TW201228409A - Thin film electret, manufacturing method of thin film electret and voice broadcasting apparatus thereof - Google Patents

Thin film electret, manufacturing method of thin film electret and voice broadcasting apparatus thereof Download PDF

Info

Publication number
TW201228409A
TW201228409A TW99146786A TW99146786A TW201228409A TW 201228409 A TW201228409 A TW 201228409A TW 99146786 A TW99146786 A TW 99146786A TW 99146786 A TW99146786 A TW 99146786A TW 201228409 A TW201228409 A TW 201228409A
Authority
TW
Taiwan
Prior art keywords
film
thin film
graphene
frame
electrode
Prior art date
Application number
TW99146786A
Other languages
Chinese (zh)
Inventor
Yuh Sung
Szu-Ching Hsiao
Chung-An Wang
Original Assignee
Kingstate Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kingstate Electronics Corp filed Critical Kingstate Electronics Corp
Priority to TW99146786A priority Critical patent/TW201228409A/en
Priority to CN2011100543019A priority patent/CN102547534A/en
Publication of TW201228409A publication Critical patent/TW201228409A/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

The present invention discloses a manufacturing method of a thin film electret, comprising the following steps: providing a frame with a first surface and a second surface; laminating a dielectric film on the first surface of the frame and coating a surface modified material on the surface of the dielectric film opposite to the first surface of the frame to form a surface modification layer; adding graphene power into water to obtain a graphene solution and oscillating the graphene solution to disperse the graphene particles to obtain the dispersed graphene solution; and coating the dispersed graphene solution on the surface modification layer to form a nano-graphene conductive layer and treating the nano-graphene conductive layer with polarized processing to form the thin film electret.

