WO2015029795A1 - Method for producing gas barrier film - Google Patents

Method for producing gas barrier film Download PDF

Info

Publication number
WO2015029795A1
WO2015029795A1 PCT/JP2014/071450 JP2014071450W WO2015029795A1 WO 2015029795 A1 WO2015029795 A1 WO 2015029795A1 JP 2014071450 W JP2014071450 W JP 2014071450W WO 2015029795 A1 WO2015029795 A1 WO 2015029795A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
barrier layer
gas
layer
Prior art date
Application number
PCT/JP2014/071450
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 麻衣子
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015534138A priority Critical patent/JPWO2015029795A1/en
Publication of WO2015029795A1 publication Critical patent/WO2015029795A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a gas barrier film.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles in the fields of food, pharmaceuticals, etc. It is used for.
  • a gas barrier film By using the gas barrier film, it is possible to prevent alteration of the article due to gas such as water vapor or oxygen.
  • a gas barrier layer is formed on a substrate such as a film by a plasma CVD method (Chemical Vapor Deposition). And a method of forming a gas barrier layer by applying a surface treatment (modification treatment) after applying a coating liquid containing polysilazane as a main component on a substrate.
  • Japanese Patent Application Laid-Open No. 2012-149278 discloses a method for manufacturing a gas barrier film in which a silicon nitride film or a silicon oxynitride film formed by a dry method is irradiated with light having a wavelength of 150 nm or less.
  • a silicon oxide film is formed by a dry method, a barrier film irradiated with light having a wavelength of 172 nm, a silicon film is formed by a wet method, and a barrier film subjected to plasma treatment is then formed.
  • a technique for improving the bending resistance by using the laminated film is disclosed.
  • the gas barrier film described in Japanese Patent Application Laid-Open No. 2012-106421 has a problem that dark spots are generated when an organic EL element is produced using a film after a bending test.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a means for obtaining a gas barrier film having excellent gas barrier properties and bending resistance, and having a smoothness that is not easily lowered.
  • the present inventor conducted intensive research to solve the above problems.
  • the present invention includes, after forming a gas barrier layer containing at least silicon atoms and carbon atoms on a base material by a vapor deposition method, irradiating the gas barrier layer with ultraviolet light having a wavelength of less than 250 nm. It is a manufacturing method of a gas barrier film.
  • FIG. 1 11 is a gas barrier film; 12 is a substrate; 13 is a production apparatus; 14 is a delivery roller; 15, 16, 17 and 18 are transport rollers; 19 and 20 are film forming rollers; 21 represents a gas supply pipe; 22 represents a power source for generating plasma; 23 and 24 represent magnetic field generators; 25 represents a take-up roller; and 26 represents a gas barrier layer.
  • FIG. 1 11 is a gas barrier film; 12 is a substrate; 13 is a production apparatus; 14 is a delivery roller; 15, 16, 17 and 18 are transport rollers; 19 and 20 are film forming rollers; 21 represents a gas supply pipe; 22 represents a power source for generating plasma; 23 and 24 represent magnetic field generators; 25 represents a take-up roller; and 26 represents a gas barrier layer.
  • FIG. 1 11 is a gas barrier film
  • 12 is a substrate
  • 13 is a production apparatus
  • 14 is a delivery roller
  • 15, 16, 17 and 18 are transport rollers
  • 19 and 20 are film forming rollers
  • F is a base material
  • 30 is a plasma discharge treatment apparatus
  • 31 is a plasma discharge treatment vessel
  • 32 is between counter electrodes (discharge space)
  • 35 is a roll rotating electrode (first electrode);
  • 40 is an electric field applying means having two power sources; 41 is a first power source; 42 is a second power source; 43 is a first filter;
  • 50 is a gas supply means;
  • 51 is a gas generator;
  • 53 is an exhaust port;
  • 60 is an electrode temperature adjusting means;
  • 61 is a pipe; 64, 67, 85 and 88 are guide rolls; 66 represents a nip roll; 68 and 69 represent partition plates, respectively.
  • the method for producing a gas barrier film according to this embodiment includes performing irradiation with ultraviolet light having a wavelength of less than 250 nm after forming a gas barrier layer containing at least silicon atoms and carbon atoms on a substrate by a vapor deposition method.
  • a method for producing a gas barrier film that is excellent in gas barrier properties and bending resistance, and that is less likely to deteriorate in smoothness.
  • an electronic device using the gas barrier film obtained by the production method of the present invention which is excellent in gas barrier properties and hardly generates dark spots is provided.
  • a film containing at least silicon atoms and carbon atoms formed by a vapor deposition method has flexibility because it contains carbon. Furthermore, the Si—C bond can be cleaved with lower energy than the Si—O bond or Si—N bond, and the bond is cleaved with energy of about 250 nm wavelength. For this reason, as in the manufacturing method of the present invention, a film containing silicon atoms and carbon atoms is irradiated with light having a wavelength of 250 nm or less, so that not only the film surface but also the film interior is homogeneous. It can be inferred that a film can be formed which can be modified to a smooth film and whose gas barrier property and smoothness are hardly deteriorated even when bent.
  • the above mechanism is based on speculation, and the present invention is not limited to the above mechanism.
  • the gas barrier film according to the present invention usually uses a plastic film as a substrate.
  • the plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold the gas barrier layer, and can be appropriately selected according to the purpose of use.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide.
  • Resin cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic ring
  • thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
  • the base material is preferably made of a heat-resistant material. Specifically, a resin base material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and Tg of 100 ° C. or more and 300 ° C. or less is used.
  • the base material satisfies the requirements for use as a laminated film for electronic parts and displays. That is, when the gas barrier film of the present invention is used for these applications, the gas barrier film may be exposed to a process at 150 ° C. or higher.
  • the substrate dimensions are not stable when the gas barrier film is passed through the temperature process as described above, and thermal expansion and contraction occur. Inconvenience that the shut-off performance is deteriorated or a problem that the thermal process cannot withstand is likely to occur. If it is less than 15 ppm / K, the film may break like glass and the flexibility may deteriorate.
  • Polyolefin for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.
  • polyarylate PAr: 210 ° C
  • polyethersulfone PES: 220 ° C
  • polysulfone PSF: 190 ° C
  • cycloolefin copolymer COC: Compound described in JP-A No. 2001-150584: 162 ° C.
  • polyimide for example, Neoprim (registered trademark): 260 ° C.
  • the gas barrier layer of the gas barrier film is directed to the inner side of the cell and arranged on the innermost side (adjacent to the element).
  • the retardation value of the gas barrier film is important.
  • the usage form of the gas barrier film in such an embodiment includes a gas barrier film using a base film having a retardation value of 10 nm or less and a circularly polarizing plate (1 ⁇ 4 wavelength plate + (1 ⁇ 2 wavelength plate) + straight line.
  • a polarizing plate is used in combination with a gas polarizing film using a base film having a retardation value of 100 nm to 180 nm, which can be used as a quarter wavelength plate. preferable.
  • Examples of the substrate film having a retardation of 10 nm or less include, for example, cellulose triacetate (Fuji Film Co., Ltd .: Fujitac (registered trademark)), polycarbonate (Teijin Chemicals Co., Ltd .: Pure Ace (registered trademark), Kaneka Corporation): Elmec (registered trademark)), cycloolefin polymer (manufactured by JSR Corporation: Arton (registered trademark), Nippon Zeon Corporation: ZEONOR (registered trademark)), cycloolefin copolymer (manufactured by Mitsui Chemicals, Inc .: APPEL (registered trademark)) (Pellets), manufactured by Polyplastics Co., Ltd .: Topas (registered trademark) (pellets)), polyarylate (manufactured by Unitika Co., Ltd .: U100 (pellets)), transparent polyimide (manufactured by Mitsubishi Gas Chemical Co., Ltd .
  • the quarter wavelength plate a film adjusted to a desired retardation value by appropriately stretching the above film can be used.
  • the plastic film of the present invention can be used as a device such as an organic EL element
  • the plastic film is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • an opaque material can be used as the plastic film.
  • the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
  • the thickness of the plastic film used for the gas barrier film of the present invention is not particularly limited because it is appropriately selected depending on the use, but is typically 1 to 800 ⁇ m, preferably 10 to 200 ⁇ m.
  • These plastic films may have functional layers such as a transparent conductive layer, a smooth layer, and a clear hard coat layer.
  • As the functional layer in addition to those described above, those described in paragraph numbers 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
  • the substrate preferably has a high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the gas barrier layer is provided, may be polished to improve smoothness.
  • the base material using the above-described resins or the like may be an unstretched film or a stretched film.
  • the base material used in the present invention can be produced by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc.
  • a stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • an anchor coat layer may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion).
  • the constituent material and formation method of the anchor coat layer the materials and methods disclosed in paragraphs “0229” to “0232” of JP2013-52561A are appropriately employed.
  • the gas barrier film of the present invention may have a smooth layer between the surface of the base material having the gas barrier layer, preferably between the base material and the base layer.
  • the smooth layer is provided to flatten the rough surface of the substrate on which protrusions and the like are present, or to fill the unevenness and pinholes generated in the gas barrier layer with the protrusions existing on the resin base material. .
  • the materials, methods, etc. disclosed in paragraphs “0233” to “0248” of JP2013-52561A are appropriately employed as the constituent material, forming method, surface roughness, film thickness, etc. of the smooth layer.
  • the gas barrier film of the present invention can further have a bleed-out preventing layer.
  • the bleed-out prevention layer is used for the purpose of suppressing a phenomenon that, when a film having a smooth layer is heated, unreacted oligomers migrate from the resin base material to the surface and contaminate the contact surface. It is provided on the opposite surface of the substrate.
  • the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
  • the constituent material, forming method, film thickness and the like of the bleed-out prevention layer the materials, methods and the like disclosed in paragraphs “0249” to “0262” of JP2013-52561A are appropriately employed.
  • the method for producing a gas barrier film according to this embodiment includes forming a gas barrier layer containing at least silicon atoms and carbon atoms on a substrate by a vapor deposition method.
  • the thickness of the gas barrier layer (hereinafter also simply referred to as a gas barrier layer) formed by the vapor deposition method according to the present invention is not particularly limited, but in order to improve the gas barrier performance while making it difficult to cause defects, it is usually 20 to It is within the range of 1000 nm, preferably 50 to 300 nm.
  • the thickness of the vapor deposition gas barrier layer employs a film thickness measurement method by observation with a transmission microscope (TEM).
  • the vapor deposition gas barrier layer may have a laminated structure including a plurality of sublayers. In this case, the number of sublayers is preferably 2 to 30. Moreover, each sublayer may have the same composition or a different composition.
  • the gas barrier layer contains at least silicon atoms and carbon atoms.
  • silicon atoms and carbon atoms are present.
  • the presence of silicon atoms and oxygen atoms can further improve the gas barrier property, and the presence of carbon atoms can impart flexibility to the gas barrier layer.
  • the gas barrier property test was performed by depositing 70 nm-thick metal calcium on the gas barrier film and evaluating the time of 50% area as the degradation time, as described in the examples below. It was.
  • the gas barrier layer according to the present invention includes a condition (i) a distance (L) from the gas barrier layer surface in the film thickness direction of the gas barrier layer, and the amount of silicon atoms relative to the total amount of silicon atoms, oxygen atoms, and carbon atoms.
  • Silicon distribution curve showing the relationship with the ratio (atomic ratio of silicon), oxygen distribution showing the relationship between L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of oxygen) 90% or more of the film thickness of the gas barrier layer in the curve and the carbon distribution curve showing the relationship between the ratio of the amount of carbon atoms to the total amount of L and silicon atoms, oxygen atoms and carbon atoms (carbon atomic ratio) ( In the region of the upper limit: 100%, the following formula (A): formula (A) (carbon atomic ratio) ⁇ (silicon atomic ratio) ⁇ (oxygen atomic ratio) or the following formula (B): formula (B) (Atomic ratio of oxygen) ⁇ (atom of silicon ) ⁇ (Preferably has a size relationship of hierarchy represented by an atomic ratio of carbon).
  • the term “at least 90% or more of the film thickness of the gas barrier layer” does not need to be continuous in the gas barrier layer.
  • the relationship between the above (atomic ratio of oxygen), (atomic ratio of silicon) and (atomic ratio of carbon) is at least 90% or more (upper limit: 100%) of the film thickness of the gas barrier layer. It is more preferable to satisfy
  • (atomic ratio of oxygen), (atomic ratio of silicon), and (atomic ratio of carbon) increase in order (atom The ratio is O> Si> C, the order of magnitude relationship represented by the formula (A)).
  • the atomic ratio of the silicon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the layer is preferably 25 to 45 at%, and preferably 30 to 40 at%. More preferably.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably 33 to 67 at%, more preferably 45 to 67 at%.
  • the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the layer is preferably 3 to 33 at%, and more preferably 3 to 25 at%.
  • the silicon distribution curve, oxygen distribution curve, and carbon distribution curve are sequentially obtained by using Xray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon in combination to expose the inside of the sample. It can be created by so-called XPS depth profile measurement in which composition analysis is performed. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element and the horizontal axis as the etching time (sputtering time).
  • XPS Xray photoelectron spectroscopy
  • the silicon distribution curve, oxygen distribution curve, and carbon distribution curve were prepared under the following measurement conditions.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): SiO 2 equivalent film thickness of the gas barrier layer ⁇ 20 nm
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • the plot position is defined by the number of counter rolls that pass (etching interval below).
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value) (data plot interval): SiO 2 equivalent film thickness of the barrier film ⁇ 10 ⁇ TR number (number of opposing rolls) (nm)
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation
  • X-ray Single crystal spectroscopy AlK ⁇
  • the carbon distribution curve preferably has at least one extreme value, preferably at least three extreme values, and more preferably at least five extreme values.
  • the carbon distribution curve has at least one extreme value, the carbon atom ratio continuously changes with a concentration gradient, and the gas barrier performance during bending is enhanced.
  • the “extreme value” in the carbon distribution curve refers to the distance (L) from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer and the maximum value or the minimum value of carbon atoms in the carbon distribution curve.
  • the maximum value in the carbon distribution curve means that the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed. That means.
  • the minimum value in the carbon distribution curve means that the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms changes from decrease to increase when the distance from the surface of the gas barrier layer is changed. I mean.
  • the oxygen distribution curve of the gas barrier layer preferably has at least one extreme value, more preferably has at least two extreme values, more preferably has at least three extreme values, and has at least five extreme values. It is particularly preferred.
  • the oxygen distribution curve has at least one extreme value, the gas barrier property when the obtained gas barrier film is bent is further improved.
  • the upper limit of the extreme value of the oxygen distribution curve is not particularly limited, but is preferably 20 or less, more preferably 10 or less, for example. Even in the number of extreme values of the oxygen distribution curve, there is a portion caused by the film thickness of the gas barrier layer, and it cannot be defined unconditionally.
  • the “extreme value” in the oxygen distribution curve means a distance (L) from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer and a maximum value or a minimum value of oxygen atoms in the oxygen distribution curve.
  • the maximum value in the oxygen distribution curve is the point where the value of the oxygen atomic ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed.
  • the minimum value in the oxygen distribution curve means that when the distance from the surface of the gas barrier layer is changed, the value of the atomic ratio of oxygen with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms changes from decrease to increase. Say point.
  • the gas barrier layer preferably has an absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve (hereinafter, also simply referred to as “Cmax ⁇ Cmin difference”) of 5 at% or more.
  • Cmax ⁇ Cmin difference is more preferably 7 at% or more, and particularly preferably 10 at% or more.
  • the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values.
  • the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values.
  • the upper limit of the Cmax ⁇ Cmin difference is not particularly limited, but is preferably 50 at% or less, and preferably 40 at% or less in consideration of the effect of suppressing / preventing crack generation during bending of the gas barrier film. It is more preferable.
  • the total amount of carbon and oxygen atoms with respect to the thickness direction of the gas barrier layer is preferably substantially constant.
  • the distance (L) from the surface of the barrier layer in the thickness direction of the gas barrier layer and the ratio of the total amount of oxygen atoms and carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms Is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%.
  • the absolute value is less than 5 at%, the gas barrier property of the obtained gas barrier film is further improved.
  • the lower limit of the OCmax ⁇ OCmin difference is preferably 0 at% because the smaller the OCmax ⁇ OCmin difference is, but it is sufficient if it is 0.1 at% or more.
  • the gas barrier layer is preferably substantially uniform in the film surface direction (direction parallel to the surface of the gas barrier layer).
  • the gas barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon are measured at any two measurement points on the film surface of the gas barrier layer by XPS depth profile measurement.
  • the carbon distribution curve is substantially continuous.
  • the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously.
  • the carbon distribution curve is calculated from the etching rate and the etching time. Satisfying the condition expressed by the following formula (1) in the relationship between the distance from the surface in the film thickness direction (x, unit: nm) and the atomic ratio of carbon (C, unit: at%). Say.
  • the method for forming the gas barrier layer is not particularly limited, and can be applied in the same manner as in the conventional method or appropriately modified.
  • the gas barrier layer is preferably formed by a chemical vapor deposition (CVD) method, in particular, a plasma chemical vapor deposition method (plasma CVD, plasma-enhanced chemical vapor deposition (PECVD), hereinafter also simply referred to as “plasma CVD method”). It is preferred that
  • the plasma CVD method using the plasma CVD method of the atmospheric pressure or the atmospheric pressure described in the international publication 2006/033233, and the plasma CVD apparatus with a counter roll electrode is mentioned. .
  • the plasma CVD method may be a Penning discharge plasma type plasma CVD method.
  • a plasma CVD method using a plasma CVD apparatus having a counter roll electrode which is a preferable method for forming a gas barrier layer having the order of magnitude relationship represented by the above formula (A) or the above formula (B). explain.
  • plasma discharge is generated in a space between a plurality of film forming rollers.
  • a pair of film forming rollers is used, and a base material (here, the base material is treated with the base material or has an intermediate layer on the base material) is used. It is more preferable that a plasma is generated by disposing between the pair of film forming rollers.
  • the gas barrier layer is preferably a layer formed by a continuous film forming process.
  • an apparatus that can be used when producing a gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film formation rollers and a plasma power source, and the pair of film formations. It is preferable that the apparatus has a configuration capable of discharging between rollers. For example, when the manufacturing apparatus shown in FIG. 1 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible.
  • FIG. 1 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing the gas barrier layer according to the present invention.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the manufacturing apparatus 13 shown in FIG. 1 includes a delivery roller 14, transport rollers 15, 16, 17, 18, film formation rollers 19, 20, a gas supply pipe 21, a plasma generation power source 22, and a film formation roller 19. And 20 are provided with magnetic field generators 23 and 24 and winding rollers 25. Further, in such a manufacturing apparatus, at least the film forming rollers 19 and 20, the gas supply pipe 21, the plasma generating power source 22, and the magnetic field generating apparatuses 23 and 24 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 13, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • each film-forming roller has a power source for generating plasma so that the pair of film-forming rollers (film-forming roller 19 and film-forming roller 20) can function as a pair of counter electrodes. 22 is connected. Therefore, in such a manufacturing apparatus 13, it is possible to discharge to the space between the film forming roller 19 and the film forming roller 20 by supplying electric power from the plasma generating power source 22, thereby Plasma can be generated in the space between the film roller 19 and the film formation roller 20.
  • the material and design may be changed as appropriate so that the film-forming roller 19 and the film-forming roller 20 can also be used as electrodes.
  • the pair of film forming rollers (film forming rollers 19 and 20) be arranged so that their central axes are substantially parallel on the same plane.
  • the film forming rate can be doubled as compared with a normal plasma CVD method that does not use a roller, and the structure is the same. Since the film can be formed, the extreme value in the carbon distribution curve can be at least doubled.
  • the base material 12 on the surface of the base material 12 (here, the base material includes a form in which the base material is processed or has an intermediate layer on the base material) by the CVD method.
  • the gas barrier layer 26 can be formed on the surface of the substrate 12 while depositing the gas barrier layer component on the surface of the substrate 12 on the film formation roller 19 and also on the surface of the substrate 12 on the film formation roller 20. Since layer components can be deposited, a gas barrier layer can be efficiently formed on the surface of the substrate 12.
  • magnetic field generators 23 and 24 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
  • the magnetic field generators 23 and 24 provided on the film forming roller 19 and the film forming roller 20 respectively are a magnetic field generator 23 provided on one film forming roller 19 and a magnetic field generator provided on the other film forming roller 20. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between the magnetic field generators 24 and the magnetic field generators 23 and 24 form a substantially closed magnetic circuit.
  • the magnetic field generators 23 and 24 provided on the film forming roller 19 and the film forming roller 20 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generating device 23 and the other magnetic field generating device. It is preferable to arrange the magnetic poles so that the magnetic poles facing 24 have the same polarity.
  • the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 23 and 24 are opposed.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained.
  • the material 12 is excellent in that the gas barrier layer 26 that is a vapor deposition film can be efficiently formed.
  • the film forming roller 19 and the film forming roller 20 known rollers can be appropriately used. As such film forming rollers 19 and 20, it is preferable to use ones having the same diameter from the viewpoint of forming a thin film more efficiently.
  • the diameters of the film forming rollers 19 and 20 are preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so that the productivity is not deteriorated, and it is possible to avoid applying the total amount of plasma discharge to the substrate 12 in a short time. It is preferable because damage to the material 12 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mm ⁇ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
  • the base material 12 is disposed on a pair of film forming rollers (the film forming roller 19 and the film forming roller 20) so that the surfaces of the base material 12 face each other.
  • the base material 12 By disposing the base material 12 in this way, when the plasma is generated by performing discharge in the facing space between the film forming roller 19 and the film forming roller 20, the base existing between the pair of film forming rollers is present.
  • Each surface of the material 12 can be formed simultaneously. That is, according to such a manufacturing apparatus, the barrier layer component is deposited on the surface of the substrate 12 on the film forming roller 19 by the plasma CVD method, and the gas barrier layer component is further deposited on the film forming roller 20. Therefore, the gas barrier layer can be efficiently formed on the surface of the substrate 12.
  • the winding roller 25 is not particularly limited as long as the gas barrier film 11 having the gas barrier layer 26 formed on the substrate 12 can be wound, and a known roller may be used as appropriate. it can.
  • gas supply pipe 21 and the vacuum pump those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
  • the gas supply pipe 21 serving as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 19 and the film formation roller 20 and is a vacuum serving as a vacuum exhaust means.
  • a pump (not shown) is preferably provided on the other side of the facing space. In this way, by providing the gas supply pipe 21 as the gas supply means and the vacuum pump as the vacuum exhaust means, the film formation gas is efficiently supplied to the facing space between the film formation roller 19 and the film formation roller 20. It is excellent in that the film formation efficiency can be improved.
  • the plasma generating power source 22 a known power source for a plasma generating apparatus can be used as appropriate.
  • a power source 22 for generating plasma supplies power to the film forming roller 19 and the film forming roller 20 connected thereto, and makes it possible to use them as a counter electrode for discharging.
  • Such a plasma generation power source 22 can perform plasma CVD more efficiently, so that the polarity of the pair of film forming rollers can be alternately reversed (AC power source or the like). Is preferably used.
  • the plasma generating power source 22 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this.
  • the magnetic field generators 23 and 24 known magnetic field generators can be used as appropriate.
  • the base material 12 in addition to the base material used in the present invention, a material in which the gas barrier layer 26 is formed in advance can be used. As described above, by using the substrate 12 in which the gas barrier layer 26 is previously formed, the thickness of the gas barrier layer 26 can be increased.
  • the gas barrier layer according to the present invention can be produced by appropriately adjusting the speed. That is, using the manufacturing apparatus 13 shown in FIG. 1, discharge is generated between a pair of film forming rollers (film forming rollers 19 and 20) while supplying a film forming gas (raw material gas or the like) into the vacuum chamber.
  • the film-forming gas (raw material gas or the like) is decomposed by plasma, and the gas barrier layer 26 is formed on the surface of the base material 12 on the film-forming roller 19 and the surface of the base material 12 on the film-forming roller 20 by plasma CVD. Formed by law. At this time, a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axis of the film forming rollers 19 and 20, and the plasma is converged on the magnetic field. For this reason, when the base material 12 passes through the point A of the film forming roller 19 and the point B of the film forming roller 20 in FIG. 1, the maximum value of the carbon distribution curve is formed in the gas barrier layer.
  • the distance between the extreme values of the gas barrier layer (the difference between the distance (L) from the surface of the gas barrier layer in the thickness direction of the gas barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value) (Absolute value) can be adjusted by the rotation speed of the film forming rollers 19 and 20 (conveyance speed of the substrate).
  • the substrate 12 is transported by the delivery roller 14 and the film formation roller 19, respectively, so that the surface of the substrate 12 is formed by a roll-to-roll continuous film formation process. Then, the gas barrier layer 26 is formed.
  • a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more.
  • the source gas in the film forming gas used for forming the gas barrier layer 26 can be appropriately selected and used according to the material of the gas barrier layer 26 to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane
  • methyltrimethylsilane hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • phenyltrimethoxysilane methyltriethoxy
  • Examples include silane and octamethylcyclotetrasiloxane.
  • hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting gas barrier layer.
  • organosilicon compounds can be used alone or in combination of two or more.
  • organic compound gas containing carbon examples include methane, ethane, ethylene, and acetylene.
  • appropriate source gases are selected according to the type of the gas barrier layer 26.
  • a reactive gas may be used in addition to the raw material gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon and xenon; hydrogen; nitrogen can be used.
  • the ratio of the raw material gas and the reactive gas is a reaction that is theoretically necessary to completely react the raw material gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive as compared with the ratio of the amount of gas. By making the ratio of the reaction gas not excessive, the formed gas barrier layer 26 is excellent in that excellent gas barrier properties and bending resistance can be obtained. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than or equal to the theoretical oxygen amount required for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • hexamethyldisiloxane organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O
  • oxygen (O 2 ) oxygen
  • the preferred ratio of the raw material gas to the reactive gas in the film forming gas will be described in more detail.
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by a plasma CVD method to form silicon-oxygen.
  • HMDSO, (CH 3 ) 6 Si 2 O hexamethyldisiloxane
  • O 2 oxygen
  • the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, a gas barrier layer that satisfies the above conditions (i) and (ii) cannot be formed. Therefore, in the present invention, when the gas barrier layer is formed, the stoichiometric ratio of oxygen amount to 1 mol of hexamethyldisiloxane is set so that the reaction of the reaction formula (1) does not proceed completely.
  • the amount is preferably less than 12 moles.
  • the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced.
  • the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material.
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. .
  • the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
  • an electrode drum in this embodiment, the film forming roller 19 connected to the plasma generating power source 22 for discharging between the film forming roller 19 and the film forming roller 20.
  • the power to be applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 0.1 kW or more, the generation of particles can be sufficiently suppressed. On the other hand, if the applied power is 10 kW or less, the amount of heat generated during film formation can be suppressed. It can suppress that the temperature of the substrate surface rises. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
  • the conveyance speed (line speed) of the substrate 12 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 100 m / min.
  • the substrate is transported to a plasma CVD apparatus having a counter roll electrode at a transport speed of 5 m / min or more (more preferably 10 m / min or more) to form a gas barrier layer containing silicon, oxygen and carbon.
  • the upper limit of the line speed is not particularly limited, and is preferably faster from the viewpoint of productivity. However, if it is 100 m / min or less, it is excellent in that a sufficient thickness as a gas barrier layer can be secured.
  • the gas barrier layer is formed by a plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. It is what. This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently produce a barrier layer having both the barrier performance and the barrier performance.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
  • an apparatus used in this method there is a jet type atmospheric pressure plasma discharge treatment apparatus described in FIG. 3 of International Publication No. 2006/033233.
  • the jet type atmospheric pressure plasma discharge treatment apparatus is an apparatus having a gas supply means and an electrode temperature adjusting means in addition to the plasma discharge treatment apparatus and the electric field applying means having two power sources. If a plurality of jet-type atmospheric pressure plasma discharge treatment apparatuses are arranged in series and arranged in series, and each apparatus jets a gas in a different plasma state, a laminated thin film having different layers can be formed.
  • an atmospheric pressure plasma discharge treatment apparatus for treating a substrate between the counter electrodes described in FIG. 4 of International Publication No. 2006/033233 can be used.
  • Other examples of the atmospheric pressure plasma discharge treatment apparatus include Japanese Patent Application Laid-Open Nos. 2004-68143, 2003-49272, and WO 02/48428.
  • FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type that treats a substrate between counter electrodes that is useful when forming the gas barrier layer of the present invention.
  • a method of changing the gap between the electrodes by tilting the fixed electrode group with respect to the roll rotating electrode, or A gas barrier layer can be obtained by appropriately selecting the type and supply amount of the film forming raw material to be supplied or the output conditions at the time of plasma discharge.
  • FIG. 2 is an apparatus including at least a plasma discharge processing apparatus 30, an electric field applying means 40 having two power sources, a gas supply means 50, and an electrode temperature adjusting means 60. Then, a thin film is formed by subjecting the base material F to plasma discharge treatment between the counter electrodes (discharge space) 32 between the roll rotating electrode (first electrode) 35 and the square tube type fixed electrode (group) (second electrode) 36. To do.
  • a pair of rectangular tube type fixed electrode group (second electrode) 36 and roll rotating electrode (first electrode) 35 form one electric field. Is formed.
  • FIG. 2 shows an example of a configuration having a total of five units having such a configuration. In each unit, the type of raw material to be supplied, the output voltage, and the like are arbitrarily controlled independently.
  • a gas barrier layer can be formed continuously.
  • the roll rotating electrode (first electrode) 35 has a first power source. 41 to the first high-frequency electric field of frequency ⁇ 1, electric field intensity V1, and current I1, and the rectangular tube-shaped fixed electrode group (second electrode) 36 has a frequency ⁇ 2 and electric field intensity V2 from the corresponding second power source 42. A second high-frequency electric field of current I2 is applied.
  • a first filter 43 is installed between the roll rotation electrode (first electrode) 35 and the first power supply 41, and the first filter 43 easily passes a current from the first power supply 41 to the first electrode.
  • the current from the second power supply 42 is grounded so that the current from the second power supply 42 to the first power supply is difficult to pass.
  • a second filter 44 is provided between the square tube type fixed electrode group (second electrode) 36 and the second power source 42, and the second filter 44 is connected to the second electrode from the second power source 42. It is designed so that the current from the first power supply 41 is grounded and the current from the first power supply 41 to the second power supply is difficult to pass.
  • the roll rotating electrode 35 may be the second electrode, and the square tube type fixed electrode group 36 may be the first electrode.
  • the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
  • the first power source preferably applies a higher high-frequency electric field strength (V1> V2) than the second power source. Further, the frequency has the ability to satisfy ⁇ 1 ⁇ 2.
  • the current is preferably I1 ⁇ I2.
  • the current I1 of the first high-frequency electric field is preferably 0.3 mA / cm 2 to 20 mA / cm 2 , more preferably 1.0 mA / cm 2 to 20 mA / cm 2 .
  • the current I2 of the second high-frequency electric field is preferably 10 mA / cm 2 to 100 mA / cm 2 , more preferably 20 mA / cm 2 to 100 mA / cm 2 .
  • the gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge treatment vessel 31 from the air supply port while controlling the flow rate.
  • the base material F is unwound from the original winding (not shown) and is transported or is transported from the previous process, and the air and the like that is entrained by the base material by the nip roll 65 through the guide roll 64 is blocked. Then, while being wound while being in contact with the roll rotating electrode 35, it is transferred between the square tube fixed electrode group 36 and the roll rotating electrode (first electrode) 35 and the square tube fixed electrode group (second electrode) 36. An electric field is applied from both of them to generate discharge plasma between the counter electrodes (discharge space) 32.
  • the base material F (here, the base material includes a form in which the base material has been processed or has an intermediate layer on the base material) is in a plasma state while being wound while being in contact with the roll rotating electrode 35. To form a thin film.
  • the base material F passes through the nip roll 66 and the guide roll 67 and is wound up by a winder (not shown) or transferred to the next process.
  • Discharged treated exhaust gas G ′ is discharged from the exhaust port 53.
  • a medium whose temperature is adjusted by the electrode temperature adjusting means 60 is used as a liquid feed pump. P is sent to both electrodes through the pipe 61, and the temperature is adjusted from the inside of the electrode.
  • Reference numerals 68 and 69 denote partition plates that partition the plasma discharge processing vessel 31 from the outside.
  • source gas As the film forming gas (source gas etc.) supplied from the gas generator 51 to the counter electrode (discharge space) 32, source gas, reaction gas, carrier gas, discharge gas are used alone or in combination of two or more. Can be used.
  • the source gas, reaction gas, carrier gas, or discharge gas used at this time is the gas described in the column of (1) Method of forming a gas barrier layer by plasma CVD using a plasma CVD apparatus having a counter roll electrode. Can be used as appropriate.
  • the plasma discharge treatment vessel 31 is preferably a treatment vessel made of Pyrex (registered trademark) glass or the like, but may be made of metal as long as it can be insulated from the electrodes.
  • polyimide resin or the like may be pasted on the inner surface of an aluminum or stainless steel frame, and the metal frame may be thermally sprayed to obtain insulation.
  • FIG. 2 it is preferable to cover both side surfaces (up to the vicinity of the base material surface) of both parallel electrodes with an object made of the above-described material.
  • Applied power symbol Manufacturer Frequency Product name A1 Shinko Electric 3kHz SPG3-4500 A2 Shinko Electric Co., Ltd. 5kHz SPG5-4500 A3 Kasuga Electric 15kHz AGI-023 A4 Shinko Electric 50kHz SPG50-4500 A5 HEIDEN Laboratory 100kHz * PHF-6k A6 Pearl Industry 200kHz CF-2000-200k A7 Pearl Industry 400kHz CF-2000-400k A8 Applied electricity 80kHz And the like, and any of them can be used.
  • * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave. It is preferable to employ an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
  • the power applied between the electrodes facing each other supplies power (power density) of 1 W / cm 2 or more to the second electrode (second high-frequency electric field), excites the discharge gas to generate plasma, and the energy is thinned.
  • a thin film is formed by applying the forming gas.
  • the upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 .
  • the lower limit is preferably 1.2 W / cm 2 .
  • discharge area (cm ⁇ 2 >) points out the area of the range which discharge occurs in an electrode.
  • the output density is improved while maintaining the uniformity of the second high frequency electric field. I can do it. Thereby, a further uniform high-density plasma can be generated, and a further improvement in film forming speed and an improvement in film quality can be achieved.
  • it is 5 W / cm 2 or more.
  • the upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called a continuous mode
  • an intermittent oscillation mode called ON / OFF intermittently called a pulse mode
  • the second electrode side second
  • the high-frequency electric field is preferably a continuous sine wave because a denser and better quality film can be obtained.
  • controlling the film quality it can be achieved by controlling the electric power on the second power source side.
  • An electrode used for such a method for forming a thin film by atmospheric pressure plasma must be able to withstand severe conditions in terms of structure and performance.
  • Such an electrode is preferably a metal base material coated with a dielectric.
  • the gas barrier layer can also be formed by a vacuum plasma apparatus described in US Pat. No. 7,015,640.
  • the gas barrier film according to the present invention includes a step of forming a gas barrier layer on a base material by a vapor deposition method and further irradiating the gas barrier layer with ultraviolet light having a wavelength of 250 nm or less. Yes.
  • the use of ultraviolet light having a wavelength of 250 nm or less causes the chemical bond of the deposited film to vibrate and break, and it is estimated that the deposited film surface and the inside can be modified into a stable film with few defects. .
  • the shorter the irradiation wavelength the larger the energy, so that many bonds can be vibrated and broken, and the film can be reformed to a more homogeneous film. Therefore, it is preferably 180 nm or less, and more preferably 150 nm or less. Is particularly preferred.
  • any light source can be used as long as it generates ultraviolet light of 250 nm or less.
  • Specific examples include a KrF excimer laser (wavelength 248 nm), a KrCl excimer laser (wavelength 220 nm), an Xe excimer lamp (wavelength 172 nm), a Kr excimer lamp (wavelength 146 nm), an Ar excimer lamp (wavelength 126 nm), and the like. .
  • the irradiation intensity and the irradiation time are set within a range in which the substrate carrying the irradiated gas barrier layer is not damaged.
  • the substrate surface has a strength of 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm 2.
  • the distance between the ultraviolet light irradiation lamps can be set and irradiation can be performed for 0.1 seconds to 10 minutes.
  • the temperature of the substrate during the ultraviolet light irradiation treatment is 150 ° C. or higher, the properties of the substrate are impaired in the case of a plastic film or the like, such as deformation of the substrate or deterioration of its strength. become.
  • a film having high heat resistance such as polyimide
  • a modification treatment at a higher temperature is possible. Therefore, there is no general upper limit for the substrate temperature at the time of ultraviolet light irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate.
  • Ultraviolet light irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
  • a laminate having a gas barrier layer on the surface can be processed in an ultraviolet light firing furnace equipped with the ultraviolet light generation source as described above.
  • the ultraviolet light baking furnace itself is generally known.
  • an ultraviolet light baking furnace manufactured by I-Graphics Co., Ltd. can be used.
  • the laminated body which has a gas barrier layer on the surface is a long film form, by irradiating ultraviolet light continuously in the drying zone equipped with the above ultraviolet light generation sources, conveying this. It can be made into ceramics.
  • the time required for the ultraviolet light irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the base material and gas barrier layer used.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power. In addition, it does not emit light with a long wavelength that causes a temperature increase due to light, and irradiates energy in the ultraviolet light region, that is, with a short wavelength, and therefore has a feature that suppresses the increase in the surface temperature of the object to be fired. . For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
  • the efficiency in the ultraviolet light irradiation process tends to decrease due to the absorption by oxygen. It is preferable to carry out in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of ultraviolet light irradiation is preferably 10 to 50000 volume ppm, more preferably 50 to 20000 volume ppm.
  • a dry inert gas is preferable, and a dry nitrogen gas is particularly preferable from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the illuminance of the ultraviolet light on the gas barrier layer surface is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2 , and 50 mW / cm 2. More preferably, it is ⁇ 160 mW / cm 2 . If it is less than 1 mW / cm 2 , the reforming efficiency may be greatly reduced. If it exceeds 10 W / cm 2 , there is a concern that the gas barrier layer may be ablated or the base material may be damaged.
  • Irradiation energy amount of ultraviolet light is preferably 10 ⁇ 10000mJ / cm 2, more preferably from 50 ⁇ 6000mJ / cm 2, further preferably 100 ⁇ 3000mJ / cm 2. Is less than 10 mJ / cm 2, there is a fear that the reforming becomes insufficient, 10000 mJ / cm 2 than the cracking or due to excessive modification concerns the thermal deformation of the substrate emerges.
  • the gas barrier layer preferably contains a nitrogen element from the viewpoint of stress relaxation and absorbing ultraviolet light used in forming a gas barrier layer formed by a coating method described later.
  • a nitrogen element from the viewpoint of stress relaxation and absorbing ultraviolet light used in forming a gas barrier layer formed by a coating method described later.
  • the gas barrier property is improved by improving the adhesion between the gas barrier layer and a gas barrier layer formed by a coating method described later. Such effects as described above are obtained and preferable.
  • a coating film formed by applying and drying a coating liquid containing polysilazane on the gas barrier layer (deposited film) is subjected to a modification treatment, thereby forming a gas barrier layer (hereinafter referred to as a gas barrier layer). , Simply referred to as a coating barrier layer).
  • the method for forming the coating barrier layer is not particularly limited, but a coating liquid for forming a coating barrier layer containing an inorganic compound, preferably polysilazane, and, if necessary, a catalyst in an organic solvent is applied by a known wet coating method.
  • a method is preferred in which the solvent is removed by evaporation, and then the modification treatment is performed by irradiating with active energy rays such as ultraviolet rays, ultraviolet rays, electron beams, X rays, ⁇ rays, ⁇ rays, ⁇ rays and neutron rays.
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • the polysilazane preferably has the following structure.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. .
  • R 1 , R 2 and R 3 may be the same or different.
  • examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms.
  • the aryl group include aryl groups having 6 to 30 carbon atoms.
  • non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc.
  • non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, nap
  • the (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
  • the substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R1-R3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
  • R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
  • n is an integer
  • the polysilazane having the structure represented by the general formula (I) may be determined to have a number average molecular weight of 150 to 150,000 g / mol. preferable.
  • one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • polysilazane has a structure represented by the following general formula (II).
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
  • the substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
  • n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.
  • R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group;
  • R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group;
  • R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
  • polysilazane has a structure represented by the following general formula (III).
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
  • the substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
  • n ′′, p ′′ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. Note that n ′′, p ′′, and q may be the same or different.
  • R 1 ′′ , R 3 ′′ and R 6 ′′ each represent a hydrogen atom
  • R 2 ′′ , R 4 ′′ , R 5 ′′ and R 8 ′′ each represent a methyl group.
  • R 9 ′′ represents a (triethoxysilyl) propyl group
  • R 7 ′′ represents an alkyl group or a hydrogen atom.
  • the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard.
  • the ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, perhydropolysilazane and organopolysilazane may be selected as appropriate according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on 6- and 8-membered rings coexist.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and a commercially available product can be used as it is as a coating solution for forming a coating barrier layer.
  • Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd. Is mentioned.
  • polysilazane examples include, but are not limited to, for example, a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-23827), and a glycidol reaction.
  • a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide
  • glycidol-added polysilazane Japanese Patent Laid-Open No. 6-122852
  • alcohol-added polysilazane obtained by reacting alcohol
  • metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Fine particle added policy Zhang such (JP-A-7-196986), and a polysilazane ceramic at low temperatures.
  • the content of polysilazane in the coating barrier layer before the modification treatment can be 100% by weight when the total weight of the coating barrier layer is 100% by weight.
  • the content of polysilazane in the layer is preferably 10% by weight or more and 99% by weight or less, and 40% by weight or more and 95% by weight or less. Is more preferably 70 wt% or more and 95 wt% or less.
  • the coating solution used when forming the coating barrier layer can contain an additive compound as necessary.
  • an additive compound By adding the additive compound to the coating solution, there is an advantage that the modification of the barrier layer easily proceeds.
  • the additive compound examples include at least one selected from the group consisting of water, alcohol compounds, phenol compounds, metal alkoxide compounds, alkylamine compounds, alcohol-modified polysiloxanes, alkoxy-modified polysiloxanes, and alkylamino-modified polysiloxanes.
  • Compounds At least one compound selected from the group consisting of alcohol compounds, phenol compounds, metal alkoxide compounds, alkylamine compounds, alcohol-modified polysiloxanes, alkoxy-modified polysiloxanes, and alkylamino-modified polysiloxanes is more preferable.
  • the alcohol compound used as the additive compound include, for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, isopentanol, hexanol, isohexanol, cyclohexyl alcohol, octanol, and isooctanol.
  • the alcohol compound undergoes a dehydrogenative condensation reaction between the Si—H group that can be included in the polysilazane skeleton and the OH group in the alcohol compound during the reforming process to form a Si—O—R bond. Therefore, the storage stability under high temperature and high humidity is further improved.
  • these alcohol compounds methanol, ethanol, 1-propanol, or 2-propanol having a small number of carbon atoms and a boiling point of 100 ° C. or less is more preferable.
  • phenol compound used as the additive compound include, for example, phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol.
  • the phenol compound also undergoes a dehydrogenative condensation reaction between the Si—H group that can be included in the polysilazane skeleton and the OH group in the phenol compound during the modification treatment, and Si—O. Since the —R bond is formed, the storage stability under high temperature and high humidity is further improved.
  • metal alkoxide compound used as the additive compound examples include beryllium (Be), boron (B), magnesium (Mg), aluminum (Al), silicon (Si), calcium (Ca), scandium (Sc), and titanium (Ti). , Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge) , Strontium (Sr), Yttrium (Y), Zirconium (Zr), Niobium (Nb), Molybdenum (Mo), Technetium (Tc), Ruthenium (Ru), Rhodium (Rh), Palladium (Pd), Silver (Ag) , Cadmium (Cd), indium (In), tin (Sn), barium (Ba), lanthanum (La), selenium (Ce), praseodymium (Pr), neodymium (Nd), prom
  • metal alkoxide compounds include, for example, beryllium acetylacetonate, trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tri-tert borate.
  • Silsesquioxane can also be used as the metal alkoxide compound.
  • Silsesquioxane is a siloxane-based compound whose main chain skeleton is composed of Si—O bonds, and is also called T-resin, whereas ordinary silica is represented by the general formula [SiO 2 ].
  • Silsesquioxane (also referred to as polysilsesquioxane) is a compound represented by the general formula [RSiO 1.5 ].
