TW201230660A - Linear motor control apparatus - Google Patents

Linear motor control apparatus Download PDF

Info

Publication number
TW201230660A
TW201230660A TW100137906A TW100137906A TW201230660A TW 201230660 A TW201230660 A TW 201230660A TW 100137906 A TW100137906 A TW 100137906A TW 100137906 A TW100137906 A TW 100137906A TW 201230660 A TW201230660 A TW 201230660A
Authority
TW
Taiwan
Prior art keywords
current
axis
command
compensation
control
Prior art date
Application number
TW100137906A
Other languages
Chinese (zh)
Other versions
TWI535181B (en
Inventor
Yoshiyuki Azuma
Mahito Unno
Tomoki Sato
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Publication of TW201230660A publication Critical patent/TW201230660A/en
Application granted granted Critical
Publication of TWI535181B publication Critical patent/TWI535181B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/062Linear motors of the induction type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)

Abstract

Provided is a linear motor control apparatus, wherein a vector control type current controlling means (13) is equipped therein. Also equipped is an induced voltage compensating means (31) for adding a voltage compensation value, obtained from a detected velocity value (x DEG ) of a mover and an induced voltage constant (f), to a q-axis voltage command value (Vq') outputted by a thrust current control unit (18). Also equipped is a position-change inductance compensating means (32) for calculating a q-axis voltage compensation value and a d-axis voltage compensation value, using a detected position value (x), the detected velocity value (x DEG ), a detected q-axis current value (iq), and a detected d-axis current value (id), and compensating the q-axis voltage command value (Vq') and a d-axis voltage command value (Vd').

Description

201230660 六、發明說明: 關聯申請案 本申請案是主張2010年10月26日申請之日本特願 201 0-239602的優先權者,藉由參照其全體來作爲本案的 一部分引用。 【發明所屬之技術領域】 本發明是有關適用於工作機械用的搬運裝置、或產業 機械的搬運裝置、其他被使用於各種機器的驅動的同步型 的地上一次側離散配置線性馬達的線性馬達控制裝置。 【先前技術】 線性馬達(Linear Motor )是在物流裝置的搬運台車 等中’被廣泛使用於其行走驅動等(例如專利文獻1 )。 線性馬達是有:線性感應馬達(LIM )、線性同步馬達( LSM )、及線性直流馬達等,但主要作爲長距離的行走系 統使用的是線性感應馬達。線性同步馬達是在地上側配置 磁石來移動線圈側的方式佔了大部分。 另外,在線性同步馬達中,有部分地在地上側離散配 置1次線圈的例子(例如專利文獻2 ),但線性同步馬達爲 曲線路徑或路徑端部之輔助性的使用,基本上是使用線性 感應馬達。並且’在非專利文獻1是有關只在加減速必要 之處配置定子的地上一次型間歇配置(離散配置)線性同 步馬達,針對模式化記載。 -5- 201230660 〔先行技術文獻〕 〔專利文獻〕 專利文獻1 :特開昭63-114887號公報 專利文獻2:特開2007-82307號公報 〔非專利文獻〕 非專利文獻1 :鈴木憲吏、金容載、百目鬼英雄共著 ’ 「有關永久磁石型線性同步馬達的間歇定子配置間隔的 模式化」,電氣學會線性驅動硏究會,LD-07-3 5,200 7年 10月,ppl7-pp22 【發明內容】 (發明所欲解決的課題) 線性感應馬達推力低,行走性能的提升困難。因此, 在對成爲工作機械的裝載機的搬運裝置等的適用上,嘗試 採用線性同步馬達。以往的線性同步馬達是在地上側配置 磁石來移動線圈側的方式佔了大部分。但,爲了使線圈側 移動,需要對可動子給電,由於配線至可動子的關係,在 無端路徑的行走是不可能的,所以行走路徑受限,或給電 系統複雜化。因此,嘗試在線性同步馬達中,橫跨路徑全 長,在地上側配置1次線圈。但,在地上側配置1次線圈時 ,像以往的線性馬達那樣,橫跨移動路徑的全長連續配置 線圈,是線圈的使用量會增加,成本會增大。 作爲解除如此的課題之同步型線性馬達’可考慮離散 配置的線性同步馬達,其係於可動子的移動方向,橫跨路201230660 VI. INSTRUCTIONS: RELATED APPLICATIONS This application is the priority of Japanese Patent Application No. 201 0-239602 filed on Oct. 26, 2010, which is incorporated herein by reference in its entirety. [Technical Field] The present invention relates to a linear motor control of a synchronous primary ground-displacement linear motor that is applied to a transport device for a work machine or an industrial machine, and other synchronous type drives that are used for driving various devices. Device. [Prior Art] A linear motor is widely used in a traveling vehicle or the like of a distribution device (for example, Patent Document 1). Linear motors are: Linear Induction Motors (LIMs), Linear Synchronous Motors (LSMs), and Linear DC Motors, but are primarily used as long-distance travel systems with linear induction motors. The linear synchronous motor accounts for the majority of the way in which the magnet is placed on the ground side to move the coil side. Further, in the linear synchronous motor, there is an example in which the primary coil is partially disposed on the ground side (for example, Patent Document 2), but the linear synchronous motor is an auxiliary use of a curved path or a path end, and basically uses linearity. Induction motor. Further, Non-Patent Document 1 relates to a ground-type intermittent arrangement (discrete arrangement) linear synchronous motor in which a stator is disposed only at an acceleration/deceleration, and is described in terms of a pattern. -5-201230660 [Prior Art Document] [Patent Document] Patent Document 1: JP-A-63-114887 (Patent Document 2) JP-A-2007-82307 (Non-Patent Document) Non-Patent Document 1: Suzuki Kenji, "Jin Rong Zai, Hundred-eyed Ghost Heroes" "Modeling of Intermittent Stator Allocation Intervals for Permanent Magnet-Type Linear Synchronous Motors", Electrical Society Linear Drives Research Society, LD-07-3 5,200 7 October, ppl7-pp22 [Invention Contents] (The problem to be solved by the invention) The linear induction motor has low thrust and it is difficult to improve the running performance. Therefore, in the application of a conveying device or the like of a loader that is a working machine, a linear synchronous motor has been tried. In the conventional linear synchronous motor, the magnet is disposed on the ground side to move the coil side. However, in order to move the coil side, it is necessary to supply power to the movable member, and it is impossible to travel on the endless path due to the wiring to the movable member, so the traveling path is limited or the power feeding system is complicated. Therefore, in the linear synchronous motor, it is attempted to have a full length across the path and a primary coil on the ground side. However, when the primary coil is placed on the ground side, the coil is continuously disposed over the entire length of the movement path like the conventional linear motor, and the amount of use of the coil is increased, and the cost is increased. As a synchronous linear motor that solves such a problem, a linear synchronous motor that is discretely arranged can be considered, which is in the moving direction of the movable body and crosses the road.