Description

201228409 六、發明說明: 【發明所屬之技術領威】 [0001] 本發明是有關於〆種薄膜永電體、薄膜永電體製作方法 及其聲音播放裝置,特別是有關於一種以奈米石墨烯材 料作為導電層材料之薄膜永電體之製作方法,及以具有 石墨烯導電層的該薄膜永電體作為振模之聲音播放裝置 〇 【先前技術】 [〇〇〇2] 視覺與聽覺是人類最直接的兩種感官反應,因此長久以 來’科學家們極力發展各種可再生視覺與聽覺的相關系 統。同時’隨著人們對於感官品質.的日益要求,以及3C 產品(Computer,Communi cat [on, Consumer E1 ec-tronics)在追求短小、輕薄的前提下,一種省電、輕薄 、可依人體工學需求設計的揚聲器(Loudspeakers),不 管是搭配大尺寸的平面揚聲器,還是小到如隨身聽的耳 機或立體聲的手機,在可以預見的未來蔣有大量的發展 潛力。 [〇〇〇3]靜電揚聲器由於具備讓3C產品體積扁平化之潛力,因此 近年來主要以發展靜電揚聲器為主。靜電揚聲器係依照 庫儉定律’同時具有相異或同性之電荷的兩個導體可產 生推或挽力(push 〇r pull force)。交變的推挽靜電 力可導致具靜電荷振動板(diaphragm)的振動,而產生 聲音。一靜電揚聲器一般包括兩個多孔導電板或電極板 與一介於導電板或電極板之間且由其所驅動的振動板。 氣隙(air gap)可將電極與振動板隔開以提供振動板振 099146786 表單編號A0101 第4頁/共24頁 0992080365-0 201228409 反之二間。振動板通常薄且輕,而使靜電揚聲器之暫態 (MUfansition resp〇nse)、於高頻之延伸性 ^xPansion capabUity)、聲音流暢度 d)聲曰逼真度(acoustic fidel ity)與低失 真声(Η . 13ΐ0Γΐ:10η),優於其他形式之揚聲器,例如電動 (ynamic)、動圈(m〇ving式或壓電 電言z〇eiectric)式揚聲器。此外,振動板必須具備靜 7以虽訊號傳至電極板時,在藉由電極板所形成電 〇 _ 的作用下,允許誘導靜電力驅動振動板。 日辨、°構簡單’靜簡㈣▼被製造成多種尺寸以適應 g之對於小且薄之電子裝豊的需要。然而—般靜 聲考ill田 ^ 以二選用-直流對直流電源轉換器(DC_DC converter) 亩由導體所構成振動板上的靜電荷。考慮到直流對 L電源轉換器之尺寸、成本與電《耗,已發展永電 —材料來取代直流對直流電源轉舖。永電體為一具有 A i^久電荷或偶極極㈣介電材料。-駐極體產生内 Ο 卩及外部電場,其可為_永磁的靜電等效,請參閱G. M. ^ssler^i98〇^T〇pics in Applied Physics .33第一章第1頁所載及美國專利第4, 288, 584號 (1Shra)。永電體電荷可包括淨電荷(例如表面及/或空 間電荷)及/或偶極極化。淨電荷包括捕捉正及負電荷載 體層,然而以永電體作為振模,則常受限於永電體之導 電層材料的導電特性,讓振模相對電荷變化而振動之靈 敏度也受到限制,因此近年出現將奈米後管用於製作永 a X改善導電性不佳造成靈敏度低等問題但使用 099146786 表單編號A0I01 第5頁/共24頁 0992080365-0 201228409 奈米碳管製作永電體,則存在高成本之問題。 [0005] 自西元2004年,英國曼徹斯特大學A. K. Geim教授所帶領 的研究團隊以膠帶玻璃的方式獲得單層石墨烯,證實了 單層石墨烯的存在後,帶動了科學家致力研究石墨烯的 相關特性。研究結果顯示石墨稀具有許多不尋常的性質 。例如石墨烯薄膜堅固易脆,但又可以曲折,且石墨烯 (單層石墨)呈現幾乎透明的狀態,並有非常良好的導 電性及導熱系數高達5300 W/m · K,比奈米碳管和金鋼 石好。石墨烯在室溫下的電子遷移率(electron mo-bility)超過15000 cm2/V · s,比奈米破管(約 1 0000cm2/V · s)高,更是矽晶( 1 400cm2/V · s)的 10倍 以上,且電阻為約106Ω · cm,比銅或銀金屬更低,是目 前所有已知材料中,在室溫下具最低電阻的材料,且其 導電密度更是銅的一百萬倍。 [0006] 由於奈米石墨烯獨特且優異的電子特性,促使廣闊的應 用前景不斷顯現出來。例如,可應用在目前當今最紅的 iphone觸控面板,及由於石墨烯擁有比鋼強上百倍的勃 性,使其不易斷裂並擁有極佳的彈性。因此,石墨烯可 製成比塑膠還輕,強度卻比鋼鐵還強的用品,以取代現 有材料,廣泛運用在防彈衣、汽車、飛機、人造衛星的 製作上。 [0007] 有鑑於石墨烯之分子結構呈現狀似蜂巢的超薄平面結構 、具備超優良之導電性及價格便宜的特性,並未見應用 於永電體的製作上之因素,若能將石墨烯材料應用於揚 聲器之駐極體的製作上,不但可以符合現今對於3C產品 099146786 表單編號A0101 第6頁/共24頁 0992080365-0 201228409 [0008] 需具備輕薄之特性的要求,更可藉由其超高之導電性, 讓永電體在作為揚聲器之振模時,能具備更良好之靈敏 性以呈現更為細腻之聲音及降低雜訊。 【發明内容】 有鑑於上述習知技藝之問題,本發明之一目的就是在提 供一種薄膜永電體、薄膜永電體製作方法及使用該薄膜 永電體之聲音播放裝置,以解決成本太高及導電性不佳 、靈敏度低等問題。 q [0009] 根據本發明之目的,提出一種薄膜永電體,其包含:一 框架,具有一第一面及一第二面;一介電薄膜,係設置 在該框架之該第一面上;一表面改質層,設置在該介電 薄膜相對該框架之該第一面的另一表面上,並係由一表 面改質材料均勻塗布在該介電薄膜上而構成;以及一奈 米石墨烯導電層,係設置在該表面改質層上,該奈米石 墨烯導電層係由奈米石墨烯均勻分散並吸附在該表面改 質層上而構成,該奈米石墨烯係為顆粒且為薄片狀結構 〇 [0010] 根據本發明之目的,再提出一種薄膜永電體之製作方法 ,包含下列步驟:提供一框架,該框架具有一第一面及 一第二面;將一介電薄膜貼附於該框架之該第一面上; 均勻塗布一表面改質材料於該介電薄膜相對該框架之該 第一面的另一表面上,而形成一表面改質層;添加奈米 石墨烯於一水溶液中,得到一石墨烯水溶液;震盪該石 墨烯水溶液,以分散該奈米石墨烯顆粒,而得到分散完 成之該石墨烯水溶液,其中該奈米石墨烯顆粒為薄片狀 099146786 表單編號A0101 第7頁/共24頁 0992080365-0 201228409 結構;均㈣布分散完成之該石墨稀水溶液於該黏著層 上而形成-奈米石墨烯導電層,並對該介電薄膜進行— 極化處理,以形成一薄膜永電體。 [0011] [0012] [0013] [0014] 根據本發明之目的,又提出—種聲音播放農置,其包含 :一音頻訊號輸入單元、-第—電極、—第二電極以及 一薄膜永電體。音頻訊號輸人單元具有—第—訊號源端 及一第二訊號源端,係用以接收—音頻訊號;第一電極 係與第—訊號源軸合,第二電極係與第—電極彼此分 離設置並與第二訊號源端耦合;薄臈永電體係設置並輕 合於第-電極與第二電極之間,且與第―電極及第二電 極之間各保持-間隙。其中,薄膜永電體與第一電極及 第二電極相互作用,以回應由第一訊號源端與第二訊號 源端提供的音頻訊號並振動以產生聲音。 此外’上述聲音播放裝置之薄膜永電體更包含:一框架 ’具有-第-面及一第二面;一介電薄骐,係設置在該 框架之該第一面上;一㈣·層,設置在該介電薄膜 相對該«之該第-面的另一表面土,並係由一表面改 貝材料均勻塗布在該介電薄膜上而構成;以及一奈米石 墨缔導電層,係設置在該表面改㈣上,該奈米石墨稀 導電層係由奈米石㈣均勻分散並吸附在該表面改質層 上而構成,該奈米;5墨稀係為顆粒且為薄片狀結構。 承上所述,依本發明之—種薄膜永電體、薄膜永電體製 作方法及其聲音播放裝置,可具有—❹個下述優點: ⑴利用分散m·料技術,以赋溶液製備薄膜永電 099146786 表單編號A0101 第8頁/共24頁 0992080365-0 201228409 [0015] [0016]201228409 VI. Description of the Invention: [Technology Leading Technology of the Invention] [0001] The present invention relates to a thin film permanent electric body, a method for manufacturing a thin film permanent electric body, and a sound playing device thereof, and more particularly to a nano graphite A method for fabricating a thin film permanent electric material of a conductive material as a conductive layer material, and a sound playback device using the thin film permanent electric body having a graphene conductive layer as a vibration mode [Prior Art] [〇〇〇2] Vision and hearing are Humans have the most direct two sensory responses, so scientists have long been developing various systems for regenerative vision and hearing. At the same time, 'With the increasing demands of people for sensory quality, and 3C products (Computer, Communi cat [on, Consumer E1 ec-tronics) in the pursuit of short, light and thin, a power-saving, thin, ergonomic Demanded speakers (Loudspeakers), whether paired with large-sized flat speakers or small headphones such as a Walkman or stereo, have a lot of potential for the foreseeable future. [〇〇〇3] Due to the potential for flattening 3C products, electrostatic speakers have mainly focused on the development of electrostatic speakers in recent years. Electrostatic loudspeakers produce a push 挽r pull force in accordance with Coulomb's law, two conductors with different or identical charges. Alternating push-pull electrostatic forces can cause vibrations with electrostatically charged diaphragms that produce sound. An electrostatic speaker typically includes two porous conductive plates or electrode plates and a vibrating plate interposed between and driven by the conductive plates or electrode plates. An air gap separates the electrode from the vibrating plate to provide vibrating plate vibration. 099146786 Form No. A0101 Page 4 of 24 0992080365-0 201228409 Conversely. The vibrating plate is usually thin and light, and the transient state of the electrostatic speaker (MUfansition resp〇nse), the extension of the high frequency ^xPansion capabUity), the sound fluency d) the acoustic fidelity (acoustic fidelity) and the low distortion sound (Η.13ΐ0Γΐ: 10η), superior to other forms of speakers, such as dynamic, dynamic (m〇ving or piezoelectric) speakers. In addition, the vibrating plate must be provided with static electricity 7 to allow the induction of electrostatic force to drive the vibrating plate under the action of the electric _ formed by the electrode plate when the signal is transmitted to the electrode plate. The day-to-day, simple-structured 'quietness' (four) ▼ is manufactured in a variety of sizes to accommodate the need for g for small and thin electronic components. However, the static sound test ill field ^ two choice - DC to DC power converter (DC_DC converter) acres of static electricity on the vibration plate formed by the conductor. Taking into account the size, cost and power consumption of the DC-to-L power converter, the development of permanent power-materials has replaced the DC-to-DC power supply. The permanent electric body is a dielectric material having a long-term charge or a dipole (four). - The electret produces an internal enthalpy and an external electric field, which can be the electrostatic equivalent of _ permanent magnet, see GM ^ssler^i98〇^T〇pics in Applied Physics .33, Chapter 1, page 1 and the United States Patent No. 4, 288, 584 (1 Shra). The permanent electric charge can include a net charge (e.g., surface and/or space charge) and/or dipole