TW201227021A - Optical waveguide and electronic machine - Google Patents

Optical waveguide and electronic machine Download PDF

Info

Publication number
TW201227021A
TW201227021A TW100134167A TW100134167A TW201227021A TW 201227021 A TW201227021 A TW 201227021A TW 100134167 A TW100134167 A TW 100134167A TW 100134167 A TW100134167 A TW 100134167A TW 201227021 A TW201227021 A TW 201227021A
Authority
TW
Taiwan
Prior art keywords
optical waveguide
core
refractive index
light
layer
Prior art date
Application number
TW100134167A
Other languages
Chinese (zh)
Other versions
TWI502232B (en
Inventor
Tetsuya Mori
Kimio Moriya
Shinsuke Terada
Original Assignee
Sumitomo Bakelite Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co filed Critical Sumitomo Bakelite Co
Publication of TW201227021A publication Critical patent/TW201227021A/en
Application granted granted Critical
Publication of TWI502232B publication Critical patent/TWI502232B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

An optical waveguide includes a core layer having both surfaces and cladding layers provided on the both surfaces of the core layer, respectively. Further, the core layer includes two core portions arranged side by side to each other and three side cladding portions arranged side by side to one another so that each of the core portions and each of the side cladding portions are alternately arranged therein. Further, the optical waveguide is configured such that when a light signal is entered to the one core portion CH1 at one end thereof, intensity of leaked light observed at the side cladding portion CL2 at the other end thereof, which is arranged so as to adjoin to the other core portion CH2 at the opposite side with respect to the core portion CH1, is higher than that observed at the core portion CH2 at the other end thereof. In other words, in this case, an intensity distribution of output light at the other end of the optical waveguide includes maximum values which are observed at the core portion CH1 and the side cladding portion CL2, respectively, and a minimum value which is observed at the core portion CH2.

Description

201227021 ^fuuiopif 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光導波管以及電子機器。 【先前技術】 近年來,可將大容量的資訊與資訊化的波一起以高速 來通彳§的寬頻帶線路(寬帶)的普及正在推進。另外,於 該^寬頻帶祕中傳送資賴裝置是使麟由器裝置、波 長分割多工(Wavelength Division Multiplexing,WDM) 裝置等傳送裝置。於該些傳送裝置内設置有錄將如大規 模積體電路(Large Seale Integration,LSI)之類的運算元 件、如雜體之類的記憶元件粒合而成的信號處理基 板’擔負各線路的相互連接。 於各信號處理基板上構築有運算元件或記憶元件等以 =氣配線連接的電路,但近年來,隨著所處理的資訊量的 ^曾大,各基板要求以極高的處理量來傳送資訊。然而,隨 著資訊傳送的高速化,串擾或高頻雜輯產生、電氣信號 的劣化等問題正顯現出來。@此,電氣配線成為瓶頸,产 號處理基板的處理量的提高變得困難。另外,同樣的課題 在超級電腦或大規模伺㈣等巾亦正顯現出來。 另一方面,使用光載波來移送資料的光通信技術得到 開毛近年來,作為用以將該光載波自一地點導至另一地 f的機構’ f導波管正在普及。該光導波管具有線狀的芯 、及以覆蓋其周圍的方式設置的彼覆部。芯部是由對光 載波的光而言實質上透明的材料所構成,披覆部是由折射 4 201227021 40018pif 率低於芯部的材料所構成β 光導波f中,自芯部的一端導入的光一邊在與彼覆部 的邊界反射一邊被搬送至另一端。於光導波管的入射侧配 置有半導體雷料發光元件,於出射側配置有光二極體等 受光TO件。自發光元件射入的光在光導波管中傳播,由受 光兀件接收,基於所接收的光的明滅圖案或者其強弱圖案 而進行通信。 藉由以如上所述的光導波管來取代信號處理基板内的 電氣配線,如上所述的電氣配線的問題被消除,期待可進 行信號處理基板的進一步高處理量化。 另外,最近對光導波管的大容量化要求逐漸增強,謀 求進一步的多通道化以及高密度化。若多通道化以及高密 度化進行,則通道(芯部)的間距變得更狹窄,伴隨於此, 串擾(來自1個通道的洩漏光干擾相鄰的通道)的產生成 為大課題。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2006-276735號公報 【發明内容】 本發明的目的在於提供一種可抑制相鄰通道間的干擾 (串擾)的光導波管、以及包括該光導波管的電子機器。 如上所述的目的是藉由下述(1)〜的本發明來 達成。 (1) 一種光導波管,包括:並列的多個芯部、及鄰接 5 201227021 40018pif 於該各芯部的至少兩側面的披覆部; 上述光導波管的特徵在於構成為: 當將上述多個芯部中所需的i個作為芯部cm,將與 孩心。卩CH1相鄰者作為芯部CH2, 且將上述多個披覆部中位於上述芯部CH1與上述芯 部CH2之間者作為披覆部⑴,將位於上述芯部 CH2的 ”上述披覆部CL1相反側者作為披覆部CL2時, 對該光導波管的-端的上述芯部cm射人光信號,於 另-端的上述披覆部CL2中所觀測到的上述光信號漏出的 漏出光的強度變得大於上述芯部CH2巾所觀測到的上述 漏出光的強度。 /2)如上述(1)所述之光導波管,其中關於在該光 導波管的另一端的端面中所觀測到的出射光,位於上述端 面的位置的強度分布在上述彼覆部CL2具有極大值,且在 上述芯部CH2具有小於該極大值的極小值。 (3)如上述(2)所述之光導波管,其中上述披覆部 CL2中的上述極大值與上述芯部ch2中的上述極小值的強 度差為3 dB〜20 dB。 (4) 如上述(2)或(3)所述之光導波管,其中相對 於上述芯部CH1中所觀測到的上述光信號的強度,上述披 覆部CL2中的上述極大值為-60 dB〜-20 dB。 (5) 如上述(2)至(4)中任一項所述之光導波管, 其中當將上述披覆部CL2中的上述極大值與上述芯部CH2 中的上述極小值的強度差設為gl,且將上述芯部CH1中 6 201227021.f -rwiuyil 所觀測到的上述光信號的強度與上述芯部CH2中的上述 極小值的強度差設為g2時,gl/g2滿足〇 〇5〜〇 5的關係。 (6) 如上述(2)至(5)中任一項所述之光導波管, 其中上述出射光的強度分布是相對於上述端面的位置,強 度連續變化。 (7) 如上述(1)至中任一項所述之光導波管, 其中上述各芯部的寬度分別為2〇 μιη〜2〇〇 。 (8) —種光導波管,包括: 第1坡覆層; 芯層,設置於上述第1披覆層上,且於層内以如下順 序形成有第1芯部cm、第1彼覆部CL1、第2芯部CH2、 以及第2披覆部CL2 ;以及 第2坡覆層,設置於上述芯層上; 上述光導波管的特徵在於構成為: 當射入至該光導波管的一端的上述第〗芯部CH1的光 自另一端作為出射光而射出時, 在遍及上述第1芯部CH1、上述第!披覆部cu、上 述第2芯部CH2、以及上述第2披覆部⑴的區域中獲得 的上述出射光的強度分布中,上述第2芯部CH2中的:述 出射光的強度變得小於上述第2披覆部CL2中的上述出 光的強度。 (9) -種電子機器,其特徵在於:包括如上述⑴ 至(8)中任一項所述之光導波管。 [發明效果] 201227021 4UU18pif 的光發明,獲得可抑制相鄰通道間的干擾(串擾) 的電由制如上所述的光導波管祕得可靠性高 【實施方式】 的朵②基於隨關式所示的較佳實施雜,對本發明 的先導t以及電子機器進行詳細說明。 〈光導波管〉 首先’對本發明的光導 α 不 、圖=¾:實施形態(一部分切 的光導波管的芯部的丨^^圖2枝示當對圖1所 的-例的圖。此外,以下時的出減的強度分布 「上」,將下侧稱為「下」1 ’將11 1中的上側稱為 (各圖的上下方向)誇圖1技層的厚度方向 圖1所示的光導波管1 部傳送光信號的光配線而發^ ^自_個端部向另-個端 的各;行詳細說明。 尤等/皮管1疋自圖1中 覆層(第1披覆層起’以如下順序積層披 12而成。 、日13以及披覆層(第2彼覆層) 依據後述的光導波管】, 得到抑制,可實現進目鄰通道間的干擾(串擾) 另外,本=態=道化以及高密度化。 的九導波官1成為具有高光傳送特 8 201227021 40018pif 性的光導波管(第1效果)。 本實施形態的光導波管!在寬度方向(層内方向)上 ^有如後所述的折射率分布w。該折射率分布w中,夾 著第1極大值而坐落有極小值,因此在芯部與彼覆部之間 形成大的折射率差。藉此,光變得難以自芯部中漏出。另 外’披覆部中坐落有小於第i極大值的第2極大值,因此 即便光自芯部中漏出,該漏出光亦被封人至彼覆部的第2 極大值。藉此,在寬度方向上鄰接的芯部之_串擾得到 另外,本實施形態的光導波管1在厚度方向(層間方 向)上亦具有如後所述的折射率分布τ。該折射率分布τ 中,成為極大值與極小值交㈣列,且關於極Α值是第i 極大值與小於其的第2極大值㈣则的分布型八 布)。若成為此齡布,批部的光封人效果與階變折射^ (Step Index,SI)型的分布相比非常優異。豆 傳送損耗的產生被有效地抑制,可實㈣的性。 該原因未必明確,但-般認為其原因在於,藉由w型 率分布,光自忠部申的漏出被有效地抑制。 另外,本實施形態的光導波管i中,基於w型折射s 分布T,於披覆層中亦獲得固定的光封入效果(第2效果、 因此’光導波管1中,荷可將錢度方向上漏出的妇 j覆部中’而且亦可將在厚度方向上漏出的光封入如 曰中。藉此’可在寬度方向與厚度方向的兩者中確實地4 制串擾。 201227021 . ~Γ\/ν/ 1 upif 另外,本實施形態的光導波管i的設計的自由度高(第 3效果)。 本實施形態的光導波管1例如是將膜積層而形成,但 $中披覆層的厚度可藉由與芯層的厚度的關係來任意決 疋而且由於可嚴密地控制厚度,故而可使光耦合損耗的 減少等效果最大化。進而,當將光導波管丨彎折時,分別 對彎折部的内側施加壓縮力,且對外側施加拉伸力,伴隨 於此,存在折射率不得已而變化的情況。光導波管^中, 基於此種彎折,可容易進行使夾著芯層的彼覆層的厚度不 同的設計。 (芯層) 其中,於芯層13上,在寬度方向上形成有並列的2 個芯部14、以及以夾著各芯部14的方式並列的3個側面 披覆部15。此外,對圖1所示的各芯部14標註密集的點, 且對各側面披覆部15標註稀疏的點。 更詳細而言,於圖1所示的芯層丨3上交替設置有並列 的2個芯部141 (第1芯部CH1 )、142 (第2芯部CH2) 與並列的3個側面彼覆部151、152 (第1披覆部CL1 )、 153 (第2彼覆部CL2)。藉此,各芯部14卜142分別成為 由各侧面披覆部151、152、153以及各彼覆層11、π所包 圍的狀態。此處,由於該些芯部14卜142的折射率分別高 於側面披覆部151、152、153的折射率以及各披覆層η、 12的折射率’故而可使各芯部hi、142與各側面披覆部 151、152、153或各披覆層Π、12的界面產生光的反射。 10 201227021 40018pif 而且,藉由使射入至芯部14的一個端部的光在芯部14與 披覆部(各彼覆層11、12以及各側面彼覆部15)的界面 一邊反射一邊傳播至另一個端部’可自芯部14的另一個端 部取出。 此外,圖1所示的芯部14雖然其橫截面形狀形成如正 方形或者長方形之類的四角形(矩形)’但該形狀並無特別 限定,例如可為真圓、橢圓形、長圓形等圓形,三角形、 五角形、六角形等多角形。 另外,芯部14的寬度及高度(芯層13的厚度)並無 特別限定,分別較佳為20 μιη〜200 μιη左右,更佳為25 μιη 〜100 μιη左右,尤佳為30 μιη〜70 μιη左右。 此處,當對圖1所示的光導波管1的多個芯部141、 142中所需的1個芯部的一個端部射入光而取得另—個端 部的出射光的強度分布Ρ1時,該強度分布表現出特徵性 分布。 圖2是表示當對圖1所示的光導波管1的芯部ι41射 入光時的出射光的強度分布Ρ1的圖’是表示當於橫轴上 取芯層13的出射側端面的寬度方向的位置,且於縱轴上取 出射光的強度時的強度分布的一例的圖。 若對芯部141 (CH1)射入光,則出射光的強度在芯 部141的出射端的中心部成為最大。而且,隨著自芯部141 的中心部遠離,出射光的強度變小,但在與芯部141相鄰 的芯部142 (CH2)中局部地採取較小的值。即,此時的 出射光的強度分布Ρ1在芯部141 (CH1)的出射端的中心 11 201227021 nuuiopif 部採取極大值Pml,且在芯部142(CH2)採取極小值Psl。 依據出射光具有此種強度分布的光導波管丨,雖無法防止 在芯部141中傳播的光的完全漏出,但抑制該漏出光集中 於芯部142’因此可確實地抑制漏出光干擾芯部142的「串 擾」。其結果為,光導波管1亦可藉由多通道化以及高密度 化而確實地防止串擾的產生。 此外’先前的光導波管中,在與射入光的芯部相鄰的 芯部中,出射光的強度分布P1不會採取極小值,而是採 取極大值。該極大值即為串擾,在相鄰的芯部中,串擾的 光信號干擾本來在該芯部中傳播的光信號。此種光信號的 干擾使光導波管中的光通信品質明顯降低而成為問題。 與此相對’本發明的光導波管中’由於如上所述在相 鄰的芯部142 (CH2)中出射光的強度分布P1採取極小值 Psl,故而如上所述的串擾得到抑制。其結果為,依據本發 明’獲得可實現高品質光通信的光導波管i。 另外’依據表現出如上所述的出射光的強度分布ρι 的光導波管1,除了如上所述串擾得到抑制以外,亦具有 傳播損耗以及脈衝信號的遲鈍得到抑制的優點。 另外’該出射光的強度分布P1中,較佳為成為反映 如下情況的分布:芯部141 (CH1)的漏出光並不集中於 芯部142 (CH2),而是集中在與芯部142鄰接且位於與芯 部142相反側的側面彼覆部153 (CL2)。即,出射光的強 度分布P1較佳為如上所述在芯部142 (CH2)中採取極小 值Psl,且在側面披覆部153 (CL2)中採取極大值Pm2 12 201227021 40018pif 的为布。具有此種出射光的強度分布pi的光導波管i藉 由將無法完全防止的來自芯部141的漏出光勉強集中於側 面彼覆部153 ’結果可防止芯部142巾的漏出光的集中。 其結果為,獲得可更確實地抑制串擾的光導波管1。 此外,於此情況,當以上述芯部141 (cm)中的極 大值Pml為基準時,側面彼覆部153 (CL2)中的極大值 Pm2與芯部142(CH2)中的極小值Psi的強度差較佳為3 dB〜20 dB左右,更佳為5 dB〜15 dB左右。若極大值pm2 與極小值Psl的強度差在上述範圍内,則確實地防止芯部 142中的串擾的產生,因此光導波管1成為可進行更高品 質的光通信的光導波管。 另外’相對於芯部141中的極大值Pm卜侧面彼覆部 153 (CL2)中的極大值pm2較佳為_6〇 dB〜-20 dB左右, 更佳為-50dB〜-30dB左右。若極大值pm2的強度在上述 範圍内’則根據極大值pm2的強度,極小值Psl的強度得 以最佳化,更確實地防止芯部142中的串擾的產生。此外, 於極大值Pm2的強度小於上述下限值的情況,將漏出光集 中於側面披覆部153的上述作用變得不充分,存在無法充 分抑制串擾產生的顧慮;另一方面,於極大值pm2的強度 高於上述上限值的情況’過量的漏出光集中於側面彼覆部 153,有在出射側端部妨礙芯部141、142與受光元件的正 常光耦合的顧慮。 另外,當將侧面披覆部153 (CL2)中的極大值Pm2 與芯部142 (CH2)中的極小值Psl的強度差設為gl,且 13 201227021 40018pif 將芯部141 (CHI)中所觀測到的光信號的強度與芯部142 (CH2)中的極小值Psl的強度差設為g2時,gl/g2較佳 為滿足0.05〜0.5的關係’更佳為滿足0.1〜0.4的關係。 藉此’可更確實地兼顧傳送損耗的減少以及脈衝信號的遲 純的減少、與串擾的抑制。此外,於gl/g2低於上述下限 值的情況,由於極大值Pm2的高度過低,故而存在無法充 分抑制串擾的顧慮。另一方面,於gl/g2高於上述上限值 的情況,過量的漏出光集中於側面披覆部153,有在出射 側端部妨礙芯部141、142與受光元件的正常光耦合的顧 慮。 此外,出射光的強度分布P1可為不連續變化的形狀, 較佳為成為連續變化的形狀。若出射光的強度分布P1為 此種形狀,則可更確實地防止串擾的產生。 另外,芯部14的寬度如上所述,較佳為設為2〇 μπι〜 2〇〇 μιη左右,藉由將芯部14的寬度設定為上述範圍將 漏出光集中於上述側面彼覆部153的作用變得必需且充 分,可更確實地抑制串擾的產生。 此外,如上所述的出射光的強度分布ρι可以如 式取得。 圖3是用以對測定光導波管的出射側端面中的出射光 的強度分布的方法進行說明的圖。 圖3所示的方法中,首先,以與測定對象的光導波管 ^的入射側端面la的芯部14的1個對向的方式,配置直 徑為5〇 μΠΐ的入射側光纖21。該入射側光纖21連接於用 14 201227021 40018pif 以對光導波管1射入光的發光元件(未圖示), 與芯部14的光軸一致的方式配置。 ,、先軸、 另一方面,於光導波管i的出射侧端面比上,以與其 對向的方式配置有直徑為62.5 μηι的出射側光纖22。該出 =側光纖22連接於用以接收自光導波管丨射出的出射=的 受光元件(未圖示),其光軸與光導波管丨的芯層的厚度方 =的中心線重合。而且,出射側光纖22構成為將與出ς側 面=lb的間隔距離維持固定,並且可掃描包含該中心線的 然後,一邊自入射側光纖21對芯部的1個射入光,一 也,出射側光纖22掃描。而且,藉由對出射側光纖22的 相受光猶所測定的出射光的強度,可取得出射光 對於出射側端面lb的位置的強度分布P1。 此處,表現出如上所述的出射光的強度分布ρι的光 相是藉由在芯層13的寬度方向上,形成包含折射率 八較向的區域及較低的區域且折射率連續變化的折射率 ^ W而獲得。即’具有折射率分布w的形狀的光導波 中’可觀測上述出射光的強度分布pj。 以下,對折射率分布w的一例進行說明。 表厂=4 (a)是圖1所示的x_x線剖面圖,圖4 是 不备對該X-X線剖面圖,於橫軸上取芯層的厚度的中心 '、C1上的位置且於縱軸上取折射率時的折射率分 〜例的圖。 的 芯層13在其寬度方向上具有如圖4(b)所示的包含* 15 201227021. *tuuiopif 個極小值Wsl、Ws2、Ws3、Ws4與5個極大值Wml、 、Wm3 ' Wm4、Wm5的折射率分布W。另外,5個 極大值中存在折射率的相對較大的極大值(第1極大值) Wm2、Wm4及折射率的相對較小的極大值(第2極大值)201227021 ^fuuiopif VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optical waveguide and an electronic device. [Prior Art] In recent years, the spread of large-capacity lines (wideband) that can be used at high speed with large-capacity information and informationized waves is advancing. Further, the transmission device is a transmission device such as a router device or a Wavelength Division Multiplexing (WDM) device. In the above-mentioned transmission device, a signal processing substrate in which an arithmetic element such as a large-scale integrated circuit (LSI) or a memory element such as a hybrid is spliced is provided in each of the transmission devices. Connected to each other. In each signal processing board, a circuit in which an arithmetic element or a memory element is connected by a gas line is constructed. However, in recent years, as the amount of information to be processed is large, each substrate is required to transmit information with an extremely high throughput. . However, with the increase in the speed of information transmission, problems such as crosstalk or high frequency noise generation and deterioration of electrical signals are emerging. @This causes electrical wiring to become a bottleneck, and it becomes difficult to increase the throughput of the processing substrate. In addition, the same subject is appearing in the supercomputer or the large-scale (four). On the other hand, an optical communication technique for transferring data using an optical carrier has been developed. In recent years, a mechanism for guiding the optical carrier from one location to another f has been popularized. The optical waveguide has a linear core and a covering portion provided to cover the periphery thereof. The core is made of a material that is substantially transparent to the light of the optical carrier, and the covering portion is formed by the end of the core from the end of the core by the refractive index 4 201227021 40018 pif rate lower than the material of the core. The light is transported to the other end while being reflected by the boundary of the cover. A semiconductor bar light-emitting element is disposed on the incident side of the optical waveguide, and a light-transmitting TO element such as a photodiode is disposed on the emission side. The light incident from the light-emitting element propagates through the light guide tube, is received by the light-receiving member, and communicates based on the bright-out pattern of the received light or its strong and weak pattern. By replacing the electric wiring in the signal processing substrate with the optical waveguide as described above, the problem of the electric wiring as described above is eliminated, and further high processing quantization of the signal processing substrate is expected. In addition, the demand for increasing the capacity of optical waveguides has recently increased, and further multi-channelization and higher density have been sought. When the multi-channelization and the high-density are performed, the pitch of the channels (cores) becomes narrower, and along with this, the generation of crosstalk (leakage light from one channel interferes with adjacent channels) becomes a major problem. [Prior Art] [Patent Document 1] [Patent Document 1] Japanese Patent Application Laid-Open No. Hei. No. 2006-276735. SUMMARY OF THE INVENTION An object of the present invention is to provide an optical waveguide capable of suppressing interference (crosstalk) between adjacent channels, And an electronic machine including the optical waveguide. The above object is achieved by the present invention of the following (1). (1) An optical waveguide comprising: a plurality of core portions juxtaposed, and a covering portion adjacent to at least two side faces of the respective core portions; the optical waveguide is characterized in that: The i required in the core as the core cm will be with the heart. The 卩CH1 is adjacent to the core portion CH2, and the above-mentioned plurality of covering portions are located between the core portion CH1 and the core portion CH2 as a covering portion (1), and the above-mentioned covering portion located in the core portion CH2 When the opposite side of the CL1 is used as the covering portion CL2, the core portion of the optical waveguide tube emits a human light signal, and the optical signal leaking from the optical signal observed at the other end of the covering portion CL2 leaks light. The intensity becomes greater than the intensity of the above-mentioned leaked light observed by the core CH2. /2) The optical waveguide according to the above (1), wherein the observation is made in the end face of the other end of the optical waveguide The intensity of the emitted light at the position of the end surface has a maximum value in the above-mentioned surface portion CL2, and has a minimum value smaller than the maximum value in the core portion CH2. (3) The optical waveguide as described in the above (2) a tube in which the intensity difference between the maximum value in the above-mentioned cladding portion CL2 and the above-described minimum value in the core portion ch2 is 3 dB to 20 dB. (4) The optical waveguide as described in (2) or (3) above a tube in which the intensity of the above-mentioned optical signal observed in the above-described core portion CH1 is The above-mentioned maximum value in the above-mentioned covering portion CL2 is -60 dB to -20 dB. The optical waveguide according to any one of (2) to (4) above, wherein the above-mentioned covering portion CL2 is used The difference between the intensity of the maximum value and the minimum value in the core portion CH2 is gl, and the intensity of the optical signal observed by the 6 201227021.f -rwiuyil in the core portion CH1 is in the core portion CH2. When the intensity difference of the minimum value is set to g2, gl/g2 satisfies the relationship of 〇〇5 to 〇5. (6) The optical waveguide according to any one of (2) to (5) above, wherein The intensity distribution of the emitted light is continuously changed with respect to the position of the end surface. The optical waveguide according to any one of the above (1), wherein the width of each of the core portions is 2 〇 μιη (8) A light guide tube comprising: a first slope coating; a core layer disposed on the first cladding layer, wherein the first core portion cm is formed in the layer in the following order 1 a covering portion CL1, a second core portion CH2, and a second covering portion CL2; and a second slope coating layer provided on the core layer; the optical waveguide is characterized by When the light of the first core portion CH1 incident on one end of the optical waveguide is emitted as the outgoing light from the other end, the light is transmitted through the first core portion CH1 and the first cladding portion cu. In the intensity distribution of the emitted light obtained in the region of the second core portion CH2 and the second covering portion (1), the intensity of the emitted light in the second core portion CH2 becomes smaller than the second coating The intensity of the light emission in the portion CL2. (9) An electronic device comprising the optical waveguide according to any one of the above (1) to (8). [Effect of the Invention] 201227021 The optical invention of 4UU18pif obtains an electric light guide tube capable of suppressing interference (crosstalk) between adjacent channels. The optical waveguide is highly reliable as described above. [Embodiment] The preferred embodiment of the present invention will be described in detail with respect to the pilot t and the electronic device of the present invention. <Optical waveguide> First, the light guide α of the present invention is not shown in the figure: (the embodiment of the core of the partially cut optical waveguide is shown in Fig. 1 as an example). In the following, the intensity distribution of the reduction and decrease is "up", and the lower side is referred to as "lower" 1 'the upper side of 11 1 is referred to as (the vertical direction of each figure). The thickness direction of the technical layer is shown in FIG. The optical waveguide 1 transmits the optical wiring of the optical signal and sends each from the end to the other end. The line is detailed. The special/skin tube 1 is covered by the cladding in Figure 1. The layer is formed by laminating 12 in the following order. The day 13 and the cladding layer (the second cladding layer) are suppressed according to the optical waveguide described later, and interference between the adjacent channels (crosstalk) can be realized. The light guide tube 1 having the high light transmission characteristic 8 201227021 40018pif property (the first effect). The optical waveguide of the present embodiment is in the width direction (layer) The inner direction) has a refractive index distribution w as described later. The refractive index distribution w has a pole with a first maximum value interposed therebetween. Since the value is small, a large refractive index difference is formed between the core portion and the other portion, whereby light becomes difficult to leak from the core portion. In addition, the second largest portion smaller than the i-th maximum value is located in the coating portion. Therefore, even if the light leaks from the core portion, the leaked light is sealed to the second maximum value of the other portion. Thereby, the crosstalk of the core portion adjacent in the width direction is obtained, and the light guide of the present embodiment is additionally provided. The waveguide 1 also has a refractive index distribution τ as described later in the thickness direction (interlayer direction). In the refractive index distribution τ, a maximum value and a minimum value are intersected (four) columns, and the maximum Α value is the ith maximum value. And the distribution type eight cloth which is smaller than the second maximum value (four). If it is the cloth of this age, the effect of the light seal of the batch is superior to that of the step index (SI) type. The generation of the transmission loss is effectively suppressed, and the reason for the fact that the transmission loss is effective is not necessarily clear, but it is generally considered that the reason is that the leakage of light from the loyalty department is effectively suppressed by the w-type rate distribution. In the optical waveguide i of the embodiment, based on the w-type refractive s distribution T, it is covered. A fixed light-sealing effect is also obtained in the layer (the second effect, therefore, in the light-guide tube 1, the load can be leaked out in the direction of the side of the woman) and the light leaking in the thickness direction can be sealed as In the meantime, the crosstalk can be surely performed in both the width direction and the thickness direction. 201227021 . ~Γ\/ν/ 1 upif In addition, the design of the optical waveguide i of the present embodiment has a high degree of freedom ( Third effect. The optical waveguide 1 of the present embodiment is formed by laminating a film, for example, but the thickness of the cladding layer can be arbitrarily determined by the relationship with the thickness of the core layer and since the thickness can be strictly controlled. Therefore, the effect of reducing the optical coupling loss can be maximized. Further, when the optical waveguide tube is bent, a compressive force is applied to the inner side of the bent portion, and a tensile force is applied to the outer side, and accordingly, there is The case where the refractive index has changed as a last resort. In the optical waveguide tube, based on such bending, the design of the thickness of the other layer sandwiching the core layer can be easily made. (Core Layer) In the core layer 13, two core portions 14 which are juxtaposed in the width direction and three side surface covering portions 15 which are juxtaposed so as to sandwich the core portions 14 are formed. Further, the core portions 14 shown in FIG. 1 are marked with dense dots, and the side surface covering portions 15 are marked with sparse dots. More specifically, the two core portions 141 (the first core portion CH1) and the 142 (the second core portion CH2) which are arranged in parallel are alternately provided on the core layer 3 shown in FIG. Parts 151, 152 (first covering portion CL1) and 153 (second covering portion CL2). Thereby, each of the core portions 14 and 142 is surrounded by the respective side covering portions 151, 152, and 153 and the respective covering layers 11 and π. Here, since the refractive indices of the core portions 14 and 142 are higher than the refractive indices of the side cladding portions 151, 152, and 153 and the refractive indices of the respective cladding layers η and 12, the core portions hi and 142 may be formed. The reflection of light is generated at the interface with each of the side cladding portions 151, 152, 153 or the respective cladding layers Π, 12. 10 201227021 40018pif Further, light incident on one end portion of the core portion 14 is reflected while being reflected by the interface between the core portion 14 and the covering portion (the respective covering layers 11 and 12 and the respective side surface portions 15) The other end portion ' can be taken out from the other end of the core portion 14. In addition, the core portion 14 shown in FIG. 1 has a quadrangular shape (rectangular shape) such as a square or a rectangle, but the shape is not particularly limited, and may be, for example, a circle such as a true circle, an ellipse, or an oblong shape. Polygons such as triangles, pentagons, hexagons, etc. Further, the width and height of the core portion 14 (the thickness of the core layer 13) are not particularly limited, and are preferably about 20 μm to about 200 μm, more preferably about 25 μm to about 100 μm, and even more preferably 30 μm to 70 μm. about. Here, when one light is incident on one end portion of one of the plurality of core portions 141 and 142 of the optical waveguide 1 shown in FIG. 1, the intensity distribution of the outgoing light at the other end portion is obtained. At Ρ 1, the intensity distribution exhibits a characteristic distribution. Fig. 2 is a view showing the intensity distribution Ρ1 of the outgoing light when the light is incident on the core portion ι 41 of the optical waveguide 1 shown in Fig. 1 to indicate the width of the exit side end face of the core layer 13 on the horizontal axis. A diagram showing an example of the intensity distribution when the intensity of the light is extracted on the vertical axis at the position of the direction. When light is incident on the core portion 141 (CH1), the intensity of the emitted light becomes maximum at the center portion of the exit end of the core portion 141. Further, as the intensity of the emitted light becomes smaller as it is away from the central portion of the core portion 141, a small value is locally taken in the core portion 142 (CH2) adjacent to the core portion 141. That is, the intensity distribution Ρ1 of the emitted light at this time takes the maximum value Pml at the center 11 201227021 nuuiopif portion of the exit end of the core portion 141 (CH1), and takes the minimum value Ps1 at the core portion 142 (CH2). According to the optical waveguide tube having the intensity distribution of the emitted light, it is impossible to prevent the total light leakage in the core portion 141 from leaking, but the leakage light is prevented from being concentrated on the core portion 142', so that the leakage light can be surely suppressed from interfering with the core portion. 142 "crosstalk". As a result, the optical waveguide 1 can surely prevent the occurrence of crosstalk by multi-channelization and high density. Further, in the former optical waveguide, in the core portion adjacent to the core portion into which the light is incident, the intensity distribution P1 of the emitted light does not take a minimum value but takes a maximum value. This maximum value is the crosstalk in which the crosstalk optical signal interferes with the optical signal originally propagating in the core. The interference of such an optical signal causes a problem that the optical communication quality in the optical waveguide is significantly lowered. On the other hand, in the optical waveguide of the present invention, since the intensity distribution P1 of the light emitted from the adjacent core portion 142 (CH2) as described above takes a minimum value Ps1, the crosstalk as described above is suppressed. As a result, an optical waveguide i capable of achieving high-quality optical communication is obtained in accordance with the present invention. Further, the optical waveguide 1 which exhibits the intensity distribution ρ of the outgoing light as described above has the advantage of suppressing the propagation loss and the retardation of the pulse signal, in addition to the suppression of the crosstalk as described above. Further, in the intensity distribution P1 of the emitted light, it is preferable to reflect a distribution in which the leaked light of the core portion 141 (CH1) is not concentrated on the core portion 142 (CH2) but concentrated on the core portion 142. The side surface portion 153 (CL2) is located on the side opposite to the core portion 142. That is, the intensity distribution P1 of the outgoing light is preferably a minimum value Ps1 in the core portion 142 (CH2) as described above, and a maximum value Pm2 12 201227021 40018pif is taken as the cloth in the side cladding portion 153 (CL2). The optical waveguide i having the intensity distribution pi of such emitted light is prevented from being concentrated on the side surface portion 153' by the leakage light from the core portion 141 which is not completely prevented, so that the concentration of the leaked light of the core portion 142 can be prevented. As a result, the optical waveguide 1 which can suppress crosstalk more surely is obtained. Further, in this case, when the maximum value Pml in the above-described core portion 141 (cm) is used as the reference, the maximum value Pm2 in the side surface covering portion 153 (CL2) and the minimum value Psi in the core portion 142 (CH2) The intensity difference is preferably about 3 dB to 20 dB, more preferably about 5 dB to 15 dB. If the intensity difference between the maximum value pm2 and the minimum value Psl is within the above range, the occurrence of crosstalk in the core portion 142 is surely prevented, so that the optical waveguide 1 becomes an optical waveguide capable of performing higher quality optical communication. Further, the maximum value pm2 in the side surface portion 153 (CL2) with respect to the maximum value Pm in the core portion 141 is preferably about _6 〇 dB to -20 dB, more preferably about -50 dB to -30 dB. If the intensity of the maximum value pm2 is within the above range, the intensity of the minimum value Psl is optimized according to the intensity of the maximum value pm2, and the generation of crosstalk in the core portion 142 is more surely prevented. In addition, when the intensity of the maximum value Pm2 is smaller than the lower limit value described above, the above-described action of concentrating the leaked light on the side surface covering portion 153 is insufficient, and there is a concern that the crosstalk cannot be sufficiently suppressed. On the other hand, the maximum value is When the intensity of pm2 is higher than the above upper limit value, the excessive leakage light is concentrated on the side surface portion 153, and there is a concern that the end portion on the emission side interferes with the normal light coupling between the core portions 141 and 142 and the light receiving element. Further, when the difference between the maximum value Pm2 in the side cladding portion 153 (CL2) and the minimum value Ps1 in the core portion 142 (CH2) is gl, and 13 201227021 40018pif is observed in the core portion 141 (CHI) When the intensity difference between the intensity of the obtained optical signal and the minimum value Psl in the core portion 142 (CH2) is set to g2, gl/g2 preferably satisfies the relationship of 0.05 to 0.5, and more preferably satisfies the relationship of 0.1 to 0.4. This makes it possible to more reliably balance the reduction in transmission loss, the decrease in the delay of the pulse signal, and the suppression of crosstalk. Further, when gl/g2 is lower than the lower limit value, since the height of the maximum value Pm2 is too low, there is a concern that crosstalk cannot be sufficiently suppressed. On the other hand, when gl/g2 is higher than the above upper limit value, excessive leakage light is concentrated on the side cladding portion 153, and there is a concern that the end portion on the emission side interferes with the normal light coupling of the core portions 141 and 142 and the light receiving element. . Further, the intensity distribution P1 of the emitted light may be a shape that changes discontinuously, and is preferably a shape that changes continuously. If the intensity distribution P1 of the outgoing light is such a shape, the occurrence of crosstalk can be more surely prevented. Further, as described above, the width of the core portion 14 is preferably about 2 μm to 2 μm, and the leakage light is concentrated on the side surface portion 153 by setting the width of the core portion 14 to the above range. The effect becomes necessary and sufficient, and the generation of crosstalk can be suppressed more surely. Further, the intensity distribution ρι of the outgoing light as described above can be obtained as follows. Fig. 3 is a view for explaining a method of measuring the intensity distribution of the outgoing light in the exit side end surface of the optical waveguide. In the method shown in Fig. 3, first, the incident side optical fiber 21 having a diameter of 5 〇 μΠΐ is disposed so as to face the core portion 14 of the incident side end surface la of the optical waveguide tube to be measured. The incident side optical fiber 21 is connected to a light-emitting element (not shown) that emits light to the optical waveguide 1 by using 14 201227021 40018pif, and is disposed so as to coincide with the optical axis of the core portion 14. On the other hand, on the other hand, on the other hand, the exit side optical fiber 22 having a diameter of 62.5 μm is disposed so as to face the end face of the light guide tube i. The out-side optical fiber 22 is connected to a light-receiving element (not shown) for receiving the emission from the optical waveguide, and its optical axis coincides with the center line of the thickness of the core layer of the optical waveguide =. Further, the exit-side optical fiber 22 is configured to maintain a constant distance from the exit pupil side surface = lb, and to scan the incident light including the center line from the incident side optical fiber 21 to the core portion. The exit side fiber 22 is scanned. Further, the intensity distribution P1 of the position of the outgoing light on the exit-side end face lb can be obtained by the intensity of the outgoing light measured by the phase-receiving light of the exit-side optical fiber 22. Here, the optical phase exhibiting the intensity distribution ρι of the outgoing light as described above is formed by forming a region including the refractive index eight and a lower region in the width direction of the core layer 13 and continuously changing the refractive index. The refractive index ^ W is obtained. That is, the intensity distribution pj of the above-mentioned outgoing light can be observed in the 'optical waveguide having the shape of the refractive index distribution w'. Hereinafter, an example of the refractive index distribution w will be described. Table factory = 4 (a) is a cross-sectional view taken along the line x_x shown in Fig. 1, and Fig. 4 is a cross-sectional view taken on the line XX, the center of the thickness of the core layer on the horizontal axis, the position on C1, and the longitudinal direction The refractive index of the refractive index on the axis is divided into a graph of an example. The core layer 13 has in its width direction as shown in FIG. 4(b) including * 15 201227021. *tuuiopif minimum values Wsl, Ws2, Ws3, Ws4 and 5 maxima Wml, Wm3 'Wm4, Wm5 Refractive index distribution W. In addition, among the five maximum values, there are relatively large maximum values of the refractive index (first maximum value) Wm2, Wm4, and relatively small maximum values of the refractive index (second maximum value)