-6- 201230660 徑全長取間隔配列由可作爲分別獨立的1台線性馬達的一 次側的電樞之機能的電樞所構成的複數的個別馬達。若根 據此構成,則因爲個別馬達被離散配置,所以線圈的使用 量可削減,謀求成本降低。 但,離散配置線性馬達特有的問題,電感或誘發電壓 會依可動子對個別馬達的位置而變化,且也會產生在個別 馬達端部的干擾(例如頓轉力)。該等在控制馬達上成爲 莫大大的干擾。此問題在非專利文獻1中雖有觸及,但有 關考慮其影響的控制未被提案。 本發明的目的是在於提供一種線性馬達控制裝置,其 係一面採用有利於線圈使用量的削減或給電形式上之個別 馬達的地上離散配置形式,一面可進行對應於誘發電壓的 變化(相對於可動子對個別馬達的位置)之圓滑的移動控 制。 (用以解決課題的手段) 附上實施形態所使用的符號來說明本發明的線性馬達 控制裝置。 另外,在此說明書中,有關表示速度檢測値的「X .」 的符號,在圖中以易懂的方式在「X」的文字的上側附上 「·」’但在說明書中’基於使用可能的文字的限制上, 在「X」的文字的右上附上「.」而顯示「X.」。 本發明的線性馬達控制裝置,係控制同步型的線性馬 達(1)的裝置’該同步型的線性馬達係沿著可動子(4) 201230660 的移動路徑來取間隔配置可作爲3相的各相的線圈排列於 直線方向的1台線性馬達(1 )的一次側的電樞之機能的複 數的個別馬達(3 ),且以永久磁石來構成上述可動子(4 ), 具備:分別控制上述各個別馬達(3 )的複數的個別 馬達控制手段(6 )、及按照所被輸入的位置指令來對上 述各個別馬達(3 )分配位置指令的統括控制手段(7 )。 上述各個別馬達控制手段(6 )係具有:進行位置控 制及速度控制的雙方或只進行位置控制的位置•速度控制 手段(1 7 )、及進行電流控制的電流控制手段(1 3 ),而 且,在上述各個別馬達控制手段(6 )設置:檢測出上述 個別馬達(3 )的各相的電流成分的電流檢測手段(1 4 ) 、及分別檢測出上述可動子(4 )的位置及速度的位置檢 測手段(1 5 )及速度檢測手段(1 6 )。 上述電流控制手段(1 4 )爲向量控制形式,具有: 推力電流控制部(1 8 ),其係對於自上述位置•速度 控制手段(1 7 )所給予的推力電流指令値之q軸電流指令 値iq*,輸出以可自上述電流檢測手段(1 4 )的檢測値取得 的個別馬達(3 )的q軸電流檢測値iq能夠追隨的方式控制 的q軸電壓指令値Vq'; 磁通電流控制部(1 9 ),其係對於所被設定的磁通電 流指令値之d軸電電流値id *,輸出以個別馬達(3 )的d軸 電流檢測値id能夠追随的方式控制的d軸電壓指令値Vd'; 座標變換部(20),其係將該等q軸電壓指令値Vq'及 -8- 201230660 d軸電壓指令値V/變換成個別馬達(3 )的各相的座標的 指令値;及 電力變換部(2 1 ),其係將此座標變換部(20 )的輸 出變換成個別馬達(3 )的驅動電流。 在此構成中,設置誘發電壓補償手段(31),其係對 於在上述推力電流控制部(18)所被輸出而輸入至上述座 標變換部(20)的q軸電壓指令値V,加算電壓補償値φχ· ,該電壓補償値Φχ ·係以在速度檢測手段(1 6 )所被檢測 出的可動子(4)的速度檢測値χ.、及所被定的誘發電壓 定數φ來取得。 向量控制是掌握馬達的電流或交鏈磁通作爲向量的瞬 時値,以瞬時値來控制該等的向量,藉此使馬達的瞬時推 力追隨指令之技術,由於可爲效率佳的控制,因此在旋轉 型馬達的控制中被廣泛採用。本發明是藉由上述推力電流 控制部、磁通電流控制部、及座標變換部來形成向量。但 ,在地上側取間隔設置一次側的電樞之個別馬達(3 )的 離散配置線性馬達(1 )中,電感會依可動子(4 )對個別 馬達(3)的位置而變化,誘發電壓會變化。對於該等的 變化的控制是僅一般的向量控制無法適當地進行。 對於此,若根據上述構成,則由於設置:對於在推力 電流控制部(18)所被輸出而輸入至上述座標變換部(20 )的q軸電壓指令値Vq'加算能以在上述速度檢測手段(1 6 )所被檢測出的可動子(4 )的速度檢測値s及所被定的誘 發電壓定數Φ來取得的電壓補償値(Ds之誘發電壓補償手段 201230660 (31),因此對於依可動子(4)的位置而產生的電感變 化、誘發電壓變化,可適當地補償q軸電壓指令値Vq',而 取得可動子(4)的圓滑的動作。又,由於成爲控制對象 的線性馬達(1 )是離散配置由一次側的電樞所構成的個 別馬達(3 )作爲固定側,因此可取得線圈使用量少且相 較於在移動側給電時給電系統可簡素化之離散配置線性馬 達(1 )的優點。 在本發明中,最好設置其次的位置變化電感補償手段 (3 2 )。此位置變化電感補償手段(3 2 )是根據在上述位 置檢測手段(1 5 )所被檢測出的可動子(4 )的位置檢測 値X、及在上述速度檢測手段(1 6 )所被檢測出的可動子 (4 )的速度檢測値s、及在將上述電流檢測手段(1 )所 檢測出的電流値予以座標變換成q軸及d軸的電流値而取得 的q軸電流檢測値、及d軸電流檢測値id,按照所被定的運 算式來運算q軸電壓補償値及d軸電壓補償値。對於在上述 推力電流控制部(18)所被輸出而輸入至上述座標變換部 (20 )的q軸電壓指令値Vq'加算上述q軸電壓補償値,且 對於在上述磁通電流控制部(19)所被輸出而輸入至上述 座標變換部(20 )的d軸電壓指令値V〆加算上述d軸電壓 補償値。 藉由如此運算q軸電壓補償値及d軸電壓補償値,且補 償q軸電壓指令値Vq'及d軸電壓指令値V,,可對於依可動 子(4 )的位置而產生的電感變化,適當地補償q軸電壓指 令値Vq'及d軸電壓指令値V/,而取得可動子(4)的更圓 -10- 201230660 滑的動作。 在本發明中,最好設置:對於由上述位置.速度控制 手段(1 7 )所給予的推力電流指令値減算所被定的頓轉補 償電〖Κι値ie()gging ’作爲輸入至上述推力電流控制部(18) 的上述q軸電流指令値iq*之頓轉補償手段(33 )。可適當 的頓轉減輕的頓轉補償電流値ie(Jgging是依可動子(4 )的 位置而定,因此可預先以試驗等求取。在以該求得的値來 進行頓轉補償下,可減輕因個別馬達(3 )的離散配置所 引起的頓轉。 在本發明中,亦可使在誘發電壓補償手段(3 1 )所使 用的上述誘發電壓定數Φ,在個別馬達的可動子移動方向 的中間部是設爲一定値,在兩端部是設爲往端側逐漸變小 的値。例如,亦可將誘發電壓定數Φ設爲變化成梯形狀的 値。 藉此,即使利用運算處理能力比較低的處理裝置,還 是能以簡單的控制來實現對應於依可動子(4 )的位置所 產生的誘發電壓的變化之圓滑的移動控制。 在本發明中,上述位置變化電感補償手段(3 2 )所加 算的q軸電壓補償値d軸電壓補償値是根據次式(5q),( 5 d )而定的値。 -11 - 201230660 [數學式1] (5 q) (5 d) ^ r --6- 201230660 The total length of the diameter is divided into a plurality of individual motors consisting of armatures that can function as armatures of the primary side of a separate linear motor. According to this configuration, since the individual motors are discretely arranged, the amount of use of the coil can be reduced, and the cost can be reduced. However, the problem with discretely configured linear motors is that the inductance or induced voltage will vary depending on the position of the individual motor and the interference at the end of the individual motor (e.g., the torque). These have become a major disturbance in controlling the motor. Although this problem has been touched in Non-Patent Document 1, the control regarding the influence is not proposed. SUMMARY OF THE INVENTION An object of the present invention is to provide a linear motor control device which is capable of performing a change corresponding to an induced voltage (relative to a movable one) while adopting a discrete configuration on the ground which facilitates the reduction in the amount of use of the coil or the individual motors in the power supply mode. Sleek movement control of the position of the individual motor. (Means for Solving the Problem) The linear motor control device of the present invention will be described with reference to the symbols used in the embodiments. In addition, in this manual, the symbol "X." indicating the speed detection , is attached to the upper side of the character of "X" in an easy-to-understand manner, but "in the specification" is based on the use. On the restriction of the text, "." is attached to the upper right of the text of "X" and "X." is displayed. The linear motor control device of the present invention is a device for controlling a synchronous linear motor (1). The synchronous linear motor is arranged along the moving path of the movable member (4) 201230660 to be a three-phase phase. The coils are arranged in a plurality of individual motors (3) of the armature of the primary side of one linear motor (1) in the linear direction, and the movable body (4) is configured by permanent magnets, and is provided to control each of the above The individual motor control means (6) of the plurality of individual motors (3) and the overall control means (7) for assigning position commands to the respective motors (3) in accordance with the input position command. Each of the motor control means (6) includes: a position/speed control means (1 7) for performing both position control and speed control, or a position control, and a current control means (13) for performing current control, and Each of the motor control means (6) is provided with a current detecting means (14) for detecting a current component of each phase of the individual motor (3), and detecting a position and a speed of the movable member (4), respectively. The position detecting means (15) and the speed detecting means (16). The current control means (14) is of a vector control type and has: a thrust current control unit (18) for the q-axis current command given by the thrust current command given from the position/speed control means (17)値iq*, output q-axis voltage command 値Vq' controlled by the q-axis current detection 値iq of the individual motor (3) which can be obtained from the detection of the current detecting means (14); magnetic flux current The control unit (1 9 ) outputs a d-axis electric current 値 id * of the set magnetic flux current command ,, and outputs a d-axis controlled so that the d-axis current detection 个别 id of the individual motor (3 ) can follow Voltage command 値Vd'; coordinate conversion unit (20), which converts the q-axis voltage command 値Vq' and -8-201230660 d-axis voltage command 値V/ into the coordinates of each phase of the individual motor (3) The command 値; and the power conversion unit (2 1 ) convert the output of the coordinate conversion unit (20) into a drive current of the individual motor (3). In this configuration, an induced voltage compensation means (31) for adding a voltage compensation to the q-axis voltage command 値V input to the coordinate conversion unit (20) by the thrust current control unit (18) is provided.电压φχ· , the voltage compensation 値Φχ is obtained by detecting the speed of the movable member (4) detected by the speed detecting means (16) and the predetermined induced voltage constant φ. Vector control is the technique of grasping the current or the flux of the motor as the instantaneous 値 of the vector, controlling the vectors with instantaneous ,, so that the instantaneous thrust of the motor follows the command, because it can be an efficient control, so It is widely used in the control of rotary motors. In the present invention, a vector is formed by the thrust current control unit, the magnetic flux current control unit, and the coordinate conversion unit. However, in the discrete arrangement linear motor (1) in which the individual motors (3) of the armatures on the primary side are spaced apart from each other on the ground side, the inductance varies depending on the position of the movable motor (4) to the individual motor (3), and the induced voltage Will change. The control of these changes is that only normal vector control cannot be properly performed. In this case, according to the above configuration, the q-axis voltage command 値Vq' input to the coordinate conversion unit (20) outputted by the thrust current control unit (18) is added to calculate the energy at the speed detecting means. (1) The voltage compensation 取得 obtained by detecting the velocity of the movable member (4) and the determined induced voltage constant Φ (Ds induced voltage compensation means 201230660 (31), The inductance change and the induced voltage change caused by the position of the movable member (4) can appropriately compensate the q-axis voltage command 値Vq' to obtain a smooth operation of the movable member (4). Further, the linear motor to be controlled (1) The individual motors (3) composed of the armatures on the primary side are discretely arranged as the fixed side. Therefore, it is possible to obtain a discretely arranged linear motor in which the amount of use of the coil is small and the power supply system can be simplified compared to when the power is supplied to the mobile side. Advantages of (1) In the present invention, it is preferable to provide a second position change inductance compensation means (3 2 ). The position change inductance compensation means (3 2 ) is based on the above position detecting means (15) The position detection 値X of the detected movable member (4), the speed detection 値s of the movable member (4) detected by the speed detecting means (16), and the current detecting means (1) The detected current 値 is converted into q-axis and d-axis current 値 and obtained by the q-axis current detection 値 and the d-axis current detection 値 id, and the q-axis voltage compensation 运算 is calculated according to the predetermined arithmetic expression. The d-axis voltage compensation 値 adds the q-axis voltage compensation 对于 to the q-axis voltage command 値Vq' input to the coordinate conversion unit (20) by the thrust current control unit (18), and for the magnetic The d-axis voltage command 値V〆 outputted to the coordinate conversion unit (20) by the current-current control unit (19) adds the d-axis voltage compensation 値. By calculating the q-axis voltage compensation 値 and the d-axis voltage compensation値, and compensate q-axis voltage command 値Vq' and d-axis voltage command 値V, can properly compensate q-axis voltage command 値Vq' and d-axis voltage for inductance change caused by the position of the mover (4) Command 値V/, and get the more round of the movable (4)-10-20 1230660 Sliding action. In the present invention, it is preferable to set: for the thrust current command given by the above position and speed control means (17), the offset compensation power is set to [Κι値ie()gging ' As the above-mentioned q-axis current command 値iq* input to the above-described thrust current control unit (18), the compensation means (33) can be appropriately revoked and reduced by the compensation current 値ie (Jgging is dependent on the mover (4) The position can be determined in advance by a test or the like. Under the compensation of the obtained enthalpy, the tumbling caused by the discrete arrangement of the individual motors (3) can be alleviated. In the present invention, the induced voltage constant Φ used in the induced voltage compensating means (31) may be set to a constant value in the intermediate portion of the movable direction of the individual motor, and may be provided at both ends. It gradually becomes smaller toward the end side. For example, the induced voltage constant Φ may be set to 値 which is changed into a trapezoidal shape. Thereby, even with a processing device having a relatively low arithmetic processing capability, smooth movement control corresponding to a change in the induced voltage due to the position of the movable member (4) can be realized with simple control. In the present invention, the q-axis voltage compensation 値d-axis voltage compensation 加 added by the position change inductance compensation means (32) is 値 according to the following formula (5q), (5d). -11 - 201230660 [Math 1] (5 q) (5 d) ^ r -