polarization. The net charge includes capturing the positive and negative charge carrier layers. However, when the permanent magnet is used as the vibration mode, it is often limited by the conductive properties of the conductive layer material of the permanent magnet, and the sensitivity of the vibration mode of the vibration mode is limited. Therefore, in recent years, the use of nano-tubes for the production of permanent aX improves the poor conductivity and causes low sensitivity. However, using 099146786 Form No. A0I01 Page 5 of 24 0992080365-0 201228409 Nano Carbon Tubes There is a problem of high cost. [0005] Since 2004, the research team led by Professor AK Geim of the University of Manchester in the United Kingdom has obtained a single layer of graphene by means of tape glass, confirming the existence of single-layer graphene and driving scientists to study the relevant properties of graphene. . The results show that graphite thin has many unusual properties. For example, graphene film is strong and brittle, but it can be tortuous, and graphene (single layer graphite) is almost transparent, and has very good electrical conductivity and thermal conductivity up to 5300 W/m · K, carbon nanotubes and Gold is good. Graphene has an electron mo-bility of more than 15000 cm2/V · s at room temperature, which is higher than that of nanotubes (about 1 0000 cm 2 /V · s) and is twin (1 400 cm 2 /V · s More than 10 times, and the resistance is about 106 Ω · cm, lower than copper or silver metal, is the material with the lowest resistance at room temperature in all known materials, and its conductive density is one hundred of copper. Ten thousand times. [0006] Due to the unique and excellent electronic properties of nanographene, the broad application prospects are constantly emerging. For example, it can be applied to the most popular iphone touch panels available today, and because graphene has a hundred times stronger than steel, it is not easy to break and has excellent elasticity. Therefore, graphene can be made into a material that is lighter than plastic and stronger than steel, replacing existing materials and widely used in the production of body armor, automobiles, airplanes, and artificial satellites. [0007] In view of the fact that the molecular structure of graphene exhibits an ultra-thin planar structure resembling a honeycomb, has excellent electrical conductivity and is inexpensive, and has not been applied to the fabrication of a permanent electric body, if graphite can be used. The use of olefin materials in the fabrication of electrets for loudspeakers not only meets the requirements of today's 3C products 099146786 Form No. A0101 Page 6 / 24 pages 0992080365-0 201228409 [0008] requires light and thin features, but also Its high electrical conductivity allows the permanent electric body to have better sensitivity when used as a vibration mode for the speaker to present a more delicate sound and reduce noise. SUMMARY OF THE INVENTION In view of the above problems in the prior art, an object of the present invention is to provide a thin film permanent electric body, a method for manufacturing a thin film permanent electric body, and a sound playing device using the same, so as to solve the problem that the cost is too high. And poor conductivity, low sensitivity and other issues. [0009] According to the purpose of the present invention, a thin film permanent electric body is provided, comprising: a frame having a first surface and a second surface; and a dielectric film disposed on the first surface of the frame a surface modifying layer disposed on the other surface of the dielectric film opposite to the first surface of the frame and formed by uniformly coating a surface modifying material on the dielectric film; and a nanometer a graphene conductive layer is disposed on the surface modifying layer, and the nano graphene conductive layer is formed by uniformly dispersing and adsorbing nanographene on the surface modifying layer, wherein the nano graphene is a particle and [0010] According to the purpose of the present invention, a method for fabricating a thin film permanent electric body is further provided, comprising the steps of: providing a frame having a first surface and a second surface; Attaching a film to the first side of the frame; uniformly coating a surface modifying material on the other surface of the dielectric film opposite to the first side of the frame to form a surface modifying layer; adding nano Graphene in an aqueous solution, Obtaining an aqueous graphene solution; oscillating the graphene aqueous solution to disperse the nano graphene particles to obtain a dispersed graphene aqueous solution, wherein the nano graphene particles are flakes 099146786 Form No. A0101 Page 7 / Total 24 page 0992080365-0 201228409 structure; the (four) cloth dispersed on the adhesive layer to form a nano-graphene conductive layer, and the polarization treatment of the dielectric film to form a film forever Electric body. [0014] [0014] [0014] According to the purpose of the present invention, a sound playback farm is also proposed, which includes: an audio signal input unit, a - electrode, a second electrode, and a film permanent body. The audio signal input unit has a first signal source and a second signal source for receiving an audio signal; the first electrode is coupled to the first signal source, and the second electrode and the first electrode are separated from each other And being coupled to the second signal source end; the thin 臈 电 system is disposed and lightly coupled between the first electrode and the second electrode, and each of the first electrode and the second electrode maintains a gap. The thin film permanent electric body interacts with the first electrode and the second electrode to respond to the audio signal provided by the first signal source end and the second signal source end and vibrate to generate sound. In addition, the thin film permanent electric body of the above sound playing device further comprises: a frame having a first surface and a second surface; a dielectric thin layer disposed on the first surface of the frame; a (four) layer And disposed on the surface of the dielectric film opposite to the first surface of the first surface, and is uniformly coated on the dielectric film by a surface modification material; and a nano graphite conductive layer Provided on the surface modification (4), the nano graphite thin conductive layer is formed by uniformly dispersing and adsorbing nanocrystalline (4) on the surface modification layer, and the nanometer is a particle and has a lamellar structure. According to the invention, the film permanent electric body, the film permanent electric body manufacturing method and the sound playing device thereof can have the following advantages: (1) using a dispersing m-material technique to prepare a film by using a solution永电099146786 Form No. A0101 Page 8 of 24 0992080365-0 201228409 [0016] [0016]