Wml、Wm3、Wm5。 其中’在極小值Wsl與極小值Ws2之間以及極小值 Ws3與極小值Ws4之間分別存在折射率的相對較大的極大 值Wm2以及Wm4 ’此外的極大值Wmh wm3以及Wm5 分別為折射率的相對較小的極大值。 而且分別為,極小值Wsl位於側面彼覆部151與芯部 141的邊界線上,極小值Ws2位於芯部141與側面彼覆部 152的邊界線上,極小值Ws3位於側面彼覆部152與芯部 142的邊界線上’且極小值Ws4位於芯部142與側面披覆 部153的邊界線上。 另外,極大值Wm2、Wm4較佳為位於芯部141、142 的中心部’另一方面’極大值Wml、Wm3、Wm5較佳為 位於側面披覆部151、152、153的中心部。 即’折射率分布W只要至少具有第2極大值、極小值、 第1極大值、極小值、第2極大值以該順序排列的區域即 可。此外’該區域是根據芯部的數量而重複設置,於如本 實施形態所示芯部14為2個的情洸,折射率分布w只要 是如下形狀即可,該形狀中,以第2極大值、極小值、第 1極大值、極小值、第2極大值、極小值、第1極大值、 極小值、第2極大值的方式,極大值與極小值交替排列, 201227021 HWlOpif 且關於極大值是第i極大值與第2極大值交替排列。 另外’ °亥些多個極小值、多個第1極大值、以及多個 第2極大值分別較佳為相互大致相同的值,但只 小值小於第1極大值或第2極大值,且第2極大值小 1極大值的關係,則相互的值财偏差亦無妨。於 偏差量較佳為㈣在多個極小_平均值的10%以内1 ’ 另外,光導波管1形成為細長的帶狀,如上 射率分布W是在光導絲i的储方向㈣ ^ 同的分布。 了八双相 此處,4個極小值偏、Ws2、Ws3、Ws4 接的側面披覆部15中的平均折射率WA。藉此,在各j 14與各侧面彼覆部15之間存在折射率_面披覆部^的 平均折射率WA更小的區域。其結果為,於各極小值_、Wml, Wm3, Wm5. Wherein 'the relatively large maximum value Wm2 and Wm4' between the minimum value Wsl and the minimum value Ws2 and between the minimum value Ws3 and the minimum value Ws4, respectively, the maximum values Wmh wm3 and Wm5 are refractive indices, respectively. Relatively small maximum. Further, the minimum value Ws1 is located on the boundary line between the side surface portion 151 and the core portion 141, and the minimum value Ws2 is located on the boundary line between the core portion 141 and the side surface portion 152, and the minimum value Ws3 is located on the side surface portion 152 and the core portion. The boundary line 142 of 142 and the minimum value Ws4 are located on the boundary line between the core portion 142 and the side cladding portion 153. Further, the maximum values Wm2 and Wm4 are preferably located at the center portions of the core portions 141 and 142. On the other hand, the maximum values Wml, Wm3, and Wm5 are preferably located at the center portions of the side cladding portions 151, 152, and 153. That is, the refractive index distribution W may have at least a region in which the second maximum value, the minimum value, the first maximum value, the minimum value, and the second maximum value are arranged in this order. In addition, the area is repeatedly provided according to the number of cores. As shown in the present embodiment, the number of the core portions 14 is two, and the refractive index distribution w may be any shape as long as the second maximum Value, minimum value, first maximum value, minimum value, second maximum value, minimum value, first maximum value, minimum value, second maximum value, the maximum value and the minimum value are alternately arranged, 201227021 HWlOpif and about the maximum value It is the ith maximum and the second maximum are alternately arranged. Further, the plurality of minimum values, the plurality of first maximum values, and the plurality of second maximum values are preferably substantially the same value, but only the small value is smaller than the first maximum value or the second maximum value, and The relationship between the second maximum value and the small maximum value may be mutually different. Preferably, the amount of deviation is (4) within 10% of the plurality of minimum _ average values 1 '. In addition, the optical waveguide 1 is formed in an elongated strip shape, and the above-described irradiance distribution W is in the storage direction of the optical guide wire i (4) distributed. Eight double phases Here, the average refractive index WA in the side cladding portion 15 of the four minimum values, Ws2, Ws3, and Ws4. Thereby, a region where the average refractive index WA of the refractive index-face coating portion is smaller between each of the j 14 and each of the side surface portions 15 is present. The result is that each minimum value _,

Ws3、Ws4的附近形成更急峻的折射率的梯度,藉 此’光自各怒部14中的汽漏得到抑制, ^ 小且在寬度方向均制㈣產生的料波管^傳⑹貝耗 另外,折射率分布W在錢上折射率連 :封=?:射率型折射率分布的光導波管相比,‘ 先封入心。卩14巾的侧更增強,因 步減少以及㈣產生的進—步抑^見傳糾耗的進一 進而’依據不僅具有如上所述的各極小值伽、髮、 =、Ws4 ’而且折射率連續變化⑽射率分布w,則於 4 14的更接近中心部的區域集中地傳 卷 光程的傳播時間難以產生差。因、 U此,即便於傳送光包含脈 17 201227021 40018pif 兄’亦可抑制脈衝信號的遲鈍(脈衝信號的擴 政)。其、4為’獲得可更提高紐信品質的光導波管i。 ,此外’所Μ折射率分布w中折射率連續變化,是指折 射率分布W的曲線在各部帶有_,且該 的狀態。 一另外,折射率分布界中,極大值|1112、”1114如圖4 所示位於芯部141、142,較佳為在芯部141、142中亦位 於其寬度的中心部。藉此,各芯部14卜142中,傳送光集 中於芯部14卜142的寬度的中心部的機率提高,相對而言 漏出至側面坡覆部15卜152、153的機率降低。其結果為, 可更減少芯部14卜142的傳送損耗’並且可更抑制串擾。 此外,所謂芯部141的寬度的中心部,是指自極小值 Wsl與極小值ws2的中點向兩側,芯部141的寬度的30% 的距離的區域。 另外,極大值Wm2、Wm4的位置較理想為儘可能位 於芯部141、142的寬度的中心部,但亦可未必為中心部, 只要位於芯部141、142的邊緣部附近(與各側面彼覆部 151、152、153的界面附近)以外即可。 此外,所謂芯部141的邊緣部附近’是指自上述邊緣 部向内側,芯部141的寬度的5%的距離的區域。 另一方面,折射率分布W中,極大值Wml、Wm3、 Wm5如圖4(b)所示位於側面披覆部I51、152、153中, 但特佳為位於侧面披覆部151、152、153的邊緣部附近(與 芯部14卜142的界面附近)以外。藉此’芯部14卜142 18 201227021 40018pif 中的極大值Wm2、Wm4與側面彼覆部151、152、153中 的極大值Wml、Wm3、Wm5變得相互充分疏離,因此可 充分降低芯部141、142中的傳送光漏出至側面坡覆部 151、152、153中的機率。其結果為,可減少芯部ι41、142 的傳送損耗,並且更抑制串擾。 此外’所明側面彼覆部151、152、153的邊緣部附近, 是指自上述邊緣部向内侧,側面披覆部151、152、153的 寬度的5%的距離的區域。 另外’較佳為,極大值Wml、Wm3、Wm5位於側面 披覆部151、152、153的寬度的中央部,而且自極大值 Wml、Wm3、Wm5朝向所鄰接的極小值Wu、Ws2、Ws3、A more steep gradient of the refractive index is formed in the vicinity of Ws3 and Ws4, whereby the light is suppressed from the steam leak in each of the anger portions 14, and the small amount of the wave tube generated in the width direction (4) is transmitted (6). The refractive index distribution W is proportional to the refractive index of the money: the sealing =?: compared to the optical waveguide of the radiance-type refractive index distribution, 'first sealed into the heart. The side of the 卩14 towel is more enhanced, the step is reduced, and (4) the resulting step-by-step suppression is further improved. According to the not only the minimum values of gamma, hair, =, Ws4' as described above, but also the refractive index is continuous. When the variation (10) of the irradiance distribution w is made, it is difficult to cause a difference in the propagation time of the optical path length in the region closer to the central portion of 414. Because of this, U can suppress the sluggishness of the pulse signal (expansion of the pulse signal) even if the transmitted light contains the pulse 17 201227021 40018pif brother. And 4 is 'to obtain an optical waveguide i that can improve the quality of the new letter. Further, the refractive index continuously changes in the refractive index distribution w of the enthalpy, which means that the curve of the refractive index distribution W has _ in each portion, and this state. Further, in the refractive index distribution, the maximum value |1112"1114 is located in the core portions 141, 142 as shown in Fig. 4, and is preferably located at the center portion of the width of the core portions 141, 142. In the core portion 142, the probability that the transmitted light concentrates on the center portion of the width of the core portion 142 is increased, and the probability of leaking to the side slope portion 15 152, 153 is relatively lowered. As a result, it can be further reduced. The transmission loss of the core portion 14 142 can further suppress the crosstalk. Further, the center portion of the width of the core portion 141 means the width from the midpoint of the minimum value Ws1 and the minimum value ws2 to both sides, and the width of the core portion 141. Further, the positions of the maximum values Wm2 and Wm4 are preferably located at the center of the width of the core portions 141, 142 as much as possible, but may not necessarily be the center portion as long as they are located at the edges of the core portions 141, 142. The vicinity of the portion (near the interface between the respective side surface portions 151, 152, and 153) may be referred to as "the vicinity of the edge portion of the core portion 141", which means that the width of the core portion 141 is 5% from the edge portion toward the inner side. The area of the distance. On the other hand, the refractive index distribution is extremely large. Wml, Wm3, and Wm5 are located in the side cladding portions I51, 152, and 153 as shown in Fig. 4(b), but are particularly preferably located near the edge portions of the side cladding portions 151, 152, and 153 (with the core portion 142). In addition, the maximum values Wm2, Wm4 in the core portion 14 142 18 201227021 40018pif and the maximum values Wml, Wm3, Wm5 in the side surface portions 151, 152, 153 are sufficiently alienated from each other, The probability that the transmitted light in the core portions 141, 142 leaks into the side slope portions 151, 152, 153 can be sufficiently reduced. As a result, the transmission loss of the core portions ι 41, 142 can be reduced, and crosstalk can be further suppressed. The vicinity of the edge portion of the bright side surface portions 151, 152, and 153 means a region having a distance of 5% of the width of the side surface covering portions 151, 152, and 153 from the edge portion to the inner side. The values Wml, Wm3, and Wm5 are located at the central portion of the width of the side cladding portions 151, 152, and 153, and are directed toward the adjacent minimum values Wu, Ws2, and Ws3 from the maximum values Wml, Wm3, and Wm5.