-L I 2kqq x 2τ-L I 2kqq x 2τ

τΡ :可動子的1磁極對的間距 Ld : L-M Lq : L-M L:各相的自己電感 Μ :各相間的相互電感 藉此,即使利用運算處理能力比較低的處理裝置,還 是能以簡單的控制來實現對應於依可動子(4 )的位置所 產生的電感的變化之圓滑的移動控制。 申請專利範圍及/或說明書及/或圖面所揭示的至少2個 構成的怎樣的組合皆含於本發明。特別是申請專利範圍的 各請求項的2個以上的怎樣的組合皆含於本發明^ 【實施方式】 圖1〜圖13共同說明本發明之一實施形態。圖i是表示 以控制對象的線性馬達1及線性馬達控制裝置2所形成的線 性馬達系統。線性馬達1是線性同步馬達(LSM ),在可 動子4的移動方向X取間隔設置由可作爲分別獨立的〗台線 -12- 201230660 性馬達的一次側的電樞之機能的電樞所構成的地上側的複 數的個別馬達3。個別馬達3是在可動子4的移動範圍的全 體配列。各個別馬達3是設置於具有可動子4的軌道(未圖 示)之共通的框架5。 在框架5上,其他設置有成爲位置檢測器的感測器1 5 ,其係按各個別馬達3,檢測出可動子4的位置。另外,感 測器1 5在圖1中基於圖示的方便起見,顯示於個別馬達3間 ,但實際上是使用:在可動子移動方向(X方向)配置於 與個別馬達3同位置,可在比個別馬達3更若干長的範圍檢 測出位置的線性感測器1 5。可動子4是在可動子基體4a於 移動方向X排列設置複數個由永久磁石所構成的N,S的磁 極者,藉由設於上述框架5的軌道(未圖示)來進退自如 地引導。可動子4是形成在複數的個別馬達3間橫跨的長度 〇 各個別馬達3是例如圖2 ( A )及(B )所示,將成爲各 層的磁極之複數的線圈3a及鐵芯3b排列於上述移動方向X 者。各鐵芯3b是以自共通的本體部突出成梳齒狀的部分所 構成。在此例是以3相的交流電流所驅動者,成爲按其各 相(U,V,W相)設置一個磁極之3極的一次側的電樞。 另外,個別馬達3亦可按各相(U,V,W相)設置複數的 磁極’作爲具有相數的整數倍的磁極之電樞。 在圖1中說明控制系。 ' 控制裝置2是具備: 複數的個別馬達控制手段6 ’其係分別控制各個別馬 -13- 201230660 達3 ;及 一個的統括控制手段7,其係給予該等複數的個別馬 達控制手段6位置指令。 統括控制手段7是以弱電系的電路元件、電腦及其程 式的一部分等所構成。統括控制手段7是記憶有按各個別 馬達3來區分線性馬達全體的移動範圍之擔當範圍,而將 自上位控制手段(未圖示)輸入的位置指令的指令位置變 換成對應於各個別馬達3的位置指令來給予。對應於各個 別馬達3的位置指令是座標變換成其個別馬達3的座標的指 令。 各個別馬達控制手段6是以使馬達電流流至個別馬達 之強電系的馬達驅動電路、及控制此馬達驅動電路之弱電 系的控制部(未圖示)所形成,弱電系的控制部是藉由微 電腦及其程式、電路元件所構成,進行圖3所示的反饋控 制。 在圖3中,個別馬達控制手段6是具有分別進行位置, 速度,電流的反饋控制之位置控制手段1 1、速度控制手段 12、及電流控制手段13,進行具有位置迴路(loop)、速 度迴路及電流迴路之串聯控制的反饋控制。位置控制手段 1 1是按照檢測出可動子4相對於個別馬達3的現在位置之上 述感測器1 5的檢測値與位置指令的指令値的偏差,來進行 所被定之位置迴路增益的反饋控制。位置控制手段1 1是輸 出速度指令値,作爲其輸出。 速度控制手段1 2是按照經由速度檢測手段1 6所取得的 201230660 可動子4的速度檢測値與速度指令値的偏差,來進行所被 定之速度迴路增益的反饋控制。速度控制手段12是輸出電 流指令値,作爲其輸出。速度檢測手段1 6在此例是由感測 器1 5的位置檢測値來求取速度的微分手段等所構成,但亦 可有別於感測器15另外設置直接檢測出速度者。另外,將 合倂該等位置控制手段1 1及速度控制手段1 2的手段稱爲位 置·速度控制手段1 7。在本實施形態是進行位置控制及速 度控制,但位置·速度控制手段1 7亦可不進行速度控制’ 只進行位置控制。 電流控制部1 3是以電流檢測器等的電流檢測手段1 4來 檢測出被施加於個別馬達3的驅動電流,利用所被定之電 流迴路增益來生成按照電流檢測値與電流指令値的偏差之 電流指令値,控制馬達驅動電流。電流檢測手段1 4詳細是 檢測出上述驅動電流的各相的成分者,具有進行3相之中 的2相的檢測之相電流檢測部1 4a,1 4b (圖4 )。若進行2 相分的檢測,則剩下1相的電流成分是藉由計算來求取。 圖4是表示圖3的電流控制手段1 3的詳細。電流控制手 段13是進行向量控制的控制手段,具有成爲本發明’實施 形態的特徵之各種的補償手段,爲了說明的簡明化’首先 ,利用圖5來說明自圖4省略了各補償手段31〜33之向量控 制的基本構成。 此電流控制手段1 3的基本構成是具有推力電流控制部 18、磁通電流控制部19、座標變換部20及電力變換部21。 推力電流控制部1 8是對於由上述位置·速度控制手段 -15- 201230660 1 7的速度控制手段1 2所給予的推力電流指令値的q軸電流 指令値iq*,控制成經由檢測座標αβ變換部22及檢測座標dq 變換部23而取得的個別馬達3的q軸電流檢測値iq可自電流 檢測手段1 4的檢測値追隨的手段’輸出q軸電壓指令値V, 作爲輸出。推力電流控制部1 8是以減算q軸電流檢測値、的 減算部18a及控制減算部18a的輸出的運算部18b所構成。 磁通電流控制部1 9是對於被磁通電流指令値設定手段 29所設定的磁通電流指令値的d軸電流値id*,控制成經由 檢測座標αβ變換部22及檢測座標dq變換部23而取得的個別 馬達3的d軸電流檢測値id可自電流檢測手段1 4的檢測値追 隨的手段,輸出d軸電壓指令値Vd'作爲輸出。磁通電流指 令値設定手段29是按照個別馬達3的馬達特性等來適當設 定,但通常是將d軸電電流値id*設定成「0」。磁通電流控 制部1 9是以減算d軸電流檢測値id的減算部1 9a及控制減算 部19a的輸出的運算部19b所構成。 上述檢測座標αβ變換部22是將流動於個別馬達3的U相 ,V相,W相的電流ia,ib,ic的檢測値變換成靜止正交2 相座標成分的實電流(α軸上的實電流、及β軸上的實電流 )的檢測値i a,i β的手段。檢測座標d q變換部2 3是根據可 動子4的相位,將上述靜止正交2相座標成分的實電流的檢 測値ia ’ ίβ變換成q ’ d軸上的檢測値iq,id的手段。所謂q 軸是線性馬達的進行方向的軸,d軸是與q軸正交的方向的 軸。被輸入至檢測座標dq變換部23的可動子相位是以磁極 表24及sin/cos變換部25來變換位置檢測器之感測器15的輸 201230660 出而取得之相位的檢測値。磁極表2 4是將由感測器1 5所取 得的直線位置的檢測値變換成電氣角Θ的表。sin/cos變換 部25是對於磁極表24所輸出的電氣角Θ,變換於cos,sin間 的手段。 上述推力電流控制部18及磁通電流控制部19的各運算 部18b,19b是例如藉由所被定的運算式來進行PID控制( 比例積分微分控制)。例如使用次式作爲此運算式。 [數學式2] ^ = Kp{i;~ id)+ f {i; - id)dt^ Kd±{i;- id) K = ^Pii: - f (/; - Kd - iq) 另外,Kp是比例控制的增益,Ki是積分控制的增益, Kd是微分控制的增益。 上述座標變換部20是以αβ變換部20a及abc變換部20b 所構成。αβ變換部20a是根據可動子相位來將q軸電壓指令 値Vq& d軸電壓指令値Vd變換成上述固定2層座標成分的實 電壓的指令値Va,νβ的手段。可動子相位是從上述感測 器15的位置檢測値經由上述磁極表24及sin/cos變換部25來 取得。abc變換部20b是將αβ變換部20a的輸出之實電壓的 指令値V<x,νβ變換成控制個別馬達3的U相,V相,W相的 電壓指令値Va,Vb,Vc之手段。 電力變換部21是將座標變換部20的輸出變換成個別馬 達3的驅動電流之手段,以反相器(Inverter ) 2 1 a及控制 -17- 201230660 此反相器2 1 a的輸出控制部2 1 b所構成。輸出控制部2 1 b是 只要可控制根據反相器2 1 a所被輸出的電力者即可,控制 形式並無特別加以限定,例如可爲進行脈衝寬調變(p W Μ )的手段。 圖4所示的實施形態的電流控制手段1 3是與圖5 —同以 前述的向量控制爲基本,設置誘發電壓補償手段31、位置 變化電感補償手段3 2、及頓轉補償手段3 3者。 誘發電壓補償手段3 1是對於在推力電流控制部1 8所被 輸出而輸入至座標變換部20的q軸電壓指令値Vq'加算能以 在速度檢測手段1 6所被檢測出的可動子4的速度檢測値X . 及所被定的誘發電壓定數Φ來取得的電壓補償値之手段。 此誘發電壓補償値是設爲可動子的速度檢測値x ·與誘發電 壓定數Φ的乘積,Φχ·。誘發電壓補償手段31是以運算電 壓補償値Φχ ·的運算部3 1 a及加算此運算後的電壓補償値φχ •的加算部3 lb所構成。 位置變化電感補償手段32是以運算部32a及2個加算部 32b ’ 32c所構成。運算部32a是根據在位置檢測手段的感 測器1 5所被檢測出的可動子4的位置檢測値X、及在上述速 度檢測手段1 6所被檢測出的可動子的速度檢測値X .及將在 電流檢測手段1 4所檢測出的電流値予以座標變換成q軸及d 軸的電流値而取得的q軸電流檢測値、及d軸電流檢測値id ’按照所被定的運算式來運算q軸電壓補償値及d軸電壓補 償値。 加算部32b是對於在上述推力電流控制部18所被輸出 -18- 201230660 而輸入至上述座標變換部20的q軸電壓指令値vq'加算在運 算部32a所被運算的q軸電壓補償値。加算部32c是對於在 上述磁通電流控制部19所被輸出而輸入至上述座標變換部 20的d軸電壓指令値V〆加算在運算部32a所被運算的d軸電 壓補償値》 位置變化電感補償手段32的運算部32a是例如進行次 式(5q ) ,( 5d )的運算。 [數學式3] ^ τ . -L ι2τ, qq (5 q)Ρ Ρ : the distance L1 of the 1 pole pair of the mover: LM Lq : LM L: own inductance of each phase Μ : mutual inductance between the phases, even with a processing device with relatively low computational processing capability, simple control A smooth movement control corresponding to a change in inductance caused by the position of the movable member (4) is achieved. Combinations of at least two configurations disclosed in the scope of the claims and/or the description and/or drawings are included in the present invention. In particular, two or more combinations of the claims of the patent application are included in the present invention. [Embodiment] Figs. 1 to 13 collectively explain an embodiment of the present invention. Fig. i is a linear motor system formed by the linear motor 1 and the linear motor control device 2 to be controlled. The linear motor 1 is a linear synchronous motor (LSM), and is formed by an armature in which the movement direction of the movable member 4 is spaced apart by an armature functioning as a primary side of a separate independent line -12-201230660 motor. The individual motors 3 of the plurality of ground sides. The individual motors 3 are all arranged in the range of movement of the movable member 4. Each of the individual motors 3 is a frame 5 that is provided in common with a track (not shown) having a movable member 4. On the frame 5, there is provided a sensor 15 as a position detector which detects the position of the movable member 4 by the respective motors 3. In addition, the sensor 15 is displayed between the individual motors 3 in FIG. 1 based on the convenience of the illustration, but is actually used in the movable direction of movement (X direction) in the same position as the individual motor 3, The position of the line sensor 15 can be detected in a range longer than the individual motor 3. The movable member 4 is a magnetic pole of N, S which is formed by arranging a plurality of permanent magnets in the moving direction of the movable base unit 4a, and is guided by the rail (not shown) provided in the frame 5. The movable member 4 is a length that is formed between the plurality of individual motors 3. The respective motors 3 are arranged as shown in Figs. 2(A) and (B), for example, in a plurality of coils 3a and 3b which are magnetic poles of the respective layers. In the above moving direction X. Each of the cores 3b is formed by a portion that protrudes from the common body portion into a comb shape. In this example, the three-phase alternating current is driven, and the armature of the primary side of the three poles of one magnetic pole is provided for each phase (U, V, W phase). Further, the individual motors 3 may be provided with a plurality of magnetic poles as the armatures of the magnetic poles having an integral multiple of the number of phases in each phase (U, V, W phase). The control system is illustrated in FIG. The control device 2 is provided with: a plurality of individual motor control means 6' which respectively control each of the other horses - 13 - 201230660 up to 3; and an integrated control means 7 for giving the plurality of individual motor control means 6 positions instruction. The overall control means 7 is constituted by a weak electrical circuit component, a computer, and a part of the program. The overall control means 7 stores the range of the movement range in which the entire motor is divided by the respective motors 3, and converts the command position of the position command input from the upper control means (not shown) to the respective motors 3. The location command is given. The position command corresponding to each of the motors 3 is an instruction to convert the coordinates into the coordinates of their individual motors 3. Each of the individual motor control means 6 is formed by a motor drive circuit that causes a motor current to flow to a strong electric system of the individual motor, and a control unit (not shown) that controls the weak electric system of the motor drive circuit, and the control unit of the weak electric system is borrowed. The feedback control shown in FIG. 3 is performed by a microcomputer, a program thereof, and a circuit component. In FIG. 3, the individual motor control means 6 is a position control means 1 1 having a position, speed, and current feedback control, a speed control means 12, and a current control means 13 for performing a position loop and a speed loop. And feedback control of the series control of the current loop. The position control means 1 1 performs feedback control of the position loop gain determined in accordance with the deviation of the detection 上述 of the sensor 15 and the command command of the position command with respect to the current position of the movable member 4 with respect to the current position of the individual motor 3. . The position control means 1 1 is an output speed