TW201232868A - An organic electro-luminescent device - Google Patents

An organic electro-luminescent device Download PDF

Info

Publication number
TW201232868A
TW201232868A TW100136434A TW100136434A TW201232868A TW 201232868 A TW201232868 A TW 201232868A TW 100136434 A TW100136434 A TW 100136434A TW 100136434 A TW100136434 A TW 100136434A TW 201232868 A TW201232868 A TW 201232868A
Authority
TW
Taiwan
Prior art keywords
film
light
organic
layer
gas barrier
Prior art date
Application number
TW100136434A
Other languages
Chinese (zh)
Inventor
Yoshinobu Ono
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201232868A publication Critical patent/TW201232868A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/20Electroluminescent [EL] light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Abstract

An organic electro-luminescent device comprising: an organic electro-luminescent element; a first film disposed opposite the organic electro-luminescent element; and a light extraction structure having an exit surface emitting light emitted from organic electro-luminescent element. The first film including a gas barrier layer containing silicon atoms, oxygen atoms and carbon atoms. A distribution curve of silicon, a distribution curve of oxygen and a distribution curve of carbon of the gas barrier layer meet the following conditions: (i) the ratio of the number of the silicon atoms being the second greatest value among the ratio of the number of the silicon atoms, the ratio of the number of the oxygen atoms and the ratio of the number of the carbon atoms in 90% or more of the region of the gas barrier layer in the thickness direction of the gas barrier layer; (ii) the distribution curve of carbon having at least one extremum; and (iii) the difference between the maximum value and the minimum value of the ratio of the number of the carbon atoms in the distribution curve of carbon being 5 atom% or more.

Description

201232868 六、發明說明: 【發明所屬之技術領域】 本發明是有關有機EL裝置、面狀光源、照明裝置及 顯示裝置。 【先前技術】 有機電激發光(EL, Electro Luminescence)元件具有 數個薄膜積層而成的構成。可因適宜設定各薄膜之厚度或 材料等,而使元件自體賦予可撓性。將這種有機EL元件設 置在可撓性(軟性)薄膜上時,可使已搭載有機EL元件的整 體裝置,變成可撓性的裝置。 由於有機EL元件可因曝露在外氣中而劣化,故通常 是設置在不易使氧氣及水分等透過的高的氣體阻障性之薄 膜上。在此種高的氣體阻障性之薄膜,已有的提案是將氧 化矽、氮化矽、氧氮矽及氧化鋁等無機氧化物所成之薄膜 在塑膠基材上成膜而形成薄膜。 至於可使無機氧化物所成的薄膜在塑膠基材上成膜 的方法,已知有真空蒸鍍法、濺鍍法、離子電鍍法等物理 氣相成長法(PVD)、減壓化學氣相成長法、電漿化學氣相成 長法等化學氣相成長法(CVD)。至於使用此種成膜方法的高 的氣體阻障性之薄膜,可舉例如曰本特開平4-89236號公 報(專利文獻1)中之說明,其是具有積層2層以上的矽氧 化物之蒸鍍膜而形成的積層蒸鍍膜層之薄膜。 另一方面,尚有如日本特表2002-532850號公報(專 利文獻2)中揭示之具有相互積層的陶瓷系無機氣體阻障 4 323546 201232868 膜及高分子膜的薄膜。 [先前技術文獻] [專利文獻] [專利文獻1]曰本特開平4-89236號公報 [專利文獻2]日本特表2002-532850號公報 【發明内容】 (發明所欲解決的問題) 不過,專利文獻1中所述之薄膜,因氣體阻障性並不 必然充分,且有因受到彎曲而使氣體阻障性降低的問題。 根據專利文獻2所述之薄膜,則使氣體阻障性提高, 同時也可望抑制因彎曲而致的氣體阻障性降低。然而,專 利文獻2所述之薄膜的製程,因是由無機氣體阻障及高分 子膜相互積層而得,故有繁雜且需較長製造時間的問題。 如上述,有機EL裝置除了必須具備高的氣體阻障性 等之外,並且也要求具有高的光取出效率之有機EL元件。 本發明的目的是提供一種有機EL裝置,其具備高的 氣體阻障性、不易因彎曲而使氣體阻障性降低、可以簡易 的步驟在短時間内形成薄膜。 本發明的另一目的,是提供一種光取出效率高的有機 EL裝置。 (解決問題的方式) 本發明是有關一種有機電激發光(EL)裝置,其具備有 機EL元件、與有機EL元件對向配置的第1薄膜、與有機 EL元件對向配置且具有可將由有機EL元件發射之光射出 5 323546 201232868 的射出面之光取出結構體。前述第丨薄膜具有含矽(矽原 子)、氧(氧原子)及碳(碳原子)之氣體阻障層。分別表示相 對於矽原子、氧原子及碳原子的合計量之矽原子之量(數) 的比率(矽原子比)、氧原子之量(數)的比率(氧原子比)及 碳原子之量(數)的比率(碳原子比),以及前述氣體阻障層 之厚度方向(膜厚方向)中與前述氣體阻障層之一邊的表面 之距離的關係之石夕分布曲線、氧分布曲線及碳分布曲線滿 足下述條件(i)至(iii)。 (Ο前述氣體阻障層之厚度方向(膜厚方向)的9〇%以上的 區域中,矽原子比、氧原子比及碳原子比之中,矽原子比 是第二大值。 (ii)前述碳分布曲線具有至少一個極值。 (in)前述碳分布曲線中的碳原子比的最大值與最小值的 差為5原子以上。 同時,本發明係關於有機EL裝置,其係形成凹凸結 構,以使由與前述射出面為相反側的面射入至前述光取出 結構體再由前述射出面射出的光之正面強度及積分強度面 之任者,在與別述射出面為平面狀時相比較,皆成為1 3 倍以上。換言之,前述光取出結構體是使射入至該結構體, 由光取出側之表面射出之光的強度,在與光取出側之表面 為平面狀之虛擬結構體的光取出侧之表面射出的光之強度 比較時,其正面強度及積分強度均可成為13倍以上 凸結構。 在另一方面,本發明是有關具有前述有機裝置之 323546 6 201232868201232868 VI. Description of the Invention: [Technical Field] The present invention relates to an organic EL device, a planar light source, a lighting device, and a display device. [Prior Art] An organic electroluminescence (EL) device has a structure in which a plurality of thin films are laminated. The thickness of the film or the material or the like can be appropriately set to impart flexibility to the device itself. When such an organic EL element is provided on a flexible (soft) film, the entire device in which the organic EL element is mounted can be made into a flexible device. Since the organic EL element can be deteriorated by exposure to the outside air, it is usually provided on a film having a high gas barrier property which is hard to permeate oxygen and moisture. In such a high gas barrier film, it has been proposed to form a film on a plastic substrate by forming a film of an inorganic oxide such as cerium oxide, cerium nitride, oxynitride or alumina. As a method of forming a film formed of an inorganic oxide on a plastic substrate, physical vapor phase growth (PVD) such as vacuum vapor deposition, sputtering, or ion plating, and decompression chemical vapor are known. Chemical vapor phase growth (CVD) methods such as growth method and plasma chemical vapor phase growth method. A film having a high gas barrier property using such a film-forming method is exemplified in JP-A-4-89236 (Patent Document 1), which is a tantalum oxide having two or more layers. A film of a deposited vapor deposited film layer formed by vapor deposition of a film. On the other hand, there is a film of a ceramic-based inorganic gas barrier layer 4 323546 201232868, which is disclosed in Japanese Laid-Open Patent Publication No. 2002-532850 (Patent Document 2). [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Application Laid-Open No. Hei 4-89236 (Patent Document 2) Japanese Patent Publication No. 2002-532850 (Draft of the Invention) The film described in Patent Document 1 is not necessarily sufficient in gas barrier properties, and has a problem that gas barrier properties are lowered due to bending. According to the film described in Patent Document 2, the gas barrier property is improved, and it is also expected to suppress a decrease in gas barrier properties due to bending. However, since the process of the film described in Patent Document 2 is obtained by laminating inorganic gas barriers and high molecular films, it is complicated and requires a long manufacturing time. As described above, the organic EL device is required to have high gas barrier properties and the like, and an organic EL device having high light extraction efficiency is also required. SUMMARY OF THE INVENTION An object of the present invention is to provide an organic EL device which has high gas barrier properties, is less likely to be deteriorated in gas barrier properties due to bending, and can form a film in a short time in a simple step. Another object of the present invention is to provide an organic EL device having high light extraction efficiency. (Means for Solving the Problems) The present invention relates to an organic electroluminescence (EL) device comprising an organic EL element, a first thin film disposed opposite to the organic EL element, and an organic EL element disposed opposite to each other and having an organic EL element The light emitted by the EL element emits light from the exit surface of 5 323546 201232868. The second film has a gas barrier layer containing ruthenium (osmium atom), oxygen (oxygen atom), and carbon (carbon atom). The ratio (atom atomic ratio) of the atomic atom to the total amount of the ruthenium atom, the oxygen atom, and the carbon atom, the ratio of the amount (number of oxygen atoms) (the ratio of oxygen atoms), and the amount of carbon atoms, respectively. a ratio (carbon atom ratio) of the (number) and a distance distribution between the thickness direction (film thickness direction) of the gas barrier layer and a surface of one side of the gas barrier layer, and an oxygen distribution curve and The carbon distribution curve satisfies the following conditions (i) to (iii). (In the region of 9% or more of the thickness direction (film thickness direction) of the gas barrier layer, the germanium atomic ratio, the atomic ratio of oxygen, and the carbon atom ratio are the second largest value. The carbon distribution curve has at least one extreme value. (in) The difference between the maximum value and the minimum value of the carbon atom ratio in the carbon distribution curve is 5 atoms or more. Meanwhile, the present invention relates to an organic EL device which is formed into a concave-convex structure. Any one of the front intensity and the integrated intensity surface of the light emitted from the surface of the light extraction structure and the light exiting surface by the surface opposite to the emission surface, when the emission surface is planar In comparison, the light extraction structure is a virtual light that is incident on the structure and emitted from the surface on the light extraction side, and is virtual on the surface on the light extraction side. When the intensity of the light emitted from the surface of the light extraction side of the structure is compared, the front surface strength and the integrated intensity may be 13 times or more convex structure. On the other hand, the present invention relates to the above-mentioned organic device 323546 6 201232868

V 照明裝置、面光源裝置及顯示裝置。 (發明的效果) 藉由本發明’即可提供一種具備高的氣體阻障性、不 易因彎曲而降低氣體阻障性’具備可以簡易的步驟於短時 間内形成薄膜之有機EL裝置。並且,藉由本發明,即可提 供一種光取出效率高的有機EL裝置。 【實施方式】 以下’詳細說明本發明的理想實施形態。但是,本發 明並不侷限於以下的實施形態。 與本實施形態相關的有機EL裝置,具有有機EL元 件、與有機EL元件對向配置的第1薄膜、與有機EL元件 對向配置在由有機EL元件發射的光射出之位置,具有射出 該光的射出面之光取出結構體。 有機EL裝置通常是設在支撐基板上。有機EL裝置具 備一邊在支撐基板之間介入有機EL元件,一邊又可與支撐 基板貼合的密封構材。與本實施形態相關的有機EL元件之 第1薄膜’可使用作為設置有機EL元件的支撐基材,也可 使用作為與支撐基材貼合的密封構材。以下,是說明又具 備第2薄膜作為基撐基板’而第1薄膜是設置為密封構材 的形態之有機EL元件。 搭載在有機EL裝置的有機EL元件,可大致分為下述 的三種型態。即,有機EL元件可大致分為:(I)使光向著 可搭載該有機EL元件的支撐基板射出的所謂底發光 (bottom emission)型元件、(11)使光向著與支撐基板相反 7 323546 201232868 v 侧射出的所謂頂發光(top emission)型元件及(πI)使光 向著支撐基板射出,也同時向著與支撐基板相反侧射出的 兩面發光型元件。搭載在本實施形態相關的有機EL裝置之 有機EL元件,可以是其中的任何一型元件。以下是參照第 1圖作為一例說明已設置頂發光型元件的有機EL裝置後, 接著參照第2圖說明已設置底發光型元件的有機EL裝置。 第1圖是表示本實施形態的有機EL裝置之剖面模式 圖。在第1圖中表示的實施形態之有機EL裝置13中,有 機EL元件2是搭載在第2薄膜1上。第1薄膜丨丨是一邊 將此有機EL元件2介入其與第2薄膜1之間,一邊將第i 薄膜11配置在第2薄膜1上。第1薄膜丨丨是與第2薄膜 1 一同將有機EL元件2密封。第2薄膜1與第1薄膜U, 疋以"入已没置在此等膜之間的接著層4而貼合。有機el 裝置13可配合要求而遮覆有機EL元件2,也可具備介在 有機EL元件2與接著層4之間的保護層3。藉此保護層3 之設置,即可避開接著層4以保護有機EL元件2。 有機EL裝置13並具備光取出結構體14。光取出結構 體14是配置在由有機乩元件2發射之光射出位置。第i 圖中表示的本實施形態之有機EL元件2是頂發光型元件, 可使光向著第1薄膜u發射。因此,光在有機EL裝置13 之外部射出的位置’是以有機EL元件2為基準時的第i 薄膜11侧的最表面。因此在第1圖中表示的實施形態中, 光取出結構體14是設在以有機EL元件2為基準的第i薄 臈11側之最外層。絲出結構體14具有可射出光的射出 323546 8 201232868 ·、 面s。 光取出結構體14也可直接形成在第1薄膜I〗上,本 實施形態中則是以接著層15而使光取出結構體14貼合在 第1薄膜11。 雖然將於文後詳細說明光取出結構體14,但光取出結 構體14因配置在光射出位置,而提高光取出效率,該結果 可提高有機EL裝置整體的發光效率。 由於本實施形態的有機EL元件2是頂發光型元件, 故第1薄膜11及光取出結構體14必須是以可透光的構材 形成。另一方面,可相當於本實施形態中的支撐基板之第 2薄膜1,也可以不透光的不透明構材形成。 可使用塑膠膜或金屬膜作為第2薄膜1,並以金屬膜 為佳。金屬膜在與塑膠膜等比較時,由於具有高的氣體阻 P手J·生,故可提尚有機EL裝置的氣體阻障性。作為金屬膜, 可使用例如Al、Cu或Fe的薄板,及不銹鋼等的合金薄板。 第1薄膜11具有含矽原子、氧原子及碳原子的氣體 阻障層5。本實施形態中,第丨薄膜u是由基材6及設在 基材6的有機EL元件2側之主面上的氣體阻障層5所構 成。氣體阻障層5因可滿足後述的條件(i)、(ii)及(iii), 而具備高的氣體阻障性,並且,也可抑制受到彎曲時的氣 體阻障性降低。 ” 因此方式之藉由第1薄膜與第2薄膜而密封有機EL 疋件2,可實現軟性(flexible)且兼具充分耐久性與氣體 阻障性的有機EL裝置。尤其是在使用金屬膜作為第2薄膜 323546 9 201232868 1時,因可使第2薄膜1與第1薄膜U兩者均顯示高的氣 體阻障性,故可實現兼具更向的耐久性與氣體阻障性的有 機EL裝置。 第2圖是表示另一實施形態之有機EL裝置13的剖面 模式圖。第2圖中表示的實施形態之有機el裝置13,與 第1圖中表示的實施形態之有機EL元件2與第2薄膜1 不同,並且光取出結構體14配置的位置也不同。 在本實施形態中,是設置底發光型的有機EL元件2。 與前述的實施形態相同,光取出結構體14是配置在由有機 EL元件2發射的光射出位置。第2圖中表示的有機乩元 件2,由於使光向著第2薄膜1發射,故光射出位置是以 有機EL元件2為基準時的第2薄膜i侧之最表面。因此在 第2圖中表示的實施形態中,光取出結構體14是設在以有 機EL元件2為基準時的第2薄膜i側之最外層。光取出結 構體14是介入接著層15而貼合在第2薄臈。 雖然將於文後詳細說明光取出結構體14,但光取出衾士 構體^因配置在光射出位置,而提高光取出效率,該結= 為提高有機EL裝置整體的發光效率。 本實施形態的有機EL元件2,是使光向著相當於支撐 基板的第2薄膜1射出。因此,第2薄膜i必須是可顯示 透光性的薄膜。 +雖然只要使本實麵態的第2薄膜1為可顯示透光性 的薄膜’即無特別的限制,但就氣體阻障性而言,其與第 薄膜11相同’且為具有含石夕原子、氧原子及碳原子的第 323546 10 201232868 2氣體阻障層8。在本實施形態中,第2薄膜u由基材7 與》又在此基材7的有機EL元件2側之主面上的第2氣體阻 障層8所構成。此第2氣體阻障層8是與第i薄膜u的氣 體阻障層5相同,因可滿足後述的條件(i)、(ii)及(in), 而具備高的氣體阻障性,並且,也可抑制受到彎曲時的氣 體阻障性降低。 以此方式之藉由第1薄膜與第2薄膜密封有機EL元 牛2故也了實現权性且兼具充分对久性與氣體阻障性的 有機EL裝置。 第2圖中表示的實施形態之有機EL裝置中,替代底 發光型的有機EL元件,也可設置兩面發光型有機乩元件。 此時,進一步可設置光取出結構體14。即,也可在與第1 薄膜11的有機EL元件4之相反侧的面上設置光取出结 體 14。 。 使用第2薄膜作為密封構材,使用具有氣體阻障層之 第1薄臈用作為支撐基板,也可藉由此第丨薄膜與第2薄 膜密封有機EL元件。 例如,第1圖及第2圖中表示的實施形態中,對於第 1薄膜及/或第2薄膜,且也可貼合附加的薄膜。在附加的 薄膜而言’可舉出保護有機EL裝置的表面之保護膜、防止 入射至有機EL裝置的外光反射的抗反射膜、為調整光位相 及偏光時的光學機能性膜,以及具有選自此等膜之數種膜 積層的構成之光學膜等。附加的薄膜可貼合在第丨薄膜及/ 或第2薄膜的單面或兩面。 323546 201232868 (接著層) 接著層4是可使第1薄膜與第2薄膜在有機EL·元件 配置在此等膜之間的狀態接著的層。在使光取㈣構體W 貼σ在第1溥膜11及/或第2薄獏1的形態中,接著層也 可使用作為接著光取出結構體14與第1薄膜11及/或第2 4膜1的接著層15。可使用於接著層的接著劑,宜具有高 =體阻Ρ早性。如第i目中所示,使由有機虹元# 2射_ 光通過接者層4而射出外界的有機EL裝置中,宜使接著層 高。此時’就光取出效率而言,宜使連接在接 S與接者層4的折射率之差的絕對值越小越好。 至於可利用於接著層的接著劑,是以熱硬化 及光硬化性接著鮮硬化性接㈣為理想。 ㈣ 在熱硬化性樹脂接著劑而言 丙烯酸醋系接著劑f。 + 者劑及 r 接著劑而言’可舉例如選自雙紛 ;劑辦型環氧樹脂及一含有環氧化合::: 在丙烯酸m系接著劑而言,可舉例如 甲基丙稀酸、丙稀酸乙醋、⑽酸丁醋、丙_2 =酸、 丙稀醢胺、輯歧動旨 的體已竭、 可與該主成分共聚合之單體的接著劑。早體’與 在光硬化性接著劑而言,可舉 離子系接著劑等。 土糸接者劑及陽 在自由基類接著劑而言,可舉出含環氧丙稀酸樹月旨、 12 323546 201232868 酉旨丙烯酸s旨及醋丙稀酸s旨等的接著劑。 在陽離子類著劑而言,可舉出含環氧系樹脂、乙烯醚 系樹脂等的接著劑。 (保護層) 保護層是設置成遮覆有機EL元件的方式。可藉此保 護詹的設置以保護有機EL元件隔開接者詹。 構成有機EL元件的電子注入層及陰極,通常因含有 在大氣中不安定的材料作為主成分’故在形成有機EL元件 之後,直至貼合第1薄膜以密封有機EL元件之間,可能使 電子注入層及陰極因周圍環境氣體中的水分及氧等而致劣 化之虞。因此保護層宜為具有可保護有機EL元件之機能 者,以使有機EL元件直至以第1薄膜密封之間,阻斷周圍 環境氣體中的水分及氧等。 至於可使用於保護層的材料,可舉出在大氣中安定的 金屬材料、氣體阻障性優異的無機絕緣性材料及有機絕緣 性材料等。金屬材料可選自例如A1、Cu、Ag、Au、Pt、T i、 Cr、Co及Ni。無機絕緣性材料可選自例如Si〇2、SiN、SiOxNY 及Si0xCY。在有機絕緣性材料而言,可使用聚對二甲苯 (poly paraxylene,簡稱 parylene) ° 由金屬材料形成的保護層,例如可以真空蒸鍍法、濺 鍍法或電鍍法而形成。由無機絕緣性材料形成的保護層, 例如可以藏鐘法、CVD法或雷射消溶(1 aser ab 1 at ion)法 而形成。由有機絕緣性材料形成的保護層,例如可以包括 單體氣體的蒸鍍法、以含有單體的蒸鍍膜(受塗布表面)聚 13 323546 201232868V lighting device, surface light source device and display device. (Effect of the Invention) According to the present invention, it is possible to provide an organic EL device which has high gas barrier properties and is not easily deformed by bending, and has a film which can be easily formed in a short period of time. Further, according to the present invention, an organic EL device having high light extraction efficiency can be provided. [Embodiment] Hereinafter, a preferred embodiment of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. The organic EL device of the present embodiment has an organic EL element, a first thin film disposed opposite to the organic EL element, and a position where the organic EL element is disposed opposite to the organic EL element, and emits the light. The light of the exit surface is taken out of the structure. The organic EL device is usually provided on a support substrate. The organic EL device has a sealing member that can be bonded to the support substrate while interposing the organic EL element between the support substrates. The first film ' of the organic EL element according to the present embodiment can be used as a support substrate on which an organic EL element is provided, or can be used as a sealing member bonded to a support substrate. In the following, an organic EL device in which a second film is used as a base substrate ’ and a first film is provided as a sealing member is described. The organic EL device mounted in the organic EL device can be roughly classified into the following three types. In other words, the organic EL element can be roughly classified into (I) a so-called bottom emission type element that emits light toward a support substrate on which the organic EL element can be mounted, and (11) a light opposite to the support substrate. 7 323546 201232868 The so-called top emission type element and (πI) emitted from the side of the v emit light toward the support substrate, and simultaneously emit the double-sided light-emitting element that is emitted from the side opposite to the support substrate. The organic EL device to which the organic EL device of the present embodiment is mounted may be any one of the elements. In the following, an organic EL device in which a top emission type element is provided will be described with reference to Fig. 1 as an example. Next, an organic EL device in which a bottom emission type element is provided will be described with reference to Fig. 2 . Fig. 1 is a schematic cross-sectional view showing an organic EL device of the embodiment. In the organic EL device 13 of the embodiment shown in Fig. 1, the organic EL element 2 is mounted on the second film 1. In the first film 丨丨, the ith film 11 is placed on the second film 1 while interposing the organic EL element 2 between the film and the second film 1. In the first film 丨丨, the organic EL element 2 is sealed together with the second film 1. The second film 1 and the first film U are bonded together by the adhesive layer 4 which is not placed between the films. The organic EL device 13 may cover the organic EL element 2 as required, or may have a protective layer 3 interposed between the organic EL element 2 and the adhesive layer 4. By this arrangement of the protective layer 3, the adhesive layer 4 can be avoided to protect the organic EL element 2. The organic EL device 13 is provided with a light extraction structure 14 . The light extraction structure 14 is disposed at a light emission position emitted by the organic germanium element 2. The organic EL element 2 of the present embodiment shown in Fig. i is a top emission type element, and emits light toward the first film u. Therefore, the position where light is emitted outside the organic EL device 13 is the outermost surface on the i-th film 11 side with respect to the organic EL element 2. Therefore, in the embodiment shown in Fig. 1, the light extraction structure 14 is the outermost layer on the i-th thin side 11 side based on the organic EL element 2. The wire-out structure 14 has an emission capable of emitting light 323546 8 201232868 ·, surface s. The light extraction structure 14 can be directly formed on the first film I. In the present embodiment, the light extraction structure 14 is bonded to the first film 11 by the adhesive layer 15. Although the light extraction structure 14 will be described in detail later, the light extraction structure 14 is arranged at the light emission position to improve the light extraction efficiency, and as a result, the luminous efficiency of the entire organic EL device can be improved. Since the organic EL element 2 of the present embodiment is a top emission type element, the first film 11 and the light extraction structure 14 must be formed of a light-permeable member. On the other hand, the second film 1 which is equivalent to the support substrate in the present embodiment may be formed of an opaque member which does not transmit light. A plastic film or a metal film can be used as the second film 1, and a metal film is preferable. When the metal film is compared with a plastic film or the like, since it has a high gas resistance, the gas barrier property of the organic EL device can be improved. As the metal film, a thin plate of, for example, Al, Cu, or Fe, and an alloy thin plate such as stainless steel can be used. The first film 11 has a gas barrier layer 5 containing germanium atoms, oxygen atoms and carbon atoms. In the present embodiment, the second film u is composed of the substrate 6 and the gas barrier layer 5 provided on the main surface of the substrate 6 on the side of the organic EL element 2. The gas barrier layer 5 has high gas barrier properties because it satisfies the conditions (i), (ii), and (iii) described below, and also suppresses a decrease in gas barrier properties when subjected to bending. Therefore, by sealing the organic EL element 2 by the first film and the second film, it is possible to realize an organic EL device which is flexible and has both sufficient durability and gas barrier properties. When the second film 323546 9 201232868 is used, the second film 1 and the first film U can exhibit high gas barrier properties, so that organic EL having more durability and gas barrier properties can be realized. Fig. 2 is a cross-sectional schematic view showing an organic EL device 13 according to another embodiment. The organic EL device 13 of the embodiment shown in Fig. 2 and the organic EL device 2 of the embodiment shown in Fig. 1 are In the second embodiment, the position of the light-extracting structure 14 is different. In the present embodiment, the bottom emission type organic EL element 2 is provided. As in the above-described embodiment, the light extraction structure 14 is disposed. The light emitted from the organic EL element 2 is emitted. The organic germanium element 2 shown in Fig. 2 emits light toward the second thin film 1. Therefore, the light exiting position is the second thin film i based on the organic EL element 2. The most surface of the side. So at the 2nd In the embodiment shown in the above, the light extraction structure 14 is the outermost layer on the second film i side when the organic EL element 2 is used as a reference. The light extraction structure 14 is bonded to the second layer by interposing the adhesive layer 15 Although the light extraction structure 14 will be described in detail later, the light extraction of the gentleman structure is arranged at the light emission position to improve the light extraction efficiency, and the junction is to improve the luminous efficiency of the entire organic EL device. In the organic EL element 2 of the embodiment, the light is emitted toward the second film 1 corresponding to the support substrate. Therefore, the second film i must be a film that exhibits light transmissivity. The film 1 is a film which exhibits light transmissivity, that is, there is no particular limitation, but in terms of gas barrier properties, it is the same as the film 11 and is 323546 10 having a cerium atom, an oxygen atom and a carbon atom. 201232868 2 gas barrier layer 8. In the present embodiment, the second film u is composed of a substrate 7 and a second gas barrier layer 8 on the main surface of the substrate 7 on the organic EL element 2 side. The second gas barrier layer 8 is the same as the gas barrier layer 5 of the i-th film u. It can satisfy the conditions (i), (ii), and (in) described later, and has high gas barrier properties, and can also suppress a decrease in gas barrier properties when subjected to bending. In this manner, the first film is used. In the organic EL device of the embodiment shown in Fig. 2, the organic EL device of the embodiment shown in Fig. 2 is replaced with a bottom emission. In the organic EL device of the type, a double-sided light-emitting organic germanium element may be provided. In this case, the light extraction structure 14 may be further provided. That is, it may be provided on the surface opposite to the organic EL element 4 of the first film 11. The knot 14 is taken out by light. . The second thin film is used as the sealing member, and the first thin film having the gas barrier layer is used as the supporting substrate, and the organic EL element can be sealed by the second film and the second film. For example, in the embodiment shown in Fig. 1 and Fig. 2, an additional film may be bonded to the first film and/or the second film. In the case of the additional film, a protective film for protecting the surface of the organic EL device, an antireflection film for preventing reflection of external light incident on the organic EL device, an optical functional film for adjusting the photophase and the polarized light, and the like An optical film or the like composed of a plurality of film layers of such films. The additional film can be applied to one or both sides of the second film and/or the second film. 323546 201232868 (Next layer) Next, the layer 4 is a layer in which the first film and the second film are placed between the films of the organic EL element. In the form in which the light-receiving (four) structure W is attached to the first film 11 and/or the second film 1, the subsequent layer may be used as the subsequent light extraction structure 14 and the first film 11 and/or the second film. 4 Adhesive layer 15 of film 1. The adhesive used for the adhesive layer may preferably have a high body resistance. As shown in the item i, it is preferable to make the adhesion layer high in the organic EL device which emits the organic light from the organic layer by the organic layer. At this time, in terms of light extraction efficiency, it is preferable that the absolute value of the difference in refractive index between the connection S and the contact layer 4 is as small as possible. As for the adhesive which can be used for the adhesive layer, it is preferable to use heat hardening, photocurability, and resilience (four). (iv) Acrylic vinegar-based adhesive f in the case of a thermosetting resin adhesive. In the case of the agent and the r-reagent, it is, for example, selected from the group consisting of a solvent-based epoxy resin and a epoxidized group:: in the case of an acrylic m-based adhesive, for example, methyl methacrylate An adhesive of a monomer such as ethyl acetoacetate, (10) butyl vinegar, propioni-2-acid, acrylamide, or a mixture of monomers which can be copolymerized with the main component. The early body' and the photocurable adhesive agent may, for example, be an ion-based adhesive. Soil binder and cation In the radical-based adhesive, an adhesive containing a methacrylic acid tree, 12,323,546, 201232,868, acryl, and acetoacetate is used. The cationic agent may, for example, be an adhesive containing an epoxy resin or a vinyl ether resin. (Protective layer) The protective layer is a method of covering the organic EL element. This protects the settings of Zhan to protect the organic EL components from the interface. The electron injecting layer and the cathode constituting the organic EL element usually contain a material which is unstable in the atmosphere as a main component. Therefore, after the organic EL element is formed, the first film is bonded to seal the organic EL element, and the electron may be caused. The injection layer and the cathode are deteriorated due to moisture, oxygen, and the like in the surrounding atmosphere. Therefore, it is preferable that the protective layer has a function of protecting the organic EL element so that the organic EL element blocks moisture, oxygen, and the like in the surrounding ambient gas until the first film is sealed. Examples of the material that can be used for the protective layer include a metal material that is stable in the atmosphere, an inorganic insulating material that is excellent in gas barrier properties, and an organic insulating material. The metal material may be selected, for example, from A1, Cu, Ag, Au, Pt, Ti, Cr, Co, and Ni. The inorganic insulating material may be selected, for example, from Si〇2, SiN, SiOxNY, and Si0xCY. In the organic insulating material, a protective layer made of a metal material such as polyparaxylene (referred to as parylene) can be used, and for example, it can be formed by a vacuum deposition method, a sputtering method, or a plating method. The protective layer formed of an inorganic insulating material can be formed, for example, by a clock method, a CVD method, or a laser ablation method. The protective layer formed of an organic insulating material may, for example, include a vapor deposition method of a monomer gas, and a vapor deposition film (coated surface) containing a monomer. 13 323546 201232868