[0017] [0018] Ο [0019] 體可大量減少製程的繁雜性,可降低生產時間及成本。 (2) 利用具高比表面積特性之奈米石墨烯薄片製作薄膜永 電體之導電層,可大量減少碳材的使用量,而有效降低 碳材消耗之成本及有效降低整體質量,進而符合現今對 於3C產品輕薄之訴求。 (3) 利用具良好導電性、良好電子遷移率及高比表面積特 性的奈米石墨烯薄片來製作薄膜永電體之導電層,有助 於介電薄膜駐電荷效果,讓薄膜永電體在作為聲音播放 裝置之振膜時,對於電力驅動之振動運動有更佳的靈敏 度,及促使聲音播放裝置其具備廣泛的聲音播放頻率。 (4) 利用奈米石墨烯薄片幾乎呈現透明之特性,可應用於 製作透明之薄膜永電體,並進一步應用於透明喇叭等電 子3C產品上,因此極具產業利用潛力。 (5) 利用離子型界面活性劑包覆奈米石墨烯薄片,再透過 表面改質層間接吸附於介電薄膜上,可改善以往於介電 薄膜上形成導電層時受限於介電薄膜之性質,而造成導 電層與介電薄膜附著不穩定之問題,而可提供一堅固穩 定之奈米石墨烯導電層。 【實施方式】 請參閱第1圖,其係為本發明之薄膜永電體之分解示意圖 ,薄膜永電體1包含框架10、介電薄膜11、表面改質層12 、以及奈米石墨烯導電層13。框架10具有一第一面及一 第二面,介電薄膜11係設置在框架10的第一面上,而表 面改質層12係設置在介電薄膜11相對於框架10之第一面 099146786 表單編號Α0101 第9頁/共24頁 0992080365-0 201228409 由奈米石墨烯 。其中,奈米 表面上,且奈米石墨烯導電層1 3係 均勾分散並吸附在表面改質層12上而構成 石墨烯係為顆粒且為薄片狀結構。 [0020] [0021] y閱第2® ’其係為本發明之薄財電體之製作方法之 流程圖。其包含下列步驟。步驟su :提供—框架,該框 架具有-第一面及一第二面。步驟犯·將一介電薄膜貼 附於雜架之該第—面h步·3 :均勾塗布—表面改 質材料於該介電薄膜相對該框架之該第—面的另一表面 上’而形成-表面改質層。步驟Si4 :添加奈米石墨婦於 -水溶液中’㈣—石,歸水驗,其中該奈米石墨稀 係為顆粒且為薄片狀結構。步驟S15 :震盈該石墨稀水溶 液,以分散該奈米石墨稀顆粒,而得到分散完成之該石 墨埽水溶液。㈣S16 :均勻塗布分散完叙該石墨稀水 溶液於該黏著層上而形成一奈米石墨烯導電層以及步 驟S1 7 :對該介電薄膜進行—極化處理,以形成一薄膜永 電體。各步驟細節分別詳述如下: 步驟S11,提供一框架10,框_10秒材質可為鋁等導電性 較佳之金屬材質,且框架之形狀不受限制。步驟S12,將 一介電薄膜11貼附於框架10之第一面上,可透過固定件 如真空膠帶或挾持工具等固定介電薄膜與框架1〇。介 電薄膜11的材質可為氟系聚合物,如聚四氟乙稀薄膜 (Polytetrafluoroethene, PTFE)、聚二氟乙稀薄膜[0018] [0019] The body can greatly reduce the complexity of the process, and can reduce production time and cost. (2) The use of nanographene sheets with high specific surface area properties to form a conductive layer of a thin film permanent electric material can greatly reduce the amount of carbon material used, thereby effectively reducing the cost of carbon material consumption and effectively reducing the overall quality, thereby conforming to the present day. For the light and thin appeal of 3C products. (3) Using a nanographene sheet with good conductivity, good electron mobility and high specific surface area to form a conductive layer of a thin film permanent electric body, which contributes to the charge effect of the dielectric film, so that the thin film permanent electric body As a diaphragm of the sound playback device, it has better sensitivity to the vibration motion of the electric drive, and causes the sound playback device to have a wide sound playback frequency. (4) The use of nanographene sheets is almost transparent, and can be applied to the production of transparent thin film permanent electric bodies, and further applied to electronic 3C products such as transparent speakers, so that it has great industrial potential. (5) coating the nanographene sheet with an ionic surfactant and indirectly adsorbing it on the dielectric film through the surface modifying layer, which can improve the conventional dielectric film when forming a conductive layer on the dielectric film. The property causes a problem that the conductive layer and the dielectric film are unstable to adhere, and a stable and stable nano graphene conductive layer can be provided. [Embodiment] Please refer to FIG. 1 , which is a schematic exploded view of a thin film permanent electric body of the present invention. The thin film permanent electric body 1 comprises a frame 10 , a dielectric film 11 , a surface modifying layer 12 , and a nano graphene conductive material. Layer 13. The frame 10 has a first surface and a second surface. The dielectric film 11 is disposed on the first surface of the frame 10. The surface modification layer 12 is disposed on the first surface of the dielectric film 11 relative to the frame 10. Form No. 1010101 Page 9 of 24 Page 0992080365-0 201228409 by nanographene. Among them, on the surface of the nanometer, the nanographene conductive layer 13 is uniformly dispersed and adsorbed on the surface modifying layer 12 to form a graphene-based particle and a lamellar structure. [0020] [0012] The second embodiment is a flowchart of a method for fabricating a thin financial body of the present invention. It contains the following steps. Step su: providing a frame having a first side and a second side. Step-by-step: attaching a dielectric film to the first surface of the hybrid frame, step h3, 3: uniformly coating the surface modifying material on the other surface of the dielectric film opposite the first surface of the frame And form a surface modification layer. Step Si4: Adding a nano graphite to the '(four)-stone in an aqueous solution, the water is inspected, wherein the nano graphite is a fine particle and has a lamellar structure. Step S15: shaking the graphite dilute aqueous solution to disperse the fine graphite graphite particles to obtain the dispersed aqueous solution of the graphite ink. (4) S16: uniformly coating and dispersing the graphite diluted water solution on the adhesive layer to form a nano graphene conductive layer and step S17: polarizing the dielectric film to form a thin film permanent body. The details of each step are respectively described as follows: Step S11, a frame 10 is provided, and the material of the frame _10 seconds may be a metal material having better conductivity such as aluminum, and the shape of the frame is not limited. In step S12, a dielectric film 11 is attached to the first surface of the frame 10, and the dielectric film and the frame 1 are fixed by a fixing member such as a vacuum tape or a holding tool. The material of the dielectric film 11 may be a fluorine-based polymer such as a polytetrafluoroethene (PTFE) film or a polyvinylidene fluoride film.