Ws4,折射率連續降低。藉此,最大限度地確保芯部141、 142中的極大值Wm2、Wm4與側面披覆部15卜152、153 中的極大值Wml、Wm3、Wm5的間隔距離,而且可於極 大值Wml、Wm3、Wm5附近確實地封入光,因此可更確 實地抑制上述傳送光自芯部141、142中的漏出。 進而’由於極大值Wm卜Wm3、Wm5與上述位於芯 部14卜142的極大值Wm2、Wm4相比,是折射率的較小 極大值,故而雖不具有如芯部141、142那樣的高光傳送 性,但與周圍相比折射率較高,因此具有少許的光傳送性。 其結果為’側面披覆部15卜152、153藉由封入自芯部141、 142中漏出的傳送光而具有防止波及其他芯部的作用。 即’藉由存在極大值Wml、Wm3、Wm5,可更確實地抑 制串擾。 19 201227021 此外,極小值Wsl、Ws2、Ws3、Ws4如上所述小於 鄰接的侧面彼覆部15的平均折射率WA,該差較理想為在 規定的範圍内。具體而言,極小值Wsl、Ws2、Ws3、Ws4 與側面彼覆部15的平均折射率WA的差較佳為極小值Ws4, the refractive index continuously decreases. Thereby, the maximum distance Wm2, Wm4 in the core portions 141, 142 and the maximum values Wml, Wm3, Wm5 in the side cladding portions 15 152, 153 are maximized, and the maximum values Wml, Wm3 can be obtained. Since light is reliably enclosed in the vicinity of Wm5, leakage of the above-mentioned transmitted light from the core portions 141, 142 can be more reliably suppressed. Further, since the maximum value Wm Bu Wm3 and Wm5 are smaller than the maximum values Wm2 and Wm4 located in the core portion 142, the refractive index is small, and therefore does not have high-light transmission such as the core portions 141 and 142. Sexuality, but higher refractive index than the surrounding, so it has a little light transmission. As a result, the side covering portions 15 152 and 153 function to prevent the other core portions from being transmitted by enclosing the transmitted light leaked from the core portions 141 and 142. That is, by having the maximum values Wml, Wm3, Wm5, crosstalk can be more reliably suppressed. 19 201227021 Further, the minimum values Wsl, Ws2, Ws3, and Ws4 are smaller than the average refractive index WA of the adjacent side surface portions 15 as described above, and the difference is desirably within a predetermined range. Specifically, the difference between the minimum values Ws1, Ws2, Ws3, and Ws4 and the average refractive index WA of the side surface portion 15 is preferably a minimum value.

Wsl、Ws2、Ws3、Ws4 與芯部 141、142 中的極大值 Wm2、The maximum value Wm2 in Wsl, Ws2, Ws3, Ws4 and cores 141, 142

Wm4的差的3%〜80%左右’更佳為5%〜5〇%左右,尤佳 為7%〜20%左右。藉此,側面披覆部15具有對抑制串擾 而言所必需且充分的光傳送性。此外,於極小值Wsl、 Ws2、Ws3、Ws4與侧面披覆部15的平均折射率WA的差 低於上述下限值的情況,侧面彼覆部15中的光傳送性過 小,存在無法充分抑制串擾的顧慮,於高於上述上限值的 情況,側面彼覆部15中的光傳送性過大,存在對芯部14卜 142的光傳送性造成不良影響的顧慮。 另外,極小值Ws卜Ws2、Ws3、Ws4與極大值Wml、 Wm3、Wm5的差較佳為極小值Wu、Ws2、Ws3、Ws4與 極大值Wm2、Wm4的差的6%〜90%左右,更佳為1〇%〜 70%左右,尤佳為14%〜40°/◦左右。藉此,側面披覆部15 中的折射率的高度與芯部14中的折射率的高度的平衡得 以最佳化,光導波管1不僅具有特別優異的光傳送性,而 且可更確實地抑制串擾。 此外’極小值Ws卜Ws2、Ws3、Ws4與芯部14卜142 中的極大值Wm2、Wm4的折射率差以儘可能大為佳,較 佳為0.005〜0.07左右’更佳為〇·007〜〇 〇5左右,尤佳^ 0.01〜0.03左右。藉此,上述折射率差對將光封入芯部 20 201227021 40018pifThe difference of Wm4 is about 3% to 80%, and it is preferably about 5% to 5%, and particularly preferably about 7% to 20%. Thereby, the side cladding portion 15 has sufficient light transmission property necessary for suppressing crosstalk. Further, when the difference between the minimum values Ws1, Ws2, Ws3, and Ws4 and the average refractive index WA of the side cladding portion 15 is lower than the above lower limit value, the light transmittance in the side surface portion 15 is too small, and it is not sufficiently suppressed. The crosstalk is higher than the above upper limit value, and the light transmission property in the side surface portion 15 is excessively large, which may adversely affect the optical transmission property of the core portion 142. Further, the difference between the minimum values Wsb, Ws2, Ws3, and Ws4 and the maximum values Wml, Wm3, and Wm5 is preferably about 6% to 90% of the difference between the minimum values Wu, Ws2, Ws3, and Ws4 and the maximum values Wm2 and Wm4. It is about 1%~70%, especially about 14%~40°/◦. Thereby, the balance between the height of the refractive index in the side cladding portion 15 and the height of the refractive index in the core portion 14 is optimized, and the optical waveguide 1 not only has particularly excellent light transmission property but also can be more reliably suppressed. Crosstalk. Further, the refractive index difference between the minimum values Wsb Ws2, Ws3, Ws4 and the maximum values Wm2, Wm4 in the core portion 14 142 is preferably as large as possible, preferably about 0.005 to 0.07'. More preferably 〇·007~ 〇〇 5 or so, especially good ^ 0.01 ~ 0.03 or so. Thereby, the above refractive index difference is used to seal the light into the core 20 201227021 40018pif

141、142中而言為必需且充分Q 另外’芯部14卜142中的折射率分布w如圖4 (b) 所示,當於橫軸上取芯層13的橫截面的位置,且於縱軸上 取折射率時,若於極大值Wm2附近以及極大值Wm4附近 為折射率連續變化的形狀,則可形成向上凸起的大致V字 狀(極大值以外為大致直線狀),較佳為形成向上凸起的大 致u字狀(極大值附近整體帶有圓形)。若折射率分布w 形成如上所述的形狀,則芯部141、142中的光的封入作用 變得更顯著。 另外,折射率分布w如圖4 (b)所示,若於極小值 Wsl附近、極小值Ws2附近、極小值Ws3附近以及極小 值Ws4附近為折料連續變化的形狀’則可職向下凸起 的大致V字狀(極大值以外為大致直線狀),較佳為形成 向下凸起的大致U字狀(極大值附近整體帶有圓形 另外’圖4⑻所示的折射率分布%中,當將侧面 披覆部15巾的平均折射率設為WA時,將極大值以⑽、 Wm4附近的折射率連續且為平均折射率wa以上的部分 的寬度設為a—,縣極小值偏、鬚、、彻 附近的折射率連續且小於平均折射率職的部分的寬度設 為。此時,b較佳為0施〜1.2a左右,更佳為〇又咖 〜la左右’尤佳為〇.la〜G8a左右。藉此,極小值_、 Ws2、WS3、Ws4 寬度對於發揮上述侧、效果而 ,為必力且充分。# ’於b低於上述下限值的情況,極小 值觀、Ws2、Ws3、Ws4的實y寬度解,因此有將光 21 201227021 =入芯部14卜142中的作用降低的顧慮。另—方面,於b 冋=上述上限值的情況,極小值Wsl、Ws2、、W斜 的實質寬度過寬’因此芯部⑷、142的寬度或間距受到限 制,存在傳送效率降低或妨礙多通道化以及高密度化的顧 慮。 此外,側面披覆部15中的平均折射率WA可在極大 值Wml與極小值Wsl的中點近似。 另外’各極大值 Wml、Wm2、Wm3、 分別如上所述可為向上凸起的A致u字狀,亦可在頂部附141, 142 is necessary and sufficient Q. Further, the refractive index distribution w in the core portion 142 is as shown in FIG. 4(b), when the cross-section of the core layer 13 is taken on the horizontal axis, and When the refractive index is taken on the vertical axis, if the refractive index continuously changes in the vicinity of the maximum value Wm2 and in the vicinity of the maximum value Wm4, it is possible to form an upwardly convex substantially V-shape (a substantially linear shape other than the maximum value), and it is preferable. To form an upwardly convex substantially u-shaped shape (with a circular shape as a whole in the vicinity of the maximum value). When the refractive index distribution w is formed into the shape as described above, the encapsulation of light in the core portions 141, 142 becomes more remarkable. Further, as shown in FIG. 4(b), the refractive index distribution w is a downwardly convex shape if the shape of the refractive material continuously changes in the vicinity of the minimum value Ws1, the vicinity of the minimum value Ws2, the vicinity of the minimum value Ws3, and the minimum value Ws4. It is substantially V-shaped (substantially linear except for the maximum value), and is preferably formed in a substantially U-shape that is convex downward (the whole of the maximum value is rounded in addition to the refractive index distribution % shown in Fig. 4 (8). When the average refractive index of the side covering portion 15 is WA, the width of the portion where the maximum value is continuous in the vicinity of (10) and Wm4 and the average refractive index wa or more is a-, the minimum value of the county is small. The width of the portion in which the refractive index is continuous and less than the average refractive index is set. In this case, b is preferably 0 to 1.2a, and more preferably 〇 咖 〜 〜 〜 〜 〜 〇.la~G8a. By this, the minimum value _, Ws2, WS3, and Ws4 widths are sufficient for the above-mentioned side and effect. # ' When b is lower than the lower limit value, the minimum value view , Ws2, Ws3, Ws4 real y width solution, so there will be light 21 201227021 = into the core 14 In the case of b 冋 = the above upper limit value, the substantial widths of the minimum values Wsl, Ws2, and W are too wide 'so the width or spacing of the cores (4), 142 is limited. There is a concern that the transfer efficiency is lowered or the multi-channelization and the high density are hindered. Further, the average refractive index WA in the side cladding portion 15 can be approximated at the midpoint of the maximum value Wml and the minimum value Wsl. , Wm2, Wm3, respectively, may be upwardly convex A-shaped as described above, or may be attached at the top

近包含折料實質上㈣化的平坦部。即便折料分布W 在各極大值的頂部附近形成此種形狀,本發 亦發揮如上所述的作用、效果。此處,所謂折射 不變化的平坦部,是指折射率的變動小於α刪的區域, 且為於其兩側,折射率連續降低的區域。 平坦部的長度並無特別限定,較佳為設為100 μιη以 下’更佳為設為20 μιη以下,尤佳為設為1〇卿以下。 、另外,本實施形態中,已對包含披覆層η、芯層13 以及被覆層12的積層體的光導波管1進行制,但該些亦 可一體地形成。 一 、另外,本實施形態中,已對芯層13具有2個芯部14 的情況進行說明,但芯部14的數量並無特別限定 3個以上。 口另外,於芯部14的數量增加至3、4、5……的情況, 、要與此對應將折射率分布w所具有的極小值的數量增 22 201227021 HUUiopif 力口至6、8、10......即可。 如上所述的芯層13的構成材料(主材料)只要是產生 上述折射率差的材料,則並無特別限定,具體而言,除了 如丙烯酸系樹脂、甲基丙烯酸系樹脂、聚碳酸酯 (polycarbonate )、聚苯乙稀(p〇iyStyrene )、環氧(ep〇Xy ) 系樹脂或氧雜環丁烷(oxetane)系樹脂等環狀醚系樹脂, 聚醯胺(polyamide)、聚醯亞胺(polyimide)、聚苯并噁唑 (polybenzoxazole )、聚石夕烧(p〇iySiiane )、聚石夕氣烧 (polysilazane)、矽酮(silicone)系樹脂、氟系樹脂、聚 石夕烧、聚胺基曱酸酯(P〇lyUrethane )、以及苯并環丁烯 (benzocyclobutene)系樹脂或降冰片烯(n〇rb〇rnene)系 樹脂荨環狀稀fe糸樹脂之類的各種樹脂材料以外,可使用 如石英玻璃、硼矽酸玻璃之類的玻璃材料等。此外,樹脂 材料可為將不同組成的樹脂組合而成的複合材料,亦可含 有未聚合的單體。 另外,該些材料中,特佳為降冰片烯系樹脂。降冰片 烯系聚合物例如可利用開環複分解聚合(Ring_〇peningThe flat portion including the substantially (four) folding material is included. Even if the folding distribution W forms such a shape in the vicinity of the top of each maximum value, the present invention exerts the above-described effects and effects. Here, the flat portion where the refractive index does not change means a region in which the refractive index fluctuates less than α-deleted, and is a region in which the refractive index continuously decreases on both sides. The length of the flat portion is not particularly limited, but is preferably 100 μm or less, more preferably 20 μm or less, and particularly preferably 1 or less. Further, in the present embodiment, the optical waveguide 1 including the laminate η, the core layer 13, and the laminate 12 is laminated, but these may be integrally formed. In the present embodiment, the case where the core layer 13 has the two core portions 14 has been described. However, the number of the core portions 14 is not particularly limited to three or more. In addition, in the case where the number of the cores 14 is increased to 3, 4, 5, ..., the number of minimum values of the refractive index distribution w is increased by 22 201227021 HUUiopif force to 6, 8, 10 ...just. The constituent material (main material) of the core layer 13 as described above is not particularly limited as long as it is a material that causes the above-described refractive index difference, and specifically, except for, for example, an acrylic resin, a methacrylic resin, or a polycarbonate ( Polycarbonate, polyphenylene (p〇iyStyrene), epoxy (ep〇Xy) resin, or oxetane resin, etc., cyclic ether resin, polyamide, poly Polyimide, polybenzoxazole, p〇iySiiane, polysilazane, silicone resin, fluorine resin, polystone, Other than various resin materials such as polyfluorenyl phthalate (P〇lyUrethane) and benzocyclobutene-based resin or norbornene (n〇rb〇rnene) resin 荨 ring-shaped rare 糸 resin A glass material such as quartz glass or borosilicate glass can be used. Further, the resin material may be a composite material in which resins of different compositions are combined, and may also contain unpolymerized monomers. Further, among these materials, a norbornene-based resin is particularly preferred. Norbornene The olefinic polymer can be, for example, subjected to ring opening metathesis polymerization (Ring_〇pening)