  • a (RSi (OR ') 3 ) compound in which one alkoxy group of tetraalkoxysilane (Si (OR') 4 ) represented by tetraethoxysilane is replaced with an alkyl group or an aryl group.
  • the polysiloxane to be synthesized, and the molecular arrangement is typically amorphous, ladder-like, or cage-like (fully condensed cage-like).
  • Silsesquioxane may be synthesized or commercially available. Specific examples of the latter include X-40-2308, X-40-9238, X-40-9225, X-40-9227, x-40-9246, KR-500, KR-510 (all of which are Shin-Etsu Chemical) SR2400, SR2402, SR2405, FOX14 (perhydrosilcelsesquioxane) (all manufactured by Toray Dow Corning), SST-H8H01 (perhydrosilcelsesquioxane) (manufactured by Gelest), etc. Is mentioned.
  • a compound having a branched alkoxy group is preferable from the viewpoint of reactivity and solubility, and a compound having a 2-propoxy group or a sec-butoxy group is more preferable.
  • metal alkoxide compounds having an acetylacetonate group are also preferred.
  • the acetylacetonate group is preferable because it has an interaction with the central element of the alkoxide compound due to the carbonyl structure, so that handling is easy.
  • a compound having a plurality of alkoxide groups or acetylacetonate groups is more preferable from the viewpoint of reactivity and film composition.
  • the central element of the metal alkoxide an element that easily forms a coordinate bond with a nitrogen atom in polysilazane is preferable, and Al, Fe, or B having high Lewis acidity is more preferable.
  • More preferable metal alkoxide compounds are, specifically, triisopropyl borate, aluminum trisec-butoxide, aluminum ethyl acetoacetate diisopropylate, magnesium ethoxide, calcium isopropoxide, titanium tetraisopropoxide, gallium isopropoxide.
  • metal alkoxide compound a commercially available product or a synthetic product may be used.
  • commercially available products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate diisopropylate), ALCH-TR (aluminum tris).
  • Ethyl acetoacetate Ethyl acetoacetate
  • aluminum chelate M aluminum alkyl acetoacetate / diisopropylate
  • aluminum chelate D aluminum chelate
  • aluminum chelate A W
  • AL-M acetoalkoxy aluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.
  • Moth Chicks series manufactured by Matsumoto Fine Chemical Co., Ltd.
  • metal alkoxide compound when using a metal alkoxide compound, it is preferable to mix with the solution containing polysilazane in inert gas atmosphere. This is to prevent the metal alkoxide compound from reacting with moisture and oxygen in the atmosphere and causing intense oxidation.
  • alkylamine compound examples include primary amine compounds such as methylamine, ethylamine, propylamine, n-butylamine, sec-butylamine, tert-butylamine, 3-morpholinopropylamine; dimethylamine, diethylamine, Secondary amine compounds such as methylethylamine, dipropylamine, di (n-butyl) amine, di (sec-butyl) amine, di (tert-butyl) amine; trimethylamine, triethylamine, dimethylethylamine, methyldiethylamine, tripropyl Amines, tri (n-butyl) amine, tri (sec-butyl) amine, tri (tert-butyl) amine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethanolamine, etc.
  • tertiary amine compounds Such as tertiary amine compounds.
  • a diamine compound can be used as the alkylamine compound.
  • the diamine compound include tetramethylmethanediamine, tetramethylethanediamine, tetramethylpropanediamine (tetramethyldiaminopropane), tetramethylbutanediamine, tetramethylpentanediamine, tetramethylhexanediamine, tetraethylmethanediamine, tetraethylethane.
  • Examples include diamine, tetraethylpropanediamine, tetraethylbutanediamine, tetraethylpentanediamine, tetraethylhexanediamine, N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH), and tetramethylguanidine.
  • TDAH N-tetramethyl-1,6-diaminohexane
  • modified polysiloxanes such as hydroxy-modified polysiloxanes having hydroxy groups, alkoxy-modified polysiloxanes having alkoxy groups, and alkylamino-modified polysiloxanes having alkylamino groups can be preferably used as additive compounds.
  • polysiloxanes represented by the following general formula (4) or general formula (5) can be preferably used.
  • R 4 to R 7 are each independently a hydrogen atom, a hydroxy group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an alkylamino group, or a substituent. Or an unsubstituted aryl group, wherein at least one of R 4 and R 5 and at least one of R 6 and R 7 is a hydroxy group, an alkoxy group, or an alkylamino group, p and q are each independently an integer of 1 or more.
  • the modified polysiloxane may be a commercially available product or a synthetic product.
  • commercially available products include, for example, X-40-2651, X-40-2655A, KR-513, KC-89S, KR-500, X-40-9225, X-40-9246, X-40-9250 KR-401N, X-40-9227, X-40-9247, KR-510, KR9218, KR-213, X-40-2308, X-40-9238 (manufactured by Shin-Etsu Chemical Co., Ltd.), etc. Can be mentioned.
  • the degree of modification of the hydroxy group, alkoxy group or alkylamino group in the modified polysiloxane is preferably 5 mol% to 50 mol%, more preferably 7 mol% to 20 mol%, based on the number of moles of silicon atoms. More preferred is mol% to 12 mol%.
  • the polystyrene-reduced weight average molecular weight of the modified polysiloxane is preferably about 1,000 to 100,000, more preferably 2,000 to 50,000.
  • the solvent for preparing the coating liquid for forming the coating barrier layer is not particularly limited as long as it can disperse or dissolve polysilazane and an additive compound added as necessary, but water that easily reacts with polysilazane.
  • an organic solvent that does not contain a reactive group (such as a hydroxyl group or an amine group) and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable.
  • the solvent includes an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben.
  • an aprotic solvent for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben.
  • Hydrogen solvents Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include mono- and polyalkylene glycol dialkyl ethers (diglymes).
  • the solvent is selected according to the purpose such as the solubility of the silicon compound and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of polysilazane in the coating solution for forming the coating barrier layer is not particularly limited, and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by weight, more preferably 2 to 50% by weight, Particularly preferred is 3 to 40% by weight.
  • the coating solution for forming the coating barrier layer preferably contains a catalyst in order to promote modification.
  • a catalyst examples include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′—.
  • Amine compounds such as tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, and Pd compounds such as propionic acid Pd Metal catalysts such as Rh compounds such as Rh acetylacetonate, N-heterocyclic compounds, pyridine compounds such as pyridine, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline, piperidine, lutidine, pyrimidine, pyridazine, DBU (1 , 8-diazabicyclo [5.4.0] -7-undecene), DBN (1,5-diazabicyclo [4 3.0] -5-nonene), acetic, propionic, butyric, valeric, maleic, stearic acids, organic acids etc., hydrochloric, nitric acid, sulfur
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by weight, more preferably 0.5 to 7% by weight, based on polysilazane. By setting the addition amount of the catalyst within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, decrease in film density, increase in film defects, and the like.
  • the following additives may be used as necessary.
  • cellulose ethers, cellulose esters for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins for example, rubber, rosin resin, etc., synthetic resins
  • Aminoplasts especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
  • Method of applying coating liquid for forming coating barrier layer As a method for applying the coating liquid for forming the coating barrier layer, a conventionally known appropriate wet coating method can be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating thickness can be appropriately set according to the purpose.
  • the coating thickness per coating barrier layer is preferably about 10 nm to 10 ⁇ m after drying, more preferably 15 nm to 1 ⁇ m, and even more preferably 20 to 500 nm. If the film thickness is 10 nm or more, sufficient gas barrier properties can be obtained, and if it is 10 ⁇ m or less, stable coating properties can be obtained during layer formation, and high light transmittance can be realized.
  • the coating film After applying the coating solution, it is preferable to dry the coating film.
  • the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable coating barrier layer can be obtained. The remaining solvent can be removed later.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C. (Example: 80 ° C.).
  • the drying temperature is preferably set to 150 ° C. or less in consideration of deformation of the substrate due to heat.
  • the temperature can be set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • the coating film obtained by applying the coating solution for forming the coating barrier layer may include a step of removing moisture before or during the modification treatment.
  • a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature.
  • a preferable dew point temperature is 4 ° C. or less (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is ⁇ 5 ° C. (temperature 25 ° C./humidity 10%) or less, and the maintaining time is the film thickness of the coating barrier layer. It is preferable to set appropriately.
  • the dew point temperature is ⁇ 5 ° C. or less and the maintaining time is 1 minute or more.
  • the lower limit of the dew point temperature is not particularly limited, but is usually ⁇ 50 ° C. or higher, and preferably ⁇ 40 ° C. or higher. This is a preferred form from the viewpoint of promoting the dehydration reaction of the coating barrier layer converted to silanol by removing water before or during the modification treatment.
  • the modification treatment of the coating film formed by the coating method in the present invention refers to the conversion reaction of polysilazane to silicon oxide or silicon oxynitride, and specifically, the coating barrier layer can contribute to the development of gas barrier properties. This refers to the treatment of forming a level inorganic thin film.
  • the conversion reaction of polysilazane to silicon oxide or silicon oxynitride can be applied by appropriately selecting a known method.
  • a plasma treatment capable of a conversion reaction at a lower temperature or a conversion reaction by ultraviolet light irradiation treatment is preferable.
  • a known method can be used as the plasma treatment that can be used as the modification treatment, and an atmospheric pressure plasma treatment or the like can be preferably used.
  • the atmospheric pressure plasma CVD method which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum.
  • the film speed is high, and further, under a high pressure condition of atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free path is very short, so that a very homogeneous film can be obtained.
  • nitrogen gas or a group 18 atom of the long-period periodic table specifically helium, neon, argon, krypton, xenon, radon, or the like is used.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • UV light irradiation treatment any commonly used ultraviolet ray generator can be used.
  • the coating film containing the polysilazane compound from which moisture has been removed is modified by treatment with ultraviolet light irradiation.
  • Ozone and active oxygen atoms generated by ultraviolet light have high oxidation ability, and can form a silicon oxide film or silicon oxynitride film having high density and insulation at low temperatures. It is.
  • This ultraviolet light irradiation excites and activates O 2 and H 2 O, UV absorbers, and polysilazane itself that contribute to ceramicization. And the ceramicization of the excited polysilazane is promoted, and the resulting ceramic film becomes dense. Irradiation with ultraviolet light is effective at any time after the formation of the coating film.
  • the ultraviolet light generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm.
  • ultraviolet light including an electromagnetic wave having a wavelength of 10 to 200 nm called vacuum ultraviolet light is used.
  • the irradiation intensity and the irradiation time are set within a range in which the substrate carrying the coating containing the polysilazane compound before the modification is not damaged.
  • a 2 kW (80 W / cm ⁇ 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm.
  • the distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
  • the temperature of the substrate during the ultraviolet irradiation treatment is 150 ° C. or higher, the properties of the substrate are impaired in the case of a plastic film or the like, for example, the substrate is deformed or its strength is deteriorated. .
  • a modification treatment at a higher temperature is possible. Accordingly, there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate.
  • ultraviolet ray generating means examples include, but are not particularly limited to, metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, and UV light lasers.
  • the polysilazane layer before modification is irradiated with the generated ultraviolet light, the polysilazane before modification is reflected after reflecting the ultraviolet light from the generation source with a reflector from the viewpoint of improving efficiency and uniform irradiation. It is desirable to hit the layer.
  • UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
  • the substrate having a coating layer containing a polysilazane compound is in the form of a long film, it is converted into ceramics by continuously irradiating ultraviolet rays in a drying zone equipped with an ultraviolet ray source as described above while being conveyed. can do.
  • the time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the coating layer containing the substrate and polysilazane compound used.
  • the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
  • dry inert gas is preferably used, and dry nitrogen gas is particularly preferable from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the method for modifying the layer containing the polysilazane compound before modification in the present invention is treatment by irradiation with vacuum ultraviolet light.
  • the treatment by vacuum ultraviolet light irradiation uses light energy of 100 to 200 nm, preferably light energy having a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and the bonding of atoms is a photon called photon process.
  • This is a method in which a silicon oxide film is formed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by only the action.
  • a vacuum ultraviolet light source required for this a rare gas excimer lamp is preferably used.
  • rare gas atoms such as Xe, Kr, Ar, and Ne are called inert gases because they are chemically bonded and do not form molecules.
  • rare gas atoms excited atoms
  • the rare gas is xenon, e + Xe ⁇ e + Xe * Xe * + Xe + Xe ⁇ Xe 2 * + Xe
  • excimer light vacuum ultraviolet light
  • ⁇ Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
  • the illuminance of the vacuum ultraviolet ray on the coating surface received by the coating film containing the polysilazane compound is preferably 1 mW / cm 2 to 10 W / cm 2 , and 30 mW / cm 2 to 200 mW / cm. more preferably 2, further preferably at 50mW / cm 2 ⁇ 160mW / cm 2. If it is 1 mW / cm 2 or more, sufficient reforming efficiency can be obtained. Moreover, if it is 10 W / cm ⁇ 2 > or less, the ablation of a coating film will not arise easily and it will be hard to give a damage to a base material.
  • Irradiation energy amount of the VUV in coated surface containing the polysilazane compound is preferably 10 ⁇ 10000mJ / cm 2, more preferable to be 100 ⁇ 8000mJ / cm 2, further preferable to be 200 ⁇ 6000mJ / cm 2, 500 It is particularly preferred to be ⁇ 6000 mJ / cm 2 (Example: 3000 mJ / cm 2 ). If 10 mJ / cm 2 or more sufficient reforming efficiency is obtained, 10000 mJ / cm 2 or less value, if difficult to thermal deformation of the cracks or the substrate occurs.
  • the oxygen concentration upon irradiation with vacuum ultraviolet light (VUV) is preferably 300 to 10000 volume ppm (1 volume%), more preferably 500 to 5000 volume ppm (Example: 0.0. 1% by volume).
  • VUV vacuum ultraviolet light
  • Dielectric barrier discharge refers to lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. It is a similar very thin discharge called micro discharge.
  • electrodeless electric field discharge is also known as a method for efficiently obtaining excimer light emission.
  • the electrodeless field discharge is a discharge due to capacitive coupling, and is also called an RF discharge.
  • the lamp, the electrode, and the arrangement thereof may be basically the same as those of the dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz.
  • a spatially and temporally uniform discharge can be obtained in this way.
  • the Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the coating film containing the polysilazane compound can be modified in a short time.
  • the process time is shortened due to high throughput, the equipment area is reduced, and organic materials, plastic substrates, resin films, etc. that are easily damaged by heat are irradiated. It is possible.
  • heating the coating layer simultaneously with vacuum ultraviolet irradiation is also preferably used to promote the modification treatment.
  • the heating method is a method of heating the coating layer by heat conduction by bringing the substrate into contact with a heating element such as a heat block, a method of heating the atmosphere with an external heater such as a resistance wire, and an infrared region such as an IR heater.
  • a heating element such as a heat block
  • an external heater such as a resistance wire
  • an infrared region such as an IR heater.
  • the method using light etc. are mentioned, it does not restrict
  • a method capable of maintaining the smoothness of the coating layer may be appropriately selected.
  • the irradiation conditions of the vacuum ultraviolet rays vary depending on the substrate to be applied and can be appropriately determined by those skilled in the art.
  • the irradiation temperature (heating temperature) of vacuum ultraviolet rays is preferably 50 to 200 ° C., more preferably 80 to 150 ° C. It is preferable for the irradiation conditions to be within the above-mentioned range since deformation of the substrate and deterioration of strength are unlikely to occur, and the properties of the substrate are not impaired.
  • the film composition of the coating barrier layer can be measured by measuring the atomic composition ratio using an XPS surface analyzer.
  • the silicon-containing film can be cut and the cut surface can be measured by measuring the atomic composition ratio with an XPS surface analyzer.
  • the coating barrier layer may be a single layer or a laminated structure of two or more layers.
  • each coating barrier layer may have the same composition or a different composition.
  • the gas barrier film of the present invention may have an intermediate layer between the gas barrier layer and the coating barrier layer for the purpose of stress relaxation and the like.
  • a method of forming the intermediate layer a method of forming a polysiloxane modified layer can be applied.
  • a coating liquid containing polysiloxane is applied onto a gas barrier layer by a wet coating method and dried, and then the coating film obtained by drying is irradiated with vacuum ultraviolet light to form an intermediate layer. It is a method of forming.
  • the coating solution used for forming the intermediate layer preferably contains polysiloxane and an organic solvent.
  • the polysiloxane applicable to the formation of the intermediate layer is not particularly limited, but an organopolysiloxane represented by the following general formula (6) is particularly preferable.
  • organopolysiloxane represented by the following general formula (6) will be described as an example of polysiloxane.
  • R 8 to R 13 each independently represents an organic group having 1 to 8 carbon atoms. At this time, at least one of R 8 to R 13 is an alkoxy group or a hydroxyl group. M is an integer of 1 or more.
  • Examples of the organic group having 1 to 8 carbon atoms represented by R 8 to R 13 include halogenated alkyl groups such as ⁇ -chloropropyl group and 3,3,3-trifluoropropyl group, vinyl groups, and phenyl groups.
  • (Meth) acrylic acid ester groups such as ⁇ -methacryloxypropyl group, epoxy-containing alkyl groups such as ⁇ -glycidoxypropyl group, mercapto-containing alkyl groups such as ⁇ -mercaptopropyl group, ⁇ -aminopropyl group, etc.
  • Isocyanate-containing alkyl groups such as aminoalkyl groups and ⁇ -isocyanatopropyl groups, linear or branched alkyl groups such as methyl groups, ethyl groups, n-propyl groups and isopropyl groups, alicyclic groups such as cyclohexyl groups and cyclopentyl groups Linear or branched alkyl such as alkyl group, methoxy group, ethoxy group, n-propoxy group, isopropoxy group Alkoxy group, an acetyl group, a propionyl group, a butyryl group, valeryl group, an acyl group such as caproyl group, and a hydroxyl group.
  • an organopolysiloxane having m of 1 or more and a polystyrene equivalent weight average molecular weight of 1,000 to 20,000 is particularly preferred. If the weight average molecular weight in terms of polystyrene of the organopolysiloxane is 1,000 or more, the protective layer to be formed is hardly cracked, and water vapor barrier properties can be maintained. The intermediate layer is sufficiently cured, so that a sufficient hardness can be obtained as a protective layer.
  • examples of the organic solvent applicable to the formation of the intermediate layer include alcohol solvents, ketone solvents, amide solvents, ester solvents, aprotic solvents, and the like.
  • examples of the alcohol solvent include n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec- Pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene Glycol monobutyl ether and the like are preferable.
  • ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n-hexyl.
  • ketone di-iso-butyl ketone, trimethylnonanone, cyclohexanone, 2-hexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone, fenchon, acetylacetone, 2,4-hexanedione, 2 , 4-heptanedione, 3,5-heptanedione, 2,4-octanedione, 3,5-octanedione, 2,4-nonanedione, 3,5-nonanedione, 5-methyl-2,4-hexanedione, 2,2,6,6-tetrame Le-3,5-heptane dione, 1,1,1,5,5,5 beta-diketones such as hexafluoro-2,4-heptane dione and the like.
  • ketone solvents may be used alone or in combination of two or more.
  • amide solvents include formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide N, N-diethylacetamide, N-methylpropionamide, N-methylpyrrolidone, N-formylmorpholine, N-formylpiperidine, N-formylpyrrolidine, N-acetylmorpholine, N-acetylpiperidine, N-acetylpyrrolidine, etc. Can be mentioned. These amide solvents may be used alone or in combination of two or more.
  • ester solvents include diethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -valerolactone, n-propyl acetate, iso-propyl acetate, n-butyl acetate, and iso -Butyl, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-acetate -Nonyl, methyl acetoacetate, ethyl acetoacetate, ethylene glycol monomethyl ether acetate, methyl
  • Aprotic solvents include acetonitrile, dimethyl sulfoxide, N, N, N ′, N′-tetraethylsulfamide, hexamethylphosphoric triamide, N-methylmorpholone, N-methylpyrrole, N-ethylpyrrole, N -Methylpiperidine, N-ethylpiperidine, N, N-dimethylpiperazine, N-methylimidazole, N-methyl-4-piperidone, N-methyl-2-piperidone, N-methyl-2-pyrrolidone, 1,3-dimethyl Examples include -2-imidazolidinone and 1,3-dimethyltetrahydro-2 (1H) -pyrimidinone. These aprotic solvents may be used alone or in combination of two or more.
  • alcohol solvents are preferable among the above organic solvents.
  • Examples of the coating method for the coating liquid for forming the intermediate layer include spin coating, dipping, roller blade, and spraying.
  • the thickness of the intermediate layer formed by the coating liquid for forming the intermediate layer is preferably in the range of 100 nm to 10 ⁇ m. If the thickness of the intermediate layer is 100 nm or more, gas barrier properties under high temperature and high humidity can be ensured. Moreover, if the thickness of the intermediate layer is 10 ⁇ m or less, stable coating properties can be obtained when forming the intermediate layer, and high light transmittance can be realized.
  • the intermediate layer generally has a film density of 0.35 to 1.2 g / cm 3 , preferably 0.4 to 1.1 g / cm 3 , more preferably 0.5 to 1.0 g / cm 3. It is. If the film density is 0.35 g / cm 3 or more, sufficient mechanical strength of the coating film can be obtained.
  • the intermediate layer in the present invention is obtained by applying a coating solution containing polysiloxane onto a gas barrier layer by a wet coating method and drying it, and then irradiating the dried coating film (polysiloxane coating film) with vacuum ultraviolet light. Form.
  • vacuum ultraviolet light used for the formation of the intermediate layer vacuum ultraviolet light by the same vacuum ultraviolet light irradiation treatment as described in the formation of the barrier layer can be applied.
  • the integrated light quantity of ultraviolet light for forming the intermediate layer by reforming polysiloxane membrane 500 mJ / cm 2 or more, preferably 10,000 / cm 2 or less. If the accumulated amount of vacuum ultraviolet light is 500 mJ / cm 2 or more, sufficient gas barrier performance can be obtained, and if it is 10,000 mJ / cm 2 or less, an intermediate layer having high smoothness without deforming the substrate. Can be formed.
  • the intermediate layer in the present invention is preferably formed through a heating step in which the heating temperature is 50 ° C. or higher and 200 ° C. or lower. If the heating temperature is 50 ° C. or higher, sufficient barrier properties can be obtained, and if it is 200 ° C. or lower, an intermediate layer having high smoothness can be formed without deforming the substrate.
  • a heating method using a hot plate, an oven, a furnace, or the like can be applied to this heating step.
  • the heating atmosphere may be any condition such as air, nitrogen atmosphere, argon atmosphere, vacuum, or reduced pressure with controlled oxygen concentration.
  • a polysiloxane coating film is formed on the polysilazane coating film that has been subjected to the vacuum ultraviolet light irradiation treatment, and after the vacuum ultraviolet light irradiation treatment is applied to the polysiloxane coating film, a heat treatment of 100 ° C. or higher and 250 ° C. or lower is performed. And a gas barrier layer and an intermediate layer may be formed.
  • the gas barrier layer is caused by thermal stress due to the heat treatment. Generation of minute cracks in the gas barrier layer can be prevented, and the water vapor barrier performance of the gas barrier layer can be stabilized.
  • a protective layer containing an organic compound may be provided on the gas barrier layer or the coating barrier layer.
  • an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group is preferably used.
  • These organic resins or organic-inorganic composite resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins or organic-inorganic composite resins, and contain a polymerization initiator, a crosslinking agent, etc. as necessary.
  • the “crosslinkable group” is a group that can crosslink the binder polymer by a chemical reaction that occurs during light irradiation treatment or heat treatment.
  • the chemical structure is not particularly limited as long as it is a group having such a function.
  • the functional group capable of addition polymerization include cyclic ether groups such as an ethylenically unsaturated group and an epoxy group / oxetanyl group.
  • the functional group which can become a radical by light irradiation may be sufficient,
  • a crosslinkable group a thiol group, a halogen atom, an onium salt structure etc. are mentioned, for example.
  • ethylenically unsaturated groups are preferable, and include functional groups described in paragraphs “0130” to “0139” of JP-A No. 2007-17948.
  • organic-inorganic composite resin for example, an organic-inorganic composite resin described as “ORMOCER (registered trademark)” in US Pat. No. 6,503,634 can be preferably used.
  • the elastic modulus of the protective layer can be adjusted to a desired value by appropriately adjusting the structure of the organic resin, the density of the polymerizable group, the density of the crosslinkable group, the ratio of the crosslinking agent, and the curing conditions.
  • the organic resin composition examples include a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, and urethane acrylate. And a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • Examples of reactive monomers having at least one photopolymerizable unsaturated bond in the molecule include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n- Pentyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, n-decyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, allyl acrylate, benzyl acrylate, butoxyethyl acrylate, butoxyethylene glycol acrylate, cyclohexyl acrylate, di Cyclopentanyl acrylate, 2-ethylhexyl acrylate, glycerol acrylate, Lysidyl acrylate, 2-
  • the composition of the photosensitive resin contains a photopolymerization initiator.
  • the photopolymerization initiator include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, ⁇ -amino acetophenone, 4,4-dichloro Benzophenone, 4-benzoyl-4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p- tert-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethyl ketal, benzyl
  • the protective layer can contain an inorganic material. Inclusion of an inorganic material generally leads to an increase in the elastic modulus of the protective layer.
  • the elastic modulus of the protective layer can be adjusted to a desired value by appropriately adjusting the content ratio of the inorganic material.
  • inorganic fine particles having a number average particle diameter of 1 to 200 nm are preferable, and inorganic fine particles having a number average particle diameter of 3 to 100 nm are more preferable.
  • inorganic fine particles metal oxides are preferable from the viewpoint of transparency.
  • metal oxide SiO 2, Al 2 O 3 , TiO 2, ZrO 2, ZnO, SnO 2, In 2 O 3, BaO, SrO, CaO, MgO, VO 2, V 2 O5, CrO 2, MoO 2, MoO 3, MnO 2, Mn 2 O 3, WO 3, LiMn 2 O 4, Cd 2 SnO 4, CdIn 2 O 4, Zn 2 SnO 4, ZnSnO 3, Zn 2 In 2 O 5, Cd 2 SnO 4 , and the like. These may be used alone or in combination of two or more.
  • the present invention provides a gas barrier film produced by the production method described above. According to the above production method, a gas barrier film having excellent gas barrier properties and bending resistance, and having a smoothness that is not easily lowered can be obtained.
  • the gas barrier film of the present invention as described above has excellent gas barrier properties, transparency, bending resistance, and the like. For this reason, the gas barrier film of this invention is used for electronic devices, such as packages, such as an electronic device, a photoelectric conversion element (solar cell element), an organic electroluminescent (EL) element, a liquid crystal display element. That is, the present invention provides an electronic device including an electronic device body and a gas barrier film produced by the production method of the present invention.
  • the electronic element main body is the main body of the electronic device, and is disposed on the gas barrier film side according to the present invention.
  • the electronic element body a known electronic device body to which sealing with a gas barrier film can be applied can be used.
  • an organic EL element, a solar cell (PV), a liquid crystal display element (LCD), electronic paper, a thin film transistor, a touch panel, and the like can be given.
  • the electronic element body is preferably an organic EL element or a solar battery.
  • the gas barrier film according to the present invention can also be used for device film sealing. That is, it is a method of providing the gas barrier film of the present invention on the surface of the device itself as a support.
  • the device may be covered with a protective layer before providing the gas barrier film.
  • the gas barrier film according to the present invention can also be used as a device substrate or a film for sealing by a solid sealing method.
  • the solid sealing method is a method in which after a protective layer is formed on a device, an adhesive layer and a gas barrier film are stacked and cured.
  • an adhesive agent A thermosetting epoxy resin, a photocurable acrylate resin, etc. are illustrated.
  • Organic EL device Examples of organic EL elements using a gas barrier film are described in detail in JP-A-2007-30387.
  • the reflective liquid crystal display device has a configuration including a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a ⁇ / 4 plate, and a polarizing film in order from the bottom.
  • the gas barrier film in the present invention can be used as the transparent electrode substrate and the upper substrate. In the case of color display, it is preferable to further provide a color filter layer between the reflective electrode and the lower alignment film, or between the upper alignment film and the transparent electrode.
  • the transmissive liquid crystal display device includes, in order from the bottom, a backlight, a polarizing plate, a ⁇ / 4 plate, a lower transparent electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, an upper transparent electrode, an upper substrate, a ⁇ / 4 plate, and a polarization It has a structure consisting of a film. In the case of color display, it is preferable to further provide a color filter layer between the lower transparent electrode and the lower alignment film, or between the upper alignment film and the transparent electrode.
  • the type of the liquid crystal cell is not particularly limited, but more preferably a TN type (Twisted Nematic), an STN type (Super Twisted Nematic), a HAN type (Hybrid Aligned Nematic), a VA type (Vertical Alignment), an EC type, a B type.
  • TN type Transmission Nematic
  • STN type Super Twisted Nematic
  • HAN type Hybrid Aligned Nematic
  • VA Very Alignment
  • an EC type a B type.
  • OCB type Optically Compensated Bend
  • IPS type In-Plane Switching
  • CPA type Continuous Pinwheel Alignment
  • the gas barrier film of the present invention can also be used as a sealing film for solar cell elements.
  • the gas barrier film of the present invention is preferably sealed so that the gas barrier layer is closer to the solar cell element.
  • the solar cell element in which the gas barrier film of the present invention is preferably used is not particularly limited. For example, it is a single crystal silicon solar cell element, a polycrystalline silicon solar cell element, a single junction type, or a tandem structure type.
  • Amorphous silicon-based solar cell elements III-V group compound semiconductor solar cell elements such as gallium arsenide (GaAs) and indium phosphorus (InP), II-VI group compound semiconductor solar cell elements such as cadmium tellurium (CdTe), I-III- such as copper / indium / selenium (so-called CIS), copper / indium / gallium / selenium (so-called CIGS), copper / indium / gallium / selenium / sulfur (so-called CIGS), etc.
  • Group VI compound semiconductor solar cell element dye-sensitized solar cell element, organic solar cell element, etc. And the like.
  • the solar cell element is a copper / indium / selenium system (so-called CIS system), a copper / indium / gallium / selenium system (so-called CIGS system), copper / indium / gallium / selenium / sulfur.
  • CIS system copper / indium / selenium system
  • CIGS system copper / indium / gallium / selenium system
  • sulfur copper / indium / gallium / selenium / sulfur.
  • a group I-III-VI compound semiconductor solar cell element such as a system (so-called CIGSS system) is preferable.
  • the gas barrier film of the present invention can also be used as an optical member.
  • the optical member include a circularly polarizing plate.
  • a circularly polarizing plate can be produced by laminating a ⁇ / 4 plate and a polarizing plate using the gas barrier film in the present invention as a substrate. In this case, the lamination is performed so that the angle formed by the slow axis of the ⁇ / 4 plate and the absorption axis of the polarizing plate is 45 °.
  • a polarizing plate one that is stretched in a direction of 45 ° with respect to the longitudinal direction (MD) is preferably used.
  • MD longitudinal direction
  • those described in JP-A-2002-865554 can be suitably used. .
  • Example 1 ⁇ Preparation of substrate 1> A 75 ⁇ m thick polyester film (Cosmo Shine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.) with easy adhesion processing on both sides is used as a support, as shown below, a bleed-out prevention layer on one side, and a smooth surface on the opposite side What produced the layer was used as the base material 1.
  • a bleed-out prevention layer one side of the above support is coated with a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7535 manufactured by JSR Corporation, and a wire bar so that the film thickness after drying is 4 ⁇ m
  • OPSTAR registered trademark
  • Z7535 manufactured by JSR Corporation
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7501 manufactured by JSR Corporation is applied to the opposite surface of the above support, and a wire is formed so that the film thickness after drying becomes 4 ⁇ m.
  • OPSTAR registered trademark
  • Z7501 manufactured by JSR Corporation
  • the obtained smooth layer had a surface roughness specified by JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) was 16 nm.
  • the base material on which such a bleed-out prevention layer and a smooth layer were formed was designated as “B0”.
  • the first to third vapor deposition layers 2 each contained a metal oxide (silicon oxide), and the thicknesses of the first to third vapor deposition layers 2 were a total of 160 nm of 100 nm, 30 nm, and 30 nm, respectively.
  • Discharge gas N 2 gas Reaction gas 1: 1% by volume of hydrogen gas with respect to the total gas Reaction gas 2: 0.5% by volume of TEOS (tetraethoxysilane) with respect to the total gas Film formation conditions; 1st electrode side Power supply type Frequency 80kHz Output density 8W / cm 2 Electrode temperature 115 ° C Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M Frequency 13.56MHz Output density 10W / cm 2 Electrode temperature 95 ° C [Second deposition layer] Discharge gas: N 2 gas Reaction gas 1: 5% by volume of oxygen gas with respect to the total gas Reaction gas 2: 0.1% by volume of TEOS with respect to the total gas Film formation conditions; 1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k Frequency 100kHz Output density 10W / cm 2 Electrode temperature 120 ° C Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13
  • the high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm.
  • the source gas was introduced into the vacuum chamber with a silane gas flow rate of 7.5 sccm, an ammonia gas flow rate of 100 sccm, and a nitrous oxide gas flow rate of 50 sccm.
  • the film substrate temperature was 100 ° C. at the start of film formation, and the gas pressure during film formation. Was set to 100 Pa, and a silicon oxynitride thin film layer (SiON layer, gas barrier layer (2)) containing silicon oxynitride as a main component was formed to a thickness of 160 nm.
  • the gas barrier layer (2) is irradiated with ultraviolet light having a wavelength of 146 nm with an integrated light amount of 500 mJ / cm 2 (oxygen concentration: 1.0 vol%) to form the gas barrier layer (2a).
  • Gas barrier film 1-2 was obtained.
  • the high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm.
  • As source gases a silane gas flow rate of 7.5 sccm, an ammonia gas flow rate of 50 sccm, and a hydrogen gas flow rate of 200 sccm (sccm is cm 3 / min at 133.322 Pa) were introduced into the vacuum chamber.
  • the film substrate temperature was set to 100 ° C.
  • the gas pressure during film formation was set to 4 Pa
  • a silicon nitride thin film layer (SiN layer) mainly composed of silicon nitride was formed to a thickness of 100 nm.
  • the film substrate temperature was kept as it was, the gas pressure was set to 30 Pa, a second silicon nitride thin film layer (SiN layer) having a film thickness of 60 nm was continuously formed, and a gas barrier layer having a total film thickness of 160 nm was formed. .
  • the gas barrier layer (3) is irradiated with ultraviolet light having a wavelength of 146 nm at an integrated light quantity of 500 mJ / cm 2 (oxygen concentration: 1.0 vol%) to form the gas barrier layer (3a).
  • Gas barrier film 1-3 was obtained.
  • Discharge gas Nitrogen gas 94.9% by volume Thin film forming gas: Tetraethoxysilane 0.1% by volume Additive gas: Oxygen gas 5.0% by volume 1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k Frequency 100kHz Output density 10W / cm 2 Electrode temperature 120 ° C Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M Frequency 13.56MHz Output density 10W / cm 2 Electrode temperature 90 ° C [Second deposition layer] Discharge gas: Nitrogen gas 94.5% by volume Thin film forming gas: Tetraethoxysilane 0.5% by volume Additive gas: Oxygen gas 5.0% by volume 1st electrode side Power supply type Frequency 80kHz Output density 8W / cm 2 Electrode temperature 120 ° C Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M Frequency 13.56MHz Output density 10W / cm 2 Electrode
  • the gas barrier layer (4) is irradiated with light having a wavelength of 248 nm by a KrF excimer laser, and the integrated light quantity is 500. Irradiation was performed at mJ / cm 2 (oxygen concentration: 1.0% by volume) to form a gas barrier layer (5a) to obtain a gas barrier film 1-5.
  • Example 1-6 Preparation of SiOC film
  • the gas barrier film 1--1 was prepared in the same manner as in Example 1-5, except that the wavelength of the irradiated light was changed from 248 nm to 220 nm (using a KrCl excimer laser) and the gas barrier layer (6a) was prepared. 6 was produced.
  • Example 1-7 Preparation of SiOC film ⁇ Preparation of substrate 2> A biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 ⁇ m, width: 350 mm, manufactured by Teijin DuPont Films Ltd., trade name “Teonex (registered trademark) Q65FA”) was used as the substrate 2.
  • PEN film thickness: 100 ⁇ m, width: 350 mm, manufactured by Teijin DuPont Films Ltd., trade name “Teonex (registered trademark) Q65FA”) was used as the substrate 2.
  • ⁇ Plasma CVD conditions Feed rate of source gas (hexamethyldisiloxane, HMDSO): 50 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 500 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Transport speed of resin substrate: 2 m / min.
  • HMDSO hexamethyldisiloxane
  • O 2 oxygen gas
  • gas barrier layer (7) is irradiated with ultraviolet light of 220 nm using a KrCl excimer laser with an integrated light quantity of 500 mJ / cm 2 (oxygen concentration: 1.0 vol%) to form a gas barrier layer (7a), and gas barrier properties Film 1-7 was produced.
  • Example 1-8 Production of SiOC film A gas barrier film 1-8 was produced in the same manner as in Example 1-7, except that the wavelength of ultraviolet light to be irradiated was changed from 220 nm to 172 nm (using an Xe excimer lamp).
  • Example 1-9 Production of SiOC film A gas barrier film 1-9 was produced in the same manner as in Example 1-7, except that the wavelength of ultraviolet light to be irradiated was changed from 220 nm to 146 nm (using a Kr excimer lamp).
  • Example 1-10 Production of SiOC film A gas barrier film 1-10 was produced in the same manner as in Example 1-7 except that the wavelength of ultraviolet light to be irradiated was changed from 220 nm to 126 nm (using an Ar excimer lamp).
  • Example 2 ⁇ Comparative Example 2-1> (Formation of gas barrier layer by vapor deposition) A gas barrier layer 21 was formed in the same manner as the method for producing the gas barrier layer (1) described in Comparative Example 1-1.
  • a film having a thickness of 150 nm was formed on the substrate 1 with a spin coater and allowed to stand for 2 minutes, followed by additional heat treatment for 1 minute on a hot plate at 80 ° C. to form a polysilazane coating film.
  • vacuum ultraviolet light (MDI-COM excimer irradiation apparatus MODEL: MECL-M-1-200, wavelength 172 nm, stage temperature 100 ° C., integrated light quantity 3000 mJ / cm 2)
  • the gas barrier film was produced by irradiation with an oxygen concentration of 0.1% by volume.
  • Example 2-5 SiOC / PHPS (Formation of gas barrier layer by vapor deposition) A gas barrier layer was formed in the same manner as in Example 1-5 except that the wavelength of the ultraviolet light was changed from 248 nm to 172 nm (using an Xe excimer lamp).
  • Example 2-6 SiOC / PHPS (Formation of gas barrier layer by vapor deposition) A gas barrier layer was formed in the same manner as described in Example 1-7.
  • Example 2-7 A gas barrier film was produced in the same manner as in Example 2-6, except that the coating solution used in the production of the coating barrier layer was changed as follows.
  • Example 2-8> A gas barrier film was produced in the same manner as in Example 2-6, except that the coating solution used in the production of the coating barrier layer was changed as follows.
  • ALCH Korean Fine Chemical Co., Ltd., aluminum ethyl acetoacetate diisopropylate 0.46 g and dibutyl ether 19.2 g were added and mixed to prepare a coating solution.
  • Example 2-9 A gas barrier film was produced in the same manner as in Example 2-5 except that the wavelength of ultraviolet light was changed from 172 nm to 146 nm (using a Kr excimer lamp) in the formation of the gas barrier layer by the vapor deposition method.
  • Example 2-10> It was produced in the same manner as in Example 2-8 except that the wavelength of ultraviolet light was changed from 172 nm to 146 nm (using a Kr excimer lamp) in the formation of the gas barrier layer by the vapor deposition method.
  • the gas barrier layer formed by the above vapor deposition method is subjected to XPS depth profile measurement under the following conditions, and the silicon element distribution, oxygen element distribution, carbon element distribution and oxygen carbon distribution at the distance from the surface of the thin film layer in the layer thickness direction are measured. Obtained.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and its size: 800 ⁇ 400 ⁇ m oval.
  • the gas barrier layers formed by the vapor deposition methods of Comparative Example 1-4, Examples 1-5 to 1-10, Comparative Example 2-4, and Examples 2-5 to 2-10 were silicon atoms and carbon atoms. It was confirmed to contain.
  • the gas barrier layers formed by the vapor deposition methods of Examples 1-7 to 1-10 and Examples 2-6 to 2-10 have continuous change regions and extreme values in the film composition, and include silicon atoms, oxygen
  • the average atomic ratio of atoms and carbon atoms satisfies the relationship of (carbon atomic ratio) ⁇ (silicon atomic ratio) ⁇ (oxygen atomic ratio) in a region of 90% or more of the total thickness. confirmed.
  • the barrier property test was carried out by depositing 70 nm-thick metallic calcium on a gas barrier film and evaluating the time for 50% of the area as the degradation time.
  • Vapor Deposition Equipment Vacuum Deposition Equipment JEE-400 manufactured by JEOL Ltd. Constant temperature and humidity oven: Yamato Humidic Chamber IG47M (raw materials) Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation sample)
  • a vacuum vapor deposition apparatus vacuum vapor deposition apparatus JEE-400 manufactured by JEOL Ltd.
  • metallic calcium was vapor-deposited in a size of 12 mm ⁇ 12 mm through the mask on the surface of the gas barrier layer of the produced gas barrier film. At this time, the deposited film thickness was set to 70 nm.
  • the mask was removed in a vacuum state, and aluminum was vapor-deposited on the entire surface of one side of the sheet and temporarily sealed.
  • the vacuum state is released, and it is quickly transferred to a dry nitrogen gas atmosphere, and a quartz glass having a thickness of 0.2 mm is placed on the aluminum vapor deposition surface via a sealing ultraviolet light curing resin (manufactured by Nagase ChemteX Corporation).
  • a water vapor barrier property evaluation sample was prepared by pasting together and irradiating ultraviolet light to cure and adhere the resin to perform main sealing.
  • the obtained sample was stored under high temperature and high humidity of 85 ° C. and 85% RH, and the state in which metallic calcium was corroded with respect to the storage time was observed.
  • the observation was obtained by linearly interpolating the time when the area where metal calcium was corroded with respect to the metal calcium vapor deposition area of 12 mm ⁇ 12 mm to 50%, and the results are shown in Tables 1 and 2.
  • Deterioration resistance (water vapor transmission rate after bending test / water vapor transmission rate before bending test) ⁇ 100 (%) The deterioration resistance was classified into the following five grades and evaluated.
  • Deterioration resistance is 95% or more 5: Deterioration resistance is 90% or more and less than 95% 4: Deterioration resistance is 85% or more and less than 90% 3: Deterioration resistance is 80% or more and less than 85% 2: Deterioration resistance is 50% or more and less than 80% 1: Deterioration resistance is less than 50%.
  • the maximum cross-sectional height Rt (p) which is an index of surface roughness, is a cross-section of irregularities continuously measured with a detector having a stylus with a minimum tip radius using an AFM (Atomic Force Microscope; DI3100 manufactured by Digital Instruments). It was calculated from the curve, measured 30 times in a section with a measuring direction of 30 ⁇ m with a stylus with a very small tip radius, and obtained from the average roughness regarding the amplitude of fine irregularities.
  • the surface roughness (smoothness) was evaluated by classifying into the following five stages.
  • ⁇ Rt Maximum cross-sectional height (nm) Less than 6:10 5:10 or more but less than 15 4:15 or more, less than 20 3:20 or more, less than 30 2:30 or more, less than 50 1:50 or more.
  • Example 3 Production of electronic devices >> An organic EL (OLED) element, which is an organic thin film electronic device, was prepared by the following procedure using the gas barrier films described in Table 1 and Table 2 below as a substrate.
  • ITO indium tin oxide
  • first electrode layer On the gas barrier layer of the gas barrier film, ITO (indium tin oxide) having a thickness of 150 nm was formed by sputtering, and patterned by photolithography to form a first electrode layer.
  • the hole transport layer forming coating solution shown below was applied by an extrusion coater so that the thickness after drying was 50 nm, and then dried to form a hole transport layer. Formed.
  • the gas barrier film was subjected to cleaning surface modification using a low-pressure mercury lamp with a wavelength of 184.9 nm at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm.
  • the charge removal treatment was performed using a static eliminator with weak X-rays.
  • ⁇ Application conditions> The coating process was performed in an atmosphere of 25 ° C. and a relative humidity of 50% RH.
  • ⁇ Drying and heat treatment conditions> After applying the hole transport layer forming coating solution, the solvent was removed by applying hot air at a height of 100 mm toward the film formation surface, a discharge air speed of 1 m / s, a width of 5% of the wide air speed, and a temperature of 100 ° C. Subsequently, a back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using a heat treatment apparatus to form a hole transport layer.
  • ⁇ White luminescent layer forming coating solution 1.0 g of host material HA, 100 mg of dopant material DA, 0.2 mg of dopant material DB, and 0.2 mg of dopant material DC are dissolved in 100 g of toluene as a coating solution for forming a white light emitting layer. Got ready.
  • the chemical structures of the host material HA, the dopant material DA, the dopant material DB, and the dopant material DC are as shown in the following chemical formula.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, a coating temperature of 25 ° C., and a coating speed of 1 m / min.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.
  • an electron injection layer was formed on the electron transport layer formed above.
  • the substrate was put into a decompression chamber and decompressed to 5 ⁇ 10 ⁇ 4 Pa.
  • cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
  • a mask pattern was formed by vapor deposition using aluminum as the second electrode forming material under a vacuum of 5 ⁇ 10 ⁇ 4 Pa and having a takeout electrode.
  • a second electrode having a thickness of 100 nm was stacked.
  • SiO 2 was laminated with a thickness of 200 nm by a CVD method, and a protective layer was formed on the second electrode layer.
  • a sealing member As a sealing member, a polyethylene terephthalate (PET) film (12 ⁇ m thickness) is used on a 30 ⁇ m thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), and an adhesive for dry lamination (a two-component reaction type urethane adhesive) is used. What was dry-laminated (adhesive layer thickness 1.5 ⁇ m) was used, and sealing was performed using a sheet-like sealant TB1655 manufactured by ThreeBond Co., Ltd.
  • PET polyethylene terephthalate
  • the organic EL element which uses each gas barrier film was produced according to the above-mentioned process.
  • Example 4" photoelectric conversion element (solar cell)) Indium tin oxide (ITO) transparent conductive film deposited as a first electrode (anode) at a thickness of 150 nm on the gas barrier layer of the gas barrier film shown in Tables 1 and 2 below (sheet resistance 12 ⁇ / cm 2 ( ⁇ (square)) was patterned to a width of 10 mm using a normal photolithography method and wet etching to form a first electrode, and the patterned first electrode was formed using a surfactant and ultrapure water. After cleaning in the order of ultrasonic cleaning with and ultrasonic cleaning with ultrapure water, it was dried with nitrogen blow, and finally ultraviolet light ozone cleaning was performed.
  • ITO Indium tin oxide
  • PEDOT-PSS CLEVIOS (registered trademark) P VP AI 4083, Hereosu Co., conductivity: 1 ⁇ 10 -3 S / cm ) 2.0 quality
  • the substrate was coated and dried using a blade coater adjusted to 65 ° C. so that the dry film thickness was about 30 nm, and then heat-treated with warm air at 120 ° C. for 20 seconds. Then, a hole transport layer was formed on the first electrode, and after that, it was brought into a glove box and operated in a nitrogen atmosphere.
  • the element formed up to the hole transport layer was heated at 120 ° C. for 3 minutes in a nitrogen atmosphere.
  • This solution was applied and dried using a blade coater whose temperature was adjusted to 65 ° C. so that the dry film thickness was about 5 nm. Thereafter, heat treatment was performed for 2 minutes with warm air at 100 ° C. to form an electron transport layer on the photoelectric conversion layer.
  • the element on which the electron transport layer was formed was placed in a vacuum deposition apparatus. Then, the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, the pressure inside the vacuum deposition apparatus was reduced to 10 ⁇ 3 Pa or less, and then 100 nm of silver was deposited at a deposition rate of 2 nm / second, A second electrode (cathode) was formed on the electron transport layer.
  • a sealing member As a sealing member, a polyethylene terephthalate (PET) film (12 ⁇ m thickness) is used on a 30 ⁇ m thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), and an adhesive for dry lamination (two-component reaction type urethane adhesive) is used. Sealing was performed using a dry laminate (adhesive layer thickness 1.5 ⁇ m) using a sheet-like sealant TB1655 manufactured by ThreeBond Co., Ltd.
  • PET polyethylene terephthalate
  • the photoelectric conversion element (solar cell) using each gas barrier film was produced according to the above process.
  • the produced organic photoelectric conversion element is irradiated with light having an intensity of 100 mW / cm 2 using a solar simulator (AM1.5G filter), and a mask having an effective area of 1 cm 2 is overlaid on the light receiving portion to evaluate IV characteristics.
  • a solar simulator AM1.5G filter
  • a mask having an effective area of 1 cm 2 is overlaid on the light receiving portion to evaluate IV characteristics.
  • Tables 1 and 2 below show the composition and evaluation results of each gas barrier film. Note that “immediately” in Tables 1 and 2 indicates that a sample not subjected to accelerated deterioration treatment was evaluated.
  • the gas barrier film produced using the production method of the present invention was compared with the comparative example in the evaluation of the barrier property test, the bending resistance and the smoothness. Good results could be obtained.
  • the electronic device produced using the gas barrier film was able to obtain good results in the evaluation of dark spots (DS, black spots) and photoelectric conversion efficiency compared to the comparative example.
  • the gas barrier layer containing at least silicon atoms and carbon atoms formed by the vapor deposition method 1. Since it contains carbon atoms, the film is flexible, 2. Si—C bond can be cleaved with lower energy than Si—O bond or Si—N bond, and the bond is cleaved with energy of about 250 nm. This is considered to be due to the fact that the film can be modified not only to the surface of the gas barrier layer but also to the inside of the gas barrier layer so as to be a homogeneous film without distortion. Therefore, it is considered that a gas barrier layer in which gas barrier properties and smoothness are hardly lowered even when bent is formed.