command 値 as its output. The speed control means 1 2 performs feedback control of the determined speed loop gain in accordance with the deviation between the speed detection 値 and the speed command 2012 of the 201230660 movable member 4 obtained by the speed detecting means 16. The speed control means 12 is an output current command 値 as its output. In this example, the speed detecting means 16 is constituted by a differential means for determining the speed from the position detecting of the sensor 15, but it may be different from the sensor 15 to directly set the speed. Further, the means for combining the position control means 1 1 and the speed control means 1 2 is referred to as a position/speed control means 17. In the present embodiment, the position control and the speed control are performed, but the position/speed control means 17 may not perform the speed control' only for the position control. The current control unit 13 detects a drive current applied to the individual motor 3 by a current detecting means 14 such as a current detector, and generates a deviation between the current detection 値 and the current command 利用 by using the predetermined current loop gain. The current command 値 controls the motor drive current. The current detecting means 14 is a component which detects the components of the respective phases of the drive current, and has phase current detecting sections 14a, 14b (Fig. 4) for detecting two phases among the three phases. When the detection of the two-phase is performed, the current component of the remaining one phase is obtained by calculation. Fig. 4 is a view showing details of the current control means 13 of Fig. 3. The current control means 13 is a control means for performing vector control, and has various compensation means which are characteristic of the embodiment of the present invention. For the sake of simplification of the description, first, each compensation means 31 is omitted from FIG. 4 by using FIG. The basic structure of vector control of 33. The basic configuration of the current control means 13 includes a thrust current control unit 18, a magnetic flux current control unit 19, a coordinate conversion unit 20, and a power conversion unit 21. The thrust current control unit 18 is a q-axis current command 値iq* for the thrust current command 给予 given by the speed control means 1 2 of the position/speed control means -15-201230660 17 , and is controlled to be converted via the detection coordinate αβ. The q-axis current detection 値iq of the individual motor 3 obtained by the unit 22 and the detection coordinate dq conversion unit 23 can output the q-axis voltage command 値V from the means 値 following the detection of the current detecting means 14 as an output. The thrust current control unit 18 is composed of a calculation unit 18b that reduces the q-axis current detection 的 and the reduction unit 18a and the output of the control subtraction unit 18a. The magnetic flux current control unit 19 is a d-axis current 値 id* of the magnetic flux current command 値 set by the magnetic flux current command 値 setting means 29, and is controlled to pass the detection coordinate αβ conversion unit 22 and the detection coordinate dq conversion unit 23 . The obtained d-axis current detection 値id of the individual motor 3 can be outputted from the means of the detection of the current detecting means 14 and the d-axis voltage command 値Vd' is output. The magnetic flux current command setting means 29 is appropriately set in accordance with the motor characteristics of the individual motor 3, etc., but usually the d-axis electric current 値 id* is set to "0". The magnetic flux current control unit 19 is composed of a subtraction unit 19a that reduces the d-axis current detection 値id and a calculation unit 19b that controls the output of the subtraction unit 19a. The detection coordinate αβ conversion unit 22 converts the detection 値 of the U-phase, V-phase, and W-phase currents ia, ib, ic flowing in the individual motor 3 into a real current of the stationary orthogonal two-phase coordinate component (on the α-axis). The means of detecting 値ia, i β for real current and real current on the β axis. The detection coordinate d q conversion unit 23 converts the detection of the real current of the stationary orthogonal two-phase coordinate component 値 ia ίβ into the detection 値iq, id on the q' d-axis based on the phase of the movable member 4. The q-axis is the axis of the direction in which the linear motor travels, and the d-axis is the axis in the direction orthogonal to the q-axis. The movable sub-phase input to the detection coordinate dq conversion unit 23 is a detection 値 of the phase obtained by the magnetic field table 24 and the sin/cos conversion unit 25 to convert the output of the sensor 15 of the position detector 201230660. The magnetic pole table 24 is a table that converts the detected 値 of the linear position obtained by the sensor 15 into an electrical angle Θ. The sin/cos conversion unit 25 is a means for converting the electrical angle 输出 outputted from the magnetic pole table 24 between cos and sin. The calculation units 18b and 19b of the thrust current control unit 18 and the magnetic flux current control unit 19 perform PID control (proportional integral derivative control) by, for example, a predetermined arithmetic expression. For example, the subtype is used as the expression. [Math 2] ^ = Kp{i;~ id)+ f {i; - id)dt^ Kd±{i;- id) K = ^Pii: - f (/; - Kd - iq) In addition, Kp It is the gain of the proportional control, Ki is the gain of the integral control, and Kd is the gain of the differential control. The coordinate conversion unit 20 is composed of an αβ conversion unit 20a and an abc conversion unit 20b. The αβ conversion unit 20a is a means for converting the q-axis voltage command 値Vq& d-axis voltage command 値Vd into the command 値Va, νβ of the real voltage of the fixed two-layer coordinate component based on the movable sub-phase. The movable sub-phase is obtained from the position detection of the sensor 15 via the magnetic pole table 24 and the sin/cos conversion unit 25. The abc conversion unit 20b converts the command 値V<x, νβ of the real voltage of the output of the αβ conversion unit 20a into a U-phase, V-phase, and W-phase voltage command 値Va, Vb, Vc of the individual motor 3. The power conversion unit 21 is a means for converting the output of the coordinate conversion unit 20 into a drive current of the individual motor 3, and is an inverter (Inverter) 2 1 a and a control -17-201230660. The output control unit of the inverter 2 1 a 2 1 b constitutes. The output control unit 2 1 b is only required to control the electric power output according to the inverter 21a, and the control form is not particularly limited, and may be, for example, a means for performing pulse width modulation (p W Μ ). The current control means 13 of the embodiment shown in FIG. 4 is the same as the vector control described above with reference to FIG. 5, and is provided with an induced voltage compensation means 31, a position change inductance compensation means 32, and a turn compensation means 3 . The induced voltage compensation means 31 is a movable element 4 that is detected by the speed detecting means 16 by adding the energy to the q-axis voltage command 値Vq' input to the coordinate conversion unit 20 by the thrust current control unit 18. The speed is detected by 値X. and the determined induced voltage constant Φ is used to obtain the voltage compensation 値. This induced voltage compensation 値 is set as the product of the velocity detection 可x of the movable member and the induced voltage constant Φ, Φχ·. The induced voltage compensating means 31 is composed of a calculating unit 3 1 a for calculating the voltage compensation 及 Φ χ and an adding unit 3 lb for adding the calculated voltage compensation 値 φ χ . The position change inductance compensation means 32 is composed of a calculation unit 32a and two addition units 32b' 32c. The calculation unit 32a detects the position detection 値X of the movable member 4 detected by the sensor 15 of the position detecting means and the speed detection 値X of the movable member detected by the speed detecting means 16. And the q-axis current detection 値 and the d-axis current detection 値 id obtained by converting the current 値 detected by the current detecting means 14 into a q-axis and a d-axis current 値, according to the predetermined expression To calculate q-axis voltage compensation 値 and d-axis voltage compensation 値. The addition unit 32b adds the q-axis voltage compensation 被 calculated by the arithmetic unit 32a to the q-axis voltage command 値vq' input to the coordinate conversion unit 20 by the thrust current control unit 18, which is output -18-201230660. The addition unit 32c adds the d-axis voltage command 値V〆 input to the coordinate conversion unit 20 to the coordinate conversion unit 20, and the d-axis voltage compensation calculated by the calculation unit 32a. The calculation unit 32a of the compensation means 32 performs calculations of the following equations (5q) and (5d), for example. [Math 3] ^ τ . -L ι2τ, qq (5 q)

