 33、 43、53 : a-Si ( pM ) 60、61、62、63 ·•透明導電膜 70 : Ag配線 71、72 :玻璃基板 81 : η型單晶矽基板 8 1 A :表面 8 1 B :背面 82、86 : i型非晶質矽層 83 : p型非晶質矽層 8 4 :表面側透明電極層 8 5 :表面側電極 87 : η型非晶質矽層 8 8 :背面側透明電極層 8 9 =背面側透明電極 -25-SS to (4) dig L cloud κ cvl shock* ssm is _·Ιΰ ΝΓΚ9## Ν—ΰ ia -23- 201234628 It can be seen from Table 1 that in the case of Examples 1 to 5, the initial performance of Jsc値 is high, There was no change in Jsc値 after the endurance test, which was a good result. On the other hand, in Comparative Example 1 in which the metal nanoparticle was not formed with the transparent layer, the effect of suppressing Ag diffusion was not obtained, and in Comparative Example 2, the sensitizing effect of the solar cell resonated by the surface plasmon was not observed. Further, Comparative Example 2, which did not contain a sensitizer, was lower in initial performance than in Example 1, Comparative Example 3 was lower in initial performance than in Example 2, and Comparative Example 4 was compared to Example 3 in initial performance. It is low. In the reference example 1 of the metal nanoparticles having an average particle diameter of 5 nm and the reference example 2 of 100 nm, the effect of suppressing Ag diffusion cannot be said to be sufficient. As described above, the sensitizer of the present invention can provide a solar cell having high power generation efficiency and good long-term stability. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] An example of a cross-sectional view of a heterojunction junction type solar cell using a sensitizer. 2] An example of a cross-sectional view of a super-straight type solar cell. FIG. 3 is another example of a cross-sectional view of a super-straight type solar cell. Fig. 4 is a view showing an example of a cross-sectional view of a heterojunction junction type solar cell. [Explanation of main component symbols] 1: Heterogeneous junction type solar cells 2, 3: Ultra-straight solar cells 1 〇, π, 1 2 : Sensitizer for solar cells • 24 - 201234628 100, 101, 102, 103: Solar energy Battery sensitized layer 20: A1 layer 2 1, 22: Back electrode layer 30, 40, 50: Power generation layer 31: Single crystal Si (n type) 41, 51: a-Si (n type) 32, 42, 52 : a-Si (i type) 33, 43, 53 : a-Si ( pM ) 60, 61, 62, 63 · Transparent conductive film 70 : Ag wiring 71 , 72 : Glass substrate 81 : η type single crystal germanium substrate 8 1 A : surface 8 1 B : back surface 82, 86 : i-type amorphous germanium layer 83 : p-type amorphous germanium layer 8 4 : surface side transparent electrode layer 8 5 : surface side electrode 87 : n-type amorphous矽 layer 8 8 : back side transparent electrode layer 8 9 = back side transparent electrode - 25 -
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011027954A JP5901881B2 (en) | 2011-02-11 | 2011-02-11 | Sensitizer for solar cell and solar cell using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201234628A true TW201234628A (en) | 2012-08-16 |
Family
ID=46622068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101101603A TW201234628A (en) | 2011-02-11 | 2012-01-16 | Sensitizing agent of solar cells and the solar cells using the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5901881B2 (en) |
CN (1) | CN102637748A (en) |
TW (1) | TW201234628A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI505486B (en) * | 2014-03-07 | 2015-10-21 | Motech Ind Inc | Solar cell and module comprising the same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150034160A1 (en) * | 2013-08-02 | 2015-02-05 | Tsmc Solar Ltd. | Thin film photovoltaic device and method of making same |
JP6210511B2 (en) * | 2013-12-12 | 2017-10-11 | 王子ホールディングス株式会社 | Organic thin film solar cell, substrate for organic thin film solar cell, method for manufacturing organic thin film solar cell, and method for manufacturing substrate for organic thin film solar cell |
TWI538238B (en) * | 2014-09-02 | 2016-06-11 | 財團法人工業技術研究院 | Solar cell and method for manufacturing the same |
KR101575733B1 (en) * | 2014-12-24 | 2015-12-21 | 한국과학기술연구원 | wavelength converting structure for near-infrared rays and solar cell comprising the same |
JP6540121B2 (en) * | 2015-03-17 | 2019-07-10 | カシオ計算機株式会社 | Information management device and program |
CN105244403B (en) * | 2015-10-16 | 2017-07-14 | 南开大学 | Non-crystalline silicon PIN photocells and preparation method thereof |
KR101935892B1 (en) | 2016-10-05 | 2019-01-07 | 이화여자대학교 산학협력단 | Phosphorescent light-emitting structure and method of preparing the same |
CN108321250B (en) * | 2018-01-12 | 2019-12-06 | 苏州太阳井新能源有限公司 | Manufacturing method of solar cell based on surface plasma enhancement principle |
JP2021180198A (en) * | 2018-08-08 | 2021-11-18 | パナソニックIpマネジメント株式会社 | Optical device and photoelectric conversion device |
CN110416342A (en) * | 2019-06-25 | 2019-11-05 | 湖南红太阳光电科技有限公司 | A kind of HJT battery and preparation method thereof based on metal nanoparticle |