Metathesis Polymerization,ROMP)、ROMP 與氫化反應的 組合、利用自由基或者陽離子的聚合、使用陽離子性把聚 合起始劑的聚合、使用其以外的聚合起始劑(例如鎳或其 他過渡金屬的聚合起始劑)的聚合等公知的所有聚合方法 來獲得。 Λ 口 (披覆層) 披覆層11及披覆層12分別構成位於芯層的下部以 23 201227021 40018pif 及上部的被覆部。 披覆層11、12的平均厚度較佳為芯層13的平均厚度 (各芯部14的平均高度)的〇丨倍〜15倍左右,更佳為 0.2倍〜1.25倍左右,具體而言,披覆層丨1、12的平均^ 度並無特別限定,分別為通常較佳為丨μιη〜3〇〇 左右, 更佳為5μιη〜200μιη左右,尤佳為10μιη〜1〇〇μιη左右。 藉此,防止光導波管1過度地大型化(厚膜化),並且適當 發揮作為披覆部的功能。 另外,披覆層11及披覆層12的構成材料例如可使用 與^述芯層13的構成材料相同的材料,但特佳為降冰片烯 系聚合物。 另外,於選擇芯層13的構成材料以及披覆層u、12 的構成材料的情況,只要考慮到兩者之間的折射率差來選 擇材料即可。具體而言,為了在芯部14與披覆層η、12 的邊界使光確實地反射,只要以芯部14的構成材料的折射 率變得賴大的方式材料即可。藉此,於光導皮管i =厚度方向上獲得充分的折射率差,可抑制光自各芯部Μ 中漏出至披覆層11、12。 此外,就抑制光的衰減的觀點而言,亦重要的是父層 成材料與披覆層1卜12的構成材料的密著性(親 另外’披覆層1卜12尸、要視需要來設置即可,可省略 兩者。於此情況’芯層13的表面露出於大 虱(工軋)中,但由於空氣的折射率足夠低,故而該空氣 24 201227021 可代替被覆層11、12的功能。 (支持膜) 於光導波管1的下表面,可視需要而積層如 的支持膜2。 巧不 +支持膜2純光導波管1的下表面來進行保護、增強。 藉此’可提高光導波管!的可靠性以及機械特性。 / 乍為此種支持膜2的構成材料,例如除了如聚對苯二 甲酸乙二酯(P〇lyethylene terephthalate,ρΕτ)、聚乙了 聚^婦之類的聚稀烴,聚醯亞胺、聚酿胺等各種樹脂材料 以外,可列舉銅、銘、銀等金屬材料。此外,於金屬材斜 的情況,較佳為使用金屬箔作為支持膜2。 〃 ’ 另外^持膜2的平均厚度並無特別限定,較佳為&gt; 膜2 ^ ’更佳為1〇卿〜100叫左右。藉此,支持 膑八有適度的剛性’因此禮實地支持光導波管卜 變待難以阻礙光導波管丨的柔軟性。 ' 此外,支持膜2與光導波管!之間被黏 其方=列舉熱祕、利用接著劑或者黏 接著劑、刪接著劑以外,可列舉 ,系、改質稀烴系)等。另外,較佳為使用: 、聚醯亞胺醯胺、聚酿亞胺醯胺醚、料 醯亞胺_熱塑性魏亞胺接u 著劑二包含此種材料的接著層比較富有柔:特= 光導波官1的形狀變化’亦可自由地追從該變化。其結果 25 201227021 40018pif 為’可確實,止伴隨形狀變化的剝離。 此種接著層的平均厚度並 限定,較 100 μιη左右,更佳兔ς μ μ 又住為5 μιη〜6〇μπι左右。 (覆蓋膜) 另一方面’於光導波管1的上表面,可視需要而積肩 如圖1所示的覆蓋膜3。 “覆蓋膜2保遵料波管卜皿自上方支持光導波窄 」措^ ’保護光導奸1免受污垢或傷痕等的影響,可者 南光導波管*1的可靠性以及機械特性。 此種覆蓋膜3的構成材料是與支持膜2的構成材料才 =例如除了如聚對苯二f酸乙二自旨(ρΕτ)、聚乙稀、吳 ’之類的聚婦煙’聚酿亞胺、聚醯胺等各種樹脂材料 列舉銅、紹、銀等金屬材料。此外,於金屬材料白 使用金心作為覆蓋膜3。另外,於在光^ 二#的中途械鏡片的情況,由於光穿透覆蓋膜3,因^ 覆盍膜3的構成材料較佳為實質上為透明。 另外,覆蓋膜3的平解度絲制蚊,較佳為3叫 3的Ζ左右更佳為5叫〜30 μΠ1左右。藉由將覆蓋港 的井為上述範圍内,覆蓋膜3在光通信中具有充必 的剛性。…愈具有為了確實地保護光導波管1而充分 2,覆魏3與光導辭丨之間_接或者接合 呈/ 舉熱塵接、利用接著劑或者黏著劑的黏接等 ,、T,接者劑可使用如上所述的接著劑。 26 201227021 4UU18plf (第2實施形態) 繼而’對本發明的光導波管的第2實施形態進行說明。 圖5是表示本發明的光導波管的第2實施形態(一部 分切口、以及穿透而表示)的立體圖,圖6是表示當對圖 5所示的光導波管的芯部的1個射入光時的出射光的強度 分布的一例的圖。此外’以下說明中,將圖5中的上側稱 為「上」’將下側稱為「下」。另外,圖5是將層的厚度方 向(各圖的上下方向)誇張地描繪。 以下’對光導波管的第2實施形態進行說明,但以與 第1實施形態的不同點為中心進行說明,對同樣的事項省 略其說明。此外’圖5中,關於與第1實施形態相同的構 成部分’標註與先前所說明的部分相同的符號,並省略其 詳細的說明。 第2實施形態除了具有所積層的2層芯層13以外,與 第1貫施形態相同。即,圖5所示的光導波管1是自下侧 起將披覆層11、芯層13、彼覆層121、芯層13、彼覆層 122的5層以該順序積層而成。 其中’於2層的芯層13上,與第1實施形態同樣,在 寬度方向上形成有並列的2個芯部14、及以夾著各芯部14 的方式並列的3個側面坡覆部15。 更詳細而言,圖5所示的2層芯層13中,於下方的怎 層131上交替設置有並列的2個芯部141、142及並列的3 個侧面披覆部151、152、153。另外,藉此,各芯部14卜 142分別成為以各侧面彼覆部151、152、153以及各披覆 27 201227021 40018pif 層11、121所包圍的狀態。 另一方面’於上方的芯層132上亦交替設置有並列的 2個芯部143、144及並列的3個側面披覆部154、155、156。 藉此’各芯部143、144分別成為由各侧面彼覆部154、155、 156以及各披覆層121、122所包圍的狀態。 另外’圖5中’位於各芯層πΐ、132的左側的芯部 141、143分別在光導波管丨的寬度方向上設置於相同的位 置。同樣地’位於各芯層13卜132的右側的芯部142、144 分別在光導波管1的寬度方向上設置於相同的位置。 此處’當對圖5所示的光導波管1的多個芯部141、 142 ' 143、144中所需的1個芯部的端部射入光而取得另 一個端部的出射光的強度分布P2時,其強度分布表現出 特徵性分布。 圖6是當對圖5所示的光導波管1的芯部141射入光 時二表示出射側端面中的出射光的強度分布p2的圖,是 表不當於橫軸上取出射光的強度,且取出射側端面的位置 時的強度分布的一例的圖。 立右對芯部14i (CH1)射入光,則出射光的強度在芯 F 141的出射端的中心部成為最大。而且’隨著自芯部mi 的中Q部遠離,出射光的強度變小,但在與芯部141的厚 度方向相鄰的芯部143 (CH2)中局部地採取較小的值。 即’此時的出射光的強度分布P2在芯部hi (CH1)的出 射端的中心部採取極大值Pml ’且在芯部143 (CH2)中 採取極小值psl。依據出射光具有此種強度分布的光導波 28 201227021 40018pif 官1,雖無法防止在芯部141中傳播的光的完全漏出,但 抑制該漏出光集中於芯部143,因此可確實地抑制漏出光 干,芯部143的「串擾」。其結果為,即便光導波管1不僅 在寬度方向上,而且在厚度方向上亦多通道化以及高密度 化’亦可確實地防止串擾的產生。 、另外,依據表現出如上所述的出射光的強度分布p2 的光導波管1,除了如上所述串擾得到抑制以外,亦具有 傳播損耗以及脈衝信號的遲鈍得到抑制的優點。 另外,該出射光的強度分布P2中,較佳為成為反映 =下情況的分布:芯部141 (CH1)的漏出光並不集中於 芯部143 (CH2),而是集中在與芯部143鄰接且位於與芯 部141相反側的披覆層122。即,出射光的強度分布p2較 佳為如上所述在芯部143 (CH2)中採取極小值Psl,且在 披覆層122(CL2)中採取極大值pm2的分布(參照圖6)。 具有此種出射光的強度分布P2的光導波管丨藉由將無法 π全防止的來自芯部141的漏出光特別集中於彼覆層 122’結果可防止芯部143中的漏出光的集中。其結果為, 獲得在厚度方向上亦可更確實地抑制串擾的光導波管i。 此外於此情況,當以上述芯部141 (CH1)中的極大 值Pml為基準時,披覆層122(CL2)中的極大值pm2與 芯部143 (CH2)中的極小值Psi的強度差較佳為3犯〜 20 dB左右,更佳為5 dB〜15 dB左右。若極大值pm2與 極小值Psl的強度差在上述範圍内,則確實地防止芯部143 中的串擾的產生,因此光導波管1成為可進行更高品質的 29 201227021 光通信的光導波管。 另外’相對於芯部141中的極大值Pmi,披覆層122 (CL2)中的極大值Pm2較佳為_6〇dB〜_2〇犯左右更 佳為-50dB〜-30dB左右。若極大值Pm2的強度在上述範 圍内,則根據極大值pm2的強度,極小值psi的強度得以 最佳化,更確實地防止芯部143中的串擾的產生。此外, 於極大值Pm2的強度小於上述下限值的情況,將漏出光集 中於披覆層122的上述作用變得不充分,存在無法充分抑 制串擾產生的顧慮,另一方面,於極大值pm2的強度高於 上述上限值的情況,過量的漏出光集中於披覆層122,有 在出射側端部中妨礙芯部141、143與受光元件的正常光執 合的顧慮。 另外,當將披覆層122 (CL2)中的極大值pm2與芯 部143 (CH2)中的極小值Psl的強度差設為g3,且將芯 部141( CH1)中所觀測到的光信號的強度與芯部143( CH2 ;) 中的極小值Psl的強度設為g4時,g3/g4較佳為滿足〇.〇5 〜〇_5的關係’更佳為滿足〇1〜〇4的關係。藉此,可使 傳送損耗的減少以及脈衝信號的遲鈍的減少、與串擾的抑 制更確實地並存。此外,於g3/g4低於上述下限值的情況, 由於極大值Pm2的高度過低’故而存在無法充分抑制串擾 的顧慮。另一方面,於g3/g4高於上述上限值的情況,過 量的漏出光集中於披覆層122,有在出射側端部中妨礙芯 部141、143與受光元件的正常光耦合的顧慮。 此外,出射光的強度分布P2可為不連續變化的形狀, 201227021 40018pif 但是較佳為成為連續變化的形狀。若出射光的強度分布p2 為此種形狀’則可更確實地防止串擾的產生。 另外’芯部14的高度如上所述,較佳為設為20 μιη〜 2〇〇 μπι左右,藉由將芯部14的高度設為上述範圍,將漏 出光集中於上述披覆層122的作用成為必需且充分,可更 確實地抑制串擾的產生。 此外,如上所述的出射光的強度分布Ρ2可利用與上 述出射光的強度分布P1相同的方法來取得。 此處,表現出如上所述的出射光的強度分布P2的光 導波管1是藉由在光導波管i的厚度方向上,形成包含折 射率相對較高的區域與較低的區域,且折射率連續變化的 折射率分布T而獲得。即,具有折射率分布τ的形狀的光 導波管1中,可觀測到上述出射光的強度分布Ρ2。 以下,對折射率分布τ的一例進行說明。 圖7 (a)是將圖5所示的γ_γ線剖面圖的一部分切出 的圖,圖7(b)是衫性表示該γ_γ線橫截面的通過芯部 的寬度方向的中心的中心、線C2上的折射率分布τ的一例 的圖此外’圖7 (b)是示意性表示當於橫軸上取折射率 且於縱轴上取橫截面的芯部的厚度方向的位置時的折射 分布的一例的圖。 光導波f 1具有如圖7 (b)所*的包含4個極小值Metathesis Polymerization (ROMP), a combination of ROMP and hydrogenation reaction, polymerization using a radical or a cation, polymerization using a cationic initiator, and polymerization initiators other than the polymerization initiator (for example, nickel or other transition metal) It is obtained by all known polymerization methods such as polymerization of the initiator. Λ (Cover Layer) The cladding layer 11 and the cladding layer 12 respectively constitute a covering portion located at a lower portion of the core layer 23 201227021 40018pif and an upper portion. The average thickness of the cladding layers 11 and 12 is preferably about 1 to 15 times, more preferably about 0.2 to 1.25 times, the average thickness of the core layer 13 (the average height of each core portion 14), more specifically, about 0.2 to 1.25 times. The average degree of the coating layers 丨1 and 12 is not particularly limited, and is usually preferably about 丨μηη~3〇〇, more preferably about 5μηη to 200μιη, and even more preferably about 10μιη to about 1〇〇μιη. Thereby, the optical waveguide 1 is prevented from being excessively enlarged (thickness), and the function as a covering portion is appropriately exhibited. Further, as the constituent material of the coating layer 11 and the coating layer 12, for example, the same material as that of the core layer 13 may be used, but a norbornene-based polymer is particularly preferable. Further, in the case of selecting the constituent material of the core layer 13 and the constituent materials of the cladding layers u and 12, the material may be selected in consideration of the difference in refractive index between the two. Specifically, in order to reliably reflect light at the boundary between the core portion 14 and the cladding layers η and 12, the material may be a material having a large refractive index of the constituent material of the core portion 14. Thereby, a sufficient refractive index difference is obtained in the thickness direction of the photoconductive tube i =, and light leakage from the respective core portions 至 to the cladding layers 11 and 12 can be suppressed. In addition, from the viewpoint of suppressing the attenuation of light, it is also important that the material of the parent layer is adhered to the constituent material of the coating layer 1 (the other is a coating layer 1 12 bodies, depending on the need) The arrangement may be omitted, and in both cases, the surface of the core layer 13 is exposed in the slab (work rolling), but since the refractive index of the air is sufficiently low, the air 24 201227021 can replace the coating layers 11 and 12. Function (support film) On the lower surface of the light guide tube 1, a support film 2 such as a laminate may be laminated as needed. The surface of the pure light waveguide 1 of the film 2 is protected and reinforced. The reliability and mechanical properties of the optical waveguide! / 乍 is the constituent material of the support film 2, for example, except for polyethylene terephthalate (PΕlyethylene terephthalate, ρΕτ), polyglycol Examples of the various types of resin materials, such as a polythene hydrocarbon, a polyimine, and a polyamine, may be metal materials such as copper, indium, and silver. Further, in the case where the metal material is inclined, it is preferable to use a metal foil as the support film 2 〃 ' The average thickness of the film 2 is not Not limited, preferably > film 2 ^ 'better than 1 〇 〜 ~ 100 called around. By this, support 膑 八 has a moderate rigidity 'then politely support the light guide wave tube to be difficult to block the light guide 丨In addition, the support film 2 and the optical waveguide tube are adhered to each other = the heat is used, the adhesive or the adhesive is used, and the adhesive is added, and the modified hydrocarbon system is used. Wait. In addition, it is preferred to use: polyimine amide, styrene amine amide, phthalimide _ thermoplastic Weiimine amide, and the second layer containing the material is more flexible: special = The shape change of the light guide 1 can also freely follow the change. As a result, 25 201227021 40018pif is 'definitely, and the peeling accompanying the shape change is stopped. The average thickness of such an adhesive layer is limited to about 100 μm, and it is better that the rabbit ς μ μ lives at about 5 μm to 6 μm. (Cover film) On the other hand, the cover film 3 as shown in Fig. 1 is placed on the upper surface of the optical waveguide 1 as needed. "The cover film 2 protects the wave tube from the top to support the narrowing of the light guide wave." Measures the protection of the light guide 1 from dirt or scratches, etc., and the reliability and mechanical characteristics of the Nanguang waveguide *1. The constituent material of the cover film 3 is the constituent material of the support film 2, for example, except for the polystyrene brewing such as poly(p-phenylene terephthalate), polyethylene, and wu. Various resin materials such as imine and polyamine are metal materials such as copper, sulphur, and silver. Further, a gold core is used as the cover film 3 in the metallic material white. Further, in the case of the intermediate mechanical lens of the optical film, since the light penetrates the cover film 3, the constituent material of the film 3 is preferably substantially transparent. Further, the flat membrane of the cover film 3 is preferably a mosquito of about 3, preferably about 3 to about 30 μΠ1. The cover film 3 has a sufficient rigidity in optical communication by making the well covering the port within the above range. ...the more it is sufficient to protect the optical waveguide 1 sufficiently 2, the connection between the Wei 3 and the light guide is _joined or bonded to the hot dust, the adhesion by an adhesive or an adhesive, etc., T, The agent can be used as described above. 26 201227021 4UU18plf (Second Embodiment) Next, a second embodiment of the optical waveguide of the present invention will be described. Fig. 5 is a perspective view showing a second embodiment (partially cut and penetrated) of the optical waveguide according to the present invention, and Fig. 6 is a view showing one injection of the core of the optical waveguide shown in Fig. 5. A diagram showing an example of the intensity distribution of the emitted light at the time of light. In the following description, the upper side in Fig. 5 is referred to as "upper" and the lower side is referred to as "lower". In addition, Fig. 5 is an exaggerated drawing in the thickness direction of the layer (the vertical direction of each drawing). In the following, the second embodiment of the optical waveguide will be described. However, the differences from the first embodiment will be mainly described, and the description of the same matters will be omitted. In the same manner as in the first embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the detailed description thereof will be omitted. The second embodiment is the same as the first embodiment except that it has the two layers of the core layer 13 which are laminated. That is, the optical waveguide 1 shown in Fig. 5 is formed by stacking five layers of the cladding layer 11, the core layer 13, the cladding layer 121, the core layer 13, and the cladding layer 122 in this order from the lower side. In the core layer 13 of the two layers, as in the first embodiment, two core portions 14 which are juxtaposed in the width direction and three side slope portions which are juxtaposed so as to sandwich the core portions 14 are formed. 15. More specifically, in the two-layer core layer 13 shown in FIG. 5, two core portions 141 and 142 which are juxtaposed and three side surface covering portions 151, 152, and 153 which are juxtaposed are alternately provided on the lower layer 131. . Further, each of the core portions 14 and 142 is surrounded by the respective side surface covering portions 151, 152, and 153 and the respective cladding 27 201227021 40018 pif layers 11 and 121. On the other hand, two core portions 143 and 144 which are juxtaposed and three side surface covering portions 154, 155 and 156 which are juxtaposed are alternately arranged on the upper core layer 132. Thereby, each of the core portions 143 and 144 is in a state of being surrounded by the respective side surface covering portions 154, 155, and 156 and the respective cladding layers 121 and 122. Further, the core portions 141 and 143 on the left side of each of the core layers π and 132 in Fig. 5 are disposed at the same position in the width direction of the optical waveguide tube. Similarly, the core portions 142 and 144 located on the right side of each of the core layers 13 and 132 are disposed at the same position in the width direction of the optical waveguide tube 1, respectively. Here, 'the light is incident on the end of one of the plurality of core portions 141, 142' 143, 144 of the optical waveguide 1 shown in FIG. 5 to obtain the light emitted from the other end portion. When the intensity distribution P2, the intensity distribution shows a characteristic distribution. 6 is a view showing the intensity distribution p2 of the outgoing light in the end face on the exit side when the light is incident on the core portion 141 of the optical waveguide 1 shown in FIG. 5, and is the intensity of the incident light taken out on the horizontal axis. A diagram showing an example of the intensity distribution when the position of the end surface of the injection side is taken out. When the right-hand core 14i (CH1) emits light, the intensity of the emitted light becomes maximum at the center of the exit end of the core F 141. Further, the intensity of the emitted light becomes smaller as it goes away from the middle Q portion of the core portion mi, but a small value is locally adopted in the core portion 143 (CH2) adjacent to the thickness direction of the core portion 141. That is, the intensity distribution P2 of the outgoing light at this time takes a maximum value Pml' at the center of the exit end of the core portion hi (CH1) and takes a minimum value ps1 in the core portion 143 (CH2). According to the optical waveguide 28 having the intensity distribution of the emitted light, the leakage of the light propagating through the core portion 141 cannot be prevented, but the leakage light is suppressed from being concentrated on the core portion 143, so that the leaked light can be surely suppressed. Dry, "crosstalk" of the core 143. As a result, even if the optical waveguide 1 is multi-channelized and densified not only in the width direction but also in the thickness direction, crosstalk can be surely prevented. Further, according to the optical waveguide 1 which exhibits the intensity distribution p2 of the outgoing light as described above, in addition to the suppression of the crosstalk as described above, there is an advantage that the propagation loss and the retardation of the pulse signal are suppressed. Further, in the intensity distribution P2 of the emitted light, it is preferable to be a distribution reflecting the lower case: the leaked light of the core portion 141 (CH1) is not concentrated on the core portion 143 (CH2), but is concentrated on the core portion 143. The cladding layer 122 is adjacent and located on the opposite side of the core 141. That is, it is preferable that the intensity distribution p2 of the outgoing light adopts a minimum value Ps1 in the core portion 143 (CH2) as described above, and takes a distribution of the maximum value pm2 in the cladding layer 122 (CL2) (see Fig. 6). The light guide tube 具有 having the intensity distribution P2 of such emitted light can prevent the concentration of the leaked light in the core portion 143 by collecting the leaked light from the core portion 141 which is not completely prevented by π from the cover layer 122'. As a result, the optical waveguide i which can suppress the crosstalk more reliably in the thickness direction is obtained. Further, in this case, when the maximum value Pml in the above-described core portion 141 (CH1) is used as a reference, the intensity difference between the maximum value pm2 in the cladding layer 122 (CL2) and the minimum value Psi in the core portion 143 (CH2) Preferably, 3 commits ~20 dB, more preferably 5 dB~15 dB. When the intensity difference between the maximum value pm2 and the minimum value Psl is within the above range, the occurrence of crosstalk in the core portion 143 is surely prevented, so that the optical waveguide 1 becomes an optical waveguide capable of performing higher quality 29 201227021 optical communication. Further, with respect to the maximum value Pmi in the core portion 141, the maximum value Pm2 in the cladding layer 122 (CL2) is preferably about _6 〇 dB 〜 2 〇 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右 左右If the intensity of the maximum value Pm2 is within the above range, the intensity of the minimum value psi is optimized according to the intensity of the maximum value pm2, and the generation of crosstalk in the core portion 143 is more surely prevented. Further, when the intensity of the maximum value Pm2 is less than the above lower limit value, the above-described action of concentrating the leaked light on the cladding layer 122 is insufficient, and there is a concern that the crosstalk cannot be sufficiently suppressed. On the other hand, at the maximum value pm2 When the intensity is higher than the above upper limit value, excessive leakage light is concentrated on the cladding layer 122, and there is a concern that the core portions 141 and 143 and the normal light of the light receiving element are prevented from being bonded at the exit side end portion. Further, when the intensity difference between the maximum value pm2 in the cladding layer 122 (CL2) and the minimum value Psl in the core portion 143 (CH2) is set to g3, and the optical signal observed in the core portion 141 (CH1) is used When the intensity of the intensity and the minimum value Psl in the core portion 143 (CH2;) is set to g4, g3/g4 preferably satisfies the relationship of 〇.〇5 to 〇5, which is better for satisfying 〇1 to 〇4. relationship. Thereby, the reduction in transmission loss and the decrease in the sluggishness of the pulse signal can be more reliably coexisted with the suppression of crosstalk. Further, when g3/g4 is lower than the above lower limit value, the height of the maximum value Pm2 is too low, and there is a concern that crosstalk cannot be sufficiently suppressed. On the other hand, when g3/g4 is higher than the above upper limit value, excessive leakage light is concentrated on the cladding layer 122, and there is a concern that the normal light coupling between the core portions 141 and 143 and the light receiving element is hindered in the emission side end portion. . Further, the intensity distribution P2 of the emitted light may be a shape that does not continuously change, and 201227021 40018pif is preferably a shape that continuously changes. If the intensity distribution p2 of the outgoing light is such a shape, the generation of crosstalk can be more surely prevented. Further, as described above, the height of the core portion 14 is preferably about 20 μm to 2 μm μm, and the height of the core portion 14 is set to the above range, and the leaked light is concentrated on the coating layer 122. It is necessary and sufficient to suppress the occurrence of crosstalk more reliably. Further, the intensity distribution Ρ2 of the outgoing light as described above can be obtained by the same method as the intensity distribution P1 of the above-described outgoing light. Here, the optical waveguide 1 exhibiting the intensity distribution P2 of the outgoing light as described above is formed by forming a region including a relatively high refractive index and a lower region in the thickness direction of the optical waveguide i, and refracting Obtained by a continuously varying refractive index profile T. In other words, in the optical waveguide 1 having the shape of the refractive index distribution τ, the intensity distribution Ρ2 of the emitted light can be observed. Hereinafter, an example of the refractive index distribution τ will be described. Fig. 7 (a) is a view in which a part of the γ_γ line cross-sectional view shown in Fig. 5 is cut out, and Fig. 7 (b) shows the center and line of the center of the core portion in the width direction of the cross section of the γ_γ line. FIG. 7(b) is a view schematically showing a refractive distribution when a refractive index is taken on the horizontal axis and a position in the thickness direction of the core portion having a cross section on the vertical axis is taken. A picture of an example. The optical waveguide f 1 has four minimum values as shown in Fig. 7 (b)

Tsl、Ts2、Ts3、Ts4 及 5 個極大值 Tml、Tm2、Tm3、Tm4、Tsl, Ts2, Ts3, Ts4 and 5 maxima Tml, Tm2, Tm3, Tm4,

Tm5的折射率分布T。另外,5個極大值巾存在折射率的 相對較大的極大值(第1極大值)Tm2、Tm4及折射率的 31 201227021 相對較小的極大值(第2極大值)Tml、Tm3、Tm5。 其中’於極小值Ts 1與極小值Ts2之間以及極小值Ts3 與極小值Ts4之間分別存在折射率的相對較大的極大值 Tm2以及Tm4,此外的極大值Tml、Tm3以及Tm5分別 為折射率的相對較小的極大值。 而且分別為,極小值Tsl位於彼覆層11與芯部141 的邊界線上’極小值TS2位於芯部141與彼覆層121的邊 界線上’極小值Ts3位於披覆層121與芯部143的邊界線 上’且極小值Ts4位於芯部143與彼覆層122的邊界線上。 另外’極大值Tm2、Tm4較佳為位於芯部141、143 的中心部,另一方面,極大值Tml、Tm3、Tm5較佳為位 於披覆層11、121、122的中心部。 即’折射率分布T只要至少具有第2極大值、極小值、 第1極大值、極小值、第2極大值以該順序排列的區域即 可。此外,該區域是根據芯層的積層數而重複設置,於如 本實施形態所示芯層13的積層數為2層的情況,折射率分 布丁只要是如下形狀即可’該形狀中,以第2極大值、極 小值、第1極大值、極小值、第2極大值、極小值、第1 極大值極小值、第2極大值的方式,極大值與極小值交 替排列,且關於極大值是第丨極大值與第2極大值交替排 列。 另外’該些多個極小值、多個第1極大值、以及多個 第2極大值分別較佳為相互大致相同的值,但只要保持極 小值小於第1極大值或第2極大值,且第2極大值小於第 32 201227021 40018pif 1極大值的^,則即便相互的值财偏差亦無妨。於此 情況’偏差量較佳為抑制在多個極小值的平均值的以 内。 另外 一導波管1形成細長的帶狀,如上所述的 率$布T在料波f i的長度方向整财轉大致相同的 分布。 =,4個極小值Tsl、Ts2、Ts3、Ts4分別小於鄰接 的披覆層u、121、122中的平均折射率TA。藉此,各芯 層n、12卜122之間存在折射率比各披覆 層11、121、122的平均折射率TA更小的區域。 =值一、Ts3、Ts4的附近形成更急:果折為射 此’光自各芯部14中的^漏得到抑制,因此 ^傳仙耗小、且在厚度方向上抑财擾経的光導波 另外,折射率分布Τ在整體中折射率連續變化。藉此, 與具有階’射率型折射率分布的光導波管相比,將光 ΐΓίΓΛ的作収增強,因此實現傳簡_進一步減 &gt;以及串擾產生的進一步抑制。 進而,依據如上所述的具有各極小值Tsb Ts2、Ts3、The refractive index distribution T of Tm5. Further, the five maximum value towels have relatively large maximum values (first maximum values) Tm2 and Tm4 of the refractive index and 31 201227021 of the refractive index are relatively small maximum values (second maximum values) Tml, Tm3, and Tm5. Wherein, between the minimum value Ts 1 and the minimum value Ts2 and between the minimum value Ts3 and the minimum value Ts4, there are respectively relatively large maximum values Tm2 and Tm4 of the refractive index, and the other maximum values Tml, Tm3 and Tm5 are respectively refracted. The relatively small maximum of the rate. Further, the minimum value Ts1 is located on the boundary line between the cladding layer 11 and the core portion 141. The minimum value TS2 is located on the boundary line between the core portion 141 and the cladding layer 121. The minimum value Ts3 is located at the boundary between the cladding layer 121 and the core portion 143. The line 'and the minimum value Ts4 is located on the boundary line between the core 143 and the cladding layer 122. Further, the 'maximum values Tm2 and Tm4 are preferably located at the center of the core portions 141 and 143. On the other hand, the maximum values Tml, Tm3, and Tm5 are preferably located at the center portions of the cladding layers 11, 121, and 122. That is, the refractive index distribution T may have at least a region in which the second maximum value, the minimum value, the first maximum value, the minimum value, and the second maximum value are arranged in this order. Further, this region is repeatedly provided in accordance with the number of layers of the core layer. When the number of layers of the core layer 13 is two as shown in the present embodiment, the refractive index distribution may be as follows: The second maximum value, the minimum value, the first maximum value, the minimum value, the second maximum value, the minimum value, the first maximum value, and the second maximum value, the maximum value and the minimum value are alternately arranged, and the maximum value is It is the third largest value and the second maximum value are alternately arranged. Further, each of the plurality of minimum values, the plurality of first maximum values, and the plurality of second maximum values is preferably substantially the same value, but the minimum value is kept smaller than the first maximum value or the second maximum value, and If the second maximum value is smaller than the maximum value of the 32nd 201227021 40018pif 1 , the mutual value difference may be used. In this case, the amount of deviation is preferably suppressed within the average value of the plurality of minimum values. Further, the waveguide 1 is formed in an elongated strip shape, and the rate of the cloth T as described above is substantially the same distribution in the longitudinal direction of the material wave f i . =, the four minimum values Tsl, Ts2, Ts3, Ts4 are smaller than the average refractive index TA in the adjacent cladding layers u, 121, 122, respectively. Thereby, a region having a refractive index smaller than the average refractive index TA of each of the cladding layers 11, 121, 122 exists between the respective core layers n, 12 and 122. = value one, the vicinity of Ts3, Ts4 is formed more urgently: the fruit is folded to emit light, and the light leakage from the core portion 14 is suppressed, so that the light guide wave which is small in consumption and suppresses the perturbation in the thickness direction In addition, the refractive index distribution 连续 continuously changes in refractive index as a whole. Thereby, the light ray ΓΛ is enhanced as compared with the optical waveguide having the order eigenvalue type refractive index distribution, thereby achieving further suppression of the simplification and further generation of crosstalk. Further, according to the above, each having a minimum value Tsb Ts2, Ts3,