PP

X 2tpX 2tp

Ljcl (5 d) τΡ是可動子的1磁極對的間距,LC^L-M,Lq是L-M,L 是各相的自己電感,Μ是各相間的相互電感。 頓轉補償手段33是對於由位置•速度控制手段17所給 予的推力電流指令値減算所被定的頓轉補償電流値iugging ,作爲輸入至上述推力電流控制部1 8的q軸電流指令値i q * 之手段。亦即,僅考慮個別馬達3的端部的干擾來任意設 定的電流補償値iec)gging,從q軸電流指令値進行減算。藉 此,可動子4突入或突出於個別馬達3時的頓轉會被緩和。 頓轉補償手段33是以設定上述電流補償値“^以^的電流補 償値設定部33 a及進行上述減算的減算部33b所構成。 其次,說明上述各補償手段31〜33成爲必要的理由、 201230660 及該等補償手段3 1〜3 3的作用。首先,整理離散配置線性 馬達的問題點。 (問題點1 ) 如圖6所示,由永久磁石所構成的可動子4對個別馬達 3的突入•突出時,線圈電感或交鏈磁通會在位置變化。 (問題點2 ) 例如,此變化是在圖6中,可動子4對個別馬達3突入 時或突出時,以U相—V相—W相的順序變化。並且,在逆 行是以W相—V相—U相的順序變化。另外,Lu,Lv,1^是 各相的線圈電感。4 ,Φ fw是可動子4及個別馬達3的 各相所對向的範圍的交鏈磁通。在圖6是使梯形變化爲例 。並且,同圖是顯示各相不同考慮後的變化。 雖設想用以解決上述問題點1,2的補償器,但該等的 補償器的導入,依構成個別馬達控制手段6的伺服放大器 的性能(CPU的處理速度或記憶體容量)會有導入困難的 情況。於是,在其次的表1中分成顯示各情況的4種情況’ 在本實施形態是以情況(1 )、( 2 )來進行補償器(補償 手段31〜33)的導入。表中的4種情況(1)〜(4)是理 論上精度會提升的補償器。其中,情況(1 ) 、( 2 )是即 使伺服放大器性能低也可導入的補償器。 -20- 201230660 [表i] 有關電感補償⑴ 有關誘發電壓補償⑵ ⑴ •不考慮各相的不同 •不考慮在馬達的獅參辦變化的情形 ⑵ •不考慮各相的不同 .考慮額達的獅參辦變化的娜 ⑶ •考慮各相的不同 •不考慮在馬達的端部參數會變化的情形 ⑷ _考慮各相的不同 •考慮在馬達的端部參數會變化的情形 所謂馬達端部是指在定子(個別馬達)領域中,磁石 (可動子)與定子的情況不是完全對向的狀態。 有關不考慮各相的不同者,是如圖8(A)般視爲參數 變化來進行補償器的導入。不考慮各相的不同時,如同圖 般,在個別馬達3的端部參數會變化。圖8 ( B )是考慮各 相的不同後的變化,爲了比較而顯示者。若考慮各相的不 同,則如同圖般在個別馬達3的中間參數也會變化。另外 ,<Df是可動子4與個別馬達3對向時的個別馬達3側的交鏈 磁通。 圖7是表示上述4個情況(1 )〜(4 )對記憶體或CPU 的負擔與精度的關係。若爲不考量對伺服放大器的負擔也 可以的狀況,則使用情況(4 )的補償器在計算上爲理想 。但,情況(3 ) 、( 4 )是對記憶體或CPU的負擔高。於 是,在本實施形態是考慮記憶體或CPU等對伺服放大器的 負擔,設爲情況(1 ) 、( 2 )的補償。 與圖9 一同說明誘發電壓補償的參數。在同圖中,τρ 是個別馬達3的磁石的每1極的長度,與1磁極對的間距相 同。另外,磁極是設爲等間距。X·在圖中是記爲台車速度 -21 - 201230660 ,但爲可動子4的速度’可動子4被設置於台車等的行走體 時,爲該行走體的速度。“〜“是每1磁極對的交鏈磁通 。個別馬達3的各相的電極的間距是設爲相等者。若將此 個別馬達3設爲模式化,則交鏈磁通Φί及電壓Vq〃是如圖中 亦有顯示般,形成次式般。另外’ η是個別馬達3與可動子 4對向的部分的交鏈磁通的數量’位於個別馬達3的兩端部 上的磁極的交鏈磁通是以Φίηχ對向面積比來計算。 [數學式4]Ljcl (5 d) τΡ is the spacing of the 1 pole pair of the mover. LC^L-M, Lq is L-M, L is the inductance of each phase, and Μ is the mutual inductance between the phases. The on-off compensation means 33 is the on-off compensation current 値iugging which is determined by the thrust current command 値 reduction given by the position/speed control means 17, as the q-axis current command 値iq input to the above-described thrust current control unit 18. * means. That is, the current compensation 値iec)gging arbitrarily set only in consideration of the interference of the end portions of the individual motors 3 is subtracted from the q-axis current command 。. As a result, the transition of the movable member 4 when it protrudes or protrudes from the individual motor 3 is alleviated. The switching compensation means 33 is constituted by a current compensation amount setting unit 33a that sets the current compensation 値 "^^ and the subtraction unit 33b that performs the above-described subtraction. Next, the reason why each of the compensation means 31 to 33 is necessary is explained. 201230660 and the functions of the compensation means 3 1 to 3 3. First, the problem of discretely arranging the linear motor is solved. (Problem 1) As shown in Fig. 6, the movable body 4 composed of permanent magnets is paired with the individual motor 3. In the case of protrusion or protrusion, the coil inductance or the flux linkage will change in position. (Problem 2) For example, this change is shown in Fig. 6. When the movable member 4 protrudes into the individual motor 3 or protrudes, U-V is used. The order of the phase-W phase changes, and the reverse phase changes in the order of the W phase - the V phase - the U phase. In addition, Lu, Lv, 1^ are the coil inductances of the respective phases. 4 , Φ fw is the movable body 4 and The interlinkage magnetic flux in the range in which the respective phases of the individual motors 3 oppose each other. The trapezoidal change is taken as an example in Fig. 6. The same figure shows the change after the different phases are considered. , 2 compensators, but the introduction of these compensators, according to the composition The performance of the servo amplifier of the individual motor control means 6 (the processing speed of the CPU or the memory capacity) may be difficult to introduce. Therefore, in the next Table 1, the four cases of the respective cases are shown. In the cases (1) and (2), the compensators (compensation means 31 to 33) are introduced. The four cases (1) to (4) in the table are compensators whose theoretical accuracy is improved. ) (2) is a compensator that can be imported even if the performance of the servo amplifier is low. -20- 201230660 [Table i] Inductance compensation (1) About induced voltage compensation (2) (1) • Regardless of the difference of each phase • Do not consider the lion in the motor In the case of change (2) • Do not consider the difference of each phase. Consider the change of the lion's participation in the sacred (3) • Consider the difference of each phase • Do not consider the situation where the parameters of the motor will change (4) _ Consider the phases Different • Consider the case where the parameters of the end of the motor change. The so-called motor end means that in the field of the stator (individual motor), the condition of the magnet (movable) and the stator is not completely opposite. The difference is that the compensator is introduced as a parameter change as shown in Fig. 8(A). When the difference of the phases is not considered, the parameters of the end of the individual motor 3 change as shown in the figure. It is a change considering each phase, and is displayed for comparison. If the difference of each phase is considered, the intermediate parameter of the individual motor 3 also changes as shown in the figure. Further, <Df is the movable member 4 and the individual The interlinkage magnetic flux on the side of the individual motor 3 in the direction in which the motor 3 is facing. Fig. 7 is a diagram showing the relationship between the load and the accuracy of the memory or the CPU in the above four cases (1) to (4). The compensator of case (4) is ideal in calculation. However, cases (3) and (4) are burdensome to the memory or CPU. Therefore, in the present embodiment, the load on the servo amplifier such as the memory or the CPU is considered, and the compensation in the cases (1) and (2) is performed. The parameters of the induced voltage compensation are explained together with FIG. In the same figure, τρ is the length of each pole of the magnet of the individual motor 3, which is the same as the pitch of one magnetic pole pair. In addition, the magnetic poles are set to be equally spaced. In the figure, the speed of the movable body 4 is set to be the speed of the movable body 4, and the speed of the movable body 4 is set to a traveling body such as a trolley. "~" is the interlinkage flux per 1 pole pair. The pitch of the electrodes of the respective phases of the individual motors 3 is set to be equal. When the individual motor 3 is patterned, the flux linkage Φ ί and the voltage Vq 〃 are similar to those shown in the figure, forming a sub-type. Further, η is the number of interlinkage magnetic fluxes of the portion where the individual motor 3 and the movable member 4 oppose each other. The interlinkage magnetic flux of the magnetic poles located at both end portions of the individual motor 3 is calculated as the Φίηχ opposing area ratio. [Math 4]

模式化Patterning

藉由如以上般進行模式,交鏈磁通Φ是以如圖1 0般的 形式變化。又,由於誘發電壓定數Φ是與交鏈磁通^成比例 ,因此同樣以圖10的形式表示。另外,同圖是速度χ·爲一 定,各相的不同未考慮。 針對誘發電壓補償進行說明。因爲直接測定交鏈磁通 困難,所以例如誘發電壓定數Φ是在個別馬達3與可動子4 完全對向時,由以速度x.[m/sec]來使可動子4行走時產生 的誘發電壓所求取。另外,此時,可動子4是無控制’利 用別的驅動源(未圖示)來拉動。如此一來’誘發電壓定 數Φ是設定成次式般。如此一來,將藉由試驗所求取的誘 發電壓定數Φ利用於圖4的誘發電壓補償手段31的計算。另 外,實驗性地求取上述的誘發電壓定數Φ的方法爲一例。 -22- 201230660 [數學式5]By performing the mode as described above, the interlinkage magnetic flux Φ is changed in the form as shown in Fig. 10 . Further, since the induced voltage constant Φ is proportional to the interlinkage magnetic flux, it is also expressed in the form of FIG. In addition, the same figure is the speed 为·, and the difference of each phase is not considered. The induced voltage compensation will be described. Since it is difficult to directly measure the flux linkage, for example, when the individual motor 3 and the movable member 4 are completely opposed, the induced voltage constant Φ is caused by the movement of the movable member 4 at the speed x. [m/sec]. The voltage is taken. Further, at this time, the movable member 4 is pulled uncontrolled by a different driving source (not shown). In this way, the induced voltage constant Φ is set to the second order. In this way, the estimation of the induced voltage compensation means 31 obtained by the experiment is utilized in the calculation of the induced voltage compensation means 31 of Fig. 4. Further, a method of experimentally obtaining the above-described induced voltage constant Φ is taken as an example. -22- 201230660 [Math 5]

3 Φί 2 2τ ρ 誘發電壓定數φ 若誘發電壓定數Φ的Μ ΑΧ値求得,則因爲端部遊按照 對向面積而變化,所以可以前述的圖10的圖的形式來書胃 。在圖4的誘發電壓補償手段31所使用的誘發電壓定數φ亦 可設爲按照如此的位置來成爲可變的値,亦即在個別馬達 3的兩端逐漸變小的値。使用此可變的誘發電壓定數Φ時的 位置的資料是可由位置檢測値X取得。 由性能面來說明有關理想的誘發電壓補償。爲了使用 精度更高的誘發電壓補償器,需要其次的模式,與圖11 一 同顯示。 [數學式6] Φ Φ 誘發電壓定數Φ =3 Φί 2 2τ ρ Induced voltage constant φ If the enthalpy of the induced voltage constant Φ is obtained, the end swims according to the opposing area, so the stomach can be written in the form of the above-described Fig. 10 . The induced voltage constant φ used in the induced voltage compensating means 31 of Fig. 4 can also be set to be variable at such a position, i.e., gradually smaller at both ends of the individual motor 3. The data of the position at which the variable induced voltage constant Φ is used can be obtained from the position detection 値X. The performance side is used to explain the ideal induced voltage compensation. In order to use the more accurate induced voltage compensator, the next mode is required, which is shown together with Figure 11. [Math 6] Φ Φ induced voltage constant Φ =

-23- 'φ: φν Λ_ 201230660 有關Φλ«,Φίν,(Kw是將各相的馬達完全對應時之各 交鏈磁通設爲最大,在馬達端部是進行按照面積比來 値之類的模式化。 根據此情況的圖4的誘發電壓補償手段3 1的計算 於誘發電壓係數Φ,如圖11般在個別馬達3的端部’按 向面積的面積比而變化,且各相的不同也考慮而變化 與圖12 —同說明電感補償的參數。在同圖中,Φ ,是表示在各相電流流動時所發生的磁通。在此中 入相互電感,作爲互相影響的項。4 U,Φ V ’ Φ W是以次 表示。線圈電阻R是例如設爲哪個相也相同 Ru = Rv = Rw = R 作爲 例。 [數學式7] 4 Muv u相的自己電感 v相的自己電感 W相的自己電感 UV間的相互電感 I: VW間的相互電感 WU間的相互電感-23- 'φ: φν Λ_ 201230660 Φλ«, Φίν, (Kw is the maximum of the interlinkage flux when the motors of the respective phases are fully matched, and the end of the motor is 按照 according to the area ratio. According to this case, the induced voltage compensation means 31 of FIG. 4 is calculated by the induced voltage coefficient Φ, as shown in FIG. 11, at the end portion of the individual motor 3, and the area ratio of the area is changed, and the phases are different. It is also considered to change the parameters of the inductance compensation as shown in Fig. 12. In the same figure, Φ is the magnetic flux that occurs when the currents of the respective phases flow. In this case, mutual inductance is entered as an item of mutual influence. U, Φ V ' Φ W is expressed in order. The coil resistance R is, for example, set which phase is the same as Ru = Rv = Rw = R. [Math 7] 4 Muv u phase self-inductance v-phase self-inductance Mutual inductance between W-phase self-inductance UV I: Mutual inductance between mutual inductance WU between VW

A, K : 相的 變化 是關 照對 的値 1,Φ V ,放 式來 。設 -24- 201230660 在本實施形態’根據位置變化電感補償手段32的電感 補償是使用以次式所定的値。 [數學式8]A, K: The change of phase is the 値 1,Φ V of the pair, and the release. In the present embodiment, the inductance compensation by the positional variation inductance compensation means 32 is 値 which is determined by the following equation. [Math 8]

X 2τX 2τ

L (5 q ) x 2τL (5 q ) x 2τ

Ldid (5d) 另外,上式的電感補償是相當於次式的關係式以右邊 的線所包圍的項。此電感補償是視爲不考慮電感的變化的 補償,計算的負荷小,即使構成個別馬達控制手段6的伺 服放大器的記億體或CPU的能力低也可採用。 [數學式9]Ldid (5d) In addition, the inductance compensation of the above equation is an item surrounded by the line on the right side equivalent to the relationship of the subtype. This inductance compensation is considered as compensation without considering the change of the inductance, and the calculated load is small, and the ability of the servo amplifier constituting the servo amplifier of the individual motor control means 6 or the CPU can be used. [Math 9]