WO2022114026A1 (en) * | 2020-11-30 | 2022-06-02 | Agc株式会社 | Transparent electrode substrate and solar cell |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4514251B2 (en) * | 1999-07-21 | 2010-07-28 | 住友金属鉱山株式会社 | Dye-sensitized solar cell |
WO2006006349A1 (en) * | 2004-07-07 | 2006-01-19 | Kaneka Corporation | Process for producing polymer-modified nanoparticle |
JP2008166697A (en) * | 2006-12-08 | 2008-07-17 | Fujifilm Corp | Optical energy transfer element and artificial photosynthetic element |
FR2910632B1 (en) * | 2006-12-22 | 2010-08-27 | Commissariat Energie Atomique | OPTICAL PLASMON ENCODING DEVICE AND AUTHENTICATION METHOD EMPLOYING THE SAME |
JP5300344B2 (en) * | 2007-07-06 | 2013-09-25 | キヤノン株式会社 | Photodetection element, imaging element, photodetection method, and imaging method |
JP2010123675A (en) * | 2008-11-18 | 2010-06-03 | Fuji Electric Holdings Co Ltd | Thin-film solar cell, and method of manufacturing the same |
JP5408529B2 (en) * | 2009-01-21 | 2014-02-05 | 株式会社リコー | Semiconductor electrode and photoelectric conversion element |
JP5493469B2 (en) * | 2009-05-26 | 2014-05-14 | 三菱マテリアル株式会社 | Composite film for super straight type thin film solar cell and manufacturing method thereof |
EP2453484A4 (en) * | 2009-07-06 | 2013-12-04 | Toyota Motor Co Ltd | Photoelectric conversion element |
JP5183588B2 (en) * | 2009-07-15 | 2013-04-17 | 三菱電機株式会社 | Method for manufacturing photovoltaic device |
CN101937939A (en) * | 2010-08-02 | 2011-01-05 | 中国科学院物理研究所 | Synergistic method of plasma thin film solar cell |
-
2011
- 2011-02-11 JP JP2011027954A patent/JP5901881B2/en not_active Expired - Fee Related
-
2012
- 2012-01-16 TW TW101101603A patent/TW201234628A/en unknown
- 2012-02-03 CN CN2012100237338A patent/CN102637748A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI505486B (en) * | 2014-03-07 | 2015-10-21 | Motech Ind Inc | Solar cell and module comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JP5901881B2 (en) | 2016-04-13 |
CN102637748A (en) | 2012-08-15 |
JP2012169380A (en) | 2012-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201234628A (en) | Sensitizing agent of solar cells and the solar cells using the same | |
Huo et al. | Metal‐assisted chemical etching of silicon in oxidizing HF solutions: origin, mechanism, development, and black silicon solar cell application | |
Mann et al. | Extreme light absorption in thin semiconductor films wrapped around metal nanowires | |
Narasimhan et al. | Nanostructures for photon management in solar cells | |
CN101803037B (en) | Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell | |
Wang et al. | Toward efficient and omnidirectional n-type Si solar cells: concurrent improvement in optical and electrical characteristics by employing microscale hierarchical structures | |
WO2010113708A1 (en) | Method of producing solar cell module | |
JP5169389B2 (en) | Method for manufacturing conductive reflective film | |
TW201144217A (en) | Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same | |
TW201135751A (en) | Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same | |
TW201134896A (en) | Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same | |
Fahim et al. | Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells | |
CN104584231A (en) | Copper-assisted, anti-reflection etching of silicon surfaces | |
KR20110108274A (en) | Composition for producing transparent conductive film, method of producing composite film for solar cell and composite film produced thereby | |
Lu et al. | Improved efficiency of silicon nanoholes/gold nanoparticles/organic hybrid solar cells via localized surface plasmon resonance | |
JP2012216814A (en) | Transparent conductive film composition for thin-film solar cell and transparent conductive film | |
JP2015159164A (en) | Sensitizer designed for solar batteries, sensitized layer, and solar battery | |
Wang et al. | Flexible semiconductor Technologies with Nanoholes-Provided high Areal Coverages and their application in Plasmonic-enhanced thin film Photovoltaics | |
JP2011222953A (en) | Composition for transparent conductive film formation, method for forming composite film for solar cell, and composite film formed by the method | |
Srivastava et al. | Nanostructured black silicon for efficient thin silicon solar cells: potential and challenges | |
Xiu et al. | Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications | |
Nowak et al. | Optimizing folded silicon thin-film solar cells on ZnO honeycomb electrodes | |
JP2012094830A (en) | Transparent conductive film composition for solar battery and transparent conductive film | |
JP2012151387A (en) | Composition for transparent conductive film of solar cell and transparent conductive film | |
JP2012190856A (en) | Transparent conductive film composition for solar cell and transparent conductive film |