Abstract

[Problem] To provide a method for producing a gas barrier film. [Solution] A method for producing a gas barrier film, which comprises forming a gas barrier layer containing at least a silicon atom and a carbon atom on a base material by a vapor deposition technique and then irradiating the gas barrier layer with ultraviolet light having a wavelength of less than 250 nm.

Description

ガスバリア性フィルムの製造方法Method for producing gas barrier film
 本発明は、ガスバリア性フィルムの製造方法に関する。 The present invention relates to a method for producing a gas barrier film.
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物を含む薄膜(ガスバリア層)を形成したガスバリア性フィルムが、食品、医薬品等の分野で物品を包装する用途に用いられている。ガスバリア性フィルムを用いることによって、水蒸気や酸素等のガスによる物品の変質を防止することができる。 Conventionally, a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles in the fields of food, pharmaceuticals, etc. It is used for. By using the gas barrier film, it is possible to prevent alteration of the article due to gas such as water vapor or oxygen.
 近年、このような水蒸気や酸素等の透過を防ぐガスバリア性フィルムについて、液晶表示素子(LCD)、太陽電池(PV)、有機エレクトロルミネッセンス(EL)などの電子デバイスのへの展開が要望され多くの検討がなされている。さらにこれらの電子デバイスの分野では、小型化、軽量化が進んでおり、さらに最近では、フレキシブルなデバイスが切望され、急速に開発が進んでいる。しかし、フレキシブル電子デバイスは、ガラス基材レベルの非常に高いガスバリア性が要求されるため、現状では十分な性能をガスバリア性フィルムは未だ十分に得られていない。 In recent years, there has been a demand for the development of such gas barrier films that prevent permeation of water vapor, oxygen, etc. to electronic devices such as liquid crystal display elements (LCD), solar cells (PV), and organic electroluminescence (EL). Consideration has been made. Furthermore, in the field of these electronic devices, miniaturization and weight reduction are progressing, and more recently, flexible devices have been anxious and development is progressing rapidly. However, since the flexible electronic device is required to have a very high gas barrier property at the glass substrate level, a gas barrier film with sufficient performance has not been obtained yet at present.
 電子デバイスに適用可能なガスバリア性フィルムを得るための方策としては、樹脂基材上にプラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)によってフィルムなどの基材上にガスバリア層を形成する方法や、ポリシラザンを主成分とする塗布液を基材上に塗布した後、表面処理(改質処理)を施してガスバリア層を形成する方法が知られている。 As a measure for obtaining a gas barrier film applicable to electronic devices, a gas barrier layer is formed on a substrate such as a film by a plasma CVD method (Chemical Vapor Deposition). And a method of forming a gas barrier layer by applying a surface treatment (modification treatment) after applying a coating liquid containing polysilazane as a main component on a substrate.
 例えば、特開2012-149278号公報では、乾式法により形成した窒化シリコン膜あるいは酸窒化シリコン膜に波長150nm以下の光照射を行うガスバリア性フィルムの製造方法が開示されている。 For example, Japanese Patent Application Laid-Open No. 2012-149278 discloses a method for manufacturing a gas barrier film in which a silicon nitride film or a silicon oxynitride film formed by a dry method is irradiated with light having a wavelength of 150 nm or less.
 また、特開2012-106421号公報では、乾式法により酸化シリコン膜を形成した後、波長172nmの光照射をおこなったバリア膜と湿式法によりシリコン膜を形成した後、プラズマ処理をおこなったバリア膜の積層膜とすることで、屈曲耐性を改良した技術が開示されている。 In JP 2012-106421 A, a silicon oxide film is formed by a dry method, a barrier film irradiated with light having a wavelength of 172 nm, a silicon film is formed by a wet method, and a barrier film subjected to plasma treatment is then formed. A technique for improving the bending resistance by using the laminated film is disclosed.
 しかしながら、特開2012-149278号公報に記載の技術で作製したガスバリア性フィルムは屈曲耐性が十分でないという問題が生じていた。 However, the gas barrier film produced by the technique described in JP2012-149278A has a problem that the bending resistance is not sufficient.
 また、特開2012-106421号公報に記載のガスバリア性フィルムは、屈曲試験後のフィルムを用いて有機EL素子を作製すると、ダークスポットが発生するという問題があった。 In addition, the gas barrier film described in Japanese Patent Application Laid-Open No. 2012-106421 has a problem that dark spots are generated when an organic EL element is produced using a film after a bending test.
 本発明は、上記事情を鑑みてなされたものであり、優れたガスバリア性および屈曲耐性を有し、さらに平滑性が低下しにくいガスバリア性フィルムを得る手段を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a means for obtaining a gas barrier film having excellent gas barrier properties and bending resistance, and having a smoothness that is not easily lowered.
 本発明者は、上記の問題を解決すべく、鋭意研究を行った。 The present inventor conducted intensive research to solve the above problems.
 その結果、基材上に、少なくとも珪素原子および炭素原子を含有するガスバリア層を蒸着法により形成した後、波長が250nm未満の紫外光照射を行うことを含むガスバリア性フィルムの製造方法により、上記課題が解決できることを見出した。 As a result, after forming a gas barrier layer containing at least silicon atoms and carbon atoms on the base material by vapor deposition, the above problem is achieved by a method for producing a gas barrier film including irradiation with ultraviolet light having a wavelength of less than 250 nm. Has found that can be solved.
 すなわち、本発明は、基材上に、少なくとも珪素原子および炭素原子を含有するガスバリア層を蒸着法により形成した後に、前記ガスバリア層に対して波長が250nm未満の紫外光照射を行うことを含む、ガスバリア性フィルムの製造方法である。 That is, the present invention includes, after forming a gas barrier layer containing at least silicon atoms and carbon atoms on a base material by a vapor deposition method, irradiating the gas barrier layer with ultraviolet light having a wavelength of less than 250 nm. It is a manufacturing method of a gas barrier film.
本発明に係るガスバリア層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。図1中、11はガスバリア性フィルムを;12は基材を;13は製造装置を;14は送り出しローラーを;15、16、17および18は搬送ローラーを;19および20は成膜ローラーを;21はガス供給管を;22はプラズマ発生用電源を;23および24は磁場発生装置を;25は巻取りローラーを;26はガスバリア層を、それぞれ、表す。It is a schematic diagram which shows an example of the manufacturing apparatus which can be utilized suitably in order to manufacture the gas barrier layer which concerns on this invention. In FIG. 1, 11 is a gas barrier film; 12 is a substrate; 13 is a production apparatus; 14 is a delivery roller; 15, 16, 17 and 18 are transport rollers; 19 and 20 are film forming rollers; 21 represents a gas supply pipe; 22 represents a power source for generating plasma; 23 and 24 represent magnetic field generators; 25 represents a take-up roller; and 26 represents a gas barrier layer. 本発明に係るガスバリア層を製造するために好適に利用することが可能な製造装置の他の一例を示す模式図である。図2中、Fは基材を;30はプラズマ放電処理装置を;31はプラズマ放電処理容器を;32は対向電極間(放電空間)を;35はロール回転電極(第1電極)を;36は角筒型固定電極(第2電極)を;40は二つの電源を有する電界印加手段を;41は第1電源を;42は第2電源を;43は第1フィルタを;44は第2フィルタを;50はガス供給手段を;51はガス発生装置を;53は排気口を;60は電極温度調節手段を;61は配管を;64、67、85および88はガイドロールを;65および66はニップロールを;68および69は仕切板を、それぞれ、表す。It is a schematic diagram which shows another example of the manufacturing apparatus which can be utilized suitably in order to manufacture the gas barrier layer which concerns on this invention. In FIG. 2, F is a base material; 30 is a plasma discharge treatment apparatus; 31 is a plasma discharge treatment vessel; 32 is between counter electrodes (discharge space); 35 is a roll rotating electrode (first electrode); Is a square tube type fixed electrode (second electrode); 40 is an electric field applying means having two power sources; 41 is a first power source; 42 is a second power source; 43 is a first filter; 50 is a gas supply means; 51 is a gas generator; 53 is an exhaust port; 60 is an electrode temperature adjusting means; 61 is a pipe; 64, 67, 85 and 88 are guide rolls; 66 represents a nip roll; 68 and 69 represent partition plates, respectively. 本発明に係る第1のガスバリア層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。図3中、101はプラズマCVD装置を;102は真空槽を;103はカソード電極を;105はサセプタを;106は熱媒体循環系を;107は真空排気系を;108はガス導入系を;109は高周波電源を;160は加熱冷却装置を、それぞれ、表す。It is a schematic diagram which shows an example of the vacuum plasma CVD apparatus used for formation of the 1st gas barrier layer based on this invention. 3, 101 is a plasma CVD apparatus; 102 is a vacuum chamber; 103 is a cathode electrode; 105 is a susceptor; 106 is a heat medium circulation system; 107 is a vacuum exhaust system; 108 is a gas introduction system; 109 represents a high frequency power source; 160 represents a heating / cooling device. 本発明に係るガスバリア性フィルムを封止フィルムとして用いた電子機器である有機ELパネルの一例である。図4中、4は透明電極を;5は有機EL素子を;6は接着剤層を;7は対向フィルムを;9は有機ELパネルを;10はガスバリア性フィルムを、それぞれ、表す。It is an example of the organic electroluminescent panel which is an electronic device using the gas-barrier film which concerns on this invention as a sealing film. In FIG. 4, 4 represents a transparent electrode; 5 represents an organic EL element; 6 represents an adhesive layer; 7 represents a counter film; 9 represents an organic EL panel; and 10 represents a gas barrier film.
 以下、本発明の好ましい形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described.
 本形態に係るガスバリア性フィルムの製造方法は、基材上に、少なくとも珪素原子および炭素原子を含有するガスバリア層を蒸着法により形成した後に、波長が250nm未満の紫外光照射を行うことを含む。 The method for producing a gas barrier film according to this embodiment includes performing irradiation with ultraviolet light having a wavelength of less than 250 nm after forming a gas barrier layer containing at least silicon atoms and carbon atoms on a substrate by a vapor deposition method.
 上記構成をとることにより、本発明によれば、ガスバリア性および屈曲耐性に優れ、さらに平滑性が低下しにくいガスバリア性フィルムの製造方法が提供される。また、本発明の製造方法により得られるガスバリア性フィルムを用いた、ガスバリア性に優れ、ダークスポットが発生しにくい、電子デバイスが提供される。 By adopting the above configuration, according to the present invention, there is provided a method for producing a gas barrier film that is excellent in gas barrier properties and bending resistance, and that is less likely to deteriorate in smoothness. In addition, an electronic device using the gas barrier film obtained by the production method of the present invention, which is excellent in gas barrier properties and hardly generates dark spots is provided.
 詳細なメカニズムは不明であるが、本発明の構成とすることで、上記効果が奏されるメカニズムは以下のとおりであると推定される。 Although the detailed mechanism is unknown, it is presumed that the mechanism that achieves the above-mentioned effect by the configuration of the present invention is as follows.
 特開2012-106421号公報に記載されているような酸化シリコン膜に波長172nmの光照射を行った場合、異物の除去や表面の欠陥補修が可能である。これは、光照射雰囲気下に存在する酸素から生成されたオゾン、活性酸素等によるものである。しかし、Si-O結合は結合エネルギーが大きいため、波長172nmの紫外光照射では結合を切断にはエネルギーが足りず、酸素が存在する膜表面しか改質することができない。このため、膜厚方向に対しては部分的にひずみがあり、均質な膜になっていないため、屈曲により平滑性が低下したと推定される。 When a silicon oxide film as described in JP 2012-106421 A is irradiated with light having a wavelength of 172 nm, foreign substances can be removed and surface defects can be repaired. This is due to ozone, active oxygen and the like generated from oxygen present in the light irradiation atmosphere. However, since the Si—O bond has a large bond energy, irradiation with ultraviolet light having a wavelength of 172 nm does not have enough energy to break the bond, and only the film surface on which oxygen is present can be modified. For this reason, there is a partial distortion in the film thickness direction, and the film is not a homogeneous film, so it is presumed that the smoothness has decreased due to bending.
 一方、蒸着法により形成された少なくとも珪素原子および炭素原子を含有する膜は、炭素を含有するため柔軟性を有する。さらに、Si-C結合は、Si-O結合やSi-N結合に比べて低いエネルギーで開裂させることが可能であり、波長250nm程度のエネルギーで結合が開裂する。このため、本発明の製造方法のように、珪素原子および炭素原子を含有する膜に対して、波長250nm以下の光を照射することで、膜表面だけでなく、膜内部までひずみのない均質的な膜に改質することができ、屈曲してもガスバリア性や平滑性がほとんど低下しない膜が形成できると推察される。 On the other hand, a film containing at least silicon atoms and carbon atoms formed by a vapor deposition method has flexibility because it contains carbon. Furthermore, the Si—C bond can be cleaved with lower energy than the Si—O bond or Si—N bond, and the bond is cleaved with energy of about 250 nm wavelength. For this reason, as in the manufacturing method of the present invention, a film containing silicon atoms and carbon atoms is irradiated with light having a wavelength of 250 nm or less, so that not only the film surface but also the film interior is homogeneous. It can be inferred that a film can be formed which can be modified to a smooth film and whose gas barrier property and smoothness are hardly deteriorated even when bent.
 なお、上記メカニズムは推測によるものであり、本発明は上記メカニズムに何ら拘泥されるものではない。 The above mechanism is based on speculation, and the present invention is not limited to the above mechanism.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 [基材]
 本発明に係るガスバリア性フィルムは、通常、基材として、プラスチックフィルムを用いる。用いられるプラスチックフィルムは、ガスバリア層を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
[Base material]
The gas barrier film according to the present invention usually uses a plastic film as a substrate. The plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold the gas barrier layer, and can be appropriately selected according to the purpose of use. Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide. Resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic ring Examples thereof include thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
 本発明に係るガスバリア性フィルムを有機EL素子等のデバイスの基板として使用する場合は、基材は耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつTgが100℃以上300℃以下の樹脂基材が使用される。該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。即ち、これらの用途に本発明のガスバリア性フィルムを用いる場合、ガスバリア性フィルムは、150℃以上の工程に曝されることがある。この場合、ガスバリア性フィルムにおける基材の線膨張係数が100ppm/Kを超えると、ガスバリア性フィルムを前記のような温度の工程に流す際に基板寸法が安定せず、熱膨張および収縮に伴い、遮断性性能が劣化する不都合や、或いは、熱工程に耐えられないという不具合が生じやすくなる。15ppm/K未満では、フィルムがガラスのように割れてしまいフレキシビリティが劣化する場合がある。 When the gas barrier film according to the present invention is used as a substrate for a device such as an organic EL element, the base material is preferably made of a heat-resistant material. Specifically, a resin base material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and Tg of 100 ° C. or more and 300 ° C. or less is used. The base material satisfies the requirements for use as a laminated film for electronic parts and displays. That is, when the gas barrier film of the present invention is used for these applications, the gas barrier film may be exposed to a process at 150 ° C. or higher. In this case, when the coefficient of linear expansion of the base material in the gas barrier film exceeds 100 ppm / K, the substrate dimensions are not stable when the gas barrier film is passed through the temperature process as described above, and thermal expansion and contraction occur. Inconvenience that the shut-off performance is deteriorated or a problem that the thermal process cannot withstand is likely to occur. If it is less than 15 ppm / K, the film may break like glass and the flexibility may deteriorate.
 基材のTgや線膨張係数は、添加剤などによって調整することができる。基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。特に、透明性を求める場合には脂環式ポレオレフィン等を使用するのが好ましい。 The Tg and linear expansion coefficient of the substrate can be adjusted by additives. More preferable specific examples of the thermoplastic resin that can be used as the substrate include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic. Polyolefin (for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.), polyarylate (PAr: 210 ° C), polyethersulfone (PES: 220 ° C), polysulfone (PSF: 190 ° C), cycloolefin copolymer (COC: Compound described in JP-A No. 2001-150584: 162 ° C.), polyimide (for example, Neoprim (registered trademark): 260 ° C. manufactured by Mitsubishi Gas Chemical Co., Ltd.), fluorene ring-modified polycarbonate (BCF-PC: JP In 2000-227603 Listed compound: 225 ° C.), alicyclic modified polycarbonate (IP-PC: compound described in JP 2000-227603 A: 205 ° C.), acryloyl compound (compound described in JP 2002-80616 A: 300 ° C.) And the like) (Tg is shown in parentheses). In particular, when transparency is required, it is preferable to use an alicyclic polyolefin or the like.
 本発明のガスバリア性フィルムを偏光板と組み合わせて使用する場合、ガスバリア性フィルムのガスバリア層がセルの内側に向くようにし、最も内側に(素子に隣接して)配置することが好ましい。このとき、偏光板よりセルの内側にガスバリア性フィルムが配置されることになるため、ガスバリア性フィルムのレターデーション値が重要になる。このような態様でのガスバリア性フィルムの使用形態は、レターデーション値が10nm以下の基材フィルムを用いたガスバリア性フィルムと円偏光板(1/4波長板+(1/2波長板)+直線偏光板)とを積層して使用するか、あるいは1/4波長板として使用可能な、レターデーション値が100nm~180nmの基材フィルムを用いたガスバリア性フィルムに直線偏光板を組み合わせて用いるのが好ましい。 When the gas barrier film of the present invention is used in combination with a polarizing plate, it is preferable that the gas barrier layer of the gas barrier film is directed to the inner side of the cell and arranged on the innermost side (adjacent to the element). At this time, since the gas barrier film is disposed inside the cell from the polarizing plate, the retardation value of the gas barrier film is important. The usage form of the gas barrier film in such an embodiment includes a gas barrier film using a base film having a retardation value of 10 nm or less and a circularly polarizing plate (¼ wavelength plate + (½ wavelength plate) + straight line. A polarizing plate is used in combination with a gas polarizing film using a base film having a retardation value of 100 nm to 180 nm, which can be used as a quarter wavelength plate. preferable.
 レターデーションが10nm以下の基材フィルムとしては、例えば、セルローストリアセテート(富士フイルム株式会社製:フジタック(登録商標))、ポリカーボネート(帝人化成株式会社製:ピュアエース(登録商標)、株式会社カネカ製:エルメック(登録商標))、シクロオレフィンポリマー(JSR株式会社製:アートン(登録商標)、日本ゼオン株式会社製:ゼオノア(登録商標))、シクロオレフィンコポリマー(三井化学株式会社製:アペル(登録商標)(ペレット)、ポリプラスチック株式会社製:トパス(登録商標)(ペレット))、ポリアリレート(ユニチカ株式会社製:U100(ペレット))、透明ポリイミド(三菱ガス化学株式会社製:ネオプリム(登録商標))等を挙げることができる。 Examples of the substrate film having a retardation of 10 nm or less include, for example, cellulose triacetate (Fuji Film Co., Ltd .: Fujitac (registered trademark)), polycarbonate (Teijin Chemicals Co., Ltd .: Pure Ace (registered trademark), Kaneka Corporation): Elmec (registered trademark)), cycloolefin polymer (manufactured by JSR Corporation: Arton (registered trademark), Nippon Zeon Corporation: ZEONOR (registered trademark)), cycloolefin copolymer (manufactured by Mitsui Chemicals, Inc .: APPEL (registered trademark)) (Pellets), manufactured by Polyplastics Co., Ltd .: Topas (registered trademark) (pellets)), polyarylate (manufactured by Unitika Co., Ltd .: U100 (pellets)), transparent polyimide (manufactured by Mitsubishi Gas Chemical Co., Ltd .: Neoprim (registered trademark)) Etc.
 また1/4波長板としては、上記のフィルムを適宜延伸することで所望のレターデーション値に調整したフィルムを用いることができる。 Further, as the quarter wavelength plate, a film adjusted to a desired retardation value by appropriately stretching the above film can be used.
 本発明のガスバリア性フィルムは有機EL素子等のデバイスとして利用されうることから、プラスチックフィルムは透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。 Since the gas barrier film of the present invention can be used as a device such as an organic EL element, the plastic film is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
 ただし、本発明のガスバリア性フィルムをディスプレイ用途に用いる場合であっても、観察側に設置しない場合などは必ずしも透明性が要求されない。したがって、このような場合は、プラスチックフィルムとして不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。 However, even when the gas barrier film of the present invention is used for display, transparency is not necessarily required when it is not installed on the observation side. Therefore, in such a case, an opaque material can be used as the plastic film. Examples of the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.
 本発明のガスバリア性フィルムに用いられるプラスチックフィルムの厚みは、用途によって適宜選択されるため特に制限がないが、典型的には1~800μmであり、好ましくは10~200μmである。これらのプラスチックフィルムは、透明導電層、平滑層、クリアハードコート層等の機能層を有していても良い。機能層については、上述したもののほか、特開2006-289627号公報の段落番号0036~0038に記載されているものを好ましく採用できる。 The thickness of the plastic film used for the gas barrier film of the present invention is not particularly limited because it is appropriately selected depending on the use, but is typically 1 to 800 μm, preferably 10 to 200 μm. These plastic films may have functional layers such as a transparent conductive layer, a smooth layer, and a clear hard coat layer. As the functional layer, in addition to those described above, those described in paragraph numbers 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
 基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくとも、ガスバリア層を設ける側を研摩し、平滑性を向上させておいてもよい。 The substrate preferably has a high surface smoothness. As the surface smoothness, those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the gas barrier layer is provided, may be polished to improve smoothness.
 また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。 In addition, the base material using the above-described resins or the like may be an unstretched film or a stretched film.
 本発明に用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。 The base material used in the present invention can be produced by a conventionally known general method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. Further, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc. A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
 基材の両面、少なくとも本発明に係るガスバリア層を設ける側には、接着性向上のための公知の種々の処理、コロナ放電処理、火炎処理、酸化処理、プラズマ処理、または平滑層の積層等を、必要に応じて組み合わせて行うことができる。 On both sides of the substrate, at least on the side where the gas barrier layer according to the present invention is provided, various known treatments for improving adhesion, corona discharge treatment, flame treatment, oxidation treatment, plasma treatment, or lamination of a smooth layer, etc. Can be combined as needed.
 〈アンカーコート層〉
 本発明に係る基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。アンカーコート層の構成材料、形成方法等は、特開2013-52561号公報の段落「0229」~「0232」に開示される材料、方法等が適宜採用される。
<Anchor coat layer>
On the surface of the base material according to the present invention, an anchor coat layer may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion). As the constituent material and formation method of the anchor coat layer, the materials and methods disclosed in paragraphs “0229” to “0232” of JP2013-52561A are appropriately employed.
 〈平滑層〉
 本発明のガスバリア性フィルムは、基材のガスバリア層を有する面、好ましくは基材と下地層との間に平滑層を有していてもよい。平滑層は突起等が存在する基材の粗面を平坦化するために、あるいは、樹脂基材に存在する突起により、ガスバリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。平滑層の構成材料、形成方法、表面粗さ、膜厚等は、特開2013-52561号公報の段落「0233」~「0248」に開示される材料、方法等が適宜採用される。
<Smooth layer>
The gas barrier film of the present invention may have a smooth layer between the surface of the base material having the gas barrier layer, preferably between the base material and the base layer. The smooth layer is provided to flatten the rough surface of the substrate on which protrusions and the like are present, or to fill the unevenness and pinholes generated in the gas barrier layer with the protrusions existing on the resin base material. . The materials, methods, etc. disclosed in paragraphs “0233” to “0248” of JP2013-52561A are appropriately employed as the constituent material, forming method, surface roughness, film thickness, etc. of the smooth layer.
 〈ブリードアウト防止層〉
 本発明のガスバリア性フィルムは、ブリードアウト防止層をさらに有することができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、樹脂基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。ブリードアウト防止層の構成材料、形成方法、膜厚等は、特開2013-52561号公報の段落「0249」~「0262」に開示される材料、方法等が適宜採用される。
<Bleed-out prevention layer>
The gas barrier film of the present invention can further have a bleed-out preventing layer. The bleed-out prevention layer is used for the purpose of suppressing a phenomenon that, when a film having a smooth layer is heated, unreacted oligomers migrate from the resin base material to the surface and contaminate the contact surface. It is provided on the opposite surface of the substrate. The bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function. As the constituent material, forming method, film thickness and the like of the bleed-out prevention layer, the materials, methods and the like disclosed in paragraphs “0249” to “0262” of JP2013-52561A are appropriately employed.
 [ガスバリア層]
 本形態に係るガスバリア性フィルムの製造方法は、基材上に、少なくとも珪素原子および炭素原子を含有するガスバリア層を蒸着法により形成することを含む。
[Gas barrier layer]
The method for producing a gas barrier film according to this embodiment includes forming a gas barrier layer containing at least silicon atoms and carbon atoms on a substrate by a vapor deposition method.
 本発明に係る蒸着法により形成されるガスバリア層(以下、単にガスバリア層とも称する)の厚みは特に限定されないが、ガスバリア性能を向上させ、一方で、欠陥を生じにくくするために、通常、20~1000nmの範囲内であり、好ましくは50~300nmである。ここで、蒸着ガスバリア層の厚みは、透過型顕微鏡(TEM)観察による膜厚測定法を採用する。蒸着ガスバリア層は、複数のサブレイヤーからなる積層構造であってもよい。この場合サブレイヤーの層数は、2~30層であることが好ましい。また、各サブレイヤーが同じ組成であっても異なる組成であってもよい。 The thickness of the gas barrier layer (hereinafter also simply referred to as a gas barrier layer) formed by the vapor deposition method according to the present invention is not particularly limited, but in order to improve the gas barrier performance while making it difficult to cause defects, it is usually 20 to It is within the range of 1000 nm, preferably 50 to 300 nm. Here, the thickness of the vapor deposition gas barrier layer employs a film thickness measurement method by observation with a transmission microscope (TEM). The vapor deposition gas barrier layer may have a laminated structure including a plurality of sublayers. In this case, the number of sublayers is preferably 2 to 30. Moreover, each sublayer may have the same composition or a different composition.
 ガスバリア層は、少なくとも珪素原子および炭素原子を含有する。 The gas barrier layer contains at least silicon atoms and carbon atoms.
 本発明に係るガスバリア層には、珪素原子および炭素原子が存在する。このうち、珪素原子および酸素原子を存在させることによって、ガスバリア性をより向上させることができ、炭素原子を存在させることによってガスバリア層に柔軟性を付与することができる。    In the gas barrier layer according to the present invention, silicon atoms and carbon atoms are present. Among these, the presence of silicon atoms and oxygen atoms can further improve the gas barrier property, and the presence of carbon atoms can impart flexibility to the gas barrier layer. *
 ここで、ガスバリア性テストは、後述の実施例に記載の通り、70nm厚の金属カルシウムをガスバリア性フィルム上に蒸着製膜し、その50%の面積になる時間を劣化時間として評価することで行った。 Here, the gas barrier property test was performed by depositing 70 nm-thick metal calcium on the gas barrier film and evaluating the time of 50% area as the degradation time, as described in the examples below. It was.
 また、本発明に係るガスバリア層は、条件(i)ガスバリア層の膜厚方向におけるガスバリア層表面からの距離(L)と、珪素原子、酸素原子、および炭素原子の合計量に対する珪素原子の量の比率(珪素の原子比)との関係を示す珪素分布曲線、Lと珪素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびにLと珪素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、ガスバリア層の膜厚の90%以上(上限:100%)の領域で、下記式(A):式(A) (炭素の原子比)<(珪素の原子比)<(酸素の原子比)または下記式(B):式(B) (酸素の原子比)<(珪素の原子比)<(炭素の原子比)で表される序列の大小関係を有することが好ましい。ここで、ガスバリア層の膜厚の少なくとも90%以上とは、ガスバリア層中で連続していなくてもよく、単に90%以上の部分で上記した関係を満たしていればよい。 In addition, the gas barrier layer according to the present invention includes a condition (i) a distance (L) from the gas barrier layer surface in the film thickness direction of the gas barrier layer, and the amount of silicon atoms relative to the total amount of silicon atoms, oxygen atoms, and carbon atoms. Silicon distribution curve showing the relationship with the ratio (atomic ratio of silicon), oxygen distribution showing the relationship between L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of oxygen) 90% or more of the film thickness of the gas barrier layer in the curve and the carbon distribution curve showing the relationship between the ratio of the amount of carbon atoms to the total amount of L and silicon atoms, oxygen atoms and carbon atoms (carbon atomic ratio) ( In the region of the upper limit: 100%, the following formula (A): formula (A) (carbon atomic ratio) <(silicon atomic ratio) <(oxygen atomic ratio) or the following formula (B): formula (B) (Atomic ratio of oxygen) <(atom of silicon ) <(Preferably has a size relationship of hierarchy represented by an atomic ratio of carbon). Here, the term “at least 90% or more of the film thickness of the gas barrier layer” does not need to be continuous in the gas barrier layer.
 上記分布曲線において、上記(酸素の原子比)、(珪素の原子比)および(炭素の原子比)の関係は、ガスバリア層の膜厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがより好ましい。また、好ましくは、ガスバリア層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(珪素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C、式(A)で表される序列の大小関係)。かような条件となることで、得られるガスバリア性フィルムのガスバリア性や屈曲性が十分となる。 In the above distribution curve, the relationship between the above (atomic ratio of oxygen), (atomic ratio of silicon) and (atomic ratio of carbon) is at least 90% or more (upper limit: 100%) of the film thickness of the gas barrier layer. It is more preferable to satisfy | fill, and it is more preferable to satisfy | fill in the area | region of 93% or more (upper limit: 100%). Preferably, in the region of 90% or more (upper limit: 100%) of the thickness of the gas barrier layer, (atomic ratio of oxygen), (atomic ratio of silicon), and (atomic ratio of carbon) increase in order (atom The ratio is O> Si> C, the order of magnitude relationship represented by the formula (A)). By satisfying such conditions, the resulting gas barrier film has sufficient gas barrier properties and flexibility.
 珪素分布曲線、酸素分布曲線、および炭素分布曲線において、珪素の原子比、酸素の原子比、および炭素の原子比が、該ガスバリア層の膜厚の90%以上の領域において、該式(A)の条件を満たす場合には、前記層中における珪素原子、酸素原子、および炭素原子の合計量に対する珪素原子の含有量の原子比率は、25~45at%であることが好ましく、30~40at%であることがより好ましい。また、前記ガスバリア層中における珪素原子、酸素原子、および炭素原子の合計量に対する酸素原子の含有量の原子比率は、33~67at%であることが好ましく、45~67at%であることがより好ましい。さらに、前記層中における珪素原子、酸素原子、および炭素原子の合計量に対する炭素原子の含有量の原子比率は、3~33at%であることが好ましく、3~25at%であることがより好ましい。 In the silicon distribution curve, oxygen distribution curve, and carbon distribution curve, when the silicon atomic ratio, oxygen atomic ratio, and carbon atomic ratio are 90% or more of the thickness of the gas barrier layer, the formula (A) When the above condition is satisfied, the atomic ratio of the silicon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the layer is preferably 25 to 45 at%, and preferably 30 to 40 at%. More preferably. The atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably 33 to 67 at%, more preferably 45 to 67 at%. . Furthermore, the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the layer is preferably 3 to 33 at%, and more preferably 3 to 25 at%.
 珪素分布曲線、酸素分布曲線、炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記ガスバリア層の膜厚方向における前記ガスバリア層の表面からの距離(L)に概ね相関することから、「ガスバリア層の膜厚方向におけるガスバリア層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリア層の表面からの距離(すなわち、SiO換算膜厚(nm)=(エッチング時間(sec)×エッチング速度(nm/sec))を採用することができる。 The silicon distribution curve, oxygen distribution curve, and carbon distribution curve are sequentially obtained by using Xray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon in combination to expose the inside of the sample. It can be created by so-called XPS depth profile measurement in which composition analysis is performed. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element and the horizontal axis as the etching time (sputtering time). In this way, in the element distribution curve with the horizontal axis as the etching time, the etching time generally correlates with the distance (L) from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer in the film thickness direction. From “the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer”, the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement (that is, SiO 2 equivalent film thickness (nm) = (etching time (sec) × etching rate (nm / sec)) can be employed.
 なお、本発明では、珪素分布曲線、酸素分布曲線および炭素分布曲線は、下記測定条件にて作成した。 In the present invention, the silicon distribution curve, oxygen distribution curve, and carbon distribution curve were prepared under the following measurement conditions.
 [測定条件]
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):ガスバリア層のSiO換算膜厚÷20nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形。
[Measurement condition]
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): SiO 2 equivalent film thickness of the gas barrier layer ÷ 20 nm
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval.
 また、対向ロール電極を持つプラズマCVD装置で作製した膜をプロットする場合は、通過する対向ロール数でプロット位置を定義する(下記エッチング間隔)。 Also, when plotting a film produced by a plasma CVD apparatus having a counter roll electrode, the plot position is defined by the number of counter rolls that pass (etching interval below).
 [測定条件]
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値)(データプロット間隔):バリア膜のSiO換算膜厚÷10÷TR数(対向ロール数)(nm)
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 炭素分布曲線においては、少なくとも1つの極値を有することが好ましく、少なくとも3つの極値を有することが好ましく、少なくとも5つの極値を有することがより好ましい。炭素分布曲線が少なくとも1つの極値を有することで、炭素原子比率が濃度勾配を有して連続的に変化し、屈曲時のガスバリア性能が高まる。ここで、炭素分布曲線における「極値」とは、ガスバリア層の膜厚方向におけるガスバリア層の表面からの距離(L)と、炭素分布曲線における炭素原子の極大値又は極小値のことをいう。また、炭素分布曲線における極大値とは、ガスバリア層の表面からの距離を変化させた場合に、珪素原子、酸素原子、および炭素原子の合計量に対する炭素原子比の値が増加から減少に変わる点でのことをいう。さらに、炭素分布曲線における極小値とは、ガスバリア層の表面からの距離を変化させた場合に、珪素原子、酸素原子、および炭素原子の合計量に対する炭素原子比の値が減少から増加に変わる点のことをいう。
[Measurement condition]
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value) (data plot interval): SiO 2 equivalent film thickness of the barrier film ÷ 10 ÷ TR number (number of opposing rolls) (nm)
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
The carbon distribution curve preferably has at least one extreme value, preferably at least three extreme values, and more preferably at least five extreme values. When the carbon distribution curve has at least one extreme value, the carbon atom ratio continuously changes with a concentration gradient, and the gas barrier performance during bending is enhanced. Here, the “extreme value” in the carbon distribution curve refers to the distance (L) from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer and the maximum value or the minimum value of carbon atoms in the carbon distribution curve. In addition, the maximum value in the carbon distribution curve means that the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed. That means. Furthermore, the minimum value in the carbon distribution curve means that the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms changes from decrease to increase when the distance from the surface of the gas barrier layer is changed. I mean.
 ガスバリア層の酸素分布曲線は、少なくとも1つの極値を有することが好ましく、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましく、少なくとも5つの極値を有することが特に好ましい。酸素分布曲線が極値を少なくとも1つ有する場合、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性がより向上する。なお、酸素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは20以下、より好ましくは10以下である。酸素分布曲線の極値の数においても、ガスバリア層の膜厚に起因する部分があり一概に規定できない。ここで、酸素分布曲線における「極値」とは、ガスバリア層の膜厚方向におけるガスバリア層の表面からの距離(L)と、酸素分布曲線における酸素原子の極大値又は極小値のことをいう。また、酸素分布曲線における極大値とは、ガスバリア層の表面からの距離を変化させた場合に、珪素原子、酸素原子、および炭素原子の合計量に対する酸素原子比の値が増加から減少に変わる点をいう。さらに、酸素分布曲線における極小値とは、ガスバリア層の表面からの距離を変化させた場合に、珪素原子、酸素原子、および炭素原子の合計量に対する酸素の原子比の値が減少から増加に変わる点をいう。 The oxygen distribution curve of the gas barrier layer preferably has at least one extreme value, more preferably has at least two extreme values, more preferably has at least three extreme values, and has at least five extreme values. It is particularly preferred. When the oxygen distribution curve has at least one extreme value, the gas barrier property when the obtained gas barrier film is bent is further improved. The upper limit of the extreme value of the oxygen distribution curve is not particularly limited, but is preferably 20 or less, more preferably 10 or less, for example. Even in the number of extreme values of the oxygen distribution curve, there is a portion caused by the film thickness of the gas barrier layer, and it cannot be defined unconditionally. Here, the “extreme value” in the oxygen distribution curve means a distance (L) from the surface of the gas barrier layer in the film thickness direction of the gas barrier layer and a maximum value or a minimum value of oxygen atoms in the oxygen distribution curve. The maximum value in the oxygen distribution curve is the point where the value of the oxygen atomic ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed. Say. Further, the minimum value in the oxygen distribution curve means that when the distance from the surface of the gas barrier layer is changed, the value of the atomic ratio of oxygen with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms changes from decrease to increase. Say point.
 また、ガスバリア層は、前記炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値(以下、単に「Cmax-Cmin差」とも称する)が5at%以上であることが好ましい。前記絶対値が5at%未満では、得られるガスバリア性フィルムを屈曲させた場合に、ガスバリア性が不十分となる場合がある。Cmax-Cmin差は、7at%以上であることがより好ましく、10at%以上であることが特に好ましい。上記Cmax-Cmin差とすることによって、ガスバリア性をより向上することができる。 The gas barrier layer preferably has an absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve (hereinafter, also simply referred to as “Cmax−Cmin difference”) of 5 at% or more. When the absolute value is less than 5 at%, the gas barrier property may be insufficient when the obtained gas barrier film is bent. The Cmax−Cmin difference is more preferably 7 at% or more, and particularly preferably 10 at% or more. By setting the difference Cmax−Cmin, the gas barrier property can be further improved.
 なお、本明細書において、「最大値」とは、各元素の分布曲線において最大となる各元素の原子比であり、極大値の中で最も高い値である。同様にして、本明細書において、「最小値」とは、各元素の分布曲線において最小となる各元素の原子比であり、極小値の中で最も低い値である。ここで、Cmax-Cmin差の上限は、特に制限されないが、ガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。 In the present specification, the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values. Similarly, in this specification, the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values. Here, the upper limit of the Cmax−Cmin difference is not particularly limited, but is preferably 50 at% or less, and preferably 40 at% or less in consideration of the effect of suppressing / preventing crack generation during bending of the gas barrier film. It is more preferable.
 さらに、本発明において、ガスバリア層の膜厚方向に対する炭素および酸素原子の合計量はほぼ一定であることが好ましい。これにより、ガスバリア層は適度な屈曲性を発揮し、ガスバリア性フィルムの屈曲時のクラック発生をより有効に抑制・防止されうる。より具体的には、ガスバリア層の膜厚方向における該バリア層の表面からの距離(L)と珪素原子、酸素原子、および炭素原子の合計量に対する、酸素原子および炭素原子の合計量の比率(酸素および炭素の原子比)との関係を示す分布曲線において、該分布曲線における酸素および炭素の原子比の合計の最大値および最小値の差の絶対値(以下、単に「OCmax-OCmin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。前記絶対値が5at%未満であれば、得られるガスバリア性フィルムのガスバリア性がより向上する。なお、OCmax-OCmin差の下限は、OCmax-OCmin差が小さいほど好ましいため、0at%であるが、0.1at%以上であれば十分である。 Furthermore, in the present invention, the total amount of carbon and oxygen atoms with respect to the thickness direction of the gas barrier layer is preferably substantially constant. Thereby, a gas barrier layer exhibits moderate flexibility, and the crack generation at the time of bending of a gas barrier film can be suppressed and prevented more effectively. More specifically, the distance (L) from the surface of the barrier layer in the thickness direction of the gas barrier layer and the ratio of the total amount of oxygen atoms and carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms ( In the distribution curve showing the relationship with the atomic ratio of oxygen and carbon, the absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the distribution curve (hereinafter simply referred to as “OCmax−OCmin difference”) Is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property of the obtained gas barrier film is further improved. Note that the lower limit of the OCmax−OCmin difference is preferably 0 at% because the smaller the OCmax−OCmin difference is, but it is sufficient if it is 0.1 at% or more.
 膜面全体において均一でかつ優れたガスバリア性を有するガスバリア層を形成するという観点から、ガスバリア層が膜面方向(ガスバリア層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、ガスバリア層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定によりガスバリア層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線および前記酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。 From the viewpoint of forming a gas barrier layer having a uniform and excellent gas barrier property over the entire film surface, the gas barrier layer is preferably substantially uniform in the film surface direction (direction parallel to the surface of the gas barrier layer). Here, the gas barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon are measured at any two measurement points on the film surface of the gas barrier layer by XPS depth profile measurement. When a distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the maximum and minimum values of the carbon atomic ratio in each carbon distribution curve The absolute values of the differences are the same as each other or within 5 at%.
 さらに、本発明においては、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される膜厚方向の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式(1)で表される条件を満たすことをいう。 Furthermore, in the present invention, it is preferable that the carbon distribution curve is substantially continuous. Here, the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously. Specifically, the carbon distribution curve is calculated from the etching rate and the etching time. Satisfying the condition expressed by the following formula (1) in the relationship between the distance from the surface in the film thickness direction (x, unit: nm) and the atomic ratio of carbon (C, unit: at%). Say.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本発明では、ガスバリア層の形成方法は特に制限されず、従来の方法と同様にしてあるいは適宜修飾して適用できる。ガスバリア層は、好ましくは化学気相成長(CVD)法、特に、プラズマ化学気相成長法(プラズマCVD、PECVD(plasma-enhanced chemical vapor deposition)、以下、単に「プラズマCVD法」とも称する)により形成されることが好ましい。 In the present invention, the method for forming the gas barrier layer is not particularly limited, and can be applied in the same manner as in the conventional method or appropriately modified. The gas barrier layer is preferably formed by a chemical vapor deposition (CVD) method, in particular, a plasma chemical vapor deposition method (plasma CVD, plasma-enhanced chemical vapor deposition (PECVD), hereinafter also simply referred to as “plasma CVD method”). It is preferred that
 以下では、本発明で好ましく使用されるプラズマCVD法を利用してガスバリア層を形成する方法を説明する。 Hereinafter, a method for forming a gas barrier layer using the plasma CVD method preferably used in the present invention will be described.
 プラズマCVD法としては、特に限定されないが、国際公開第2006/033233号に記載の大気圧または大気圧近傍でのプラズマCVD法、対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法が挙げられる。中でも、生産性が高いことから、対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法によりガスバリア層を形成することが好ましい。なお、前記プラズマCVD法はペニング放電プラズマ方式のプラズマCVD法であってもよい。以下、上記式(A)または上記式(B)で表される序列の大小関係を有するガスバリア層の形成方法として好適な方法である、対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法について説明する。 Although it does not specifically limit as a plasma CVD method, The plasma CVD method using the plasma CVD method of the atmospheric pressure or the atmospheric pressure described in the international publication 2006/033233, and the plasma CVD apparatus with a counter roll electrode is mentioned. . Among these, since the productivity is high, it is preferable to form the gas barrier layer by a plasma CVD method using a plasma CVD apparatus having a counter roll electrode. The plasma CVD method may be a Penning discharge plasma type plasma CVD method. Hereinafter, a plasma CVD method using a plasma CVD apparatus having a counter roll electrode, which is a preferable method for forming a gas barrier layer having the order of magnitude relationship represented by the above formula (A) or the above formula (B). explain.
 (1)対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法によりガスバリア層を形成する方法
 プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに基材(ここでいう、基材には、基材が処理された、または基材上に中間層を有する形態も含む)を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できる。加えて、ローラーを使用しない通常のプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、略同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)および(ii)を満たす層を形成することが可能となる。
(1) Method of forming a gas barrier layer by plasma CVD using a plasma CVD apparatus having a counter roll electrode When plasma is generated in plasma CVD, plasma discharge is generated in a space between a plurality of film forming rollers. Preferably, a pair of film forming rollers is used, and a base material (here, the base material is treated with the base material or has an intermediate layer on the base material) is used. It is more preferable that a plasma is generated by disposing between the pair of film forming rollers. In this way, by using a pair of film forming rollers, placing a base material on the pair of film forming rollers, and discharging between the pair of film forming rollers, one film forming roller It is possible to form a film on the surface part of the base material existing on the other film, and simultaneously form the film on the surface part of the base material present on the other film forming roller, so that a thin film can be produced efficiently. In addition, the film formation rate can be doubled compared to the normal plasma CVD method that does not use a roller, and a film with substantially the same structure can be formed, so it is possible to at least double the extreme value in the carbon distribution curve. Thus, it is possible to efficiently form a layer that satisfies the above conditions (i) and (ii).
 また、このようにして一対の成膜ローラー間に放電する際には、一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機珪素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機珪素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、本発明のガスバリア性フィルムにおいては、ガスバリア層が連続的な成膜プロセスにより形成された層であることが好ましい。 Further, when discharging between the pair of film forming rollers in this way, it is preferable to reverse the polarities of the pair of film forming rollers alternately. Further, as a film forming gas used in such a plasma CVD method, a gas containing an organic silicon compound and oxygen is preferable, and the content of oxygen in the film forming gas is the same as that of the organic silicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation. In the gas barrier film of the present invention, the gas barrier layer is preferably a layer formed by a continuous film forming process.
 また、本発明に係るガスバリア性フィルムは、生産性の観点から、ロールツーロール方式で基材の表面上にガスバリア層を形成させることが好ましい。また、このようなプラズマCVD法によりガスバリア層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図1に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールツーロール方式で製造することも可能となる。 In the gas barrier film according to the present invention, it is preferable to form a gas barrier layer on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity. Further, an apparatus that can be used when producing a gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film formation rollers and a plasma power source, and the pair of film formations. It is preferable that the apparatus has a configuration capable of discharging between rollers. For example, when the manufacturing apparatus shown in FIG. 1 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible.