說明有關精度上理想的電感變化補償。爲了使用精度 更高的電感變化補償器,需要使用次式的模式。 -25- 201230660 [數學式10]Describe the ideal inductance variation compensation for accuracy. In order to use a more accurate inductance change compensator, a sub-mode is required. -25- 201230660 [Math 10]

R 0 0 R 2 i 3 2r„ la d dt \ _^7 _ 2tp 電感變化 0R 0 0 R 2 i 3 2r„ la d dt \ _^7 _ 2tp Inductance change 0

^ .K)sin2〜(K)c〇s4}+ 卜-去< -去多/J sin$c〇W ~(^/. +\^L +\ΦΗ sin2^"|^/. +^/.)°°820~^(^ -^/Jsin^cos6> 有關電感變化的部分,若進行式展開,則形成次式般 [數學式11] d_ ~dt d 、dt [Ls la _ -j\ h -lq\ Λα]、 丨M _L7 X l5 l6 .-^7 0 Λ: 2r. 0 x 2τ,^ .K)sin2~(K)c〇s4}+ Bu-go<-to-multiple/J sin$c〇W ~(^/. +\^L +\ΦΗ sin2^"|^/. + ^/.)°°820~^(^ -^/Jsin^cos6> For the part of the inductance change, if the expansion is performed, the sub-form is formed [Math 11] d_ ~dt d , dt [Ls la _ - j\ h -lq\ Λα], 丨M _L7 X l5 l6 .-^7 0 Λ: 2r. 0 x 2τ,

Ls ls Lt L% id 2r,Ls ls Lt L% id 2r,

Lsid + L6iq Lnid + L%iq d ~dt 2t,Lsid + L6iq Lnid + L%iq d ~dt 2t,

-26- 201230660 在同圖的式中,以實線所包圍的部分是涉及逆軸電流 補償的部分’以點線所包圍的部分是涉及L的位置•時間 變化補償的部分。將該等的部分利用於圖4的位置變化電 感補償手段3 2。另外,以1點鎖線所包圍的部分是有關控 制的時定數的項。 針對頓轉補償進行說明。如圖13所示,當可動子4突 入或突出於個別馬達3時,在可動子4與個別馬達3之間產 生拉入力,作爲干擾影響控制。可事先預測此干擾而模式 化,考慮該部分的干擾來送出電流指令,藉此抑制拉入力 所造成的干擾。圖4的頓轉補償手段33是僅考慮此干擾而 任意設定的電流補償値ie()ggingS q軸電流指令値進行減算 。藉此’可動子4突入或突出於個別馬達3時的頓轉會被緩 和。 爲了上述馬達的模式或補償等的明確化,對於馬達電 路方程式、誘發電壓、電感等,重新彙整說明。若將本實 施形態的3相同步線性馬達的電壓與電流的關係式寫出來 ,則成爲其次的式子。 -27- 201230660 [數學式12] X 0 0 " V d —Φ: Vv — 0 Κ 0 κ + — dt Φν Λ_ 0 0 Κ_ L_ Λ_ ^sinW-—7i:i 電阻π是各線圏的電阻 'Φ: Φν Λ_ κν Μ..... 2τ i 2τ. X 2r„ sin^ 2 'Φf sin Ιθ ~ι—τι-26- 201230660 In the equation of the same figure, the portion surrounded by the solid line is the portion involving the reverse-axis current compensation. The portion surrounded by the dotted line is the portion involving the position/time variation compensation of L. These portions are used in the position change inductance compensation means 32 of Fig. 4 . In addition, the portion enclosed by the 1-point lock line is an item relating to the time constant of the control. Explain the compensation for the turnaround. As shown in Fig. 13, when the movable member 4 protrudes or protrudes from the individual motor 3, a pulling force is generated between the movable member 4 and the individual motor 3 as interference influence control. This interference can be predicted in advance to be modeled, and the current command is sent in consideration of the interference of this portion, thereby suppressing the interference caused by the pull-in force. The tumbling compensation means 33 of Fig. 4 is a current compensation 値ie() ggingS q-axis current command 任意 which is arbitrarily set only in consideration of the disturbance. Thereby, the rotation of the movable member 4 when it protrudes or protrudes from the individual motor 3 is alleviated. In order to clarify the mode, compensation, and the like of the above-described motor, the motor circuit equation, the induced voltage, the inductance, and the like are re-arranged. When the relationship between the voltage and the current of the three-phase synchronous linear motor of the present embodiment is written, the second expression is obtained. -27- 201230660 [Math 12] X 0 0 " V d —Φ: Vv — 0 Κ 0 κ + — dt Φν Λ_ 0 0 Κ_ L_ Λ_ ^sinW-—7i: i Resistance π is the resistance of each line ' Φ: Φν Λ_ κν Μ..... 2τ i 2τ. X 2r„ sin^ 2 'Φf sin Ιθ ~ι—τι

A ••(A)A ••(A)

LwLw

爲了可將交流的控制視爲直流簡單地進行,若將3相 的旋轉方程式予以座標變換成2相,則成爲次式。 [數學式13] 座標變換行列In order to simply perform the control of the alternating current as a direct current, if the three-phase rotational equation is coordinate-converted into two phases, the secondary equation is obtained. [Math. 13] Coordinate transformation ranks

dqcaP = COS0 sin^ -sin^ COS0 cos^ cosW-2;rl cos 2 Θ ^--711 αβ r ^uvw_ ^αβ sin(9 sin {θ-—π\ sm\6 +—π\ ⑻ 若進行座標變換,以qd座標系彙整,則形成其次的式 子。 -28- 201230660 [數學式14]dqcaP = COS0 sin^ -sin^ COS0 cos^ cosW-2;rl cos 2 Θ ^--711 αβ r ^uvw_ ^αβ sin(9 sin {θ-—π\ sm\6 +—π\ (8) If coordinates are performed The transformation is performed by the qd coordinate system, and the second formula is formed. -28- 201230660 [Math 14]

Γ i: Ί d 、A] *· 一 〇、 卜4] 乂 1 it L 1 ^ 0 2tp J-Ί _Γ i: Ί d , A] *· one 〇, 卜 4] 乂 1 it L 1 ^ 0 2tp J-Ί _

| sin0cos0 ~{~Φ/. +Φ/.)ύηΙΘ+(φ/. -^/.)005^1+^ Λφ; +^Λ +^/-jsin20~^/. +(i/.)cos^-J|(^. -(iA)sin^cos0 -*關織電壓的項一- 爲了使上述式子的一部分明確化,而擴大如其次所示 [數學式15] 4 原來’在離散線性馬達的端部,與個別馬達3的各相 對向的可動子4的交鏈磁通是與其對向面積成比例。若考 慮此情形,則可作成精度更高的誘發電壓補償器。但,依 放大器性能,需要使數學式簡略化。在此,當個別馬達3 與可動子4完全對向時,各相的交鏈磁通成爲φγ φπ Φγ Φί ,有關誘發電壓的項是以其次的式子彙整。 -29 - 201230660 [數學式16] (-Φ,, + )sin^ + )cos2 θ}+ sinθcosθ +^ι: 5'η2^_4^Λ -^r,)sin^cos6> £1 (D)| sin0cos0 ~{~Φ/. +Φ/.)ύηΙΘ+(φ/. -^/.)005^1+^ Λφ; +^Λ +^/-jsin20~^/. +(i/.)cos ^-J|(^. -(iA)sin^cos0 -* Item 1 of the weaving voltage - In order to clarify a part of the above formula, the expansion is as shown next [Math 15] 4 Original 'in discrete linear The end portion of the motor and the interlinking magnetic flux of each of the opposed movable members 4 of the individual motor 3 are proportional to the opposing area. If this is considered, an induced voltage compensator having higher accuracy can be formed. For the performance of the amplifier, it is necessary to simplify the mathematical formula. Here, when the individual motor 3 and the movable member 4 are completely opposed, the interlinkage magnetic flux of each phase becomes φγ φπ Φγ Φί , and the term relating to the induced voltage is the second formula. Consolidation -29 - 201230660 [Math 16] (-Φ,, + )sin^ + )cos2 θ}+ sinθcosθ +^ι: 5'η2^_4^Λ -^r,)sin^cos6> £1 ( D)

JC φ] 2 2ΪΤ 一般,在一次側電樞與永久磁石完全對向的線性馬達 或旋轉馬達等中,即使置於φρ Φίν= 0fw= <i»f,其誤差也非常 小。 爲了使上述式子的一部分明確化,而擴大如其次所示 〇 [數學式17]JC φ] 2 2ΪΤ Generally, in a linear motor or a rotary motor in which the primary side armature and the permanent magnet are completely opposed, even if φρ Φίν = 0fw = <i»f, the error is extremely small. In order to clarify a part of the above formula, the expansion is as shown next 〇 [Math 17]

VJ 4 (Ά + 畋)sin 2 θ+(K )cos 2 Θ } Φ^~2Φ^~2Φ/^5Ϊηθ〇〇8θ /cos θ ^ί^/„ ~Φίν )sin Θ cos Θ 若針對電感行列(L5〜L8)寫出來’則可彙整爲其次 的前半的式子。而且,若針對(L5〜L8)中所含的電感( -30- 201230660 L!〜L4 )寫出來,則成爲其次的後半的式子。 [數學式18]VJ 4 (Ά + 畋) sin 2 θ+(K )cos 2 Θ } Φ^~2Φ^~2Φ/^5Ϊηθ〇〇8θ /cos θ ^ί^/„ ~Φίν )sin Θ cos Θ For the inductance row (L5~L8) Write it out, then it can be merged into the first half of the equation. Also, if the inductance (-30-201230660 L!~L4) contained in (L5~L8) is written, it will be the second. The latter half of the formula. [Math 18]

Ls = Lx cos2 Θ + L4 sin +j(l2 + L3)sin 2Θ Z/6 = ·Ζ/2 cos 2 Θ + 乙3 sin 2 Θ + — (L4 — Lj )sin 2Θ 厶7 = - L2 sin 2 Θ + cos 2 Θ + 7(14 -厶丨)sin 2Θ = -L, sin 2 0 + L4 cos 20 -去(L2 + 乙3)sin 2(9Ls = Lx cos2 Θ + L4 sin +j(l2 + L3)sin 2Θ Z/6 = ·Ζ/2 cos 2 Θ + B 3 sin 2 Θ + — (L4 — Lj )sin 2Θ 厶7 = - L2 sin 2 Θ + cos 2 Θ + 7(14 -厶丨)sin 2Θ = -L, sin 2 0 + L4 cos 20 - go (L2 + B 3) sin 2 (9

Ll=J \u +\Lv + \Lw ~ M M 2 I V3 . V3 r V3 [j = — I — L· + ~ * · L --ΛίΓ 2 3 I 4 v 4 w 2 uv 21 s r vj r vj T, — —--L +·-L h-- 3 3 4 ^4^2 2(3. 3 . 3" f =: — I — L· + — L· _ —Ll=J \u +\Lv + \Lw ~ MM 2 I V3 . V3 r V3 [j = — I — L· + ~ * · L --ΛίΓ 2 3 I 4 v 4 w 2 uv 21 sr vj r vj T, — — — L +·-L h-- 3 3 4 ^4^2 2(3. 3 . 3" f =: — I — L· + — L· _ —