Ts4,並且折射率連續變化的折射率分布τ,纟芯部M的 更接近中心部的區域集中地傳播傳送光,因此每光 =間難喊生差異。因此,即使於傳送光包含脈衝信號 的情況’亦可抑制脈衝信號的遲鈍(脈衝信號的擴散)。其 結果為’獲得可更提高光職品f的光導波管i。 、 33 201227021 此外’所§胃折射率分布τ中折射率連續變化,是指折 卜:布Τ的曲線在各部帶有圓形,且該曲線為可微分者 的狀態。 一另外’折射率分布Τ +,極大值Tm2、Tm4如圖7所 不位於芯部14卜143,但在芯部14卜143中亦位於其厚 度的中心部。藉此,各芯部14卜143中,傳送光集中於芯 部14卜143的厚度的中心部的機率提高,相對而言漏出至 各披覆層11、121、122的機率降低。其結果為,可更減少 芯部14卜143的傳送損耗’並且可更抑制串擾。 此外,所s胃芯部141的厚度的中心部,是指自極小值 Tsl與極小值Ts2的中點向兩側,芯部ι41的厚度的3〇% 的距離的區域。 另外’極大值Tm2、Tm4的位置較理想為儘可能位於 心。p 141、143的尽度的中心部,但亦可未必為中心部,只 要位於芯部141、143的邊緣部附近(與各彼覆層1卜121、 122的界面附近)以外即可。 此外,所謂芯部141的邊緣部附近,是指自上述邊緣 部向内側,芯部141的厚度的5%的距離的區域。 另一方面,折射率分布τ中,極大值Tud、Tm3、Tm5 如圖7 (b)所示位於各彼覆層11、121、122中,但特佳 為位於各坡覆層11、121、122的邊緣部附近(與芯部14卜 143的界面附近)以外。藉此,芯部141、143中的極大值 Tm2、Tm4與各彼覆層11、121、122中的極大值Tml、 Tm3、Tm5變得相互充分隔離,因此可充分降低芯部141、 34 201227021 40018pif 143中的傳送光漏出至各彼覆層11、丨21、122中的機率。 其結果為,可減少芯部141、143的傳送損耗,並且可更抑 制串擾。 此外,所謂各披覆層11、12卜122的邊緣部附近,是 指自上述邊緣部向内側,各披覆層11、12卜122的厚度的 5%的距離的區域。 另外’極大值Tml、Tm3、Tm5位於各彼覆層Η、121、 122的厚度的中央部,而且自極大值Tml、Tm3、Tm5朝 向鄰接的極小值Tsl、Ts2、Ts3、Ts4,較佳為折射率連續 降低。藉此,最大限度地確保芯部141、143中的極大值 Tm2、Tm4與各彼覆層11、12卜122中的極大值Tml、 Tm3、Tm5的間隔距離,而且可在極大值Tml、Tm3、Tm5 附近確實地封入光,因此可更確實地抑制上述傳送光自芯 部141、143中的漏出。 進而,由於極大值Tml、Tm3、Tm5與上述位於芯部 141、143的極大值Tm2、Tm4相比,為折射率的較小值, 故而雖不具有如芯部141、143那樣的高光傳送性,但與周 圍相比折射率較高,因此具有少許的光傳送性。其結果為, 各彼覆層11、121、122藉由封入自芯部14卜143中漏出 的傳送光而具有防止波及其他芯部的作用。即,藉由存在 極大值Tml、Tm3、Tm5,可更確實地抑制串擾。 此外,極小值Tsl、Ts2、Ts3、Ts4如上所述小於各彼 覆層11、121、122的平均折射率TA,但其差較理想為在 規定的範圍内。具體而言,極小值Tsl、Ts2、Ts3、Ts4與 35 11 11201227021 各披覆層11、121、122的平均折射率τα的差較佳為極小 值Ts卜Ts2、Ts3、Ts4與芯部14卜143中的極大值Tm2、 Tm4的差的3%〜80%左右,更佳為5%〜50%左右,尤佳 為7〜30%左右。藉此,各披覆層u、丨21、122具有對抑 制串擾而言所必需且充分的光傳送性。此外,於極小值 Ts卜Ts2、Ts3、Ts4與各彼覆層η、丨21、122的平均折射 率τα的差低於上述下限值的情況,各披覆層η、121、122 中的光傳送性過小’存在無法充分抑制串擾的顧慮,於高 於上述上限值的情況,各披覆層11、12卜122中的光傳送 性過大,存在對芯部14卜143的光傳送性造成不良影響的 顧慮。 另外,極小值Ts 1、Ts2、Ts3、Ts4與極大值ΤιϊΠ、Tm3、 Tm5的差較佳為極小值Ts卜Ts2、Ts3、Ts4與極大值Tm2、 Tm4的差的6%〜90%左右,更佳為i〇%〜7〇%左右,尤佳 為14%〜40%左右。藉此,披覆層中的折射率的高度與芯 部的折射率的高度的平衡得以最佳化,光導波管1不僅具 有特別優異的光傳送性’並且可更確實地抑制串擾。 此外,極小值Ts卜Ts2、Ts3、Ts4與芯部14卜143 中的極大值Tm2、Tm4的折射率差以儘可能大為佳,較佳 為0.005〜0.07左右,更佳為〇.007〜〇 〇5左右,尤佳為〇 〇1 〜0.05左右。藉此,上述折射率差對於將光封入芯部丨41、 143中而言為必需且充分。 另外,芯部141、143中的折射率分布τ當於橫軸上 取中心線C2的位置,且於縱軸上取折射率時(使圖7向 36 201227021 反時針方向旋轉9〇。時),若在極大值Tm2附近以及極大 值Tm4附近為折射率連續變化的形狀,則可形成向上凸起 的大致V字狀(極大值以外為大致直線狀),較佳為形成 向上凸起的大致U字狀(極大值附近整體帶有圓形)。若 折射率分布T形成此種形狀,則芯部141、143中的光的 封入作用變得更顯著。 另外,折射率分布T如圖7 (b)所示,若在極小值 Tsl附近γ極小值tS2附近、極小值ts3附近以及極小值 Ts4附近,為折射率連續變化的形狀,則可形成向下凸起的 大致V字狀(極大值以外為大致直線狀),較佳為形成向 下凸起的大致U字狀(極大值附近整體帶有圓形)。 另外,圖7 (b)所示的折射率分布τ中,當將各披覆 層η、12卜122中的平均折射率設為ΤΑ時,將極大值 =11^、Tm4附近的折射率連續且為平均折射率ΤΑ以上的 部分的寬度没為abm],且將極小值Tsl、Ts2、Ts3、Ts4 附近的折射率連續且小於平均㈣率TA的部分的寬度設 為Μμιη]。此時,b較佳為〇心叫山左右,更佳為二 〜la左右,尤佳為〇 la〜〇 8a左右。藉此,極小值^、 Ts2、Ts3、Ts4的實質寬度對於發揮上述作用、效果而言 為必需且充分。即’於㈣於上述下限值的情況,極小值 Ts卜Ts2、Ts3、TS4的實質寬度過窄,因此有將光封入公 部14卜143中的作用降低的顧慮。另一方面,於b高於^ 述上限值的情況’極小值Tsb Ts2、Ts3、Ts4 g窗 過寬,因此芯部14卜143的厚度或間距受到限制,存在^ 37 201227021 40018pif 送效率降低或妨礙多通道化以及高密度化的顧慮。 此外,披覆層11中的平均折射率TA可在極大值Tml 與極小值Tsl的中點近似。 另外’各極大值TnU、Tm2、Tm3、Tm4、Tm5分別 =上所述可為向上凸起的大致U字狀,亦可在頂部附近包 合折射率實質上不變化的平坦部。即便折射率分布T在各 極大值的卿附近形成此種雜,本發明的光導波管亦發 揮如士所述的作用、效果。此處,所謂折射率實質上不變 化的平坦部’是指折射率的變動小於G.GG1的區域,且為 於其兩側,折射率連續降低的區域。 平坦部的長度並無特別限定,較佳為設為1〇〇 μιη以 下,更佳為設為20 以下,尤佳為設為10 μιη以下。 〈光導波管的製造方法〉 繼而’對上述光導波管1的製造方法的一例進行說明。 (第1製造方法) 首先’對製造本發明的光導波管的第1實施形態的I 方去(第1製造方法)進行說明。 1圖8〜圖12分別是用以對圖1所示的光導波管1的| =方法(第1製造方法)進行說明的圖。此外,以下說曰 將圖8〜圖12中的上側稱為「上」,將下側稱為「下」 费既光導波管1是藉由分別準備彼覆層11、芯層13、及| 覆曰12,將該些積層而製造。 上光$波管1的第1製造方法為:[1]於支持基板95 、佈心層形成用組成物9〇〇而形成液狀被膜後,將該」 38 201227021 持基板951置於位準表(levei table)上而使液狀被膜平坦 化’並且使溶劑蒸發(脫溶劑)。藉此,獲得層910。[2]繼 而’藉由對層910的一部分照射活性放射線而產生折射率 差,獲得形成有芯部14與側面披覆部15的芯層13。[3]繼 而’於芯層13的兩面積層披覆層η、12’獲得光導波管j。 以下,對各步驟依次進行說明。 [1]首先’準備芯層形成用組成物900。 芯層形成用組成物900包含聚合物915、及添加劑920 (本實施形態_,至少包含單體)。此種芯層形成用組成物 9〇〇是藉由活性放射線的照射而使聚合物915中至少產生 單體的反應,且伴隨此而使折射率分布產生變化的材料。 即,芯層形成用組成物900是藉由聚合物915與單體的存 在比率的偏向而使折射率分布產生變化’其結果為可於芯 層13中形成芯部14與側面披覆部15的材料。 繼而 於叉符丞板951上塗佈芯層形成用組成物9〇〇 而形成液狀被膜(參照圖8 (a))'然後,將支持基板951 ^於位準表上,使綠_物化,並且使溶黯發(脫 溶劑)。藉此,獲得層910 (參照圖8 (b》。 支持基板州中例如使时基板、二氧切基板、玻 璃基板、聚對苯二甲酸乙二酯(PET)膜等。 旋轉綠被麟塗佈法例如刊舉^刀片法、 = 圓形塗佈法、噴霧法、敷料器法、 廉奉式塗佈法、模塗佈法等方法。 915實質上是均等 所得的層910中,聚合物(基質) 39 201227021 40018pif 踢機地存在,添加劑92Q是實質上均等且隨機地分散於 ,合物915中。猎此,層91〇中實質上均等且隨機地分散 有添加劑920。 層⑽的平均厚度是根據應形成的芯、層n的厚度而適 虽設定,並無特別限定,較佳為5 μιη〜3〇〇 μιη左右更 佳為10 μιη〜200 μπι左右。 (聚合物) 聚合物9i5是成為芯層13的基礎聚合物的聚合物。 ,合物915中適宜使用透明性足夠高(無色透明)且 = 有相容性的聚合物,進而,其中適宜使用如 返早體可反應(聚合反㈣交聯反應),且於單體聚合 设亦具有充分透明性的聚合物。 ,處’所謂「具有相容性」,是鮮體至少混合而在怎 組成物_中或層9ω中不會與聚合物915產生 相分離。 =種聚合物915例如可列舉:降冰片稀系樹脂或苯并 ^婦系樹脂等環狀烯煙系樹脂,丙烯酸系樹脂、甲基丙 • ^系樹脂、聚碳酸g旨、聚苯乙稀、環氧系樹脂、聚酿胺、 用二亞胺、聚笨并射m、獅、氟系樹脂等;可使 ^亥些聚合物巾的1種或者將2種以上組合(聚合物摻合 ,合物共混物(混合物)、共聚物等)來使用。 ,些聚合物中,特佳為以環狀烯煙緖脂為主的聚合 。稭由使用環狀烯烴系樹脂作為聚合物915,可獲得具 有優異的光傳祕能或耐熱性的光導波管卜 201227021 • V V i V/卜 t ’亦可為氳由其 環狀烯煙系樹脂可為未經取代的樹脂 他基所取代的樹脂。 環狀烯烴系樹脂例如可列舉降冰片烯系樹脂、 丁烯系樹脂等。 其中,就耐熱性、透明性等觀點而言,較佳為使用降 冰片烯系樹脂。另外,由於降冰片烯系樹脂具有高疏水性, 故而可獲得難以產生由吸水引起的尺寸變化等的光導波管 1 ° 降冰片烯系樹脂可為具有單獨的重複單元的樹脂(均 4物)、具有2個以上降冰片稀系重複單元的樹脂(共聚物) 中的任一者。 此種降冰片烯系樹脂例如可列舉: (1) 將降冰片烯型單體進行加成(共)聚合而獲得的 降冰片烯型單體的加成(共)聚合物; (2) 降冰片烯型單體與乙烯或α_烯烴類的加成共聚 物; ' (3) 如降冰片烯型單體與非共軛二烯、以及視需要的 其他單體的加成共聚物之類的加成聚合物; (4) 降冰片烯型單體的開環(共)聚合物、以及視需 要將該(共)聚合物氫化而成的樹脂; (5) 降冰片烯型單體與乙烯或α_烯烴類的開環(共) ‘合物、以及視需要將該(共)聚合物氫化而成的樹脂; (6) 如降冰片烯型單體與非共軛二烯、或者其他單體 的開環共聚物,以及視需要將該共聚物氫化而成的聚合物 201227021“ 之類的開環聚合物。該些聚合物可列舉無規共聚物、嵌段 共聚物、交替共聚物等。 該些降冰片烯系樹脂例如可利用開環複分解聚合 (ROMP)、ROMP與氫化反應的組合、利用自由基或者陽 離子的聚合、使用陽離子性鈀聚合起始劑的聚合、使用其 以外的聚合起始劑(例如鎳或其他過渡金屬的聚合起始劑) 的聚合等公知的所有聚合方法來獲得。 該些聚合物中’降冰片烯系樹脂較佳為具有下述結構 式B所表示的至少丨個重複單元的聚合物,即加成(共) 聚合物。其原因在於,由於加成(共)聚合物富有透明性、 耐熱性以及可撓性,故而例如形成光導波管丨後,有時於 該光導波管1上經由焊料而安裝電氣零件等,但於此種情 況下亦可對光導波管1賦予高耐熱性,即耐回流焊性。 [化1]Ts4, and the refractive index distribution τ whose refractive index continuously changes, the region closer to the center portion of the core portion M collectively transmits the transmitted light, so that it is difficult to make a difference every light. Therefore, even in the case where the transmitted light contains a pulse signal, the retardation of the pulse signal (diffusion of the pulse signal) can be suppressed. As a result, the optical waveguide i which can improve the optical product f is obtained. 33 201227021 In addition, the refractive index continuously changes in the refractive index distribution τ of the stomach, which means that the curve of the fabric has a circle in each part, and the curve is in a state of differentiable. A further 'refractive index distribution Τ +, the maximum values Tm2, Tm4 are not located in the core portion 14 143 as shown in Fig. 7, but are also located at the center portion of the thickness in the core portion 143. As a result, in each of the core portions 143, the probability that the transmitted light concentrates on the center portion of the thickness of the core portion 143 is improved, and the probability of leaking to the respective cladding layers 11, 121, and 122 is relatively lowered. As a result, the transmission loss of the core portion 143 can be further reduced' and crosstalk can be further suppressed. Further, the center portion of the thickness of the stomach core portion 141 is a region which is a distance of 3〇% of the thickness of the core portion ι41 from the midpoint of the minimum value Ts1 and the minimum value Ts2 to both sides. Further, the positions of the 'maximum values Tm2 and Tm4 are preferably as close as possible to the center. The center portion of the fullness of p 141 and 143 may not necessarily be the center portion, and may be located in the vicinity of the edge portions of the core portions 141 and 143 (near the interface between the respective cladding layers 1 and 121 and 122). Further, the vicinity of the edge portion of the core portion 141 means a region having a distance of 5% of the thickness of the core portion 141 from the edge portion toward the inside. On the other hand, in the refractive index distribution τ, the maximum values Tud, Tm3, and Tm5 are located in the respective cladding layers 11, 121, and 122 as shown in Fig. 7(b), but particularly preferably located at each of the slope layers 11, 121, The vicinity of the edge portion of 122 (near the interface with the core portion 14 143) is outside. Thereby, the maximum values Tm2, Tm4 in the core portions 141, 143 and the maximum values Tml, Tm3, and Tm5 in the respective cladding layers 11, 121, 122 are sufficiently isolated from each other, so that the core portions 141, 34 201227021 can be sufficiently reduced. The probability that the transmitted light in the 40018pif 143 leaks into the respective cladding layers 11, 丨 21, 122. As a result, the transmission loss of the core portions 141, 143 can be reduced, and crosstalk can be further suppressed. Further, the vicinity of the edge portion of each of the cladding layers 11 and 12 122 refers to a region having a distance of 5% of the thickness of each of the cladding layers 11 and 12 from the edge portion toward the inside. Further, the 'maximum values Tml, Tm3, and Tm5 are located at the central portion of the thickness of each of the cladding layers 121, 122, and the maximum values Tml, Tm3, and Tm5 are adjacent to the adjacent minimum values Tsl, Ts2, Ts3, and Ts4, preferably The refractive index decreases continuously. Thereby, the distance between the maximum values Tm2 and Tm4 in the core portions 141 and 143 and the maximum values Tml, Tm3, and Tm5 in the respective cladding layers 11 and 12 122 is maximized, and the maximum values Tml and Tm3 can be obtained. Since light is reliably enclosed in the vicinity of Tm5, leakage of the above-mentioned transmitted light from the core portions 141, 143 can be more reliably suppressed. Further, since the maximum values Tml, Tm3, and Tm5 are smaller than the maximum values Tm2 and Tm4 located in the core portions 141 and 143, the refractive index is small, and thus does not have high light transmission properties such as the core portions 141 and 143. However, the refractive index is higher than that of the surroundings, and therefore has a little light transmission property. As a result, each of the cladding layers 11, 121, and 122 has a function of preventing the other core portions from being transmitted by enclosing the transmitted light leaked from the core portion 143. That is, crosstalk can be more reliably suppressed by the presence of maximum values Tml, Tm3, and Tm5. Further, the minimum values Tsl, Ts2, Ts3, and Ts4 are smaller than the average refractive index TA of each of the cladding layers 11, 121, 122 as described above, but the difference is desirably within a predetermined range. Specifically, the difference between the minimum refractive values Tsl, Ts2, Ts3, Ts4 and 35 11 11201227021 of the average refractive indices τα of the cladding layers 11, 121, 122 is preferably a minimum value Ts, Ts2, Ts3, Ts4, and a core portion. The difference between the maximum values Tm2 and Tm4 in 143 is about 3% to 80%, more preferably about 5% to 50%, and particularly preferably about 7 to 30%. Thereby, each of the cladding layers u, 丨 21, 122 has sufficient light transmission properties necessary for suppressing crosstalk. Further, in the case where the difference between the minimum value Ts, Ts2, Ts3, and Ts4 and the average refractive index τα of each of the cladding layers η and 丨21 and 122 is lower than the above lower limit value, the respective cladding layers η, 121, and 122 When the optical transmission property is too small, there is a concern that crosstalk cannot be sufficiently suppressed. When the optical transmittance is higher than the above upper limit value, the optical transmission property in each of the cladding layers 11 and 12 is too large, and the optical transmission property to the core portion 143 is present. Concerns about adverse effects. Further, the difference between the minimum values Ts1, Ts2, Ts3, and Ts4 and the maximum values ΤιϊΠ, Tm3, and Tm5 is preferably about 6% to 90% of the difference between the minimum value Ts, Ts2, Ts3, and Ts4 and the maximum values Tm2 and Tm4. More preferably, i〇%~7〇% or so, especially preferably 14%~40%. Thereby, the balance of the height of the refractive index in the cladding layer and the height of the refractive index of the core is optimized, and the optical waveguide 1 not only has particularly excellent light transmission property&apos; but can more reliably suppress crosstalk. Further, the difference in refractive index between the minimum values Ts, Ts2, Ts3, and Ts4 and the maximum values Tm2 and Tm4 in the core portion 143 is preferably as large as possible, preferably about 0.005 to 0.07, more preferably 〇.007~ 〇〇 5 or so, especially good for 〇〇 1 ~ 0.05 or so. Thereby, the above-mentioned refractive index difference is necessary and sufficient for sealing light into the core portions 41 and 143. Further, the refractive index distribution τ in the core portions 141 and 143 is a position on the horizontal axis taken at the center line C2, and when the refractive index is taken on the vertical axis (when FIG. 7 is rotated by 36 反 in the counterclockwise direction of 2012 201221) When the refractive index continuously changes in the vicinity of the maximum value Tm2 and the maximum value Tm4, a substantially V-shape which is convex upward can be formed (a substantially linear shape other than the maximum value), and it is preferable to form an upward convex shape. U-shaped (with a circle around the maximum value). When the refractive index distribution T forms such a shape, the encapsulation of light in the core portions 141, 143 becomes more remarkable. Further, as shown in FIG. 7(b), the refractive index distribution T can be formed downward in the vicinity of the minimum value Ts1 near the minimum value tS2, in the vicinity of the minimum value ts3, and in the vicinity of the minimum value Ts4. The convex shape is substantially V-shaped (substantially linear except for the maximum value), and it is preferably formed in a substantially U-shape that is convex downward (the entire shape is rounded in the vicinity of the maximum value). Further, in the refractive index distribution τ shown in Fig. 7(b), when the average refractive index in each of the cladding layers η and 12b is ΤΑ, the maximum value = 11^ and the refractive index in the vicinity of Tm4 are continuous. The width of the portion having the average refractive index ΤΑ or more is not abm], and the width of the portion in which the refractive index in the vicinity of the minimum values Ts1, Ts2, Ts3, and Ts4 is continuous and smaller than the average (four) rate TA is Μμηη]. At this time, b is preferably about the heart of the mountain, more preferably two to la, especially preferably 〇 la ~ 〇 8a. Therefore, the substantial widths of the minimum values ^, Ts2, Ts3, and Ts4 are necessary and sufficient for exerting the above-described actions and effects. In other words, in the case where (4) is at the lower limit value described above, since the minimum width Ts, Ts2, Ts3, and TS4 have a substantially narrow width, the effect of enclosing the light in the public portion 143 is lowered. On the other hand, in the case where b is higher than the upper limit value, the minimum values Tsb Ts2, Ts3, and Ts4 g are too wide, so the thickness or pitch of the core portion 143 is limited, and there is a decrease in the efficiency of the delivery of the system. Or the concern of multi-channelization and high density. Further, the average refractive index TA in the cladding layer 11 can be approximated at the midpoint of the maximum value Tml and the minimum value Tsl. Further, each of the maximum values TnU, Tm2, Tm3, Tm4, and Tm5 may be substantially U-shaped in the upward direction, and may include a flat portion whose refractive index does not substantially change in the vicinity of the top portion. Even if the refractive index distribution T forms such a miscellaneous near the respective maximum values, the optical waveguide of the present invention also exerts the action and effect as described above. Here, the flat portion ′ in which the refractive index is substantially invariable refers to a region in which the refractive index fluctuates to be smaller than G.GG1, and the refractive index continuously decreases on both sides thereof. The length of the flat portion is not particularly limited, but is preferably 1 〇〇 μηη or less, more preferably 20 or less, and particularly preferably 10 μm or less. <Method of Manufacturing Optical Waveguide> Next, an example of a method of manufacturing the optical waveguide 1 will be described. (First Manufacturing Method) First, the first aspect (the first manufacturing method) of the first embodiment of the optical waveguide of the present invention will be described. 1 to 8 are diagrams for explaining the |= method (first manufacturing method) of the optical waveguide 1 shown in Fig. 1 . In addition, hereinafter, the upper side in FIGS. 8 to 12 is referred to as "upper", and the lower side is referred to as "lower". The optical waveguide 1 is prepared by separately preparing the cladding layer 11, the core layer 13, and | The cover 12 is produced by laminating these layers. In the first manufacturing method of the illuminating light-wave tube 1, the liquid crystal film is formed on the support substrate 95 and the core layer forming composition 9 后, and then the substrate 951 is placed in the position of 38 201227021 The liquid film is flattened on the levei table and the solvent is evaporated (desolvent). Thereby, the layer 910 is obtained. [2] Then, by irradiating a part of the layer 910 with active radiation to produce a refractive index difference, the core layer 13 in which the core portion 14 and the side cladding portion 15 are formed is obtained. [3] Then, the optical waveguide j is obtained by coating the two layers of the core layer 13 with layers η, 12'. Hereinafter, each step will be described in order. [1] First, the core layer forming composition 900 is prepared. The core layer forming composition 900 includes a polymer 915 and an additive 920 (in this embodiment, at least a monomer). The core layer-forming composition 9 is a material which causes a reaction of at least a monomer in the polymer 915 by irradiation with actinic radiation, and causes a change in the refractive index distribution. In other words, the core layer-forming composition 900 changes the refractive index distribution by the deviation of the ratio of the presence of the polymer 915 and the monomer. As a result, the core portion 14 and the side cladding portion 15 can be formed in the core layer 13. s material. Then, the core layer forming composition 9 is coated on the cross-plate 951 to form a liquid film (see FIG. 8(a))'. Then, the support substrate 951 is placed on the level gauge to cause green-physicalization. And dissolve the hair (desolvent). Thereby, the layer 910 is obtained (refer to FIG. 8(b). In the support substrate state, for example, a time substrate, a dioxy-cut substrate, a glass substrate, a polyethylene terephthalate (PET) film, etc. The cloth method is, for example, a method of a blade method, a circular coating method, a spray method, an applicator method, an inexpensive coating method, a die coating method, etc. 915 is substantially equal to the obtained layer 910, a polymer (Matrix) 39 201227021 40018pif The kicker is present, the additive 92Q is substantially uniformly and randomly dispersed in the compound 915. In this case, the additive 920 is substantially uniformly and randomly dispersed in the layer 91. The average of the layer (10) The thickness is not particularly limited as long as it is set depending on the thickness of the core or the layer n to be formed, and is preferably about 5 μm to 3 μm to about 10 μm to about 200 μm. (Polymer) Polymer 9i5 It is a polymer which becomes a base polymer of the core layer 13. It is suitable to use a polymer having a sufficiently high transparency (colorless and transparent) and = compatibility in the compound 915, and further, it is suitable to use, for example, a reversible body reaction ( Polymerization anti-(four) cross-linking reaction), and The polymer is also provided with a polymer having sufficient transparency. The so-called "compatibility" means that the fresh body is at least mixed and does not phase-separate from the polymer 915 in the composition or the layer 9ω. Examples of the polymer 915 include a cyclic olefinic resin such as a norbornene thin resin or a benzoxanthene resin, an acrylic resin, a methyl propylene resin, a polycarbonate, a polystyrene, and a ring. Oxygen resin, polyamine, diimine, polystyrene, lion, fluororesin, etc.; one or more of the polymer towels can be combined (polymer blending, combination) The blends (mixtures, copolymers, etc.) are used. Among these polymers, it is particularly preferred to be a polymerization of a cyclic olefinic tobacco. The straw is a polymer 915 using a cyclic olefin resin. Obtaining a light guide tube with excellent light transmission or heat resistance 201227021 • VV i V/b t ' can also be a resin whose cyclic olefinic resin can be replaced by an unsubstituted resin Examples of the cyclic olefin resin include norbornene-based resins and butylene-based resins. Among them, a norbornene-based resin is preferably used from the viewpoints of heat resistance, transparency, etc. Further, since the norbornene-based resin has high hydrophobicity, a light guide which is less likely to cause dimensional change due to water absorption can be obtained. The norbornene resin may be any one of a resin having a single repeating unit (a homogeneous material) and a resin (copolymer) having two or more rare repeating units of a norbornene. Examples of the olefinic resin include (1) an addition (co)polymer of a norbornene-type monomer obtained by addition (co)polymerization of a norbornene-type monomer; (2) a norbornene-type single Addition copolymer of a body with ethylene or an α-olefin; ' (3) Addition polymerization such as an addition copolymer of a norbornene-type monomer and a non-conjugated diene, and optionally other monomers (4) a ring-opening (co)polymer of a norbornene-type monomer, and a resin obtained by hydrogenating the (co)polymer as needed; (5) a norbornene-type monomer and ethylene or α_ Ring opening (co) of olefins, and (co)polymerization as needed a resin obtained by hydrogenating a substance; (6) a ring-opening copolymer of a norbornene-type monomer and a non-conjugated diene or another monomer, and a polymer obtained by hydrogenating the copolymer as needed 201220121 a class of open-loop polymers. Examples of the polymer include a random copolymer, a block copolymer, an alternating copolymer and the like. The norbornene-based resin can be, for example, a ring-opening metathesis polymerization (ROMP), a combination of ROMP and a hydrogenation reaction, a polymerization using a radical or a cation, a polymerization using a cationic palladium polymerization initiator, or a polymerization other than the polymerization. All polymerization methods such as polymerization of a starter (for example, a polymerization initiator of nickel or another transition metal) are obtained. Among these polymers, the norbornene-based resin is preferably a polymer having at least one repeating unit represented by the following formula B, that is, an addition (co)polymer. This is because the addition (co)polymer is transparent, heat-resistant, and flexible. Therefore, for example, after forming an optical waveguide, an electric component or the like may be attached to the optical waveguide 1 via solder. In this case, the optical waveguide 1 can also be imparted with high heat resistance, that is, reflow resistance. [Chemical 1]