 以下、図1を参照しながら、本発明に係るガスバリア層の形成方法について、より詳細に説明する。なお、図1は、本発明に係るガスバリア層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, the gas barrier layer forming method according to the present invention will be described in more detail with reference to FIG. FIG. 1 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing the gas barrier layer according to the present invention. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図1に示す製造装置13は、送り出しローラー14と、搬送ローラー15、16、17、18と、成膜ローラー19、20と、ガス供給管21と、プラズマ発生用電源22と、成膜ローラー19および20の内部に設置された磁場発生装置23、24と、巻取りローラー25とを備えている。また、このような製造装置においては、少なくとも成膜ローラー19、20と、ガス供給管21と、プラズマ発生用電源22と、磁場発生装置23、24とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置13において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。 The manufacturing apparatus 13 shown in FIG. 1 includes a delivery roller 14, transport rollers 15, 16, 17, 18, film formation rollers 19, 20, a gas supply pipe 21, a plasma generation power source 22, and a film formation roller 19. And 20 are provided with magnetic field generators 23 and 24 and winding rollers 25. Further, in such a manufacturing apparatus, at least the film forming rollers 19 and 20, the gas supply pipe 21, the plasma generating power source 22, and the magnetic field generating apparatuses 23 and 24 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 13, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
 このような製造装置においては、一対の成膜ローラー(成膜ローラー19および成膜ローラー20)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源22に接続されている。そのため、このような製造装置13においては、プラズマ発生用電源22により電力を供給することにより、成膜ローラー19と成膜ローラー20との間の空間に放電することが可能であり、これにより成膜ローラー19と成膜ローラー20との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー19と成膜ローラー20とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー19および20)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー19および20)を配置することにより、ローラーを使用しない通常のプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により基材12(ここでいう、基材には、基材が処理された、または基材上に中間層を有する形態も含む)の表面上にガスバリア層26を形成することが可能であり、成膜ローラー19上において基材12の表面上にガスバリア層成分を堆積させつつ、さらに成膜ローラー20上においても基材12の表面上にガスバリア層成分を堆積させることもできるため、基材12の表面上にガスバリア層を効率よく形成することができる。 In such a manufacturing apparatus, each film-forming roller has a power source for generating plasma so that the pair of film-forming rollers (film-forming roller 19 and film-forming roller 20) can function as a pair of counter electrodes. 22 is connected. Therefore, in such a manufacturing apparatus 13, it is possible to discharge to the space between the film forming roller 19 and the film forming roller 20 by supplying electric power from the plasma generating power source 22, thereby Plasma can be generated in the space between the film roller 19 and the film formation roller 20. In addition, when using the film-forming roller 19 and the film-forming roller 20 as electrodes as described above, the material and design may be changed as appropriate so that the film-forming roller 19 and the film-forming roller 20 can also be used as electrodes. Moreover, in such a manufacturing apparatus, it is preferable that the pair of film forming rollers (film forming rollers 19 and 20) be arranged so that their central axes are substantially parallel on the same plane. Thus, by arranging a pair of film forming rollers (film forming rollers 19 and 20), the film forming rate can be doubled as compared with a normal plasma CVD method that does not use a roller, and the structure is the same. Since the film can be formed, the extreme value in the carbon distribution curve can be at least doubled. And according to such a manufacturing apparatus, on the surface of the base material 12 (here, the base material includes a form in which the base material is processed or has an intermediate layer on the base material) by the CVD method. The gas barrier layer 26 can be formed on the surface of the substrate 12 while depositing the gas barrier layer component on the surface of the substrate 12 on the film formation roller 19 and also on the surface of the substrate 12 on the film formation roller 20. Since layer components can be deposited, a gas barrier layer can be efficiently formed on the surface of the substrate 12.
 成膜ローラー19および成膜ローラー20の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置23および24がそれぞれ設けられている。 In the film forming roller 19 and the film forming roller 20, magnetic field generators 23 and 24 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
 成膜ローラー19および成膜ローラー20にそれぞれ設けられた磁場発生装置23および24は、一方の成膜ローラー19に設けられた磁場発生装置23と他方の成膜ローラー20に設けられた磁場発生装置24との間で磁力線がまたがらず、それぞれの磁場発生装置23、24がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置23、24を設けることにより、各成膜ローラー19、20の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。 The magnetic field generators 23 and 24 provided on the film forming roller 19 and the film forming roller 20 respectively are a magnetic field generator 23 provided on one film forming roller 19 and a magnetic field generator provided on the other film forming roller 20. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between the magnetic field generators 24 and the magnetic field generators 23 and 24 form a substantially closed magnetic circuit. By providing such magnetic field generators 23 and 24, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell in the vicinity of the opposing surface of each of the film forming rollers 19 and 20, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
 また、成膜ローラー19および成膜ローラー20にそれぞれ設けられた磁場発生装置23および24は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置23と他方の磁場発生装置24とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置23、24を設けることにより、それぞれの磁場発生装置23、24について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材12を用いて効率的に蒸着膜であるガスバリア層26を形成することができる点で優れている。 The magnetic field generators 23 and 24 provided on the film forming roller 19 and the film forming roller 20 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generating device 23 and the other magnetic field generating device. It is preferable to arrange the magnetic poles so that the magnetic poles facing 24 have the same polarity. By providing such magnetic field generators 23 and 24, the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 23 and 24 are opposed. A racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained. The material 12 is excellent in that the gas barrier layer 26 that is a vapor deposition film can be efficiently formed.
 成膜ローラー19および成膜ローラー20としては適宜公知のローラーを用いることができる。このような成膜ローラー19および20としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー19および20の直径としては、放電条件、チャンバのスペース等の観点から、直径が300~1000mmφの範囲、特に300~700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材12にかかることを回避できることから、基材12へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。 As the film forming roller 19 and the film forming roller 20, known rollers can be appropriately used. As such film forming rollers 19 and 20, it is preferable to use ones having the same diameter from the viewpoint of forming a thin film more efficiently. The diameters of the film forming rollers 19 and 20 are preferably in the range of 300 to 1000 mmφ, particularly in the range of 300 to 700 mmφ, from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mmφ or more, the plasma discharge space will not be reduced, so that the productivity is not deteriorated, and it is possible to avoid applying the total amount of plasma discharge to the substrate 12 in a short time. It is preferable because damage to the material 12 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mmφ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
 このような製造装置13においては、基材12の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー19と成膜ローラー20)上に、基材12が配置されている。このようにして基材12を配置することにより、成膜ローラー19と成膜ローラー20との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する基材12のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー19上にて基材12の表面上にバリア層成分を堆積させ、さらに成膜ローラー20上にてガスバリア層成分を堆積させることができるため、基材12の表面上にガスバリア層を効率よく形成することが可能となる。 In such a manufacturing apparatus 13, the base material 12 is disposed on a pair of film forming rollers (the film forming roller 19 and the film forming roller 20) so that the surfaces of the base material 12 face each other. By disposing the base material 12 in this way, when the plasma is generated by performing discharge in the facing space between the film forming roller 19 and the film forming roller 20, the base existing between the pair of film forming rollers is present. Each surface of the material 12 can be formed simultaneously. That is, according to such a manufacturing apparatus, the barrier layer component is deposited on the surface of the substrate 12 on the film forming roller 19 by the plasma CVD method, and the gas barrier layer component is further deposited on the film forming roller 20. Therefore, the gas barrier layer can be efficiently formed on the surface of the substrate 12.
 このような製造装置に用いる送り出しローラー14および搬送ローラー15、16、17、18としては適宜公知のローラーを用いることができる。また、巻取りローラー25としても、基材12上にガスバリア層26を形成したガスバリア性フィルム11を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 As the feed roller 14 and the transport rollers 15, 16, 17, 18 used in such a manufacturing apparatus, known rollers can be used as appropriate. The winding roller 25 is not particularly limited as long as the gas barrier film 11 having the gas barrier layer 26 formed on the substrate 12 can be wound, and a known roller may be used as appropriate. it can.
 また、ガス供給管21および真空ポンプとしては、原料ガス等を所定の速度で供給または排出することが可能なものを適宜用いることができる。 Further, as the gas supply pipe 21 and the vacuum pump, those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
 また、ガス供給手段であるガス供給管21は、成膜ローラー19と成膜ローラー20との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管21と、真空排気手段である真空ポンプを配置することにより、成膜ローラー19と成膜ローラー20との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。 The gas supply pipe 21 serving as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 19 and the film formation roller 20 and is a vacuum serving as a vacuum exhaust means. A pump (not shown) is preferably provided on the other side of the facing space. In this way, by providing the gas supply pipe 21 as the gas supply means and the vacuum pump as the vacuum exhaust means, the film formation gas is efficiently supplied to the facing space between the film formation roller 19 and the film formation roller 20. It is excellent in that the film formation efficiency can be improved.
 さらに、プラズマ発生用電源22としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源22は、これに接続された成膜ローラー19と成膜ローラー20とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源22としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源22としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ、かつ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置23、24としては適宜公知の磁場発生装置を用いることができる。さらに、基材12としては、本発明で用いられる基材の他に、ガスバリア層26を予め形成させたものを用いることができる。このように、基材12としてガスバリア層26を予め形成させたものを用いることにより、ガスバリア層26の厚みを厚くすることも可能である。 Furthermore, as the plasma generating power source 22, a known power source for a plasma generating apparatus can be used as appropriate. Such a power source 22 for generating plasma supplies power to the film forming roller 19 and the film forming roller 20 connected thereto, and makes it possible to use them as a counter electrode for discharging. Such a plasma generation power source 22 can perform plasma CVD more efficiently, so that the polarity of the pair of film forming rollers can be alternately reversed (AC power source or the like). Is preferably used. In addition, since the plasma generating power source 22 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this. As the magnetic field generators 23 and 24, known magnetic field generators can be used as appropriate. Furthermore, as the base material 12, in addition to the base material used in the present invention, a material in which the gas barrier layer 26 is formed in advance can be used. As described above, by using the substrate 12 in which the gas barrier layer 26 is previously formed, the thickness of the gas barrier layer 26 can be increased.
 このような図1に示す製造装置13を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバ内の圧力、成膜ローラーの直径、ならびにフィルム(基材)の搬送速度を適宜調整することにより、本発明に係るガスバリア層を製造することができる。すなわち、図1に示す製造装置13を用いて、成膜ガス(原料ガス等)を真空チャンバ内に供給しつつ、一対の成膜ローラー(成膜ローラー19および20)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー19上の基材12の表面上および成膜ローラー20上の基材12の表面上に、ガスバリア層26がプラズマCVD法により形成される。この際、成膜ローラー19、20のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。このため、基材12が、図1中の成膜ローラー19のA地点および成膜ローラー20のB地点を通過する際に、ガスバリア層で炭素分布曲線の極大値が形成される。これに対して、基材12が、図1中の成膜ローラー19のC1およびC2地点、ならびに成膜ローラー20のC3およびC4地点を通過する際に、ガスバリア層で炭素分布曲線の極小値が形成される。このため、2つの成膜ローラーに対して、通常、5つの極値が生成する。 Using such a manufacturing apparatus 13 shown in FIG. 1, for example, the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the conveyance of the film (base material) The gas barrier layer according to the present invention can be produced by appropriately adjusting the speed. That is, using the manufacturing apparatus 13 shown in FIG. 1, discharge is generated between a pair of film forming rollers (film forming rollers 19 and 20) while supplying a film forming gas (raw material gas or the like) into the vacuum chamber. Thus, the film-forming gas (raw material gas or the like) is decomposed by plasma, and the gas barrier layer 26 is formed on the surface of the base material 12 on the film-forming roller 19 and the surface of the base material 12 on the film-forming roller 20 by plasma CVD. Formed by law. At this time, a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axis of the film forming rollers 19 and 20, and the plasma is converged on the magnetic field. For this reason, when the base material 12 passes through the point A of the film forming roller 19 and the point B of the film forming roller 20 in FIG. 1, the maximum value of the carbon distribution curve is formed in the gas barrier layer. On the other hand, when the substrate 12 passes through the points C1 and C2 of the film forming roller 19 and the points C3 and C4 of the film forming roller 20 in FIG. It is formed. For this reason, five extreme values are usually generated for two film forming rollers.
 また、ガスバリア層の極値間の距離(炭素分布曲線の有する1つの極値および該極値に隣接する極値におけるガスバリア層の膜厚方向におけるガスバリア層の表面からの距離(L)の差の絶対値)は、成膜ローラー19、20の回転速度(基材の搬送速度)によって調節できる。なお、このような成膜に際しては、基材12が送り出しローラー14や成膜ローラー19等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより基材12の表面上にガスバリア層26が形成される。 Further, the distance between the extreme values of the gas barrier layer (the difference between the distance (L) from the surface of the gas barrier layer in the thickness direction of the gas barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value) (Absolute value) can be adjusted by the rotation speed of the film forming rollers 19 and 20 (conveyance speed of the substrate). In such film formation, the substrate 12 is transported by the delivery roller 14 and the film formation roller 19, respectively, so that the surface of the substrate 12 is formed by a roll-to-roll continuous film formation process. Then, the gas barrier layer 26 is formed.
 前記ガス供給管21から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。ガスバリア層26の形成に用いる前記成膜ガス中の原料ガスとしては、形成するガスバリア層26の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、珪素を含有する有機珪素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機珪素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機珪素化合物の中でも、化合物の取り扱い性および得られるガスバリア層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機珪素化合物は、単独でもまたは2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機珪素化合物ガスや有機化合物ガスは、ガスバリア層26の種類に応じて適切な原料ガスが選択される。 As the film forming gas (raw material gas or the like) supplied from the gas supply pipe 21 to the facing space, a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more. The source gas in the film forming gas used for forming the gas barrier layer 26 can be appropriately selected and used according to the material of the gas barrier layer 26 to be formed. As such a source gas, for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used. Examples of such organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane. , Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples include silane and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting gas barrier layer. These organosilicon compounds can be used alone or in combination of two or more. Examples of the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene. As these organic silicon compound gas and organic compound gas, appropriate source gases are selected according to the type of the gas barrier layer 26.
 また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でもまたは2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。 Further, as the film forming gas, a reactive gas may be used in addition to the raw material gas. As such a reactive gas, a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used. As a reaction gas for forming an oxide, for example, oxygen or ozone can be used. Moreover, as a reactive gas for forming nitride, nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
 前記成膜ガスとしては、前記原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電ガスを用いてもよい。このようなキャリアガスおよび放電ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素;窒素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, for example, rare gases such as helium, argon, neon and xenon; hydrogen; nitrogen can be used.
 このような成膜ガスが原料ガスと反応ガスとを含有する場合には、原料ガスと反応ガスとの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成されるガスバリア層26によって、優れたガスバリア性や屈曲耐性を得ることができる点で優れている。また、前記成膜ガスが前記有機珪素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機珪素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When such a film forming gas contains a raw material gas and a reactive gas, the ratio of the raw material gas and the reactive gas is a reaction that is theoretically necessary to completely react the raw material gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive as compared with the ratio of the amount of gas. By making the ratio of the reaction gas not excessive, the formed gas barrier layer 26 is excellent in that excellent gas barrier properties and bending resistance can be obtained. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than or equal to the theoretical oxygen amount required for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
 以下、前記成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機珪素化合物、HMDSO、(CHSiO)と、反応ガスとしての酸素(O)を含有するものとを用い、珪素-酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。 Hereinafter, as the film forming gas, hexamethyldisiloxane (organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O) as a raw material gas and oxygen (O 2 ) as a reactive gas are used. Taking a case of producing a silicon-oxygen-based thin film as an example, the preferred ratio of the raw material gas to the reactive gas in the film forming gas will be described in more detail.
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)と、を含有する成膜ガスをプラズマCVD法により反応させて珪素-酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式(1)で表されるような反応が起こり、二酸化ケイ素が生成する。 A film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by a plasma CVD method to form silicon-oxygen. When a thin film of a system is produced, a reaction represented by the following reaction formula (1) occurs by the film forming gas, and silicon dioxide is generated.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない)ため、上記条件(i)および(ii)を満たすガスバリア層を形成することができなくなってしまう。そのため、本発明において、ガスバリア層を形成する際には、上記反応式(1)の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。なお、実際のプラズマCVDチャンバ内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサンおよび酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がガスバリア層中に取り込まれ、上記条件(i)および(ii)を満たすガスバリア層を形成することが可能となって、得られるガスバリア性フィルムにおいて優れたガスバリア性および屈曲耐性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。 In such a reaction, the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, a gas barrier layer that satisfies the above conditions (i) and (ii) cannot be formed. Therefore, in the present invention, when the gas barrier layer is formed, the stoichiometric ratio of oxygen amount to 1 mol of hexamethyldisiloxane is set so that the reaction of the reaction formula (1) does not proceed completely. The amount is preferably less than 12 moles. In the actual reaction in the plasma CVD chamber, the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced. It is considered that the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material. (It may be about 20 times or more the molar amount (flow rate) of siloxane). Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. . By containing hexamethyldisiloxane and oxygen at such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the gas barrier layer, and the above conditions (i) and (ii) It is possible to form a gas barrier layer that satisfies the above), and to exhibit excellent gas barrier properties and bending resistance in the obtained gas barrier film. From the viewpoint of use as a flexible substrate for devices that require transparency, such as organic EL elements and solar cells, the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas The lower limit of (flow rate) is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
 また、真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~50Paの範囲とすることが好ましい。 Further, the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
 また、このようなプラズマCVD法において、成膜ローラー19と成膜ローラー20との間に放電するために、プラズマ発生用電源22に接続された電極ドラム(本実施形態においては、成膜ローラー19および20に設置されている)に印加する電力は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が0.1kW以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。 Further, in such a plasma CVD method, an electrode drum (in this embodiment, the film forming roller 19) connected to the plasma generating power source 22 for discharging between the film forming roller 19 and the film forming roller 20. The power to be applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 0.1 kW or more, the generation of particles can be sufficiently suppressed. On the other hand, if the applied power is 10 kW or less, the amount of heat generated during film formation can be suppressed. It can suppress that the temperature of the substrate surface rises. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
 基材12の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~100m/minの範囲とすることがより好ましい。 The conveyance speed (line speed) of the substrate 12 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 100 m / min.
 本発明では、図1のような対向ロール電極を持つプラズマCVD装置において、生産性を高める目的で基材の搬送速度を速くした場合に、高温高湿条件下にフィルムが配置されても、ガスバリア性能が維持される。このため、基材の搬送速度が速い場合に本願発明の効果がより顕著となる。 In the present invention, in the plasma CVD apparatus having the counter roll electrode as shown in FIG. 1, even if the film is placed under a high temperature and high humidity condition when the substrate transport speed is increased for the purpose of increasing productivity, the gas barrier Performance is maintained. For this reason, when the conveyance speed of a base material is quick, the effect of this invention becomes more remarkable.
 より好ましい形態は、基材を搬送速度5m/min以上(さらに好ましくは10m/min以上)で対向ロール電極を持つプラズマCVD装置に搬送してケイ素、酸素および炭素を含有するガスバリア層を形成する段階を含む。なお、ライン速度の上限は特に限定されず、生産性の観点からは速い方が好ましいが、100m/min以下であれば、ガスバリア層として十分な厚みを確保することができる点で優れている。 In a more preferred embodiment, the substrate is transported to a plasma CVD apparatus having a counter roll electrode at a transport speed of 5 m / min or more (more preferably 10 m / min or more) to form a gas barrier layer containing silicon, oxygen and carbon. including. The upper limit of the line speed is not particularly limited, and is preferably faster from the viewpoint of productivity. However, if it is 100 m / min or less, it is excellent in that a sufficient thickness as a gas barrier layer can be secured.
 上記したように、本実施形態のより好ましい態様としては、ガスバリア層を、図1に示す対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いたプラズマCVD法によって成膜することを特徴とするものである。これは、対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロールツーロールでの搬送時の耐久性と、バリア性能とが両立するバリア層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of the present embodiment, the gas barrier layer is formed by a plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. It is what. This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently produce a barrier layer having both the barrier performance and the barrier performance. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
 (2)(1)の対向ロール電極を持つプラズマCVD装置以外の装置を用いたプラズマCVD法
 ガスバリア層を形成する他の方法として、大気圧または大気圧近傍でのプラズマCVD装置を用いるプラズマCVD法が挙げられる。該方法に用いられる装置としては、国際公開第2006/033233号の図3に記載のジェット方式の大気圧プラズマ放電処理装置が挙げられる。ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの電源を有する電界印加手段の他に、ガス供給手段、電極温度調節手段を有している装置である。ジェット方式の大気圧プラズマ放電処理装置を複数基接して直列に並べて、各装置が異なったプラズマ状態のガスをジェット噴射すれば、異なった層の積層薄膜を形成することが出来る。
(2) Plasma CVD method using apparatus other than plasma CVD apparatus having counter roll electrode of (1) Plasma CVD method using plasma CVD apparatus at or near atmospheric pressure as another method for forming a gas barrier layer Is mentioned. As an apparatus used in this method, there is a jet type atmospheric pressure plasma discharge treatment apparatus described in FIG. 3 of International Publication No. 2006/033233. The jet type atmospheric pressure plasma discharge treatment apparatus is an apparatus having a gas supply means and an electrode temperature adjusting means in addition to the plasma discharge treatment apparatus and the electric field applying means having two power sources. If a plurality of jet-type atmospheric pressure plasma discharge treatment apparatuses are arranged in series and arranged in series, and each apparatus jets a gas in a different plasma state, a laminated thin film having different layers can be formed.
 また、国際公開第2006/033233号の図4に記載の対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置を用いることができる。大気圧プラズマ放電処理装置としては、その他、特開2004-68143号公報、特開2003-49272号公報、国際公開第02/48428号が挙げられる。 Also, an atmospheric pressure plasma discharge treatment apparatus for treating a substrate between the counter electrodes described in FIG. 4 of International Publication No. 2006/033233 can be used. Other examples of the atmospheric pressure plasma discharge treatment apparatus include Japanese Patent Application Laid-Open Nos. 2004-68143, 2003-49272, and WO 02/48428.
 図2は、本発明のガスバリア層を形成する際に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。 FIG. 2 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a type that treats a substrate between counter electrodes that is useful when forming the gas barrier layer of the present invention.
 図2に記載の対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置においては、ロール回転電極に対し、固定電極群に傾斜を持たせて電極間の間隙を変化させる方法、あるいは供給する膜形成原料の種類及び供給量、あるいはプラズマ放電時の出力条件を適宜選択することにより、ガスバリア層を得ることができる。 In the atmospheric pressure plasma discharge processing apparatus for processing the substrate between the counter electrodes shown in FIG. 2, a method of changing the gap between the electrodes by tilting the fixed electrode group with respect to the roll rotating electrode, or A gas barrier layer can be obtained by appropriately selecting the type and supply amount of the film forming raw material to be supplied or the output conditions at the time of plasma discharge.
 図2の大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置30、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。そして、ロール回転電極(第1電極)35と角筒型固定電極(群)(第2電極)36との対向電極間(放電空間)32で、基材Fをプラズマ放電処理して薄膜を形成するものである。図2においては、1対の角筒型固定電極群(第2電極)36とロール回転電極(第1電極)35とで、1つの電界を形成し、この1ユニットで、例えば、低密度層の形成を行う。図2においては、この様な構成からなるユニットを、計5カ所備えた構成例を示しあり、それぞれのユニットで、供給する原材料の種類、出力電圧等を任意に独立して制御することにより、ガスバリア層を連続して形成することができる。 2 is an apparatus including at least a plasma discharge processing apparatus 30, an electric field applying means 40 having two power sources, a gas supply means 50, and an electrode temperature adjusting means 60. Then, a thin film is formed by subjecting the base material F to plasma discharge treatment between the counter electrodes (discharge space) 32 between the roll rotating electrode (first electrode) 35 and the square tube type fixed electrode (group) (second electrode) 36. To do. In FIG. 2, a pair of rectangular tube type fixed electrode group (second electrode) 36 and roll rotating electrode (first electrode) 35 form one electric field. Is formed. FIG. 2 shows an example of a configuration having a total of five units having such a configuration. In each unit, the type of raw material to be supplied, the output voltage, and the like are arbitrarily controlled independently. A gas barrier layer can be formed continuously.
 ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との間の放電空間(対向電極間)32に、ロール回転電極(第1電極)35には第1電源41から周波数ω1、電界強度V1、電流I1の第1の高周波電界を、また角筒型固定電極群(第2電極)36にはそれぞれに対応する各第2電源42から周波数ω2、電界強度V2、電流I2の第2の高周波電界をかけるようになっている。 In the discharge space (between the counter electrodes) 32 between the roll rotating electrode (first electrode) 35 and the square tube type fixed electrode group (second electrode) 36, the roll rotating electrode (first electrode) 35 has a first power source. 41 to the first high-frequency electric field of frequency ω1, electric field intensity V1, and current I1, and the rectangular tube-shaped fixed electrode group (second electrode) 36 has a frequency ω2 and electric field intensity V2 from the corresponding second power source 42. A second high-frequency electric field of current I2 is applied.
 ロール回転電極(第1電極)35と第1電源41との間には、第1フィルタ43が設置されており、第1フィルタ43は第1電源41から第1電極への電流を通過しやすくし、第2電源42からの電流をアースして、第2電源42から第1電源への電流を通過しにくくするように設計されている。また、角筒型固定電極群(第2電極)36と第2電源42との間には、それぞれ第2フィルタ44が設置されており、第2フィルタ44は、第2電源42から第2電極への電流を通過しやすくし、第1電源41からの電流をアースして、第1電源41から第2電源への電流を通過しにくくするように設計されている。 A first filter 43 is installed between the roll rotation electrode (first electrode) 35 and the first power supply 41, and the first filter 43 easily passes a current from the first power supply 41 to the first electrode. The current from the second power supply 42 is grounded so that the current from the second power supply 42 to the first power supply is difficult to pass. In addition, a second filter 44 is provided between the square tube type fixed electrode group (second electrode) 36 and the second power source 42, and the second filter 44 is connected to the second electrode from the second power source 42. It is designed so that the current from the first power supply 41 is grounded and the current from the first power supply 41 to the second power supply is difficult to pass.
 なお、本発明においては、ロール回転電極35を第2電極、また角筒型固定電極群36を第1電極としてもよい。何れにしろ、第1電極には第1電源が、また第2電極には第2電源が接続される。第1電源は第2電源より高い高周波電界強度(V1>V2)を印加することが好ましい。また、周波数はω1<ω2となる能力を有している。 In the present invention, the roll rotating electrode 35 may be the second electrode, and the square tube type fixed electrode group 36 may be the first electrode. In any case, the first power source is connected to the first electrode, and the second power source is connected to the second electrode. The first power source preferably applies a higher high-frequency electric field strength (V1> V2) than the second power source. Further, the frequency has the ability to satisfy ω1 <ω2.
 また、電流はI1<I2となることが好ましい。第1の高周波電界の電流I1は、好ましくは0.3mA/cm~20mA/cm、さらに好ましくは1.0mA/cm~20mA/cmである。また、第2の高周波電界の電流I2は、好ましくは10mA/cm~100mA/cm、さらに好ましくは20mA/cm~100mA/cmである。 The current is preferably I1 <I2. The current I1 of the first high-frequency electric field is preferably 0.3 mA / cm 2 to 20 mA / cm 2 , more preferably 1.0 mA / cm 2 to 20 mA / cm 2 . The current I2 of the second high-frequency electric field is preferably 10 mA / cm 2 to 100 mA / cm 2 , more preferably 20 mA / cm 2 to 100 mA / cm 2 .
 ガス供給手段50のガス発生装置51で発生させたガスGは、流量を制御して給気口よりプラズマ放電処理容器31内に導入する。 The gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge treatment vessel 31 from the air supply port while controlling the flow rate.
 基材Fを、図示されていない元巻きから巻きほぐして搬送されて来るか、または前工程から搬送されて来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら角筒型固定電極群36との間に移送し、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。基材F(ここでいう、基材には、基材が処理された、または基材上に中間層を有する形態も含む)はロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより薄膜を形成する。基材Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。 The base material F is unwound from the original winding (not shown) and is transported or is transported from the previous process, and the air and the like that is entrained by the base material by the nip roll 65 through the guide roll 64 is blocked. Then, while being wound while being in contact with the roll rotating electrode 35, it is transferred between the square tube fixed electrode group 36 and the roll rotating electrode (first electrode) 35 and the square tube fixed electrode group (second electrode) 36. An electric field is applied from both of them to generate discharge plasma between the counter electrodes (discharge space) 32. The base material F (here, the base material includes a form in which the base material has been processed or has an intermediate layer on the base material) is in a plasma state while being wound while being in contact with the roll rotating electrode 35. To form a thin film. The base material F passes through the nip roll 66 and the guide roll 67 and is wound up by a winder (not shown) or transferred to the next process.
 放電処理済みの処理排ガスG′は排気口53より排出する。 Discharged treated exhaust gas G ′ is discharged from the exhaust port 53.
 薄膜形成中、ロール回転電極(第1電極)35及び角筒型固定電極群(第2電極)36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、68及び69はプラズマ放電処理容器31と外界とを仕切る仕切板である。 In order to heat or cool the roll rotating electrode (first electrode) 35 and the rectangular tube type fixed electrode group (second electrode) 36 during the formation of the thin film, a medium whose temperature is adjusted by the electrode temperature adjusting means 60 is used as a liquid feed pump. P is sent to both electrodes through the pipe 61, and the temperature is adjusted from the inside of the electrode. Reference numerals 68 and 69 denote partition plates that partition the plasma discharge processing vessel 31 from the outside.
 前記ガス発生装置51から対向電極間(放電空間)32に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。この際に用いられる原料ガス、反応ガス、キャリアガス、または放電ガスは、上記(1)対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法によりガスバリア層を形成する方法の欄に記載したガスを適宜用いることができる。 As the film forming gas (source gas etc.) supplied from the gas generator 51 to the counter electrode (discharge space) 32, source gas, reaction gas, carrier gas, discharge gas are used alone or in combination of two or more. Can be used. The source gas, reaction gas, carrier gas, or discharge gas used at this time is the gas described in the column of (1) Method of forming a gas barrier layer by plasma CVD using a plasma CVD apparatus having a counter roll electrode. Can be used as appropriate.
 プラズマ放電処理容器31はパイレックス(登録商標)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド樹脂等を張り付けても良く、該金属フレームにセラミックス溶射を行い、絶縁性をとってもよい。図2において、平行した両電極の両側面(基材面近くまで)を上記のような材質の物で覆うことが好ましい。 The plasma discharge treatment vessel 31 is preferably a treatment vessel made of Pyrex (registered trademark) glass or the like, but may be made of metal as long as it can be insulated from the electrodes. For example, polyimide resin or the like may be pasted on the inner surface of an aluminum or stainless steel frame, and the metal frame may be thermally sprayed to obtain insulation. In FIG. 2, it is preferable to cover both side surfaces (up to the vicinity of the base material surface) of both parallel electrodes with an object made of the above-described material.
 大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、
印加電源記号 メーカー    周波数     製品名
 A1    神鋼電機    3kHz    SPG3-4500
 A2    神鋼電機    5kHz    SPG5-4500
 A3    春日電機    15kHz   AGI-023
 A4    神鋼電機    50kHz   SPG50-4500
 A5    ハイデン研究所 100kHz* PHF-6k
 A6    パール工業   200kHz  CF-2000-200k
 A7    パール工業   400kHz  CF-2000-400k
 A8    応用電気    80kHz
等の市販のものを挙げることができ、何れも使用することができる。
As the first power supply (high frequency power supply) installed in the atmospheric pressure plasma discharge treatment apparatus,
Applied power symbol Manufacturer Frequency Product name A1 Shinko Electric 3kHz SPG3-4500
A2 Shinko Electric Co., Ltd. 5kHz SPG5-4500
A3 Kasuga Electric 15kHz AGI-023
A4 Shinko Electric 50kHz SPG50-4500
A5 HEIDEN Laboratory 100kHz * PHF-6k
A6 Pearl Industry 200kHz CF-2000-200k
A7 Pearl Industry 400kHz CF-2000-400k
A8 Applied electricity 80kHz
And the like, and any of them can be used.
 また、第2電源(高周波電源)としては、
印加電源記号 メーカー  周波数      製品名
 B1    パール工業 800kHz   CF-2000-800k
 B2    パール工業 2MHz     CF-2000-2M
 B3    パール工業 13.56MHz CF-5000-13M
 B4    パール工業 27MHz    CF-2000-27M
 B5    パール工業 150MHz   CF-2000-150M
等の市販のものを挙げることができ、何れも好ましく使用できる。
As the second power source (high frequency power source),
Applied power symbol Manufacturer Frequency Product name B1 Pearl Industry 800kHz CF-2000-800k
B2 Pearl Industry 2MHz CF-2000-2M
B3 Pearl Industry 13.56MHz CF-5000-13M
B4 Pearl Industry 27MHz CF-2000-27M
B5 Pearl Industry 150MHz CF-2000-150M
And the like, and any of them can be preferably used.
 なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。このような電界を印加して、均一で安定な放電状態を保つことが出来る電極を大気圧プラズマ放電処理装置に採用することが好ましい。 Of the above power sources, * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave. It is preferable to employ an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
 対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm、より好ましくは20W/cmである。下限値は、好ましくは1.2W/cmである。なお、放電面積(cm)は、電極において放電が起こる範囲の面積のことを指す。 The power applied between the electrodes facing each other supplies power (power density) of 1 W / cm 2 or more to the second electrode (second high-frequency electric field), excites the discharge gas to generate plasma, and the energy is thinned. A thin film is formed by applying the forming gas. The upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 . The lower limit is preferably 1.2 W / cm 2 . In addition, discharge area (cm < 2 >) points out the area of the range which discharge occurs in an electrode.
 また、第1電極(第1の高周波電界)にも、1W/cm以上の電力(出力密度)を供給することにより、第2の高周波電界の均一性を維持したまま、出力密度を向上させることが出来る。これにより、更なる均一高密度プラズマを生成出来、更なる製膜速度の向上と膜質の向上が両立出来る。好ましくは5W/cm以上である。第1電極に供給する電力の上限値は、好ましくは50W/cmである。 Further, by supplying power (output density) of 1 W / cm 2 or more to the first electrode (first high frequency electric field), the output density is improved while maintaining the uniformity of the second high frequency electric field. I can do it. Thereby, a further uniform high-density plasma can be generated, and a further improvement in film forming speed and an improvement in film quality can be achieved. Preferably it is 5 W / cm 2 or more. The upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
 ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。 Here, the waveform of the high-frequency electric field is not particularly limited. There are a continuous sine wave continuous oscillation mode called a continuous mode, an intermittent oscillation mode called ON / OFF intermittently called a pulse mode, and either of them may be adopted, but at least the second electrode side (second The high-frequency electric field is preferably a continuous sine wave because a denser and better quality film can be obtained.
 また、膜質をコントロールする際には、第2電源側の電力を制御することによっても達成できる。 Also, when controlling the film quality, it can be achieved by controlling the electric power on the second power source side.
 このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金属質母材上に誘電体を被覆したものであることが好ましい。 An electrode used for such a method for forming a thin film by atmospheric pressure plasma must be able to withstand severe conditions in terms of structure and performance. Such an electrode is preferably a metal base material coated with a dielectric.
 また、ガスバリア層は、米国特許公報US7015640号に記載の真空プラズマ装置でも形成できる。 The gas barrier layer can also be formed by a vacuum plasma apparatus described in US Pat. No. 7,015,640.
 [紫外光照射]
 本発明に係るガスバリア性フィルムは、基材上に、蒸着法によりガスバリア層を形成した後、さらに、前記ガスバリア層に対して、波長が250nm以下の紫外光照射を行う工程を含むことを特徴としている。
[Ultraviolet light irradiation]
The gas barrier film according to the present invention includes a step of forming a gas barrier layer on a base material by a vapor deposition method and further irradiating the gas barrier layer with ultraviolet light having a wavelength of 250 nm or less. Yes.
 本発明では、波長が250nm以下の紫外光を用いることで蒸着膜の化学結合が振動、切断され、蒸着膜表面や内部まで欠陥の少ない安定な膜へと改質することができると推測される。このとき、照射波長が短いほど、エネルギーが大きいため、多くの結合を振動、切断させることができ、より均質な膜へ改質できるため、180nm以下であることが好ましく、さらに150nm以下であることが特に好ましい。 In the present invention, the use of ultraviolet light having a wavelength of 250 nm or less causes the chemical bond of the deposited film to vibrate and break, and it is estimated that the deposited film surface and the inside can be modified into a stable film with few defects. . At this time, the shorter the irradiation wavelength, the larger the energy, so that many bonds can be vibrated and broken, and the film can be reformed to a more homogeneous film. Therefore, it is preferably 180 nm or less, and more preferably 150 nm or less. Is particularly preferred.
 紫外光照射に用いられる光源は、250nm以下の紫外光を発生させるものであれば、いずれの光源も使用可能である。具体的には、例えば、KrFエキシマレーザー(波長248nm)、KrClエキシマレーザー(波長220nm)、Xeエキシマランプ(波長172nm)、Krエキシマランプ(波長146nm)、Arエキシマランプ(波長126nm)等が挙げられる。 As the light source used for ultraviolet light irradiation, any light source can be used as long as it generates ultraviolet light of 250 nm or less. Specific examples include a KrF excimer laser (wavelength 248 nm), a KrCl excimer laser (wavelength 220 nm), an Xe excimer lamp (wavelength 172 nm), a Kr excimer lamp (wavelength 146 nm), an Ar excimer lamp (wavelength 126 nm), and the like. .
 紫外光の照射は、照射されるガスバリア層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。 In the irradiation with ultraviolet light, it is preferable to set the irradiation intensity and the irradiation time within a range in which the substrate carrying the irradiated gas barrier layer is not damaged.
 基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kWのランプを用い、基材表面の強度が20~300mW/cm、好ましくは50~200mW/cmになるように基材-紫外光照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。 Taking the case of using a plastic film as an example, for example, a 2 kW lamp is used, and the substrate surface has a strength of 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm 2. -The distance between the ultraviolet light irradiation lamps can be set and irradiation can be performed for 0.1 seconds to 10 minutes.
 一般に、紫外光照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムの場合には、より高温での改質処理が可能である。したがって、この紫外光照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外光照射雰囲気に特に制限はなく、空気中で実施すればよい。 In general, when the temperature of the substrate during the ultraviolet light irradiation treatment is 150 ° C. or higher, the properties of the substrate are impaired in the case of a plastic film or the like, such as deformation of the substrate or deterioration of its strength. become. However, in the case of a film having high heat resistance such as polyimide, a modification treatment at a higher temperature is possible. Therefore, there is no general upper limit for the substrate temperature at the time of ultraviolet light irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate. Moreover, there is no restriction | limiting in particular in ultraviolet irradiation atmosphere, What is necessary is just to implement in air.
 紫外光照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、ガスバリア層を表面に有する積層体を上記のような紫外光発生源を具備した紫外光焼成炉で処理することができる。紫外光焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外光焼成炉を使用することができる。また、ガスバリア層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外光発生源を具備した乾燥ゾーンで連続的に紫外光を照射することによりセラミックス化することができる。紫外光照射に要する時間は、使用する基材やガスバリア層の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 Ultraviolet light irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used. For example, in the case of batch processing, a laminate having a gas barrier layer on the surface can be processed in an ultraviolet light firing furnace equipped with the ultraviolet light generation source as described above. The ultraviolet light baking furnace itself is generally known. For example, an ultraviolet light baking furnace manufactured by I-Graphics Co., Ltd. can be used. Moreover, when the laminated body which has a gas barrier layer on the surface is a long film form, by irradiating ultraviolet light continuously in the drying zone equipped with the above ultraviolet light generation sources, conveying this. It can be made into ceramics. The time required for the ultraviolet light irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the base material and gas barrier layer used.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外光領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. In addition, it does not emit light with a long wavelength that causes a temperature increase due to light, and irradiates energy in the ultraviolet light region, that is, with a short wavelength, and therefore has a feature that suppresses the increase in the surface temperature of the object to be fired. . For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