V 合的製膜法而形成。 (有機EL裝置的製造方法) 以下,疋參照第3圖以說明有機EL裝置的製造方法。 第3圖是表示製造有機EL裝置的裝置之概略圖。在第3 圖表不的裝置中,是使第2薄膜i與第i薄膜u貼合,再 使光取出結構體14貼合在第1薄膜11。第2薄膜1上已 預先形成有機EL元件。 «輕5GG可送出已預先在其上形成有機此元件的 第2薄膜卜捲出輥510可送出第"專膜^。在由捲出輥 500送出的第2薄膜1上,可以第丄接著層用的塗布裝置 610塗布接著劑後’形成第1接著層。然後,以第1貼合 輥5U、512,使第2薄膜1與經運送輥513供應的第i 溥膜11經由第1接著層而貼合,再以第(接著層用的硬化 裝置611,使第1接著層硬化(固化)。 在第1薄膜11上’以設在硬化裝置611的下游側之 第2接著層用的塗布裝置塗布接著劑後,形成第2接著層。 接著’以第2貼合輥521、522 ’使第1薄膜11與,由捲 出概520送出,經運送輥523供應的光取出結構體14經 由第2接著層而貼合’再以第2接著層用的硬化裝置621, 使第2接著層硬化(固化)。然後,以捲取輥53〇捲取所形 成的有機EL裝置捲取。 如為3片以上的薄膜貼合時,貼合順序可配合有機EL 襞置的積層順序而適宜變更。 (第1薄膜) 14 323546 201232868 V 其次說明第1薄膜11。本實施形態之有機EL裝置的 特徵之一為具有第1薄膜,特別是在其氣體阻障層5中。 第1薄膜具有含矽原子、氧原子及碳原子的氣體阻障 層。因相對於碎原子、氧原子及碳原子之合計量的秒原子 之數的比率(矽之原子比)、氧原子之數的比率(氧之原子比) 及碳原子之數的比率(碳之原子比),可在一邊變化與氣體 阻障層的厚度方向的氣體阻障層之一邊的表面的距離時, 一邊進行測定,故可得矽分布曲線、氧分布曲線及碳分布 曲線,該曲線是分別表示各原子之原子比與離開氣體阻障 層之表面的距離之關係。由本實施形態相關的氣體阻障層 獲得的此等曲線,可滿足下述條件(i)、(ii)及(iii)。 (i)氣體阻障層的厚度方向之90%以上的區域中,矽之原子 比在矽之原子比、氧之原子比及碳之原子比之中,是第二 大值。 (i i)碳分布曲線至少具有一個極值。 (i i i)碳分布曲線中碳之原子比的最大值與最小值之差(絕 對值)為5at%以上。 換言之,(i)的條件是指氣體阻障層的厚度方向之90% 以上的區域中,可滿足下述式(1)或下述式(2)。 (氧之原子比)> (矽之原子比)> (碳之原子比)…(1) (碳之原子比)> (矽之原子比)> (氧之原子比)···(2) <第1薄膜之基材> 上述的氣體阻障層,通常是在基材上形成。即,第1 薄膜含有基材與在此基材上形成的氣體阻障層。在第1薄 15 323546 201232868It is formed by a V-forming film forming method. (Manufacturing Method of Organic EL Device) Hereinafter, a method of manufacturing an organic EL device will be described with reference to FIG. Fig. 3 is a schematic view showing an apparatus for manufacturing an organic EL device. In the apparatus of Fig. 3, the second film i is bonded to the i-th film u, and the light extraction structure 14 is bonded to the first film 11. An organic EL element is formed in advance on the second film 1. «Light 5GG can be sent out of the second film which has been previously formed with this organic component. The roll 510 can be sent out. On the second film 1 fed from the take-up roll 500, the first backing layer can be formed after the application of the adhesive agent to the coating device 610 for the second layer. Then, the first film roll 1 and the i-th film 11 supplied through the transport roller 513 are bonded to each other via the first adhesive layer by the first bonding rolls 5U and 512, and the second layer (the adhesive layer 611 for the subsequent layer) is further bonded. The first adhesive layer is cured (cured). The second adhesive layer is applied to the first film 11 by a coating device for the second adhesive layer provided on the downstream side of the curing device 611, and then a second adhesive layer is formed. (2) The bonding film 521, 522' is used to feed the first film 11 and the roll-out structure 520, and the light-extracting structure 14 supplied through the transport roller 523 is bonded to the second layer by the second layer. The curing device 621 hardens (cures) the second adhesive layer. Then, the organic EL device is wound up by winding up the winding roller 53. When three or more films are bonded together, the bonding order can be combined with organic The first film is described below. The first film 11 is described below. One of the features of the organic EL device of the present embodiment is that it has a first film, particularly in its gas barrier. In layer 5. The first film has a gas barrier containing germanium atoms, oxygen atoms and carbon atoms. The ratio of the number of second atoms (the atomic ratio of 矽) to the total number of atomic atoms, oxygen atoms, and carbon atoms, the ratio of the number of oxygen atoms (the atomic ratio of oxygen), and the ratio of the number of carbon atoms (carbon) The atomic ratio can be measured while changing the distance from the surface of one side of the gas barrier layer in the thickness direction of the gas barrier layer, so that a 矽 distribution curve, an oxygen distribution curve, and a carbon distribution curve can be obtained. The curve is a relationship between the atomic ratio of each atom and the distance from the surface of the gas barrier layer, respectively. The curves obtained by the gas barrier layer according to the present embodiment satisfy the following conditions (i), (ii) and (iii) (i) In the region of 90% or more of the thickness direction of the gas barrier layer, the atomic ratio of germanium is the second largest value among the atomic ratio of germanium, the atomic ratio of oxygen, and the atomic ratio of carbon. (ii) The carbon distribution curve has at least one extreme value. (iii) The difference (absolute value) between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 5 at% or more. In other words, the condition of (i) means gas 90% of the thickness of the barrier layer In the region, the following formula (1) or the following formula (2) can be satisfied. (Atom ratio of oxygen) > (atomic ratio of ruthenium) > (atomic ratio of carbon) (1) (Atom of carbon) (ratio) > (atomic ratio of bismuth) > (atomic ratio of oxygen) (2) <substrate of first film> The gas barrier layer described above is usually formed on a substrate. The first film contains a substrate and a gas barrier layer formed on the substrate. In the first thin 15 323546 201232868