Polyvinylidene Fluoride,PVDF,或可為聚乙稀薄 膜(polyethylene, PE)、聚丙烯薄膜 (polypropylene, PP)、聚醚醯亞胺薄犋 099146786 表單編號A0101 第10頁/共24頁 0992080365-0 201228409 (polyetherimide,PEI)及聚乙烯對苯二曱酸酯薄膜 (Polyethylene terephthalate,PET)等非氟系聚合 物。 [0022] Ο 步驟S13,均勻塗布一表面改質材料於該介電薄膜11相對 該框架10之該第一面的另一表面上,而形成一表面改質 層1 2,表面改質材料係用以對上述介電薄膜11進行表面 改質,以讓介電薄膜11的表面性質適合穩定的吸附奈米 石墨烯導電層1 3。表面改質材料可為水性聚氨基甲酸脂 (Polyurethane, PU)樹脂、聚氣化二丙稀基二甲基敍 (poly(diallydimethylammonium chloride), PDDA)或聚3, 4-乙烯二氧噻吩-聚苯乙烯磺酸鹽 ((poly(3, ο [0023] (4-ethylenedioxythiophene-poly(styrenesulfon ate),PED0T : PSS)。當於介電薄膜上均勻塗布表面改質 材料後,會依據不同表面改質材料之交聯溫度對薄膜進 行烘烤,其烘烤時間依據不同表面改質材料而有不同, 烘烤時間以不致完全交聯為原則。 步驟S14,添加奈米石墨烯之粉末於一水溶液中,得到一 石墨烯水溶液。該水溶液預先溶有一離子型界面活性劑 ,且該離子型介面活性劑具有一疏水端及一親水端。當 於步驟S15中震盪該石墨烯水溶液時,因震盪而分離之奈 米石墨烯之顆粒,會進一步與離子型界面活性劑反應。 離子型界面活性劑藉由其疏水端與表面為疏水性質之奈 米石墨烯顆粒作用,以包覆奈米石墨烯顆粒的表面並裸 露出其親水端,讓被其包覆的奈米石墨烯之顆粒彼此間 099146786 表單編號A0101 第11頁/共24頁 0992080365-0 [0024] 201228409 透過裸露在顆粒表面的離子型界面活性劑之親水端而產 生一互斥力。該互斥力可避免震盪分散後之奈米石墨之 顆粒再度因分子間作用力而聚集,以永久分散該奈米石 墨烯之顆粒,而得到一分散完成之奈米石墨烯水溶液。 所指奈米石墨稀係為平面結構的分子,故其係為薄片狀 結構,且所指奈米石墨稀具有高的比表面積良好的電 子遷移率及良好的導電性。 [0025] [0026] [0027] 另,所指離子型界面活性劑可為陽離子或陰離子型界面 活性劑,當其為陰離子界面活性劑時,則可為為羧酸鹽 型、磺酸鹽類型、硫酸鹽型或磷酸鹽型之陰離子界面活 性劑。 步驟S16 .均勻塗布分散完成之該石墨烯水溶液於該表面 改質層上而形成—奈米石墨烯導電層,此步驟係將上述 藉由離子型界面活性劑分散完成之奈米石墨烯水溶液塗 布在經表面改質後之介電薄膜上。塗布該奈米石墨稀水 溶液的方式可為旋轉塗布或喷麗塗布的方式。其中,被 離子界面活性劑包覆之奈米石墨:烯.;薄片係藉由表面裸露 出之親水端與表面改質層之親水性表面作用,而達到將 奈米石墨烯薄片穩固的吸附在介電薄膜表面之目的。 敢後步驟^ 1 7 .對該介電薄膜進行一極化處理,以形成 一薄膜永電體,極化處理的方式可為熱駐極法、電駐極 法、光照法或輻射法等。 請參閱第3圖’其係本發明之聲音播放裝置之剖面示意圖 ,聲θ播放裝置2包含:一音頻訊號輸入單元21、一第一 099146786 表單編號A0101 第12頁/共24頁 0992080365-0 [0028] 201228409 電極22、一第二電極23以及一薄臈永電體】。音頻訊號輸 入2〗單元具有一第一訊號源端211及一第二訊號源端212 ,係用以接收一音頻訊號;第一電極22係與第一訊號源 端211耦合’第二電極23係與第一電極22彼此分離設置並 與第二訊號源端212耦合;薄膜永電體1係設置並耦合於 第一電極22與第二電極23之簡,且與22第一電極及第二 電極23之間各保持一間隙。 [0029] Ο [0030] Ο [0031] 099146786 其中,薄膜永電體1與第一電極22及第二電極23相互作用 ’以回應由第一訊號源端211與第二訊號源端212提供的 q頻訊號並振動以產生.聲音其:中所指:箄電極22及 第二電極23可為多孔電極板,並具有開口 221、231,可 提供作為振膜之薄膜永電體1所產生之聲波通過。另,所 指第一電極22及第二電極23可由金屬或覆蓋有導電薄膜 之塑膠材料形成》 而薄膜永電體1係設置於第一電極22及第二電極23之間, 藉由支撐構件25、26可雄持第一電極22及第二電極24與 薄膜永電體1在適當的地方,並可由絕緣材料製作支樓構 件25、26。藉由絕緣元件25卜252、261、262可將第 一電極22及第二電極23與作為振膜之薄膘永電體丨分開。 另,上述聲音播放裝置2之薄膜永電體1包含:一框架ι〇 ,具有一第一面及一第二面;一介電薄膜u,設置在框 架之第-面上;-表面改質層12,設置在該介電薄膜 11相對框架10之第一面的另一表面上,並由—表面改質 材料均勻塗布在該介電薄膜u上而構成;以及一奈米石 墨烯導電層13,係設置在表面改質層12上,奈米石墨烯 表翠編號A0101 第13頁/共24頁 0992080365-0 201228409 導電層13是由奈米石墨烯均勻分散並吸附在表面改質層 上而構成,奈米石墨烯係為顆粒且為薄片狀結構。 [0032] [0033] [0034] 099146786 在本發明之薄膜永電體之製作方法之一實施例中,以鋁 框為框架10 ’以聚四氟乙烯薄膜 (Polytetrafluoroethene,PTFE)作為介電薄膜 11, 以水性聚氨基曱酸脂(P〇lyurethane,p[J)樹脂作為表 面改質層12之表面改質材料,以十二烷基硫酸納作為於 水溶液中分散奈米石墨浠薄片之離子界面活性劑。 此實施例中,提供一鋁框,並於鋁框之一面上貼附聚四 氟乙烯薄膜(Polytetrafluoroethene,PTFE),作為 可駐電荷之介電薄膜,其令是以真空膠帶將四氟乙烯薄 膜(Polytetrafluoroethene,PTFE)固定在鋁框上。 取適量水性聚氨基甲酸脂(Polyurethane,pu)樹脂, 並將水性聚氨基甲酸脂(P〇lyurethane,pu)樹脂均勻 到塗於上述四氟乙烯薄膜(P〇lytetraflu〇r〇ethene, PTFE)之表面。塗布完成後,將其置於9〇〇c烘箱中進行丄 至3分鐘的烘烤,待到達預走拱烤時間時,自烘箱取出, 此時形成之水性聚氨基甲酸脂(Polyurethane,?[〇樹 月曰表面改質層仍未完全固化,且水性聚氨基甲酸脂 (Polyurethane,PU)樹脂所形成的表面改質層的厚度 則約為1-10微米。 於進行上述步驟之同時,製備分散完成之奈米石墨烯水 溶液。此實施例中,使用的奈米石墨烯具有熱導電性約 SOOOWin-iir1及電阻係數5xl0-5Qcra。而在製備分散完 成之奈米石墨烯水溶液的過程中,首先製備一濃度為 表單編號 Α0101 λλ / u 0/1 *5 0992080365-0 201228409 ❹ [0035] 200 0ppm之十二烧基硫酸納水溶液,待2000ppm之十二烧 基硫酸納水溶液製備完成後,取重量0. Olg之奈米石墨烯 添加於20ml之上述十二烷基硫酸納水溶液中。接著,將 含有奈米石墨烯之十二烷基硫酸納水溶液以超音波震盪 30至45分鐘以促進奈米石墨烯之分散,且在震盪的過程 中是以冰浴的方式避免長時間震盪造成石磨烯水溶液溫 度過高。待振盪結束後,即完成置備分散完成之奈米石 墨烯水溶液。另,石墨烯、界面活性劑與水之間的重量 百分比(wt%)的比例範圍可為石墨烯:界面活性劑:水= 1-5:4-6:100。 最後,將上述分散完成之奈米石墨烯水溶液,以喷灑的 方式均勻喷灑塗布於上述水性聚氨基曱酸脂 (Polyurethane, PU)樹脂所形成之表面改質層上,以 形成奈米石墨烯導電層,而完成本實施例之薄膜永電體 之製作,而所製作完成之奈米石墨烯導電層的厚度為卜5 微米。 〇 [0036] 在此實施例中,所使用之十二烷基硫酸鈉為陰離子介面 活性劑,其在水溶液中會解離出十二烷基硫酸根之陰離 子。在石墨烯水溶液振盪的過程中,十二烷基硫酸根其 疏水性的碳鏈一端會和表面為疏水性質之石墨烯薄片作 用,而包覆在石墨烯薄片表面並裸露出具親水性之硫酸 根端,藉由石墨烯薄片之間帶負電的硫酸根離子相互排 斥,而完成分散奈米石墨烯薄片之目的。 在本發明之聲音播放裝置之一實施例中,係以上述實施 例之薄膜永電體作為振膜,該薄膜永電體振膜結構包含 099146786 表單編號A0101 第15頁/共24頁 0992080365-0 [0037] 201228409 :框架、聚四氟乙烯介電薄膜 (Polytetrafluoroethene,PTFE)、水性聚氨基曱酸 脂(Polyurethane,PU)樹脂作表面改質層之表面改質 材料,及以十二烷基硫酸根分散之奈米石墨烯薄片導電 層。依據實驗結果顯示,此聲音播放裝置之實施例,具 有良好的駐電效果、較佳的振膜靈敏度、廣泛的聲音播 放頻率及可減少音質雜訊等優異的聲音播放表現。 [0038] 以上所述僅為舉例性,而非為限制性者。任何未脫離本 發明之精神與範脅,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 [0039] 第1圖係為本發明之薄膜永電體之分解示意圖。 第2圖係為本發明之薄膜永電體之製作方法之流程圖。 第3圖係為本發明之聲音播放裝置之剖面示意圖。 【主要元件符號說明】 [0040] 1 :薄膜永電體 10 :框架 11 :介電薄膜 12 :表面改質層 13 :奈米石墨烯導電層 2:聲音播放裝置 21 :音頻訊號輸入單元 22 :第一電極 23 :第二電極 211 :第一訊號源端 099146786 表單編號A0101 第16頁/共24頁 0992080365-0 201228409 212 :第二訊號源端 221、231 :開口 25、26 :支撐構件 251、252、261、262 :絕緣元件Polyvinylidene Fluoride, PVDF, or polyethylene (PE), polypropylene (PP), polyether phthalimide 犋 099146786 Form No. A0101 Page 10 / Total 24 Page 0992080365-0 201228409 ( Polyetherimide, PEI) and non-fluorinated polymers such as polyethylene terephthalate (PET). [0022] Ο Step S13, uniformly coating a surface modifying material on the other surface of the dielectric film 11 opposite to the first surface of the frame 10 to form a surface modifying layer 12, the surface modifying material system The dielectric film 11 is surface-modified to make the surface properties of the dielectric film 11 suitable for the stable adsorption of the nano graphene conductive layer 13. The surface modifying material may be a waterborne polyurethane (PU) resin, poly(diallydimethylammonium chloride) (PDDA) or poly(3,4-ethylenedioxythiophene). Styrene sulfonate ((poly(3, ο [0023] (4-ethylenedioxythiophene-poly(styrenesulfonate), PED0T: PSS). When the surface modification material is uniformly coated on the dielectric film, it will be modified according to different surfaces. The crosslinking temperature of the material is used to bake the film, and the baking time varies according to different surface modifying materials, and the baking time is not based on the principle of complete crosslinking. Step S14, adding the powder of nano graphene to an aqueous solution An aqueous solution of graphene is obtained. The aqueous solution is pre-dissolved with an ionic surfactant, and the ionic surfactant has a hydrophobic end and a hydrophilic end. When the graphene aqueous solution is oscillated in step S15, it is oscillated. The separated nanographene particles are further reacted with the ionic surfactant. The ionic surfactant acts by the hydrophobic end and the surface of the graphene particles which are hydrophobic in nature. Covering the surface of the nanographene particles and exposing the hydrophilic end, allowing the particles of nanographene coated by them to each other 099146786 Form No. A0101 Page 11 / Total 24 Page 0992080365-0 [0024] 201228409 Through the bare A mutual repulsive force is generated at the hydrophilic end of the ionic surfactant on the surface of the particle. The mutual repulsive force prevents the particles of the nano graphite after the vibration dispersion from being aggregated again by the intermolecular force to permanently disperse the nanographene. The particles are obtained to obtain a dispersed aqueous solution of nanographene. The nanographite is a molecule having a planar structure, so that it is a lamellar structure, and the reference graphite has a high specific surface area and good electrons. Mobility and good electrical conductivity. [0027] In addition, the ionic surfactant may be a cationic or anionic surfactant, and when it is an anionic surfactant, it may be a carboxylic acid. An anionic surfactant of a salt type, a sulfonate type, a sulfate type or a phosphate type. Step S16. uniformly coating and dispersing the graphene aqueous solution on the surface modifying layer Forming a nano-graphene conductive layer, wherein the nano-graphene aqueous solution dispersed by the ionic surfactant is coated on the surface-modified dielectric film, and the nano-diamond aqueous solution is coated. The method may be a spin coating or a spray coating method, wherein the nano graphite coated with the ionic surfactant: a olefin; the thin film is caused by the hydrophilic surface exposed by the surface and the hydrophilic surface of the surface modifying layer. The purpose of stably adsorbing the nanographene sheet on the surface of the dielectric film is achieved. After the step of stepping ^ 1 7 , the dielectric film is subjected to a polarization treatment to form a thin film permanent electric body, and the polarization treatment may be a thermal electret method, an electric electret method, an illumination