 紫外光照射時、特に真空紫外線(10~200nm)の照射時は、酸素による吸収があるため紫外光照射工程での効率が低下しやすいことから、紫外光の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、紫外光照射時の酸素濃度は、10~50000体積ppmとすることが好ましく、より好ましくは50~20000体積ppmである。 During irradiation with ultraviolet light, particularly during irradiation with vacuum ultraviolet light (10 to 200 nm), the efficiency in the ultraviolet light irradiation process tends to decrease due to the absorption by oxygen. It is preferable to carry out in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of ultraviolet light irradiation is preferably 10 to 50000 volume ppm, more preferably 50 to 20000 volume ppm.
 紫外光照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 As the gas satisfying the irradiation atmosphere used at the time of ultraviolet light irradiation, a dry inert gas is preferable, and a dry nitrogen gas is particularly preferable from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 紫外光照射工程において、ガスバリア層面での該紫外光の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。1mW/cm未満では、改質効率が大きく低下する懸念があり、10W/cmを超えると、ガスバリア層にアブレーションを生じたり、基材にダメージを与えたりする懸念が出てくる。 In the ultraviolet light irradiation step, the illuminance of the ultraviolet light on the gas barrier layer surface is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2 , and 50 mW / cm 2. More preferably, it is ˜160 mW / cm 2 . If it is less than 1 mW / cm 2 , the reforming efficiency may be greatly reduced. If it exceeds 10 W / cm 2 , there is a concern that the gas barrier layer may be ablated or the base material may be damaged.
 紫外光の照射エネルギー量(積算光量)は、10~10000mJ/cmであることが好ましく、50~6000mJ/cmであることがより好ましく、100~3000mJ/cmであることがさらに好ましい。10mJ/cm未満では、改質が不十分となる懸念があり、10000mJ/cm超えると過剰改質によるクラック発生や、基材の熱変形の懸念が出てくる。 Irradiation energy amount of ultraviolet light (integrated quantity of light) is preferably 10 ~ 10000mJ / cm 2, more preferably from 50 ~ 6000mJ / cm 2, further preferably 100 ~ 3000mJ / cm 2. Is less than 10 mJ / cm 2, there is a fear that the reforming becomes insufficient, 10000 mJ / cm 2 than the cracking or due to excessive modification concerns the thermal deformation of the substrate emerges.
 また、前記ガスバリア層は、応力緩和性や、後述の塗布法により形成されるガスバリア層の形成で使用される紫外光を吸収させるなどの観点から、窒素元素を含むことも好ましい。窒素元素を含むことで、応力緩和や紫外光吸収などの性質を有するようになり、前記ガスバリア層と後述の塗布法により形成されるガスバリア層との密着性を向上させることでガスバリア性が向上するなどの効果が得られ好ましい。 In addition, the gas barrier layer preferably contains a nitrogen element from the viewpoint of stress relaxation and absorbing ultraviolet light used in forming a gas barrier layer formed by a coating method described later. By containing nitrogen, it has properties such as stress relaxation and ultraviolet light absorption, and the gas barrier property is improved by improving the adhesion between the gas barrier layer and a gas barrier layer formed by a coating method described later. Such effects as described above are obtained and preferable.
 [塗布法によるガスバリア層の形成]
 本発明に係るガスバリア性フィルムの製造方法は、前記ガスバリア層(蒸着膜)の上に、ポリシラザンを含有する塗布液を塗布乾燥して形成された塗膜を改質処理することによりガスバリア層(以下、単に塗布バリア層とも称する)を形成する工程をさらに含むことができる。
[Formation of gas barrier layer by coating method]
In the method for producing a gas barrier film according to the present invention, a coating film formed by applying and drying a coating liquid containing polysilazane on the gas barrier layer (deposited film) is subjected to a modification treatment, thereby forming a gas barrier layer (hereinafter referred to as a gas barrier layer). , Simply referred to as a coating barrier layer).
 塗布バリア層の形成方法は特に制限されないが、有機溶剤中に、無機化合物、好ましくはポリシラザンと、必要に応じて触媒を含む塗布バリア層形成用塗布液を公知の湿式塗布方法により塗布し、この溶剤を蒸発させて除去し、次いで、紫外光紫外光、電子線、X線、α線、β線、γ線、中性子線等の活性エネルギー線を照射して改質処理を行う方法が好ましい。 The method for forming the coating barrier layer is not particularly limited, but a coating liquid for forming a coating barrier layer containing an inorganic compound, preferably polysilazane, and, if necessary, a catalyst in an organic solvent is applied by a known wet coating method. A method is preferred in which the solvent is removed by evaporation, and then the modification treatment is performed by irradiating with active energy rays such as ultraviolet rays, ultraviolet rays, electron beams, X rays, α rays, β rays, γ rays and neutron rays.
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。 Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
 具体的には、ポリシラザンは、好ましくは下記の構造を有する。 Specifically, the polysilazane preferably has the following structure.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(I)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1~8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基などが挙げられる。上記R~Rに場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SOH)、カルボキシル基(-COOH)、ニトロ基(-NO)などがある。なお、場合によって存在する置換基は、置換するR1~R3と同じとなることはない。例えば、R~Rがアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R、RおよびRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基または3-(トリメトキシシリルプロピル)基である。 In the general formula (I), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different. Here, examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like. Examples of the aryl group include aryl groups having 6 to 30 carbon atoms. More specifically, non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc. Can be mentioned. The (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group. The substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R1-R3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group. Of these, R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
 また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。 In the general formula (I), n is an integer, and the polysilazane having the structure represented by the general formula (I) may be determined to have a number average molecular weight of 150 to 150,000 g / mol. preferable.
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンである。 In the compound having the structure represented by the general formula (I), one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
 または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。 Alternatively, polysilazane has a structure represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(II)において、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。 In the general formula (II), R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different. The substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
 また、上記一般式(II)において、n’およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびpは、同じであってもあるいは異なるものであってもよい。 In the general formula (II), n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.
 上記一般式(II)のポリシラザンのうち、R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’およびR5’が各々メチル基を表す化合物;R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物;R1’、R3’、R4’およびR6’が各々水素原子を表し、R2’およびR5’が各々メチル基を表す化合物が好ましい。 Among the polysilazanes of the above general formula (II), R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group; R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group; R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
 または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。 Alternatively, polysilazane has a structure represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。 In the general formula (III), R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ may be the same or different. The substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
 また、上記一般式(III)において、n”、p”およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、p”およびqは、同じであってもあるいは異なるものであってもよい。 In the general formula (III), n ″, p ″ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. Note that n ″, p ″, and q may be the same or different.
 上記一般式(III)のポリシラザンのうち、R1”、R3”およびR6”が各々水素原子を表し、R2”、R4”、R5”およびR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基または水素原子を表す化合物が好ましい。 Of the polysilazanes of the above general formula (III), R 1 ″ , R 3 ″ and R 6 ″ each represent a hydrogen atom, and R 2 ″ , R 4 ″ , R 5 ″ and R 8 ″ each represent a methyl group. , R 9 ″ represents a (triethoxysilyl) propyl group, and R 7 ″ represents an alkyl group or a hydrogen atom.
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。 On the other hand, the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard. The ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, perhydropolysilazane and organopolysilazane may be selected as appropriate according to the application, and may be used in combination.
 パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造とが共存した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。 Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on 6- and 8-membered rings coexist. The number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのまま塗布バリア層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。 Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and a commercially available product can be used as it is as a coating solution for forming a coating barrier layer. Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd. Is mentioned.
 本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。 Other examples of the polysilazane that can be used in the present invention include, but are not limited to, for example, a silicon alkoxide-added polysilazane obtained by reacting the polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-23827), and a glycidol reaction. Glycidol-added polysilazane (Japanese Patent Laid-Open No. 6-122852) obtained by reaction, alcohol-added polysilazane obtained by reacting alcohol (Japanese Patent Laid-Open No. 6-240208), metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal obtained by adding metal fine particles Fine particle added policy Zhang such (JP-A-7-196986), and a polysilazane ceramic at low temperatures.
 ポリシラザンを用いる場合、改質処理前の塗布バリア層中におけるポリシラザンの含有率としては、塗布バリア層の全重量を100重量%としたとき、100重量%でありうる。また、塗布バリア層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10重量%以上99重量%以下であることが好ましく、40重量%以上95重量%以下であることがより好ましく、特に好ましくは70重量%以上95重量%以下である。 When polysilazane is used, the content of polysilazane in the coating barrier layer before the modification treatment can be 100% by weight when the total weight of the coating barrier layer is 100% by weight. When the coating barrier layer contains a material other than polysilazane, the content of polysilazane in the layer is preferably 10% by weight or more and 99% by weight or less, and 40% by weight or more and 95% by weight or less. Is more preferably 70 wt% or more and 95 wt% or less.
 (添加化合物)
 塗布バリア層を形成する際に用いられる塗布液は、ポリシラザンに加え、添加化合物を必要に応じて含むことができる。添加化合物を塗布液に加えることにより、バリア層の改質が進みやすくなるという利点が得られる。
(Additive compound)
In addition to polysilazane, the coating solution used when forming the coating barrier layer can contain an additive compound as necessary. By adding the additive compound to the coating solution, there is an advantage that the modification of the barrier layer easily proceeds.
 添加化合物の例としては、水、アルコール化合物、フェノール化合物、金属アルコキシド化合物、アルキルアミン化合物、アルコール変性ポリシロキサン、アルコキシ変性ポリシロキサン、およびアルキルアミノ変性ポリシロキサンからなる群より選択される少なくとも1種の化合物が挙げられる。なかでも、アルコール化合物、フェノール化合物、金属アルコキシド化合物、アルキルアミン化合物、アルコール変性ポリシロキサン、アルコキシ変性ポリシロキサン、およびアルキルアミノ変性ポリシロキサンからなる群より選択される少なくとも1種の化合物がより好ましい。 Examples of the additive compound include at least one selected from the group consisting of water, alcohol compounds, phenol compounds, metal alkoxide compounds, alkylamine compounds, alcohol-modified polysiloxanes, alkoxy-modified polysiloxanes, and alkylamino-modified polysiloxanes. Compounds. Among these, at least one compound selected from the group consisting of alcohol compounds, phenol compounds, metal alkoxide compounds, alkylamine compounds, alcohol-modified polysiloxanes, alkoxy-modified polysiloxanes, and alkylamino-modified polysiloxanes is more preferable.
 添加化合物として用いられる前記アルコール化合物の具体的な例としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ペンタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、オクタノール、イソオクタノール、2-エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、tert-ノニルアルコール、デカノール、ドデカノール、ドデカヘキサノール、ドデカオクタノール、アリルアルコール、オレイルアルコールなどが挙げられる。アルコール化合物は、改質処理の際、ポリシラザンの骨格に含まれうるSi-H基と、アルコール化合物中のOH基との間で脱水素縮合反応が起こり、Si-O-R結合が形成されるため、高温高湿下での保存安定性がより向上する。これらアルコール化合物の中でも、炭素数が少なく、かつ沸点が100℃以下であるメタノール、エタノール、1-プロパノール、または2-プロパノールがより好ましい。 Specific examples of the alcohol compound used as the additive compound include, for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, isopentanol, hexanol, isohexanol, cyclohexyl alcohol, octanol, and isooctanol. 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol, tert-nonyl alcohol, decanol, dodecanol, dodecahexanol, dodecaoctanol, allyl alcohol, oleyl alcohol and the like. The alcohol compound undergoes a dehydrogenative condensation reaction between the Si—H group that can be included in the polysilazane skeleton and the OH group in the alcohol compound during the reforming process to form a Si—O—R bond. Therefore, the storage stability under high temperature and high humidity is further improved. Among these alcohol compounds, methanol, ethanol, 1-propanol, or 2-propanol having a small number of carbon atoms and a boiling point of 100 ° C. or less is more preferable.
 添加化合物として用いられる前記フェノール化合物の具体的な例としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、カテコール、レゾルシノール、ピロガロール、α-ナフトール、β-ナフトールなどが挙げられる。フェノール化合物も上記のアルコール化合物と同様に、改質処理の際、ポリシラザンの骨格に含まれうるSi-H基と、フェノール化合物中のOH基との間で脱水素縮合反応が起こり、Si-O-R結合が形成されるため、高温高湿下での保存安定性がより向上する。 Specific examples of the phenol compound used as the additive compound include, for example, phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol. , M-butylphenol, p-butylphenol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5 -Trimethylphenol, 3,4,5-trimethylphenol, catechol, resorcinol, pyrogallol, α-naphthol, β-naphthol and the like. Similarly to the above alcohol compound, the phenol compound also undergoes a dehydrogenative condensation reaction between the Si—H group that can be included in the polysilazane skeleton and the OH group in the phenol compound during the modification treatment, and Si—O. Since the —R bond is formed, the storage stability under high temperature and high humidity is further improved.
 添加化合物として用いられる金属アルコキシド化合物としては、ベリリウム(Be)、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロジウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、タリウム(Tl)、鉛(Pb)、ラジウム(Ra)等の長周期型周期表の第2~14族元素のアルコキシドが挙げられる。 Examples of the metal alkoxide compound used as the additive compound include beryllium (Be), boron (B), magnesium (Mg), aluminum (Al), silicon (Si), calcium (Ca), scandium (Sc), and titanium (Ti). , Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge) , Strontium (Sr), Yttrium (Y), Zirconium (Zr), Niobium (Nb), Molybdenum (Mo), Technetium (Tc), Ruthenium (Ru), Rhodium (Rh), Palladium (Pd), Silver (Ag) , Cadmium (Cd), indium (In), tin (Sn), barium (Ba), lanthanum (La), selenium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprodium (Dy), holmium (Ho) , Erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir) Alkoxides of Group 2 to 14 elements of the long-period type periodic table such as platinum (Pt), gold (Au), mercury (Hg), thallium (Tl), lead (Pb), and radium (Ra).
 金属アルコキシド化合物のさらに具体的な例としては、例えば、ベリリウムアセチルアセトネート、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリn-プロピル、ホウ酸トリイソプロピル、ホウ酸トリn-ブチル、ホウ酸トリtert-ブチル、マグネシウムエトキシド、マグネシウムエトキシエトキシド、マグネシウムメトキシエトキシド、マグネシウムアセチルアセトネート、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリn-プロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリn-ブトキシド、アルミニウムトリsec-ブトキシド、アルミニウムトリtert-ブトキシド、アルミニウムアセチルアセトナート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテートジn-ブチレート、アルミニウムジエチルアセトアセテートモノn-ブチレート、アルミニウムジイソプロピレートモノsec-ブチレート、アルミニウムトリスアセチルアセトネート、アルミニウムトリスエチルアセトアセテート、ビス(エチルアセトアセテート)(2,4-ペンタンジオナト)アルミニウム、アルミニウムアルキルアセトアセテートジイソプロピレート、アルミニウムオキサイドイソプロポキサイドトリマー、アルミニウムオキサイドオクチレートトリマー、カルシウムメトキシド、カルシウムエトキシド、カルシウムイソプロポキシド、カルシウムアセチルアセトネート、スカンジウムアセチルアセトネート、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラノルマルプロポキシド、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトライソブトキシド、チタンジイソプロポキシジノルマルブトキシド、チタンジターシャリーブトキシジイソプロポキシド、チタンテトラtert-ブトキシド、チタンテトライソオクチロキシド、チタンテトラステアリルアルコキシド、バナジウムトリイソブトキシドオキシド、トリス(2,4-ペンタンジオナト)クロム、クロムn-プロポキシド、クロムイソプロポキシド、マンガンメトキシド、トリス(2,4-ペンタンジオナト)マンガン、鉄メトキシド、鉄エトキシド、鉄n-プロポキシド、鉄イソプロポキシド、トリス(2,4-ペンタンジオナト)鉄、コバルトイソプロポキシド、トリス(2,4-ペンタンジオナト)コバルト、ニッケルアセチルアセトネート、銅メトキシド、銅エトキシド、銅イソプロポキシド、銅アセチルアセトネート、亜鉛エトキシド、亜鉛エトキシエトキシド、亜鉛メトキシエトキシド、ガリウムメトキシド、ガリウムエトキシド、ガリウムイソプロポキシド、ガリウムアセチルアセトナート、ゲルマニウムメトキシド、ゲルマニウムエトキシド、ゲルマニウムイソプロポキシド、ゲルマニウムn-ブトキシド、ゲルマニウムtert-ブトキシド、エチルトリエトキシゲルマニウム、ストロンチウムイソプロポキシド、イットリウムn-プロポキシド、イットリウムイソプロポキシド、イットリウムアセチルアセトネート、ジルコニウムエトキシド、ジルコニウムn-プロポキシド、ジルコニウムイソプロポキシド、ジルコニウムブトキシド、ジルコニウムtert-ブトキシド、テトラキス(2,4-ペンタンジオナト)ジルコニウム、ニオブエトキシド、ニオブn-ブトキシド、ニオブtert-ブトキシド、モリブデンエトキシド、モリブデンアセチルアセトネート、パラジウムアセチルアセトネート、銀アセチルアセトネート、カドミウムアセチルアセトネート、トリス(2,4-ペンタンジオナト)インジウム、インジウムイソプロポキシド、インジウムイソプロポキシド、インジウムn-ブトキシド、インジウムメトキシエトキシド、スズn-ブトキシド、スズtert-ブトキシド、スズアセチルアセトネート、バリウムジイソプロポキシド、バリウムtert-ブトキシド、バリウムアセチルアセトネート、ランタンイソプロポキシド、ランタンメトキシエトキシド、ランタンアセチルアセトネート、セリウムn-ブトキシド、セリウムtert-ブトキシド、セリウムアセチルアセトネート、プラセオジムメトキシエトキシド、プラセオジムアセチルアセトネート、ネオジムメトキシエトキシド、ネオジムアセチルアセトネート、ネオジムメトキシエトキシド、サマリウムイソプロポキシド、サマリウムアセチルアセトネート、ユーロピウムアセチルアセトネート、ガドリニウムアセチルアセトネート、テルビウムアセチルアセトネート、ホルミウムアセチルアセトネート、イッテルビウムアセチルアセトネート、ルテチウムアセチルアセトネート、ハフニウムエトキシド、ハフニウムn-ブトキシド、ハフニウムtert-ブトキシド、ハフニウムアセチルアセトネート、タンタルメトキシド、タンタルエトキシド、タンタルn-ブトキシド、タンタルブトキシド、タンタルテトラメトキシドアセチルアセトネート、タングステンエトキシド、イリジウムアセチルアセトネート、イリジウムジカルボニルアセチルアセトネート、タリウムエトキシド、タリウムアセチルアセトネート、鉛アセチルアセトネート、および下記構造を有する化合物などが挙げられる。 More specific examples of metal alkoxide compounds include, for example, beryllium acetylacetonate, trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tri-tert borate. -Butyl, magnesium ethoxide, magnesium ethoxyethoxide, magnesium methoxyethoxide, magnesium acetylacetonate, aluminum trimethoxide, aluminum triethoxide, aluminum tri-n-propoxide, aluminum triisopropoxide, aluminum tri-n-butoxide , Aluminum tri-sec-butoxide, aluminum tri-tert-butoxide, aluminum acetylacetonate, acetoalkoxyaluminum diisopropylate, aluminum Um ethyl acetoacetate diisopropylate, aluminum ethyl acetoacetate di n-butyrate, aluminum diethyl acetoacetate mono n-butyrate, aluminum diisopropylate mono sec-butylate, aluminum trisacetylacetonate, aluminum trisethylacetoacetate, bis ( Ethyl acetoacetate) (2,4-pentanedionato) aluminum, aluminum alkyl acetoacetate diisopropylate, aluminum oxide isopropoxide trimer, aluminum oxide octylate trimer, calcium methoxide, calcium ethoxide, calcium isopropoxide, calcium Acetyl acetonate, scandium acetyl acetonate, titanium tetra Toxide, Titanium tetraethoxide, Titanium tetranormal propoxide, Titanium tetraisopropoxide, Titanium tetranormal butoxide, Titanium tetraisobutoxide, Titanium diisopropoxy dinormal butoxide, Titanium ditertiary butoxy diisopropoxide, Titanium tetra tert- Butoxide, titanium tetraisooctyloxide, titanium tetrastearyl alkoxide, vanadium triisobutoxide oxide, tris (2,4-pentanedionato) chromium, chromium n-propoxide, chromium isopropoxide, manganese methoxide, tris (2 , 4-Pentandionato) Manganese, iron methoxide, iron ethoxide, iron n-propoxide, iron isopropoxide, tris (2,4-pentandionato) iron, cobalt isopro Poxide, tris (2,4-pentanedionato) cobalt, nickel acetylacetonate, copper methoxide, copper ethoxide, copper isopropoxide, copper acetylacetonate, zinc ethoxide, zinc ethoxide, zinc methoxyethoxide, gallium methoxy Gallium ethoxide, gallium isopropoxide, gallium acetylacetonate, germanium methoxide, germanium ethoxide, germanium isopropoxide, germanium n-butoxide, germanium tert-butoxide, ethyltriethoxygermanium, strontium isopropoxide, yttrium n-propoxide, yttrium isopropoxide, yttrium acetylacetonate, zirconium ethoxide, zirconium n-propoxide Zirconium isopropoxide, zirconium butoxide, zirconium tert-butoxide, tetrakis (2,4-pentanedionato) zirconium, niobium ethoxide, niobium n-butoxide, niobium tert-butoxide, molybdenum ethoxide, molybdenum acetylacetonate, palladium acetyl Acetonate, silver acetylacetonate, cadmium acetylacetonate, tris (2,4-pentandionato) indium, indium isopropoxide, indium isopropoxide, indium n-butoxide, indium methoxyethoxide, tin n-butoxide, Tin tert-butoxide, tin acetylacetonate, barium diisopropoxide, barium tert-butoxide, barium acetylacetonate , Lanthanum isopropoxide, lanthanum methoxyethoxide, lanthanum acetylacetonate, cerium n-butoxide, cerium tert-butoxide, cerium acetylacetonate, praseodymium methoxyethoxide, praseodymium acetylacetonate, neodymium methoxyethoxide, neodymium acetylacetonate , Neodymium methoxyethoxide, samarium isopropoxide, samarium acetylacetonate, europium acetylacetonate, gadolinium acetylacetonate, terbium acetylacetonate, holmium acetylacetonate, ytterbium acetylacetonate, lutetium acetylacetonate, hafnium ethoxide, Hafnium n-butoxide, hafnium tert-butoxide, Hough Ni-acetylacetonate, tantalum methoxide, tantalum ethoxide, tantalum n-butoxide, tantalum butoxide, tantalum tetramethoxide acetylacetonate, tungsten ethoxide, iridium acetylacetonate, iridium dicarbonylacetylacetonate, thallium ethoxide, thallium Examples include acetylacetonate, lead acetylacetonate, and compounds having the following structure.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、金属アルコキシド化合物として、シルセスキオキサンも用いることができる。 Silsesquioxane can also be used as the metal alkoxide compound.
 シルセスキオキサン(Silsesquioxane)は、主鎖骨格がSi-O結合からなるシロキサン系の化合物であり、Tレジンとも呼ばれるもので、通常のシリカが一般式〔SiO〕で表されるのに対し、シルセスキオキサン(ポリシルセスキオキサンとも称する)は一般式〔RSiO1.5〕で表される化合物である。通常はテトラエトキシシランに代表されるテトラアルコキシシラン(Si(OR’))の1つのアルコキシ基をアルキル基またはアリール基に置き換えた(RSi(OR’))化合物の加水分解-重縮合で合成されるポリシロキサンであり、分子配列の形状として、代表的には無定形、ラダー状、かご状(完全縮合ケージ状)がある。 Silsesquioxane is a siloxane-based compound whose main chain skeleton is composed of Si—O bonds, and is also called T-resin, whereas ordinary silica is represented by the general formula [SiO 2 ]. Silsesquioxane (also referred to as polysilsesquioxane) is a compound represented by the general formula [RSiO 1.5 ]. Usually, by hydrolysis-polycondensation of a (RSi (OR ') 3 ) compound in which one alkoxy group of tetraalkoxysilane (Si (OR') 4 ) represented by tetraethoxysilane is replaced with an alkyl group or an aryl group. The polysiloxane to be synthesized, and the molecular arrangement is typically amorphous, ladder-like, or cage-like (fully condensed cage-like).
 シルセスキオキサンは、合成されてもあるいは市販品であってもよい。後者の具体例としては、X-40-2308、X-40-9238、X-40-9225、X-40-9227、x-40-9246、KR-500、KR-510(いずれも、信越化学社製)、SR2400、SR2402、SR2405、FOX14(パーヒドロシルセルセスキオキサン)(いずれも、東レ・ダウコーニング社製)、SST-H8H01(パーヒドロシルセルセスキオキサン)(Gelest社製)等が挙げられる。 Silsesquioxane may be synthesized or commercially available. Specific examples of the latter include X-40-2308, X-40-9238, X-40-9225, X-40-9227, x-40-9246, KR-500, KR-510 (all of which are Shin-Etsu Chemical) SR2400, SR2402, SR2405, FOX14 (perhydrosilcelsesquioxane) (all manufactured by Toray Dow Corning), SST-H8H01 (perhydrosilcelsesquioxane) (manufactured by Gelest), etc. Is mentioned.
 これら金属アルコキシド化合物の中でも、反応性、溶解性等の観点から分岐状のアルコキシ基を有する化合物が好ましく、2-プロポキシ基、またはsec-ブトキシ基を有する化合物がより好ましい。また、ガスバリア性能、密着性等の観点から、エトキシ基を有する化合物が好ましい。 Among these metal alkoxide compounds, a compound having a branched alkoxy group is preferable from the viewpoint of reactivity and solubility, and a compound having a 2-propoxy group or a sec-butoxy group is more preferable. Moreover, the compound which has an ethoxy group from viewpoints, such as gas barrier performance and adhesiveness, is preferable.
 さらに、アセチルアセトナート基を有する金属アルコキシド化合物もまた好ましい。アセチルアセトナート基は、カルボニル構造によりアルコキシド化合物の中心元素と相互作用を有するため、取り扱い性が容易になり好ましい。さらに好ましくは上記のアルコキシド基、またはアセチルアセトナート基を複数種有する化合物が反応性や膜組成の観点からより好ましい。 Furthermore, metal alkoxide compounds having an acetylacetonate group are also preferred. The acetylacetonate group is preferable because it has an interaction with the central element of the alkoxide compound due to the carbonyl structure, so that handling is easy. More preferably, a compound having a plurality of alkoxide groups or acetylacetonate groups is more preferable from the viewpoint of reactivity and film composition.
 また、金属アルコキシドの中心元素としては、ポリシラザン中の窒素原子と配位結合を形成しやすい元素が好ましく、ルイス酸性が高いAl、Fe、またはBがより好ましい。 As the central element of the metal alkoxide, an element that easily forms a coordinate bond with a nitrogen atom in polysilazane is preferable, and Al, Fe, or B having high Lewis acidity is more preferable.
 さらに好ましい金属アルコキシド化合物は、具体的には、ホウ酸トリイソプロピル、アルミニウムトリsec-ブトキシド、アルミニウムエチルアセトアセテート・ジイソプロピレート、マグネシウムエトキシド、カルシウムイソプロポキシド、チタンテトライソプロポキシド、ガリウムイソプロポキシド、アルミニウムジイソプロピレートモノsec-ブチレート、アルミニウムエチルアセトアセテートジn-ブチレート、またはアルミニウムジエチルアセトアセテートモノn-ブチレートである。 More preferable metal alkoxide compounds are, specifically, triisopropyl borate, aluminum trisec-butoxide, aluminum ethyl acetoacetate diisopropylate, magnesium ethoxide, calcium isopropoxide, titanium tetraisopropoxide, gallium isopropoxide. Aluminum diisopropylate monosec-butyrate, aluminum ethyl acetoacetate di n-butyrate, or aluminum diethyl acetoacetate mono n-butyrate.
 金属アルコキシド化合物は、市販品を用いてもよいし合成品を用いてもよい。市販品の具体的な例としては、例えば、AMD(アルミニウムジイソプロピレートモノsec-ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH-TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL-M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)、オルガチックスシリーズ(マツモトファインケミカル株式会社製)等が挙げられる。 As the metal alkoxide compound, a commercially available product or a synthetic product may be used. Specific examples of commercially available products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate diisopropylate), ALCH-TR (aluminum tris). Ethyl acetoacetate), aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) , Kawaken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxy aluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.), Moth Chicks series (manufactured by Matsumoto Fine Chemical Co., Ltd.) and the like.
 なお、金属アルコキシド化合物を用いる場合は、ポリシラザンを含む溶液と不活性ガス雰囲気下で混合することが好ましい。金属アルコキシド化合物が大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。 In addition, when using a metal alkoxide compound, it is preferable to mix with the solution containing polysilazane in inert gas atmosphere. This is to prevent the metal alkoxide compound from reacting with moisture and oxygen in the atmosphere and causing intense oxidation.
 前記アルキルアミン化合物の具体例としては、例えば、メチルアミン、エチルアミン、プロピルアミン、n-ブチルアミン、sec-ブチルアミン、tert-ブチルアミン、3-モルホリノプロピルアミン等の第1級アミン化合物;ジメチルアミン、ジエチルアミン、メチルエチルアミン、ジプロピルアミン、ジ(n-ブチル)アミン、ジ(sec-ブチル)アミン、ジ(tert-ブチル)アミン等の第2級アミン化合物;トリメチルアミン、トリエチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリプロピルアミン、トリ(n-ブチル)アミン、トリ(sec-ブチル)アミン、トリ(tert-ブチル)アミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエタノールアミン等の第3級アミン化合物などが挙げられる。 Specific examples of the alkylamine compound include primary amine compounds such as methylamine, ethylamine, propylamine, n-butylamine, sec-butylamine, tert-butylamine, 3-morpholinopropylamine; dimethylamine, diethylamine, Secondary amine compounds such as methylethylamine, dipropylamine, di (n-butyl) amine, di (sec-butyl) amine, di (tert-butyl) amine; trimethylamine, triethylamine, dimethylethylamine, methyldiethylamine, tripropyl Amines, tri (n-butyl) amine, tri (sec-butyl) amine, tri (tert-butyl) amine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethanolamine, etc. Such as tertiary amine compounds.
 また、前記アルキルアミン化合物として、ジアミン化合物が使用できる。ジアミン化合物の具体例としては、テトラメチルメタンジアミン、テトラメチルエタンジアミン、テトラメチルプロパンジアミン(テトラメチルジアミノプロパン)、テトラメチルブタンジアミン、テトラメチルペンタンジアミン、テトラメチルヘキサンジアミン、テトラエチルメタンジアミン、テトラエチルエタンジアミン、テトラエチルプロパンジアミン、テトラエチルブタンジアミン、テトラエチルペンタンジアミン、テトラエチルヘキサンジアミン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン(TMDAH)、テトラメチルグアニジン等が挙げられる。 Moreover, a diamine compound can be used as the alkylamine compound. Specific examples of the diamine compound include tetramethylmethanediamine, tetramethylethanediamine, tetramethylpropanediamine (tetramethyldiaminopropane), tetramethylbutanediamine, tetramethylpentanediamine, tetramethylhexanediamine, tetraethylmethanediamine, tetraethylethane. Examples include diamine, tetraethylpropanediamine, tetraethylbutanediamine, tetraethylpentanediamine, tetraethylhexanediamine, N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH), and tetramethylguanidine.
 また、ヒドロキシ基を有するヒドロキシ変性ポリシロキサン、アルコキシ基を有するアルコキシ変性ポリシロキサン、およびアルキルアミノ基を有するアルキルアミノ変性ポリシロキサンなどの変性ポリシロキサンも、添加化合物として好ましく用いることができる。 Also, modified polysiloxanes such as hydroxy-modified polysiloxanes having hydroxy groups, alkoxy-modified polysiloxanes having alkoxy groups, and alkylamino-modified polysiloxanes having alkylamino groups can be preferably used as additive compounds.
 変性ポリシロキサンは、下記一般式(4)または一般式(5)で示されるポリシロキサン類を好ましく用いることができる。 As the modified polysiloxane, polysiloxanes represented by the following general formula (4) or general formula (5) can be preferably used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記一般式(4)および一般式(5)中、R~Rは、それぞれ独立して、水素原子、ヒドロキシ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルキルアミノ基、または置換もしくは無置換のアリール基であり、この際、RおよびRの少なくとも1つ、ならびにRおよびRの少なくとも1つは、ヒドロキシ基、アルコキシ基、またはアルキルアミノ基であり、
 pおよびqは、それぞれ独立して、1以上の整数である。
In the general formula (4) and the general formula (5), R 4 to R 7 are each independently a hydrogen atom, a hydroxy group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an alkylamino group, or a substituent. Or an unsubstituted aryl group, wherein at least one of R 4 and R 5 and at least one of R 6 and R 7 is a hydroxy group, an alkoxy group, or an alkylamino group,
p and q are each independently an integer of 1 or more.
 変性ポリシロキサンは、市販品を用いてもよいし合成品を用いてもよい。市販品の例としては、例えば、X-40-2651、X-40-2655A、KR-513、KC-89S,KR-500、X-40-9225、X-40-9246、X-40-9250、KR-401N、X-40-9227、X-40-9247、KR-510、KR9218、KR-213、X-40-2308、X-40-9238(以上、信越化学工業株式会社製)等が挙げられる。 The modified polysiloxane may be a commercially available product or a synthetic product. Examples of commercially available products include, for example, X-40-2651, X-40-2655A, KR-513, KC-89S, KR-500, X-40-9225, X-40-9246, X-40-9250 KR-401N, X-40-9227, X-40-9247, KR-510, KR9218, KR-213, X-40-2308, X-40-9238 (manufactured by Shin-Etsu Chemical Co., Ltd.), etc. Can be mentioned.
 前記変性ポリシロキサンにおけるヒドロキシ基、アルコキシ基、またはアルキルアミノ基の変性度は、ケイ素原子のモル数に対し、5モル%~50モル%が好ましく、7モル%~20モル%がより好ましく、8モル%~12モル%がさらに好ましい。 The degree of modification of the hydroxy group, alkoxy group or alkylamino group in the modified polysiloxane is preferably 5 mol% to 50 mol%, more preferably 7 mol% to 20 mol%, based on the number of moles of silicon atoms. More preferred is mol% to 12 mol%.
 変性ポリシロキサンのポリスチレン換算の重量平均分子量は、1,000~100,000程度が好ましく、2,000~50,000がより好ましい。 The polystyrene-reduced weight average molecular weight of the modified polysiloxane is preferably about 1,000 to 100,000, more preferably 2,000 to 50,000.
 (塗布バリア層形成用塗布液)
 塗布バリア層形成用塗布液を調製するための溶剤としては、ポリシラザンおよび必要に応じて添加される添加化合物を分散または溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:モノ-およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、珪素化合物の溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
(Coating solution for coating barrier layer formation)
The solvent for preparing the coating liquid for forming the coating barrier layer is not particularly limited as long as it can disperse or dissolve polysilazane and an additive compound added as necessary, but water that easily reacts with polysilazane. In addition, an organic solvent that does not contain a reactive group (such as a hydroxyl group or an amine group) and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable. Specifically, the solvent includes an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben. Hydrogen solvents; Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include mono- and polyalkylene glycol dialkyl ethers (diglymes). The solvent is selected according to the purpose such as the solubility of the silicon compound and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
 塗布バリア層形成用塗布液におけるポリシラザンの濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1~80重量%、より好ましくは2~50重量%、特に好ましくは3~40重量%である。 The concentration of polysilazane in the coating solution for forming the coating barrier layer is not particularly limited, and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by weight, more preferably 2 to 50% by weight, Particularly preferred is 3 to 40% by weight.
 塗布バリア層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、例えば、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン等のアミン化合物、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物、ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、ピペリジン、ルチジン、ピリミジン、ピリダジン等のピリジン化合物、DBU(1,8-ジアザビシクロ[5.4.0]-7-ウンデセン)、DBN(1,5-ジアザビシクロ[4.3.0]-5-ノネン)、酢酸、プロピオン酸、酪酸、吉草酸、マレイン酸、ステアリン酸、等の有機酸、塩酸、硝酸、硫酸、過酸化水素等の無機酸等が挙げられる。これらのうち、アミン化合物を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンを基準としたとき、好ましくは0.1~10重量%、より好ましくは0.5~7重量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。 The coating solution for forming the coating barrier layer preferably contains a catalyst in order to promote modification. Examples of the catalyst applicable to the present invention include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′—. Amine compounds such as tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, and Pd compounds such as propionic acid Pd Metal catalysts such as Rh compounds such as Rh acetylacetonate, N-heterocyclic compounds, pyridine compounds such as pyridine, α-picoline, β-picoline, γ-picoline, piperidine, lutidine, pyrimidine, pyridazine, DBU (1 , 8-diazabicyclo [5.4.0] -7-undecene), DBN (1,5-diazabicyclo [4 3.0] -5-nonene), acetic, propionic, butyric, valeric, maleic, stearic acids, organic acids etc., hydrochloric, nitric acid, sulfuric acid, and inorganic acids such as hydrogen peroxide. Among these, it is preferable to use an amine compound. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by weight, more preferably 0.5 to 7% by weight, based on polysilazane. By setting the addition amount of the catalyst within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, decrease in film density, increase in film defects, and the like.
 塗布バリア層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。 In the coating barrier layer forming coating solution, the following additives may be used as necessary. For example, cellulose ethers, cellulose esters; for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc., natural resins; for example, rubber, rosin resin, etc., synthetic resins; Aminoplasts, especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
 (塗布バリア層形成用塗布液を塗布する方法)
 塗布バリア層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
(Method of applying coating liquid for forming coating barrier layer)
As a method for applying the coating liquid for forming the coating barrier layer, a conventionally known appropriate wet coating method can be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
 塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布バリア層1層当たりの塗布厚さは、乾燥後の厚さが10nm~10μm程度であることが好ましく、15nm~1μmであることがより好ましく、20~500nmであることがさらに好ましい。膜厚が10nm以上であれば十分なガスバリア性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。 The coating thickness can be appropriately set according to the purpose. For example, the coating thickness per coating barrier layer is preferably about 10 nm to 10 μm after drying, more preferably 15 nm to 1 μm, and even more preferably 20 to 500 nm. If the film thickness is 10 nm or more, sufficient gas barrier properties can be obtained, and if it is 10 μm or less, stable coating properties can be obtained during layer formation, and high light transmittance can be realized.
 塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適な塗布バリア層が得られうる。なお、残存する溶媒は後に除去されうる。 After applying the coating solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable coating barrier layer can be obtained. The remaining solvent can be removed later.
 塗膜の乾燥温度は、適用する基材によっても異なるが、50~200℃であることが好ましい(実施例:80℃)。例えば、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。 The drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C. (Example: 80 ° C.). For example, when a polyethylene terephthalate substrate having a glass transition temperature (Tg) of 70 ° C. is used as the substrate, the drying temperature is preferably set to 150 ° C. or less in consideration of deformation of the substrate due to heat. The temperature can be set by using a hot plate, oven, furnace or the like. The drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes. The drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
 塗布バリア層形成用塗布液を塗布して得られた塗膜は、改質処理前または改質処理中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-5℃(温度25℃/湿度10%)以下であり、維持される時間は塗布バリア層の膜厚によって適宜設定することが好ましい。塗布バリア層の膜厚が1.0μm以下の条件においては、露点温度は-5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、-50℃以上であり、-40℃以上であることが好ましい。改質処理前、あるいは改質処理中に水分を除去することによって、シラノールに転化した塗布バリア層の脱水反応を促進する観点から好ましい形態である。 The coating film obtained by applying the coating solution for forming the coating barrier layer may include a step of removing moisture before or during the modification treatment. As a method for removing moisture, a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature. A preferable dew point temperature is 4 ° C. or less (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is −5 ° C. (temperature 25 ° C./humidity 10%) or less, and the maintaining time is the film thickness of the coating barrier layer. It is preferable to set appropriately. Under the condition that the film thickness of the coating barrier layer is 1.0 μm or less, it is preferable that the dew point temperature is −5 ° C. or less and the maintaining time is 1 minute or more. The lower limit of the dew point temperature is not particularly limited, but is usually −50 ° C. or higher, and preferably −40 ° C. or higher. This is a preferred form from the viewpoint of promoting the dehydration reaction of the coating barrier layer converted to silanol by removing water before or during the modification treatment.
 <塗膜の改質処理>
 本発明における塗布法により形成された塗膜の改質処理とは、ポリシラザンの酸化ケイ素または酸窒化ケイ素等への転化反応を指し、具体的には塗布バリア層がガスバリア性を発現するに貢献できるレベルの無機薄膜となる処理をいう。
<Coating film modification treatment>
The modification treatment of the coating film formed by the coating method in the present invention refers to the conversion reaction of polysilazane to silicon oxide or silicon oxynitride, and specifically, the coating barrier layer can contribute to the development of gas barrier properties. This refers to the treatment of forming a level inorganic thin film.
 ポリシラザンの酸化珪素または酸窒化珪素等への転化反応は、公知の方法を適宜選択して適用することができる。改質処理としては、プラスチック基材への適応という観点から、より低温で、転化反応が可能なプラズマ処理または紫外光照射処理による転化反応が好ましい。 The conversion reaction of polysilazane to silicon oxide or silicon oxynitride can be applied by appropriately selecting a known method. As the modification treatment, from the viewpoint of adapting to a plastic substrate, a plasma treatment capable of a conversion reaction at a lower temperature or a conversion reaction by ultraviolet light irradiation treatment is preferable.
 (プラズマ処理)
 本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等を挙げることが出来る。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、更には通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
(Plasma treatment)
In the present invention, a known method can be used as the plasma treatment that can be used as the modification treatment, and an atmospheric pressure plasma treatment or the like can be preferably used. The atmospheric pressure plasma CVD method, which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum. The film speed is high, and further, under a high pressure condition of atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free path is very short, so that a very homogeneous film can be obtained.
 大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは長周期型周期表の第18族原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。 In the case of atmospheric pressure plasma treatment, as the discharge gas, nitrogen gas or a group 18 atom of the long-period periodic table, specifically helium, neon, argon, krypton, xenon, radon, or the like is used. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
 (紫外光照射処理)
 紫外光照射処理においては、通常使用されているいずれの紫外線発生装置を使用することも可能である。
(Ultraviolet light irradiation treatment)
In the ultraviolet light irradiation treatment, any commonly used ultraviolet ray generator can be used.
 本発明におけるガスバリア性フィルムの製造方法において、水分が取り除かれたポリシラザン化合物を含む塗膜は紫外光照射による処理で改質される。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化珪素膜または酸化窒化珪素膜を形成することが可能である。 In the method for producing a gas barrier film in the present invention, the coating film containing the polysilazane compound from which moisture has been removed is modified by treatment with ultraviolet light irradiation. Ozone and active oxygen atoms generated by ultraviolet light (synonymous with ultraviolet light) have high oxidation ability, and can form a silicon oxide film or silicon oxynitride film having high density and insulation at low temperatures. It is.
 この紫外光照射により、セラミックス化に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化される。そして、励起したポリシラザンのセラミックス化が促進され、得られるセラミックス膜が緻密になる。紫外光照射は、塗膜形成後であればいずれの時点で実施しても有効である。 This ultraviolet light irradiation excites and activates O 2 and H 2 O, UV absorbers, and polysilazane itself that contribute to ceramicization. And the ceramicization of the excited polysilazane is promoted, and the resulting ceramic film becomes dense. Irradiation with ultraviolet light is effective at any time after the formation of the coating film.
 本発明での紫外光照射処理には、常用されているいずれの紫外線発生装置を使用することが可能である。なお、紫外光とは、一般には、10~400nmの波長を有する電磁波をいうが、好ましくは、真空紫外光とよばれる10~200nmの波長を有する電磁波を含む紫外光を用いる。 Any ultraviolet ray generator that is commonly used can be used for the ultraviolet ray irradiation treatment in the present invention. The ultraviolet light generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm. Preferably, ultraviolet light including an electromagnetic wave having a wavelength of 10 to 200 nm called vacuum ultraviolet light is used.
 真空紫外光の照射は、照射される改質前のポリシラザン化合物を含む塗膜を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。 In the irradiation with vacuum ultraviolet light, it is preferable to set the irradiation intensity and the irradiation time within a range in which the substrate carrying the coating containing the polysilazane compound before the modification is not damaged.
 基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20~300mW/cm、好ましくは50~200mW/cmになるように基材-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。 Taking the case of using a plastic film as a base material, for example, a 2 kW (80 W / cm × 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm. The distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
 一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したりその強度が劣化したりするなど、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムなどの場合には、より高温での改質処理が可能である。従って、この紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。 In general, when the temperature of the substrate during the ultraviolet irradiation treatment is 150 ° C. or higher, the properties of the substrate are impaired in the case of a plastic film or the like, for example, the substrate is deformed or its strength is deteriorated. . However, in the case of a film having high heat resistance such as polyimide, a modification treatment at a higher temperature is possible. Accordingly, there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate. Moreover, there is no restriction | limiting in particular in ultraviolet irradiation atmosphere, What is necessary is just to implement in air.
 このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等が挙げられるが、特に限定されない。また、発生させた紫外線を改質前のポリシラザン層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから改質前のポリシラザン層に当てることが望ましい。 Examples of such ultraviolet ray generating means include, but are not particularly limited to, metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, and UV light lasers. In addition, when the polysilazane layer before modification is irradiated with the generated ultraviolet light, the polysilazane before modification is reflected after reflecting the ultraviolet light from the generation source with a reflector from the viewpoint of improving efficiency and uniform irradiation. It is desirable to hit the layer.
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。ポリシラザン化合物を含む塗布層を有する基材が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材やポリシラザン化合物を含む塗布層の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used. When the substrate having a coating layer containing a polysilazane compound is in the form of a long film, it is converted into ceramics by continuously irradiating ultraviolet rays in a drying zone equipped with an ultraviolet ray source as described above while being conveyed. can do. The time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the coating layer containing the substrate and polysilazane compound used.
 (真空紫外線照射処理:エキシマ照射処理)
 本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。
(Vacuum ultraviolet irradiation treatment: excimer irradiation treatment)
In the present invention, the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
 真空紫外光(VUV)照射時にこれら酸素以外のガスとしては乾燥不活性ガスを用いることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 As the gas other than oxygen at the time of vacuum ultraviolet light (VUV) irradiation, dry inert gas is preferably used, and dry nitrogen gas is particularly preferable from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 具体的に、本発明における改質前のポリシラザン化合物を含む層の改質処理方法は、真空紫外光照射による処理である。真空紫外光照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で酸化珪素膜の形成を行う方法である。これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。 Specifically, the method for modifying the layer containing the polysilazane compound before modification in the present invention is treatment by irradiation with vacuum ultraviolet light. The treatment by vacuum ultraviolet light irradiation uses light energy of 100 to 200 nm, preferably light energy having a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and the bonding of atoms is a photon called photon process. This is a method in which a silicon oxide film is formed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by only the action. As a vacuum ultraviolet light source required for this, a rare gas excimer lamp is preferably used.