V 膜的基材上,可舉出無色透明的樹脂膜或樹脂板。可使用 於此種基材上的樹脂,例如可選自聚對苯二曱酸乙二酯 (PET)及聚萘二曱酸乙二酯(PEN)等聚酯系樹脂;聚乙烯 (PE)、聚丙烯(PP)及環狀聚烯烴等聚烯烴系樹脂;聚醯胺 系樹脂;聚碳酸酯系樹脂;聚苯乙烯系樹脂;聚乙烯醇系 樹脂;乙烯-醋酸乙烯共聚合物的皂化物;聚丙烯腈系樹 脂;縮醛系樹脂;以及聚醯亞胺系樹脂。此等樹脂之中, 就耐熱性高、線膨脹率小且製造成本低而言,是宜為聚酯 系樹脂及聚烯烴系樹脂,並且以PE1T及PEN時尤佳。此等 樹脂可單獨使用1種,也可將2種以上組合後使用。 第1薄膜的基材厚度,可在考量製造第1薄膜時的安 定性而適宜設定。就也可在真空中運送薄膜的觀點而言, 第1薄膜的基材厚度宜為5至500/im的範圍中。如由電椠 CVD法形成氣體阻障層時,由於是通過第2薄膜後一面放 電一面形成氣體阻障層,故第1薄膜的基材厚度是以50 至200 # m較佳,而以50至100 // m時更佳。 就與後述的氣體阻障層之密著性的觀點而言,對於第 1薄膜的基材宜施予表面活性處理,以使表面清淨。至於 此種表面活性處理,可舉例如電暈處理、電漿處理及火焰 處理。 <氣體阻障層> 氣體阻障層是在前述基材的至少一面上形成。本實施 形態相關的第1薄膜,只要至少具備一層含有矽原子、氧 原子及碳原子,且可完全滿足上述條件(i)至(iii)的氣體 16 323546 201232868 阻障詹即可。例如,第1薄膜也可具有不滿足上述條件(i) 至(iii)的至少任一項的其他層。氣體阻障層或其他層亦再 可含有氮原子及鋁原子等。 如石夕原子比、氧原子比及碳原子比未能滿足條件(i) 時,將使第1薄膜的氣體阻障性降低。宜使可滿足上述式 (1)或(2)的區域,佔有氣體阻障層之厚度的90%以上。並 以此比例在95%以上時較佳,而以100%時更佳。 +貝地π悲祁關的軋體阻暉層t,上述條件(丨丨)是必 須使碳分布曲線至少具有一個極值。在此種氣體阻障層中, 疋以使碳分布曲線具有2個極值較佳,並以具有3個以上 的極值時練。如碳分布㈣*具有難時,所得 薄膜在受Μ曲時,將使氣體阻障性降低。如碳分布 有3個極值時,宜使碳分布曲線的_極值間之厚 又口的距離為200nm以下’並以1〇〇龍以下 本說明書中的極值,是指將元素 障層的厚度方向由氣體阻障層的表比對於氣體随 分布曲線中的極大值或極小值。^之_ ’㈣而得的 原子::值的變化,元:: 之原子比的值比較時,是由該:且在與該點的元素 與氣體阻障層的表面之再變二阻:層的厚度方向 原子比之值,減少3抓以的位置時的元素 值,是指隨著與氣體阻障層的表1之元素的原子比。極小 素的原子比的值由減少而;離的變化,而使元 成曰加的點’而且在與該點的 323546 17 201232868 v 元素之原子比的值比較時,是由該點在氣體阻障層的厚度 方向上與氣體阻障層的表面之距離再變化20nm的位置時 的元素原子比之值,增加3at%以上的點之元素的原子比。 本實施形態相關的氣體阻障層,其上述條件(iii)是 必須使碳分布曲線中的碳之原子比的最大值為最小值之差 為5at%以上。在此種氣體阻障層中,是以使碳之原子比的 最大值與最小值之差為6at%以上較佳,並以7at%以上時更 佳。如該差未達5at%時,在第1薄膜受到彎曲時,將使第 1薄膜的氣體阻障性降低。上述差的上限並無特別的限 制,但通常大約是30at°/〇。 (氧分布曲線、極值) 氣體阻障層的氧分布曲線宜至少具有1個極值,並以 至少具有2個極值較佳,而以至少具有3個以上極值時更 佳。如氧分布曲線具有極值時,不易產生因第1薄膜的彎 曲而降低氣體阻障性的情形。如氧分布曲線至少具有3個 極值時,氧分布曲線具有的1個極值與隣接該極值的極值 之間,宜使各別的氣體阻障層之厚度方向上由氣體阻障層 之表面的距離之差均在200nm以下,並以lOOnm以下時較 佳。 (氧分布曲線、最大值與最小值之差) 氣體阻障層的氧分布曲線中,宜使氧的原子比之最大 值與最小值之差為5at%以上,並以6at%以上較佳,而以 7at%以上時更佳。該差如在前述下限以上時,將不易產生 因第1薄膜的彎曲而降低氣體阻障性的情形。雖然並無特 18 323546 201232868 w 別限制該差之上限,但通常大約是30at%。 氣體阻障層的矽分曲線中的矽的原子比之最大值與 最小值之差,宜不到5at%,並以不到4at%較佳,而以不到 3at%時更佳。如該差未達前述上限時,有使第1薄膜的氣 體阻障性變得特別高的傾向。 (氧碳分布曲線、最大值與最小值之差) 表示氣體阻障層的厚度方向從該層的表面之距離,與 氧原子及碳原子的合計量之比率(氧及碳的原子比)相對於 矽原子、氧原子及碳原子的合計量的之比率之關係的氧碳 分布曲線中,宜使氧及碳之原子比的合計之最大值與最小 值的差不到5at%,並以不到4at%較佳,而以不到3at%時 更佳。該差如在未達前述上限時,有使第1薄膜的氣體阻 障性變得特別高的傾向。 矽分布曲線、氧分布曲線、碳分布曲線及氧碳分布曲 線,因可同時使用X線光電子分光法(XPS : X-ray Photoelectron Spectroscopy)的測定與氬等稀有氣體離 子濺鍍’故可一面將試料内部露出而一面依序進行表面組 成分析’即可由XPS深度描繪(xps Depth Profile)測定而 作成分布曲線。由此種XPS深度描繪測定獲得的分布曲 線,例如可以各元素的原子比為縱軸(單位:at%),以蝕刻 時間⑽料間)為橫軸而作成i料間是與氣體阻障層 的厚度方向由氣體阻_的表面之距離略為相關。所以, ==?XPS深度描:時所採用的钱刻速度與_時 間之關係#出由氣體阻障層的表面之距離,作為「氣體 323546 19 201232868 v 阻障層的厚度方向與氣體阻障層的一方之表面的距離」。在 此種XPS深度描繪測定時採用的濺鍍法,是採用利用氬(Ar + )作為蝕刻離子種的稀有氣體離子濺鍍法,其蝕刻速度 (etching rate)宜為0. 〇5nm/秒(Si〇2熱氧化膜換算值)。 就可在膜面整體中形成均勻且具有優異氣體阻障性 的氣體阻障層而言,宜使氣體阻障層在膜面方向(與氣體阻 障層的主面(表面)平行的方向)上實質的一致。本說明書 中所明使氣體阻p平層在膜面方向實質的一致」,是指應 ,XPS深度描繪測定的氣體阻障層的膜面之任意2處的^ 定點作成氧分布曲線、碳分布曲線及氧碳分布曲線時,可 使該任意2處的測定點所得之碳分布曲線具有的極值之個 數互為相同’且可使各別的碳分布曲線的碳之原子比的最 大值與最小值之差’互為相同或使此等之差在5⑽以内。 碳分布曲線宜為實質的連續。本說明書中所謂的「碳 分布曲線為實質的連續」,是指碳分布曲線中不含碳之原子 比為不連續變化的部份。具體上,此乃因由钱刻速度錢 刻時間計算出的氣體阻障層之厚度方向上離開該層的表面 2距離(X ’單位:nm)與碳之原子比(c,單位:㈣)的關係 中,可滿足下述數式(F1)表示的條件。 ~1· (dc/dx)^ 1. 〇 ...... 、、本實施形態相關的第1薄膜,只要具備至少】層完全 滿足上述條件⑴至(iii)的氣體阻障層即可,第工薄膜也 I具備2層=上完全滿足上述條件⑴至(⑴)的氣體阻障 如第1薄膜具備2層以上的此種氣體阻障層時,數種 323546 20 201232868 氣體阻障層的材質可以是相同’也可以是不同。同時,如 第1薄膜為具備2層以上的此種氣體阻障層時,此等氣體 阻P导層可在基材上的一邊之表面形成,也可在基材的兩邊 的表面上形成。第1薄膜也可含有不必然具有氣體阻障性 的薄膜層。 石夕分布曲線、氧分布曲線及碳分布曲線中,如欲使矽 之原子比、氧之原子比及碳之原子比滿足式(i)表示的條件 時’相對於氣體阻障層中的矽原子、氧原子及碳原子的合 〇十里’且使石夕原子之含量的原子比率為2$至45at%,並以 30至40at%時較佳。相對於氣體阻障層中的矽原子、氧原 子及碳原子的合計量,宜使氧原子之含量的原子比率為33 至67% ’並以45至67at%時較佳。相對於氣體阻障層中的 石夕原子、氧原子及碳原子的合計量,宜使碳原子之含量的 原子比率為3至33%,並以3至25at%時較佳。 矽分布曲線、氧分布曲線及碳分布曲線中,如欲使矽 之原子比、氧之原子比及碳之原子比滿足前述式(2)表示的 條件時,相對於氣體阻障層中的矽原子、氧原子及碳原子 的合計量,宜使梦原子之含量的原子比率為25至45at%, 並以30至40at%時較佳。相對於氣體阻障層中的矽原子、 氧原子及碳原子的合計量’宜使氧原子之含量的原子比率 為1至33%,並以10至27at%較佳。相對於氣體阻障層中 的矽原子、氧原子及碳原子的合計量,宜使碳原子之含量 的原子比率為33至66%,並以40至57at%較佳。 氣體阻障層的厚度宜為5至3000nm,並以1〇至20〇〇nm 21 323546 201232868 較佳,而以100至l〇〇〇nm時尤佳。當氣體阻障層的厚度在 此等數值範圍内時,除了可得較優異的氧氣阻障性、水蒸 氣阻障性等氣體阻障性之外,同時也可更有效的抑制因彎 曲而致的氣體阻障性降低。 如第1薄臈具備複數的氣體阻障層時,此等氣體阻障 層之厚度的合計值通常是10至10000nm,但宜為1〇至 5000nm,並以100至3000nm較佳,而以2〇〇至2〇〇〇nm時 更佳。當氣體阻障層之厚度的合計值在此等數值範圍内 時,除了可得較優異的氧氣阻障性、水蒸氣阻障性等氣體 阻P早性之外,同時也可更有效的抑制因彎曲而致的氣體阻 障性降低。 第1薄膜除了第1薄膜的基材及氣體阻障層之外,也 可,合要求而具備底塗(Primer coat)層、隔熱性樹脂層、 .著Μ層專。底塗層可使用可提高基材及氣體阻障層之間 的接著性之底塗劑而形成。隔熱性樹脂層可適當使用已知 的隔熱性樹脂而形成。接著劑層可適t使用—般的接著劑 而形成。也可藉由此種接著劑層而使複數的第1薄膜之 相互接著。 、 、第1薄膜的氣體阻障層,宜為電襞化學氣相沈積法形 成之層。由電漿化學氣相沈積法形成的氣體阻障層,宜是 由將第2薄膜基材配置在一對的成膜輥上後,在一對的成 臈挺之間放電而產生電㈣錢化學氣相沈積法形成之 層。在-對的成膜輥之間放電時’宜使—對的成膜輕之極 性交互反t可使用於此種㈣化學㈣目沈積法形成之成 323546 22 201232868 膜氣體且3有有機石夕化合物與氧。成膜氣體中的含氧量, 宜為可使=氣體中的有機矽化合物之全量完全氧化時必 要的理响氧!以下。第1薄膜的氣體阻障層,宜為由連續 的成膜製㈣成之層。利用此種電裝化學氣相沈積法而形 成氣體阻障層之方法,將於後述的第丄薄膜之製造方法中 詳細說明。 <第1薄膜之製造方法> Θ其-人^兒明製造第i薄膜的方法。第i薄膜的製造, 疋在第1薄膜的基材之表面上形成氣體阻障層即得。至於 可使氣肽阻障層在第i薄膜的基材之表面上形成的方法, 就乱體阻IV性而言’宜為電毁化學氣相沈積法(電聚CVD)。 此電聚化學氣相沈積法也可以是潘寧(p_ing)放電方式 的電漿化學氣相沈積法。 在電槳化學氣相沈積法中使電装產生之際,宜使電聚 放電在複數個成膜觀之間的空間產生,宜使用一對成膜 觀,在此-對成膜輥上分別配置基材後,在此一對成膜輥 之間放電而產生電裝。藉由這樣的使用一對成膜親,成膜 夺不僅可使氣體阻障層成膜在存在其中之一成膜輥上的 基材上,也可使氣體阻障層成臈在存在另一成膜輥上的基 材上。藉此,不僅可有效的製造氣體阻障層,也可以2倍 的成膜速率同時成膜相同結構的膜。該結果是,至少可倍 増碳分布曲線中的極值,也可有效的形成完全滿足上述條 件(i)至(i i i)之氣體阻障層。就生產性而言,宜以辕對輕 (r〇ll to r〇il)方式在第1薄膜的基材表面上形成氣體阻 323546 23 201232868 障層。藉由此種電漿化學氣相沈積法製造第2薄膜之際可 使用的裝置,雖然並無特別的限制,但至少具備一對成膜 輥與電漿電源,宜為可在前述一對成膜輥中放電的裝置。 例如,因使用第4圖中表示的製造裝置,而可一邊利用電 漿化學氣相沈積法,一邊以輥對輥方式製造第1薄膜。 以下,是一邊參照第4圖一邊詳細說明第1薄膜的製 造方法。第4圖是製造本實施形態相關的第1薄膜時可適 當利用的製造裝置之一例的模式圖。以下的說明及圖式中, 相同或相當的要件是附記相同的符號,並適宜的省略重複 的說明。 第4圖中表示的製造裝置,具備送出輥701、運送輥 21、22、23、24、對向配置的一對成膜輥31、32、氣體供 應管41、電漿產生用電源51、設置在成膜輥31及32的内 部之磁場產生裝置61、62與捲取輥702。在此製造裝置中, 至少有成膜輥31、32、氣體供應管41、電漿產生用電源 51與磁場產生器61、62,是配置在圖式中省略的真空室 (chamber)内。此真空室是連接在圖式中省略的真空泵(幫 浦)上,可藉由此真空泵而適宜的調整真空室内的壓力。 第4圖中表示的製造裝置,是如同使一對成膜輥(成 膜輥31與成膜輥32)可作為一對的對向電極的機能,將各 成膜輥分別連接在電漿產生用電源51。由電漿產生用電源 51供應的電力,使成膜輥31與成膜輥32之間的空間放電 後,即可藉此在成膜輥31與成膜輥32之間的空間產生電 漿。如欲利用成膜輥31與成膜輥32作為電極時,只要適 24 323546 201232868 二變更如可利用作為電極的材 膜輥(成膜軸31與成膜軸)對的成 平面上略為平行。如此的將ϋ己置成使該中心轴在同一 輥32)配置後,因是在各=膜報(成膜链31與成犋 故在與-個成滾膜軸上成膜的^上成膜為氣體阻障層, 率。而且,由於可重疊_ =較:,可倍增成膜迷 分布曲線上倍增極㈣數。構之膜,故至少可在碳 χ ^ ^ 错由此種製造裝置,即可a pmThe base material of the V film may be a colorless transparent resin film or a resin plate. The resin which can be used for such a substrate, for example, may be selected from polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyethylene (PE) Polyolefin resin such as polypropylene (PP) and cyclic polyolefin; polyamine resin; polycarbonate resin; polystyrene resin; polyvinyl alcohol resin; saponification of ethylene-vinyl acetate copolymer A polyacrylonitrile resin; an acetal resin; and a polyamidene resin. Among these resins, polyester resin and polyolefin resin are preferable in terms of high heat resistance, small linear expansion ratio, and low production cost, and are particularly preferable in the case of PE1T and PEN. These resins may be used singly or in combination of two or more. The thickness of the base material of the first film can be appropriately set in consideration of the stability at the time of producing the first film. The substrate thickness of the first film is preferably in the range of 5 to 500 / im from the viewpoint of transporting the film in a vacuum. When the gas barrier layer is formed by the electroless CVD method, since the gas barrier layer is formed while discharging through the second film, the thickness of the substrate of the first film is preferably 50 to 200 #m, and 50. Better to 100 // m. From the viewpoint of adhesion to the gas barrier layer to be described later, it is preferred to apply a surface active treatment to the substrate of the first film to clean the surface. As such a surface active treatment, for example, corona treatment, plasma treatment, and flame treatment can be mentioned. <Gas Barrier Layer> The gas barrier layer is formed on at least one surface of the substrate. The first film according to the present embodiment may have at least one gas containing a halogen atom, an oxygen atom and a carbon atom, and which can satisfy the above conditions (i) to (iii). For example, the first film may have another layer that does not satisfy at least one of the above conditions (i) to (iii). The gas barrier layer or other layers may further contain a nitrogen atom, an aluminum atom or the like. When the atomic ratio, the oxygen atomic ratio, and the carbon atom ratio fail to satisfy the condition (i), the gas barrier property of the first film is lowered. It is preferable that the region satisfying the above formula (1) or (2) accounts for 90% or more of the thickness of the gas barrier layer. And the ratio is preferably 95% or more, and more preferably 100%. +Belty π sorrowful rolling resistance layer t, the above condition (丨丨) is such that the carbon distribution curve must have at least one extreme value. In such a gas barrier layer, ruthenium has a carbon distribution curve having two extreme values, and is practiced with three or more extreme values. If the carbon distribution (4)* is difficult, the resulting film will degrade the gas barrier when it is warped. If there are three extreme values in the carbon distribution, it is preferable to make the thickness of the carbon distribution curve _ extreme value and the distance between the mouth and the mouth is below 200 nm ' and the maximum value in the specification below 1 〇〇 dragon refers to the elemental barrier layer The thickness direction is determined by the ratio of the gas barrier layer to the maximum or minimum value in the gas distribution curve. ^ _ '(4) derived atom:: value change, element:: The ratio of the atomic ratio is compared by: and at the point of the element and the gas barrier layer of the second change: The atomic ratio of the thickness direction of the layer, the element value at the position where the scratch is 3, refers to the atomic ratio with the element of Table 1 of the gas barrier layer. The value of the atomic ratio of the minimal element is reduced by; the change of the distance, and the point at which the element is added, and compared with the value of the atomic ratio of the element of 323546 17 201232868 v at that point, is the gas resistance by the point The atomic ratio of the element at a point where the distance between the barrier layer and the surface of the gas barrier layer is further changed by 20 nm increases the atomic ratio of the element at a point of 3 at% or more. In the gas barrier layer according to the present embodiment, the above condition (iii) is such that the difference between the maximum value of the atomic ratio of carbon in the carbon distribution curve and the minimum value is 5 at% or more. In such a gas barrier layer, the difference between the maximum value and the minimum value of the atomic ratio of carbon is preferably 6 at% or more, and more preferably 7 at% or more. When the difference is less than 5 at%, when the first film is bent, the gas barrier property of the first film is lowered. The upper limit of the above difference is not particularly limited, but is usually about 30 at / 〇. (Oxygen distribution curve, extreme value) The oxygen distribution curve of the gas barrier layer preferably has at least one extreme value, and preferably has at least two extreme values, and more preferably has at least three extreme values. When the oxygen distribution curve has an extreme value, it is less likely to cause a gas barrier property due to bending of the first film. If the oxygen distribution curve has at least three extreme values, the oxygen distribution curve has an extreme value and an extreme value adjacent to the extreme value, so that the thickness of each gas barrier layer is oriented by the gas barrier layer. The difference in the distance between the surfaces is preferably 200 nm or less, and preferably 100 nm or less. (Oxygen distribution curve, difference between maximum value and minimum value) In the oxygen distribution curve of the gas barrier layer, the difference between the maximum value and the minimum value of the atomic ratio of oxygen is preferably 5 at% or more, and preferably 6 at% or more. It is better when it is 7 at% or more. When the difference is at least the above lower limit, the gas barrier property is less likely to be caused by the bending of the first film. Although there is no special limit for the difference, it is usually about 30at%. The difference between the maximum value and the minimum value of the atomic ratio of bismuth in the gas barrier layer is preferably less than 5 at%, preferably less than 4 at%, and more preferably less than 3 at%. When the difference does not reach the above upper limit, the gas barrier property of the first film tends to be particularly high. (oxygen carbon distribution curve, the difference between the maximum value and the minimum value) indicates the distance from the surface of the layer in the thickness direction of the gas barrier layer, and the ratio of the atomic ratio of oxygen atoms and carbon atoms (atomic ratio of oxygen to carbon) In the oxygen-carbon distribution curve in the relationship between the ratio of the atomic atom, the oxygen atom and the carbon atom, it is preferable that the difference between the maximum value and the minimum value of the atomic ratio of oxygen and carbon is less than 5 at%, and It is preferably 4 to%, and more preferably less than 3 at%. When the difference is less than the above upper limit, the gas barrier property of the first film tends to be extremely high. The enthalpy distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve can be simultaneously measured by X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy) and rare gas ion sputtering such as argon. The surface composition analysis is performed while the sample is exposed inside, and the distribution curve can be determined by XPS depth map (xps Depth Profile). The distribution curve obtained by the XPS depth delineation measurement, for example, the atomic ratio of each element is the vertical axis (unit: at%), and the etching time (10) is the horizontal axis to make the inter-material and gas barrier layer. The thickness direction is slightly related by the distance of the surface of the gas barrier. Therefore, ==? XPS depth tracing: the relationship between the velocity of the engraving and the _ time. The distance from the surface of the gas barrier layer is used as the "thickness direction and gas barrier of the gas barrier 323546 19 201232868 v barrier layer". The distance from the surface of one of the layers." The etching rate is preferably 0. nm 5 nm / sec (etching rate) is preferably used in the sputtering method. Si〇2 thermal oxide film conversion value). In order to form a gas barrier layer which is uniform and has excellent gas barrier properties in the entire film surface, it is preferable to make the gas barrier layer in the film surface direction (direction parallel to the main surface (surface) of the gas barrier layer) The essence is consistent. In the present specification, the gas resistance p flat layer is substantially uniform in the film surface direction, which means that the oxygen distribution curve and the carbon distribution are formed at any two points of the film surface of the gas barrier layer measured by the XPS depth. In the curve and the oxygen-carbon distribution curve, the carbon distribution curve obtained at the measurement points of the arbitrary two points may have the same number of extreme values and may maximize the atomic ratio of carbon of the respective carbon distribution curves. The difference from the minimum value 'is the same or makes the difference within 5 (10). The carbon distribution curve should be substantially continuous. The term "carbon distribution curve is substantially continuous" as used in the specification means a portion in which the ratio of atoms containing no carbon in the carbon distribution curve is discontinuously changed. Specifically, this is the distance (X' unit: nm) from the surface of the layer in the thickness direction of the gas barrier layer calculated by the time of the money engraving and the atomic ratio of carbon (c, unit: (four)) In the relationship, the condition expressed by the following formula (F1) can be satisfied. ~1· (dc/dx)^ 1. The first film according to the present embodiment may be provided with a gas barrier layer which satisfies at least the above conditions (1) to (iii). The second film of the first film has two layers of gas barriers that satisfy the above conditions (1) to (1). If the first film has two or more gas barrier layers, several types of 323546 20 201232868 gas barrier layers The material can be the same 'may be different. Meanwhile, when the first film is provided with two or more layers of such a gas barrier layer, the gas barrier P-conductive layer may be formed on one surface of the substrate or on both surfaces of the substrate. The first film may also contain a film layer which does not necessarily have gas barrier properties. In the Shixi distribution curve, the oxygen distribution curve, and the carbon distribution curve, if the atomic ratio of yttrium, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the condition expressed by the formula (i), 'relative to the enthalpy in the gas barrier layer The atomic ratio of the atom, the oxygen atom and the carbon atom is such that the atomic ratio of the content of the stone atom is 2$ to 45 at%, and preferably 30 to 40 at%. The atomic ratio of the content of the oxygen atom is preferably from 33 to 67% 'and preferably from 45 to 67 at% with respect to the total amount of the ruthenium atom, the oxygen atom and the carbon atom in the gas barrier layer. The atomic ratio of the content of the carbon atoms is preferably from 3 to 33%, and preferably from 3 to 25 at%, based on the total amount of the stone atoms, oxygen atoms and carbon atoms in the gas barrier layer. In the enthalpy distribution curve, the oxygen distribution curve, and the carbon distribution curve, if the atomic ratio of argon, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the condition expressed by the above formula (2), the enthalpy in the gas barrier layer is The total amount of atoms, oxygen atoms and carbon atoms is preferably such that the atomic ratio of the content of the dream atom is 25 to 45 at%, and preferably 30 to 40 at%. The atomic ratio of the atomic atom, the oxygen atom and the carbon atom in the gas barrier layer is preferably such that the atomic ratio of the content of the oxygen atom is from 1 to 33%, and preferably from 10 to 27 at%. The atomic ratio of the content of the carbon atoms is preferably from 33 to 66%, and preferably from 40 to 57 at%, based on the total amount of the ruthenium atom, the oxygen atom and the carbon atom in the gas barrier layer. The thickness of the gas barrier layer is preferably from 5 to 3000 nm, preferably from 1 〇 to 20 〇〇 nm 21 323546 201232868, and particularly preferably from 100 to 10 nm. When the thickness of the gas barrier layer is within such a range of values, in addition to excellent gas barrier properties such as oxygen barrier property and water vapor barrier property, it is also more effective in suppressing bending The gas barrier is reduced. When the first thin crucible has a plurality of gas barrier layers, the total thickness of the gas barrier layers is usually 10 to 10000 nm, but preferably 1 to 5000 nm, and preferably 100 to 3000 nm, and 2 It is better when 〇〇 to 2〇〇〇nm. When the total thickness of the gas barrier layer is within such a range of values, in addition to excellent gas barrier properties such as oxygen barrier properties and water vapor barrier properties, it is also more effective in suppressing The gas barrier property due to bending is lowered. In addition to the base material of the first film and the gas barrier layer, the first film may be provided with a primer coat layer or a heat-insulating resin layer as required. The undercoat layer can be formed using a primer which can improve the adhesion between the substrate and the gas barrier layer. The heat insulating resin layer can be formed by appropriately using a known heat insulating resin. The layer of the agent can then be formed using a suitable adhesive. The plurality of first films may be bonded to each other by such an adhesive layer. The gas barrier layer of the first film is preferably a layer formed by electroless chemical vapor deposition. Preferably, the gas barrier layer formed by the plasma chemical vapor deposition method is formed by disposing a second film substrate on a pair of film forming rolls, and discharging electricity between a pair of bismuth sheets to generate electricity (four) money. A layer formed by chemical vapor deposition. When discharging between the pair of film-forming rolls, it is advisable to use a pair of light-polar interactions which can be used for the formation of 323546 22 201232868 membrane gas and 3 organic stone eves. Compound with oxygen. The oxygen content in the film forming gas is preferably an oxygen which is necessary to completely oxidize the entire amount of the organic cerium compound in the gas! the following. The gas barrier layer of the first film is preferably a layer formed by continuous film formation (four). The method of forming a gas barrier layer by such an electrical vapor deposition chemical vapor deposition method will be described in detail in the method for producing a second film which will be described later. <Method for Producing First Film> The method for producing the i-th film. In the production of the i-th film, a gas barrier layer is formed on the surface of the substrate of the first film. As for the method of forming the gas peptide barrier layer on the surface of the substrate of the i-th film, it is preferable to use electro-destructive chemical vapor deposition (electro-polymerization CVD) in terms of disorder resistance IV. The electropolymerization chemical vapor deposition method may also be a plasma chemical vapor deposition method of a penning (p_ing) discharge method. In the electric paddle chemical vapor deposition method, when the electric device is generated, it is preferable to make the electropolymerization discharge occur in a space between a plurality of film formation views, and it is preferable to use a pair of film formation views, where the film formation rolls are respectively disposed. After the substrate is placed, it is discharged between the pair of film forming rolls to produce electrical equipment. By using such a pair of film-forming members, the film formation can not only form a gas barrier layer on the substrate on one of the film-forming rolls, but also make the gas barrier layer entangled in the presence of another On the substrate on the film forming roll. Thereby, not only the gas barrier layer can be efficiently produced, but also a film of the same structure can be simultaneously formed at twice the film formation rate. As a result, at least the extreme value in the carbon distribution curve can be doubled, and the gas barrier layer which satisfies the above conditions (i) to (i i i) can be effectively formed. In terms of productivity, it is preferable to form a gas barrier 323546 23 201232868 barrier layer on the surface of the substrate of the first film in a light-to-rough (r〇ll to r〇il) manner. The apparatus usable when the second film is produced by the plasma chemical vapor deposition method is not particularly limited, but at least a pair of film forming rolls and a plasma power source are provided, and it is preferable to be in the aforementioned pair. A device for discharging in a film roll. For example, by using the manufacturing apparatus shown in Fig. 4, the first film can be produced by a roll-to-roll method while using a plasma chemical vapor deposition method. Hereinafter, a method of manufacturing the first film will be described in detail with reference to Fig. 4 . Fig. 4 is a schematic view showing an example of a manufacturing apparatus which can be suitably used in the production of the first film according to the embodiment. In the following description and the drawings, the same or corresponding elements are designated by the same reference numerals, and the repeated description is omitted as appropriate. The manufacturing apparatus shown in Fig. 4 includes a feed roller 701, transport rollers 21, 22, 23, and 24, a pair of deposition rollers 31 and 32 disposed opposite each other, a gas supply pipe 41, a plasma generating power source 51, and a setting. The magnetic field generating devices 61 and 62 and the take-up roller 702 inside the film forming rolls 31 and 32. In the manufacturing apparatus, at least the film forming rolls 31 and 32, the gas supply pipe 41, the plasma generating power source 51, and the magnetic field generators 61 and 62 are disposed in a vacuum chamber which is omitted from the drawing. The vacuum chamber is connected to a vacuum pump (supply) omitted from the drawing, and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump. The manufacturing apparatus shown in Fig. 4 is a function of a pair of film forming rolls (film forming rolls 31 and film forming rolls 32) as a pair of counter electrodes, and each film forming roll is connected to a plasma. Use power supply 51. The electric power supplied from the plasma generating power source 51 discharges the space between the film forming roller 31 and the film forming roller 32, whereby plasma can be generated in the space between the film forming roller 31 and the film forming roller 32. When the film forming roller 31 and the film forming roller 32 are to be used as the electrodes, the plane of the film roll (the film forming axis 31 and the film forming axis) which is available as an electrode may be slightly parallel as long as it is suitable for use as an electrode. After the arrangement of the central axis is performed on the same roller 32), it is formed on each film (the film-forming chain 31 and the film-forming chain 31 are formed on the film-rolling axis). The film is a gas barrier layer, and the ratio can be multiplied by _ = more than: the number of dynodes (four) can be multiplied on the distribution curve of the film. Therefore, at least the carbon χ ^ ^ is wrong. , you can a pm