method or a radiation method. Please refer to FIG. 3, which is a schematic cross-sectional view of the sound playback device of the present invention. The sound θ playback device 2 includes: an audio signal input unit 21, a first 099146786, a form number A0101, a page 12/24 pages 0992080365-0 [ 0028] 201228409 Electrode 22, a second electrode 23, and a thin electrode. The audio signal input 2 unit has a first signal source 211 and a second signal source 212 for receiving an audio signal; the first electrode 22 is coupled to the first signal source 211. The first electrode 22 is disposed apart from the first electrode 22 and coupled to the second signal source end 212; the thin film permanent electric body 1 is disposed and coupled to the first electrode 22 and the second electrode 23, and the 22 first electrode and the second electrode A gap is maintained between each of 23. [0029] 99 [0031] 099146786, wherein the thin film permanent electric body 1 interacts with the first electrode 22 and the second electrode 23 in response to being provided by the first signal source terminal 211 and the second signal source terminal 212 The q-frequency signal is vibrated to generate a sound. The middle electrode 22 and the second electrode 23 can be porous electrode plates and have openings 221 and 231 which can be provided as a film permanent electric body 1 as a diaphragm. Sound waves pass. In addition, the first electrode 22 and the second electrode 23 may be formed of a metal or a plastic material covered with a conductive film, and the thin film permanent electric body 1 is disposed between the first electrode 22 and the second electrode 23 by the supporting member. 25, 26 can hold the first electrode 22 and the second electrode 24 and the film permanent electric body 1 at appropriate places, and the branch members 25, 26 can be made of an insulating material. The first electrode 22 and the second electrode 23 can be separated from the thin film dielectric body as a diaphragm by the insulating members 25, 252, 261, and 262. In addition, the film permanent magnet 1 of the sound playback device 2 includes: a frame ι having a first surface and a second surface; a dielectric film u disposed on the first surface of the frame; The layer 12 is disposed on the other surface of the first surface of the dielectric film 11 opposite to the frame 10, and is uniformly coated on the dielectric film u by a surface modifying material; and a nano graphene conductive layer 13, is disposed on the surface modification layer 12, nanographene surface number A0101 page 13 / total 24 page 0992080365-0 201228409 conductive layer 13 is uniformly dispersed by nanographene and adsorbed on the surface modification layer In the composition, the nanographene is a particle and has a sheet-like structure. [0034] 099146786 In one embodiment of the method for fabricating a thin film permanent electric material of the present invention, a polytetrafluoroethene (PTFE) is used as the dielectric film 11 with an aluminum frame as the frame 10'. , using water-based polyaminophthalic acid (P[L] urethane (p[J) resin) as the surface modification material of the surface modification layer 12, using sodium lauryl sulfate as the ion interface for dispersing the nano graphite crucible sheet in the aqueous solution. Active agent. In this embodiment, an aluminum frame is provided, and a polytetrafluoroethene (PTFE) film is attached to one side of the aluminum frame as a dielectric film capable of holding a charge, and the tetrafluoroethylene film is vacuum-coated. (Polytetrafluoroethene, PTFE) is fixed on the aluminum frame. A suitable amount of aqueous polyurethane (pu) resin is used, and the aqueous polyurethane (P) resin is uniformly applied to the above-mentioned tetrafluoroethylene film (P〇lytetraflu〇r〇ethene, PTFE). surface. After the coating is completed, it is placed in a 9 °c oven for baking for 3 minutes. When the pre-walking roasting time is reached, it is taken out of the oven, and the aqueous polyurethane (Polyurethane, ?[[ The surface modification layer of the eucalyptus eucalyptus is still not fully cured, and the surface modified layer formed by the aqueous polyurethane (PU) resin has a thickness of about 1-10 micrometers. Dispersing the completed nano graphene solution. In this embodiment, the nanographene used has thermal conductivity of about SOOOWin-iir1 and a resistivity of 5x10-5Qcra. In the process of preparing the dispersed nano graphene solution, First, prepare a concentration of the form number Α0101 λλ / u 0/1 *5 0992080365-0 201228409 ❹ [0035] 200 0ppm of the 12-alkyl sulphate aqueous solution, after the preparation of 2000ppm of the 12-alkyl sulphate aqueous solution, take 0. Olg of nanographene is added to 20 ml of the above aqueous sodium dodecyl sulfate solution. Next, the aqueous sodium dodecyl sulfate solution containing nanographene is ultrasonically shaken for 30 to 45 minutes. Promote the dispersion of nanographene, and avoid the long-term oscillation in the process of shaking to cause the temperature of the aqueous solution of the stone millene to be too high. After the end of the oscillation, the nano-graphene aqueous solution prepared by the dispersion is completed. In addition, the ratio of the weight percentage (wt%) between the graphene, the surfactant and the water may be graphene: surfactant: water = 1-5: 4-6: 100. Finally, the above dispersion is completed. The nano graphene aqueous solution is sprayed uniformly on the surface modified layer formed by the above aqueous polyurethane (PU) resin to form a nano graphene conductive layer, and the present invention is completed. In the production of the thin film permanent electric body of the embodiment, the thickness of the finished nano graphene conductive layer is 5 micrometers. [0036] In this embodiment, the sodium dodecyl sulfate used is an anionic interface. An active agent which dissociates the anion of lauryl sulfate in an aqueous solution. During the oscillation of the aqueous graphene solution, the hydrophobic carbon chain of the dodecyl sulfate has a hydrophobic nature on the surface. The olefin sheet acts on the surface of the graphene sheet and exposes the hydrophilic sulfate end, and the negatively charged sulfate ions between the graphene sheets repel each other to complete the dispersion of the nanographene sheet. In one embodiment of the sound playback device of the present invention, the thin film permanent electric body of the above embodiment is used as a diaphragm, and the thin film permanent magnet diaphragm structure includes 099146786 Form No. A0101 Page 15 / Total 24 Page 0992080365-0 [ 0037] 201228409: Framework, polytetrafluoroethene (PTFE), waterborne polyurethane (PU) resin as surface modification material for surface modification layer, and dodecyl sulfate Dispersed nanographene graphene sheet conductive layer. According to the experimental results, the embodiment of the sound playing device has good resident power effect, better diaphragm sensitivity, wide sound playing frequency, and excellent sound playback performance such as sound quality noise. [0038] The foregoing is illustrative only and not limiting. Any equivalent modifications or alterations of the present invention are intended to be included within the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0039] Fig. 1 is a schematic exploded view of a thin film permanent electric body of the present invention. Fig. 2 is a flow chart showing a method of fabricating a thin film permanent electric body of the present invention. Figure 3 is a schematic cross-sectional view showing the sound playback device of the present invention. [Main component symbol description] [0040] 1 : Thin film permanent electric body 10 : Frame 11 : Dielectric film 12 : Surface modifying layer 13 : Nano graphene conductive layer 2 : Sound playback device 21 : Audio signal input unit 22 : First electrode 23: second electrode 211: first signal source end 099146786 form number A0101 page 16 / total 24 page 0992080365-0 201228409 212: second signal source end 221, 231: opening 25, 26: support member 251, 252, 261, 262: insulating components