#構冰m合物例如是藉由使祕述的降冰片稀 系單體(後述的結構式c所表示的降冰片烯系單體 、或交 聯性降冰片烯系單體)來適當合成。 另外,當將料波管1組入至各種製品中時,例如有 在80 C左右的環境下使用製品的情況。於此種情況下,就 42 201227021 HUUlepxf 確保耐熱性的觀點而言,亦較佳為加成(共)聚合物。 其中’降冰片烯系樹脂較佳為包含具有含聚合性基的 取代基的降冰㈣的重複單元、或具有含芳基的取代基的 降冰片稀的重複單元。 具有含聚合性基的取代基的降冰片烯的重複單元較佳 為具有含環氧基的取代基的降冰片烯的重複單元、具有含 (甲基)丙烯酸基的取代基的降冰片烯的重複單元、以及具 有含烷氧基矽烷基的取代基的降冰片烯的重複單元中的2 少1種。·聚合性基由於在各躲合性基巾反應性高而 較佳。 另外,若使用包含2種以上的上述含聚合性基的降冰 片烯的重複單元的獅’則可實現可撓性與耐紐的並存。 另一方面,藉由包含具有含芳基的取代基的降冰片烯 的重複單兀,可利用來自芳基的極高的疏水性來更確實地 防止由吸水引起的尺寸變化等。 、 、進而,降冰片烯系樹脂較佳為包含烷基降冰片烯的重 複單=。此外,烷基可為直鏈狀或者分支狀的任—種。 藉由包含烷基降冰片烯的重複單元,降冰片烯系樹脂 由於柔軟性提高而可賦予高可撓性(nexibiiity)。 ^另外,包含烷基降冰片烯的重複單元的降冰片烯系樹 月曰由於對特定波長區域(特別是 850 nm附近的波長區域) 的光的穿透率優異,故而亦較佳。 一 包含上述降冰片烯的重複單元的降冰片烯系樹脂的具 體例可列舉:己基降冰片烯的均聚物、苯基乙基降冰片稀 43 201227021 的均聚物、苄基降冰片烯的均聚物、己基降冰片烯與 乙基降冰片烯的共聚物、己基降冰片烯與苄基降冰片1 共聚物等。 w 9 由於上述原因,降冰片烯系樹脂較佳為以下的 〜式(4)、式(8)〜式(1〇)所表示的樹脂。 [化2]The constitutive ice m compound is appropriately synthesized by, for example, a norbornene rare monomer (a norbornene-based monomer or a crosslinkable norbornene-based monomer represented by the structural formula c described later). . Further, when the wave tube 1 is incorporated into various products, for example, the product is used in an environment of about 80 C. In this case, it is also preferable to add (co)polymer from the viewpoint of ensuring heat resistance of 42 201227021 HUUlepxf. The norbornene-based resin is preferably a repeating unit containing an ice-reducing (tetra) having a substituent containing a polymerizable group or a repeating unit having a norbornne having a substituent containing an aryl group. The repeating unit of norbornene having a substituent having a polymerizable group is preferably a repeating unit of norbornene having an epoxy group-containing substituent, and a norbornene having a substituent containing a (meth)acryl group. The repeating unit and the repeating unit of norbornene having a substituent containing an alkoxyalkyl group are one less than two. The polymerizable group is preferred because it has high reactivity in each of the hiding sheets. Further, when a lion' comprising a repeating unit of two or more kinds of the polymerizable group-containing norbornene is used, flexibility and resistance can be achieved. On the other hand, by repeating a monoterpene containing norbornene having a substituent having an aryl group, the extremely high hydrophobicity from the aryl group can be utilized to more reliably prevent dimensional changes and the like caused by water absorption. Further, the norbornene-based resin is preferably a repeating sheet containing an alkyl norbornene. Further, the alkyl group may be any of a linear or branched form. By the repeating unit containing an alkyl norbornene, the norbornene-based resin can impart high flexibility due to an increase in flexibility. Further, the norbornene-based tree ruthenium containing a repeating unit of an alkyl norbornene is also preferable because it has excellent light transmittance to a specific wavelength region (particularly, a wavelength region in the vicinity of 850 nm). Specific examples of the norbornene-based resin containing the repeating unit of the above norbornene include a homopolymer of hexylnorbornene, a homopolymer of phenylethylnorbornazole 43 201227021, and a benzyl norbornene. A homopolymer, a copolymer of hexylnorbornene and ethylnorbornene, a copolymer of hexylnorbornene and benzylnorbornone 1, and the like. w 9 For the above reasons, the norbornene-based resin is preferably a resin represented by the following formula (4) or formula (8) to formula (1). [Chemical 2]

(1 ) (式(1)中,Ri表示碳數1〜10的烷A 的示1〜3的整數⑽為2〇:下〜 式來的重複單元的降冰片稀系樹腊可以如下方 藉由將具有&amp;的降冰片稀 冰片稀溶解於曱笨中,將Nin^氧基的降 溶液聚合_得式⑴ ^ (A)用相媒來進行 f化3J )所表不的降冰片婦系樹脂。 44 201227021 40018pif(1) In the formula (1), Ri represents an integer (10) of 1 to 3 of the alkane A having a carbon number of 1 to 10, and 2: 降: a repeating unit of the formula: The icing tablet of the Nin oxy group is polymerized by dissolving the norbornene flakes with &amp; in a stupid manner. _ Get the formula (1) ^ (A) with the phase medium to f = 3J) Resin. 44 201227021 40018pif

(A) 此外’側鏈上具有環氧基的降冰片烯的製造方法例如 正如(i)、(ii)所述。 (i)降冰片烯曱醇(NB-CH2-OH)的合成 使藉由二環戊二稀(dicyclopentadiene,DCPD)的裂 解而生成的環戊二烯(cyclopentadiene,CPD)與α稀烴 (CH2=CH-CH2-OH)在高溫高壓下反應。 [化4](A) Further, the method for producing norbornene having an epoxy group in the side chain is as described in (i) and (ii), for example. (i) Synthesis of norbornene sterol (NB-CH2-OH) to produce cyclopentadiene (CPD) and alpha-dilute hydrocarbon (CH2) by cleavage of dicyclopentadiene (DCPD) =CH-CH2-OH) reacts at high temperature and pressure. [Chemical 4]

Δ 〇Δ 〇

x= o^oh (ii)環氧基降冰片烯的合成 藉由降冰片稀曱醇與表氣醇(epichl〇ro hydrin )的反應 而生成。 [化5]x= o^oh (ii) Synthesis of epoxy-oxynorbornene It is formed by the reaction of norbornne with epichyl alcohol (epichl〇ro hydrin). [Chemical 5]

45 201227021 -----rit 此外,於式(1、士 氣醇的亞甲基成^ ^在b為2或3的情況時,使用表 包含式乙t、伸丙基等的化合物。 ^,可撓性與耐熱 而言 丁基降冰片烯盘甲分別為1的化合物,例如: 斑甲醚降冰片_共聚物、癸基降冰片歸 ί碌丙醚降冰片烯的共聚物等。 L化6]45 201227021 -----rit In addition, in the case of the formula (1, the methylene group of the moral alcohol is ^ when the b is 2 or 3, the compound containing the formula B, the propyl group, etc. is used. ^, A compound having a butyl norbornene disk group of 1, respectively, in terms of flexibility and heat resistance, for example, a methyl ether borneol copolymer, a fluorenyl norbornene copolymer, and a copolymer of lanyl ether norbornene. 6]

。(式(2)中,R2表示碳數1〜10的烷基,R3表示氫 '、子或者曱基’ e表示Q〜3的整數,响2為2G以下。) 包含式(2)的重複單元的降冰片烯系樹脂可藉由將具 、尺2的降冰片烯、及側鏈上具有丙烯酸基及甲基丙烯酸美 :降冰片烯溶解於甲苯中’將上述Ni化合物⑷用於“ 媒來進行溶液聚合而獲得。 t此外,包含式(2)所表示的重複單元的降冰片烯系樹 脂中,就可撓性與耐熱性的並存的觀點而言,特佳為使用 46 201227021 HUUIOpif R2為碳數4〜10的烷基且 冰片稀與丙烯酸2·(5-降冰W1的化合物’例如··丁基降 冰片稀與丙烯酸2办降冰=基)共聚物、己基降 冰片烯與丙稀酸2_(5-降冰去,)曱醋的共聚物、癸基降 [化7] 仪片烯基)曱酯的共聚物等。. (In the formula (2), R2 represents an alkyl group having a carbon number of 1 to 10, R3 represents a hydrogen ', a sub or a mercapto group 'e represents an integer of Q 3 and 3, and a ring 2 is 2 G or less.) A repeat containing the formula (2) The norbornene-based resin of the unit can be used for the medium by dissolving the norbornene of the ruler, the ruler 2, and the acrylic acid and the methacrylic acid: norbornene in the side chain in the toluene. In addition, in the norbornene-based resin containing a repeating unit represented by the formula (2), it is particularly preferable to use 46 201227021 HUUIOpif R2 from the viewpoint of coexistence of flexibility and heat resistance. Is a carbon number of 4 to 10 alkyl groups and borneol is dilute with acrylic acid 2 (5 - ice-free W1 compound 'such as · butyl borneol thin and acrylic 2 ice-free = base) copolymer, hexyl norbornene and Acrylic acid 2_(5-ice-removing), a copolymer of hydrazine vinegar, a fluorenyl group, and a copolymer of an oxime ester.

雜(式(3)中,心表示碳數1〜10的烧基,各Χ3分別 ^地表示碳數1〜3的烧基,d表示Q〜3的整數⑽ ❺2〇以下。) 包含式(3)的重複單元的樹脂可藉由使具有&amp; =片烯、及側鏈上具有貌氧基魏基的降冰片烯溶解於 ^中,將上述Ni化合物⑷用於觸媒來進行溶液聚合而 幾得。 此外,式(3)所表示的降冰片烯系聚合物中,特佳為 心為碳數4〜10的烧基、d為1或2且1為曱基或者乙美 的化合物,例如:丁基降冰片烯與降冰片烯基乙基三曱&amp; 基矽烷的共聚物、己基降冰片烯與降冰片烯基乙基三曱氧 基矽烷的共聚物、癸基降冰片烯與降冰片稀基乙基三甲氧 201227021 ^uuiopif 基石夕院的共聚物、丁基降冰片烯與三乙氧基矽烷基降冰片 烯的共聚物、己基降冰片烯與三乙氧基矽烷基降冰片烯的 共聚物、癸基降冰片烯與三乙氧基矽烷基降冰片烯的共聚 物、丁基降冰片烯與三甲氧基矽烷基降冰片烯的共聚物、 己基降冰片烯與三曱氧基矽烷基降冰片烯的共聚物、癸基 降冰片烯與三曱氧基矽烷基降冰片烯的共聚物等。 [化8]In the formula (3), the core represents a carbon group having a carbon number of 1 to 10, and each of the ruthenium 3 represents a group having a carbon number of 1 to 3, and d represents an integer of 10 to 3 (2) ❺ 2 〇 or less.) The resin of the repeating unit of 3) can be solution-polymerized by using the above-mentioned Ni compound (4) for a catalyst by dissolving a norbornene having &amp; = olefin and a fluorenyl thiol group in the side chain. And a few. Further, in the norbornene-based polymer represented by the formula (3), a compound having a carbon number of 4 to 10, a d of 1 or 2, and a fluorenyl group or a acetophenone, for example, a butyl group, is particularly preferable. Copolymer of norbornene with norbornene ethyl triterpene &amp; decane, copolymer of hexylnorbornene with norbornene ethyltrimethoxy decane, fluorenyl norbornene and norbornene Ethyltrimethoxy 201227021 ^uuiopif copolymer of base stone court, copolymer of butyl norbornene and triethoxydecyl norbornene, copolymer of hexyl norbornene and triethoxynonylnorbornene a copolymer of fluorenyl norbornene with triethoxynonylnorbornene, a copolymer of butyl norbornene and trimethoxydecylnorbornene, a hexyl norbornene and a tridecyloxydecyl group. a copolymer of norbornene, a copolymer of fluorenyl norbornene and a trimethoxydecylnorbornene, and the like. [化8]

(式(4)中’风5表示碳數1〜1〇的烷基,、及 刀別獨立地表示下述式(5)〜式(7)所表示的取代基, 但不會同時為同一取代基,另外,P4/(q4 + r)為2〇以下。) 包含式(4)的重複單元的樹脂可藉由使具有心的降 冰片烯、及側鏈上具有Α!*、的降冰片烯溶解於曱笨 中,將Ni化合物(A)用於觸媒來進行溶液聚合而獲得。 [化 9] ^(In the formula (4), 'wind 5' represents an alkyl group having 1 to 1 carbon atoms, and the substituents independently represent the substituents represented by the following formulas (5) to (7), but they are not simultaneously the same Further, P4/(q4 + r) is 2 Å or less.) The resin containing the repeating unit of the formula (4) can be obtained by causing a norbornene having a heart and having a Α!* on the side chain. The borneol is dissolved in a ruthenium, and the Ni compound (A) is used for a solution polymerization to obtain a solution. [化 9] ^

48 201227021 (式(5)中’e表示〇〜3 數。) 的整數,f表示 1〜3的整 [化 10] jCHji)g °v° 6 r6 氫原子或者甲基, g表示0〜3 (式(6)中’116表示 的整數。) [化 11] (CH2)h r 1&gt;、 ⑺ χ4 \ χ4 χ4 ⑺巾’ Χ4分糊立地表示碳數1〜3的烧基, η表不0〜3的整數。) 此外,包含式(4)所表示的重複單元的降 =列舉:丁基降冰片稀、己基_或= 烯的任—者,丙烯酸2-(5-降冰片烯基)曱酯,與降冰 49 201227021 Α η ::三乙氧基魏基降冰片埽或者 -甲乳基綠基降冰片_任—者的三元共料 冰片烯、己基降冰片烯或者癸基降冰片烯的任一者,:: 酸2-(5-降冰片烯基與甲基環氧丙崎冰片婦的二_ 基降冰片烯或者癸基降冰二 甲氧一二===基三 基降冰片烯的任―者的三元共聚物等 减石夕燒 [化 12]48 201227021 (In the formula (5), 'e denotes an integer of 〇~3.), f denotes 1~3 of the whole [10] jCHji)g °v° 6 r6 hydrogen atom or methyl group, g represents 0~3 (Integer represented by '116 in the formula (6).) (Chemical Formula 11) (CH2)hr 1&gt;, (7) χ4 \ χ4 χ4 (7) towel ' Χ 4 points of the base of the carbon number 1 to 3, η is not 0 An integer of ~3. Further, the drop of the repeating unit represented by the formula (4) is as follows: butyl pentane thin, hexyl _ or = ene, any 2-(5-norbornyl) decyl acrylate, and Ice 49 201227021 Α η :: Triethoxy Weiyl norborner 埽 or - methyl lactyl-based borneol _ any one of the ternary borneol, hexyl norbornene or fluorenyl norbornene ,:: Acid 2-(5-norbornyl and methylepoxy-propanoid borneol bis-norbornene or sulfhydryl-norborn dimethyloxy-=== s-triylnorbornene Any one of the ternary copolymers, etc.