法在基材6絲©以彡錢體 CVD I*的其主工l ^ a不僅可在成獏觀31 上的基材6之表面上堆_ 上的基材6之表面上堆積膜成八^且也了在成膜觀32 面上很有朗形餘體轉因此’可在基材6的表 在成膜輥31與成膜輥32的β $ 錄此磁場產生裝置61 =二=_產生裝置 旋轉時,其自身也不旋轉的形態。疋 卩使成膜輕在 二=ί作:成膜輥31與成_。就 宜;Ϊ = ίί 膜親31與成膜輥犯的直徑 且為實質上的相同。就放電條件、真 成膜輥31與成膜輥32的直徑宜為5幻〇=間專而言’ 第4圖的製造裝置中,基材θ cm° 相互對Θ材6疋如同使基材6的表面 :進行放料產生錢時,可转在=^== 6之各別表面同時成膜。即,藉由此 、、土材 法’就可在顏錢上料 上堆積膜成分,並 323546 25 201232868 且也可在成膜輥32上的基材6之表面上堆積膜成分。因 此’可在基材6的表面上很有效的形成氣體阻障層。 至於送出輥701及運送輥21、22、23、24 ’可適用一 般的軺*。捲取輥702,只要是可捲取已形成氣體阻障層的 基材6 ’即無特別的限制,可適宜的選擇通常使用的報。 氣體供應管41,只要是可以設定的速度供應或排放原 料氣體等即可。在電漿產生用電源51而言’可適用一般的 電衆產生裝置之電源。電漿產生用電源51在供應電力給連 接於其上的成膜輥31與成膜報32後’也可利用其作為放 電時的對向電極。在電漿產生用電源51而言,宜利用可使 對成膜報的極性交互反轉的電源(交流電源等),因其可 較有效的實施電漿CVD。可將電漿產生用電源51設定成外 加電力為100W至i〇〇Kw、交流頻率為50Hz至500Hz時較 佳’以更有效的實施CVD。在磁場產生裝置61、62而言, 可適用一般的磁場產生裝置。在基材6而言,除了第1薄 膜之基材外’也可使用具有已預先形成的氣體阻障層之薄 膜。如此’即可因使用具有已預先形成的氣體阻障層之薄 膜作為基材6,故可使氣體阻障層的厚度變厚。 使用第4圖中表示的製造裝置,將例如原料氣體的種 類、電装產生裝置的電極鼓(drum)之電力、真空室内的壓 力、成膜輥的直徑,以及薄膜的運送速度適宜的調整後, 即可製造第1薄膜。 使用第4圖中表示的製造裝置,因可一面將成膜氣體 (原料氣體)供應至真空室内’一面在一對成膜輥(成膜輥 26 323546 201232868 31與成膜輥32)之間產生放電,而使成膜氣體(原料氣體) 因電漿而分解,即可以電漿CVD法而在成膜輥31上的基材 6之表面上以及成膜輥32上的基材6之表面上形成氣體阻 障層。在這樣的成膜後,因基材6可由送出輥701及成膜 輥31等分別運送,故可以輥對輥方式的連續性成膜製程而 在基材6之表面上形成氣體阻障層。 形成氣體阻障層時使用的成膜氣體中之原料氣體,可 配合形成的氣體阻障層之材質而適宜選擇。在原料氣體而 言,可使用例如含矽的有機矽化合物。原料氣體除了有機 矽化合物之外,也可以含有作為矽源的單矽烷。 原料氣體含有例如選自六曱基二矽氧烷、1,1,3, 3-四 曱基二矽氧烷、乙烯基三曱基矽烷、曱基三曱基矽烷、六 曱基二秒烧、曱基碎炫、二曱基碎烧、三甲基梦烧、二乙 基石夕烧、丙基秒烧、苯基石夕院、乙稀基三乙氧碎炫、乙稀 基三曱氧矽烷、四曱氧矽烷、四乙氧矽烷、苯基三曱氧矽 烷、曱基三乙氧矽烷及八曱基環四矽氧烷所形成之群組中 的至少一種有機矽化合物。在此等有機矽化合物中,就化 合物的使用性及可得氣體阻障層之氣體阻障性等特性的觀 點而言,是以六曱基二矽氧烷、1, 1,3, 3-四曱基二矽氧烷 為佳。此等有機矽化合物可單獨使用1種,或將2種以上 組合後使用。 除了原料氣體之外,成膜氣體也可含有反應氣體。至 於此反應氣體,可適宜選用可與原料氣體反應後形成氧化 物、氮化物等無機化合物的氣體。在欲形成氧化物的反應 27 323546 201232868 氣體而言,例如可使用氧或臭氧。在欲形成氮化物的反應 氣體而言,例如可使用氮或氨。此等反應氣體可單獨使用 1種,或將2種以上組合後使用。例如,在形成氧氮化物 時,可將形成氧化物用的反應氣體與形成氮化物用的反應 氣體組合。 也可配合要求而使用載體氣體作為成膜氣體,以使原 料氣體供應至真空室内。也可配合要求而使用放電用氣體 作為成膜氣體,以產生電漿放電。至於此種載體氣體及放 電用氣體,可適用已周知的氣體。例如,使用氦、氬、氖 及氙等烯有氣體或氳作為載體氣體或放電用氣體。 如成膜氣體含有原料氣體與反應氣體時,原料氣體與 反應氣體之比率,宜使反應氣體的比率超過可使原料氣體 與反應氣體完全反應時的理論上必要之反應氣體的量之比 率。將反應氣體的比率適切控制後,即可特別有效的形成 完全滿足上述條件(i)至(iii)的薄膜(氣體阻障層)。如成 膜氣體含有有機矽化合物與氧時,成膜氣體的氧量,宜為 可使成膜氣體中的有機石夕化合物之全量完全氧化時的必要 之理論氧量以下。 以下,是舉使用含有作為成膜氣體、作為原料氣體的 六曱基二矽氧烷(有機矽化合物:HMDSO : (CH3)6Si2〇 :)與 作為反應氣體的氧氣(〇2)之氣體,製造矽-氧系之氣體阻障 層的情形為例,詳細說明成膜氣體中的原料氣體與反應氣 體之理想比率等。 使含有作為原料氣體的六曱基二矽氧烷(HMDS0, 28 323546 201232868 (Cfi3)6Si2〇)與作為反應氣體的氧氣(〇2),藉由電漿CVD反 應而製作石夕-氧系之氣體阻障層時,將在該成膜氣體令產生 下述反應式(3)表示的反應,而形成二氧化矽。 (CH3)6Si2〇+l 2〇2~^ 6C〇2+9H2〇+2Si〇2 (3) 在此反應中,可使1莫耳的六曱基二矽氧烷完全氧化 時的必要氧氣量為12莫耳。因此,如在成膜氣體中,含有 對於六曱基二矽氧烷1莫耳可完全反應的氧氣12莫耳時, 即可得均勻的二氧化矽膜。此時,不會形成完全滿足上述 條件(i)至(iii)的氣體阻障層之可能性高。因此,在欲形 成本實施形態相關的氣體阻障層之際,宜使氧氣較少於對 於六曱基二矽氧烷1莫耳的化學理論比之丨2莫耳。在實際 的電漿CVD室内的反應中,因原料之六曱基二矽氧烷與反 應氣體的氧氣可由氣體供應部供應至成膜領域中而成膜, 故即使反應氣體的氧氣之莫耳量(流量)為原料氣體之六曱 基二矽氧烷的12倍之莫耳量時(流量),現實上並未能進行 完全反應,故大多認為須使氧氣的供應大過化學理論比後 始可完成反應。例如,如欲以⑽使其完全氧化而獲得氧 化石夕a夺’也有使氧氣之莫耳量(流I)為原料氣體之六甲基 二石夕氧垸的莫耳量(流量)的大約2〇倍以上的情形。因此 相對於原料的六甲基二錢燒的莫耳量(流量),宜使氧氣 之莫耳量(流量)大約為化學理論比的12倍以下之量,並以 10倍以下時較佳。由於是以此種比使六甲基二錢炫與氧 武含在成膜氣體中,故可使未完全氧化的六甲基二石夕氧晚 中之碳原子及氫原子進人氣體阻障層中。該結果是,可形 323546 29 201232868 成完全滿足上述條件(i)至(iii)的氣體阻障層。藉此,即 可能使所得的第2薄膜發揮優異氣體阻障性及耐彎曲性。 如相對於成膜氣體中的六曱基二石夕氧提莫耳量(流量)的氧 氣之莫耳量(流量)太少時,將使未氧化的碳原子及氫原子 過量進入氣體阻障層中。此時,因將使氣體阻障層的透明 性降低,而使氣體阻障層難以利用作為必須具有如同有機 EL元件及有機薄臈太陽能電池等的透明性之元件用的軟 性基板。就此等觀點而言,相對於成膜氣體中的六曱基二 矽氧烷之莫耳量(流量)的氧氣之莫耳量(流量),宜為多於 六曱基二矽氧烷之莫耳量(流量)的〇·丨倍之量,並以多於 0. 5倍之量時較佳。 雖然可配合原料氣體的種類等要求而適宜的調整真 空室内的壓力(真空度),但宜在〇.丨以至別以的範圍。 在此種電漿CVD法中,為能在成膜輥μ及32之間放 電時,其外加在連接於電漿產生用電源51的電極鼓(本實 施形態中疋5又置在成膜輥31及32)之電力’雖然可配合原 料氣體的種類及真空室内的壓力等而適宜調整,但宜為 0. 1至10kW。如外加電力未達前述下限時,將有易於產生 粒子的傾向,如外加電力超過前述上限時,將使成膜時產 生的熱量變多’而致成膜的基材表面之溫度上昇。如溫度 上昇過向時’將使基材受熱而損壞’可能在成膜時產生皺 紋,而使薄膜受熱而熔解,使成膜輥露出,在成膜輥之間 產生大電流的放電,而有使成膜輥自體受損之虞。 基材6之運送速度(線速度)’雖然可配合原料氣體的 323546 30 201232868 種類及真空室内的壓力等而適宜的調整,但宜& 〇 ι至 购/分鐘’並以0.5 i 20m/分鐘時較佳。如線速度未達 前述下限時,可能使薄膜因熱而易產生鈹紋,如線速度超 過前述上限時,财使形成的氣體阻障層之厚度變薄的傾 向。 (第2薄膜) 月'J述的第2薄膜,如使由有機EL元件射出的光通過 第2薄膜而射出外界時’必須以可顯示透光性的構材形成。 此時’與第1薄膜相同’第2薄膜宜具有第2氣體阻障層。 -實施形態相關的第2氣體阻障層,含有矽原子、氧原子 及碳原子,該第2氣體轉層中㈣分布曲線、氧分布曲 線及碳分布曲線可滿足上述條件⑴至⑴丨)。此第2氣體 阻11 早層可以與第1薄膜中的氣體轉層相同的方法形成。 ^ 2氣體阻障層可具有與上述的第丨薄膜十之氣體阻障層 π王相同的構成’也可在氧分布曲線及碳分布曲線滿足上 述條件⑴至(iii)的範圍,具有不同於第丨薄膜的氣體阻 障層之構成。 (光取出結構體) 其次說明光取出結構體。可使用於本實施形態相關的有 機EL裝置中的光取出結構體14,是設在有機乩裝置的最 外侧。但是,也可使此有機乩裝置再組裝至另外的裝置或 框體中。 光取出結構體在具有可提高光取出效率的作用的範圍 内,並不特別的限制其結構,但其宜具有下述的特性。以 323546 201232868 入射至光取出結構體’由可光取出該光之側的表面(射出面) 射出的光之強度,在與由可光取出光之侧的表面(射出面) 為平面狀的虛擬結構體之射出面射出的光之強度比較時, 如同可使光取出結構體的正面強度及積分強度在與虛擬結 構體之正面強度及積分強度比較時’均為1. 3倍以上的方 式’使光取出結構體的射出面具有凹凸結構。正面強度及 積分強度的上述倍率,例如可由已設置該光取出結構體的 評估用發光裝置(有機EL裝置)與除了不設置該光取出結 構體之外而具有該評估用發光裝置與相同的組成,具有平 坦的射出面的基準之發光裝置(有機EL裝置)比較後估 計。此時,可使構成基準的發光裝置之射出面的構材(例 如,作為支樓基板的玻璃基板)’作為相當於虛擬結構體之 光取出結構體。 第5圖表示光取出結構體14之一例的模式圖。第五 圖(1)是側面圖,第5圖(2)是由射出面側觀看的平面圖。 光取出結構體14具有與可使光l入射的面相對側的 主面作為射出面S。光取出結構體14的射出面3,是形成 凹凸結構。此凹凸結構具有的形狀,可使入射至該光取出 結構體14,由射出面S射出的光之強度,在與具有平面狀 的射出面之虛擬結構體之射出面射出的光之強比 由光取出結構體14射出的光之正面強度及積分強度,相對 於虛擬結構體射出的光均為L3倍以上。第5圖的光取出 結構體14之射出面S,可因分散配置在射出面s内的複數 的粒狀結構體14a而形成凹凸結構。 323546 32 201232868 第圖疋表示可與光取出結構體14比較的虛擬結構 體110之模不圖。第6圖⑴是虛擬結構體110的侧面圖, 第6圖(2)是虛擬結構體11〇的平面圖。如第6圖中所示, 虛擬結構體110的-對相向之兩個主面為平面狀。即,虛 擬結構體110不具有凹凸結構。除了表面的形狀不同之外, 虛擬結構體110具有與光取出結構體14相同的構成。 在具有凹凸結構的光取出結構體14與不具有凹凸結構 的虛擬結構體11〇,以相同的條件使相同的光(由同一光源 發射的光)入射時’由光取出結構體14射出的光之正面強 度是由虛擬結構體11G射出的光之正面強度的13倍以上, 並以1.4倍以上時較佳。同時,在具有凹凸結構的光取出 結構體14與不具有凹凸結構的虛擬結構體n〇,以相同的 條件使相同的光(由同一光源發射的光)入射時,由光取出 結構體14射出的光之積分強度是由虛擬結構體11〇射出的 光之積分強度的1.3倍以上,並以h31倍以上時較佳。正 面強度與積分強度的倍率只要是1.3倍以上即可,其上限 雖然並無特別的限制,但因也有僅正面強度太強而不適當 的晴形,故正面強度的倍率是例如5倍以下,積分強度的 倍率是例如5倍以下。 射出光的正面強度,是朝向光取出結構體14的厚度 方向射出光的強度。在巨觀性的假設光取出結構體14的凹 凸結構為平均化的平面時,該平面的法線方向與光取出結 構體14的厚度方向是一致。因此以巨觀性看待時射出光 的正面強度可表示光取出結構體14的表面(射出面S)之法 323546 33 201232868 線方向的光強度。 射出光的積分強度與由光源入射的光透過光取出結 構體而射出的光有關,其不僅只是法線方向而是朝全方^ 射出的光之強度的累積值。 有機EL元件雖然可利用作為各種裝置的光源,但可 因搭載有機EL元件的裝置而有各種要求之特性。例如,可 要求法線方向的亮度高的裝置,另一方面也有要求向全方 向發射均勾的光之裝置。即,僅使法線方向突出而亮度高 者、並非適當的裝置。例如,在要求如同-般照明的均句 發光之光源時,可要求擴散性高的光取出結構體。因此, 以往已刀別進行犠牲的法線方向以外的方向(所謂傾斜方 向)的光強度,而以提高正面強度為目標的研究開發,與犠 牲正面強度而以朝向全方位的均勻發光為目標的研究開 發。本發明人等在這樣的狀況中發現,只要使發光裝置的 正面強度及積分強度在與具有平面狀的射出面的發光裝置 比幸乂時’均可形成1. 3倍以上的光取出結構體14適用於有 機ELtl件時,即可得特別有用的發光裝置。例如,在利用 有機EL το件作為照明裝置的光源時,雖然宜為使射出光的 正面強度尚且室内等無暗處的照明之照明裝置,但因可使 在與具有平面狀的射出面之發光裝置比較時的正面強度積 分強度均成為1.3倍以上的光取出結構體14適用於有機 ELtc件,而可實現這種照明裝置。此乃因元件自體可作 為面狀的光源(二次光源),故也是可利用有機EL元件中特 有的性質之裝置。 323546 201232868 例如’無機LED及日光燈等是點狀(零次元)或線狀(一 次元)的光源,在利用此等光源作為照明裝置時,擴散性比 正面強度更為重要。因此已在探討可提高積分強度的光取 出結構體之朝。不過’由於有機EL元件自體可作為面狀 的光源(二次元光源),可適用為提高正面強度及積分強度 的兩者之光取出結構體14,故可提高作為照明裝置的性 能。 關於光取出結構體14’宜使以下說明的1(6>。)之比滿 足下述式(4),霧值為60%以上,全透光率為6〇%以上。 K35)/I(70)>5 式(4) 也可將1(0 q之比稱為擴散參數。1( 00),是指使來 自與光取出結構體平行配置的面狀光源之光射入光取出結 構體時,由光取出結構體朝向與光取出結構盤的主面之法 線方向形成角度的方向射出的光之強度。 因使用霧值為60%以上、且全透光率為以上的光 取出結構體14,即可實現顯示特別高的光取出效率之發光 裝置。 霧值可以下述式表示。霧值可以JIS K 7136「塑膠-透明材料的霧霾值之求法」中所述之方法測定。 霧值(雲價Μ擴散透過率(%)/全透光率(%))χ1〇〇(%) 全透光率可以HS Κ 7136-1「塑膠-透明材料的全透 光率之試驗方法」中所述之方法測定。 第7圖是說明1(0°)之圖。將朝向光取出裝置的射出 面之法線方向射出的光之強度定義為1(〇)。面狀光源21〇 35 323546 201232868 是如同使其發光面與光取出結構體14的主面平行的方式, 平行配置在光取出結構體14。如前述,由於有機EL元件 其自體為面狀光源,故可將此面狀光源21〇視為模擬的有 機EL元件。1( 0 0)的具體性測定方法將在實施例的項中說 明。 1(35)是表示由法線方向傾斜35°的方向之光的強度, 1(70)是表示由法線方向傾斜70°的方向之光的強度。如 1(35)/1 (70)偏高時’是對應於射出比正面方向還強的光之 意。如1(35)/1(70)超過5時’可使此光取出結構體丨4特 別適用於例如照明裝置。由於1(35)/1(70)太高時,將僅 使正面方向的光強度變得太高,故宜使其在3〇以下以利於 廣範圍的照明。 光取出結構體14並且宜滿足下述式(5)。 1(0)/1(35)>1.5 式(5) 如1(0)/1(35)偏高時,是對應於射出的光比正面方向 還強之意。如此比超過1. 5時’可使光取出結構體14特別 適用於例如照明裝置。由於1(0)/1(35)太高時,將僅使正 面方向的光強度變得太高,故宜使其在1〇以下以利於产矿 圍的照明。 ’ 光取出結構體14的凹凸結構’宜由分散配 夏在光取 出結構體14的表面之複數的粒狀結構物形成。粒狀妗 可附著在平坦的表面,也可與射出面中的結構體之 體形成。粒狀結構物可週期性的配置,也可非 體— 置。如使粒狀結構物非週期性的配置時,由开,性的配 36 323546 201232868 粒狀結構物的光之干擾,故可防止雲紋(moire)等的產生。 因分散配置在表面上的複數的粒狀結構物而形成具有凹凸 結構的光取出結構體之一例,可如第17圖、 20圖中所示。 间久乐 、,以下將詳細說明凹凸結構的理想形態,尤其是有關使 光取出,構體的正面強度及積分強度在與虛擬結構體比較 時,可得到1. 3倍以上的理想形態。 凸、《構例如是由具有平坦底面的複數的凹結構與 配置在各凹結構周圍且在離開凹結構的底面之方向隆起之 :結構所構成。構成凹凸結構的各凹結構或各凸結構,且 光取出效率的寬度及高度。各凹結構或各凸結構 =寬度’是指與絲出結_14的主面平行方向的大小。 各凹結構的寬度,例如是與光取出結構體14的主面垂直的 ::中的平坦底面之最大寛度。各凸結構的寬度,例如是 出:構體的主面垂直的剖面令凸結構的祿襬部之最 法t向的=構的高度曰,是指光取出結構體14的主面之 戶'…间又’例如疋以凹結構的底面為基準時的高 = 結構或各凸結構的寬度如太大時,將使光取出,士 :==亮度變得不均勻’如太小時’將使光_ 卢宜為(M 提南。因此,各㈣構或各凸結構的寬 又且马0.5/zm至,廿丨v t 凸結構的高度,通常是配合各凹時較佳。各 及各凹結構或各凸結構__=== 頂點間之距離)而決定,並宜為各凹結構或各=:度的 323546 37 201232868 一饵或各凸結構的設計週期以下 的西度宜為0.25心至7〇//m,並 期以下。各凸結構 佳。 .A m至5〇 // m時較 以卜 雖然並無特別的限定各凹社 宜為具有曲面者。凸結構宜具㈣如半的形狀,但 或各凸結構為非週期性配置時,因可防t:狀。各凹結構 取出結構體14的主面之法線方向::而佳。由光 出結構體14的表面# α 靦耆時,可在光取 的合計,宜為光取有面積 組成光取出結構體14的㈣,只要9 = _。以上。 例如玻璃等無機物或有疋二材料即可, 物)。含在光取出結構體14 φ w八化°物“分子化合 自聚丙烯酸酯、聚碳_ 产::子广合物,是例如選 聚乙烯續酸及聚對笨;酸二二=萘二甲酸乙二酉旨、 一種。雖然並不特别限制光取出結構體14 ^組中的至少 :難以使用’而太厚時將使全;光率降低二度此但= =體14的厚度宜——ill 由玻璃等無機材料形成的光取出結構體,例如可將血 幾材料所成的平板狀基台_而得。例如在平板狀基台的、 表面之中,將欲形成凹凸形狀(凹凸結構)的部位選擇性蝕 刻後,即可得光取出結構體。具體上在無機材料所成的平 板狀基台之表面將保護膜形成圖案,再施予液相蝕刻或氣 相蝕刻後,即可形成凹凸結構。保護膜例如可使用光阻劑 323546 38 201232868 形成圖案。 由有機材料所成的光取出結構體 至⑸的方法形成。 T㈣下的⑴ =具有凹凸形狀的表面之金屬板按壓在已加熱的薄膜 ^旦用,使金屬板的凹凸形狀轉印到薄膜的方法。、 (2)利用具有凹凸形狀的表面之輥 壓延的方法。 坦表面的薄膜 有機材料的溶液或分散液滴在具有凹凸形狀的 表面之基台上,使有機材料成獏的方法。 ^吏含有可聚合料體謂的—部份選擇性的光聚 去除未聚合部份的方法。 ⑸於高溫條件下將高分子溶液鑄模在 轉寫到表面上的料 mu 上直14可在例如第1圖中所示的第1薄膜 直接形成,也可將第!薄膜的表面加工形成凹 在第1薄膜的表面部份與第膜—體形成。 ^將光取出結構體14貼合在第1薄膜或第2薄膜時, 與第1薄膜或第2薄膜之間形成空氣 二夺…有可⑼此域層的界面產生切反射,而致光取 薄==由構1114與第1薄膜或第2 、、,U由接者層㈣合,以使其間不會形成S氣層。 ,取出結構體14的折射率nf、接著層的折射率⑽及 /膜或第2薄膜的折射率ns之申的最大值與最小值之 (絕對值),宜不到以。因滿足此折射率的關係,故可 323546 39 201232868 抑制在光取出結構體14與第i薄膜或第2薄膜之間產生的 反射,而更加提高光取出效率。 ^雖然並不特別限制光取出結構體14與第1薄膜及第2 薄祺的合計厚度,但包括介入此等之間的接著層在内的光 取出結構體14與第丨薄膜及第2薄膜的合計厚度,宜為 5〇以in至2mm ’並以80 // m至1. 5mm時較佳。 (有機EL元件) 其次說明有機EL元件的構成。在使第丨薄膜與第2 溥犋貼合的步驟之前,先在第丨薄膜或第2薄膜上形成有 機EL元件。 有機EL元件疋由陽極及陰極所成的一對電極,與設 在該電極間的發光層所構成,在一對電極間,除了發光層 之外,也可配合要求而設置所設定之層。發光層並不限於 1層,也可設置複數層。 至於可設置在陰極與發光層之間的層,可舉出電子注 入層、電子輸送層及電洞阻隔層等。如在陰極與發光層之 間攻置電子注入層與電子輸送層的兩種層時,連接在陰極 的層稱為電子注入層,此電子注入層之外的層稱為'電子輸 送層。 ^ ^電子注入層具有可改善由陰極注入電子的效率之機 能。電子輸送層具有可改善由連接在陰極側的表面之層注 入電子的效率之機旎。電洞阻隔層具有可攔阻電洞輸送之 機能。如使電子注入層及/或電子輸送層具有可摘阻電洞的 輪送之機能時,此等層也可兼任電洞阻隔層。 323546 40 201232868 作僅在製 確認。 ”艮據該電流值的減少而 至於可設置在陽極與發光層之間的層,可舉出電同、、主 二層署電洞輸送層及電子阻隔層等。如在之 間設置電洞注人層與電洞輪送層的兩種 j層之 送層。 電化主入層之外的層稱為電洞輸 能雷電·洞輸送層具有可改善由連 =機 入電洞的效率之機能。電子阻 之層左 之機能。如使電洞注人層電二有可_電子的輸送 的輸送之機能時,此等層也可=送=有可搁阻電子 作在製 確認。 了根據该電流值的減少而 電子注入廣及電洞注人層可統稱為電荷 輸送層及電洞輸送層可統稱為電荷輸送層。 注入層,電子 具有本實施形態的有機el 例’可表示如下。 元件而得的層組成之一 a) 陽極/發光層/陰極 b) 陽極/電洞注入層/發光層/陰極 )!%極/電洞/主入層/發光層/電子注入層/陰極 d)陽極/電洞注入層/發光層/電子輪送層/陰極 323546 41 201232868 e) 陽極/電洞注入層/發光層/電子輸送層/電子注入層/陰 極 f) 陽極/電洞輸送層/發光層/陰極 g) 陽極/電洞輸送層/發光層/電子注入層/陰極 h) 陽極/電洞輸送層/發光層/電子輸送層/陰極 i) 陽極/電洞輸送層/發光層/電子輸送層/電子注入層/陰 極 j) 陽極/電洞注入層/電洞輸送層/發光層/陰極 k) 陽極/電洞注入層/電洞輸送層/發光層/電子注入層/陰 極 l) 陽極/電洞注入層/電洞輸送層/發光層/電子輸送層/陰 極 m) 陽極/電洞注入層/電洞輸送層/發光層/電子輸送層/電 子注入層/陰極 η)陽極/發光層/電子注入層/陰極 〇)陽極/發光層/電子輸送層/陰極 Ρ)陽極/發光層/電子輸送層/電子注入層/陰極 (此處,記號「/」是表示挾在記號「/」間所述之2層為隣 接積層。以下亦同。) 本實施形態的有機EL元件也可具有2層以上的發光 層。上述a)至ρ)的層組成中的任何一種,可舉出將挾在陽 極與陰極的積層體作為「結構單位A」,與下述q)表示的層 組成作為具有2層發光層的有機EL元件之組成。有2個(結 構單位A)之層組成可互為相同,也可相異。 42 323546 201232868 q)陽極/(結構單位A)/電荷產生層/(結構單位a)/陰極 「(結構單位A)/電荷產生層」與「結構單位B」,可 舉出以下述〇表示的層組成作為具有3層以上發光層的有 機EL元件之組成。 r)陽極/(結構單位b)x/(結構單位a)/陰極 記號「X」是表示2以上的整數,(結構單位Β)χ是表 示由X段積層的結構單位形成之積層體。有數個(結構單^ Β)的層組成可以是相同,也可以是相異。 電荷產生層是指可以外加電場而產生電洞與電子之層。 在電荷產生層上,可舉例如含有氧化釩、銦錫氧化曰物 (Indium Tin Oxide ’簡稱ΙΤ0)及氧化鉬等的薄膜。 欲積層的層之順序、層數及各層之厚度,可在考量發 光效率及元件壽命後適宜的設定。 里 元件的各層之材料 其次’更具體說明可組成有機EL 及形成方法。 <陽極> 八有由發光層發射的光通過陽極而向外射出的 之有機EL元性時’是使料赫透光㈣電極作為陽極。 至於可顯示透光性的電極,可使用金屬氧化物、金 物及金屬等的薄膜’並以導電度及透光率高的電極為L 想:具體上’可使用含氧化銦、氧化辞、氧化錫、ιτ〇:銦 鋅氧化物(Indium Zinc Oxide,簡稱ΙΖ0)、金、白金、 ^銅等的薄膜。其中並以由⑽或氧化錫形成的= …理想。至於陽極的製作方法,可舉出真空蒸鍍法、_ 323546 43 201232868 法、離子電鍍法及電鍍法等。也可使用聚笨胺或其个_ 及聚噻吩或其衍生物等有機透明導電膜作為該陽极τ生物’ 陽極的厚度’可在考量所要求的特性及步驟=广 而適宜的設定,例如是lOnm至l〇#m,並且眘盔。巧易度 ^ 2〇nm 5 1 A m較佳,而以50nm至500nm時更佳。 1 <電洞注入層> 在構成電洞注入層的電洞注入材料而言,可汽 釩、氧化钥、氧化釕及氧化铭等氧化物、笨基胺類:^孔化 星爆(star* burst)型胺系化合物、酞青系、非晶j物、 苯胺,以及聚隹吩衍生物等。 、厌、聚 至於電洞注入層的成膜方法,可舉例如由 入材料的溶液成膜之方法。例如,將含有電洞同注 溶液以設定的塗布㈣布後,使賴 ^枓的 可形成電洞注入層。 饮固化後即 電洞 、在由溶液成膜時使用的溶劑而言,只要是可 料的溶,即無特別的限制,可舉出氯仿、二 =乙燒等氯系溶劑’四氫料等喊系溶劑, a 劑,及甲基乙基_系溶t 及水。π文丁酉曰及乙基赛珞蘇醋酸醋等酿系溶劑,以 在塗m ’可舉岐魅布法、賴法 布法、凹板塗布法、体 倣凹板塗 浸塗法、嗔塗法、滾塗法、線棒塗布法、 及喷墨印刷:等版印刷法、料印刷法、膠版印刷法 323546 44 201232868 電洞注入層的厚度,可在考量所要求的特性及步驟的 簡易度而適宜的設定,例如是1 nm至1 // m,並且宜為2nm 至500nm較佳,而以5nm至200nm時更佳。 <電洞輸送層> 在構成電洞輸送層的電洞輸送材料而言,可舉出聚乙 烯咔唑或其衍生物、聚矽烷或其衍生物、側鏈或主鏈具有 芳香族胺的聚矽氧烷衍生物、吡唑啉衍生物、芳基胺衍生 物、二苯乙烯衍生物、三苯基二胺衍生物、聚苯胺或其衍 生物、聚11塞吩或其衍生物、聚芳基胺或其衍生物、聚1^匕σ各 或其衍生物、聚(對-伸苯伸乙烯)或其衍生物,及聚(2, 5-伸炔基伸乙烯)或其衍生物等。 至於此等中的電洞輸送材料,宜為聚乙烯咔唑或其衍 生物、聚矽烷或其衍生物、側鏈或主鏈具有芳香族胺的聚 石夕氧烧衍生物、聚苯胺或其衍生物、聚σ塞吩或其衍生物、 聚芳基胺或其衍生物、聚(對-伸苯伸乙烯)或其衍生物,及 聚(2, 5-伸炔基伸乙烯)或其衍生物等高分子電洞輸送材 料。並以聚乙烯咔唑或其衍生物、聚矽烷或其衍生物、及 側鏈或主鏈具有芳香族胺的聚矽氧烷衍生物,為較佳的電 洞輸送材料。低分子的電洞輸送材料,宜使其分散在高分 子黏合劑中再使用。 在電洞輸送層的成膜方法而言,並無特別的限制,在 低分子的電洞輸送材料中,可舉出由含有高分子黏合劑與 電洞輸送材料的混合液成膜的方法,在高分子的電洞輸送 材料中,可舉出由含有電洞輸送材料的溶液成膜的方法。 45 323546 201232868 在由溶液成膜時使用的溶劑而言,只要是可溶解電洞 輸送材料的溶劑即無特別的限制,可舉出氣仿、二氣曱烷 及一氯乙烷等氯系溶劑,四氫呋喃等醚系溶劑,曱笨及二 甲笨等芳香族烴系溶劑,丙_及曱基乙基酮等酮系溶劑, 醋酉文乙’醋酸丁 g旨及乙基賽络蘇醋㈣等§旨系溶劑等。 在由溶液成膜的方法而言,可舉出與前述的電洞注入 層的成聘法相同之塗布法。 可與電洞輸送材料組合的高分子黏合劑,宜為極不防礙 電::送的黏合劑,或相對於可見光的吸收偏弱的黏合劑。 此同y刀子黏合劑,可例如選自聚碳酸醋、聚丙烯酸酿、聚 丙烯酉夂曱酯、聚甲基丙烯酸甲酯、聚苯乙烯、聚氯乙烯及 聚矽氧烷。 —,同輸送層的厚度,可因使用的材料而異,宜適宜設 ^成如同可使驅動電壓與發光效率成為適度之值。電洞輸 运層必須具有至少不致產生針孔的厚度 ,如太厚時,將使 元件的驅動電壓變得太高。所以,該電洞輸送層的厚度是 例如lnm至1 " m,并η 並且宜為2nm至500nm,而以5mn至200nm 時較佳。 <發光層> f通吊主要為由可發出螢光及/或磷光的有機物 物^例如糸祖ί4有機物與可補助其之摻雜物形成。摻雜 發光展料或使發光波長變化而加入。含在 子化:物Γ物’可以是低分子化合物,也可以是高分 物…般宜使用含有高分子化合物的發光詹,因- 323546 46 201232868 般對於溶劑的溶解性高的高分子化合物是比低分子化合物 適用於塗布法。發光層含有的高分子化合物,其換算成聚 數平均分子Μ為1Q3至⑽。在構成發光層的發 光材料而言’可舉例如以下的色素系材料、金屬錯合物系 材料、ilj分子系材料及捧雜物材料。 (色素系材料) 在色素系材料而言’可舉例如環本達明(cycl〇pendamine) 衍生物、四苯基丁二烯衍生物、三笨基胺衍生物、嗓二吐 竹生物、対并嗤琳衍生物、二笨乙烯基苯衍生物、二苯 乙烯基伸綠衍生物、料料物、麵環化合物"比咬 環化合物、花酮衍生物、花衍生物、募聚嘆吩衍生物、。惡 :唾二聚物、°比吐琳二聚物、嗜納琳,衍生物及薰草素衍 生物。 (金屬錯合物系材料) D ^金屬錯合物系材料而言,可舉例如具有Tb、Eu及 =專稀土類金屬,以及選“^,、卜及㈣的中 唾及Μ與選自噁一唾、噻二唾、笨基°比咬、笨基苯并咪 及::結構等的配位子之金屬錯合物。金 選自例减錯合物隸料料具有由 錯Γ物、18餐醇錯物、苯并料醇皱錯物、 本并噪唾啉辞錯物、苯并噻唾鋅錯物、 曰:、 聚卟啉鋅錯物,以及菲銪錯物。 ’ 土 、曰 (高分子系材料) 在高分子類材料而言’可舉出聚對伸笨伸乙婦 323546 47 201232868 (poly-p-phenylene vinylene)衍生4知 ^ 對伸苯衍生物、聚石夕烧衍生物、聚乙执聚嘆吩衍生物、聚 物、聚乙烯十坐衍生物、使上述色素^生物、聚第衍生 系發光材料高分子化的材料p 或金屬錯合物 上述發光性材料之中,在發出藉 出二苯乙烯基伸芳基衍生物"惡〜光的材料上,可舉 合物、聚乙稀味嗤衍生物、聚 料対生物、及此等之聚 生物等。其中並以高分子材料的笨竹生物’以及聚第衍 伸苯衍生物及聚苐衍生物等為佳A乙烯咔唑衍生物、聚對 在發出綠色光的材料而言 衍生物、黨草素衍生物 牛出嗤°Y_uinaCi*id〇ne) 烯衍生物,以;5枣Μ, 專之聚合物、聚對伸苯伸乙 對伸==舒生物等。其中並以高分子材料的聚 :伸乙却何生物及聚第衍生物等為佳。 在發出紅色光的材料 吩環化合物、及此等之聚人私了牛出熏卓素何生物、嗟 聚嘆吩衍生物,以及聚聚對伸本伸乙埽衍生物、 的聚對伸苯伸乙埽衍生物1物4。其中並以高分子材料 為佳。 物聚噻吩衍生物及聚H衍生物等 同時在發出白色光的材 色、綠色、紅色的各色光J 將上述發出藍 發出各色光的材料之成斗的混合材料,或將可成為 作為該村料使用。同日體,使其聚合成的聚合物 料形成之發光層積芦後將分別使用可發出各色光的材 (捧雜物材料 而實現整體發出白色光的元件。 323546 48 201232868 在摻雜物材料而言,可舉例如茈衍生物、薰草素衍生 物、四笨基並四環素(rubrene)衍生物、喹鈉啉酮衍生物、 方酸鑌(squarylium)衍生物、卟琳衍生物、苯乙稀基類色 素、并四苯(tetracene)衍生物、腙衍生物、十環歸 (decacyclene)及啡曙D井嗣(phenoxazone)。發光層的厚度, 通常大約是2nm至200nm。 <發光層的成膜方法> 在發光層的成膜方法而言,可使用塗布含有發光材料 的溶液之方法、真空蒸鍍法及轉印法等。至於由溶液成膜 時使用的溶劑,可舉出與由溶液成膜為電洞注入層時使用 的前述溶劑相同的溶劑。 至於塗布含有發光材料的溶液之方法’可舉出旋轉塗 布法、鑄模法、微凹板塗布法、凹板塗布法、條狀塗布法、 滾塗法、線棒塗布法、浸塗法、細縫塗布法、毛細管塗布 法、喷塗法及喷嘴塗布法等塗布法,以及凹板印刷法、網 版印刷法、彎曲印刷法、膠版印刷法、反轉印刷法及喷墨 印刷法等印刷法。就易於形成圖案及多色的分別塗布而 言,是以凹板印刷法、網版印刷法、彎曲印刷法、膠版印 刷法、反轉印刷法及喷墨印刷法等印刷法為佳。如為顯示 昇華性的低分子化合物時,可使用真空蒸鍍法。也可使用 以雷射轉印或熱轉印,而僅在所要求的部份形成發光層。 <電子輸送層> 在組成電子輸送層的電子輸送材料而言,可使用通常 在使用的材料,可舉出噁二唑衍生物、蒽醌二甲烷或其衍 49 323546 201232868 生物、苯醒或其衍生物、萘醒或其衍生物、蒽酿或其衍生 物、四氰基蒽醌二曱烷或其衍生物、第酮衍生物、二苯基 二氰基乙浠或其衍生物、二酚醌衍生物、或8-經基喧淋或 其衍生物之金屬錯合物、聚喧母或其衍生物、聚啥喔淋或 其衍生物,及聚苐或其衍生物等。 此等材料之中,在電子輸送材料而言,宜為D惡二σ坐衍 生物、苯酿或其衍生物、蒽酿;或其衍生物、或8-經基啥淋 或其衍生物之金屬錯合物、聚啥琳或其衍生物、聚π奎喔琳 或其衍生物及聚S或其衍生物,並以2-(4-聯苯基)-5-(4-第三丁基苯基)-1,3, 4-噁二唑、苯醌、蒽醌、三(8-喹啉基) 銘及聚喧淋時較佳。 電子輸送層的成膜法並無特別的限制。在為低分子的 電子輸送材料時,可舉出由粉末的真空蒸法,或由溶液或 熔融狀態成膜的方法,為高分子的電子輸送材料時,可舉 出由溶液或熔融狀態成膜的方法。如由溶液或熔融狀態成 膜時,也可同時使用高分子黏合劑。至於由溶液或熔融狀 態成膜的方法,可舉出與由前述的溶液成膜為電洞注入層 的方法相同的成膜法。 電子輸送層的厚度可因使用材料而使最適值不同,故 須適宜設定如同使驅動電壓與發光效率達到適度的值。電 子輸送層至少必須具有不致產生針孔的厚度。如太厚時, 將使元件的驅動電壓變高。所以該電子輸送層的厚度是例 如lnm至1 /i m,並以2nm至500nm為佳,而以5nm至200nm 時較佳。 50 323546 201232868 <電子注入層> 、在組成電子注入層的材料而言,可配合發光層的種類 而適且選擇最適的材料。在組成電子注入層的材料而言, 可舉出驗金屬、鹼土金屬、含有選自驗金屬及驗土金屬的 1種以上之金屬的合金、驗金屬或驗土金屬的氧化物、函 化物、碳酸化物,以及此等物質之混合物等。在驗金屬、 鹼金屬的氧化物、函化物、碳酸化物之例而言,可舉出鋰、 鈉鉀條、鉋、氧化鐘、氟化鐘、氧化納、氟化鈉、氧 氟化卸1化物、氟化物、氧化絶、氣化絶及碳酸 :等。在鹼土金屬、鹼土金屬的氧化物、齒化物'碳酸化 ::而言’可舉出鎮,、鋇、錄、氧化鎂、氟化鎮、 :、氧化鋇、敦化鋇、氧化銘、氣化錄及碳 早t子注入層也可由積層2層以上的積層體構成。 =注入層的積層體可舉例如LiF/Ca。電子注入層可由篆 鍍法、_法或印刷法等形成1子注 2 約為1咖至1_。 Θ叫度,且大 <陰極> 光層而言:宜為功函數小、易使電子注入發 &问的材料。如為由陽極侧取出光的構成之 有機EL tl件時,陰極的材料宜 孬烕 因1可#為了見光反射率高的材料, U /、了使由發光層發射的光在 τ 陰極的鉍柯t 和中反射至陽極側。作為 k極的材料’例如可使用驗金 週期表的笛备 鹼土金屬、過渡金屬及 砑J表的第13族金屬。在陰極的 鈉、鉀、仏h , 的材枓而s,可舉例如鋰、 鉀伽、絶、鈹、鎂,、鋼、鋇、叙、銳、鈒、辞、 323546 51 201232868 釔、銦、鈽、釤、銪、铽、镱等金屬,及含有選自此等的 2種以上之金屬的合金、選自前述金屬的1種以上與選自 金、銀、鉑、銅、錳、鈦、#、鎳、鎢及錫的i種以上之 合金,或石墨或石墨層間化合物。至於合金之例,可舉出 鎂-銀合金、鎂-銦合金、鎂-鋁合金、銦_銀合金、鋰_鋁合 金、鋰-鎂合金、鐘-銦合金及妈-|g合金等。可使用導電性 金屬氧化物及導電性有機物等形成的透明導電性電極作為 陰極。具體而& ’可舉出氧化銦、氧化鋅、氧化錫、ιτο 及IΖ0作為導電性金屬氧化物,可舉出聚苯胺或其衍生物 及聚噻吩或其衍生物等作為導電性有機物。陰極也可由積 層2層以上的積層體組成。也可使用電子注入層作為陰極。 陰極的厚度,可在考量所要求的特性及步驟的簡易度 等而適宜的設計,例如是l〇nm至1〇//ra,並以2〇ηιη至1 以m為佳,而以50nm至500nm時較佳。 至於陰極的作法,可舉出真空蒸鍍法、濺鍍法及將金 屬薄膜熱壓鎮的積層法等。 以上的有機EL裝置,可因追加所設定的構成要件而 使用作為照明裝置、面光源裝置或顯示裝置。 [實施例] (參考例A1) 使用刖述第4圖中表示的製造裂置製造第i薄膜。即, 使用二軸延伸聚萘二甲酸乙二i旨獏(PEN膜,厚度:1〇〇_, 寬:350觀,帝人杜邦薄膜(株)製,商品名 作為基材(歸6),將此基材Μ麵諸頂。然後,在 323546 52 201232868 成膜輥31及成膜輥32之間外加磁場,同時將電力分別供 應至成膜輥31及成膜輥32後,在成膜輥31及成膜輥32 之間放電而產生電漿。將成膜氣體(原料氣體的六曱基二矽 氧烷(HMDS0)與反應氣體的氧氣(也可作為放電氣體的機能) 之混合氣體)供應至所形成的放電區域後,在下述條件t以 CVD法進行薄膜的形成,即得具有氣體阻障層的第1薄膜。 <成膜條件> 原料氣體的供應量:50(換算成零度、latm的標準立方米/ 分鐘(Standard Cucic Centimeter per Minute)。以下亦 同。) 氧氣的供應量:500sccm 真空室内的真空度:3Pa 來自電漿產生用電源的外加電力:0. 8kW 電漿產生用電源的頻率:70kHz 薄膜的運送速度:0.5m/分鐘。 所得的第1薄膜中的氣體阻障層之厚度為〇. 3 # m。同 時’在溫度40°C、低濕度方面的濕度〇%肋、高濕度方面的 濕度90%RH之條件中,所得的第1薄膜之水蒸氣透過度為 3.1χ1(Γ4 g/(m2.day),在溫度4(TC、低濕度方面的濕度 10%RH、高濕度方面的濕度1 〇〇%拙之條件中,其為檢測界 限以下的值。並且’以曲率半經8mm的條件下,在使第i 溥膜彎曲之後的溫度40 C、低濕度方面的濕度1⑽rh、高 濕度方面的濕度100%RH之條件中,第i薄膜的水蒸氣透過 度為檢測界限以下的值,故可確認即使使第丨薄膜彎曲 323546 53 201232868 時’也可充分的抑制氣體阻障性的下降。 在下述條件中進行所得的第1薄膜之XPS深度描繪測 定,可得矽分布曲線、氧分布曲線、碳分布曲線及氧碳分 布曲線。 敍刻離子種··氬(Ar+) 餘刻速度(Si〇2熱氧化膜換算值):0.05nm/秒 餘刻間隔(Si〇2換算值):l〇nm X線光電子分光裝置:Thermo Fisher Scientific公司製, 機種名「VG Theta Probe」 照射X線:單晶分光AIKα χ線的照射點及其大小:800x400 ym的楕圓形。 所得的矽分布曲線、氧分布曲線及碳分布曲線分別如 第8圖中所示。將有關所得的矽分布曲線、氧分布曲線、 碳分布曲線及氧碳分布曲線,與原子比(原子濃度)與蝕刻 時間之間的關係,以及原子比(原子濃度)與氣體阻障層的 表面之距離(mm)之間的關係,_併在第9圖中表示。第9 圖的橫軸中所述之「距離(⑽)」是由關時間與_速度 計算求得之值。 由第8圖及第9圖中表示的沾 八— ^ 巧結果也可明瞭,所得的碳 刀布曲線具有複數的明確的極估 萨丨V* ^ r , 0/ , 、碳之原子比的最大值與 破小值之差為5at%以上,並且, 方向之90%以上的區域中,石夕< 認在氣體阻障層的厚度 之原子比可滿足前述式(1)表示眉子比、氧之原子比及碳 (參考例A2) ,、、條件。 323546 54 201232868 = >考例A1 t所得具有厚度〇·3//ιη的氣體阻障層之 膜,作為基材6套裝在送出輥70卜在氣體阻障層 的表面形成新的氣體阻障層。除此之外,進行與參考例A1 相同的步驟’可得第!薄膜(A)。所得的第i薄膜⑴的基 材(PEN膜)上之氣體阻障層的厚度為以⑽。 將所得的第1薄膜⑴作為基材6套裝在送出親7〇ι, 在氣體阻障層的表面上形成新的氣體阻障層。除此之外, 進行與參考例A1相同的步驟,可得第(薄膜⑻。 所得的第1薄膜⑻中的氣體阻障層之厚度為0. 9" m。 在溫度40°C、低濕度方面的濕度麵、高濕度方面的渴度 9麵之條件下’所得的第1薄膜⑻之水蒸氣透過度為6·9 ΧΙΟ—4 g/(m2 · day) ’在溫度4(rc、低濕度方面的濕度1〇% 服、高濕度方面的濕度1〇〇%RH之條件中,其為檢測界限以 下的值。並且,以曲率半徑8mm的條件,在使第}薄膜(B) 彎曲之後的溫度40°C、低濕度方面的濕度1〇%RH、高濕度 方面的濕度100%RH之條件中,第i薄膜(B)的水蒸氣透過 度為檢測界限以下的值,故可確認即使使第丨薄膜(B)彎曲 時,也可充分的抑制氣體阻障性的下降。 以與參考例A1中的方法相同的方法,作成所得的第1 薄膜(B)之矽分布曲線、氧分布曲線、碳分布曲線及氧碳分 布曲線。所得的結果如第1 〇圖中所示。將有關石夕分布曲 線、氧分布曲線、碳分布曲線及氧碳分布曲線,與原子比(原 子濃度)與蝕刻時間之間的關係,以及原子比(原子濃度) 與氣體阻障層的表面之距離(nm)之間的關係,表示在第η 55 323546 201232868 圖中。第11圖的橫軸中所述之「距離(nm)」是由蝕刻時間 與蝕刻速度計算求得之值。 由第10圖及第11圖表示的結果也可明瞭,所得的碳 分布曲線具有複數的明確的極值、碳之原子比的最大值與 最小值之差為5at%以上,並且,確認在氣體阻障層的厚度 方向之90%以上的區域中,石夕之原子比、氧之原子比及碳 之原子比可滿足前述式(1)表示的條件。 (參考例A3) 除了使原料氣體的供應量為lOOsccm之外,其餘進行 與參考例A1相同的步驟,可得第1薄膜。 所得的第1薄膜中的氣體阻障層之厚度為0 6#m。 在溫度40〇C、低濕度方面的濕度〇%rh、高濕度方面的濕度 90%RH之條件下,所得的第1薄膜之水蒸氣透過度為3.2x iO g/(m2· day) ’在溫度40°c、低濕度方面的濕度10%RH、 尚濕度方面的濕度1 〇〇%RH之條件中,其為檢測界限以下的 值。並且,以曲率半徑8mm的條件,在使第1薄膜彎曲之 後的溫度40Ϊ、低濕度方面的濕度10%RH、高濕度方面的 濕度100%RH之條件中’第1薄膜的水蒸氣透過度為檢測界 限以下的值,故可確認即使使第1薄膜彎曲時,也可充分 的抑制氣體阻障性的下降。 以與參考例A1中的方法相同的方法,作成所得的第1 薄膜之矽分布曲線、氧分布曲線、碳分布曲線及氧碳分布 曲線。所得的矽分布曲線、氧分布曲線及碳分布曲線如第 12圖中所示。將有關所得的矽分布曲線、氧分布曲線、碳 56 323546 201232868 分布曲線及氧碳分布曲線,與原子比(原子濃度)與餘刻時 間之間的關係,以及源子比(原子濃度)與氣體阻障層的表 面之距離(nm)之間的關係,表示在第13圖中。第13圖的 橫軸中所述之「距離(nm)」是由钱刻時間與餘刻速度計算 求得之值。 由第12圖及第13圖表示的結果也可明瞭,所得的碳 分布曲線具有複數的明確的極值、碳之原子比的最大值與 最小值之差為5at%以上,並且’確認在氣體阻障層的厚度 方向之90%以上的區域中,矽之原子比、氧之原子比及碳 之原子比可滿足前述式(1)表示的條件。 (參考比較例A1) 在二軸延伸聚萘二甲酸乙二酯膜(PEN膜,厚度:1〇〇 从m ’寬:350mm,帝人杜邦薄膜(株)製,商品名「Teonex Q65FA」)的表面上,在含氧氣體的周圍環境中,使用石夕乾 (si 1 icon targete) ’以反應藏鍍法形成由氧化石夕組成的氣 體阻障層,可得比較用的第1薄膜。 所得的第1薄膜中的氣體阻障層之厚度為ΙΟΟηιη。在 溫度40°c、低濕度方面的濕度10%RH、高濕度方面的濕度 100%RH之條件下,所得的第1薄膜之水蒸氣透過度為1. 3 xl0_4 g/(m2 · day),該氣體阻障性並不充分。 以與參考例A1中的方法相同的方法,作成所得的第1 薄膜之矽分布曲線、氧分布曲線、碳分布曲線及氧碳分布 曲線。所得的矽分布曲線、氧分布曲線及碳分布曲線如第 14圖中所示。將有關所得的矽分布曲線、氧分布曲線、碳 57 323546 201232868 分布曲線及氧碳分布曲線,與原子比(原子濃度)與蝕刻時 間之間的關係,以及原子比(原子濃度)與氣體阻障層的表 面之距離(rnn)之間的關係,表示在第15圖中。第15圖的 橫軸中所述之「距離(nm)」是由蝕刻時間與蝕刻速度計算 求得之值。由第14圖及第15圖表示的結果也明瞭,可確 認所得的碳分布曲線不具有極值。 如以下的說明,製作有機EL元件後,將光取出結構 體貼合在其上,評估光取出結構體之有無與亮度之間的關 係。 在各參考例中,使〇. 15mA的電流通過有機元件, 進行此時的法線方向(正面方向)之發光強度的測定,與使 用積分球的積分強度之測定。將具有具平坦表面的玻璃基 板與設在玻璃基板上的有機EL元件之發光裝置作為基準 的發光裝置,比較此基準的發光裝置之特性與各參考例的 發光裝置之特性。具體而言’是將各參考例的發光裝置之 正面方向的發光強度及積分強度,分別除以基準的發光裝 置之正面方向的發光強度及積分強度,而計算出各別的倍 率值。基準的發光裝置中,具有平坦表面的玻璃基板是相 當於具有平面狀的射出面之虛擬結構體。 (參考例1)The method is to deposit a film on the surface of the substrate 6 on the surface of the substrate 6 on the surface of the substrate 6 on the surface of the substrate 6 on the surface of the substrate 6 CVD I*. ^ Also, there is a very large shape on the surface of the film formation 32. Therefore, the magnetic field generating device 61 can be recorded on the surface of the substrate 6 at the film forming roller 31 and the film forming roller 32. When the device is rotated, it does not rotate itself.疋 卩 Make the film forming light in the second = ί: filming roll 31 and into _. It is advisable; Ϊ = ίί membranes and the film-forming rolls are of the same diameter and substantially the same. In the discharge condition, the diameter of the film-forming roller 31 and the film-forming roller 32 is preferably 5 〇 〇 间 间 ' ' ' 第 第 第 第 第 第 第 第 第 第 第 第 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材Surface of 6: When the material is produced and discharged, the film can be simultaneously formed on the respective surfaces of =^== 6. That is, the film component can be deposited on the Yan Qiang material by the method of soiling, and the film component can be deposited on the surface of the substrate 6 on the film forming roller 32 by 323546 25 201232868. Therefore, a gas barrier layer can be formed very efficiently on the surface of the substrate 6. As for the delivery roller 701 and the transport rollers 21, 22, 23, 24', a general 轺* can be applied. The winding roller 702 is not particularly limited as long as it can take up the substrate 6 ′ in which the gas barrier layer has been formed, and a commonly used newspaper can be appropriately selected. The gas supply pipe 41 may be supplied or discharged as long as it is a settable speed. In the case of the plasma generating power source 51, a power source of a general electricity generating device can be applied. The plasma generating power source 51 can also be used as a counter electrode at the time of discharge after supplying electric power to the film forming roller 31 and the film forming sheet 32 connected thereto. In the plasma generating power source 51, it is preferable to use a power source (AC power source or the like) which can reversely invert the polarity of the film formation, and it is possible to perform plasma CVD more effectively. The plasma generating power source 51 can be set to have an applied power of 100 W to i 〇〇 Kw and an AC frequency of 50 Hz to 500 Hz, which is preferable to perform CVD more efficiently. In the magnetic field generating devices 61 and 62, a general magnetic field generating device can be applied. In the substrate 6, a film having a gas barrier layer which has been formed in advance may be used in addition to the substrate of the first film. Thus, by using a film having a gas barrier layer which has been formed in advance as the substrate 6, the thickness of the gas barrier layer can be made thick. Using the manufacturing apparatus shown in Fig. 4, for example, the type of the material gas, the electric power of the electrode drum of the electric equipment generating device, the pressure in the vacuum chamber, the diameter of the film forming roller, and the transport speed of the film are appropriately adjusted. The first film can be produced. By using the manufacturing apparatus shown in Fig. 4, a film forming gas (raw material gas) can be supplied to the vacuum chamber while generating a pair of film forming rolls (film forming rolls 26 323546 201232868 31 and film forming rolls 32). Discharging, the film forming gas (raw material gas) is decomposed by the plasma, that is, by plasma CVD on the surface of the substrate 6 on the film forming roller 31 and on the surface of the substrate 6 on the film forming roller 32. A gas barrier layer is formed. After the film formation as described above, since the substrate 6 can be separately transported by the feed roller 701, the film forming roller 31, and the like, a gas barrier layer can be formed on the surface of the substrate 6 by a roll-to-roll continuous film forming process. The material gas in the film forming gas used for forming the gas barrier layer can be appropriately selected in accordance with the material of the formed gas barrier layer. In the case of the material gas, for example, an organic ruthenium compound containing ruthenium can be used. The material gas may contain, in addition to the organic ruthenium compound, monodecane as a ruthenium source. The material gas contains, for example, a compound selected from the group consisting of hexamethylene dioxane, 1,1,3, 3-tetradecyldioxane, vinyl tridecyl decane, decyl decyl decane, and hexamethyl quinolate , 曱 碎 碎 、, 曱 碎 碎 、, 三 三 梦 梦 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , At least one organic ruthenium compound of the group formed by tetraoxoxane, tetraethoxyoxane, phenyl trioxoxane, decyltriethoxyoxane and octadecylcyclotetraoxane. Among these organic ruthenium compounds, hexamethylene dioxane, 1, 1, 3, 3- are considered from the viewpoints of the properties of the compound and the gas barrier properties of the gas barrier layer. Tetradecyldioxane is preferred. These organic hydrazine compounds may be used singly or in combination of two or more. The film forming gas may contain a reaction gas in addition to the material gas. As the reaction gas, a gas which can react with the material gas to form an inorganic compound such as an oxide or a nitride can be suitably used. In the case of a gas to be formed 27 323546 201232868, for example, oxygen or ozone can be used. For the reaction gas to form a nitride, for example, nitrogen or ammonia can be used. These reaction gases may be used singly or in combination of two or more. For example, in the formation of an oxynitride, a reaction gas for forming an oxide can be combined with a reaction gas for forming a nitride. The carrier gas may also be used as a film forming gas in accordance with the requirements to supply the raw material gas into the vacuum chamber. It is also possible to use a gas for discharge as a film forming gas in accordance with a request to generate a plasma discharge. As the carrier gas and the gas for discharge, a well-known gas can be applied. For example, an olefinic gas such as helium, argon, neon or krypton or hydrazine is used as a carrier gas or a discharge gas. When the film forming gas contains the material gas and the reaction gas, the ratio of the material gas to the reaction gas is preferably such that the ratio of the reaction gas exceeds the theoretically necessary amount of the reaction gas when the material gas and the reaction gas are completely reacted. After the ratio of the reaction gas is appropriately controlled, a film (gas barrier layer) which satisfies the above conditions (i) to (iii) can be formed particularly effectively. When the film forming gas contains an organic cerium compound and oxygen, the amount of oxygen of the film forming gas is preferably equal to or less than the theoretical oxygen amount necessary for completely oxidizing the entire amount of the organic cerium compound in the film forming gas. In the following, a gas containing hexamethylene dioxane (organoantimony compound: HMDSO: (CH3)6Si2::) as a film forming gas and a source gas, and oxygen (〇2) as a reaction gas are used. In the case of the gas barrier layer of the ruthenium-oxygen system, an ideal ratio of the source gas to the reaction gas in the film formation gas and the like will be described in detail. The hexamethylene dioxane (HMDS0, 28 323546 201232868 (Cfi3) 6Si2 〇) containing the raw material gas and the oxygen gas (〇2) as a reaction gas are prepared by a plasma CVD reaction to prepare a scorpion-oxygen system. In the case of the gas barrier layer, the reaction of the following reaction formula (3) is caused in the film forming gas to form cerium oxide. (CH3)6Si2〇+l 2〇2~^ 6C〇2+9H2〇+2Si〇2 (3) The amount of oxygen necessary to completely oxidize 1 mole of hexamethylene dioxane in this reaction It is 12 moles. Therefore, a uniform cerium oxide film can be obtained, for example, in a film forming gas containing 12 moles of oxygen which is completely reactive with hexamethylene dioxane. At this time, there is a high possibility that a gas barrier layer which completely satisfies the above conditions (i) to (iii) is not formed. Therefore, when it is desired to form a gas barrier layer related to the embodiment, it is preferable to make oxygen less than the chemical theory ratio of hexamethylene dioxane 1 mole. In the actual plasma CVD chamber reaction, the hexamethylene dioxane of the raw material and the oxygen of the reaction gas can be supplied from the gas supply portion to the film formation field, so that even the oxygen amount of the reaction gas When the (flow rate) is 12 times the molar amount (flow rate) of the hexamethylene dioxane of the material gas, in reality, the complete reaction cannot be performed, so it is considered that the oxygen supply must be greater than the chemical theory ratio. The reaction can be completed. For example, if the oxidized rock is obtained by completely oxidizing it with (10), there is also a molar amount (flow rate) of hexamethyldiazepine which makes the amount of oxygen (flow I) as a raw material gas. 2 times more than the situation. Therefore, it is preferable that the amount of oxygen (flow rate) of the hexamethyl diacetate relative to the raw material is about 12 times or less the chemical theoretical ratio, and preferably 10 times or less. Since the hexamethyl bisphthene and the oxymethane are contained in the film forming gas at such a ratio, the carbon atoms and hydrogen atoms of the incompletely oxidized hexamethyl hexaoxane can be introduced into the gas barrier. In the layer. As a result, the shape of 323546 29 201232868 is a gas barrier layer which satisfies the above conditions (i) to (iii). Thereby, the obtained second film can exhibit excellent gas barrier properties and bending resistance. If the amount of oxygen (flow rate) of oxygen relative to the amount of hexamethylene oxalate in the film-forming gas is too small, the unoxidized carbon atoms and hydrogen atoms will be excessively introduced into the gas barrier. In the layer. At this time, the transparency of the gas barrier layer is lowered, and the gas barrier layer is difficult to use as a flexible substrate which is required to have transparency as an organic EL device or an organic thin solar cell. From these points of view, the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethylene dioxane in the film forming gas is preferably more than hexamethylene dioxane. 5倍的优选优选。 The amount of the amount of the ear (flow) 〇·丨 times, and more than 0.5 times the amount is preferred. Although the pressure (vacuum degree) in the vacuum chamber can be appropriately adjusted in accordance with the type of the material gas, etc., it is preferable to be in the range of 〇. In the plasma CVD method, when it is dischargeable between the film forming rolls μ and 32, it is applied to an electrode drum connected to the plasma generating power source 51 (in the present embodiment, the crucible 5 is placed on the film forming roll again). 31至32的。 The power of 31 and 32) may be adjusted in accordance with the type of the raw material gas and the pressure in the vacuum chamber, etc., but preferably from 0.1 to 10 kW. If the applied electric power does not reach the above lower limit, there is a tendency that particles tend to be generated. When the applied electric power exceeds the above upper limit, the amount of heat generated during film formation is increased, and the temperature of the surface of the substrate to be formed is increased. If the temperature rises in the past direction, 'the substrate will be heated and damaged' may cause wrinkles during film formation, and the film may be heated and melted to expose the film forming roll, causing a large current discharge between the film forming rolls. The film-forming roller is damaged by itself. The transport speed (linear velocity) of the substrate 6 can be appropriately adjusted in accordance with the type of material gas 323546 30 201232868 and the pressure in the vacuum chamber, but it should be & 〇ι to purchase / minute ' and 0.5 i 20 m / min. It is better. If the linear velocity does not reach the above lower limit, the film may be liable to be creped due to heat, and if the linear velocity exceeds the above upper limit, the thickness of the gas barrier layer formed by the financial thinning becomes thin. (Second film) When the light emitted from the organic EL element is emitted to the outside through the second film, it is necessary to form a second material which exhibits light transmittance. In this case, the second film is the same as the first film. The second film preferably has a second gas barrier layer. The second gas barrier layer according to the embodiment contains a ruthenium atom, an oxygen atom and a carbon atom, and the (four) distribution curve, the oxygen distribution curve and the carbon distribution curve in the second gas conversion layer satisfy the above conditions (1) to (1) 丨). The early layer of the second gas barrier 11 can be formed in the same manner as the gas transition layer in the first film. ^ 2 The gas barrier layer may have the same composition as the gas barrier layer π king of the above-mentioned second film, and may have a difference in the oxygen distribution curve and the carbon distribution curve satisfying the above conditions (1) to (iii). The composition of the gas barrier layer of the second film. (Light extraction structure) Next, the light extraction structure will be described. The light extraction structure 14 used in the organic EL device according to the present embodiment can be provided on the outermost side of the organic germanium device. However, the organic tantalum device can also be reassembled into another device or frame. The light-extracting structure is not particularly limited in its range insofar as it has an effect of improving light extraction efficiency, but it preferably has the following characteristics. The intensity of light emitted from the surface (emission surface) on the side from which the light can be taken out by the light extraction structure 323546 201232868 is virtualized on the surface (the emission surface) on the side from which the light can be extracted lightly. When the intensity of the light emitted from the exit surface of the structure is compared, the front intensity and the integrated intensity of the light-removing structure are compared with the front strength and the integrated intensity of the virtual structure. The exit surface of the light extraction structure has an uneven structure. The above magnification of the front intensity and the integrated intensity may be, for example, the evaluation light-emitting device (organic EL device) in which the light extraction structure is provided, and the evaluation light-emitting device and the same composition except that the light extraction structure is not provided. A light-emitting device (organic EL device) having a flat exit surface is compared and estimated. In this case, a member (for example, a glass substrate as a branch substrate) of the exit surface of the light-emitting device constituting the reference can be used as a light-extracting structure corresponding to the dummy structure. Fig. 5 is a schematic view showing an example of the light extraction structure 14. Fig. 5 (1) is a side view, and Fig. 5 (2) is a plan view seen from the side of the exit surface. The light extraction structure 14 has a main surface on the side opposite to the surface on which the light 1 can be incident as the emission surface S. The exit surface 3 of the light extraction structure 14 is formed into a concave-convex structure. The uneven structure has a shape such that the intensity of the light incident on the light extraction structure 14 and emitted from the exit surface S is greater than the intensity of light emitted from the exit surface of the virtual structure having the planar exit surface. The front intensity and the integrated intensity of the light emitted from the light extraction structure 14 are L3 times or more with respect to the light emitted from the dummy structure. The exit surface S of the light extraction structure 14 of Fig. 5 can be formed into a concave-convex structure by a plurality of granular structures 14a dispersed in the emission surface s. 323546 32 201232868 The figure 疋 shows a schematic diagram of the virtual structure 110 that can be compared with the light extraction structure 14. Fig. 6 (1) is a side view of the virtual structure 110, and Fig. 6 (2) is a plan view of the virtual structure 11'. As shown in Fig. 6, the two main faces of the dummy structure 110 in the opposite direction are planar. That is, the virtual structural body 110 does not have a concave-convex structure. The dummy structure 110 has the same configuration as the light extraction structure 14 except that the shape of the surface is different. In the light extraction structure 14 having the uneven structure and the dummy structure 11 having no uneven structure, the same light (light emitted from the same light source) is incident on the same condition as the light emitted from the light extraction structure 14 The front intensity is preferably 13 times or more of the front surface intensity of the light emitted from the virtual structure 11G, and is preferably 1.4 times or more. At the same time, when the light extraction structure 14 having the uneven structure and the dummy structure n having no uneven structure are incident on the same condition, the same light (light emitted from the same light source) is incident, and is emitted from the light extraction structure 14 The integrated intensity of the light is preferably 1.3 times or more of the integrated intensity of the light emitted from the virtual structure 11 and is preferably 31 times or more. The magnification of the front strength and the integral intensity may be 1.3 times or more, and the upper limit is not particularly limited. However, since the front side is too strong and the outer shape is too strong, the magnification of the front strength is, for example, 5 times or less. The magnification of the integrated intensity is, for example, 5 times or less. The front intensity of the emitted light is the intensity of the light emitted toward the thickness direction of the light extraction structure 14. In the macroscopic assumption that the concave-convex structure of the light-extracting structure 14 is an averaged plane, the normal direction of the plane coincides with the thickness direction of the light-extracting structure 14. Therefore, the front intensity of the emitted light when viewed in a macroscopic manner can indicate the surface of the light extraction structure 14 (the exit surface S). 323546 33 201232868 Light intensity in the line direction. The integrated intensity of the emitted light is related to the light emitted from the light source through the light-extracting structure, and is not only the normal direction but the cumulative value of the intensity of the light emitted toward the whole. The organic EL element can be used as a light source of various devices, but it can have various characteristics as required by an apparatus in which an organic EL element is mounted. For example, a device having a high brightness in the normal direction may be required, and a device for emitting light to the full direction may be required. That is, it is not an appropriate device that only the normal direction is highlighted and the brightness is high. For example, when a light source that emits light like a general illumination is required, a light-extracting structure having high diffusibility can be required. Therefore, in the past, research and development aimed at improving the frontal strength in the direction other than the normal direction of the normal direction (the so-called oblique direction) has been carried out, and it is aimed at uniform light emission toward the omnidirectional uniform illumination. research and develop. The present inventors have found that the light-removing structure of the light-emitting device can be formed at a rate of 1.3 times or more when the front-end intensity and the integrated intensity of the light-emitting device are better than those of the light-emitting device having a planar exit surface. 14 Applicable to organic ELtl parts, you can get a particularly useful light-emitting device. For example, when an organic EL τ is used as the light source of the illuminating device, it is preferable to use an illuminating device that emits light with a front intensity of no light in the room or the like, but can emit light in a plane having an exit surface. The light extraction structure 14 in which the integrated front intensity integrated intensity at the time of device comparison is 1.3 times or more is suitable for the organic ELtc member, and such an illumination device can be realized. This is because the element itself can be used as a planar light source (secondary light source), and therefore it is also a device that can utilize the unique properties of the organic EL element. 323546 201232868 For example, 'inorganic LEDs and fluorescent lamps are point-like (zero-dimensional) or linear (one-dimensional) light sources. When using these light sources as illumination devices, diffusivity is more important than front intensity. Therefore, the direction of the light-removing structure which can increase the intensity of integration has been explored. However, since the organic EL element can be used as a planar light source (secondary light source), it can be applied to the light extraction structure 14 which improves both front surface strength and integrated intensity, so that the performance as an illumination device can be improved. The light extraction structure 14' preferably has a ratio of 1 (6 >) described below to satisfy the following formula (4), a haze value of 60% or more, and a total light transmittance of 6 % by weight or more. K35)/I(70)>5 Equation (4) It is also possible to refer to the ratio of 1 (0 q as the diffusion parameter. 1 ( 00) refers to the light emitted from the planar light source arranged in parallel with the light extraction structure. When the light is taken out of the structure, the intensity of light emitted from the light extraction structure toward the normal direction of the main surface of the light extraction structure disk is 60% or more, and the total light transmittance is The above-described light extraction structure 14 can realize a light-emitting device that exhibits particularly high light extraction efficiency. The haze value can be expressed by the following formula: The haze value can be JIS K 7136 "Method for determining the haze value of plastic-transparent material" The method is as follows: Fog value (cloud price Μ diffusion transmittance (%) / total light transmittance (%)) χ 1 〇〇 (%) Full light transmittance can be HS Κ 7136-1 "Plastic-transparent material full penetration The method described in the "Test method for the light rate" is shown in Fig. 7. Fig. 7 is a view for explaining 1 (0°), and the intensity of light emitted toward the normal direction of the exit surface of the light extraction device is defined as 1 (〇). The planar light source 21〇35 323546 201232868 is arranged in parallel with the light emitting surface parallel to the main surface of the light extraction structure 14 As described above, since the organic EL element is a planar light source, the planar light source 21 can be regarded as a simulated organic EL element. The specific measurement method of 1 (0 0) will be The term of the embodiment is as follows: 1 (35) is the intensity of light indicating a direction inclined by 35° from the normal direction, and 1 (70) is the intensity of light indicating a direction inclined by 70° from the normal direction. 35)/1 (70) When it is high, it corresponds to the fact that the light is stronger than the front direction. If 1(35)/1(70) exceeds 5, the light extraction structure 丨4 can be used. For example, when the 1(35)/1(70) is too high, only the light intensity in the front direction will be too high, so it is preferable to make it below 3 以 to facilitate a wide range of illumination. The body 14 should preferably satisfy the following formula (5): 1(0)/1(35)>1.5 Equation (5) When 1(0)/1(35) is high, it corresponds to the emitted light than the front side. The direction is also strong. If the ratio exceeds 1.5, the light extraction structure 14 can be made particularly suitable for, for example, a lighting device. Since 1(0)/1(35) is too high, only the light intensity in the front direction will be made. Become too high, so it should be made at 1 The following is to facilitate the illumination of the ore-producing enclosure. The 'concave-convex structure of the light-extracting structure 14' is preferably formed by a plurality of granular structures dispersed in the surface of the light-extracting structure 14. The granular crucible can be attached to a flat surface. It can also be formed with the body of the structure in the exit surface. The granular structure can be arranged periodically or non-body. For example, when the granular structure is arranged non-periodically, it is provided by the opening 36. 323546 201232868 The interference of light in the granular structure prevents the occurrence of moiré and the like. An example of a light-extracting structure having a concave-convex structure formed by dispersing a plurality of granular structures disposed on a surface can be as shown in Figs. In the following, the ideal form of the embossed structure will be described in detail, and in particular, when the light is taken out, the front surface strength and the integrated intensity of the structure are compared with the virtual structure, and an ideal form of 1.3 times or more is obtained. The convex, "construction" is constituted, for example, by a plurality of concave structures having a flat bottom surface and a structure which is disposed around each of the concave structures and which is bulged in a direction away from the bottom surface of the concave structure. The concave structure or each convex structure constituting the uneven structure, and the width and height of the light extraction efficiency. Each of the concave structures or the respective convex structures = width 'is a size parallel to the main surface of the wire-out junction _14. The width of each concave structure is, for example, the maximum width of a flat bottom surface of :: which is perpendicular to the main surface of the light extraction structure 14. The width of each convex structure is, for example, a cross section perpendicular to the main surface of the structure such that the most t-direction of the convex portion of the convex structure is the height of the structure, which means that the main surface of the light extraction structure 14 is ' If the height of the structure or the width of each convex structure is too large, for example, if the width of the structure is too large, the light will be taken out. If the brightness is not uniform, the brightness will become uneven. Light _ Lu Yiwei (M Tienan. Therefore, the width of each (four) structure or each convex structure and the height of the horse 0.5/zm to 廿丨vt convex structure is usually better when matching the concaves. The structure or the convex structure __=== the distance between the vertices) is determined, and should be the concave structure or each == 323546 37 201232868 The designation period of a bait or each convex structure should be 0.25 hearts Up to 7〇//m, and the following period. Each convex structure is good. .A m to 5 〇 // m is more than 卜 Although there is no particular limitation, each concave body should have a curved surface. The convex structure preferably has a shape of (4) such as a half, but when the convex structures are non-periodic, the shape can be prevented. Each concave structure takes out the normal direction of the main surface of the structural body 14: preferably. When the surface #α 腼耆 of the light-emitting structure 14 is used, it is preferable to use a light-receiving area to constitute the light-extracting structure 14 (4) as long as 9 = _. the above. For example, an inorganic substance such as glass or a second material may be used. Included in the light extraction structure 14 φ w octave "molecular compound from polyacrylate, poly carbon _ production:: sub-poly compound, for example, selected polyethylene acid and poly-plum; acid dioxin = naphthalene Ethylene formate, one. Although not particularly limited to at least the light extraction structure 14 ^ group: difficult to use 'and too thick will make full; light rate reduced by two degrees but = = thickness of body 14 is appropriate - — ill A light-extracting structure formed of an inorganic material such as glass, for example, can be formed by a flat base made of a blood material. For example, in the surface of a flat abutment, a concave-convex shape (concavity and convexity) is to be formed. After selectively etching the portion of the structure, the light-removing structure can be obtained. Specifically, the protective film is patterned on the surface of the flat substrate formed of the inorganic material, and then subjected to liquid phase etching or vapor phase etching, that is, The uneven structure can be formed. The protective film can be patterned, for example, using a photoresist 323546 38 201232868. The light-extracting structure made of an organic material is formed by the method of (5). (1) under the T(4) = the metal plate having the surface of the concave-convex shape is pressed The heated film is used A method of transferring a concave-convex shape of a plate to a film. (2) A method of rolling a roll using a surface having a concave-convex shape. A solution or a dispersion of a thin film organic material on a tan surface is on a base having a surface having a concave-convex shape A method of forming an organic material into a crucible. ^ A method comprising a polymerizable material body - a partially selective photopolymerization to remove an unpolymerized portion. (5) a mold solution is transferred onto a surface under high temperature conditions. The material straight upper 14 may be formed directly, for example, on the first film shown in Fig. 1, or the surface of the first film may be formed to be concave on the surface portion of the first film and formed on the first film. When the light extraction structure 14 is bonded to the first film or the second film, air is formed between the first film and the second film. (9) The interface of the domain layer produces a cut reflection, and the light is thinned. = The structure 1114 is combined with the first film or the second, U, and the contact layer (4) so that the S gas layer is not formed therebetween. The refractive index nf of the structure 14 and the refractive index (10) of the subsequent layer are taken out and/or The maximum and minimum values of the refractive index ns of the film or the second film (absolute Therefore, since the relationship of the refractive index is satisfied, 323546 39 201232868 can suppress the reflection between the light extraction structure 14 and the i-th film or the second film, thereby further improving the light extraction efficiency. The total thickness of the light extraction structure 14 and the first film and the second film is not particularly limited, but the total thickness of the light extraction structure 14 and the second film and the second film including the adhesive layer interposed therebetween is not particularly limited. The thickness is preferably 5 Å to 2 mm' and is preferably 80 Å to 1.5 mm. (Organic EL device) Next, the structure of the organic EL device will be described. The second film is bonded to the second film. Before the step, an organic EL element is formed on the second film or the second film. The organic EL element is composed of a pair of electrodes formed of an anode and a cathode, and a light-emitting layer provided between the electrodes, and a set layer may be provided between the pair of electrodes in addition to the light-emitting layer. The light-emitting layer is not limited to one layer, and a plurality of layers may be provided. As the layer which can be provided between the cathode and the light-emitting layer, an electron injecting layer, an electron transporting layer, a hole blocking layer and the like can be given. When the two layers of the electron injecting layer and the electron transporting layer are interposed between the cathode and the light-emitting layer, the layer connected to the cathode is referred to as an electron injecting layer, and the layer other than the electron injecting layer is referred to as an 'electron transporting layer. ^ ^ The electron injecting layer has a function of improving the efficiency of electron injection from the cathode. The electron transport layer has a mechanism for improving the efficiency of injecting electrons into a layer connected to the surface on the cathode side. The hole barrier layer has a function to block the hole transport. Such a layer may also serve as a hole barrier layer if the electron injecting layer and/or the electron transporting layer have a function of the wheeling of the removable hole. 323546 40 201232868 Confirmation only. According to the reduction of the current value, the layer which can be disposed between the anode and the light-emitting layer can be exemplified by electricity, the main second-layer hole transport layer, the electron barrier layer, etc. If a hole is provided between the holes The layer of the two layers of the injection layer and the layer of the hole of the hole. The layer outside the electrification main layer is called the hole energy. The lightning and hole transport layer has the function of improving the efficiency of the tunnel. The function of the left side of the electronic resistance layer. If the hole is injected into the layer, the function of the transmission of the electrons can be _ the layer can also be = send = can be blocked electronic confirmation. The reduction of the current value and the electron injection and the hole injection layer may be collectively referred to as a charge transport layer and a hole transport layer, which may be collectively referred to as a charge transport layer. The injection layer and electrons having the organic el example of the present embodiment can be expressed as follows. One of the layer composition of the component a) anode / luminescent layer / cathode b) anode / hole injection layer / luminescent layer / cathode)!% pole / hole / main entrance layer / luminescent layer / electron injection layer / cathode d Anode/hole injection layer/light-emitting layer/electronic transfer layer/cathode 323546 41 201232868 e) Anode/hole Incoming/light-emitting layer/electron transport layer/electron injection layer/cathode f) anode/hole transport layer/light-emitting layer/cathode g) anode/cavity transport layer/light-emitting layer/electron injection layer/cathode h) anode/electric Hole transport layer / luminescent layer / electron transport layer / cathode i) anode / hole transport layer / luminescent layer / electron transport layer / electron injection layer / cathode j) anode / hole injection layer / hole transport layer / luminescent layer / Cathode k) Anode/hole injection layer/hole transport layer/light-emitting layer/electron injection layer/cathode l) anode/hole injection layer/hole transport layer/light-emitting layer/electron transport layer/cathode m) anode/electric Hole injection layer / hole transport layer / luminescent layer / electron transport layer / electron injection layer / cathode η) anode / luminescent layer / electron injection layer / cathode 〇) anode / luminescent layer / electron transport layer / cathode Ρ) anode / luminescence Layer/electron transport layer/electron injection layer/cathode (herein, the symbol "/" indicates that the two layers described between the marks "/" are adjacent layers. The same applies hereinafter.) The organic EL device of the present embodiment is also It may have two or more light emitting layers. The layer composition of the above a) to ρ) includes a layered body in which the tantalum is in the anode and the cathode as "structural unit A", and a layer composition represented by the following q) as an organic layer having two light emitting layers. The composition of the EL component. The composition of the layers of two (structural unit A) may be the same or different. 42 323546 201232868 q) Anode / (structural unit A) / charge generation layer / (structural unit a) / cathode "(structural unit A) / charge generation layer" and "structural unit B", which are expressed by the following The layer composition is composed of an organic EL element having three or more light-emitting layers. r) Anode / (structural unit b) x / (structural unit a) / cathode The symbol "X" is an integer of 2 or more, and (structural unit Β) χ is a layered body formed of a structural unit of the X-stage laminate. There are several (structures ^) layer components that can be the same or different. The charge generation layer refers to a layer that can generate an electric field and electrons by applying an electric field. The charge generating layer may, for example, be a film containing vanadium oxide, indium tin oxide (Indium Tin Oxide) or molybdenum oxide. The order of the layers to be laminated, the number of layers, and the thickness of each layer can be appropriately set after considering the luminous efficiency and the life of the device. The materials of the various layers of the components are described in more detail below to form the organic EL and the formation method. <Anode> The organic EL element when the light emitted from the light-emitting layer is emitted outward through the anode is such that the light-transmitting (four) electrode serves as an anode. As for the electrode which can exhibit light transmittance, a film of metal oxide, gold or metal can be used, and an electrode having high conductivity and light transmittance is considered to be L: specifically, indium oxide, oxidation, and oxidation can be used. Tin, ιτ〇: Indium Zinc Oxide (abbreviated as ΙΖ0), gold, platinum, copper or other thin film. Among them, it is ideally formed by (10) or tin oxide. Examples of the method for producing the anode include a vacuum deposition method, a _ 323546 43 201232868 method, an ion plating method, and a plating method. It is also possible to use an organic transparent conductive film such as polyphenylamine or a thiophene or a derivative thereof as the thickness of the anode τ biological 'anode', which can be widely and appropriately set in consideration of characteristics and steps required, for example, lOnm to l〇#m, and be careful. The degree of flexibility is preferably 2 〇 nm 5 1 A m and more preferably 50 nm to 500 nm. 1 <Curtain injection layer> In the hole injection material constituting the hole injection layer, vanadium, oxidized key, cerium oxide, and oxidized oxides, stupid amines: *burst type amine compound, indigo system, amorphous material, aniline, polybenzaldehyde derivative, and the like. The method of film formation of the hole injection layer is, for example, a method of forming a film from a solution of the material. For example, after the coating containing the hole and the coating is applied to the set (four), the hole can be injected into the layer. The solvent to be used in the case of the solution and the solvent to be used for the film formation is not particularly limited as long as it is soluble, and examples thereof include a chlorine-based solvent such as chloroform or bis-acetone, and a tetrahydrogen-based solvent. Shouting solvent, a agent, and methyl ethyl _ dissolved t and water. π 酉曰 酉曰 酉曰 and ethyl 赛 珞 醋酸 acetic acid vinegar and other brewing solvents, in the application of m ' can be used to smudge the faint cloth method, Laifa cloth method, concave plate coating method, body imitation gravure coating method, smear coating Method, roll coating method, wire bar coating method, and inkjet printing: equal printing method, material printing method, offset printing method 323546 44 201232868 The thickness of the hole injection layer can be considered in consideration of the required characteristics and the ease of the steps A suitable setting is, for example, 1 nm to 1 // m, and preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. <Current transport layer> The hole transporting material constituting the hole transport layer may, for example, be a polyvinyl carbazole or a derivative thereof, a polydecane or a derivative thereof, or an aromatic amine having a side chain or a main chain. a polyoxyalkylene derivative, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, a triphenyldiamine derivative, a polyaniline or a derivative thereof, a poly 11 cephenene or a derivative thereof, a polyarylamine or a derivative thereof, a poly(R) or a derivative thereof, a poly(p-phenylenevinylene) or a derivative thereof, and a poly(2,5-alkynylethylene) or a derivative thereof Wait. As for the hole transporting material in these, it is preferably polyvinyl carbazole or a derivative thereof, polydecane or a derivative thereof, a polyoxene derivative having a side chain or a main chain having an aromatic amine, polyaniline or a derivative, poly σ-cephene or a derivative thereof, a polyarylamine or a derivative thereof, poly(p-phenylene) or a derivative thereof, and poly(2,5-alkynyl-extended ethylene) or a derivative thereof Polymer hole transport materials such as materials. Further, polyvinyl carbazole or a derivative thereof, polydecane or a derivative thereof, and a polyoxyalkylene derivative having an aromatic amine in a side chain or a main chain are preferred as the hole transporting material. The low molecular hole transport material should be dispersed in a high molecular binder for reuse. The film formation method of the hole transport layer is not particularly limited, and a method of forming a film from a mixed solution containing a polymer binder and a hole transport material in the low molecular hole transport material may be mentioned. Among the polymer hole transporting materials, a method of forming a film from a solution containing a hole transporting material can be mentioned. 45 323546 201232868 The solvent to be used for film formation from a solution is not particularly limited as long as it is a solvent capable of dissolving the hole transporting material, and examples thereof include a chlorine-based solvent such as gas, dioxane or monochloroethane. , an ether solvent such as tetrahydrofuran, an aromatic hydrocarbon solvent such as hydrazine and dimethyl styrene, a ketone solvent such as propyl and decyl phenyl ketone, vinegar, vinegar, acetic acid, butyl ketone, and ethyl celecose vinegar (4) Etc. The method of forming a film from a solution is the same as the coating method of the above-described hole injection layer. The polymer binder which can be combined with the hole transporting material should be extremely resistant to electricity: the adhesive to be delivered, or the adhesive which is weakly absorbed relative to visible light. The same y knife binder may, for example, be selected from the group consisting of polycarbonate, polyacrylic acid, polypropylene acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride and polyoxyalkylene. - The thickness of the same transport layer may vary depending on the material used, and it should be suitably set to a value such that the driving voltage and the luminous efficiency are moderate. The hole transport layer must have a thickness that does not at least cause pinholes, and if it is too thick, the driving voltage of the element becomes too high. Therefore, the thickness of the hole transport layer is, for example, 1 nm to 1 " m, and η is preferably 2 nm to 500 nm, and preferably 5 nm to 200 nm. <Light-emitting layer> The f-passing is mainly formed by an organic substance capable of emitting fluorescence and/or phosphorescence, for example, an organic substance and a dopant which can be supplemented. The doped luminescent material is added or added to change the wavelength of the luminescent light. Inclusion: The substance " can be a low molecular compound or a high fraction. It is preferable to use a light-emitting compound containing a polymer compound. The polymer compound having high solubility in a solvent like 323546 46 201232868 is It is suitable for coating methods than low molecular compounds. The polymer compound contained in the light-emitting layer is converted into a polyvalent average molecular enthalpy of 1Q3 to (10). The luminescent material constituting the luminescent layer is exemplified by the following pigment-based materials, metal-based compound materials, ilj molecular-based materials, and handle materials. (Pigment-based material) In the case of a dye-based material, for example, a cycl〇pendamine derivative, a tetraphenylbutadiene derivative, a tris-p-butylamine derivative, a bismuth sulphide, and anthraquinone may be mentioned.嗤琳 derivative, diphenylvinylbenzene derivative, distyryl extended derivative, material, face ring compound "bite ring compound, flower ketone derivative, flower derivative, condensed phenanthrene derivative ,. Evil: salic dimer, ° timin dimer, narcissus, derivatives and humectin derivatives. (Metal Complex Compound Material) The D ^ metal complex material may, for example, have a Tb, Eu, and a specific rare earth metal, and a medium salivary and cerium selected from "^,, and (4) and selected from a metal complex of a ligand such as a stagnation, a stilbene, a stilbene, a stupid base, a stupid benzopyrene, and a structure: a metal is selected from the group consisting of an error-reducing compound. , 18 meals of alcohol, benzoate alcohol wrinkles, Benzo porphyrin dysfunction, benzothiazepine, 曰:, polyporphyrin zinc wrong, and phenanthrenequinone.曰(Polymer-based materials) In the case of polymer materials, it can be cited as a pair of benzene derivatives, and a poly-p-phenylene vinylene derivative. a calcined derivative, a polyethylenic polythiophene derivative, a polymer, a polyethylene decapeptide derivative, a material p or a metal complex which polymerizes the above-mentioned pigment, bio- or poly-derived-based luminescent material, and the above-mentioned luminescent material Among them, in the case of a material which lends a stilbene-based aryl derivative "nothing to light, a condensable compound, a polyethylene miso derivative, a granule Biology, and the like of these organisms. Among them, the stupid bamboo organisms of polymer materials, as well as the poly-derivatives of benzene derivatives and polyfluorene derivatives, are preferred as the A-vinylcarbazole derivatives, and the poly-pairs emit green light. In terms of materials, derivatives, arbutin derivatives, cattle 嗤 嗤 ° Y_uinaCi * id 〇 ) 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯 烯Among them, it is preferable to use a polymer material such as a polyethylene material, a polyene derivative, and the like. In the case of a red light-emitting material, a ring-ring compound, and the like,嗟 叹 叹 衍生物 衍生物 衍生物 , 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物 衍生物A derivative, or the like, which emits a white light, a green, or a red color, and a mixture of the materials that emit blue light and a color of the light, or a mixture of the materials that can be used as the village material. The luminescent layer formed by the polymerized polymer material will be used separately to emit various colors. A material made of light (a component that emits white light as a whole. 323546 48 201232868 In the case of a dopant material, for example, an anthracene derivative, a kaempferol derivative, and a tetracycline-rubrene derivative may be used. , quinolinone derivatives, squarylium derivatives, phthalocyanine derivatives, styrene-based pigments, tetracene derivatives, anthracene derivatives, decacyclene and Phenanthene. The thickness of the luminescent layer is usually about 2 nm to 200 nm. <Method of Forming Light-Emitting Layer> In the film forming method of the light-emitting layer, a method of applying a solution containing a light-emitting material, a vacuum deposition method, a transfer method, or the like can be used. The solvent used for film formation from a solution may be the same solvent as the solvent used when forming a film into a hole injection layer. As a method of applying a solution containing a light-emitting material, a spin coating method, a mold method, a micro-grooving method, a gravure coating method, a strip coating method, a roll coating method, a wire bar coating method, a dip coating method, and a fine method are mentioned. Coating methods such as slit coating method, capillary coating method, spray coating method, and nozzle coating method, and printing methods such as gravure printing method, screen printing method, bending printing method, offset printing method, reverse printing method, and inkjet printing method . It is preferable to apply a printing method such as a gravure printing method, a screen printing method, a bending printing method, an offset printing method, a reverse printing method, or an inkjet printing method in order to form a pattern and a plurality of colors. For the display of sublimable low molecular compounds, vacuum evaporation can be used. It is also possible to use a laser transfer or thermal transfer to form a light-emitting layer only in a desired portion. <Electron transport layer> As the electron transport material constituting the electron transport layer, a material which is usually used can be used, and an oxadiazole derivative, quinodimethane or its derivative 49 323546 201232868 Or a derivative thereof, naphthalene or a derivative thereof, a brew or a derivative thereof, tetracyanoquinone dioxane or a derivative thereof, a ketone derivative, diphenyldicyanoacetonitrile or a derivative thereof, a diphenol hydrazine derivative, or a metal complex of 8-meridene or a derivative thereof, a polyanthracene or a derivative thereof, a polyphosphonium or a derivative thereof, and a polyfluorene or a derivative thereof. Among these materials, in the case of electron transport materials, it is preferably D-dioxin derivatives, benzene or its derivatives, brewing; or derivatives thereof, or 8-meridin or its derivatives a metal complex, polyphthalocyanine or a derivative thereof, poly π quetialine or a derivative thereof, and poly S or a derivative thereof, and 2-(4-biphenyl)-5-(4-third butyl Phenyl)-1,3,4-oxadiazole, benzoquinone, anthracene, tris(8-quinolinyl) and polyfluorene are preferred. The film formation method of the electron transport layer is not particularly limited. In the case of a low-molecular electron transport material, a vacuum evaporation method of a powder or a method of forming a film from a solution or a molten state may be mentioned. When a material is transported by a polymer, a film may be formed from a solution or a molten state. Methods. When a film is formed from a solution or a molten state, a polymer binder may be used at the same time. As a method of forming a film from a solution or a molten state, a film formation method similar to the method of forming a film into a hole injection layer from the above solution can be mentioned. The thickness of the electron transporting layer may be different depending on the material used, and it is necessary to appropriately set a value such that the driving voltage and the luminous efficiency are moderate. The electron transport layer must have at least a thickness that does not cause pinholes. If it is too thick, the driving voltage of the component will be increased. Therefore, the thickness of the electron transporting layer is, for example, 1 nm to 1 /i m, preferably 2 nm to 500 nm, and preferably 5 nm to 200 nm. 50 323546 201232868 <Electron injection layer> In the material constituting the electron injection layer, an optimum material can be selected in accordance with the type of the light-emitting layer. The material constituting the electron injecting layer may be a metal, an alkaline earth metal, an alloy containing one or more metals selected from the group consisting of a metal and a soil-checking metal, an oxide or a complex of a metal or a soil test metal, Carbonate, and mixtures of such materials, and the like. Examples of metals, alkali metal oxides, complexes, and carbonates include lithium, sodium potassium, planer, oxidized clock, fluorinated clock, sodium oxide, sodium fluoride, and oxyfluorination. Compounds, fluorides, oxidizing, gasification and carbonic acid: and so on. In the alkaline earth metal, the alkaline earth metal oxide, the toothing compound 'carbonation::' can be cited as town, 钡, 录, magnesium oxide, fluorinated town, :, yttrium oxide, tantalum, oxidized, gasification The carbon pre-t sub-injection layer may be composed of a laminate of two or more layers. The laminated body of the injection layer may, for example, be LiF/Ca. The electron injecting layer may be formed by a bismuth plating method, a method method, a printing method, or the like, and has a sub-note 2 of about 1 coffee to 1 _. Howling, and big <Cathode> In terms of the optical layer: it is preferable to use a material having a small work function and easily injecting electrons into the hair. For example, when the organic EL tl is formed by taking out light from the anode side, the material of the cathode is preferably a material having a high light reflectance, U / , and the light emitted by the light-emitting layer at the τ cathode.铋 柯 t and medium reflection to the anode side. As the material of the k-pole, for example, an alkaline earth metal of a gold-plated periodic table, a transition metal, and a metal of Group 13 of the 砑J table can be used. In the cathode, sodium, potassium, 仏h, s, and s, for example, lithium, potassium gamma, bismuth, bismuth, magnesium, steel, bismuth, Syria, sharp, 鈒, 、, 323546 51 201232868 钇, indium, a metal such as ruthenium, osmium, iridium, osmium or iridium; and an alloy containing two or more metals selected from the above, one or more selected from the above metals, and selected from the group consisting of gold, silver, platinum, copper, manganese, and titanium. #, Nickel, tungsten and tin of more than one kind of alloy, or graphite or graphite intercalation compound. Examples of the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a bell-indium alloy, and a mother-|g alloy. A transparent conductive electrode formed of a conductive metal oxide, a conductive organic substance or the like can be used as the cathode. Specific examples of the conductive oxides include indium oxide, zinc oxide, tin oxide, ITO, and I Ζ 0, and examples thereof include polyaniline or a derivative thereof, and polythiophene or a derivative thereof as a conductive organic substance. The cathode may also be composed of a laminate of two or more layers. An electron injecting layer can also be used as the cathode. The thickness of the cathode can be appropriately designed in consideration of the required characteristics and the ease of the steps, and the like, for example, l〇nm to 1〇//ra, and 2〇ηηη to 1 is preferably m, and 50 nm to It is preferred at 500 nm. Examples of the method of the cathode include a vacuum deposition method, a sputtering method, and a lamination method in which a metal film is hot-pressed. The above organic EL device can be used as an illumination device, a surface light source device, or a display device by adding the set constituent elements. [Examples] (Reference Example A1) An i-th film was produced by using the production slit shown in Fig. 4 . In other words, a biaxially stretched polyethylene naphthalate is used (PEN film, thickness: 1 〇〇 _, width: 350 Å, manufactured by Teijin DuPont Film Co., Ltd., trade name as a substrate (6), The substrate is topped. Then, a magnetic field is applied between the film forming roller 31 and the film forming roller 32 at 323546 52 201232868, and power is supplied to the film forming roller 31 and the film forming roller 32, respectively, at the film forming roller 31. And plasma is formed between the film forming rolls 32 to generate plasma. The film forming gas (mixed gas of hexamethylene dioxane (HMDS0) of the material gas and oxygen of the reaction gas (which can also function as a discharge gas) is supplied) After the formation of the discharge region, the film was formed by the CVD method under the following condition t, that is, the first film having the gas barrier layer was obtained. <Film formation conditions> Supply amount of raw material gas: 50 (standard Cucic Centimeter per Minute in terms of zero degree, lamat. The same applies hereinafter.) Supply of oxygen: 500 sccm Vacuum in a vacuum chamber :3Pa Applied power from the plasma generating power source: 0. 8kW Frequency of the plasma generating power source: 70 kHz Film transport speed: 0.5 m/min. The thickness of the gas barrier layer in the obtained first film was 〇. 3 # m. At the same time, the water vapor permeability of the obtained first film is 3.1χ1 (Γ4 g/(m2.day) at a temperature of 40 ° C, a humidity of 低% in terms of low humidity, and a humidity of 90% RH in terms of high humidity. In the condition of temperature 4 (TC, humidity 10% RH for low humidity, humidity 1 〇〇% 高 for high humidity), it is a value below the detection limit, and 'with a curvature of 8 mm, In the condition of the temperature 40 C after the bending of the i-th film, the humidity of 1 (10) rh for low humidity, and the humidity of 100% RH for high humidity, the water vapor transmission degree of the i-th film is a value below the detection limit, so it can be confirmed. Even when the second film is bent 323546 53 201232868, the gas barrier property can be sufficiently suppressed. The XPS depth delineation measurement of the obtained first film is performed under the following conditions, and the enthalpy distribution curve, the oxygen distribution curve, and the carbon can be obtained. Distribution curve and oxygen-carbon distribution curve. Identified ion species · Argon (Ar+) Residual velocity (Si〇2 thermal oxide film conversion value): 0.05 nm/sec residual interval (Si〇2 conversion value): l〇nm X-ray photoelectron spectrometer: manufactured by Thermo Fisher Scientific Model name "VG Theta Probe" Irradiation X-ray: Single-crystal spectroscopic AIKα χ line irradiation point and its size: 800x400 ym 楕 circle. The obtained 矽 distribution curve, oxygen distribution curve and carbon distribution curve are as shown in Fig. 8 respectively. Shown the relationship between the obtained enthalpy distribution curve, oxygen distribution curve, carbon distribution curve and oxygen-carbon distribution curve, atomic ratio (atomic concentration) and etching time, and atomic ratio (atomic concentration) and gas barrier The relationship between the distances (mm) of the surface of the layer, _ is shown in Fig. 9. The "distance ((10))" in the horizontal axis of Fig. 9 is the value obtained by the calculation of the off time and the _ speed. It can also be seen from the results of the smear- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The difference between the maximum value and the small value is 5 at% or more, and in the region of 90% or more of the direction, Shi Xi < The atomic ratio of the thickness of the gas barrier layer satisfies the condition that the above formula (1) represents the ratio of the eyebrow ratio, the atomic ratio of oxygen, and carbon (Reference Example A2). 323546 54 201232868 = > test case A1 t obtained a film of a gas barrier layer having a thickness of 〇·3//ιη, as a substrate 6 is set on the delivery roller 70 to form a new gas barrier on the surface of the gas barrier layer Floor. Except for this, the same procedure as in Reference Example A1 is performed. Film (A). The thickness of the gas barrier layer on the base material (PEN film) of the obtained i-th film (1) was (10). The obtained first film (1) was placed on the substrate 6 as a substrate 6 to form a new gas barrier layer on the surface of the gas barrier layer. Except for this, the same procedure as in Reference Example A1 was carried out to obtain the first film (8). The thickness of the gas barrier layer in the obtained first film (8) was 0.99 " m. At a temperature of 40 ° C, low humidity In terms of humidity surface and high humidity, the water vapor permeability of the first film (8) obtained under the condition of 9 sides is 6·9 ΧΙΟ—4 g/(m2 · day) 'at temperature 4 (rc, low) Humidity in humidity: 1% in humidity, and humidity in the case of high humidity: 1% by RH, which is a value below the detection limit, and after bending the film (B) with a radius of curvature of 8 mm In the condition of a temperature of 40 ° C, a humidity of 1〇% RH for low humidity, and a humidity of 100% RH for high humidity, the water vapor transmission degree of the i-th film (B) is a value below the detection limit, so that even if it is confirmed When the second film (B) is bent, the gas barrier property can be sufficiently suppressed. The enthalpy distribution curve and oxygen distribution of the obtained first film (B) are obtained in the same manner as in the method of Reference Example A1. Curves, carbon distribution curves and oxygen-carbon distribution curves. The results obtained are shown in Figure 1. The relationship between the distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve, the atomic ratio (atomic concentration) and the etching time, and the atomic ratio (atomic concentration) to the surface of the gas barrier layer (nm The relationship between them is shown in the figure η 55 323546 201232868. The "distance (nm)" described in the horizontal axis of Fig. 11 is the value obtained by calculation of the etching time and the etching rate. The results shown in Fig. 11 are also clear, and the obtained carbon distribution curve has a complex absolute value, and the difference between the maximum value and the minimum value of the atomic ratio of carbon is 5 at% or more, and the thickness of the gas barrier layer is confirmed. In the region of 90% or more of the direction, the atomic ratio of the stone, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the condition expressed by the above formula (1). (Reference Example A3) The supply amount of the raw material gas is set to 100 sccm. The same procedure as in Reference Example A1 was carried out to obtain a first film. The thickness of the gas barrier layer in the obtained first film was 0 6 #m. The humidity at a temperature of 40 〇 C and low humidity 〇% Rh, high humidity humidity 90% R Under the condition of H, the water vapor permeability of the obtained first film is 3.2 x iO g / (m2 · day) 'the humidity at a temperature of 40 ° C, the humidity of the low humidity of 10% RH, and the humidity of the humidity 1 〇〇 In the condition of %RH, it is a value below the detection limit, and the temperature after bending the first film is 40 Ϊ, the humidity at low humidity is 10% RH, and the humidity at high humidity is 100% under the condition of a radius of curvature of 8 mm. In the condition of the RH, the water vapor transmission degree of the first film is a value equal to or less than the detection limit. Therefore, even when the first film is bent, it is possible to sufficiently suppress the decrease in the gas barrier property. The enthalpy distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve of the obtained first film were prepared in the same manner as in the method of Reference Example A1. The obtained enthalpy distribution curve, oxygen distribution curve and carbon distribution curve are as shown in Fig. 12. The relationship between the obtained enthalpy distribution curve, oxygen distribution curve, carbon 56 323546 201232868 distribution curve and oxygen-carbon distribution curve, atomic ratio (atomic concentration) and residual time, and source-to-source ratio (atomic concentration) and gas The relationship between the distance (nm) of the surface of the barrier layer is shown in Fig. 13. The "distance (nm)" described in the horizontal axis of Fig. 13 is a value obtained by calculating the engraving time and the residual velocity. The results shown in Fig. 12 and Fig. 13 are also clear, and the obtained carbon distribution curve has a complex absolute value, and the difference between the maximum value and the minimum value of the atomic ratio of carbon is 5 at% or more, and 'confirmed in the gas In the region of 90% or more of the thickness direction of the barrier layer, the atomic ratio of ruthenium, the atomic ratio of oxygen, and the atomic ratio of carbon satisfy the condition expressed by the above formula (1). (Reference Comparative Example A1) In a biaxially stretched polyethylene naphthalate film (PEN film, thickness: 1 〇〇 from m 'width: 350 mm, manufactured by Teijin DuPont Film Co., Ltd., trade name "Teonex Q65FA") On the surface, in the surrounding environment of the oxygen-containing gas, a gas barrier layer composed of oxidized oxidized stone is formed by a reaction plating method using Si 1 icon targete ', and a comparative first film can be obtained. The thickness of the gas barrier layer in the obtained first film was ΙΟΟηιη. The water vapor permeability of the obtained first film is 1. 3 x l0_4 g / (m2 · day), under the conditions of a temperature of 40 ° C, a humidity of 10% RH in terms of low humidity, and a humidity of 100% RH in terms of high humidity. This gas barrier property is not sufficient. The enthalpy distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve of the obtained first film were prepared in the same manner as in the method of Reference Example A1. The obtained enthalpy distribution curve, oxygen distribution curve and carbon distribution curve are as shown in Fig. 14. The relationship between the obtained enthalpy distribution curve, oxygen distribution curve, carbon 57 323546 201232868 distribution curve and oxygen-carbon distribution curve, atomic ratio (atomic concentration) and etching time, and atomic ratio (atomic concentration) and gas barrier The relationship between the distances (rnn) of the layers of the layers is shown in Fig. 15. The "distance (nm)" described in the horizontal axis of Fig. 15 is a value obtained by calculation of etching time and etching rate. The results shown in Figs. 14 and 15 are also clear, and it is confirmed that the obtained carbon distribution curve does not have an extreme value. As described below, after the organic EL element was produced, the light-extracting structure was bonded thereto, and the relationship between the presence or absence of the light-extracting structure and the brightness was evaluated. In each of the reference examples, a current of 15 mA was passed through the organic element, and the measurement of the luminous intensity in the normal direction (front direction) at this time and the measurement of the integrated intensity of the integrating sphere were performed. The characteristics of the light-emitting device of the reference and the characteristics of the light-emitting device of each reference example were compared with a light-emitting device having a light-emitting device having a flat surface and a light-emitting device of an organic EL element provided on a glass substrate. Specifically, the luminous intensity and the integrated intensity in the front direction of the light-emitting device of each reference example are respectively divided by the luminous intensity and the integrated intensity in the front direction of the reference light-emitting device, and the respective magnification values are calculated. In the reference light-emitting device, the glass substrate having a flat surface is a virtual structure corresponding to a plane-out exit surface. (Reference example 1)