Sll-S17 :步驟 ❹ 099146786 表單編號A0101 第17頁/共24頁 0992080365-0Sll-S17: Step ❹ 099146786 Form No. A0101 Page 17 of 24 0992080365-0

Claims (1)

201228409 七、申請專利範圍: 1 · 一種薄膜永電體,其包含: 框架,具有一第一面及一第二面; 一介電薄膜,係設置在該框架之該第一面上; 表面改質層,設置在該介電薄膜相對該框架之該第—面 的另一表面上,並係由一表面改質材料均勻塗布在該介電 薄膜上而構成;以及一奈米石墨烯導電層,係設置在該表 面改質層上,該奈米石墨烯導電層係由奈米石墨烯均勻分 散並吸附在該表面改質層上而構成,該奈米石墨烯係為顆 粒且為薄片狀結構。 I5 2 .如申請專利範圍第1項所述之薄膜永電體,其中該介電薄 膜包括5«四氟乙稀薄膜(Polytetrafluoroethene, PTFE)、聚一氟乙烤薄膜Polyvinyl idene Fluoride, PVDF '聚乙烯薄膜(p〇iyet;hylene,PE)、聚丙烯薄膜 (polypropylene, PP)、聚醚醯亞胺薄膜 (polyetherimide,PEI) &聚乙烯對笨二甲酸酯薄膜 (Polyethylene terephtjialate, PET)。 ' 敕:/: 3 ·如申請專利範圍第1項所述之薄膜永電體,其中該表面改 質材料包括水性聚氨基甲酸脂(Polyurethane, PU)樹脂 、聚氣化二丙烯基二甲基銨 (poly(dial 1 ydimethyl ammonium chloride), PDDA)或聚3, 4-乙烯二氧噻吩-聚苯乙烯磺酸鹽 ((poly(3, (4-ethylenedioxythiophene-poly(styrenesulfonate),PEDC :PSS) ° 099146786 表單編號A0101 第18頁/共24頁 0992080365-0 201228409 •如申請專利範圍第㈣所述之薄膜永電體,其中該奈米石 墨締之顆粒表面係被一離子型界面活性劑所包覆。 .如申請專利範圍第4項所述之薄膜永電體,其中該離子型 界面活性劑具有一親水端及一疏水端,且該疏水端係吸附 在該奈米石墨制粒表面,而裸露出之該親水端係與該表 面改質材料作用,而吸附在該表面改質層上。 種薄膜永電體之製作方法,其步驟包含: 提供一框架,該框架具有一第一面及一第二面;201228409 VII. Patent application scope: 1 . A film permanent electric body, comprising: a frame having a first surface and a second surface; a dielectric film disposed on the first surface of the frame; a layer disposed on the other surface of the first surface of the frame opposite to the first surface of the frame, and uniformly coated on the dielectric film by a surface modifying material; and a nano graphene conductive layer Provided on the surface modifying layer, the nano graphene conductive layer is formed by uniformly dispersing and adsorbing nanographene on the surface modifying layer, wherein the nanographene is a particle and has a lamellar structure. . The thin film permanent electric body according to claim 1, wherein the dielectric film comprises 5 «tetrafluoroethylene (PTFE), PTFE, polyvinylidene Fluoride, PVDF 'poly Polyethylene film (polyethylene terephtjialate, PET). Polyethylene (PP) ' 敕 / / / / / / / / / 薄膜 薄膜 薄膜 薄膜 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate), PEDC:PSS) (poly(dial 1 ydimethyl ammonium chloride), PDDA) ° 099146786 Form No. A0101 Page 18 of 24 0992080365-0 201228409 • A film permanent electric body as described in claim 4, wherein the surface of the nano graphite particles is encapsulated by an ionic surfactant The thin film electroless body according to claim 4, wherein the ionic surfactant has a hydrophilic end and a hydrophobic end, and the hydrophobic end is adsorbed on the surface of the nano graphite granule, and The exposed hydrophilic end is applied to the surface modifying material and adsorbed on the surface modifying layer. The method for manufacturing the thin film permanent electric body comprises the steps of: providing a frame having a first surface and a second side; 將一介電薄膜貼附於該框架之該第一面上; 均勻塗布一表面改質材料於該介電薄膜相對該框架之該第 —面的另一表面上,而形成一表面改質層; 添加奈米石墨烯於一水溶液中,得到一石墨烯水溶液,其 中該奈米石墨烯係為顆粒且係薄片狀結構; 展盪該石墨烯水溶液,以分散該奈米石墨烯之顆粒而得 到分散完成之該石墨稀水溶液; 均勻塗布为散元成之該石墨稀水溶液於該:屬|著層上而形成 一奈米石墨烯導電層;以及 對該介電薄膜進行一極化處理,以形成一薄膜永電體。 .如申請專利範圍第6項所述之薄膜永電體之製作方法,其 中該介電薄膜包括聚四氟乙烯薄膜 (Polytetrafluoroethene,PTFE)、聚二氟乙稀薄膜 Polyvinylidene Fluoride,PVDF、聚乙稀薄膜 (polyethylene, PE)、聚丙烯薄膜(p〇lypr〇pylene, PP)、聚醚醯亞胺薄膜(polyetherimide,PEI)或聚乙 烯對苯二甲酸醋薄膜(Polyethylene terephthalate, PET)。 099146786 表單編號A0101 第19頁/共24頁 0992080365-0 201228409 .如申睛專利範圍第6項所述之薄膜永電體之製作方法其 中該表面改質材料包括水性聚氨基甲酸脂 (Polyurethane,PU)樹脂、聚氣化二丙烯基二甲基銨 (p〇ly(dial lydimethylammoniuin chloride), PDDA)或聚3, 4-乙烯二氧噻吩-聚苯乙烯磺酸鹽 ((p〇ly(3, (4-ethylenedioxythiophene-poly(styrenesulf〇nate),PEDC :PSS)。 ’ 9.如申請專利範圍第6項所述之薄膜永電體之製作方法其 中該水溶液含有一離子型界面.活姓劑。 fl 10 .如申請專利範圍第9項所述之薄膜永電體之製作方法其 中該離子型界面活性劑具有__親水端及一疏水端,且該震 盪S亥石墨稀水溶液之步驟係藉由該疏水端吸附在該奈米石 墨烯顆粒的表面,並裸露出該親水端而完成分散該奈米石 墨烯顆粒。 11 .如申請專利範圍第1〇項所述之薄膜永電體之製作方法其 中該奈米石墨烯顆粒係藉由包覆在其表面之該離子型界面 活性所裸露出之該親水端與該表面改質材料作用,而吸附 在該表面改質層上。 12 · —種聲音播放裝置,其包含: 一音頻訊號輸入單元,其具有一第一訊號源端及一第二訊 號源端,該音頻訊號輸入單元係用以接收一音頻訊號; 一第一電極,係與該第一訊號源端耦合; 一第二電極,係與該第一電極彼此分離設置,並與該第二 訊號源端輕合;以及 一薄膜永電體,係設置並耦合於該第一電極與該第二電極 099146786 表單編猿A0101 第20頁/共24頁 0992080365-0 201228409 之間,與該第-電極及該第二電極之間各保持一間隙,复 包括: —框架,具有一第一面及—第二面; 介電薄膜,係設置在該框架之該第一面上; —表面改質層,設置在該介電薄膜相對該框架之該第一面 的另表面上,並係由一表面改質材料均勻塗布在該介電 薄膜上而構成;以及 ❹ 13 Ο 14 · —奈米石墨烯導電層,係設置在該表面改質層上,該奈米 石墨烯導電層係由奈米石墨烯均勻分散並吸附在該表面改 質層上而構成,該奈米石墨烯係為顆粒且為薄片狀結構; 其中,该薄膜永電體與該第一電極及該第二電極相互作用 ,以回應由該第一訊號源端與該第二訊號源墙提供的音頻 訊號並振動以產生聲音。 .如申請專利範圍第12項所述之聲音播放裝置,其中該介電 薄膜包括聚四氣乙稀薄膜(P〇lytetraflu〇r〇ethene, PTFE)、聚二氟乙稀薄膜p〇iyVinyiidene Fluoride, PVDF、聚乙烯薄膜(polyethylene,PE)、聚丙締薄膜 (polypropylene,PP)、聚醚醯亞胺薄膜 (polyetherimide,PEI)或聚乙烯對苯二甲酸酯薄膜 (Polyethylene terephthalate, PET)。 如申請專利範圍第12項所述之聲音播放裝置,其中該表面 改質材料包括水性聚氨基甲酸脂(Polyurethane,PU)樹 脂、聚氣化二丙稀基二甲基敍 (poly(dial1 ydimethyl ammonium chloride), PDDA)或聚3, 4-乙烯二氧噻吩-聚苯乙烯磺酸鹽 ((poly(3, 099146786 表單編號A0101 第21頁/共24頁 0992080365-0 201228409 (4-ethylenedioxythiophene-poly(styrenesulf〇nate),PEDC :PSS)。 15 如申請專利範圍第12項所述之聲音播放裝置 石墨烯之難表面純-離子„面活性劑 ’其中該奈米 所包覆。 099146786 表單編號A0101 第22頁/共24 頁 0992080365-0Attaching a dielectric film to the first surface of the frame; uniformly coating a surface modifying material on the other surface of the dielectric film opposite to the first surface of the frame to form a surface modifying layer Adding nanographene to an aqueous solution to obtain an aqueous graphene solution, wherein the nanographene is a particle and a lamellar structure; and the graphene aqueous solution is stretched to disperse the nano graphene particles to obtain Dispersing the diluted aqueous solution of the graphite; uniformly coating the diluted aqueous solution of the graphite into a layer of the graphene to form a nanographene conductive layer; and subjecting the dielectric film to a polarization treatment to A thin film permanent electric body is formed. The method for fabricating a film permanent electric body according to claim 6, wherein the dielectric film comprises a polytetrafluoroethene (PTFE) film, a polyvinylidene fluoride film, a PVDF, a polyethylene film. Polyethylene (PE), polypropylene film (p〇lypr〇pylene, PP), polyetherimide (PEI) or polyethylene terephthalate (PET). 099146786 Form No. A0101 Page 19 of 24 0992080365-0 201228409. A method for fabricating a film permanent electric body according to claim 6, wherein the surface modifying material comprises waterborne polyurethane (Polyurethane, PU) Resin, poly(dial lydimethylammoniuin chloride, PDDA) or poly(3,4-ethylenedioxythiophene-polystyrene sulfonate) (p〇ly(3, (4-ethylenedioxythiophene-poly (styrenesulfene), PEDC: PSS). 9. The method for producing a thin film electroless body according to claim 6, wherein the aqueous solution contains an ionic interface. The method of fabricating a thin film electroless body according to claim 9, wherein the ionic surfactant has a __ hydrophilic end and a hydrophobic end, and the step of oscillating the Shai graphite dilute aqueous solution is performed by The hydrophobic end is adsorbed on the surface of the nano graphene particles, and the hydrophilic end is exposed to complete the dispersion of the nano graphene particles. 11. The method for manufacturing a thin film permanent electric body according to claim 1 The nano graphite The particle is adsorbed on the surface modifying layer by the hydrophilic end exposed by the ionic interface activity coated on the surface thereof, and is adsorbed on the surface modifying layer. An audio signal input unit having a first signal source and a second signal source, wherein the audio signal input unit is configured to receive an audio signal; a first electrode coupled to the first signal source a second electrode disposed separately from the first electrode and coupled to the second signal source end; and a thin film permanent body disposed and coupled to the first electrode and the second electrode 099146786 Between A0101 page 20/24 pages 0992080365-0 201228409, a gap is maintained between the first electrode and the second electrode, including: a frame having a first side and a second side a dielectric film disposed on the first side of the frame; a surface modifying layer disposed on the other surface of the dielectric film opposite the first side of the frame and modified by a surface modifying material Uniform coating The dielectric film is formed on the surface; and a conductive layer of ❹13 Ο 14 · nano graphene is disposed on the surface modifying layer, and the nano graphene conductive layer is uniformly dispersed and adsorbed by the nano graphene Forming on the surface modification layer, the nanographene is a particle and a lamellar structure; wherein the thin film permanent body interacts with the first electrode and the second electrode in response to the first signal source And the audio signal provided by the second signal source wall vibrates to generate sound. The sound playback device of claim 12, wherein the dielectric film comprises a polytetrafluoroethylene film (PTFE), a polytetrafluoroethylene film p〇iyVinyiidene Fluoride, PVDF, polyethylene (PE), polypropylene (PP), polyetherimide (PEI) or polyethylene terephthalate (PET). The sound playback device of claim 12, wherein the surface modifying material comprises an aqueous polyurethane (PU) resin, a poly(dial1 ydimethyl ammonium) Chloride), PDDA) or poly(3-ethylenedioxythiophene-polystyrene) (poly(3, 099146786 Form No. A0101 Page 21 of 24 0992080365-0 201228409 (4-ethylenedioxythiophene-poly( Styrenesulf〇nate), PEDC:PSS). 15 The sound-playing device graphene of the hard-surface pure-ion zoning active agent described in claim 12 is coated with the nano. 099146786 Form No. A0101 22 pages / total 24 pages 0992080365-0
TW99146786A 2010-12-30 2010-12-30 Thin film electret, manufacturing method of thin film electret and voice broadcasting apparatus thereof TW201228409A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99146786A TW201228409A (en) 2010-12-30 2010-12-30 Thin film electret, manufacturing method of thin film electret and voice broadcasting apparatus thereof
CN2011100543019A CN102547534A (en) 2010-12-30 2011-03-03 Film electret, method for making film electret and sound playing device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99146786A TW201228409A (en) 2010-12-30 2010-12-30 Thin film electret, manufacturing method of thin film electret and voice broadcasting apparatus thereof