原子、U二, 亞甲基,X2表示碳原子或者;;方早基,x主1表示氧原子或者 j表示1〜3的整數,晌5為20以下:)、不0〜3的整數, 溶解於甲笨中,㈣化合物用於觸。)=== 201227021 40018pif 得。 此外,包含式⑻所表示的重複單元的降冰片婦系樹 脂中’較佳為Xl為氧原子、χ2為石夕原子且&amp;為苯基的樹 脂。 進而,就可撓性、耐熱性以及折射率控制的觀點而言, 特佳為R7為碳數4〜1G 基、Χι騎原子、&amp;為石夕原 子、ΑΓ為苯基、R8為曱基、i為1且j為2的化合物,例 如:丁基降冰片烯與二苯基f基降冰片烯甲氧基魏的共 聚物、己基降冰㈣與二苯基甲基降冰㈣甲氧基魏的 共聚物、癸基降冰片烯與二苯基甲基降冰片烯甲氧基石Μ 的共聚物等。 具體而言’較佳為使用如以下所述的降冰片烯系樹脂。 [化 13]Atom, U di, methylene, X2 represents a carbon atom or; an early radical, x main 1 represents an oxygen atom or j represents an integer of 1 to 3, 晌 5 is 20 or less:), an integer not 0 to 3, Dissolved in a stupid, (d) compound used for contact. )=== 201227021 40018pif. Further, in the norbornene-based resin containing the repeating unit represented by the formula (8), it is preferable that X1 is an oxygen atom, χ2 is a cerium atom, and &amp; is a phenyl resin. Further, from the viewpoints of flexibility, heat resistance, and refractive index control, it is particularly preferable that R7 is a carbon number of 4 to 1 G, a Χι ride atom, &amp; is a Shi Xi atom, a ruthenium is a phenyl group, and R8 is a fluorenyl group. a compound wherein i is 1 and j is 2, for example, a copolymer of butyl norbornene and diphenyl f-norbornene methoxy wei, hexyl norborne (tetra) and diphenylmethyl norborn (tetra) methoxy Copolymer of kewei, copolymer of fluorenyl norbornene and diphenylmethylnorbornene methoxy fluorene, and the like. Specifically, it is preferred to use a norbornene-based resin as described below. [Chem. 13]

(式(9)中的R7、p5、q5、i與式(8)相同。) 另外,就可撓性與耐熱性以及折射率控制的觀點而 言’可為式(8)中R?為碳數4〜1〇的烷基、X!為亞甲基、 X2為碳原子、Ar為苯基、R8為氫原子、i為〇且』為f的 51 201227021 40018pif 化合物,例如:丁基降冰片烯與笨基乙基降冰片烯的共聚 ,、己基降冰片烯與苯基乙基降冰片稀的共聚物、癸基 /片烯與笨基乙基降冰片烯的共聚物等。 進而,降冰片烯系樹脂可使用如下所述的樹脂。 [化 14](R7, p5, q5, and i in the formula (9) are the same as those in the formula (8).) In terms of flexibility, heat resistance, and refractive index control, 'R? in the formula (8) is An alkyl group having 4 to 1 Å carbon atoms, a methylene group of X2, a carbon atom of X2, a phenyl group, a hydrogen atom, and a hydrogen atom, and i is 〇, and f is a compound of 2012 201221 21 40018 pif, for example, a butyl group. Copolymerization of borneol with stupidyl ethyl norbornene, copolymer of hexyl norbornene with phenylethyl norbornne, copolymer of fluorenyl/tablene with stupidyl ethyl norbornene, and the like. Further, as the norbornene-based resin, the following resins can be used. [Chem. 14]

(10 ) ^ (式(10)中,R10表示碳數1〜10的烷基,Ru表示 芳基’k為〇以上、4以下;p6/q6為20以下。) 另外 ’ Pi/qrp^qs、p5/q5、p6/q6 或者 p4/ (q4 + r)只 ,為20以下即可,較佳為15以下,更佳為0.1〜10左右。 藉此’包含多種降冰片烯的重複單元的效果得到充分發揮。 另一方面,聚合物915如上所述可為丙烯酸系樹脂、 甲基丙烯酸系樹脂、環氧系樹脂、聚醯亞胺、矽酮系樹脂、 氣系樹脂、聚矽烷、聚胺基曱酸酯等。 其中’丙烯酸系樹脂以及曱基丙烯酸系樹脂例如可列 舉:聚(丙烯酸甲酯)、聚(曱基丙烯酸曱酯)、聚(環氧丙烯 酸黯)、聚(環氧曱基丙烯酸酯)、聚(胺基丙烯酸酯)、聚(胺 基曱基丙烯酸酯)、聚丙烯酸、聚曱基丙烯酸、聚(異氰酸 嘴基丙烯酸酯)、聚(異氰酸酯基曱基丙烯酸酯)、聚(氰酸酯 52 201227021 4UUJ8pif 基丙稀酸酯)、聚(氰酸賭基甲基 稀酸醋)、聚(硫代環氧甲基丙埽ΪΓ旨)⑽ M、聚(甲基丙婦酸埽丙酉旨)、 ,(丙城稀丙 物(曱基丙烯酸甲酯與甲其;衣孔丙烯酸酯共聚 乙烯-環氧丙烯酸酯共聚物;二:二=聚物)、苯 者2種以上的複合材料。 烟及权合物的1種或 盼=氧如可列舉:脂環式環氧樹脂、雙 ^•衣虱樹月日雙酚F型環氧樹脂、 具有,苯骨架的聯苯型環氧樹脂、含萘環的| 月曰且(10) ^ (In the formula (10), R10 represents an alkyl group having 1 to 10 carbon atoms, Ru represents an aryl group 'k is 〇 or more, 4 or less; and p6/q6 is 20 or less.) Further 'Pi/qrp^qs Further, p5/q5, p6/q6 or p4/(q4 + r) may be 20 or less, preferably 15 or less, more preferably 0.1 to 10. Thereby, the effect of the repeating unit containing a plurality of norbornenes is sufficiently exerted. On the other hand, as described above, the polymer 915 may be an acrylic resin, a methacrylic resin, an epoxy resin, a polyimide, an anthrone resin, a gas resin, a polydecane, or a polyamino phthalate. Wait. Examples of the 'acrylic resin and the mercapto acrylic resin include poly(methyl acrylate), poly(decyl methacrylate), poly(epoxy acrylate), poly(epoxy acrylate), and poly (Amino acrylate), poly(amino methacrylate), polyacrylic acid, polyacrylic acid, poly(isocyanato acrylate), poly(isocyanate thiol acrylate), poly(cyanic acid) Ester 52 201227021 4UUJ8pif propyl acrylate), poly(cyanate methyl sulphuric acid vinegar), poly(thio epoxymethyl propyl acrylate) (10) M, poly(methyl acetoacetate 埽 酉Purpose), , (Cicheng dilute propylene (methyl methacrylate and its; acicular acrylate copolymer - epoxy acrylate copolymer; two: two = polymer), benzene, two or more composite materials For example, one type of smog and oxygen of smog and agglomerate: alicyclic epoxy resin, bismuth, bismuth bisphenol F type epoxy resin, biphenyl type epoxy having benzene skeleton Resin, containing naphthalene ring |

Si二烯骨架的二戊二_環氧樹脂:苯酚:心 衣氧树脂、曱齡紛酸型環惫满 〇 ,甲_樹脂、 料可㈣馳環氧㈣财的1種或者 另外,聚酿亞胺只要是藉由將作為聚酿亞胺樹脂前驅 的t醯胺酸閉環’使其硬化(醯亞胺化)而獲得的樹脂, 則並無特別限定。 h聚醯胺酸例如可藉由在N,N-二曱基乙醯胺中,使四綾 ^一酐與二胺以等莫耳比反應而獲得為溶液。 其中,四羧酸二酐例如可列舉:均苯四曱酸二酐、 3,3’,4,4’-聯苯四曱酸二酐、2,2_雙(2,3_二羧基笨 基)-1,1,1,3,3,3-六氟丙烷二酐、2,2-雙(3,4-二羧基笨 基)_1,1,1,3,3,3-六氟丙烧二酐、3,3’,4,4,-二苯曱酉同四曱酸二 軒、雙(3,4-二羧基苯基)醚二酐、雙(3,4_二羧基苯基)續酸 53 201227021 40018pif 二酐等。 另一方面,二胺例如可列舉:間伸苯基二胺、對伸笨 基二胺、3,4’-二胺基二苯基醚、4,4,-二胺基二苯基喊、4 4,_ 一胺基二苯基礙、二胺基二苯基ί風、2,2-雙(4-胺其苯 氧基苯基)丙烷、2,2-雙(4-胺基苯氧基苯基)六氟丙烷、丨,3_ 雙(4-胺基笨氧基)苯、l,4-雙(4-胺基苯氧基)苯、2,4_二胺基 甲本、2,6-一胺基甲苯、二胺基二苯基甲烧、4,4'-二胺基_2 2· 二曱基聯苯、2,2-雙(三敗甲基)_4,4·-二胺基聯笨等。 另外,矽酮系樹脂例如可列舉:矽酮橡膠、矽酮彈性 體等。該些矽酮系樹脂是藉由使矽酮橡膠單體或 與硬化劑反應而獲得。 春知 石夕酮橡膠單體或者寡聚物例如可列舉:包含甲基石夕氧 烧基、乙基石夕氧烧基、笨基石夕氧烧基的化合物。土 另外’作切曝轉贱者絲物,Μ ft’較佳為使關如導人環氧基、乙烯、丙婦酸基 專吕旎基而成的化合物。 土 將;!2個以上聚合性不飽和 體與自由絲合性單料=合物、將含氟系單 &gt; 早體/、t s而獲得的聚合物等。 二氧構&amp;如^列舉:全氟(2,2·二甲基-u-基·1,3-二氧環戊埽)(等。土.,_-乳環戊稀)、全氟(4-甲氧 另外’含氟單體例如可列舉:全氟(烯丙基乙烯醚)、 54 201227021 -TUUl opif 全氟(丁烯基乙烯醚)等。 H,自祕聚合性單體例如 一氟乙稀、全氟(曱基乙烯醚)等。 可使:mi要是主鏈僅包含&amp;原子的高分子,則 為直鏈型,亦可為分支型。而且, 1中的1原子上,除&amp;原子以外,鍵結有氫原子、 烴基、烷氧基等有機取代基。 、 可列舉:可經自素取代的碳數1〜10 的月曰肪族絲、石反數^4的芳香族煙基等。 脂肪族烴基的具體例可列舉:如甲基、乙基、丙基、 狀二己f产、癸基1二1丙基、九敦己基之類的鍵 二 〗土、甲基環己基之_脂環式烴基等。 基、ίίί煙基的具體例可列舉:苯基、對甲苯基、聯苯 乙氣Ϊ氧ί:Γ碳數1〜8者’具體而言可列舉甲氧基、 乙氧基、本氧基、辛氧基等。 ^卜,聚胺基甲酸酯只要是主鍵上包含胺基甲酸醋鍵 (--0-ΝΗ-)的高分子,則可使用任意者。另外,可為 主鏈上包含胺基甲酸酯鍵及脲鍵(_nh_c〇_nh_、 =H-caN=、或者棚(αΝ&lt;)的胺基甲酸酯.腦共聚物 等。 此外’芯層13的各部的折射率是根據各部的聚合物 915的折射率與單體的折射率的相對大小關係及轉在比 率來決定,因此可根據所使用的單體的種類來適當調整聚 55 201227021 40018pif 合物915的折射率。 例如為了獲得具有比較高的折射率的聚合物915’ 選擇分子結射具有芳香族環(芳香族基)、氣原子、 柄子或氣原干的單體,來合成(聚合)聚合物915。另 a方面$ 了獲得具有比較低的折射率的聚合物915,通 j擇刀子結構中具有烧基、I原子或喊結構(醚基)的 早體’來合成(聚合)聚合物915。 具有比較高的折射率的降冰片稀系樹脂較佳為包含芳 =降冰片_重複單福樹脂。該降冰片稀系樹脂具有 特別高的折射率。 芳院基降冰片烯的重複單元所具有的芳絲(芳基烧 2例如可列舉:雜、苯基乙基、苯基丙基、苯基丁基、 二=^基、萘基丙基、g基乙基、第基丙基等,特佳為节 二基乙基。具有該重複單元的降冰片烯系樹脂由於具 有極高的折射率,故而較佳。 另外,如上所述的聚合物915較佳為具有自主鏈上分 口,且藉由活性放射線的照射,其分子結構的至少一部分 二自主鏈上脫離的脫離性基(脫離性側基(pendam fup))。即,藉由脫離性基的脫離,聚合物915的折射率 低因此聚合物915可根據活性放射線的照射的有盔 ㈣軒射率差。 、而 此種具有脫離性基的聚合物915例如可列舉分子結構 具有、〇-結構、-Si-芳基結構以及-Ο-Si-結構中的至少1 者的聚合物。該脫離性基藉由陽離子的作用而比較容易脫 56 201227021 -rwv i υριί* 離 其中’藉由脫離而使樹脂的折射率產生降低的脫離性 ^較佳為_Si_二苯基結構以及·〇|二苯基結構的至少一 此處,側鏈上具有脫離性基的聚合物915例如可列 舉:環己稀、環辛烯科賴單體的聚合物,降冰片稀、 降冰片二烯(n〇rb〇rnadiene)、二環戊二稀、二氫二環戊二 稀、四環十二婦、三環戊二烯、二氫三環戊二烯、四環戍 二氫四環戊二烯等多環體單體的聚合物等環狀烯烴 系樹脂。該些聚合物中較佳為使用選自多環體單體的聚合 物中的1種以上環狀烯烴系樹脂。藉此,可提高樹脂的耐 熱性。 此外,聚合形態可應用無規聚合、嵌段聚合等公知的 形態。例如作為降冰片烯型單體的聚合的具體例,降冰片 烯型單體的(共)聚合物、降冰片烯型單體與心烯烴類等 y共聚合的其他單體的共聚物、以及該些共聚物的氫化物 等符合具體例。該些環狀烯烴系樹脂可利用公知的聚合法 來製造’該聚合方法中有加成聚合法及開環聚合法,上述 中較佳為以加成聚合法所獲得的環狀烯烴系樹脂(特別是 降冰片烯系樹脂)(即,降冰片烯系化合物的加成聚合 物)。藉此,透明性、耐熱性以及可撓性優異。 進而’侧鏈上具有脫離性基的降冰片烯系樹脂例如可 列舉式(8)所表示的降冰片烯系樹脂中,Xl為氧原子、 X2為矽原子且Ar為苯基的樹脂。 201227021 40018pif 另外’式(3)中’有在烷氧基矽烷基的si_0_X3的部 分脫離的情況。 另外,例如於使用式(9)的降冰片烯系樹脂的情況, 推測為利用由光酸產生劑(表述為PAG ( Photo Acid Generator))產生的酸,以如下方式進行反應。此外,此 處,僅表示脫離性基的部分’另外,以i=l的情況進行說 明。 [化 15]Dipentane-epoxy resin of Si-diene skeleton: Phenol: heart-coating oxygen resin, age-old acid-type ring-filled bismuth, A-resin, material (4) Chi epoxy (four), one or the other, The imine is not particularly limited as long as it is obtained by ring-sealing and curing the t-proline which is a precursor of the polyacrylonitrile resin. The h polyproline can be obtained, for example, by reacting tetrahydrofuran anhydride with a diamine in an equimolar ratio in N,N-dimercaptoacetamide. Among them, examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, and 2,2_bis (2,3-dicarboxyl stupid). 1,1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)_1,1,1,3,3,3-hexafluoro Propylene dianhydride, 3,3',4,4,-diphenylfluorene with tetradecanoic acid dixanthine, bis(3,4-dicarboxyphenyl)ether dianhydride, bis(3,4-dicarboxybenzene Base) continued acid 53 201227021 40018pif dianhydride and the like. On the other hand, the diamine may, for example, be an exo-phenylenediamine, a p-diamine diamine, a 3,4'-diaminodiphenyl ether, or a 4,4,-diaminodiphenyl group. 4 4,_Aminodiphenyl, diaminodiphenyl, 2,2-bis(4-amine phenoxyphenyl)propane, 2,2-bis(4-aminobenzene) Oxyphenyl) hexafluoropropane, hydrazine, 3_bis(4-aminophenyloxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 2,4-diaminocarbyl, 2,6-monoaminotoluene, diaminodiphenylmethane, 4,4'-diamino 2 2 ·dimercaptobiphenyl, 2,2-bis(trimethylene)-4,4 ·-Diamine-based stupid and the like. Further, examples of the anthrone-based resin include an anthrone rubber and an anthrone elastomer. These anthrone-based resins are obtained by reacting an anthrone rubber monomer or a curing agent. For example, a compound containing a methyl oxalate group, an ethyl oxalate group, and a styryl group can be mentioned. The soil is additionally used as a compound for cutting and exposing the sputum, and Μ ft' is preferably a compound obtained by conducting an epoxy group, an ethylene group, or a acetophenanyl group. Soil; a polymer obtained by adding two or more polymerizable unsaturated bodies to a free-filament-single-single compound, a fluorine-containing system, &gt; early body, and t s. Dioxo &amp; exemplification: perfluoro(2,2·dimethyl-u-yl·1,3-dioxolane) (etc. earth., _-miltosan), perfluoro (4-methoxy other fluorine-containing monomer may, for example, be perfluoro(allyl vinyl ether), 54 201227021 -TUUl opif perfluoro(butenyl vinyl ether), etc. H, a self-polymerizable monomer such as Fluorine, perfluoro(fluorenyl vinyl ether), etc. It can be: if the main chain contains only the &amp; atomic polymer, it is linear or branched. Moreover, 1 atom in 1 In addition to the &amp; atom, an organic substituent such as a hydrogen atom, a hydrocarbon group or an alkoxy group is bonded to the group. For example, a ruthenium group having a carbon number of 1 to 10 which can be substituted by a self-supplement, a stone inverse number ^ Aromatic group of 4 or the like. Specific examples of the aliphatic hydrocarbon group include a bond such as a methyl group, an ethyl group, a propyl group, a dihexyl group, a fluorenyl group 1 1-2 propyl group, and a ninth hexyl group. Soil, methylcyclohexyl _ alicyclic hydrocarbon group, etc. Specific examples of the base, γί 烟 base: phenyl, p-tolyl, biphenyl ethane Ϊ ί: Γ carbon number 1 ~ 8 'specific The methoxy group, the ethoxy group, the present oxy group, Oxygen, etc. ^, the polyurethane may be any polymer as long as it is a polymer containing an amino formate urethane bond (--0-ΝΗ-) on the primary bond. Further, an amine may be contained in the main chain. a urethane bond and a urea bond (_nh_c〇_nh_, =H-caN=, or a urethane of a shed (αΝ&lt;), a brain copolymer, etc. Further, the refractive index of each portion of the core layer 13 is based on Since the refractive index of the polymer 915 of each part is determined by the relative magnitude relationship between the refractive index of the monomer and the refractive index of the monomer, the refractive index of the poly 55 201227021 40018pif compound 915 can be appropriately adjusted depending on the type of the monomer to be used. In order to obtain a polymer 915' having a relatively high refractive index, a molecule is selected to catalyze a monomer having an aromatic ring (aromatic group), a gas atom, a handle or a gas atom to synthesize (polymerize) the polymer 915. In the aspect of the invention, a polymer 915 having a relatively low refractive index is obtained, and a polymer 915 having an alkyl group having an alkyl group or an atomic structure or an ethereal structure (ether group) in the knive structure is synthesized. The high refractive index of the norbornene rare resin preferably contains aryl = lower Sheet _ repeating single-resin resin. The norbornene-based resin has a particularly high refractive index. The aromatic filaments of the repeating unit of the aromatic-based norbornene (for example, aryl-based exemplified by: styrene, phenylethyl, Phenylpropyl, phenylbutyl, bis-yl, naphthylpropyl, g-ethyl, propylpropyl, etc., particularly preferably a di-n-ethyl group. A norbornene-based resin having the repeating unit In addition, the polymer 915 as described above preferably has an autonomous chain split, and at least a part of the molecular structure of the molecular structure is separated by irradiation of actinic radiation. Detachable base (pendam fup). Namely, by the detachment of the detachment group, the refractive index of the polymer 915 is low, so that the polymer 915 can have a helmet (four) radiance difference depending on the irradiation of the active radiation. Further, such a polymer 915 having a debonding group may, for example, be a polymer having at least one of a molecular structure, a 〇-structure, a -Si-aryl structure, and a -Ο-Si- structure. The detachable group is relatively easy to remove by the action of a cation. The detachment property of the resin is reduced by the detachment, and the detachment property of the resin is preferably _Si_diphenyl structure and至少|At least one of the diphenyl structures, the polymer 915 having a leaving group on the side chain, for example, a cyclohexene, a cyclooctene ketone monomer polymer, a norbornene thinner, norbornadiene (n〇rb〇rnadiene), dicyclopentadiene, dihydrodicyclopentadiene, tetracyclotetradecyl, tricyclopentadiene, dihydrotricyclopentadiene, tetracyclic indenyl dihydrotetracyclopentane A cyclic olefin resin such as a polymer of a polycyclic monomer such as a diene. Among these polymers, one or more cyclic olefin resins selected from the group consisting of polycyclic monomer monomers are preferably used. Thereby, the heat resistance of the resin can be improved. Further, a known form such as random polymerization or block polymerization can be applied to the polymerization form. For example, as a specific example of polymerization of a norbornene-type monomer, a copolymer of a (co)polymer of a norbornene-type monomer, a norbornene-type monomer, and a copolymer of a monomer such as a heart olefin, and the like, and The hydride or the like of the copolymers is in accordance with a specific example. The cyclic olefin resin can be produced by a known polymerization method. In the polymerization method, an addition polymerization method and a ring-opening polymerization method are used. Among the above, a cyclic olefin resin obtained by an addition polymerization method is preferred ( In particular, a norbornene-based resin) (that is, an addition polymer of a norbornene-based compound). Thereby, transparency, heat resistance, and flexibility are excellent. Further, the norbornene-based resin having a cleavable group in the side chain is, for example, a resin of the norbornene-based resin represented by the formula (8), wherein X1 is an oxygen atom, X2 is a halogen atom, and Ar is a phenyl group. 201227021 40018pif Further, in the formula (3), a portion of the si_0_X3 of the alkoxyalkyl group is removed. In the case of using a norbornene-based resin of the formula (9), it is presumed that the reaction is carried out in the following manner using an acid generated by a photoacid generator (described as PAG (Photo Acid Generator)). Here, only the portion of the detachment group is shown here. In addition, the case of i = 1 is explained. [化15]

進而,除了式(9)的結構以外,亦可為侧鏈上具有環 氧基的降冰片烯系樹脂。藉由使用此種降冰片烯系樹脂衣 具有可形成對披覆層II、12或基材的密著性優異的^層 13的效果。 a 具體例可列舉如下所述的例子。 [化 16] 58 201227021 HuuiopifFurther, in addition to the structure of the formula (9), a norbornene-based resin having an epoxy group in a side chain may be used. By using such a norbornene-based resin coating, it has an effect of forming a layer 13 excellent in adhesion to the coating layers II, 12 or the substrate. a Specific examples include the following examples. [化16] 58 201227021 Huuiopif

(式(31)中,p7/ (q7 + r2)為 2〇 以下。) 式(31)所示的化合物例如可藉 及二苯基甲基降冰片烯甲氧基石夕片烯、 -CHrO-SKCHsXPh)2的降冰片烯)以及产 ^上包含 =甲苯中’…合物用於觸媒來;行;== 另-方面,其他的脫離性基例如可列舉末端 = ^taphe_e) 代基。該脫離性基藉 基的作用而比較容易脫離。 ㈢田目由 ^述脫雜基的含量並無特觀定,較料 上具有脫離性基的聚合物915中的1G重量%〜8g f 2佳為20重量%〜60重量%。若含量在上&gt;二 撓性與折射率讀魏(使折射率差變化触 性特別優異。 g亚存 =如,藉由增纽離性基的含量,可紐使折 化的寬度。 (添加劑) 59 201227021 40018pif 添加劑920包含單體以及聚合起始劑。 ((單體)) 單體為如下化合物.藉由後述活性放射線的照射,在 活性放射線的照射區域反應而形成反應物,與此同時單體 擴散移動,藉此於層910中可使照射區域與未照射區域之 間產生折射率差。 單體的反應物可列舉:單體在聚合物915中聚合而形 成的聚合物(polymer)、單體將聚合物915彼此交聯而成 的交聯結構、以及單體於聚合物915中聚合而自聚合物915 中分支的分支結構中的至少1種。 但,照射區域與未照射區域之間產生的折射率差是基 於聚合物915的折射率與單體的折射率的差而產生,因二 添加劑920中所含的單體是考慮到與聚合物915的折射率 的大小關係來選擇。 具體而言,層910中,於期望照射區域的折射率提高 的情況,將具有比較低的折射率的聚合物915、與相對= 該聚合物915而具有高折射率的單體組合使用。另一方 面,於期望照射區域的折射率降低的情況,將具有比較高 的折射率的聚合物915、與相對於該聚合物915而具有: 折射率的單體組合使用。 - 此外,所謂折射率「高」或者「低」,並非是指折射率 的絕對值,而是指某材料彼此的相對關係。 而且,於藉由單體的反應(反應物的生成),層91〇 中照射區域的折射率降低的情況,該部分形成折射率分布 201227021 '40018pif :::::布=域的折射率上升的情 況 該部分構 此少卜 平篮k佳為具有與聚合物915的 聚合物犯的折射率差為0.01以上的單2相谷性,且與 此種單體?、妓具有可聚合__化 然並無特別較,但糾如刊舉··降 ’雖 丙物系單體、環氧系單體、氧 系單體、苯乙烯系單體等,可使用該些單體 中的1種或者將2種以上組合使用。 該些賴巾,單錄佳為錢具錄_了基 鍵基的單體或者募聚物、或者降冰片埽系ΐ 體。藉由使用具有環狀喊的單體或者絲物 環狀喊關環,因此獲得可快速反應的單體。另外 由使用降冰&gt;{稀系單體,而獲得光傳送性能優異、且耐^ 性以及柔軟性優異的芯層13 (光導波管1)。 其中,具有環狀醚基的單體的分子量(重量平均分子 量)或者寡聚物的分子量(重量平均分子量)分別較佳為 100以上400以下。 具有氧雜環丁基的單體、具有氧雜環丁基的寡聚物較 佳為選自下述式(11)〜式(20)的組群中的化合物。藉 由使用該些化合物,具有波長850 nm附近的透明性優異, 可使可撓性與耐熱性並存的優點。另外,可將該些化合物 單獨使用,亦可混合使用。 [化 17] 61 (11 ) 201227021 40018pif c2h(In the formula (31), p7/(q7 + r2) is 2 Å or less.) The compound represented by the formula (31) can be, for example, diphenylmethylnorbornene methoxy erythrene, -CHrO- The norbornene of SKCHsXPh)2 and the compound containing = in toluene are used for the catalyst; the line; == another aspect, other debonding groups are, for example, terminal = ^taphe_e). The detachment-based radical is relatively easy to detach. (3) The content of the de-hybrid group is not particularly determined, and 1 G weight% to 8 gf 2 of the polymer 915 having a release group is preferably 20% by weight to 60% by weight. If the content is above &gt; two flexibility and the refractive index read Wei (the refractive index difference is particularly excellent in the tactile properties. g sub-storage = for example, by increasing the content of the dissociative group, the width of the fold can be made. 59 201227021 40018pif Additive 920 contains a monomer and a polymerization initiator. ((Monomer)) The monomer is a compound which reacts in the irradiation region of the actinic radiation to form a reactant by irradiation of active radiation described later. At the same time, the monomer diffuses and moves, whereby a refractive index difference can be generated between the irradiated region and the unirradiated region in the layer 910. The monomer reactant can be exemplified by a polymer formed by polymerizing a monomer in the polymer 915 (polymer) And a crosslinked structure in which the monomers crosslink the polymers 915 with each other, and at least one of the branched structures in which the monomers are polymerized in the polymer 915 and branched from the polymer 915. However, the irradiated region is not irradiated. The difference in refractive index generated between the regions is generated based on the difference between the refractive index of the polymer 915 and the refractive index of the monomer, since the monomer contained in the two additive 920 is considered to have a relationship with the refractive index of the polymer 915. Come to choose Specifically, in the layer 910, when the refractive index of the desired irradiation region is increased, the polymer 915 having a relatively low refractive index is used in combination with the monomer having a high refractive index relative to the polymer 915. On the other hand, in the case where the refractive index of the irradiation region is desired to be lowered, the polymer 915 having a relatively high refractive index is used in combination with a monomer having a refractive index with respect to the polymer 915. The refractive index "high" or "low" does not refer to the absolute value of the refractive index, but refers to the relative relationship between a certain material. Moreover, in the reaction of the monomer (reaction of the reactant), the layer 91 is irradiated In the case where the refractive index of the region is lowered, the portion forms a refractive index distribution 201227021 '40018pif::::: cloth = the refractive index of the domain rises. This portion constitutes a small flat basket k which is preferably a polymer having a polymer 915 The refractive index difference of 0.01 or more is a single 2-phase gluten, and it is not particularly comparable to the monomer 妓 and 妓 _ _ _ _ _ _ _ _ _ _ _ _ _ _ Body, epoxy monomer, oxygen system A styrene-based monomer or the like may be used alone or in combination of two or more kinds. The slings are preferably used as a monomer or a condensed polymer. Or a norbornene system, by using a ring-shaped monomer or a wire ring to ring the ring, thereby obtaining a monomer that can react quickly. In addition, by using ice-removing &gt; Further, a core layer 13 (optical waveguide 1) excellent in light transmission performance and excellent in resistance and flexibility is obtained. Among them, the molecular weight (weight average molecular weight) of the monomer having a cyclic ether group or the molecular weight of the oligomer ( The weight average molecular weight) is preferably 100 or more and 400 or less, respectively. The monomer having an oxetanyl group and the oligomer having an oxetanyl group are preferably compounds selected from the group consisting of the following formulas (11) to (20). By using these compounds, it is excellent in transparency at a wavelength of around 850 nm, and it is advantageous in that flexibility and heat resistance can coexist. Further, these compounds may be used singly or in combination. [Chem. 17] 61 (11) 201227021 40018pif c2h