 なお、Xe、Kr、Ar、Ne等の希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
 e+Xe→e+Xe
 Xe+Xe+Xe→Xe +Xe
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光(真空紫外光)を発光する。
Note that rare gas atoms such as Xe, Kr, Ar, and Ne are called inert gases because they are chemically bonded and do not form molecules. However, rare gas atoms (excited atoms) that have gained energy by discharge or the like can be combined with other atoms to form molecules. When the rare gas is xenon,
e + Xe → e + Xe *
Xe * + Xe + Xe → Xe 2 * + Xe
Then, when the excited excimer molecule Xe 2 * transitions to the ground state, excimer light (vacuum ultraviolet light) of 172 nm is emitted.
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。 ¡Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
 本発明における真空紫外線照射工程において、ポリシラザン化合物を含む塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。1mW/cm以上であれば、十分な改質効率が得られうる。また、10W/cm以下であれば、塗膜のアブレーションが生じにくく、基材にダメージを与えにくい。 In the vacuum ultraviolet ray irradiation step in the present invention, the illuminance of the vacuum ultraviolet ray on the coating surface received by the coating film containing the polysilazane compound is preferably 1 mW / cm 2 to 10 W / cm 2 , and 30 mW / cm 2 to 200 mW / cm. more preferably 2, further preferably at 50mW / cm 2 ~ 160mW / cm 2. If it is 1 mW / cm 2 or more, sufficient reforming efficiency can be obtained. Moreover, if it is 10 W / cm < 2 > or less, the ablation of a coating film will not arise easily and it will be hard to give a damage to a base material.
 ポリシラザン化合物を含む塗膜面における真空紫外線の照射エネルギー量は、10~10000mJ/cmが好ましく、100~8000mJ/cmであるとより好ましく、200~6000mJ/cmであるとさらに好ましく、500~6000mJ/cm2であると特に好ましい(実施例:3000mJ/cm)。10mJ/cm以上であれば十分な改質効率が得られ、10000mJ/cm以下であればクラックや基材の熱変形が生じにくい。 Irradiation energy amount of the VUV in coated surface containing the polysilazane compound is preferably 10 ~ 10000mJ / cm 2, more preferable to be 100 ~ 8000mJ / cm 2, further preferable to be 200 ~ 6000mJ / cm 2, 500 It is particularly preferred to be ˜6000 mJ / cm 2 (Example: 3000 mJ / cm 2 ). If 10 mJ / cm 2 or more sufficient reforming efficiency is obtained, 10000 mJ / cm 2 or less value, if difficult to thermal deformation of the cracks or the substrate occurs.
 また、真空紫外光(VUV)を照射する際の、酸素濃度は300~10000体積ppm(1体積%)とすることが好ましく、500~5000体積ppmとすることがより好ましい(実施例:0.1体積%)。このような酸素濃度の範囲に調整することにより、酸素過多のガスバリア層の生成を防止してガスバリア性の劣化を防止することができる。 Further, the oxygen concentration upon irradiation with vacuum ultraviolet light (VUV) is preferably 300 to 10000 volume ppm (1 volume%), more preferably 500 to 5000 volume ppm (Example: 0.0. 1% by volume). By adjusting to such an oxygen concentration range, it is possible to prevent the formation of an oxygen-excess gas barrier layer and to prevent deterioration of gas barrier properties.
 エキシマ発光を得るには、誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる雷に似た非常に細いmicro dischargeと呼ばれる放電である。 In order to obtain excimer light emission, a method using dielectric barrier discharge is known. Dielectric barrier discharge refers to lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. It is a similar very thin discharge called micro discharge.
 また、効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外には無電極電界放電も知られている。無電極電界放電とは、容量性結合による放電であり、別名RF放電とも呼ばれる。ランプと電極及びその配置は、基本的には誘電体バリア放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られる。 In addition to the dielectric barrier discharge, electrodeless electric field discharge is also known as a method for efficiently obtaining excimer light emission. The electrodeless field discharge is a discharge due to capacitive coupling, and is also called an RF discharge. The lamp, the electrode, and the arrangement thereof may be basically the same as those of the dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. In the electrodeless field discharge, a spatially and temporally uniform discharge can be obtained in this way.
 そして、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン化合物を含む塗膜の改質を実現できる。従って、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板、樹脂フィルム等への照射を可能としている。 And, the Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the coating film containing the polysilazane compound can be modified in a short time. Therefore, compared to low-pressure mercury lamps with a wavelength of 185 nm and 254 nm and plasma cleaning, the process time is shortened due to high throughput, the equipment area is reduced, and organic materials, plastic substrates, resin films, etc. that are easily damaged by heat are irradiated. It is possible.
 さらに、真空紫外線照射と同時に塗膜層を加熱することも、改質処理を促進するために好ましく用いられる。加熱の方法は、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜層を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターのような赤外領域の光を用いた方法等が挙げられるが、特に制限されない。塗膜層の平滑性を維持できる方法を適宜選択してよい。真空紫外線の照射条件は、適用する基材によっても異なり、当業者により適宜決定されうる。例えば、真空紫外線の照射温度(加熱温度)は、50~200℃であることが好ましく、80~150℃であることがより好ましい。照射条件が上記範囲内であると、基材の変形や強度の劣化が生じにくく、基材の特性が損なわれないことから好ましい。 Furthermore, heating the coating layer simultaneously with vacuum ultraviolet irradiation is also preferably used to promote the modification treatment. The heating method is a method of heating the coating layer by heat conduction by bringing the substrate into contact with a heating element such as a heat block, a method of heating the atmosphere with an external heater such as a resistance wire, and an infrared region such as an IR heater. Although the method using light etc. are mentioned, it does not restrict | limit in particular. A method capable of maintaining the smoothness of the coating layer may be appropriately selected. The irradiation conditions of the vacuum ultraviolet rays vary depending on the substrate to be applied and can be appropriately determined by those skilled in the art. For example, the irradiation temperature (heating temperature) of vacuum ultraviolet rays is preferably 50 to 200 ° C., more preferably 80 to 150 ° C. It is preferable for the irradiation conditions to be within the above-mentioned range since deformation of the substrate and deterioration of strength are unlikely to occur, and the properties of the substrate are not impaired.
 なお、塗布バリア層の膜組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、シリコン含有膜を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。 The film composition of the coating barrier layer can be measured by measuring the atomic composition ratio using an XPS surface analyzer. Alternatively, the silicon-containing film can be cut and the cut surface can be measured by measuring the atomic composition ratio with an XPS surface analyzer.
 該塗布バリア層は、単層でもよいし2層以上の積層構造であってもよい。 The coating barrier layer may be a single layer or a laminated structure of two or more layers.
 該塗布バリア層が2層以上の積層構造である場合、各塗布バリア層は、同じ組成であっても異なる組成であってもよい。 When the coating barrier layer has a laminated structure of two or more layers, each coating barrier layer may have the same composition or a different composition.
 〔中間層〕
 本発明のガスバリア性フィルムは、応力緩和などを目的として、ガスバリア層と塗布バリア層との間に中間層を有していてもよい。該中間層を形成する方法としては、ポリシロキサン改質層を形成する方法を適用することができる。この方法は、ポリシロキサンを含有した塗布液を、湿式塗布法によりガスバリア層上に塗布して乾燥した後、その乾燥して得られた塗膜に真空紫外光を照射することによって、中間層を形成する方法である。
[Middle layer]
The gas barrier film of the present invention may have an intermediate layer between the gas barrier layer and the coating barrier layer for the purpose of stress relaxation and the like. As a method of forming the intermediate layer, a method of forming a polysiloxane modified layer can be applied. In this method, a coating liquid containing polysiloxane is applied onto a gas barrier layer by a wet coating method and dried, and then the coating film obtained by drying is irradiated with vacuum ultraviolet light to form an intermediate layer. It is a method of forming.
 中間層を形成するために用いる塗布液は、ポリシロキサンおよび有機溶媒を含有することが好ましい。 The coating solution used for forming the intermediate layer preferably contains polysiloxane and an organic solvent.
 中間層の形成に適用可能なポリシロキサンとしては、特に制限はないが、下記一般式(6)で表されるオルガノポリシロキサンが、特に好ましい。 The polysiloxane applicable to the formation of the intermediate layer is not particularly limited, but an organopolysiloxane represented by the following general formula (6) is particularly preferable.
 本実施形態ではポリシロキサンとして、下記一般式(6)で表されるオルガノポリシロキサンを例に説明する。 In this embodiment, an organopolysiloxane represented by the following general formula (6) will be described as an example of polysiloxane.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(6)において、R~R13は、それぞれ独立して、炭素数1~8の有機基を表し、この際、R~R13の少なくとも1つは、アルコキシ基または水酸基であり、mは1以上の整数である。 In the general formula (6), R 8 to R 13 each independently represents an organic group having 1 to 8 carbon atoms. At this time, at least one of R 8 to R 13 is an alkoxy group or a hydroxyl group. M is an integer of 1 or more.
 R~R13で表される炭素数1~8の有機基としては、例えば、γ-クロロプロピル基、3,3,3-トリフロロプロピル基等のハロゲン化アルキル基、ビニル基、フェニル基、γ-メタクリルオキシプロピル基等の(メタ)アクリル酸エステル基、γ-グリシドキシプロピル基等のエポキシ含有アルキル基、γ-メルカプトプロピル基等のメルカプト含有アルキル基、γ-アミノプロピル基等のアミノアルキル基、γ-イソシアネートプロピル基等のイソシアネート含有アルキル基、メチル基、エチル基、n-プロピル基、イソプロピル基等の直鎖状もしくは分岐状のアルキル基、シクロヘキシル基、シクロペンチル基等の脂環状アルキル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等の直鎖状若しくは分岐状アルコキシ基、アセチル基、プロピオニル基、ブチリル基、バレリル基、カプロイル基等のアシル基、水酸基等が挙げられる。 Examples of the organic group having 1 to 8 carbon atoms represented by R 8 to R 13 include halogenated alkyl groups such as γ-chloropropyl group and 3,3,3-trifluoropropyl group, vinyl groups, and phenyl groups. (Meth) acrylic acid ester groups such as γ-methacryloxypropyl group, epoxy-containing alkyl groups such as γ-glycidoxypropyl group, mercapto-containing alkyl groups such as γ-mercaptopropyl group, γ-aminopropyl group, etc. Isocyanate-containing alkyl groups such as aminoalkyl groups and γ-isocyanatopropyl groups, linear or branched alkyl groups such as methyl groups, ethyl groups, n-propyl groups and isopropyl groups, alicyclic groups such as cyclohexyl groups and cyclopentyl groups Linear or branched alkyl such as alkyl group, methoxy group, ethoxy group, n-propoxy group, isopropoxy group Alkoxy group, an acetyl group, a propionyl group, a butyryl group, valeryl group, an acyl group such as caproyl group, and a hydroxyl group.
 上記一般式(6)において、mが1以上であり、かつ、ポリスチレン換算の重量平均分子量が1,000~20,000であるオルガノポリシロキサンが特に好ましい。該オルガノポリシロキサンのポリスチレン換算の重量平均分子量が、1,000以上であれば、形成する保護層に亀裂が生じ難く、水蒸気バリア性を維持することができ、20,000以下であれば、形成される中間層の硬化が充分となり、そのため得られる保護層として十分な硬度が得られる。 In the above general formula (6), an organopolysiloxane having m of 1 or more and a polystyrene equivalent weight average molecular weight of 1,000 to 20,000 is particularly preferred. If the weight average molecular weight in terms of polystyrene of the organopolysiloxane is 1,000 or more, the protective layer to be formed is hardly cracked, and water vapor barrier properties can be maintained. The intermediate layer is sufficiently cured, so that a sufficient hardness can be obtained as a protective layer.
 また、中間層形成に適用可能な有機溶媒としては、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、非プロトン系溶媒等が挙げられる。 Further, examples of the organic solvent applicable to the formation of the intermediate layer include alcohol solvents, ketone solvents, amide solvents, ester solvents, aprotic solvents, and the like.
 ここで、アルコール系溶媒としては、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、iso-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなどが好ましい。 Here, examples of the alcohol solvent include n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec- Pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene Glycol monobutyl ether and the like are preferable.
 ケトン系溶媒としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン、シクロヘキサノン、2-ヘキサノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン、フェンチョンなどのほか、アセチルアセトン、2,4-ヘキサンジオン、2,4-ヘプタンジオン、3,5-ヘプタンジオン、2,4-オクタンジオン、3,5-オクタンジオン、2,4-ノナンジオン、3,5-ノナンジオン、5-メチル-2,4-ヘキサンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、1,1,1,5,5,5-ヘキサフルオロ-2,4-ヘプタンジオンなどのβ-ジケトン類などが挙げられる。これらのケトン系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。 Examples of ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n-hexyl. In addition to ketone, di-iso-butyl ketone, trimethylnonanone, cyclohexanone, 2-hexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone, fenchon, acetylacetone, 2,4-hexanedione, 2 , 4-heptanedione, 3,5-heptanedione, 2,4-octanedione, 3,5-octanedione, 2,4-nonanedione, 3,5-nonanedione, 5-methyl-2,4-hexanedione, 2,2,6,6-tetrame Le-3,5-heptane dione, 1,1,1,5,5,5 beta-diketones such as hexafluoro-2,4-heptane dione and the like. These ketone solvents may be used alone or in combination of two or more.
 アミド系溶媒としては、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン、N-ホルミルモルホリン、N-ホルミルピペリジン、N-ホルミルピロリジン、N-アセチルモルホリン、N-アセチルピペリジン、N-アセチルピロリジンなどが挙げられる。これらアミド系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。 Examples of amide solvents include formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide N, N-diethylacetamide, N-methylpropionamide, N-methylpyrrolidone, N-formylmorpholine, N-formylpiperidine, N-formylpyrrolidine, N-acetylmorpholine, N-acetylpiperidine, N-acetylpyrrolidine, etc. Can be mentioned. These amide solvents may be used alone or in combination of two or more.
 エステル系溶媒としては、ジエチルカーボネート、炭酸エチレン、炭酸プロピレン、炭酸ジエチル、酢酸メチル、酢酸エチル、γ-ブチロラクトン、γ-バレロラクトン、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどが挙げられる。これらエステル系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。 Examples of ester solvents include diethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, methyl acetate, ethyl acetate, γ-butyrolactone, γ-valerolactone, n-propyl acetate, iso-propyl acetate, n-butyl acetate, and iso -Butyl, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-acetate -Nonyl, methyl acetoacetate, ethyl acetoacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, vinegar Acid diethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, di Glycol acetate, methoxytriglycol acetate, ethyl propionate, n-butyl propionate, iso-amyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-lactate Examples include amyl, diethyl malonate, dimethyl phthalate, and diethyl phthalate. These ester solvents may be used alone or in combination of two or more.
 非プロトン系溶媒としては、アセトニトリル、ジメチルスルホキシド、N,N,N′,N′-テトラエチルスルファミド、ヘキサメチルリン酸トリアミド、N-メチルモルホロン、N-メチルピロール、N-エチルピロール、N-メチルピペリジン、N-エチルピペリジン、N,N-ジメチルピペラジン、N-メチルイミダゾール、N-メチル-4-ピペリドン、N-メチル-2-ピペリドン、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチルテトラヒドロ-2(1H)-ピリミジノンなどを挙げることができる。これら非プロトン系溶媒は、単独でもまたは2種以上を組み合わせて使用してもよい。 Aprotic solvents include acetonitrile, dimethyl sulfoxide, N, N, N ′, N′-tetraethylsulfamide, hexamethylphosphoric triamide, N-methylmorpholone, N-methylpyrrole, N-ethylpyrrole, N -Methylpiperidine, N-ethylpiperidine, N, N-dimethylpiperazine, N-methylimidazole, N-methyl-4-piperidone, N-methyl-2-piperidone, N-methyl-2-pyrrolidone, 1,3-dimethyl Examples include -2-imidazolidinone and 1,3-dimethyltetrahydro-2 (1H) -pyrimidinone. These aprotic solvents may be used alone or in combination of two or more.
 中間層の形成に用いる有機溶媒としては、上記の有機溶媒のなかではアルコール系溶媒が好ましい。 As the organic solvent used for forming the intermediate layer, alcohol solvents are preferable among the above organic solvents.
 中間層形成用の塗布液の塗布方法としては、スピンコート法、ディッピング法、ローラーブレード法、スプレー法などが挙げられる。 Examples of the coating method for the coating liquid for forming the intermediate layer include spin coating, dipping, roller blade, and spraying.
 中間層形成用の塗布液により形成する中間層の厚さとしては、100nm~10μmの範囲が好ましい。中間層の厚さが100nm以上であれば、高温高湿下でのガスバリア性を確保することができる。また、中間層の厚さが10μm以下であれば、中間層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。 The thickness of the intermediate layer formed by the coating liquid for forming the intermediate layer is preferably in the range of 100 nm to 10 μm. If the thickness of the intermediate layer is 100 nm or more, gas barrier properties under high temperature and high humidity can be ensured. Moreover, if the thickness of the intermediate layer is 10 μm or less, stable coating properties can be obtained when forming the intermediate layer, and high light transmittance can be realized.
 また、中間層は、その膜密度が通常0.35~1.2g/cmであり、好ましくは0.4~1.1g/cm、さらに好ましくは0.5~1.0g/cmである。膜密度が0.35g/cm以上であれば、十分な塗膜の機械的強度を得ることができる。 The intermediate layer generally has a film density of 0.35 to 1.2 g / cm 3 , preferably 0.4 to 1.1 g / cm 3 , more preferably 0.5 to 1.0 g / cm 3. It is. If the film density is 0.35 g / cm 3 or more, sufficient mechanical strength of the coating film can be obtained.
 本発明における中間層は、ポリシロキサンを含む塗布液を、湿式塗布法によりガスバリア層上に塗布して乾燥した後、その乾燥した塗膜(ポリシロキサン塗膜)に真空紫外光を照射することによって形成する。 The intermediate layer in the present invention is obtained by applying a coating solution containing polysiloxane onto a gas barrier layer by a wet coating method and drying it, and then irradiating the dried coating film (polysiloxane coating film) with vacuum ultraviolet light. Form.
 この中間層の形成に用いる真空紫外光としては、前述のバリア層の形成で説明したものと同様の真空紫外光照射処理による真空紫外光を適用することができる。 As the vacuum ultraviolet light used for the formation of the intermediate layer, vacuum ultraviolet light by the same vacuum ultraviolet light irradiation treatment as described in the formation of the barrier layer can be applied.
 また、本発明においては、ポリシロキサン膜を改質して中間層を形成する際の紫外光の積算光量としては、500mJ/cm以上、10,000mJ/cm以下であることが好ましい。真空紫外光の積算光量が500mJ/cm以上であれば十分なガスバリア性能を得ることができ、10,000mJ/cm以下であれば、基材に変形を与えることなく平滑性の高い中間層を形成することができる。 In the present invention, the integrated light quantity of ultraviolet light for forming the intermediate layer by reforming polysiloxane membrane, 500 mJ / cm 2 or more, preferably 10,000 / cm 2 or less. If the accumulated amount of vacuum ultraviolet light is 500 mJ / cm 2 or more, sufficient gas barrier performance can be obtained, and if it is 10,000 mJ / cm 2 or less, an intermediate layer having high smoothness without deforming the substrate. Can be formed.
 また、本発明における中間層は、加熱温度が50℃以上200℃以下の加熱工程を経て形成されることが好ましい。加熱温度が50℃以上であれば十分なバリア性を得ることができ、200℃以下であれば基材に変形を与えることなく平滑性の高い中間層を形成することができる。この加熱工程には、ホットプレート、オーブン、ファーネスなどを使用する加熱方法を適用することができる。また、その加熱雰囲気としては、大気下、窒素雰囲気、アルゴン雰囲気、真空下、酸素濃度をコントロールした減圧下など、いずれの条件でもよい。 Further, the intermediate layer in the present invention is preferably formed through a heating step in which the heating temperature is 50 ° C. or higher and 200 ° C. or lower. If the heating temperature is 50 ° C. or higher, sufficient barrier properties can be obtained, and if it is 200 ° C. or lower, an intermediate layer having high smoothness can be formed without deforming the substrate. A heating method using a hot plate, an oven, a furnace, or the like can be applied to this heating step. Further, the heating atmosphere may be any condition such as air, nitrogen atmosphere, argon atmosphere, vacuum, or reduced pressure with controlled oxygen concentration.
 例えば、ガスバリア層の形成に際して成膜した改質前のポリシラザン塗膜上にポリシロキサン塗膜を成膜し、ポリシラザン塗膜とポリシロキサン塗膜とに同時に真空紫外光を照射した後、100℃以上250℃以下の加熱処理を施すことで、ガスバリア層と中間層とを形成するようにしてもよい。また、真空紫外光照射処理が施されたポリシラザン塗膜上にポリシロキサン塗膜を成膜し、ポリシロキサン塗膜に真空紫外光照射処理を施した後、100℃以上250℃以下の加熱処理を施して、ガスバリア層と中間層とを形成するようにしてもよい。 For example, after forming a polysiloxane coating film on a polysilazane coating film before modification formed during the formation of the gas barrier layer, and simultaneously irradiating the polysilazane coating film and the polysiloxane coating film with vacuum ultraviolet light, 100 ° C. or higher You may make it form a gas barrier layer and an intermediate | middle layer by heat-processing below 250 degreeC. In addition, a polysiloxane coating film is formed on the polysilazane coating film that has been subjected to the vacuum ultraviolet light irradiation treatment, and after the vacuum ultraviolet light irradiation treatment is applied to the polysiloxane coating film, a heat treatment of 100 ° C. or higher and 250 ° C. or lower is performed. And a gas barrier layer and an intermediate layer may be formed.
 このように、ポリシラザン塗膜(ガスバリア層となる)をポリシロキサン塗膜(中間層となる)で覆った状態で、100℃以上の加熱処理を施す場合には、加熱処理による熱応力によってガスバリア層に微小なひび割れが発生することを防ぐことができ、ガスバリア層の水蒸気バリア性能を安定させることができる。 Thus, when a heat treatment at 100 ° C. or higher is performed in a state where the polysilazane coating film (which becomes a gas barrier layer) is covered with a polysiloxane coating film (which becomes an intermediate layer), the gas barrier layer is caused by thermal stress due to the heat treatment. Generation of minute cracks in the gas barrier layer can be prevented, and the water vapor barrier performance of the gas barrier layer can be stabilized.
 〔保護層〕
 本発明に係るガスバリア性フィルムは、ガスバリア層または塗布バリア層の上部に、有機化合物を含む保護層を設けてもよい。保護層に用いられる有機化合物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂層を好ましく用いることができる。これらの有機樹脂もしくは有機無機複合樹脂は重合性基や架橋性基を有することが好ましく、これらの有機樹脂もしくは有機無機複合樹脂を含有し、必要に応じて重合開始剤や架橋剤等を含有する有機樹脂組成物塗布液から塗布形成した層に、光照射処理や熱処理を加えて硬化させることが好ましい。ここで「架橋性基」とは、光照射処理や熱処理で起こる化学反応によりバインダーポリマーを架橋することができる基のことである。このような機能を有する基であれば特にその化学構造は限定されないが、例えば、付加重合し得る官能基としてエチレン性不飽和基、エポキシ基/オキセタニル基等の環状エーテル基が挙げられる。また光照射によりラジカルになり得る官能基であってもよく、そのような架橋性基としては、例えば、チオール基、ハロゲン原子、オニウム塩構造等が挙げられる。中でも、エチレン性不飽和基が好ましく、特開2007-17948号公報の段落「0130」~「0139」に記載された官能基が含まれる。
[Protective layer]
In the gas barrier film according to the present invention, a protective layer containing an organic compound may be provided on the gas barrier layer or the coating barrier layer. As the organic compound used in the protective layer, an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group is preferably used. Can do. These organic resins or organic-inorganic composite resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins or organic-inorganic composite resins, and contain a polymerization initiator, a crosslinking agent, etc. as necessary. It is preferable to apply a light irradiation treatment or a heat treatment to the layer formed by coating from the organic resin composition coating solution to be cured. Here, the “crosslinkable group” is a group that can crosslink the binder polymer by a chemical reaction that occurs during light irradiation treatment or heat treatment. The chemical structure is not particularly limited as long as it is a group having such a function. Examples of the functional group capable of addition polymerization include cyclic ether groups such as an ethylenically unsaturated group and an epoxy group / oxetanyl group. Moreover, the functional group which can become a radical by light irradiation may be sufficient, As such a crosslinkable group, a thiol group, a halogen atom, an onium salt structure etc. are mentioned, for example. Among these, ethylenically unsaturated groups are preferable, and include functional groups described in paragraphs “0130” to “0139” of JP-A No. 2007-17948.
 有機無機複合樹脂としては、例えば米国特許6503634号明細書に「ORMOCER(登録商標)」として記載されている有機無機複合樹脂も好ましく用いることができる。 As the organic-inorganic composite resin, for example, an organic-inorganic composite resin described as “ORMOCER (registered trademark)” in US Pat. No. 6,503,634 can be preferably used.
 有機樹脂の構造や重合性基の密度、架橋性基の密度、架橋剤の比率、および硬化条件等を適宜調整することで、保護層の弾性率を所望の値に調整することができる。 The elastic modulus of the protective layer can be adjusted to a desired value by appropriately adjusting the structure of the organic resin, the density of the polymerizable group, the density of the crosslinkable group, the ratio of the crosslinking agent, and the curing conditions.
 具体的な有機樹脂組成物としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。 Specific examples of the organic resin composition include a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, and urethane acrylate. And a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
 当該光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-ペンチルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2-エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、1,6-ヘキサジオールジアクリレート、1,3-プロパンジオールアクリレート、1,4-シクロヘキサンジオールジアクリレート、2,2-ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4-ブタンジオールトリアクリレート、2,2,4-トリメチル-1,3-ペンタジオールジアクリレート、ジアリルフマレート、1,10-デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、および、上記のアクリレートをメタクリレートに換えたもの、γ-メタクリロキシプロピルトリメトキシシラン、1-ビニル-2-ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいはその他の化合物との混合物として使用することができる。 Examples of reactive monomers having at least one photopolymerizable unsaturated bond in the molecule include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n- Pentyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, n-decyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, allyl acrylate, benzyl acrylate, butoxyethyl acrylate, butoxyethylene glycol acrylate, cyclohexyl acrylate, di Cyclopentanyl acrylate, 2-ethylhexyl acrylate, glycerol acrylate, Lysidyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobornyl acrylate, isodexyl acrylate, isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, phenoxyethyl acrylate, stearyl acrylate , Ethylene glycol diacrylate, diethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,5-pentanediol diacrylate, 1,6-hexadiol diacrylate, 1,3-propanediol acrylate, 1,4-cyclohexane Diol diacrylate, 2,2-dimethylolpropane diacrylate, glycerol diacrylate, triplicate Pyrene glycol diacrylate, glycerol triacrylate, trimethylolpropane triacrylate, polyoxyethyl trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, ethylene oxide modified pentaerythritol triacrylate, ethylene oxide modified pentaerythritol tetraacrylate, Propion oxide modified pentaerythritol triacrylate, propion oxide modified pentaerythritol tetraacrylate, triethylene glycol diacrylate, polyoxypropyltrimethylolpropane triacrylate, butylene glycol diacrylate, 1,2,4-butanediol triacrylate, 2,2 , 4-trimethyl-1,3-pentadiol diacrylate, diallyl fumarate, 1,10-decane diol dimethyl acrylate, pentaerythritol hexaacrylate, and acrylate replaced with methacrylate, γ-methacryloxypropyltrimethoxy Examples thereof include silane and 1-vinyl-2-pyrrolidone. Said reactive monomer can be used as a 1 type, 2 or more types of mixture, or a mixture with another compound.
 上記感光性樹脂の組成物は、光重合開始剤を含有する。光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4-ビス(ジメチルアミン)ベンゾフェノン、4,4-ビス(ジエチルアミン)ベンゾフェノン、α-アミノ・アセトフェノン、4,4-ジクロロベンゾフェノン、4-ベンゾイル-4-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-tert-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-tert-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンジルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、2-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,3-ジフェニル-プロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(o-ベンゾイル)オキシム、ミヒラーケトン、2-メチル[4-(メチルチオ)フェニル]-2-モノフォリノ-1-プロパン、2-ベンジル-2-ジメチルアミノ-1-(4-モノフォリノフェニル)-ブタノン-1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n-フェニルチオアクリドン、4,4-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。 The composition of the photosensitive resin contains a photopolymerization initiator. Examples of the photopolymerization initiator include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, α-amino acetophenone, 4,4-dichloro Benzophenone, 4-benzoyl-4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p- tert-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethyl ketal, benzylmethoxyethyl acetal, benzoy Methyl ether, benzoin butyl ether, anthraquinone, 2-tert-butylanthraquinone, 2-amylanthraquinone, β-chloroanthraquinone, anthrone, benzanthrone, dibenzsuberone, methyleneanthrone, 4-azidobenzylacetophenone, 2,6-bis (p-azide) Benzylidene) cyclohexane, 2,6-bis (p-azidobenzylidene) -4-methylcyclohexanone, 2-phenyl-1,2-butadion-2- (o-methoxycarbonyl) oxime, 1-phenyl-propanedione-2- (O-ethoxycarbonyl) oxime, 1,3-diphenyl-propanetrione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxy-propanetrione-2- (o-benzoyl) oxy Michler's ketone, 2-methyl [4- (methylthio) phenyl] -2-monoforino-1-propane, 2-benzyl-2-dimethylamino-1- (4-monoforinophenyl) -butanone-1, naphthalenesulfonyl chloride , Quinolinesulfonyl chloride, n-phenylthioacridone, 4,4-azobisisobutyronitrile, diphenyl disulfide, benzthiazole disulfide, triphenylphosphine, camphorquinone, carbon tetrabrominated, tribromophenyl sulfone, benzoin peroxide And combinations of photoreducing dyes such as eosin and methylene blue and reducing agents such as ascorbic acid and triethanolamine. These photopolymerization initiators can be used alone or in combination of two or more. .
 保護層には、無機材料を含有させることができる。無機材料を含有させることは一般的に保護層の弾性率増加につながる。無機材料の含有比率を適宜調整することでも保護層の弾性率を所望の値に調整することができる。 The protective layer can contain an inorganic material. Inclusion of an inorganic material generally leads to an increase in the elastic modulus of the protective layer. The elastic modulus of the protective layer can be adjusted to a desired value by appropriately adjusting the content ratio of the inorganic material.
 無機材料としては、数平均粒径が1~200nmの無機微粒子が好ましく、数平均粒径が3~100nmの無機微粒子がより好ましい。無機微粒子としては、透明性の観点より金属酸化物が好ましい。 As the inorganic material, inorganic fine particles having a number average particle diameter of 1 to 200 nm are preferable, and inorganic fine particles having a number average particle diameter of 3 to 100 nm are more preferable. As the inorganic fine particles, metal oxides are preferable from the viewpoint of transparency.
 金属酸化物として特に制約はないが、SiO、Al、TiO、ZrO、ZnO、SnO、In、BaO、SrO、CaO、MgO、VO、VO5、CrO、MoO、MoO、MnO、Mn、WO、LiMn、CdSnO、CdIn、ZnSnO、ZnSnO、ZnIn、CdSnO、などが挙げられる。これらは、単独でもまたは2種以上の併用でも良い。 There is no particular restriction as the metal oxide, SiO 2, Al 2 O 3 , TiO 2, ZrO 2, ZnO, SnO 2, In 2 O 3, BaO, SrO, CaO, MgO, VO 2, V 2 O5, CrO 2, MoO 2, MoO 3, MnO 2, Mn 2 O 3, WO 3, LiMn 2 O 4, Cd 2 SnO 4, CdIn 2 O 4, Zn 2 SnO 4, ZnSnO 3, Zn 2 In 2 O 5, Cd 2 SnO 4 , and the like. These may be used alone or in combination of two or more.
 <ガスバリア性フィルム>
 本発明は、上記に記載の製造方法により製造されたガスバリア性フィルムを提供する。上記製造方法により、ガスバリア性、屈曲耐性に優れ、さらに平滑性が低下しにくいガスバリア性フィルムを得ることができる。
<Gas barrier film>
The present invention provides a gas barrier film produced by the production method described above. According to the above production method, a gas barrier film having excellent gas barrier properties and bending resistance, and having a smoothness that is not easily lowered can be obtained.
 <電子デバイス>
 上記したような本発明のガスバリア性フィルムは、優れたガスバリア性、透明性、屈曲耐性等を有する。このため、本発明のガスバリア性フィルムは、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の等の電子デバイスに用いられる。すなわち、本発明は、電子デバイス本体と、本発明の製造方法により製造されるガスバリア性フィルムとを含む、電子デバイスを提供する。
<Electronic device>
The gas barrier film of the present invention as described above has excellent gas barrier properties, transparency, bending resistance, and the like. For this reason, the gas barrier film of this invention is used for electronic devices, such as packages, such as an electronic device, a photoelectric conversion element (solar cell element), an organic electroluminescent (EL) element, a liquid crystal display element. That is, the present invention provides an electronic device including an electronic device body and a gas barrier film produced by the production method of the present invention.
 (電子素子本体)
 電子素子本体は電子デバイスの本体であり、本発明に係るガスバリア性フィルム側に配置される。電子素子本体としては、ガスバリア性フィルムによる封止が適用されうる公知の電子デバイスの本体が使用できる。例えば、有機EL素子、太陽電池(PV)、液晶表示素子(LCD)、電子ペーパー、薄膜トランジスタ、タッチパネル等が挙げられる。本発明の効果がより効率的に得られるという観点から、該電子素子本体は、有機EL素子または太陽電池であることが好ましい。これらの電子素子本体の構成についても、特に制限はなく、従来公知の構成を有しうる。
(Electronic element body)
The electronic element main body is the main body of the electronic device, and is disposed on the gas barrier film side according to the present invention. As the electronic element body, a known electronic device body to which sealing with a gas barrier film can be applied can be used. For example, an organic EL element, a solar cell (PV), a liquid crystal display element (LCD), electronic paper, a thin film transistor, a touch panel, and the like can be given. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic element body is preferably an organic EL element or a solar battery. There is no restriction | limiting in particular also about the structure of these electronic element main bodies, It can have a conventionally well-known structure.
 本発明に係るガスバリア性フィルムは、また、デバイスの膜封止に用いることができる。すなわち、デバイス自体を支持体として、その表面に本発明のガスバリア性フィルムを設ける方法である。ガスバリア性フィルムを設ける前にデバイスを保護層で覆ってもよい。 The gas barrier film according to the present invention can also be used for device film sealing. That is, it is a method of providing the gas barrier film of the present invention on the surface of the device itself as a support. The device may be covered with a protective layer before providing the gas barrier film.
 本発明に係るガスバリア性フィルムは、デバイスの基板や固体封止法による封止のためのフィルムとしても用いることができる。固体封止法とはデバイスの上に保護層を形成した後、接着剤層、ガスバリア性フィルムを重ねて硬化する方法である。接着剤は特に制限はないが、熱硬化性エポキシ樹脂、光硬化性アクリレート樹脂等が例示される。 The gas barrier film according to the present invention can also be used as a device substrate or a film for sealing by a solid sealing method. The solid sealing method is a method in which after a protective layer is formed on a device, an adhesive layer and a gas barrier film are stacked and cured. Although there is no restriction | limiting in particular in an adhesive agent, A thermosetting epoxy resin, a photocurable acrylate resin, etc. are illustrated.
 <有機EL素子>
 ガスバリア性フィルムを用いた有機EL素子の例は、特開2007-30387号公報に詳しく記載されている。
<Organic EL device>
Examples of organic EL elements using a gas barrier film are described in detail in JP-A-2007-30387.
 <液晶表示素子>
 反射型液晶表示装置は、下から順に、下基板、反射電極、下配向膜、液晶層、上配向膜、透明電極、上基板、λ/4板、そして偏光膜からなる構成を有する。本発明におけるガスバリア性フィルムは、前記透明電極基板および上基板として使用することができる。カラー表示の場合には、さらにカラーフィルター層を反射電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。透過型液晶表示装置は、下から順に、バックライト、偏光板、λ/4板、下透明電極、下配向膜、液晶層、上配向膜、上透明電極、上基板、λ/4板および偏光膜からなる構成を有する。カラー表示の場合には、さらにカラーフィルター層を下透明電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。液晶セルの種類は特に限定されないが、より好ましくはTN型(Twisted Nematic)、STN型(Super Twisted Nematic)またはHAN型(Hybrid Aligned Nematic)、VA型(Vertically Alignment)、ECB型(Electrically Controlled Birefringence)、OCB型(Optically Compensated Bend)、IPS型(In-Plane Switching)、CPA型(Continuous Pinwheel Alignment)であることが好ましい。
<Liquid crystal display element>
The reflective liquid crystal display device has a configuration including a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a λ / 4 plate, and a polarizing film in order from the bottom. The gas barrier film in the present invention can be used as the transparent electrode substrate and the upper substrate. In the case of color display, it is preferable to further provide a color filter layer between the reflective electrode and the lower alignment film, or between the upper alignment film and the transparent electrode. The transmissive liquid crystal display device includes, in order from the bottom, a backlight, a polarizing plate, a λ / 4 plate, a lower transparent electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, an upper transparent electrode, an upper substrate, a λ / 4 plate, and a polarization It has a structure consisting of a film. In the case of color display, it is preferable to further provide a color filter layer between the lower transparent electrode and the lower alignment film, or between the upper alignment film and the transparent electrode. The type of the liquid crystal cell is not particularly limited, but more preferably a TN type (Twisted Nematic), an STN type (Super Twisted Nematic), a HAN type (Hybrid Aligned Nematic), a VA type (Vertical Alignment), an EC type, a B type. OCB type (Optically Compensated Bend), IPS type (In-Plane Switching), CPA type (Continuous Pinwheel Alignment) are preferable.
 <太陽電池>
 本発明のガスバリア性フィルムは、太陽電池素子の封止フィルムとしても用いることができる。ここで、本発明のガスバリア性フィルムは、ガスバリア層が太陽電池素子に近い側となるように封止することが好ましい。本発明のガスバリア性フィルムが好ましく用いられる太陽電池素子としては、特に制限はないが、例えば、単結晶シリコン系太陽電池素子、多結晶シリコン系太陽電池素子、シングル接合型、またはタンデム構造型等で構成されるアモルファスシリコン系太陽電池素子、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電池素子、カドミウムテルル(CdTe)等のII-VI族化合物半導体太陽電池素子、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池素子、色素増感型太陽電池素子、有機太陽電池素子等が挙げられる。中でも、本発明においては、上記太陽電池素子が、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池素子であることが好ましい。
<Solar cell>
The gas barrier film of the present invention can also be used as a sealing film for solar cell elements. Here, the gas barrier film of the present invention is preferably sealed so that the gas barrier layer is closer to the solar cell element. The solar cell element in which the gas barrier film of the present invention is preferably used is not particularly limited. For example, it is a single crystal silicon solar cell element, a polycrystalline silicon solar cell element, a single junction type, or a tandem structure type. Amorphous silicon-based solar cell elements, III-V group compound semiconductor solar cell elements such as gallium arsenide (GaAs) and indium phosphorus (InP), II-VI group compound semiconductor solar cell elements such as cadmium tellurium (CdTe), I-III- such as copper / indium / selenium (so-called CIS), copper / indium / gallium / selenium (so-called CIGS), copper / indium / gallium / selenium / sulfur (so-called CIGS), etc. Group VI compound semiconductor solar cell element, dye-sensitized solar cell element, organic solar cell element, etc. And the like. In particular, in the present invention, the solar cell element is a copper / indium / selenium system (so-called CIS system), a copper / indium / gallium / selenium system (so-called CIGS system), copper / indium / gallium / selenium / sulfur. A group I-III-VI compound semiconductor solar cell element such as a system (so-called CIGSS system) is preferable.
 <その他>
 その他の適用例としては、特表平10-512104号公報に記載の薄膜トランジスタ、特開平5-127822号公報、特開2002-48913号公報等に記載のタッチパネル、特開2000-98326号公報に記載の電子ペーパー等が挙げられる。
<Others>
As other application examples, the thin film transistor described in JP-T-10-512104, the touch panel described in JP-A-5-127822, JP-A-2002-48913, etc., and described in JP-A-2000-98326 Electronic paper and the like.
 <光学部材>
 本発明のガスバリア性フィルムは、光学部材としても用いることができる。光学部材の例としては円偏光板等が挙げられる。
<Optical member>
The gas barrier film of the present invention can also be used as an optical member. Examples of the optical member include a circularly polarizing plate.
 (円偏光板)
 本発明におけるガスバリア性フィルムを基板としλ/4板と偏光板とを積層し、円偏光板を作製することができる。この場合、λ/4板の遅相軸と偏光板の吸収軸とのなす角が45°になるように積層する。このような偏光板は、長手方向(MD)に対し45°の方向に延伸されているものを用いることが好ましく、例えば、特開2002-865554号公報に記載のものを好適に用いることができる。
(Circularly polarizing plate)
A circularly polarizing plate can be produced by laminating a λ / 4 plate and a polarizing plate using the gas barrier film in the present invention as a substrate. In this case, the lamination is performed so that the angle formed by the slow axis of the λ / 4 plate and the absorption axis of the polarizing plate is 45 °. As such a polarizing plate, one that is stretched in a direction of 45 ° with respect to the longitudinal direction (MD) is preferably used. For example, those described in JP-A-2002-865554 can be suitably used. .
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「重量部」あるいは「重量%」を表す。また、下記操作において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行う。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. Further, in the examples, the display of “part” or “%” is used, but “part by weight” or “% by weight” is expressed unless otherwise specified. Further, in the following operations, unless otherwise specified, operations and physical properties are measured under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 「実施例1」
 <基材1の作製>
 両面に易接着加工された75μm厚みのポリエステルフィルム(東洋紡績株式会社製、コスモシャイン(登録商標)A4300)を支持体として用い、下記に示すように、片面にブリードアウト防止層、反対面に平滑層を作製したものを基材1として用いた。
"Example 1"
<Preparation of substrate 1>
A 75 μm thick polyester film (Cosmo Shine (registered trademark) A4300, manufactured by Toyobo Co., Ltd.) with easy adhesion processing on both sides is used as a support, as shown below, a bleed-out prevention layer on one side, and a smooth surface on the opposite side What produced the layer was used as the base material 1.
 ブリードアウト防止層の形成;上記支持体の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR(登録商標)Z7535を塗布、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、80℃×3分で乾燥した後、空気雰囲気下で高圧水銀ランプ使用、積算光量1.0J/cmの硬化条件で、ブリードアウト防止層を形成した。 Formation of a bleed-out prevention layer; one side of the above support is coated with a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7535 manufactured by JSR Corporation, and a wire bar so that the film thickness after drying is 4 μm After coating at 80 ° C. for 3 minutes, a bleed-out prevention layer was formed under a curing condition with a high-pressure mercury lamp in an air atmosphere and an integrated light quantity of 1.0 J / cm 2 .
 平滑層の形成;続けて上記支持体の反対面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR(登録商標) Z7501を塗布、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、80℃×3分の乾燥条件、空気雰囲気下で高圧水銀ランプ使用、積算光量1.0J/cmの硬化条件で、平滑層を形成した。得られた平滑層は、JIS B 0601:2001で規定される表面粗さで、最大断面高さRt(p)は16nmであった。 Formation of a smooth layer; Subsequently, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7501 manufactured by JSR Corporation is applied to the opposite surface of the above support, and a wire is formed so that the film thickness after drying becomes 4 μm. After coating with a bar, a smooth layer was formed under drying conditions of 80 ° C. × 3 minutes, using a high-pressure mercury lamp in an air atmosphere, and curing conditions of an integrated light quantity of 1.0 J / cm 2 . The obtained smooth layer had a surface roughness specified by JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) was 16 nm.
 このようなブリードアウト防止層と平滑層とが形成された基材を「B0」とした。 The base material on which such a bleed-out prevention layer and a smooth layer were formed was designated as “B0”.
 <比較例1-1>
 (ガスバリア層(1)の形成)
 図2に記載のロールツーロール形態の大気圧プラズマ放電処理装置を用いて、大気圧プラズマ法により、上記ブリードアウト防止層と平滑層とが形成された基材「B0」の平滑層面上に、以下の条件で3層構成のガスバリア層(1)を形成した。
<Comparative Example 1-1>
(Formation of gas barrier layer (1))
Using the roll-to-roll atmospheric pressure plasma discharge treatment apparatus shown in FIG. 2, on the smooth layer surface of the base material “B0” in which the bleed-out prevention layer and the smooth layer are formed by the atmospheric pressure plasma method, A gas barrier layer (1) having a three-layer structure was formed under the following conditions.
 第1から第3の蒸着層2はそれぞれ金属酸化物(酸化珪素)を含有しており、第1~第3の蒸着層2の厚みはそれぞれ100nm、30nm、30nmの合計160nmであった。 The first to third vapor deposition layers 2 each contained a metal oxide (silicon oxide), and the thicknesses of the first to third vapor deposition layers 2 were a total of 160 nm of 100 nm, 30 nm, and 30 nm, respectively.
 [第1蒸着層]
 放電ガス :Nガス
 反応ガス1:水素ガスを全ガスに対し1体積%
 反応ガス2:TEOS(テトラエトキシシラン)を全ガスに対し0.5体積%
 成膜条件 ;
 第1電極側 電源種類 応用電機製 80kHz
 周波数  80kHz
 出力密度 8W/cm
 電極温度 115℃
 第2電極側 電源種類 パール工業製 13.56MHz CF-5000-13M
 周波数  13.56MHz
 出力密度 10W/cm
 電極温度 95℃
 [第2蒸着層]
 放電ガス :Nガス
 反応ガス1:酸素ガスを全ガスに対し5体積%
 反応ガス2:TEOSを全ガスに対し0.1体積%
 成膜条件 ;
 第1電極側 電源種類 ハイデン研究所 100kHz(連続モード) PHF-6k
 周波数  100kHz
 出力密度 10W/cm
 電極温度 120℃
 第2電極側 電源種類 パール工業製 13.56MHz CF-5000-13M
 周波数  13.56MHz
 出力密度 10W/cm
 電極温度 95℃
 [第3蒸着層]
 放電ガス :Nガス
 反応ガス1:水素ガスを全ガスに対し1体積%
 反応ガス2:TEOSを全ガスに対し0.5体積%
 成膜条件 ;
 第1電極側 電源種類 応用電機製 80kHz
 波数  80kHz
 出力密度 8W/cm
 電極温度 120℃
 第2電極側 電源種類 パール工業製 13.56MHz CF-5000-13M
 周波数  13.56MHz
 出力密度 10W/cm
 電極温度 100℃
 次いで、ガスバリア層(1)に、Xeエキシマランプを用いて、波長172nmの紫外光を積算光量500mJ/cmで照射して(酸素濃度1.0体積%)、ガスバリア層(1a)を形成し、ガスバリア性フィルム1-1とした。
[First deposition layer]
Discharge gas: N 2 gas Reaction gas 1: 1% by volume of hydrogen gas with respect to the total gas
Reaction gas 2: 0.5% by volume of TEOS (tetraethoxysilane) with respect to the total gas
Film formation conditions;
1st electrode side Power supply type
Frequency 80kHz
Output density 8W / cm 2
Electrode temperature 115 ° C
Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10W / cm 2
Electrode temperature 95 ° C
[Second deposition layer]
Discharge gas: N 2 gas Reaction gas 1: 5% by volume of oxygen gas with respect to the total gas
Reaction gas 2: 0.1% by volume of TEOS with respect to the total gas
Film formation conditions;
1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k
Frequency 100kHz
Output density 10W / cm 2
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10W / cm 2
Electrode temperature 95 ° C
[Third vapor deposition layer]
Discharge gas: N 2 gas Reaction gas 1: 1% by volume of hydrogen gas with respect to the total gas
Reaction gas 2: 0.5% by volume of TEOS with respect to the total gas
Film formation conditions;
1st electrode side Power supply type
Wave number 80kHz
Output density 8W / cm 2
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10W / cm 2
Electrode temperature 100 ° C
Next, an Xe excimer lamp is used to irradiate the gas barrier layer (1) with ultraviolet light having a wavelength of 172 nm with an integrated light amount of 500 mJ / cm 2 (oxygen concentration 1.0 vol%) to form the gas barrier layer (1a). Gas barrier film 1-1 was obtained.
 <比較例1-2>
 SiON膜の作製
 図3に示す真空プラズマCVD装置を用いて、SiON膜をハードコート層付きであり、熱膨張係数が10×10-4/℃のPENフィルム上へ成膜を行った。この時使用した高周波電源は、27.12MHzの高周波電源で、電極間距離は20mmとした。原料ガスとしては、シランガス流量を7.5sccm、アンモニアガス流量を100sccm、亜酸化窒素ガス流量を50sccmとして真空チャンバ内へ導入し、成膜開始時にフィルム基板温度を100℃、成膜時のガス圧を100Paに設定して、酸窒化珪素を主成分とする酸窒化珪素薄膜層(SiON層、ガスバリア層(2))を、膜厚160nmで形成した。
<Comparative Example 1-2>