Publications (1)

Publication Number Publication Date
TW201228409A true TW201228409A (en) 2012-07-01

Family

ID=46353264

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99146786A TW201228409A (en) 2010-12-30 2010-12-30 Thin film electret, manufacturing method of thin film electret and voice broadcasting apparatus thereof

Country Status (2)

Country Link
CN (1) CN102547534A (en)
TW (1) TW201228409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107618243A (en) * 2017-09-01 2018-01-23 广东石油化工学院 A kind of polymer modification graphene/Kynoar high-dielectric composite material and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI523077B (en) * 2013-10-29 2016-02-21 財團法人金屬工業研究發展中心 A method for modifying property of graphene
CN103929708A (en) * 2014-04-25 2014-07-16 瑞声光电科技(常州)有限公司 Preparation method of composite vibrating diaphragm
CN103929710A (en) * 2014-04-25 2014-07-16 瑞声光电科技(常州)有限公司 Preparation method of composite vibrating diaphragm
CN103929709A (en) * 2014-04-25 2014-07-16 瑞声光电科技(常州)有限公司 Preparation method of composite vibrating diaphragm
CN105654938B (en) * 2016-01-26 2019-12-24 云南科威液态金属谷研发有限公司 Liquid metal plasma electro-acoustic conversion device
CN105681989A (en) * 2016-02-26 2016-06-15 无锡吉仓纳米材料科技有限公司 Composite diaphragm electrostatic loudspeaker of ultrathin graphite film and carbon tube film
WO2018023843A1 (en) * 2016-08-02 2018-02-08 常州阿木奇声学科技有限公司 Vibration diaphragm and coating method thereof, and electroacoustic transducer
CN106412775A (en) * 2016-09-27 2017-02-15 常州阿木奇声学科技有限公司 Dome head for electrical acoustical transducer and electrical acoustical transducer
CN107277700A (en) * 2017-07-10 2017-10-20 歌尔股份有限公司 A kind of sound-producing device, module and electronic equipment
CN109743671A (en) * 2019-01-19 2019-05-10 深圳市国创珈伟石墨烯科技有限公司 A kind of novel graphene combined type electrostatic diaphragm of loudspeaker and preparation method thereof
CN111225328B (en) * 2020-01-22 2021-01-29 头领科技(昆山)有限公司 Electrostatic loudspeaker diaphragm and electrostatic loudspeaker

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654524B (en) * 2008-03-10 2015-06-10 财团法人工业技术研究院 Electret materials, electret speakers, and methods of manufacturing the same
TWI368445B (en) * 2008-08-11 2012-07-11 Ind Tech Res Inst Connecting structure of a electrode of a speaker unit
CN101729971A (en) * 2008-10-31 2010-06-09 宏达国际电子股份有限公司 Method for manufacturing electret vibrating membrane
CN101474898A (en) * 2009-01-16 2009-07-08 南开大学 Conductive carbon film based on graphene as well as preparation method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107618243A (en) * 2017-09-01 2018-01-23 广东石油化工学院 A kind of polymer modification graphene/Kynoar high-dielectric composite material and preparation method thereof
CN107618243B (en) * 2017-09-01 2019-04-12 广东石油化工学院 A kind of polymer modification graphene/Kynoar high-dielectric composite material and preparation method thereof

Also Published As

Publication number Publication date
CN102547534A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
TW201228409A (en) Thin film electret, manufacturing method of thin film electret and voice broadcasting apparatus thereof
CN107409258B (en) Method for forming acoustic transducer based on graphene oxide
CN204104134U (en) A kind of piezo-electric loudspeaker vibrating diaphragm
TWI399987B (en) Multi-directional flat speaker device
JP5113132B2 (en) Flexible thermoacoustic device and flag using a thermoacoustic element including the flexible thermoacoustic device
CN203933934U (en) A kind of vibrating diaphragm and loud speaker
TWI465118B (en) Electret diaphragm and speaker using the same
CN101426165B (en) Single body construction for loudspeaker
US8447053B2 (en) Flat speaker apparatus with heat dissipating structure and method for heat dissipation of flat speaker
CN1993000B (en) Electro-acoustic actuator and method for manufacture
Chandrashekar et al. A universal stamping method of graphene transfer for conducting flexible and transparent polymers
CN1997243A (en) Pliable loudspeaker and its making method
TW200913754A (en) Electrostatic electroacoustic transducers
TWI589163B (en) Electrostatic electroacoustic transducer
WO2013181952A1 (en) A hybrid piezoelectric and triboelectric nanogenerator
CN101654524A (en) Electret materials, electret speakers, and methods of manufacturing the same
TW201026097A (en) Solar flexpeaker structure and speaker therewith
CN101656906A (en) Speaker monomer structure
CN105871249B (en) Acoustic-electric conversion component, charging device using same and sound signal collector
CN105338453B (en) A kind of vibrating diaphragm and preparation method thereof, ball top type loudspeaker
TWM454056U (en) Speaker unit
CN101729972B (en) Methods of making speakers
Park et al. Textile speaker using polyvinylidene fluoride/ZnO nanopillar on Au textile for enhancing the sound pressure level
TWI462598B (en) Method of manufacturing electret films and loudspeakers comprising the same
KR101699796B1 (en) Two dimensional thermoacoustic speaker using three dimensional graphene and manufacturing method the same