在具有平坦表面的玻璃基板上由設定圖案形狀之ITO 薄膜形成陽極後,針對此陽極及玻璃基板進行20分鐘 UV/〇3的清洗。接著,以2階段過濾聚(3, 4)乙烯二氧噻吩/ 聚苯乙烯績酸(H. C. Starck公司製,商品名:Baytron P 58 323546 201232868 CH8000)的懸浮液。在第i階段的過濾中,是使用ο. 45 # m 濾径的過濾器,第2階段的過濾中,是使用〇 . 2 // m濾徑的 過濾器。以旋轉塗布法,將過濾而得的溶液塗布在陽極上, 使塗膜在大氣的周圍環境中,以加熱板(h〇t plate)進行 200 C、15分鐘的熱處理後,可形成厚度65nm的電洞注入 層。 接著’調製Lumation WP1300(SUMATION製)的濃度為 1.2質量%之二甲苯溶液。以旋轉塗布法將此溶液塗布在電 洞注入層上,使塗膜在氮氣的周圍環境中,以加熱板進行 130 C、60分鐘的熱處理後,可形成厚度65nm的發光層。 接著,將已形成發光層的基板導入真空蒸鍍機中,依 序分別以5nm、80mn的厚度蒸鍍Ba、A1後,形成陰極。金 屬的蒸鍍,是在真空度達到lxl〇-4Pau下之後才開始進行。 如此,即可在基板上形成由陽極、電洞注入層、發光層及 陰極組成的有機EL元件。 以分散器(di spenser)將光硬化性密封劑塗布在密封 玻璃的周邊’使已形成有機EL元件的基板與密封玻璃在氮 氣的周圍環境中貼合’並且以紫外線使光硬化性密封劑硬 化後,即可將有機EL元件密封。 準備具有由分散配置的複數的粒狀結構物形成的凹 凸結構之表面的MNteck公司製薄膜UTE12(折射率1. 5,厚 度I88# m)’作為光取出結構體。使用無載體(noncarrier ;) 黏著劑(折射率1.5)將此薄膜貼合在玻璃基板。此時,是 如同可使凹凸結構配置在最表面的方式將薄膜貼合在玻璃 323546 59 201232868 基板。 第16圖是UTE12的剖面之顯微鏡照片,第17圖是 UTE12的表面之顯微鏡照片。如第16圖、第17 題2的表面具有由複數的半球狀之粒狀結構物形成的凹 凸結構。 UTE12的全透光率是68.4%,霧霾值是82 6%,擴散參 數K35VI⑽是7.2 ’ κο)/·)是17。本參考例的發 光裝置在與玻璃基板未貼合UTE12的基準之發光裝置比較 時,本參考例的發光裝置之正面強度(正面亮度)為143 倍,積分強度為1. 3倍。 < I ( 0 °)的測定方法> 雖然I ( 0 °)的定義是如上述,但在參考例中是參照第 18圖說明實際測定的Ι(θ。)之測定方法。如第μ圖中所 示,以入射角〆入射至光取出結構體後,可由光取出側的 表面(射出面)射出之光之中’ ±80°的範圍中以每5〇測定與 光取出結構體的主面之法線形成0°角度的方向的光強度。 使用中央精機製的鹵素燈SPH-100N作為光源。如光源為面 狀光源時’並不是使特定入射角之光入射至光取出結構體, 而是使-90°< φ °< 90°的光同時入射至光取出結構體。為模 擬的再現此種情形,使入射光的入射角在―別·^ φ0< 80°的範圍中,一邊以每5°變化’一邊將各入射角中可測 定的方向之射出光的強度累積後,計算出1(6»。)。 (參考例2)After the anode was formed on the glass substrate having the flat surface by the pattern-shaped ITO film, the anode and the glass substrate were subjected to UV/〇3 cleaning for 20 minutes. Next, a suspension of poly(3,4)ethylenedioxythiophene/polystyrene (H.C. Starck, trade name: Baytron P 58 323546 201232868 CH8000) was filtered in two stages. In the filtration of the i-stage, a filter using ο. 45 # m filter diameter is used, and in the second-stage filtration, a filter using 〇 2 / m filter diameter is used. The solution obtained by filtration was applied to the anode by a spin coating method, and the coating film was heat-treated at 200 C for 15 minutes in a surrounding environment of the atmosphere to form a thickness of 65 nm. Hole injection layer. Then, a xylene solution having a concentration of 1.2% by mass of Lumation WP1300 (manufactured by SUMATION) was prepared. This solution was applied onto the cavity injection layer by a spin coating method, and the coating film was subjected to a heat treatment at 130 C for 60 minutes in a surrounding atmosphere of nitrogen gas to form a light-emitting layer having a thickness of 65 nm. Next, the substrate on which the light-emitting layer was formed was introduced into a vacuum vapor deposition machine, and Ba and A1 were vapor-deposited in a thickness of 5 nm and 80 nm, respectively, to form a cathode. The vapor deposition of the metal is started after the degree of vacuum reaches lxl 〇 -4 Pau. Thus, an organic EL element composed of an anode, a hole injection layer, a light-emitting layer, and a cathode can be formed on the substrate. Applying a photocurable sealant to the periphery of the sealing glass by a di spenser, 'bonding the substrate on which the organic EL element has been formed and the sealing glass in the surrounding atmosphere of nitrogen' and hardening the photocurable sealant with ultraviolet rays After that, the organic EL element can be sealed. A film UTE12 (refractive index 1.5, thickness I88#m) of MNteck Co., Ltd. having a surface of a concave-convex structure formed of a plurality of dispersed granular structures was prepared as a light-extracting structure. This film was bonded to a glass substrate using a noncarrier (noncarrier;) adhesive (refractive index: 1.5). At this time, the film is bonded to the glass 323546 59 201232868 substrate in such a manner that the uneven structure can be disposed on the outermost surface. Figure 16 is a photomicrograph of a section of UTE12, and Figure 17 is a photomicrograph of the surface of UTE12. The surfaces of Figs. 16 and 17 have a concave-convex structure formed of a plurality of hemispherical granular structures. The total light transmittance of UTE12 is 68.4%, the haze value is 82 6%, and the diffusion parameter K35VI(10) is 7.2 κο)/·) is 17. The light intensity of the light-emitting device of the present reference example is 143 times and the integrated intensity is 1.3 times. <Measurement method of I (0 °)> Although the definition of I (0 °) is as described above, in the reference example, the measurement method of Ι (θ.) actually measured is described with reference to Fig. 18. As shown in FIG. 5, after incident on the light extraction structure at the incident angle ,, the light emitted from the surface (emission surface) on the light extraction side is measured and light-extracted every 5 ' in the range of ±80°. The normal to the major face of the structure forms the light intensity in the direction of the 0° angle. The central precision mechanism of the halogen lamp SPH-100N was used as the light source. When the light source is a planar light source, the light of a specific incident angle is not incident on the light extraction structure, but light of -90° < φ ° < 90° is simultaneously incident on the light extraction structure. In the case of the reproduction of the simulation, the incident angle of the incident light is increased in the range of "°·^ φ0< 80°, while the intensity of the emitted light in the measurable direction of each incident angle is accumulated while changing every 5°. After that, calculate 1 (6».). (Reference example 2)