Production of SiON Film Using a vacuum plasma CVD apparatus shown in FIG. 3, the SiON film was formed on a PEN film with a hard coat layer and a thermal expansion coefficient of 10 × 10 −4 / ° C. The high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm. The source gas was introduced into the vacuum chamber with a silane gas flow rate of 7.5 sccm, an ammonia gas flow rate of 100 sccm, and a nitrous oxide gas flow rate of 50 sccm. The film substrate temperature was 100 ° C. at the start of film formation, and the gas pressure during film formation. Was set to 100 Pa, and a silicon oxynitride thin film layer (SiON layer, gas barrier layer (2)) containing silicon oxynitride as a main component was formed to a thickness of 160 nm.
 次いで、ガスバリア層(2)に、Krエキシマランプを用いて、波長146nmの紫外光を積算光量500mJ/cmで照射して(酸素濃度1.0体積%)、ガスバリア層(2a)を形成し、ガスバリア性フィルム1-2とした。 Next, using a Kr excimer lamp, the gas barrier layer (2) is irradiated with ultraviolet light having a wavelength of 146 nm with an integrated light amount of 500 mJ / cm 2 (oxygen concentration: 1.0 vol%) to form the gas barrier layer (2a). Gas barrier film 1-2 was obtained.
 <比較例1-3>
 SiN膜の作製
 図3に示す真空プラズマCVD装置を用いて、SiN膜をハードコート付き熱膨張係数が10×10-4/℃のPENフィルム上へ成膜を行った。この時使用した高周波電源は、27.12MHzの高周波電源で、電極間距離は20mmとした。原料ガスとしては、シランガス流量を7.5sccm、アンモニアガス流量を50sccm、水素ガス流量を200sccm(sccmは、133.322Paにおける、cm/minである)として真空チャンバ内へ導入した。成膜開始時にフィルム基板温度を100℃、成膜時のガス圧を4Paに設定して窒化珪素を主成分とする窒化珪素薄膜層(SiN層)を膜厚100nmで形成した。その後、フィルム基板温度はそのままに、ガス圧を30Paに設定し、連続して膜厚60nmの2層目の窒化珪素薄膜層(SiN層)を形成し、全膜厚160nmのガスバリア層を形成した。
<Comparative Example 1-3>
Production of SiN Film Using a vacuum plasma CVD apparatus shown in FIG. 3, a SiN film was formed on a PEN film with a hard coat and a thermal expansion coefficient of 10 × 10 −4 / ° C. The high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm. As source gases, a silane gas flow rate of 7.5 sccm, an ammonia gas flow rate of 50 sccm, and a hydrogen gas flow rate of 200 sccm (sccm is cm 3 / min at 133.322 Pa) were introduced into the vacuum chamber. At the start of film formation, the film substrate temperature was set to 100 ° C., the gas pressure during film formation was set to 4 Pa, and a silicon nitride thin film layer (SiN layer) mainly composed of silicon nitride was formed to a thickness of 100 nm. Thereafter, the film substrate temperature was kept as it was, the gas pressure was set to 30 Pa, a second silicon nitride thin film layer (SiN layer) having a film thickness of 60 nm was continuously formed, and a gas barrier layer having a total film thickness of 160 nm was formed. .
 次いで、ガスバリア層(3)に、Krエキシマランプを用いて、波長146nmの紫外光を積算光量500mJ/cmで照射して(酸素濃度1.0体積%)、ガスバリア層(3a)を形成し、ガスバリア性フィルム1-3とした。 Next, using a Kr excimer lamp, the gas barrier layer (3) is irradiated with ultraviolet light having a wavelength of 146 nm at an integrated light quantity of 500 mJ / cm 2 (oxygen concentration: 1.0 vol%) to form the gas barrier layer (3a). Gas barrier film 1-3 was obtained.
 <比較例1-4>
 SiOC膜の作製
 (ガスバリア層の形成)
 前記基材B0上に、以下の条件で2層構成のガスバリア層(4)を形成した。それぞれの蒸着層の厚みは、60nm、100nmであった。
<Comparative Example 1-4>
Preparation of SiOC film (Formation of gas barrier layer)
On the base material B0, a two-layer gas barrier layer (4) was formed under the following conditions. The thickness of each vapor deposition layer was 60 nm and 100 nm.
 [第1蒸着層]
 放電ガス:窒素ガス              94.9体積%
 薄膜形成ガス:テトラエトキシシラン      0.1体積%
 添加ガス:酸素ガス              5.0体積%
 第1電極側 電源種類 ハイデン研究所 100kHz(連続モード) PHF-6k
 周波数  100kHz
 出力密度 10W/cm
 電極温度 120℃
 第2電極側 電源種類 パール工業 13.56MHz CF-5000-13M
 周波数  13.56MHz
 出力密度 10W/cm
 電極温度 90℃
 [第2蒸着層]
 放電ガス:窒素ガス               94.5体積%
 薄膜形成ガス:テトラエトキシシラン       0.5体積%
 添加ガス:酸素ガス               5.0体積%
 第1電極側 電源種類 応用電機製 80kHz
 周波数  80kHz
 出力密度 8W/cm
 電極温度 120℃
 第2電極側 電源種類 パール工業製 13.56MHz CF-5000-13M
 周波数  13.56MHz
 出力密度 10W/cm
 電極温度 90℃
 <実施例1-5>
 SiOC膜の作製
 比較例1-4に記載の方法と同様にしてガスバリア層(4)を作製した。さらにガスバ
リア層(4)に、KrFエキシマレーザーにより波長248nmの光を、積算光量500
mJ/cmで照射して(酸素濃度1.0体積%)、ガスバリア層(5a)を形成し、ガス
バリア性フィルム1-5とした。
[First deposition layer]
Discharge gas: Nitrogen gas 94.9% by volume
Thin film forming gas: Tetraethoxysilane 0.1% by volume
Additive gas: Oxygen gas 5.0% by volume
1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k
Frequency 100kHz
Output density 10W / cm 2
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10W / cm 2
Electrode temperature 90 ° C
[Second deposition layer]
Discharge gas: Nitrogen gas 94.5% by volume
Thin film forming gas: Tetraethoxysilane 0.5% by volume
Additive gas: Oxygen gas 5.0% by volume
1st electrode side Power supply type
Frequency 80kHz
Output density 8W / cm 2
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industrial 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10W / cm 2
Electrode temperature 90 ° C
<Example 1-5>
Production of SiOC Film A gas barrier layer (4) was produced in the same manner as described in Comparative Example 1-4. Further, the gas barrier layer (4) is irradiated with light having a wavelength of 248 nm by a KrF excimer laser, and the integrated light quantity is 500.
Irradiation was performed at mJ / cm 2 (oxygen concentration: 1.0% by volume) to form a gas barrier layer (5a) to obtain a gas barrier film 1-5.
 <実施例1-6>
 SiOC膜の作製
 照射する光の波長を248nmから220nmに変更し(KrClエキシマレーザー使用)、ガスバリア層(6a)を作製したこと以外は、実施例1-5と同様にして、ガスバリア性フィルム1-6を作製した。
<Example 1-6>
Preparation of SiOC film The gas barrier film 1--1 was prepared in the same manner as in Example 1-5, except that the wavelength of the irradiated light was changed from 248 nm to 220 nm (using a KrCl excimer laser) and the gas barrier layer (6a) was prepared. 6 was produced.
 <実施例1-7>
 SiOC膜の作製
 <基材2の準備>
 二軸延伸のポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム株式会社製、商品名「テオネックス(登録商標)Q65FA」)を、基材2として用いた。
<Example 1-7>
Preparation of SiOC film <Preparation of substrate 2>
A biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 μm, width: 350 mm, manufactured by Teijin DuPont Films Ltd., trade name “Teonex (registered trademark) Q65FA”) was used as the substrate 2.
 [アンカーコート層の形成]
 上記基材2の易接着面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)Z7501を、乾燥後の層厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件として、80℃で3分間の乾燥を行い、空気雰囲気下、高圧水銀ランプ使用、硬化条件;積算光量1.0J/cmで硬化を行い、アンカーコート層を形成した。
[Formation of anchor coat layer]
After applying the UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7501 manufactured by JSR Corporation on the easy-adhesion surface of the substrate 2 with a wire bar so that the layer thickness after drying becomes 4 μm, As drying conditions, drying was performed at 80 ° C. for 3 minutes, using a high-pressure mercury lamp in an air atmosphere, curing conditions; curing was performed with an integrated light amount of 1.0 J / cm 2 , and an anchor coat layer was formed.
 (ガスバリア層(7)の形成)
 (蒸着膜の形成:ローラーCVD法)
 図1に記載の磁場を印加したローラー間放電プラズマCVD装置(以下、この方法をローラーCVD法と称す)を用い、基材2のアンカーコート層を形成した面とは反対側の面が成膜ローラーと接触するようにして、基材2を装置に装着し、下記の成膜条件〈プラズマCVD条件〉により、アンカーコート層上に蒸着膜(ガスバリア層(7))を、厚さが160nmとなる条件で成膜した。
(Formation of gas barrier layer (7))
(Vapor deposition film formation: Roller CVD method)
Using the inter-roller discharge plasma CVD apparatus to which the magnetic field shown in FIG. 1 is applied (hereinafter, this method is referred to as “roller CVD method”), the surface opposite to the surface on which the anchor coat layer is formed of the substrate 2 is formed. The base material 2 is mounted on the apparatus so as to be in contact with the roller, and the deposited film (gas barrier layer (7)) is formed to have a thickness of 160 nm on the anchor coat layer according to the following film formation conditions (plasma CVD conditions). The film was formed under the following conditions.
 〈プラズマCVD条件〉
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)の供給量:500sccm
 真空チャンバ内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 樹脂基材の搬送速度:2m/min。
<Plasma CVD conditions>
Feed rate of source gas (hexamethyldisiloxane, HMDSO): 50 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 500 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Transport speed of resin substrate: 2 m / min.
 さらにガスバリア層(7)に、KrClエキシマレーザーを用いて220nmの紫外光を積算光量500mJ/cmで照射して(酸素濃度1.0体積%)、ガスバリア層(7a)を形成し、ガスバリア性フィルム1-7を作製した。 Further, the gas barrier layer (7) is irradiated with ultraviolet light of 220 nm using a KrCl excimer laser with an integrated light quantity of 500 mJ / cm 2 (oxygen concentration: 1.0 vol%) to form a gas barrier layer (7a), and gas barrier properties Film 1-7 was produced.
 <実施例1-8>
 SiOC膜の作製
 照射する紫外光の波長を220nmから172nmに変更したこと(Xeエキシマランプ使用)以外は、実施例1-7と同様にしてガスバリア性フィルム1-8を作製した。
<Example 1-8>
Production of SiOC film A gas barrier film 1-8 was produced in the same manner as in Example 1-7, except that the wavelength of ultraviolet light to be irradiated was changed from 220 nm to 172 nm (using an Xe excimer lamp).
 <実施例1-9>
 SiOC膜の作製
 照射する紫外光の波長を220nmから146nmに変更したこと(Krエキシマランプ使用)以外は、実施例1-7と同様にしてガスバリア性フィルム1-9を作製した。
<Example 1-9>
Production of SiOC film A gas barrier film 1-9 was produced in the same manner as in Example 1-7, except that the wavelength of ultraviolet light to be irradiated was changed from 220 nm to 146 nm (using a Kr excimer lamp).
 <実施例1-10>
 SiOC膜の作製
 照射する紫外光の波長を220nmから126nmに変更したこと(Arエキシマランプ使用)以外は、実施例1-7と同様にしてガスバリア性フィルム1-10を作製した。
<Example 1-10>
Production of SiOC film A gas barrier film 1-10 was produced in the same manner as in Example 1-7 except that the wavelength of ultraviolet light to be irradiated was changed from 220 nm to 126 nm (using an Ar excimer lamp).
 <比較例1-11>
 SiOC膜の作製
 照射する光の波長を248nmから280nm以上、ピーク波長306nmに変更し(UV-Bランプ使用)、ガスバリア層(11a)を作製したこと以外は、実施例1-5と同様にして、ガスバリア性フィルム1-11を作製した。
<Comparative Example 1-11>
Preparation of SiOC film Except that the wavelength of the irradiated light was changed from 248 nm to 280 nm or more and the peak wavelength was 306 nm (using a UV-B lamp) and the gas barrier layer (11a) was prepared, the same as in Example 1-5 Then, a gas barrier film 1-11 was produced.
 「実施例2」
 <比較例2-1>
 (蒸着法によるガスバリア層の形成)
 比較例1-1に記載のガスバリア層(1)の作製の方法と同様にして、ガスバリア層21を形成した。
"Example 2"
<Comparative Example 2-1>
(Formation of gas barrier layer by vapor deposition)
A gas barrier layer 21 was formed in the same manner as the method for producing the gas barrier layer (1) described in Comparative Example 1-1.
 (塗布法によるガスバリア層の形成(ポリシラザン含有塗布液の塗布))
 (ポリシラザン含有塗布液の調製)
 無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、1質量%のアミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン)および19質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1の割合で混合し、にジブチルエーテル溶媒で、塗布液の固形分が5質量%になるように希釈調整した。
(Formation of gas barrier layer by coating method (application of polysilazane-containing coating solution))
(Preparation of polysilazane-containing coating solution)
Dibutyl ether solution containing 20% by mass of non-catalytic perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and 1% by mass of amine catalyst (N, N, N ′, N′-tetramethyl-1) , 6-diaminohexane) and a dibutyl ether solution containing 19% by weight of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NAX120-20) at a ratio of 4: 1, and dibutyl ether solvent, The dilution was adjusted so that the solid content of the coating solution was 5% by mass.
 (製膜)
 スピンコーターにて基材1上に厚さが150nmになるよう製膜し、2分間放置した後、80℃のホットプレートで1分間追加加熱処理を行い、ポリシラザン塗膜を形成した。
(Film formation)
A film having a thickness of 150 nm was formed on the substrate 1 with a spin coater and allowed to stand for 2 minutes, followed by additional heat treatment for 1 minute on a hot plate at 80 ° C. to form a polysilazane coating film.
 ポリシラザン塗膜を形成した後、下記の方法に従って、真空紫外光(エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200、波長172nm、ステージ温度100℃、積算光量3000mJ/cm、酸素濃度0.1体積%)を照射してガスバリア性フィルムを製造した。 After forming the polysilazane coating film, vacuum ultraviolet light (MDI-COM excimer irradiation apparatus MODEL: MECL-M-1-200, wavelength 172 nm, stage temperature 100 ° C., integrated light quantity 3000 mJ / cm 2) The gas barrier film was produced by irradiation with an oxygen concentration of 0.1% by volume.
 <比較例2-2>
 SiON/PHPS
 (蒸着法によるガスバリア層の形成)
 比較例1-2に記載のSiON膜の作製の方法と同様にして、ガスバリア層を形成した。
<Comparative Example 2-2>
SiON / PHPS
(Formation of gas barrier layer by vapor deposition)
A gas barrier layer was formed in the same manner as the method for producing the SiON film described in Comparative Example 1-2.
 (塗布法によるガスバリア層の形成)
 比較例2-1に記載の方法と同様にしてガスバリア層を形成した。
(Formation of gas barrier layer by coating method)
A gas barrier layer was formed in the same manner as described in Comparative Example 2-1.
 <比較例2-3>
 SiN/PHPS
 (蒸着法によるガスバリア層の形成)
 比較例1-3に記載のSiN膜の作製の方法と同様にして、ガスバリア層を形成した。
<Comparative Example 2-3>
SiN / PHPS
(Formation of gas barrier layer by vapor deposition)
A gas barrier layer was formed in the same manner as the SiN film fabrication method described in Comparative Example 1-3.
 (塗布法によるガスバリア層の形成)
 比較例2-1に記載の方法と同様にして、ガスバリア層を形成した。
(Formation of gas barrier layer by coating method)
A gas barrier layer was formed in the same manner as described in Comparative Example 2-1.
 <比較例2-4>
 SiOC/PHPS
 (蒸着法によるガスバリア層の形成)
 比較例1-4に記載のSiOC膜の作製の方法と同様にして、ガスバリア層を形成した。
<Comparative Example 2-4>
SiOC / PHPS
(Formation of gas barrier layer by vapor deposition)
A gas barrier layer was formed in the same manner as the method for producing the SiOC film described in Comparative Example 1-4.
 (塗布法によるガスバリア層の形成)
 比較例2-1に記載の方法と同様にしてガスバリア層を形成した。
(Formation of gas barrier layer by coating method)
A gas barrier layer was formed in the same manner as described in Comparative Example 2-1.
 <実施例2-5>
 SiOC/PHPS
 (蒸着法によるガスバリア層の形成)
 紫外光の波長を248nmから172nmに変更したこと(Xeエキシマランプ使用)以外は、実施例1-5と同様にして、ガスバリア層を形成した。
<Example 2-5>
SiOC / PHPS
(Formation of gas barrier layer by vapor deposition)
A gas barrier layer was formed in the same manner as in Example 1-5 except that the wavelength of the ultraviolet light was changed from 248 nm to 172 nm (using an Xe excimer lamp).
 (塗布法によるガスバリア層の形成)
 比較例2-1に記載の方法と同様にして、ガスバリア層を形成した。
(Formation of gas barrier layer by coating method)
A gas barrier layer was formed in the same manner as described in Comparative Example 2-1.
 <実施例2-6>
 SiOC/PHPS
 (蒸着法によるガスバリア層の形成)
 実施例1-7に記載の方法と同様にして、ガスバリア層を形成した。
<Example 2-6>
SiOC / PHPS
(Formation of gas barrier layer by vapor deposition)
A gas barrier layer was formed in the same manner as described in Example 1-7.
 (塗布法によるガスバリア層の形成)
 比較例2-1と同様の方法と同様にして、ガスバリア層を形成した。
(Formation of gas barrier layer by coating method)
A gas barrier layer was formed in the same manner as in Comparative Example 2-1.
 <実施例2-7>
 塗布バリア層作製時の塗布液を以下のように変更したこと以外は、実施例2-6と同様にしてガスバリア性フィルムを作製した。
<Example 2-7>
A gas barrier film was produced in the same manner as in Example 2-6, except that the coating solution used in the production of the coating barrier layer was changed as follows.
 塗布液
 20質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(NN120-20:AZエレクトロニックマテリアルズ株式会社製)と、1質量%のアミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン)および19質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(NAX120-20:AZエレクトロニックマテリアルズ株式会社製)とを4g:1gの比率で混合し、そのうち4.39gを採取し、マグネシウムエトキシド0.32gと、ジブチルエーテル19.2gとを添加混合し、塗布液を調製した。
Coating solution Dibutyl ether solution containing 20% by mass of perhydropolysilazane (NN120-20: manufactured by AZ Electronic Materials Co., Ltd.) and 1% by mass of amine catalyst (N, N, N ′, N′-tetramethyl-1) , 6-diaminohexane) and a dibutyl ether solution containing 19% by mass of perhydropolysilazane (NAX120-20: manufactured by AZ Electronic Materials Co., Ltd.) at a ratio of 4 g: 1 g, and 4.39 g of the sample was collected. Then, 0.32 g of magnesium ethoxide and 19.2 g of dibutyl ether were added and mixed to prepare a coating solution.
 <実施例2-8>
 塗布バリア層作製時の塗布液を以下のように変更したこと以外は、実施例2-6と同様にしてガスバリア性フィルムを作製した。
<Example 2-8>
A gas barrier film was produced in the same manner as in Example 2-6, except that the coating solution used in the production of the coating barrier layer was changed as follows.
 塗布液
 20質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(NN120-20:AZエレクトロニックマテリアルズ株式会社製)と、1質量%のアミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン)および19質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(NAX120-20:AZエレクトロニックマテリアルズ株式会社製)とを4g:1gの比率で混合し、そのうち3.74gを採取し、ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.46gとジブチルエーテル 19.2gとを添加混合し、塗布液を調製した。
Coating solution Dibutyl ether solution containing 20% by mass of perhydropolysilazane (NN120-20: manufactured by AZ Electronic Materials Co., Ltd.) and 1% by mass of amine catalyst (N, N, N ′, N′-tetramethyl-1) , 6-diaminohexane) and a dibutyl ether solution containing 19% by mass of perhydropolysilazane (NAX120-20: manufactured by AZ Electronic Materials Co., Ltd.) at a ratio of 4 g: 1 g, of which 3.74 g was collected. ALCH (Kawaken Fine Chemical Co., Ltd., aluminum ethyl acetoacetate diisopropylate) 0.46 g and dibutyl ether 19.2 g were added and mixed to prepare a coating solution.
 <実施例2-9>
 蒸着法によるガスバリア層の形成において、紫外光の波長を172nmから146nmに変更したこと(Krエキシマランプ使用)以外は、実施例2-5と同様にして、ガスバリア性フィルムを作製した。
<Example 2-9>
A gas barrier film was produced in the same manner as in Example 2-5 except that the wavelength of ultraviolet light was changed from 172 nm to 146 nm (using a Kr excimer lamp) in the formation of the gas barrier layer by the vapor deposition method.
 <実施例2-10>
 蒸着法によるガスバリア層の形成において、紫外光の波長を172nmから146nmに変更したこと(Krエキシマランプ使用)以外は、実施例2-8と同様にして作製した。
<Example 2-10>
It was produced in the same manner as in Example 2-8 except that the wavelength of ultraviolet light was changed from 172 nm to 146 nm (using a Kr excimer lamp) in the formation of the gas barrier layer by the vapor deposition method.
 <比較例2-11>
 SiOC/PHPS
 (蒸着法によるガスバリア層の形成)
 紫外光の波長を172nmから280nm以上、ピーク波長306nmに変更したこと(UV-Bランプ使用)以外は、実施例2-5と同様にして、ガスバリア層を形成した。
<Comparative Example 2-11>
SiOC / PHPS
(Formation of gas barrier layer by vapor deposition)
A gas barrier layer was formed in the same manner as in Example 2-5 except that the wavelength of ultraviolet light was changed from 172 nm to 280 nm or more and the peak wavelength was 306 nm (using a UV-B lamp).
 (塗布法によるガスバリア層の形成)
 比較例2-1に記載の方法と同様にして、ガスバリア層を形成した。
(Formation of gas barrier layer by coating method)
A gas barrier layer was formed in the same manner as described in Comparative Example 2-1.
 〈元素分布プロファイルの測定〉
 上記形成した蒸着法によるガスバリア層について、下記条件にてXPSデプスプロファイル測定を行い、層厚方向の薄膜層の表面からの距離における、ケイ素元素分布、酸素元素分布、炭素元素分布および酸素炭素分布を得た。
<Measurement of element distribution profile>
The gas barrier layer formed by the above vapor deposition method is subjected to XPS depth profile measurement under the following conditions, and the silicon element distribution, oxygen element distribution, carbon element distribution and oxygen carbon distribution at the distance from the surface of the thin film layer in the layer thickness direction are measured. Obtained.
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):10nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポットおよびそのサイズ:800×400μmの楕円形。
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 10 nm
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and its size: 800 × 400 μm oval.
 以上のようにして測定した蒸着法によるガスバリア層全層領域における珪素元素分布、酸素元素分布、炭素元素分布および酸素炭素分布より、膜組成における連続変化領域の有無、極値の有無、炭素の原子比の最大値と最小値との差、全層厚の90%以上の領域において、珪素原子、酸素原子、および炭素原子の平均原子比率を求めた。 From the silicon element distribution, oxygen element distribution, carbon element distribution, and oxygen carbon distribution in the gas barrier layer whole layer region measured by the evaporation method as described above, the presence or absence of a continuous change region in the film composition, the presence or absence of an extreme value, the carbon atom The average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms was determined in the difference between the maximum value and the minimum value of the ratio and in the region of 90% or more of the total layer thickness.
 その結果、比較例1-4、実施例1-5~1-10および比較例2-4、実施例2-5~2-10の蒸着法により形成されたガスバリア層は、珪素原子と炭素原子とを含有することを確認した。 As a result, the gas barrier layers formed by the vapor deposition methods of Comparative Example 1-4, Examples 1-5 to 1-10, Comparative Example 2-4, and Examples 2-5 to 2-10 were silicon atoms and carbon atoms. It was confirmed to contain.
 また、実施例1-7~1-10、実施例2-6~2-10の蒸着法により形成されたガスバリア層は、膜組成における連続変化領域、および極値が存在し、珪素原子、酸素原子、および炭素原子の平均原子比率が、全層厚の90%以上の領域で、(炭素の原子比)<(珪素の原子比)<(酸素の原子比)の関係を満たしていることを確認した。 In addition, the gas barrier layers formed by the vapor deposition methods of Examples 1-7 to 1-10 and Examples 2-6 to 2-10 have continuous change regions and extreme values in the film composition, and include silicon atoms, oxygen The average atomic ratio of atoms and carbon atoms satisfies the relationship of (carbon atomic ratio) <(silicon atomic ratio) <(oxygen atomic ratio) in a region of 90% or more of the total thickness. confirmed.
 《バリア性テストの評価》
 バリア性テストは、70nm厚の金属カルシウムをガスバリア性フィルム上に蒸着製膜し、その50%の面積になる時間を劣化時間として評価することで行った。
<Evaluation of barrier test>
The barrier property test was carried out by depositing 70 nm-thick metallic calcium on a gas barrier film and evaluating the time for 50% of the area as the degradation time.
 (金属カルシウム製膜装置)
 蒸着装置:日本電子株式会社製 真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 (原材料)
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリア性評価試料の作製)
 真空蒸着装置(日本電子株式会社製 真空蒸着装置 JEE-400)を用い、作製したガスバリア性フィルムのガスバリア層表面に、マスクを通して12mm×12mmのサイズで金属カルシウムを蒸着させた。この際、蒸着膜厚は70nmとなるようにした。
(Metal calcium film forming equipment)
Vapor Deposition Equipment: Vacuum Deposition Equipment JEE-400 manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
(raw materials)
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
(Preparation of water vapor barrier property evaluation sample)
Using a vacuum vapor deposition apparatus (vacuum vapor deposition apparatus JEE-400 manufactured by JEOL Ltd.), metallic calcium was vapor-deposited in a size of 12 mm × 12 mm through the mask on the surface of the gas barrier layer of the produced gas barrier film. At this time, the deposited film thickness was set to 70 nm.
 その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムを蒸着させて仮封止をした。次いで、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下に移して、アルミニウム蒸着面に封止用紫外光硬化樹脂(ナガセケムテックス株式会社製)を介して厚さ0.2mmの石英ガラスを張り合わせ、紫外光を照射して樹脂を硬化接着させて本封止することで、水蒸気バリア性評価試料を作製した。 Thereafter, the mask was removed in a vacuum state, and aluminum was vapor-deposited on the entire surface of one side of the sheet and temporarily sealed. Next, the vacuum state is released, and it is quickly transferred to a dry nitrogen gas atmosphere, and a quartz glass having a thickness of 0.2 mm is placed on the aluminum vapor deposition surface via a sealing ultraviolet light curing resin (manufactured by Nagase ChemteX Corporation). A water vapor barrier property evaluation sample was prepared by pasting together and irradiating ultraviolet light to cure and adhere the resin to perform main sealing.
 得られた試料を85℃、85%RHの高温高湿下で保存し、保存時間に対して金属カルシウムが腐食して行く様子を観察した。観察は12mm×12mmの金属カルシウム蒸着面積に対する金属カルシウムが腐食した面積が50%になる時間を観察結果から直線で内挿して求め、結果を表1および2に示した。 The obtained sample was stored under high temperature and high humidity of 85 ° C. and 85% RH, and the state in which metallic calcium was corroded with respect to the storage time was observed. The observation was obtained by linearly interpolating the time when the area where metal calcium was corroded with respect to the metal calcium vapor deposition area of 12 mm × 12 mm to 50%, and the results are shown in Tables 1 and 2.
 《屈曲耐性の評価》
 各ガスバリア性フィルムを、半径が5mmの曲率になるように、180°の角度で100回の屈曲を繰り返した後、上記に記載の方法で水蒸気透過率を測定し、屈曲処理前後での水蒸気透過率の変化より、下式に従って耐劣化度を測定し、下記の基準に従って屈曲耐性を評価した。
<Evaluation of bending resistance>
Each gas barrier film was repeatedly bent 100 times at an angle of 180 ° so that the radius of curvature was 5 mm, and then the water vapor transmission rate was measured by the method described above. From the change in rate, the deterioration resistance was measured according to the following formula, and the bending resistance was evaluated according to the following criteria.
 耐劣化度=(屈曲試験後の水蒸気透過率/屈曲試験前の水蒸気透過率)×100(%)
 この耐劣化度について、下記の5段階に分類して評価した。
Deterioration resistance = (water vapor transmission rate after bending test / water vapor transmission rate before bending test) × 100 (%)
The deterioration resistance was classified into the following five grades and evaluated.
 6:耐劣化性が、95%以上である
 5:耐劣化度が、90%以上、95%未満である
 4:耐劣化度が、85%以上、90%未満である
 3:耐劣化度が、80%以上、85%未満である
 2:耐劣化度が、50%以上、80%未満である
 1:耐劣化度が、50%未満である。
6: Deterioration resistance is 95% or more 5: Deterioration resistance is 90% or more and less than 95% 4: Deterioration resistance is 85% or more and less than 90% 3: Deterioration resistance is 80% or more and less than 85% 2: Deterioration resistance is 50% or more and less than 80% 1: Deterioration resistance is less than 50%.
 《平滑性(表面粗さ)》
 表面粗さの指標である最大断面高さRt(p)は、AFM(原子間力顕微鏡;Digital Instruments社製DI3100)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が30μmの区間内を30回測定し、微細な凹凸の振幅に関する平均の粗さから求めた。表面粗さ(平滑性)について、下記の5段階に分類して評価した。
・Rt:最大断面高さ(nm)
 6:10未満
 5:10以上 15未満
 4:15以上、20未満
 3:20以上、30未満
 2:30以上、50未満
 1:50以上。
《Smoothness (surface roughness)》
The maximum cross-sectional height Rt (p), which is an index of surface roughness, is a cross-section of irregularities continuously measured with a detector having a stylus with a minimum tip radius using an AFM (Atomic Force Microscope; DI3100 manufactured by Digital Instruments). It was calculated from the curve, measured 30 times in a section with a measuring direction of 30 μm with a stylus with a very small tip radius, and obtained from the average roughness regarding the amplitude of fine irregularities. The surface roughness (smoothness) was evaluated by classifying into the following five stages.
・ Rt: Maximum cross-sectional height (nm)
Less than 6:10 5:10 or more but less than 15 4:15 or more, less than 20 3:20 or more, less than 30 2:30 or more, less than 50 1:50 or more.
 「実施例3」
 《電子デバイスの作製》
 下記の表1および表2に記載のガスバリア性フィルムを基材として用いて、以下の手順で、有機薄膜電子デバイスである有機EL(OLED)素子を作製した。
"Example 3"
<< Production of electronic devices >>
An organic EL (OLED) element, which is an organic thin film electronic device, was prepared by the following procedure using the gas barrier films described in Table 1 and Table 2 below as a substrate.
 〔有機EL素子の作製〕
 (第1電極層の形成)
 ガスバリア性フィルムのガスバリア層上に、厚さ150nmのITO(酸化インジウムスズ)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。
[Production of organic EL elements]
(Formation of first electrode layer)
On the gas barrier layer of the gas barrier film, ITO (indium tin oxide) having a thickness of 150 nm was formed by sputtering, and patterned by photolithography to form a first electrode layer.
 (正孔輸送層の形成)
 上記で形成した第1電極層の上に、以下に示す正孔輸送層形成用塗布液を、乾燥後の厚みが50nmとなるように押出し塗布機で塗布した後乾燥し、正孔輸送層を形成した。
(Formation of hole transport layer)
On the first electrode layer formed above, the hole transport layer forming coating solution shown below was applied by an extrusion coater so that the thickness after drying was 50 nm, and then dried to form a hole transport layer. Formed.
 正孔輸送層形成用塗布液を塗布する前に、ガスバリア性フィルムの洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。 Before applying the coating solution for forming the hole transport layer, the gas barrier film was subjected to cleaning surface modification using a low-pressure mercury lamp with a wavelength of 184.9 nm at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm. The charge removal treatment was performed using a static eliminator with weak X-rays.
 〈塗布条件〉
 塗布工程は大気中、25℃、相対湿度50%RHの環境で行った。
<Application conditions>
The coating process was performed in an atmosphere of 25 ° C. and a relative humidity of 50% RH.
 〈正孔輸送層形成用塗布液の準備〉
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Baytron(登録商標)P AI 4083)を純水で65%、およびメタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
<Preparation of hole transport layer forming coating solution>
A solution prepared by diluting polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS, Baytron (registered trademark) P AI 4083 manufactured by Bayer) with pure water at 65% and methanol at 5% is prepared as a coating solution for forming a hole transport layer. did.
 〈乾燥および加熱処理条件〉
 正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で温風を当て溶媒を除去した後、引き続き、加熱処理装置を用い、温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
<Drying and heat treatment conditions>
After applying the hole transport layer forming coating solution, the solvent was removed by applying hot air at a height of 100 mm toward the film formation surface, a discharge air speed of 1 m / s, a width of 5% of the wide air speed, and a temperature of 100 ° C. Subsequently, a back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using a heat treatment apparatus to form a hole transport layer.
 (発光層の形成)
 引き続き、上記で形成した正孔輸送層の上に、以下に示す白色発光層形成用塗布液を乾燥後の厚みが40nmになるように押出し塗布機で塗布した後乾燥し、発光層を形成した。
(Formation of light emitting layer)
Subsequently, on the hole transport layer formed above, the following coating solution for forming a white light emitting layer was applied by an extrusion coater so that the thickness after drying was 40 nm, and then dried to form a light emitting layer. .
 〈白色発光層形成用塗布液〉
 ホスト材H-A 1.0g、ドーパント材D-A 100mg、ドーパント材D-B 0.2mg、およびドーパント材D-C 0.2mgを、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。ホスト材H-A、ドーパント材D-A、ドーパント材D-B、およびドーパント材D-Cの化学構造は、下記化学式に示す通りである。
<White luminescent layer forming coating solution>
1.0 g of host material HA, 100 mg of dopant material DA, 0.2 mg of dopant material DB, and 0.2 mg of dopant material DC are dissolved in 100 g of toluene as a coating solution for forming a white light emitting layer. Got ready. The chemical structures of the host material HA, the dopant material DA, the dopant material DB, and the dopant material DC are as shown in the following chemical formula.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 〈塗布条件〉
 塗布工程を、窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とし、塗布速度1m/minで行った。
<Application conditions>
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, a coating temperature of 25 ° C., and a coating speed of 1 m / min.
 〈乾燥および加熱処理条件〉
 白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で温風を当て溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
<Drying and heat treatment conditions>
After applying the white light-emitting layer forming coating solution, after removing the solvent by applying hot air at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a width of 5% of the wide wind speed, and a temperature of 60 ° C. Then, heat treatment was performed at a temperature of 130 ° C. to form a light emitting layer.
 (電子輸送層の形成)
 引き続き、上記で形成した発光層の上に、以下に示す電子輸送層形成用塗布液を、乾燥後の厚みが25nmになるように押出し塗布機で塗布した後、乾燥し電子輸送層を形成した。
(Formation of electron transport layer)
Subsequently, the following electron transport layer forming coating solution was applied on the light emitting layer formed above by an extrusion coater so that the thickness after drying was 25 nm, and then dried to form an electron transport layer. .
 〈塗布条件〉
 塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
<Application conditions>
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.
 〈電子輸送層形成用塗布液〉
 電子輸送層は、E-A(下記化学式参照)を2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.5質量%溶液とし、電子輸送層形成用塗布液とした。
<Coating liquid for electron transport layer formation>
For the electron transport layer, EA (see the following chemical formula) was dissolved in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution, which was used as an electron transport layer forming coating solution.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 〈乾燥および加熱処理条件〉
 電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で温風を当て、溶媒を除去した後、引き続き加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
<Drying and heat treatment conditions>
After applying the electron transport layer forming coating solution, hot air was applied at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., and the solvent was removed. Subsequently, heat treatment was performed at a temperature of 200 ° C. in the heat treatment section to form an electron transport layer.
 (電子注入層の形成)
 引き続き、上記で形成した電子輸送層の上に電子注入層を形成した。まず、基板を減圧チャンバに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
(Formation of electron injection layer)
Subsequently, an electron injection layer was formed on the electron transport layer formed above. First, the substrate was put into a decompression chamber and decompressed to 5 × 10 −4 Pa. In advance, cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
 (第2電極の形成)
 引き続き、上記で形成した電子注入層の上に5×10-4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、マスクパターン成膜し、厚さ100nmの第2電極を積層した。
(Formation of second electrode)
Subsequently, on the electron injection layer formed above, a mask pattern was formed by vapor deposition using aluminum as the second electrode forming material under a vacuum of 5 × 10 −4 Pa and having a takeout electrode. A second electrode having a thickness of 100 nm was stacked.
 (保護層の形成)
 続いて、第1電極および第2電極の取り出し部になる部分を除き、CVD法にてSiOを200nmの厚さで積層し、第2電極層上に保護層を形成した。
(Formation of protective layer)
Subsequently, except for the portion to be the extraction portion of the first electrode and the second electrode, SiO 2 was laminated with a thickness of 200 nm by a CVD method, and a protective layer was formed on the second electrode layer.
 このようにして、電子素子本体を作製した。 In this way, an electronic element body was produced.
 〔封止〕
 封止部材として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)を、ドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いドライラミネートしたもの(接着剤層の厚み1.5μm)を使用し、スリーボンド株式会社製シート状封止剤TB1655を使用して封止を行った。
[Sealing]
As a sealing member, a polyethylene terephthalate (PET) film (12 μm thickness) is used on a 30 μm thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), and an adhesive for dry lamination (a two-component reaction type urethane adhesive) is used. What was dry-laminated (adhesive layer thickness 1.5 μm) was used, and sealing was performed using a sheet-like sealant TB1655 manufactured by ThreeBond Co., Ltd.
 上記の工程によって、それぞれのガスバリア性フィルムを使用した有機EL素子を作製した。 The organic EL element which uses each gas barrier film was produced according to the above-mentioned process.
 《有機EL素子の評価》
 上記作製した有機EL素子について、下記の方法に従って、耐久性の評価を行った。
<< Evaluation of organic EL elements >>
About the produced organic EL element, durability was evaluated in accordance with the following method.
 〔耐久性の評価〕
 (加速劣化処理)
 上記作製した各有機EL素子を、85℃、85%RHの環境下で500時間の加速劣化処理を施した後、加速劣化処理を施していない有機EL素子と共に、下記の黒点に関する評価を行った。
[Evaluation of durability]
(Accelerated deterioration processing)
Each of the produced organic EL elements was subjected to an accelerated deterioration treatment for 500 hours in an environment of 85 ° C. and 85% RH, and then evaluated for the following black spots together with the organic EL elements not subjected to the accelerated deterioration treatment. .
 (ダークスポット(DS、黒点)の評価)
 加速劣化処理を施した有機EL素子に対し、1mA/cmの電流を印加し、24時間連続発光させた後、100倍のマイクロスコープ(株式会社モリテックス製MS-804、レンズMP-ZE25-200)でパネルの一部分を拡大し、撮影を行った。撮影画像を2mm四方スケール相当に切り抜き、ダークスポットの発生面積比率を求め、下記の基準に従って耐久性を評価した。評価ランクが3であれば実用的な特性、4、5であればより実用的な特性、6であれば全く問題のない好ましい特性であると判定した。
(Evaluation of dark spots (DS, black spots))
A current of 1 mA / cm 2 was applied to the organic EL element that had been subjected to accelerated deterioration treatment to emit light continuously for 24 hours, and then a 100 × microscope (MS-804 manufactured by Moritex Co., Ltd., lens MP-ZE25-200) ) Enlarge a part of the panel and take a picture. The photographed image was cut out to the equivalent of a 2 mm square scale, the ratio of the dark spot generation area was determined, and the durability was evaluated according to the following criteria. If the evaluation rank is 3, it is determined to be a practical characteristic, 4 is a more practical characteristic if it is 5, and 6 is a preferable characteristic having no problem at all.
 6:ダークスポット発生率が、0.3%未満である
 5:ダークスポット発生率が、0.3%以上1.0未満である
 4:ダークスポット発生率が、1.0%以上1.5%未満である
 3:ダークスポット発生率が、1.5%以上2.0%未満である
 2:ダークスポット発生率が、2.0%以上5.0%未満である
 1:ダークスポット発生率が、5.0%以上である。
6: Dark spot occurrence rate is less than 0.3% 5: Dark spot occurrence rate is 0.3% or more and less than 1.0 4: Dark spot occurrence rate is 1.0% or more and 1.5 Less than% 3: Dark spot occurrence rate is 1.5% or more and less than 2.0% 2: Dark spot occurrence rate is 2.0% or more and less than 5.0% 1: Dark spot occurrence rate However, it is 5.0% or more.
 ダークスポットの評価結果を、下記表1および2に示す。 The evaluation results of dark spots are shown in Tables 1 and 2 below.
 「実施例4」(光電変換素子(太陽電池))
 下記の表1および2に示すガスバリア性フィルムのガスバリア層上に、第一の電極(陽極)としてインジウムスズ酸化物(ITO)透明導電膜を厚さ150nmで堆積したもの(シート抵抗12Ω/cm(□(square))を、通常のフォトリソグラフィー法と湿式エッチングとを用いて10mm幅にパターニングし、第一の電極を形成した。パターン形成した第一の電極を、界面活性剤と超純水とによる超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外光オゾン洗浄を行った。次いで、正孔輸送層として、導電性高分子およびポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率:1×10-3S/cm)を2.0質量%で含むイソプロパノール溶液を調製し、乾燥膜厚が約30nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理して、正孔輸送層を上記第一の電極上に製膜した。これ以降は、グローブボックス中に持ち込み、窒素雰囲気下で作業した。
"Example 4" (photoelectric conversion element (solar cell))
Indium tin oxide (ITO) transparent conductive film deposited as a first electrode (anode) at a thickness of 150 nm on the gas barrier layer of the gas barrier film shown in Tables 1 and 2 below (sheet resistance 12 Ω / cm 2 (□ (square)) was patterned to a width of 10 mm using a normal photolithography method and wet etching to form a first electrode, and the patterned first electrode was formed using a surfactant and ultrapure water. After cleaning in the order of ultrasonic cleaning with and ultrasonic cleaning with ultrapure water, it was dried with nitrogen blow, and finally ultraviolet light ozone cleaning was performed. comprising PEDOT-PSS (CLEVIOS (registered trademark) P VP AI 4083, Hereosu Co., conductivity: 1 × 10 -3 S / cm ) 2.0 quality The substrate was coated and dried using a blade coater adjusted to 65 ° C. so that the dry film thickness was about 30 nm, and then heat-treated with warm air at 120 ° C. for 20 seconds. Then, a hole transport layer was formed on the first electrode, and after that, it was brought into a glove box and operated in a nitrogen atmosphere.
 まず、窒素雰囲気下で、上記正孔輸送層まで形成した素子を120℃で3分間加熱処理した。 First, the element formed up to the hole transport layer was heated at 120 ° C. for 3 minutes in a nitrogen atmosphere.
 次いで、o-ジクロロベンゼンに、p型有機半導体材料として下記化合物Aを0.8質量%、およびn型有機半導体材料であるPC60BM(フロンティアカーボン株式会社製、nanom(登録商標)spectra E100H)を1.6質量%混合した有機光電変換材料組成物溶液を調製した(p型有機半導体材料:n型有機半導体材料=33:67(質量比))。ホットプレートで100℃に加熱しながら攪拌(60分間)して完全に溶解した後、乾燥膜厚が約170nmになるように、基板を40℃に調温したブレードコーターを用いて塗布し、120℃で2分間乾燥して、光電変換層を上記正孔輸送層上に製膜した。 Next, 0.8 mass% of the following compound A as a p-type organic semiconductor material, and PC60BM (manufactured by Frontier Carbon Co., nanom (registered trademark) spectra E100H) as an n-type organic semiconductor material are added to o-dichlorobenzene. An organic photoelectric conversion material composition solution mixed with 6 mass% was prepared (p-type organic semiconductor material: n-type organic semiconductor material = 33: 67 (mass ratio)). After completely dissolving by stirring (60 minutes) while heating to 100 ° C. with a hot plate, the substrate was applied using a blade coater whose temperature was adjusted to 40 ° C. so that the dry film thickness was about 170 nm. The film was dried at 0 ° C. for 2 minutes to form a photoelectric conversion layer on the hole transport layer.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 続いて、上記化合物Bを、0.02質量%の濃度になるように、1-ブタノール:ヘキサフルオロイソプロパノール=1:1の混合溶媒に溶解して溶液を調製した。この溶液を、乾燥膜厚が約5nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理して、電子輸送層を上記光電変換層上に製膜した。 Subsequently, the compound B was dissolved in a mixed solvent of 1-butanol: hexafluoroisopropanol = 1: 1 so as to have a concentration of 0.02% by mass to prepare a solution. This solution was applied and dried using a blade coater whose temperature was adjusted to 65 ° C. so that the dry film thickness was about 5 nm. Thereafter, heat treatment was performed for 2 minutes with warm air at 100 ° C. to form an electron transport layer on the photoelectric conversion layer.
 次に、上記電子輸送層を製膜した素子を、真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまでに真空蒸着装置内を減圧した後、蒸着速度2nm/秒で銀を100nm蒸着して、第二の電極(陰極)を上記電子輸送層上に形成した。 Next, the element on which the electron transport layer was formed was placed in a vacuum deposition apparatus. Then, the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, the pressure inside the vacuum deposition apparatus was reduced to 10 −3 Pa or less, and then 100 nm of silver was deposited at a deposition rate of 2 nm / second, A second electrode (cathode) was formed on the electron transport layer.
 封止部材として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)を、ドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いドライラミネートしたもの(接着剤層の厚み1.5μm)を用い、スリーボンド株式会社製シート状封止剤TB1655を使用して封止を行った。 As a sealing member, a polyethylene terephthalate (PET) film (12 μm thickness) is used on a 30 μm thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), and an adhesive for dry lamination (two-component reaction type urethane adhesive) is used. Sealing was performed using a dry laminate (adhesive layer thickness 1.5 μm) using a sheet-like sealant TB1655 manufactured by ThreeBond Co., Ltd.
 上記の工程によって、それぞれのガスバリア性フィルムを使用した光電変換素子(太陽電池)を作製した。 The photoelectric conversion element (solar cell) using each gas barrier film was produced according to the above process.
 《光電変換素子(太陽電池)の評価》
 上記作製した光電変換素子(太陽電池)について、下記の方法に従って、耐久性の評価を行った。なお、光電変換素子(太陽電池)の基材として用いたガスバリア性フィルムとしては、加速劣化処理していないものを用いた。
<< Evaluation of photoelectric conversion element (solar cell) >>
About the produced photoelectric conversion element (solar cell), durability was evaluated according to the following method. In addition, as the gas barrier film used as the base material of the photoelectric conversion element (solar cell), a film that was not subjected to accelerated deterioration treatment was used.
 〈初期光電変換効率の測定〉
 作製した有機光電変換素子を、ソーラーシミュレーター(AM1.5Gフィルタ)を用いて100mW/cmの強度の光を照射し、有効面積を1cmにしたマスクを受光部に重ね、IV特性を評価することで、初期光電変換効率を求めた。
<Measurement of initial photoelectric conversion efficiency>
The produced organic photoelectric conversion element is irradiated with light having an intensity of 100 mW / cm 2 using a solar simulator (AM1.5G filter), and a mask having an effective area of 1 cm 2 is overlaid on the light receiving portion to evaluate IV characteristics. Thus, the initial photoelectric conversion efficiency was obtained.
 その後、85℃、85%RHの環境下で保存し、発電効率が10%低下した時点を寿命として評価した。上記の方法で作製した比較例1-1のガスバリアフィルムを用いた素子に対する相対値を求めた。 Then, it preserve | saved in the environment of 85 degreeC and 85% RH, and evaluated the time when power generation efficiency fell 10% as a lifetime. The relative value with respect to the element using the gas barrier film of Comparative Example 1-1 produced by the above method was determined.
 5:120%以上
 4:105%以上120%未満
 3:95%以上105%未満
 2:85%以上95%未満
 1:85%未満。
5: 120% or more 4: 105% or more and less than 120% 3: 95% or more and less than 105% 2: 85% or more and less than 95% 1: less than 85%.
 下記表1および表2に各ガスバリア性フィルムの組成および評価結果を示す。なお、表1および表2中の「即」とは、加速劣化処理していない試料を評価したことを表す。 Tables 1 and 2 below show the composition and evaluation results of each gas barrier film. Note that “immediately” in Tables 1 and 2 indicates that a sample not subjected to accelerated deterioration treatment was evaluated.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表1および表2に記載の結果から分かるように、本発明の製造方法を用いて作製したガスバリア性フィルムは、バリア性テストの評価、屈曲耐性および平滑性の評価において、比較例に対し、良好な結果を得ることができた。また、同様に、該ガスバリア性フィルムを使用して作製した電子デバイスも、比較例に対し、ダークスポット(DS、黒点)の評価、光電変換効率の評価において良好な結果を得ることができた。 As can be seen from the results described in Table 1 and Table 2, the gas barrier film produced using the production method of the present invention was compared with the comparative example in the evaluation of the barrier property test, the bending resistance and the smoothness. Good results could be obtained. Similarly, the electronic device produced using the gas barrier film was able to obtain good results in the evaluation of dark spots (DS, black spots) and photoelectric conversion efficiency compared to the comparative example.
 これらの結果を得ることができた理由としては、蒸着法により形成された少なくとも珪素原子および炭素原子を含有するガスバリア層が、
 1.炭素原子を含有するため膜に柔軟性があり、さらに、
 2.Si-C結合はSi-O結合やSi-N結合に比べて低いエネルギーで開裂させることが可能であり、波長250nm程度のエネルギーで結合が開裂するため、波長250nm以下の光を照射することで、ガスバリア層表面だけでなく、ガスバリア層内部までひずみのない均質的な膜に改質することができるといったことに起因すると考えられる。よって、屈曲してもガスバリア性や平滑性がほとんど低下しないガスバリア層が形成できたと考えられる。
The reason why these results could be obtained is that the gas barrier layer containing at least silicon atoms and carbon atoms formed by the vapor deposition method,
1. Since it contains carbon atoms, the film is flexible,
2. Si—C bond can be cleaved with lower energy than Si—O bond or Si—N bond, and the bond is cleaved with energy of about 250 nm. This is considered to be due to the fact that the film can be modified not only to the surface of the gas barrier layer but also to the inside of the gas barrier layer so as to be a homogeneous film without distortion. Therefore, it is considered that a gas barrier layer in which gas barrier properties and smoothness are hardly lowered even when bent is formed.
 本出願は、2013年8月30日に出願された日本特許出願番号2013-180424号に基づいており、その開示内容は、参照により全体として取り入れられている。 This application is based on Japanese Patent Application No. 2013-180424 filed on August 30, 2013, the disclosure of which is incorporated by reference in its entirety.