La 3\4v 4 w 2 ' 以上,L5〜L8是由各線圈的自己電感(Lu,Lv,Lw ) 及相互電感(Muv,Mvw’ Mwu)所求取。亦即,有關此石 ,藉由·進行適當的模式化,可形成精度更高的補 償器。 將各相的自己電感設爲(LU = LV = LW),且將相互電感 =Λ ^ , Λ/ί 時’亦即設爲(L = LU = LV = LW) ’ ( 設爲(Muv Λ, Λ, =Nlwu)時’成爲· M = MU v = MvwLa 3\4v 4 w 2 ' Above, L5 to L8 are obtained from the respective inductances (Lu, Lv, Lw) and mutual inductances (Muv, Mvw' Mwu) of the respective coils. That is to say, with respect to this stone, it is possible to form a compensator with higher precision by appropriately patterning. Set the self inductance of each phase to (LU = LV = LW), and the mutual inductance = Λ ^ , Λ / ί 'is set to (L = LU = LV = LW) ' (set to (Muv Λ, Λ, =Nlwu) When 'M·· M = MU v = Mvw

Ls = L-M^Ld ' L6 = 〇 ' L7 = 〇 ' -31 - 201230660 L g= L - M = L q 可用次式寫出來。 [數學式19] ~Rid~ d ~Ldid~ _v Riq Η-- dt _v,_Ls = L-M^Ld ' L6 = 〇 ' L7 = 〇 ' -31 - 201230660 L g= L - M = L q Can be written in the following formula. [Math 19] ~Rid~ d ~Ldid~ _v Riq Η-- dt _v,_

LJdLJd

••(E) 2r, 在將此式中如其次般以線所包圍的部分予以電壓補償 下,成爲單純的一次延遲系的形式,控制變得容易進行。 [數學式20] v/ 'Rid~ d + 一 dt ~Ldi; 4. Λ. 1••(E) 2r, in the case where the part surrounded by the line is voltage-compensated in this equation, it becomes a simple one-time delay system, and control becomes easy. [Math 20] v/ 'Rid~ d + one dt ~Ldi; 4. Λ. 1

••(E) 其次,與圖1 4 ’圖1 5 —同說明有關由適用上述線性馬 達1及線性馬達控制裝置的搬運裝置4 1及工作機械42所構 成的加工系統。如圖1 4所示’工作機械42在圖示的例子是 由車床所構成,在床51上設置有:由主軸所構成之用以支 撐工件支撐手段52的主軸台53、及加工手段之角塔型( Turret )的刀具台 搬運裝置41是將搬運成爲加工的素材的被搬運物W的 行走體4 3予以行走自如地設置於軌道44 ’且設置上述線性 -32- 201230660 馬達1,作爲使行走體43行走驅動的馬達’對於工作機械 42的工件支撐手段52進行被搬運物W的交接。軌道44是在 藉由支柱45a所架設的水平框架45上沿著長度方向而設。 如圖1 5所示,行走體43是具有:被軌道44引導之行走 用的車輪6 1、及轉接於軌道44的側面來規制行走體43的寬 度方向的位置之引導滾子62。線性馬達1是以設置於框架 46的複數的個別馬達3及設置於行走體43的可動子4所構成 〇 在行走體43是搭載有進退於與行走方向(X方向)正 交的前後方向(Z方向)的前後移動台46,且在昇降自如 地設置於前後移動台46之棒狀的昇降體47的下端設有工件 保持頭48。在工件保持頭48設有被搬運物保持手段之複數 的夾頭49。前後移動台46是藉由設置於行走體3的馬達等 的驅動源(未圖示)來前後移動,且昇降體47是藉由設置 於前後移動台46的馬達等的驅動源來昇降驅動。夾頭49是 具有以汽缸裝置或螺線管等的驅動源來開閉驅動而保持被 搬運物W的夾頭爪(未圖示)。 藉由在如此的工作機械42用的搬運裝置41中適用上述 離散配置的同步型線性馬達1,可有效地發揮在其線圏使 用量的削減或給電形式上成爲有利的效果。並且,藉由在 該線性馬達1的控制中適用此線性馬達控制裝置,可有效 地發揮對應於誘發電壓的變化或電感的變化之圓滑的移動 控制的效果。 如以上般,一邊參照圖面,一邊說明本發明的較佳實 -33- 201230660 施形態,但可在不脫離本發明的主旨範圍內實施各種的追 加、變更或削除。因此,該等亦含於本發明的範圍內。 【圖式簡單說明】 本發明可由參考附圖之以下的較佳實施形態的說明來 明瞭理解。但,實施形態及圖面只是爲了圖示及說明用者 ,並非是爲了決定本發明的範圍而應被利用者。本發明的 範圍是依據附上的申請專利範圍而定。在附圖中,複數的 圖面之同一零件號碼是顯示同一部分。 圖1是表示本發明之一實施形態的線性馬達控制裝置 的全體構成的方塊圖。 圖2 ( A )是同線性馬達的個別馬達的平面圖,(b ) 是同剖面圖。 圖3是同線性馬達控制裝置的個別馬達控制手段的方 塊圖。 圖4是表示同線性馬達控制裝置的電流控制手段的詳 細方塊圖。 圖5是從同電流控制手段省略補償手段的基本構成的 方塊圖。 圖ό是表示離散配置線性馬達的電感及交鏈磁通的變 化的說明圖。 圖7是表示補償的程度與控制手段的負擔的關係說明 圖。 圖8 ( A )是有關電感及交鏈磁通的變化,不考慮各相• (E) Next, a processing system composed of the conveying device 4 1 and the working machine 42 to which the above-described linear motor 1 and linear motor control device are applied will be described with reference to Figs. As shown in Fig. 14, the working machine 42 is constituted by a lathe, and the bed 51 is provided with a spindle table 53 composed of a main shaft for supporting the workpiece supporting means 52, and a corner of the processing means. The turret transporting device 41 of the tower type (Turret) is provided with the traveling body 4 3 of the object W to be transported as a material to be processed, and is provided on the rail 44' and is provided with the linear-32-201230660 motor 1 as a The motor "driving drive" of the traveling body 43 carries out the conveyance of the workpiece W to the workpiece supporting means 52 of the working machine 42. The rail 44 is provided along the longitudinal direction on the horizontal frame 45 which is erected by the support 45a. As shown in Fig. 15, the traveling body 43 is a guide roller 62 having a traveling wheel 6 1 guided by the rail 44 and a side surface which is transferred to the side surface of the rail 44 to regulate the width direction of the traveling body 43. The linear motor 1 is composed of a plurality of individual motors 3 provided in the frame 46 and a movable member 4 provided on the traveling body 43. The traveling body 43 is mounted with a forward and backward direction orthogonal to the traveling direction (X direction) ( The front and rear moving table 46 in the Z direction) is provided with a workpiece holding head 48 at the lower end of the rod-shaped lifting body 47 which is provided in the front and rear moving table 46. The workpiece holding head 48 is provided with a plurality of chucks 49 to be carried by the object holding means. The front and rear moving table 46 is moved forward and backward by a driving source (not shown) provided in a motor or the like of the traveling body 3, and the elevating body 47 is driven up and down by a driving source of a motor or the like provided on the front and rear moving table 46. The chuck 49 is a chuck claw (not shown) that is driven to open and close by a drive source such as a cylinder device or a solenoid to hold the object W to be transported. By applying the above-described discretely arranged synchronous linear motor 1 to the transporting device 41 for the working machine 42 as described above, it is possible to effectively exhibit the effect of reducing the amount of the turns and the power supply form. Further, by applying the linear motor control device to the control of the linear motor 1, it is possible to effectively exert the effect of the smooth movement control corresponding to the change in the induced voltage or the change in the inductance. As described above, the preferred embodiment of the present invention is described with reference to the drawings, but various modifications, alterations, and deletions are possible without departing from the spirit and scope of the invention. Accordingly, these are also intended to be within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The invention can be understood by the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are intended to be illustrative and illustrative, and are not intended to limit the scope of the invention. The scope of the invention is determined by the scope of the appended claims. In the drawings, the same part number of the plural drawing is the same part. Fig. 1 is a block diagram showing the overall configuration of a linear motor control device according to an embodiment of the present invention. Figure 2 (A) is a plan view of an individual motor of the same linear motor, and (b) is a cross-sectional view. Fig. 3 is a block diagram of an individual motor control means of the same linear motor control device. Fig. 4 is a detailed block diagram showing a current control means of the same linear motor control device. Fig. 5 is a block diagram showing the basic configuration of the compensation means omitted from the same current control means. Figure ό is an explanatory diagram showing changes in inductance and interlinkage flux of a discretely arranged linear motor. Fig. 7 is a view showing the relationship between the degree of compensation and the burden of the control means. Figure 8 (A) shows changes in inductance and flux linkage, regardless of phase

S -34- 201230660 %不同時的說明圖,(B)是考慮各相的不同時的說明圖 〇 圖9是誘發電壓補償參數的說明圖。 圖10是誘發電壓定數的說明圖。 圖11是在精度上理想的誘發電壓補償的說明圖。 圖12是電感補償參數的說明圖。 圖13是頓轉補償的說明圖。 圖1 4是包含同實施形態的線性馬達控制裝置及使用該 線性馬達的搬運裝置的加工系統的正面圖。 圖15是同搬運裝置的剖斷平面圖。 f主要元件符號說明】 1 :線性馬達 2 :線性馬達控制裝置 3 :個別馬達 4 :可動子 5 :框架 6 :個別馬達控制手段 7 :統括控制手段 1 1 :位置控制手段 1 2 :速度控制手段 1 3 :電流控制手段 1 4 :電流檢測手段 1 5 :感測器(位置檢測手段) -35- 201230660 1 6 :速度檢測手段 1 7 :位置·速度控制手段 1 8 :推力電流控制部 1 9 :磁通電流控制部 20 :座標變換部 21 :電力變換部 3 1 :誘發電壓補償手段 3 2 :位置變化電感補償手段 3 3 :頓轉補償手段 -36-(S) is an explanatory diagram in which the different phases are different. FIG. 9 is an explanatory diagram of the induced voltage compensation parameters. Fig. 10 is an explanatory diagram of the induced voltage constant. Fig. 11 is an explanatory diagram of the induced voltage compensation which is ideal in accuracy. Fig. 12 is an explanatory diagram of an inductance compensation parameter. Fig. 13 is an explanatory diagram of the tumbling compensation. Fig. 14 is a front elevational view showing a processing system including a linear motor control device of the same embodiment and a conveying device using the linear motor. Figure 15 is a cutaway plan view of the same conveying device. f Main component symbol description] 1 : Linear motor 2 : Linear motor control device 3 : Individual motor 4 : Movable 5 : Frame 6 : Individual motor control means 7 : Integrated control means 1 1 : Position control means 1 2 : Speed control means 1 3 : Current control means 1 4 : Current detecting means 1 5 : Sensor (position detecting means) -35 - 201230660 1 6 : Speed detecting means 1 7 : Position and speed control means 1 8 : Thrust current control part 1 9 : magnetic flux current control unit 20 : coordinate conversion unit 21 : power conversion unit 3 1 : induced voltage compensation means 3 2 : position change inductance compensation means 3 3 : tumbling compensation means - 36-

Claims (1)