以參考例1相同的步驟,在玻璃基板上形成有機EL 60 323546 201232868 元件後’準備具有由分散配置的複數的粒狀結構物形成的 凹凸結構之表面的MNteck公司製薄膜UTE21C折射率1.5, 厚度188/zm),作為光取出結構體。使用無載體黏著劑(折 射率1. 5),將此薄膜貼合在與玻璃基板的有機EL元件相 對面的平坦面。此時,是如同可使薄膜的凹凸結構配置在 最表面上的方式將薄膜貼合在玻璃基板。 第19圖是UTE21的表面之顯微鏡照片。如第19圖中 所示’ UTE21的表面具有由複數的半球狀的粒狀結構物形 成之凹凸結構。 UTE21的全透光率是63.4%,霧霾值是78.7°/。,擴散參 數 1(35)/1(70)是 8.4,1(0)/1(35)是 2. 0。本參考例的發 光裝置在與玻璃基板未貼合UTE21的基準之發光裝置比較 時’本參考例的發光裝置之正面強度(正面亮度)為1.45 倍’積分強度為1. 34倍。 (參考例3) 以參考例1相同的步驟,在玻璃基板上形成有機EL 疋件後’準備具有由分散配置的複數的粒狀結構物形成的 凹凸結構之表面的WaveFr〇n公司製薄膜肝8〇(折射率丨· 5, 厚度80/zm),作為光取出結構體。使用無載體黏著劑(折 射率1· 5)將此薄咖合在與朗基板的有機EL元件相對 面的平坦面。此時’是如同可使薄膜的凹凸結構配置在最 表面上的方式將薄獏貼合在玻璃基板上。 -第20圖是WF80的表面之顯微鏡照片。如第 所不’ WF80的表面具有由複數的粒狀結構物形成的凹凸妗 323546 61 201232868 構。 WF80的全透光率是75. 1%,霧霾值是89. 3%,擴散參 數 1(35)/1(70)是 6. 5,1(0)/1(35)是 1. 1。本參考例的發 光裝置在與玻璃基板未貼合WF80的基準之發光裝置比較 時,本參考例的發光裝置之正面強度(正面亮度)為丨.42 倍,積分強度為1.31倍。 (參考例4) 以參考例1相同的步驟,在玻璃基板上形成有機EL 元件後’準備稜鏡膜的3M公司製薄膜BEF100(折射率1.5, 厚度150ym) ’作為光取出結構體。使用無載體黏著劑(折 射率1.5)將此薄膜貼合在與玻璃基板的有機el元件相對 面的平坦表面上。此時’是如同可使薄膜的凹凸結構配置 在最表面上的方式將薄膜貼合在玻璃基板上。 本參考例的發光裝置在與玻璃基板上未貼合BEF1〇〇 的基準之發光裝置比較時,本參考例的發光裝置之正面強 度(正面凴度)為1· 26倍,積分強度為1. 25倍。 (參考例5) 以參考例1相同的步驟,在玻璃基板上形成有機EL 元件後,準備具有由分散配置的複數的粒狀結構物形成的 凹凸結構之表面的惠和商工社製薄膜〇palsPCM1(折射率 h 5 ’厚度120 ym),作為光取出結構體。使用無載體黏著 劑(折射率1.5)將此薄膜貼合在與玻璃基板的有機EL元件 相對面的平坦表面上。此時,是如同可使薄膜的凹凸結構 配置在最表面上的方式將薄膜貼合在玻璃基板上。 323546 62 201232868 PCM1的全透光率是92·7%,霧值是86 〇%,擴散參數 K35)/·)是2.〇,丨⑻/咖)是13。本參考例的發光 裝置在與玻璃基板未貼合PCM1的基準之發光裝置比較 時,本參考例的發光裝置之正面強度(正面亮度)為124 倍,積分強度為1. 26倍。 將上述整理後,參考例丨、2、3在與參考例4、5比 較時,前者的光取出效率高、正面亮度、積分強度的兩者 均為基準的發光裝置的1.3倍以上。 [表1 ] 1 光學特i; 參考例1 i考例2 j考例4 ¥考例5 全透光率[%1 ~~68~4~~ —63.4~~ 75.1 — 11.5 」 92?7~~ 霧值[%] _ 82.6 —78.7 —89.3 ~84.3 一 86.0 擴散參數 1(35)71(70) 7.2 ΧΓ X5~ 2.0 K0VK35)After the organic EL 60 323546 201232868 element was formed on the glass substrate in the same manner as in the reference example 1, the surface of the UTteck company UTE21C having a surface of the uneven structure formed of a plurality of dispersed granular structures was prepared to have a refractive index of 1.5, thickness. 188/zm) as a light extraction structure. The film was bonded to a flat surface opposite to the organic EL element of the glass substrate using a carrier-free adhesive (refractive index of 1.5). At this time, the film is bonded to the glass substrate in such a manner that the uneven structure of the film can be disposed on the outermost surface. Figure 19 is a photomicrograph of the surface of UTE21. As shown in Fig. 19, the surface of the UTE 21 has a concavo-convex structure formed of a plurality of hemispherical granular structures. The total light transmittance of UTE21 is 63.4%, and the haze value is 78.7 °/. The diffusion parameter 1(35)/1(70) is 8.4, and 1(0)/1(35) is 2. 0. In the light-emitting device of the present reference example, the front-side intensity (front luminance) of the light-emitting device of the present reference example was 1.45 times and the integrated intensity was 1.34 times when compared with the light-emitting device in which the glass substrate was not bonded to the UTE21. (Reference Example 3) After forming an organic EL element on a glass substrate in the same procedure as in Reference Example 1, 'WaveFr〇n company-made film liver having a surface having a concave-convex structure formed of a plurality of dispersed granular structures was prepared. 8 〇 (refractive index 丨 · 5, thickness 80 / zm) as a light extraction structure. This thin coffee was laminated on a flat surface opposite to the organic EL element of the Lang substrate using a carrier-free adhesive (refractive index of 1.5). At this time, the thin crucible is attached to the glass substrate in such a manner that the uneven structure of the film can be disposed on the outermost surface. - Figure 20 is a photomicrograph of the surface of the WF80. For example, the surface of WF80 has a embossed 323 323546 61 201232868 structure formed by a plurality of granular structures. 5,1(0)/1(35)是1. 1 The smog value is 75.1%, the haze value is 89.3%, the diffusion parameter 1(35)/1(70) is 6.5, 1(0)/1(35) is 1. 1 . In the light-emitting device of the present reference example, the front surface intensity (front luminance) of the light-emitting device of the present reference example was 丨.42 times and the integrated intensity was 1.31 times when compared with the light-emitting device in which the glass substrate was not bonded to the WF80. (Reference Example 4) A film BEF100 (refractive index: 1.5, thickness: 150 μm) manufactured by 3M Company, which was prepared as a tantalum film, was formed as a light-extracting structure after the organic EL element was formed on the glass substrate in the same manner as in Reference Example 1. This film was bonded to a flat surface opposite to the organic EL element of the glass substrate using a carrierless adhesive (refractive index of 1.5). At this time, the film is bonded to the glass substrate in such a manner that the uneven structure of the film can be disposed on the outermost surface. When the light-emitting device of the present reference example is compared with a light-emitting device in which the BEF1 is not bonded to the glass substrate, the front-side intensity (frontal twist) of the light-emitting device of the present reference example is 126 times, and the integrated intensity is 1. 25 times. (Reference Example 5) After forming an organic EL element on a glass substrate in the same manner as in Reference Example 1, a film 〇 palsPCM1 manufactured by Hoe Kasei Co., Ltd. having a surface of a concave-convex structure formed of a plurality of dispersed granular structures was prepared. (refractive index h 5 'thickness: 120 μm) as a light extraction structure. This film was bonded to a flat surface on the surface opposite to the organic EL element of the glass substrate using a carrier-free adhesive (refractive index: 1.5). At this time, the film is bonded to the glass substrate in such a manner that the uneven structure of the film can be disposed on the outermost surface. 323546 62 201232868 The total light transmittance of PCM1 is 92.7%, the fog value is 86 〇%, the diffusion parameter K35)/·) is 2. 〇, 丨(8)/coffee is 13. In the light-emitting device of the present reference example, the front-side intensity (front luminance) of the light-emitting device of the present reference example was 124 times, and the integrated intensity was 1.26 times. After the above-described arrangement, the reference examples 2、, 2, and 3 were compared with Reference Examples 4 and 5, and the light extraction efficiency of the former was high, and both the front luminance and the integrated intensity were 1.3 times or more of the reference light-emitting device. [Table 1] 1 Optical special i; Reference example 1 i test 2 j test 4 ¥ test 5 Full light transmittance [%1 ~~68~4~~-63.4~~ 75.1-11.5" 92?7~ ~ Fog value [%] _ 82.6 —78.7 —89.3 ~84.3 A 86.0 Diffusion parameter 1 (35) 71 (70) 7.2 ΧΓ X5~ 2.0 K0VK35)