Claims (6)

  1.  基材上に、少なくとも珪素原子および炭素原子を含有するガスバリア層を蒸着法により形成した後に、前記ガスバリア層に対して波長が250nm未満の紫外光照射を行うことを含む、ガスバリア性フィルムの製造方法。 A method for producing a gas barrier film, comprising: forming a gas barrier layer containing at least silicon atoms and carbon atoms on a substrate by vapor deposition, and then irradiating the gas barrier layer with ultraviolet light having a wavelength of less than 250 nm. .
  2.  前記ガスバリア層が、珪素原子、酸素原子および炭素原子を含有し、
     下記条件(i)~(iii):
     (i)前記ガスバリア層の膜厚方向における前記ガスバリア層のガスバリア層表面からの距離(L)と、珪素原子、酸素原子、および炭素原子の合計量に対する珪素原子の量の比率(珪素の原子比)との関係を示す珪素分布曲線、前記Lと珪素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lと珪素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、
     前記ガスバリア層の膜厚の90%以上の領域で、下記式(A):
    式(A)  (炭素の原子比)<(珪素の原子比)<(酸素の原子比)
    または下記式(B):
    式(B)  (酸素の原子比)<(珪素の原子比)<(炭素の原子比)
    で表される序列の大小関係を有する、
     (ii)前記炭素分布曲線が少なくとも1つの極値を有する、ならびに
     (iii)前記炭素分布曲線における炭素の原子比の最大値と最小値との差の絶対値が5at%以上である、
    を満たす、請求項1に記載の製造方法。
    The gas barrier layer contains silicon atoms, oxygen atoms and carbon atoms;
    The following conditions (i) to (iii):
    (I) The distance (L) of the gas barrier layer from the gas barrier layer surface in the film thickness direction of the gas barrier layer and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (the atomic ratio of silicon ), A distribution curve showing the relationship between L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of oxygen), and L Carbon distribution curve showing the relationship between the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (carbon atomic ratio),
    In the region of 90% or more of the film thickness of the gas barrier layer, the following formula (A):
    Formula (A) (atomic ratio of carbon) <(atomic ratio of silicon) <(atomic ratio of oxygen)
    Or the following formula (B):
    Formula (B) (atomic ratio of oxygen) <(atomic ratio of silicon) <(atomic ratio of carbon)
    Having an order of magnitude relationship represented by
    (Ii) the carbon distribution curve has at least one extreme value; and (iii) the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 5 at% or more.
    The manufacturing method of Claim 1 which satisfy | fills.
  3.  前記紫外光照射を行った後、前記ガスバリア層上にポリシラザンを含有する塗布液を塗布乾燥して塗膜を改質処理することによりガスバリア層を形成することをさらに有する、請求項1または2に記載のガスバリア性フィルムの製造方法。 3. The method according to claim 1, further comprising forming a gas barrier layer by applying and drying a coating liquid containing polysilazane on the gas barrier layer after the ultraviolet light irradiation and modifying the coating film. The manufacturing method of the gas-barrier film of description.
  4.  前記紫外光が波長150nm以下の光である、請求項1~3のいずれか1項に記載のガスバリア性フィルムの製造方法。 The method for producing a gas barrier film according to any one of claims 1 to 3, wherein the ultraviolet light is light having a wavelength of 150 nm or less.
  5.  請求項1~4のいずれか1項に記載の製造方法により製造されたガスバリア性フィルム。 A gas barrier film produced by the production method according to any one of claims 1 to 4.
  6.  電子デバイス本体と、請求項1~4のいずれか1項に記載の方法によって製造されるガスバリア性フィルムまたは請求項5に記載されるガスバリア性フィルムとを含む、電子デバイス。 An electronic device comprising: an electronic device body; and the gas barrier film produced by the method according to any one of claims 1 to 4 or the gas barrier film according to claim 5.
PCT/JP2014/071450 2013-08-30 2014-08-14 Method for producing gas barrier film WO2015029795A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534138A JPWO2015029795A1 (en) 2013-08-30 2014-08-14 Method for producing gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013180424 2013-08-30
JP2013-180424 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015029795A1 true WO2015029795A1 (en) 2015-03-05

Family

ID=52586364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071450 WO2015029795A1 (en) 2013-08-30 2014-08-14 Method for producing gas barrier film

Country Status (2)

Country Link
JP (1) JPWO2015029795A1 (en)
WO (1) WO2015029795A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099239A1 (en) * 2015-12-11 2017-06-15 コニカミノルタ株式会社 Gas barrier film and method for producing same
JP2017185789A (en) * 2016-03-31 2017-10-12 住友化学株式会社 Laminate film and production method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084307A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Organic el device
JP2012106421A (en) * 2010-11-18 2012-06-07 Konica Minolta Holdings Inc Method for manufacturing gas barrier film, gas barrier film, and electronic device
JP2012140700A (en) * 2010-12-15 2012-07-26 Tosoh Corp Carbon-containing silicon oxide film, sealing film and usage thereof
WO2014142036A1 (en) * 2013-03-11 2014-09-18 コニカミノルタ株式会社 Gas barrier film, method for producing gas barrier film, and organic electroluminescent element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084307A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Organic el device
JP2012106421A (en) * 2010-11-18 2012-06-07 Konica Minolta Holdings Inc Method for manufacturing gas barrier film, gas barrier film, and electronic device
JP2012140700A (en) * 2010-12-15 2012-07-26 Tosoh Corp Carbon-containing silicon oxide film, sealing film and usage thereof
WO2014142036A1 (en) * 2013-03-11 2014-09-18 コニカミノルタ株式会社 Gas barrier film, method for producing gas barrier film, and organic electroluminescent element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099239A1 (en) * 2015-12-11 2017-06-15 コニカミノルタ株式会社 Gas barrier film and method for producing same
JPWO2017099239A1 (en) * 2015-12-11 2018-10-04 コニカミノルタ株式会社 Gas barrier film and method for producing the same
JP2017185789A (en) * 2016-03-31 2017-10-12 住友化学株式会社 Laminate film and production method of the same
KR20170113350A (en) * 2016-03-31 2017-10-12 스미또모 가가꾸 가부시키가이샤 Laminated film and method for producing the same
JP2021151794A (en) * 2016-03-31 2021-09-30 住友化学株式会社 Laminated film and method of manufacturing the same
KR102368460B1 (en) 2016-03-31 2022-02-25 스미또모 가가꾸 가부시키가이샤 Laminated film and method for producing the same
JP7133904B2 (en) 2016-03-31 2022-09-09 住友化学株式会社 LAMINATED FILM AND METHOD FOR MANUFACTURING THE SAME
JP7261837B2 (en) 2016-03-31 2023-04-20 住友化学株式会社 LAMINATED FILM AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JPWO2015029795A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2014119750A1 (en) Gas barrier film
JP6504284B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
JP6056854B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
JP6624257B2 (en) Electronic device and method of manufacturing the same
JP6274213B2 (en) Gas barrier film
JP6252493B2 (en) Gas barrier film
JPWO2012077553A1 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
JP6319316B2 (en) Method for producing gas barrier film
WO2014178332A1 (en) Gas barrier film and method for producing same
WO2015182623A1 (en) Gas barrier film and electronic device using same
JP6060848B2 (en) Gas barrier film
WO2016039237A1 (en) Functional element and functional element production method
WO2015119260A1 (en) Modified polysilazane, coating solution containing said modified polysilazane, and gas barrier film produced using said coating solution
WO2014119754A1 (en) Gas barrier film, method for producing same, and electronic device using same
WO2015029795A1 (en) Method for producing gas barrier film
JP2016022595A (en) Gas barrier film, production method thereof, and electronic device having gas barrier film
JP6295864B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
WO2015146886A1 (en) Gas barrier film, method for manufacturing same, and electronic device using same
WO2015053055A1 (en) Functional film
JPWO2015146886A6 (en) Gas barrier film, method for producing the same, and electronic device using the same
JP6295865B2 (en) Gas barrier film
WO2014188981A1 (en) Gas barrier film
JPWO2015029732A1 (en) Gas barrier film and method for producing gas barrier film
JP6402518B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
JP2016022596A (en) Gas barrier film, production method thereof, and electronic device having gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534138

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840890

Country of ref document: EP

Kind code of ref document: A1