201230660 七、申請專利範圍: 1. 一種線性馬達控制裝置,係控制同步型的線性馬 達的裝置,該同步型的線性馬達係沿著可動子的移動路徑 來取間隔配置可作爲3相的各相的線圈排列於直線方向的1 台線性馬達的一次側的電樞之機能的複數的個別馬達,且 以永久磁石來構成上述可動子, 具備:分別控制上述各個別馬達的複數的個別馬達控 制手段、及按照所被輸入的位置指令來對上述各個別馬達 分配位置指令的統括控制手段, 上述各個別馬達控制手段係具有:進行位置控制及速 度控制的雙方或只進行位置控制的位置•速度控制手段、 及進行電流控制的電流控制手段,且設置:檢測出上述個 別馬達的各相的電流成分的電流檢測手段、及分別檢測出 上述可動子的位置及速度的位置檢測手段及速度檢測手段 , 上述電流控制手段爲向量控制形式,具有: 推力電流控制部,其係對於自上述位置•速度控制手 段所給予的推力電流指令値之q軸電流指令値iq *,輸出以 可自上述電流檢測手段的檢測値取得的個別馬達的q軸電 流檢測値“能夠追隨的方式控制的q軸電壓指令値Vq'; 磁通電流控制部,其係對於所被設定的磁通電流指令 値之d軸電電流値i d *,輸出以個別馬達的d軸電流檢測値i d 能夠追随的方式控制的d軸電壓指令値V,; 座標變換部,其係將該等q軸電壓指令値Vq'及d軸電 -37- 201230660 壓指令値vd'變換成個別馬達的各相的座標的指令値;及 電力變換部,其係將此座標變換部的輸出變換成個別 馬達的驅動電流, 又,設置誘發電壓補償手段,其係對於在上述推力電 流控制部所被輸出而輸入至上述座標變換部的q軸電壓指 令値V/加算電壓補償値Φχ ·,該電壓補償値φχ .係以在上 述速度檢測手段所被檢測出的可動子的速度檢測値X .、及 所被定的誘發電壓定數Φ來取得。 2 .如申請專利範圍第1項之線性馬達控制裝置,其中 ’設置·位置Μ化電感補償手段’其係根據在上述位置檢 測手段所被檢測出的可動子的位置檢測値X、及在上述速 度檢測手段所被檢測出的可動子的速度檢測値X .、及將在 上述電流檢測手段所檢測出的電流値予以座標變換成q軸 及d軸的電流値而取得的q軸電流檢測値…及d軸電流檢測値 id,按照所被定的運算式來運算q軸電壓補償値及d軸電壓 補償値,對於在上述推力電流控制部所被輸出而輸入至上 述座標變換部的q軸電壓指令値V,加算上述q軸電壓補償 値’對於在上述磁通電流控制部所被輸出而輸入至上述座 標變換部的d軸電壓指令値V,加算上述d軸電壓補償値。 3-如申請專利範圍第2項之線性馬達控制裝置,其中 ’設置:頓轉補償手段,其係對於由上述位置•速度控制 手段所給予的推力電流指令値減算所被定的頓轉補償電流 値hogging,作爲輸入至上述推力電流控制部的上述q軸電 流指令値i q *。 -38- 201230660 4·如申請專利範圍第1〜3項中的任一項所記載之線 性馬達控制裝置,其中,使在上述誘發電壓補償手段所使 用的上述誘發電壓定數Φ,在個別馬達的可動子移動方向 的中間部係設爲一定値,在兩端部係設爲往端側逐漸變小 的値。 5.如申請專利範圍第1〜3項中的任一項所記載之線 性馬達控制裝置’其中,上述位置變化電感補償手段所加 算的q軸電壓補償値d軸電壓補償値係根據次式(5q),( 5 d )而定的値 [數學式1] (5 q) χ (5 d) 2τ τΡ :可動子的1磁極對的間距 Ld : L-M Lq : L-M L:各相的自己電感 Μ :各相間的相互電感。 -39-201230660 VII. Patent application scope: 1. A linear motor control device is a device for controlling a synchronous linear motor. The synchronous linear motor is arranged along the moving path of the movable member to be a phase of three phases. The coils are arranged in a plurality of individual motors of the primary side armature of one linear motor in the linear direction, and the movable magnets are configured by permanent magnets, and each of the plurality of individual motor control means for controlling the respective motors is provided. And a general control means for allocating position commands to the respective motors in accordance with the input position command, wherein each of the motor control means includes: position control and speed control, or position/speed control only for position control. And a current control means for detecting a current of each of the individual motors, and a position detecting means and a speed detecting means for detecting a position and a speed of the movable member, respectively The above current control means is a vector control form, There is a thrust current control unit that outputs a q-axis current command 値iq* from the thrust current command 给予 given by the position/speed control means, and outputs an individual motor Q that can be obtained from the detection 値 of the current detecting means. Axis current detection 値 "q-axis voltage command 値Vq' that can be controlled in a follow-up manner; flux current control unit for the d-axis electric current 値id * of the set magnetic flux current command ,, output to individual motor The d-axis current detection 値 id can control the d-axis voltage command 値V, and the coordinate transformation unit, which is the q-axis voltage command 値Vq' and the d-axis electric-37-201230660 pressure command 値vd' a command for converting the coordinates of each phase of the individual motor; and a power conversion unit that converts the output of the coordinate conversion unit into a drive current of the individual motor, and an induced voltage compensation means for the thrust current The q-axis voltage command 値V/additional voltage compensation 値Φχ input to the coordinate conversion unit by the control unit is outputted, and the voltage compensation 値φχ is used in the speed detecting means The detected speed of the movable element is detected by 値X. and the determined induced voltage constant Φ. 2. The linear motor control device of claim 1 of the patent scope, wherein 'setting and position Μ inductance compensation a means for detecting a position of the movable member detected by the position detecting means, and detecting a speed of the movable body detected by the speed detecting means, and detecting the current detecting means The detected current 値 is converted into q-axis and d-axis current 値 and the q-axis current detection 値... and d-axis current detection 値 id, and the q-axis voltage compensation 运算 is calculated according to the predetermined arithmetic expression. The d-axis voltage compensation 値 is added to the q-axis voltage command 値V input to the coordinate conversion unit by the thrust current control unit, and the q-axis voltage compensation 値' is added to the magnetic flux current control unit. The d-axis voltage command 値V input to the coordinate conversion unit is added to the d-axis voltage compensation 値. 3-. The linear motor control device of claim 2, wherein the setting: the tumbling compensation means is a tumbling compensation current determined by the thrust current command 値 given by the position/speed control means値hogging is the q-axis current command 値iq* input to the thrust current control unit. The linear motor control device according to any one of claims 1 to 3, wherein the induced voltage constant Φ used in the induced voltage compensation means is set to an individual motor The intermediate portion of the moving direction of the movable member is constant, and the both end portions are gradually smaller toward the end side. 5. The linear motor control device according to any one of claims 1 to 3, wherein the q-axis voltage compensation 値d-axis voltage compensation method added by the position change inductance compensation means is based on a sub-type ( 5q), (5 d ) 値 [Math 1] (5 q) χ (5 d) 2τ τΡ : the spacing of the 1 pole pair of the movable element Ld : LM Lq : LM L: the inductance of each phaseΜ : mutual inductance between phases. -39-
TW100137906A 2010-10-26 2011-10-19 Linear motor control device TWI535181B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010239602 2010-10-26

Publications (2)

Publication Number Publication Date
TW201230660A true TW201230660A (en) 2012-07-16
TWI535181B TWI535181B (en) 2016-05-21

Family

ID=45993574

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100137906A TWI535181B (en) 2010-10-26 2011-10-19 Linear motor control device

Country Status (3)

Country Link
JP (1) JP5578240B2 (en)
TW (1) TWI535181B (en)
WO (1) WO2012056844A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105591587A (en) * 2014-11-14 2016-05-18 中国航空工业第六一八研究所 Linear motor-based electro-mechanical actuator control system and control method
CN106612095A (en) * 2015-10-22 2017-05-03 佳能株式会社 Moving-magnet type linear motor controlling system and manufacturing method of parts
TWI697199B (en) * 2018-02-01 2020-06-21 日商日立產機系統股份有限公司 Magnetic pole position estimation method and control device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3024137B1 (en) 2014-11-18 2017-05-17 Siemens Aktiengesellschaft Linear actuator with vibration damping in all control units
CN107104621B (en) * 2017-04-27 2020-04-21 上海新时达电气股份有限公司 Weak magnetic control method and device for running speed of alternating current motor
JP6899720B2 (en) * 2017-07-06 2021-07-07 日立Astemo株式会社 Linear motor system and compressor with it
US11718482B2 (en) * 2020-08-31 2023-08-08 Rockwell Automation Technologies, Inc. System and method of monitoring disturbance force in an independent cart system, compensation of said disturbance force
CN112688607B (en) * 2020-12-15 2023-08-15 大国重器自动化设备(山东)股份有限公司 Servo motor and artificial intelligent robot
JP2023103594A (en) * 2022-01-14 2023-07-27 日立Astemo株式会社 Linear motor, electric suspension device including the same, and vibration control system
US20230382650A1 (en) * 2022-05-31 2023-11-30 Rockwell Automation Technologies, Inc. Automatic Tuning and Control of a Linear Drive Based Independent Cart System with Initial Value Compensation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3447639B2 (en) * 1999-12-28 2003-09-16 川崎重工業株式会社 Home door system control method and device
JP2001275375A (en) * 2000-03-24 2001-10-05 Central Japan Railway Co Controller for speed electromotive force phase ar low speed
JP2006288076A (en) * 2005-03-31 2006-10-19 Toshiba Elevator Co Ltd Control unit
JP2010110145A (en) * 2008-10-31 2010-05-13 Nikon Corp Drive unit of ac motor, and drive control device equipped with the same
JP2010130740A (en) * 2008-11-26 2010-06-10 Toshiba Mach Co Ltd Movable magnet-type linear motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105591587A (en) * 2014-11-14 2016-05-18 中国航空工业第六一八研究所 Linear motor-based electro-mechanical actuator control system and control method
CN106612095A (en) * 2015-10-22 2017-05-03 佳能株式会社 Moving-magnet type linear motor controlling system and manufacturing method of parts
US10581308B2 (en) 2015-10-22 2020-03-03 Canon Kabushiki Kaisha Moving-magnet type linear motor controlling system and manufacturing method of parts
CN106612095B (en) * 2015-10-22 2020-10-02 佳能株式会社 Moving magnet type linear motor control system and component manufacturing method
TWI697199B (en) * 2018-02-01 2020-06-21 日商日立產機系統股份有限公司 Magnetic pole position estimation method and control device

Also Published As

Publication number Publication date
WO2012056844A1 (en) 2012-05-03
JPWO2012056844A1 (en) 2014-03-20
TWI535181B (en) 2016-05-21
JP5578240B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
TW201230660A (en) Linear motor control apparatus
TWI538381B (en) Discrete configuration linear motor system
JP5167631B2 (en) Motor control method and motor control apparatus using the same
US9292018B2 (en) Moving body system and method for controlling travel of moving body
JP6704705B2 (en) Movable magnet type linear motor control system and control method thereof
JP5924045B2 (en) Electric motor control device and electric motor control method
JP7267398B2 (en) Position monitoring for electrical machines
TW201126877A (en) Distributed-arrangement linear motor and method for controlling a distributed-arrangement linear motor
CN103051269A (en) Synchronous machine control apparatus
CN103580573B (en) Motor exciting device and motor exciting method and motor control device and motor control method
US9602035B2 (en) Driving apparatus for electric motor
JP6687228B1 (en) AC rotating electric machine control device
JPWO2007114058A1 (en) Magnetic pole position detection method for permanent magnet synchronous motor
TW200812217A (en) Control device and method for servo motors
EP4300809A1 (en) System and method for electromagnetic pinning and hybrid control of a linear drive system
JP5120053B2 (en) Magnetic bearing device
JP4996847B2 (en) Servo motor current control method, current control program, recording medium, servo motor
Wang et al. High performance propulsion control of magnetic levitation vehicle long stator linear synchronous motor
US11646686B2 (en) Controller for AC rotary electric machine
JP2015133778A (en) Control apparatus for permanent magnet synchronous motor
JP5532140B2 (en) Transfer device for discretely arranged linear motor
CN115729232A (en) System and method for synchronizing the movement of multiple vehicles in an independent cart system
JP5456873B1 (en) Synchronous machine controller
Benavides et al. Compensation of disturbances in segmented long stator linear drives using finite element models
TWI474582B (en) Linear motor system