1.7 JT TT 1·: 光取出效率 正面 1.43 1~4Γ Τ 42 Τ26 Τ.24 積分 1.34 JJT TIT T25" T_ 26— 表面狀態 剖面照片I表面照片 第16囷 第17圖 19 m 第20圖 [產業上應用的可能性] 如以上的說明,可利用於本發明相關的有機£L·元件 中的溥膜,具有充分的氣體阻障性,而且即使其已彎曲時, 也可充分的抑制氣體阻障性的下降。 【圖式簡單說明】 第1圖是表示一實施形態相關的有機乩裝置圖。 第2圖是表示一實施形態相關的有機EL裝置圖。 第3圖表示製造有機El裝置時的裝置之一實施形態 的概念圖。 第4圖是表示製造第1薄膜時的裝置之一實施形態的 模式圖。 63 323546 201232868 第5圖是表示光取出結構體之一實施形態圖。 第6圖是表示虛擬結構體110之模示圖。 第7圖為說明1(00)之圖。 第8圖是表示參考例A1中所得的第1薄膜之矽分布 西線、氧分布曲線及碳分布曲線之圖。 第9圖是表示參考例A1中所得的第1薄膜之矽分布 曲線、氧分布曲線、碳分布曲線及氧碳分布曲線之圖。 第圖是表示參考例A2中所得的第1薄膜之矽分布 曲線、氧分布曲線、碳分布曲線及氧碳分布曲線之圖。 第11圖是表示參考例A2中所得的第1薄膜之矽分布 曲線、氧分布曲線、碳分布曲線及氧碳分布曲線之圖。 第12圖是表示參考例A3中所得的第丨薄膜之矽分布 曲線、氧分布曲線及碳分布曲線之圖。 第13圖是表示參考例A3中所得的第i薄膜之矽分布 曲線、氧分布曲線、碳分布曲線及氧碳分布曲線之圖。 第14圖是表示參考比較例A1中所得的第丨薄膜之石夕 分布曲線、氧分布曲線及碳分布曲線之圖。 第15圖是表示參考比較例A1中所得的第丄薄膜之石夕 分布曲線、氧分布曲線、碳分布曲線及氧碳分布曲線之圖。 第16圖是UTE12的剖面之顯微鏡照片圖。 第Π圖是UTE12的表面之顯微鏡照片圖。 第18圖是表示ι( 0 °)的測定方法圖。 第19圖是UTE21的表面之顯微鏡照片圖。 第20圖是WF80的表面之顯微鏡照片圖。 323546 64 201232868 【主要元件符號說明】 1 第2薄膜 2 有機EL元件 3 保護層 4 接著層 5 氣體阻障層 6 第1薄膜的基材 7 第2薄膜的基材 8 第2氣體阻障層 11 第1薄膜 13 有機EL裝置 14 光取出結構體 14a 粒狀結構體 2卜 22、: 23、24運送輥 31 ' 32 一對的成膜輥 41 氣體供給管 51 電漿產生用電源 61 ' 62 磁場產生裝置 500 、 510 ' 520 捲出輥 511 > 512 第1貼合親 521 ' 522 第2貼合輥 513 、 523 運送輥 530 捲取輥 610 、 620 塗布裝置 611 ' 621 硬化裝置 701 送出輥 702 捲取輥 S 射出面 65 3235461.7 JT TT 1·: Light extraction efficiency front 1.43 1~4Γ Τ 42 Τ26 Τ.24 integral 1.34 JJT TIT T25" T_ 26- Surface condition profile photo I surface photo 16th, 17th, 19th, 19th, 20th [Industry Possibility of Application] As described above, the ruthenium film which can be utilized in the organic fluorene element of the present invention has sufficient gas barrier properties and can sufficiently suppress gas barrier even when it is bent. Sexual decline. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing an organic germanium device according to an embodiment. Fig. 2 is a view showing an organic EL device according to an embodiment. Fig. 3 is a conceptual view showing an embodiment of an apparatus for manufacturing an organic EL device. Fig. 4 is a schematic view showing an embodiment of an apparatus for manufacturing a first film. 63 323546 201232868 Fig. 5 is a view showing an embodiment of a light extraction structure. Fig. 6 is a schematic view showing the virtual structure 110. Figure 7 is a diagram illustrating 1 (00). Fig. 8 is a view showing a 西 distribution west line, an oxygen distribution curve, and a carbon distribution curve of the first film obtained in Reference Example A1. Fig. 9 is a view showing a enthalpy distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxygen carbon distribution curve of the first film obtained in Reference Example A1. The figure is a graph showing the enthalpy distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve of the first film obtained in Reference Example A2. Fig. 11 is a view showing a enthalpy distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxycarbon distribution curve of the first film obtained in Reference Example A2. Fig. 12 is a view showing a enthalpy distribution curve, an oxygen distribution curve, and a carbon distribution curve of the second film obtained in Reference Example A3. Fig. 13 is a view showing the enthalpy distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon distribution curve of the i-th film obtained in Reference Example A3. Fig. 14 is a view showing the arrangement of the 夕 分布 distribution curve, the oxygen distribution curve and the carbon distribution curve of the second film obtained in Reference Example A1. Fig. 15 is a view showing the arrangement of the 夕 分布 distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxycarbon distribution curve of the second film obtained in Comparative Example A1. Figure 16 is a photomicrograph of a cross section of UTE12. The second map is a photomicrograph of the surface of UTE12. Fig. 18 is a view showing a measurement method of ι (0 °). Figure 19 is a photomicrograph of the surface of UTE21. Figure 20 is a photomicrograph of the surface of the WF80. 323546 64 201232868 [Description of main components] 1 2nd film 2 Organic EL element 3 Protective layer 4 Next layer 5 Gas barrier layer 6 Substrate of the first film 7 Substrate of the second film 8 Second gas barrier layer 11 First film 13 Organic EL device 14 Light extraction structure 14a Granular structure 2 22, 23, 24 transport roller 31' 32 A pair of film forming rolls 41 Gas supply pipe 51 Plasma generating power source 61 ' 62 Magnetic field Generation device 500, 510 '520 Roll-out roller 511 > 512 First bonding pro 521 ' 522 Second bonding roller 513 , 523 Transport roller 530 Winding roller 610 , 620 Coating device 611 ' 621 Hardening device 701 Feed roller 702 Take-up roll S exit face 65 323546

Claims (1)

201232868 七、申請專利範圍: 1. 一種有機電激發光(EL)裝置,其具備有機乩元件; 與前述有機EL元件對向配置的第i薄膜;以及 前述有機EL元件對向配置、且具有將由前述有機 EL元:發射的光射出之射出面之光取出結構體, 刖述第1薄膜具有含有矽原子、氧原子及碳原子的 氣體阻障層, 一而分別表示相對於矽原子、氧原子及碳原子的合計 量之石夕原子數之比率、氧原子數之比率及碳原子數之比 率’以及前述氣體阻障層的厚度方向中與前述氣體阻障 層之-邊的表面之距離的關係切分布曲線、氧分布曲 線及碳分布曲線,係滿足下述條件: (1)前述氣體阻障層之厚度方向的9G%以上的區域中, 石夕原子數之比率是⑪原子數之比率、氧原子數之比率及 碳原子數之比率之中的第二大值, (ii)前述碳分布曲線具有至少一個極值,及 (in)前述碳分布曲線中的碳原子數之比率的最大值與 最小值之差為5原子%以上。 2·如申請專利範圍第丨項所述之有機電激發光(EL)裝 置,其中前述射出面是形成凹凸結構,以使由前述射出 面相反侧的面入射至前述光取出結構體再由前述射出 面射出的光之正面強度及積分強度之任一者,在與前述 射出面為平面狀時相比較,皆成為13倍以上。 3. 種照明裝置,其具有申請專利範圍第i或2項所述之 1 323546 201232868 有機電激發光(EL)裝置。 4. 一種面狀光源裝置,其具有申請專利範圍第1或2項所 述之有機電激發光(EL)裝置。 5. —種顯示裝置,其具有申請專利範圍第1或2項所述之 有機電激發光(EL)裝置。 2 323546201232868 VII. Patent application scope: 1. An organic electroluminescence (EL) device comprising an organic germanium element; an ith film disposed opposite to the organic EL device; and the organic EL device disposed opposite to each other and having The organic EL element: a light extraction structure on an exit surface from which emitted light is emitted, and the first film has a gas barrier layer containing a ruthenium atom, an oxygen atom, and a carbon atom, and respectively represents a ruthenium atom and an oxygen atom. And a ratio of the number of atoms of the atoms of the carbon atoms, the ratio of the number of oxygen atoms, and the ratio of the number of carbon atoms, and the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer The relational cut-distribution curve, the oxygen distribution curve, and the carbon distribution curve satisfy the following conditions: (1) In the region of 9 G% or more in the thickness direction of the gas barrier layer, the ratio of the number of atoms of the stone is 11 atomic ratio a second largest value among the ratio of the number of oxygen atoms and the ratio of the number of carbon atoms, (ii) the carbon distribution curve has at least one extreme value, and (in) the carbon in the aforementioned carbon distribution curve Difference between the maximum and minimum values of the ratio of the number of sub less than 5 atomic%. The organic electroluminescence (EL) device according to the above aspect of the invention, wherein the emission surface is formed with a concavo-convex structure such that a surface opposite to the emission surface is incident on the light extraction structure. Any of the front intensity and the integrated intensity of the light emitted from the emitting surface is 13 times or more as compared with the case where the emitting surface is planar. 3. A lighting device having the 1 323 546 201232868 organic electroluminescent (EL) device described in claim ii or 2. A planar light source device comprising the organic electroluminescent (EL) device according to claim 1 or 2. A display device comprising the organic electroluminescent (EL) device according to claim 1 or 2. 2 323546
TW100136434A 2010-10-08 2011-10-07 An organic electro-luminescent device TW201232868A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228322A JP2012084307A (en) 2010-10-08 2010-10-08 Organic el device

Publications (1)

Publication Number Publication Date
TW201232868A true TW201232868A (en) 2012-08-01

Family

ID=45927736

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100136434A TW201232868A (en) 2010-10-08 2011-10-07 An organic electro-luminescent device

Country Status (3)

Country Link
JP (1) JP2012084307A (en)
TW (1) TW201232868A (en)
WO (1) WO2012046741A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488349B (en) * 2012-11-15 2015-06-11 Ind Tech Res Inst Composite barrier structures and package structures comprising the same
CN104782230A (en) * 2012-11-16 2015-07-15 柯尼卡美能达株式会社 Translucent electrode, and electronic device
TWI714919B (en) * 2017-11-29 2021-01-01 日商日東電工股份有限公司 Optical function film, polarizing plate with optical function film and image display device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030568A1 (en) * 2012-08-23 2014-02-27 コニカミノルタ株式会社 Organic electroluminescent element
KR20150058461A (en) * 2012-11-09 2015-05-28 코니카 미놀타 가부시키가이샤 Electronic device and gas barrier film fabrication method
US8912018B2 (en) * 2012-12-17 2014-12-16 Universal Display Corporation Manufacturing flexible organic electronic devices
JP6056448B2 (en) * 2012-12-19 2017-01-11 コニカミノルタ株式会社 Organic light-emitting diode element
US20150380681A1 (en) * 2013-02-12 2015-12-31 Konica Minolta, Inc. Organic electroluminescent element and lighting device
CN105026141A (en) 2013-03-11 2015-11-04 柯尼卡美能达株式会社 Gas barrier film, method for producing gas barrier film, and organic electroluminescent element
JPWO2014141821A1 (en) * 2013-03-12 2017-02-16 コニカミノルタ株式会社 Electronic device and method for manufacturing electronic device
JPWO2015029732A1 (en) * 2013-08-27 2017-03-02 コニカミノルタ株式会社 Gas barrier film and method for producing gas barrier film
WO2015029795A1 (en) * 2013-08-30 2015-03-05 コニカミノルタ株式会社 Method for producing gas barrier film
WO2015083660A1 (en) * 2013-12-06 2015-06-11 コニカミノルタ株式会社 Organic electroluminescence element
JP6705170B2 (en) * 2013-12-26 2020-06-03 住友化学株式会社 Laminated films and flexible electronic devices
JPWO2015147221A1 (en) * 2014-03-27 2017-04-13 コニカミノルタ株式会社 Gas barrier film and method for producing gas barrier film
TWI570987B (en) * 2014-11-06 2017-02-11 財團法人工業技術研究院 Light extraction structure and method for fabricating the same, and organic light-emitting device employing the same
WO2017099239A1 (en) * 2015-12-11 2017-06-15 コニカミノルタ株式会社 Gas barrier film and method for producing same
FR3066324B1 (en) * 2017-05-11 2021-09-10 Isorg ELECTRONIC DEVICE WITH IMPROVED AGING RESISTANCE

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323273A (en) * 1999-05-07 2000-11-24 Dainippon Printing Co Ltd Electroluminescent element
JP2003059641A (en) * 2001-08-09 2003-02-28 Stanley Electric Co Ltd Electroluminescent element
EP1792726A4 (en) * 2004-09-21 2008-12-31 Konica Minolta Holdings Inc Transparent gas barrier film
JP5251071B2 (en) * 2007-10-22 2013-07-31 凸版印刷株式会社 Barrier film and method for producing the same
JP2010123313A (en) * 2008-11-18 2010-06-03 Konica Minolta Opto Inc Method of manufacturing organic electroluminescence surface light emitter, organic electroluminescence surface light emitter,and display device and lighting system using the same
JP2010205506A (en) * 2009-03-02 2010-09-16 Toppan Printing Co Ltd El element
KR101718560B1 (en) * 2009-04-09 2017-03-21 스미또모 가가꾸 가부시키가이샤 Gas-barrier multilayer film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488349B (en) * 2012-11-15 2015-06-11 Ind Tech Res Inst Composite barrier structures and package structures comprising the same
CN104782230A (en) * 2012-11-16 2015-07-15 柯尼卡美能达株式会社 Translucent electrode, and electronic device
CN104782230B (en) * 2012-11-16 2016-11-16 柯尼卡美能达株式会社 Optically transparent electrode and electronic device
TWI714919B (en) * 2017-11-29 2021-01-01 日商日東電工股份有限公司 Optical function film, polarizing plate with optical function film and image display device

Also Published As

Publication number Publication date
JP2012084307A (en) 2012-04-26
WO2012046741A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
TW201232868A (en) An organic electro-luminescent device
JP5849087B2 (en) Light emitting device and article
TWI568051B (en) Organic electroluminescent elements
JP5675966B2 (en) Light extraction transparent substrate for organic EL element and organic EL element using the same
TWI374562B (en) Organic electroluminescent device
TW200950174A (en) Organic electroluminescent element
JP6438678B2 (en) Film member having an uneven structure
WO2012046738A1 (en) Organic el device
KR20160032218A (en) Method for manufacturing substrate having textured structure
TW201138538A (en) Process for producing substrate with electrode
JP5763517B2 (en) Organic EL device
TW201108848A (en) Light guiding structure
JP2005512277A (en) Method and material for transferring a substance on a plasma treated surface according to a pattern
WO2016031877A1 (en) Organic electroluminescent element
TW200950580A (en) Organic electroluminescence device and process for production of the same
JP6070411B2 (en) GAS BARRIER FILM, GAS BARRIER FILM MANUFACTURING METHOD, AND ORGANIC ELECTROLUMINESCENT ELEMENT
TW201007650A (en) Organic light emitting device based lighting for low cost, flexible large area signage
JP6646352B2 (en) Organic electroluminescence device
TW200531588A (en) Composite articles having diffusion barriers and devices incorporating the same
TW200524475A (en) Thermal transfer of light-emitting dendrimers
TW200915905A (en) Luminescence device and manufacturing method thereof and illuminator
WO2012046742A1 (en) Organic el device
JP5092756B2 (en) Organic electroluminescent panel manufacturing method, organic electroluminescent lighting device, and organic electroluminescent panel manufacturing device
JP5763506B2 (en) Organic EL device
JP5216623B2 (en) Organic electroluminescence device and method for producing the same