[化 18] c2hs[化18] c2hs

(12 ) [化 19] ◊ T (13) [化 20] C2H5^-〇 (H) [化 21](12) [Chem. 19] ◊ T (13) [Chem. 20] C2H5^-〇 (H) [Chem. 21]

62 (16 ) 201227021 [化 22] [化 23] c2h5 PC2H5 〇 、〇c2h5 (17 ) 0 [化 24]62 (16 ) 201227021 [化 22] [Chem. 23] c2h5 PC2H5 〇 , 〇 c2h5 (17 ) 0 [Chem. 24]

(18 ) (式(18)中,n為0以上、3以下。) [化 25](18) (In the formula (18), n is 0 or more and 3 or less.) [Chem. 25]

63 (20) (20)201227021 [化 26]63 (20) (20)201227021 [Chem. 26]

如上所述的單體以及寡聚物中,就確保與聚合物915 的折射率差的觀點而言,較佳為使用式(13)、式㈠5)、 式(16)、式(17)、式(2〇)所表示的化合物。 進而,若考慮到具有與聚合物915的樹脂的折射率差 的方面、分子量小且單體的運動性高的方面、單體不容易 揮發的方面,則特佳為使用式(2〇)、式(15)所表示的化 合物。 另外,具有氧雜環丁基的化合物可使用以下的式 (32)、式(33)所表示的化合物。式(32)所表示的化合 物可使用東亞合成製造的商品名TES0X等,式(33)所 表示的化合物可使用東亞合成製造的商品名〇x_Sq等。 [化 27] 〇EtIn the monomer and the oligomer as described above, from the viewpoint of ensuring a difference in refractive index from the polymer 915, it is preferred to use the formula (13), the formula (I) 5), the formula (16), the formula (17), A compound represented by the formula (2〇). Further, in consideration of the difference in refractive index of the resin of the polymer 915, the fact that the molecular weight is small and the mobility of the monomer is high, and the monomer is not easily volatilized, it is particularly preferable to use the formula (2〇). A compound represented by the formula (15). Further, as the compound having an oxetanyl group, the compounds represented by the following formulas (32) and (33) can be used. The compound represented by the formula (32) may be a trade name of TES0X manufactured by Toagosei Co., Ltd., and the compound represented by the formula (33) may be a trade name of 东亚x_Sq manufactured by Toagosei Co., Ltd., or the like. [化27] 〇Et

[化 28] 64 (33) 201227021 40018pif[化 28] 64 (33) 201227021 40018pif

ΟΟ

(式(33)中,或者2。) 氧基的單體、具有環氧基的寡聚物例如 :在5::化合物。該具有環氧基的單體、寡聚物 疋在酸的存在下藉由開環而聚合。 具有環氧基的單體、具有環氧基的寡聚物可使用以下 二(34)〜式(39)所表示的化合物。其中,就環氧環 的應變能大且反應性優異的觀點而言,較佳為式(36)〜 式09)所表示的脂環式環氧單體。 此外’ S (34)所表示的化合物為環氧基降冰片稀, 此種化合物例如可使用PlOmerus公司製造的聊Β。式 (35)所表示的化合物為γ_環氧丙氧基丙基三甲氧基矽 烧。該化合物例如可使用D〇w Corning Toray Silicone公司 的Z-6040。另外,式(36)所表示的化合物為2_(3,4_ %氧%:己基)乙基三曱氧基石夕烧。該化合物例如可使用東京 化成製造的E0327。 進而,式(37)所表示的化合物為3,4-環氧環己稀甲 酸_3’,4’-環氧環己烯基羧酸酯,該化合物例如可使用Daicd 化學公司製造的Celloxide2021P。另外,式(38)所表示 的化合物為1,2-環氧-4_乙烯基環己烷,該化合物例如可使 用Daicel化學公司製造的Celloxide 2〇00。 65 201227021 進而,式(39)所表示的化合物為1,2:8,9-二環氧擰檬 烯,該化合物例如可使用(Daicel化學公司製造的Celloxide 3000)。 [化 29](In the formula (33), or 2.) The monomer of the oxy group or the oligomer having an epoxy group is, for example, a compound of 5::. The epoxy group-containing monomer or oligomer is polymerized by ring opening in the presence of an acid. As the monomer having an epoxy group or the oligomer having an epoxy group, the compounds represented by the following two (34) to (39) can be used. Among them, the alicyclic epoxy monomer represented by the formula (36) to the formula 09) is preferred from the viewpoint of having a large strain energy of the epoxy ring and excellent reactivity. Further, the compound represented by 'S (34) is a thin epoxy group, and such a compound can be, for example, a tablet manufactured by PlOmerus. The compound represented by the formula (35) is γ-glycidoxypropyltrimethoxysulfonium. As the compound, for example, Z-6040 of D〇w Corning Toray Silicone Co., Ltd. can be used. Further, the compound represented by the formula (36) is 2-(3,4-% oxygen%:hexyl)ethyltrimethoxylate. For the compound, for example, E0327 manufactured by Tokyo Chemical Industry Co., Ltd. can be used. Further, the compound represented by the formula (37) is 3,4-epoxycyclohexanecarboxylic acid_3',4'-epoxycyclohexenylcarboxylate. For the compound, for example, Celloxide 2021P manufactured by Daicd Chemical Co., Ltd. can be used. Further, the compound represented by the formula (38) is 1,2-epoxy-4-vinylcyclohexane, and for the compound, for example, Celloxide 2〇00 manufactured by Daicel Chemical Co., Ltd. can be used. 65 201227021 Further, the compound represented by the formula (39) is 1,2:8,9-diepoxycyclohexane, and the compound can be, for example, Celloxide 3000 (Daicel Chemical Co., Ltd.). [化29]

[化 32] 66 201227021[化32] 66 201227021

ο [化 33]ο [化33]

丁基的單體、具有氧雜環 體、具有環氧基的寡聚物 進,,單體可將具有氧雜環 丁基的寡聚物與具有環氧基的單 併用。 開奸聚的早體、具有氧雜環丁基的寡聚物雖 開始L的卩㈣反紐,但生長 環氧基的單〜 狀相對,具有 應快,但生:反;1基的严物雖開始聚合的開始反 體、具有氧雜Μ將具有氧雜環丁基的單 環氧基的寡^=聚物與具有魏基的單體、具有 未照射部分的折射率差確實地產生。“…、射懒 67 則227021 ,〜〜Hit 體」,H’j^^(2G)所表示的單體作為「第1單 佳為將第丨單_ AH/!4「第2單體」,則較 2單體的重量)/Ul;^#\,當將其併用比例以(第 〜1左右,更=〜0,)來規定時,^ , ·6左右。若併用比例在上述範圍 =高則早體的反應性崎度與料波管1 _熱性的平衡 所表於第2單體的單體中,可列舉與式(20) 的具有氧雜環丁基的單體或具有乙_ ί單體中,較佳為使用環氧化合物(特別是 :匕口物)以及2官能的氧雜環谨化合物(且 有=氧雜環丁基的單體)的至少旧。藉由使用該些第 4括1可使1早體與聚合物915的反應性提高,由此 可保持透雜,並且提高導波管的财熱性。 此種第2單體的具體例可列舉:上述式(15)的化合 物二式(12)的化合物、上述式⑻的化合物、上 ”()的化合物、上述式(19)的化合物、上述式(34) 〜式(39)的化合物。 f卜’所謂降冰片稀系單體,是指包含至少i個下述 結構式A所示的降冰片烯骨架的單體的總稱,例如可列舉 卞述結構式C所表示的化合物。 [化 35] 68 201227021 4UUI»pif Ο [化 36]The butyl monomer, the oxirane, and the epoxy group-containing oligomer can be used as a monomer having an oxetanyl group and an epoxy group. Although the oligobutyl-containing oligomers of the chlorinated oligo-butyl group start the 卩(4)-reverse of L, the growth of the epoxy group is relatively simple, but should be fast, but the raw: anti; The starting point of the polymerization starts, and the oxirane having a monoepoxy group having an oxetanyl group and a monomer having a Wei group and a refractive index difference having an unirradiated portion are surely produced. . "..., shot lazy 67, 227021, ~~Hit body", the monomer represented by H'j^^(2G) as "the first single is the first single _ AH /! 4 "the second monomer" , the weight of the two monomers is /Ul; ^#\, when the ratio is used in combination (about ~1, more =~0,), ^, ·6 or so. When the combined ratio is in the above range = high, the balance between the reactivity of the precursor and the balance of the tube 1 _ heat is expressed in the monomer of the second monomer, and the oxirane of the formula (20) is exemplified. In the monomer of the group or having a monomer, it is preferred to use an epoxy compound (particularly: a mouthwash) and a bifunctional oxocyclic compound (and a monomer having an oxetanyl group) At least the old ones. By using these fourth brackets, the reactivity of the first precursor with the polymer 915 can be improved, whereby the gas permeability can be maintained and the heat conductivity of the waveguide can be improved. Specific examples of such a second monomer include a compound of the formula (15), a compound of the formula (12), a compound of the above formula (8), a compound of the above "(), a compound of the above formula (19), and the above formula. (34) The compound of the formula (39). The term "norborn norbornene monomer" is a generic term for a monomer containing at least i of the norbornene skeleton represented by the following structural formula A, and examples thereof include hydrazine. The compound represented by the structural formula C. [Chem. 35] 68 201227021 4UUI»pif Ο [Chem. 36]

一 &amp; [式中,a表示單鍵或者雙鍵,Rn〜Ris分別獨立地表 不氫原子、棘代或未經取代的烴基、或者官能取代基, 班表不〇〜5的整數;其中,於&amp;為雙鍵的情況,〜及 的任一者、汉^及心5的任一者不存在。] 未經取代的烴基(hydrocarbyl)例如可列舉:直鏈狀 ^分支狀的碳數1〜料、直鍵= =狀的碳數2〜1G (C2〜Ci。)輯基'直鏈狀或 的炔基、碳數4〜12一A &amp; [wherein, a represents a single bond or a double bond, and Rn~Ris each independently represents a hydrogen atom, a toroidal or unsubstituted hydrocarbon group, or a functional substituent, and an integer of 〇5 is exemplified; In the case of &amp; double key, any of ~ and any of Han and Heart 5 does not exist. Examples of the unsubstituted hydrocarbyl group include a linear 1-branched carbon number of 1 to 1 and a straight bond == carbon number of 2 to 1 G (C2 to Ci). Alkynyl group, carbon number 4~12

Cc 1 Ll2)的裱烯基、碳數6〜12 C312等二f V綠7〜24 (C7〜C24)的芳烧基(芳 r〜If〜c,&amp;Ri3'Ri4及心亦可分別為碳數 10 (Cl〜Cio)的亞烷基。 69 201227021 40018pif 此外上述以外的早體,例如丙稀酸(曱基丙稀酸) ^單體可列舉:丙烯酸、甲基丙烯酸、丙烯酸酯、曱基丙 烯酸酯、丙烯酸醯胺、曱基丙烯酸醯胺、丙烯腈等,可使 用該些單體中的1種或者將2種以上組合使用。 具體而言,可列舉:(曱基)丙烯酸2-乙基己酯、(曱基) 丙烯酸環己酯、(曱基)丙烯酸2-丁氧基乙酯等。 另外,乙烯醚系單體例如可列舉:曱基乙烯醚、乙基 乙稀崎、正丙基乙烯謎、異丙基乙烯醚、正丁基乙稀醚t 異^基乙刺、第三丁基乙刺、正戊基乙烯趟、正己基 乙烯醚、正辛基乙烯醚、正十二烷基乙烯_、孓乙基己^ 乙稀鱗、¥己基乙_枝基乙刺類或者魏基乙細 類,可使用該些單體中的丨種或者將2種以上組合使用。 等 另外,笨乙烯系單體例如可列舉苯乙烯、二乙烯基笨 ,可使用該些單體中的丨種或者將2種組合使用。 定 此外,該些單體與上述聚合物915的組合並無特別限 ’可為任意組合。 另外,。單體的至少-部分可如上所述形成寡聚物。 該些單體的添加量相對於聚合物1〇〇重量份,較佳為 1重量份以上5G重量份以下,更佳為2重量份以上2〇重 量份以下。藉此’具討_芯層/驢層_折射率,可 實現可撓性與耐熱性的並存的效果。 ((聚合起始劑)) 聚合起始劑是伴隨活性放射線的照射而作用於, 來促進單體的反應’是考慮到單_反舰而視需要添加。 201227021Cc 1 Ll2) decyl, carbon number 6~12 C312, etc. Two f V green 7~24 (C7~C24) aryl group (aryl r~If~c, &Ri3'Ri4 and heart can also be respectively It is an alkylene group having a carbon number of 10 (Cl to Cio). 69 201227021 40018pif In addition to the above-mentioned precursors, for example, acrylic acid (mercaptopropionic acid), monomers may be exemplified by acrylic acid, methacrylic acid, and acrylate. As the mercapto acrylate, decyl acrylate, decyl decyl amide, acrylonitrile, or the like, one type of these monomers or a combination of two or more types may be used. Specific examples thereof include (mercapto)acrylic acid 2 -ethylhexyl ester, (fluorenyl) cyclohexyl acrylate, 2-butoxyethyl (meth) acrylate, etc. Further, examples of the vinyl ether monomer include mercapto vinyl ether and ethyl ethyl sulphate. N-propyl vinyl mystery, isopropyl vinyl ether, n-butyl ethyl ether, t-ethyl thorn, tributyl acetyl, n-pentyl vinyl fluorene, n-hexyl vinyl ether, n-octyl vinyl ether, positive Dodecylethylene _, 孓 ethyl hexyl ethene hexagram, hexyl ethane yl group, acetyl group, or carbyl group, may be used in these monomers or 2 In addition, the stupid vinyl monomer may, for example, be styrene or divinyl stray, and the above-mentioned monomers may be used in combination or in combination of two or more. The combination of the substances 915 is not particularly limited and may be any combination. In addition, at least a part of the monomer may form an oligomer as described above. The amount of the monomers added is 1 part by weight relative to the weight of the polymer. It is preferably 1 part by weight or more and 5 parts by weight or less, more preferably 2 parts by weight or more and 2 parts by weight or less. By virtue of the fact that the core layer/layer layer _ refractive index can coexist with flexibility and heat resistance. ((Polymerization Initiator)) The polymerization initiator is acted upon by irradiation with active radiation to promote the reaction of the monomer, which is added as needed in consideration of the single-anti-ship. 201227021

始劑是根據單體的聚合反應或者交聯 擇。例如,對於丙烯酸(甲基丙烯酸) L體較佳為主要使用自由基聚合起始 、氧雜環丁烧系單體、乙烯醚系單體 子^^合起始劑。 劑例如可列舉:二苯甲酮類、苯乙酮The initiator is based on the polymerization or cross-linking of the monomers. For example, it is preferred that the acrylic acid (methacrylic acid) L body mainly uses a radical polymerization starting, an oxetane monomer, and a vinyl ether monomer. Examples of the agent include benzophenone and acetophenone.

是於使用具有環狀喊的單體作為單體的情況, 為使用如下所述的陽離子聚合起始劑(光酸產生劑)。 古例如,二苯基錄三氟甲績酸鹽、三(4_第三丁基苯基) 三氣Μ酸鹽等銃购,對雜苯基重氮鏘六氣罐酸'&quot;鹽 等重氮鏽鹽類,銨鹽類,鱗鹽類,二苯基錤三氟甲磺酸鹽、 (二異丙苯基)錤-四(五氟苯基)硼酸鹽等錤鹽類,醌二疊氮 化物(quinone diazide)類,雙(苯基磺醯基;)重氮甲烷等重 氮甲燒類’ 1-苯基-1-(4_甲基苯基)續醯氧基小苯甲酸基甲 烷、N-羥基萘二甲醯亞胺-三氟甲磺酸鹽等磺酸酯類,二苯 基二颯等二砜類,三(2,4,6-三氯甲基)-均三嗪、2-(3.4-亞甲 基二氧苯基)-4,6-雙·(三氯甲基)-均三嗪等三嗪類等化合物 作為光酸產生劑來使用。此外,該些光酸產生劑可單獨使 用或者組合多種來使用。 71 201227021 聚合起始劑的含量相對於聚合物100重量份,較佳為 0 01重量份以上0.3重量份以下,更佳為0.02重量份以上 0.2重量份以下。藉此,具有反應性提高的效果。 此外’於單體的反應性明顯高的情況,可省略聚合起 始劑的添加。 另外’添加劑920除了包含單體或聚合起始劑以外, 亦可包含增感劑等。 其中’增感劑具有增大聚合起始劑對光的感度,使聚 合起始劑的活性化(反應或者分解)所需要的時間或能量 減少的功能,或使光的波長變化為適合於聚合起始劑的活 性化的波長的功能。 此種增感劑疋根據^^合起始劑的感度或增感劑的吸收 的峰值波長來適當選擇,並無特別限定,例如可列舉:如 9,10-二丁氧基蒽(CAS編號為第76275-14-4號)之類的惠 類、氧葱嗣類(xanthones)、蒽醌類(anthraquin〇nes)、菲 類(phenanthrenes )、屈類(Chrysenes )、苯并芘類 (benzpyrenes)、丙二烯合第類(flu〇ranthenes)、紅螢烯 類(rubrenes )、芘類(Pyrenes )、陰丹士林類()、 噻噸-9-酮類(thioxanthen-9-ones)等,可將該些婵威劑單 獨使用或者作為混合物來使用。 &quot; 增感劑的具體例例如可列舉:2_異丙基_9H_噻噸_9_ 函同、4-異丙基-9HH9-酮、1·氣冰丙氧基制細土、吩。塞 嗪(phenothiazine)或者它們的混合物。 增感劑的含量在芯層形成用組成物9〇〇中,較佳為 72 201227021 W Λ jt 0.01重里%以上’更佳為0 5重量%以上,尤佳為】重量% 以上。此外,上限值較佳為5重量%以下。 此外,除此以外,添加劑920亦可包含:觸媒前驅物、 蘭媒、抗A化劑、紫外線吸㈣ '光穩定劑、魏偶合 劑、塗面改良劑、熱聚合抑制劑、調平劑、界面活性劑、 著色劑、保存穩定劑、塑化劑、潤滑劑、填料、無機粒子、 抗老化劑、潤濕性改良劑、抗靜電劑等。 包含如上所述的聚合物915及添加劑920的層910是 藉由在聚合物915中均等分散的添加劑92〇的作用而具有 規定的折射率。 ~ [2]其次,準備形成有開口(窗)9351的遮罩(遮蔽) 935,隔著該遮罩935而對層910照射活性放射線930 (參 照圖9)。 夕 以下,以使用具有低於聚合物915的折射率者作為單 體的情況為一例進行說明。 即,此處所示的例子中,活性放射線930的照射區域 925主要成為側面披覆部15。 因此’此處所示的例子中,於遮罩935上主要形成相 當於應形成的側面彼覆部15的圖案的開口(窗)9351。該 開口 9351形成所照射的活性放射線930穿透的穿透部。此 外,芯部14或側面彼覆部15的圖案是基於根據活性放射 線930的照射而形成的折射率分布W來決定,因此開口 9351的圖案與侧面彼覆部15的圖案並不完全一致,亦存 在上述兩圖案產生少許偏差的情況。 73 201227021 40018pif 遮罩935可為預先形成(另行形成)的遮罩(例如板 狀的遮罩)’亦可為於層9iG上例如氣相成膜 法而形成的遮罩。 土 作為遮罩935而較佳的例子可列舉:以石英玻 PET基材等製作的光罩、模板遮罩、利用氣相成膜法(蒸 鍍、濺鍍等)形成的金屬薄膜等,該些遮罩中特佳為使用、 光罩或模板料。其制在於,不僅可精度良好地形成微 細的圖案,並且容易操作,對生產性的提高 另外,圖9中’遮罩奶的開口(窗是表# 著活性放射、線930的照射區域925 _案而部分地去除^ 罩者,但於使用上述以石英玻璃或PET基材等 的情況,亦可使用在該鮮上設置有包_如料金屬的 遮蔽材料的活性放射線93G的遮蔽部者。該遮罩中 部以外的部分成為上述窗(穿透部 所使用的活性放射線93〇只要是可對聚合起 光化學反應(變化)者、以及可使聚合物915中所含的脫 離性基脫離者即可,例如除了可认、紫外光、红 雷射光以外,亦可使用電子束或乂射線等。、 該些活性放射射放树根據聚合起始 劑或脫離性基的麵㈣當選擇,於含有增躺的情況是 根據增感_種㈣來適當選擇,並無制限定,較 在波長200 nm〜45〇 nm的範圍内具有峰值波長的活性放 射線。糟此,不僅比較容易使聚合起始劑活性化,並 使脫離性基比較容易脫離。 201227021 40018pif 2另外,活性放射線93〇的照射量較佳為〇丨J/cm2〜9 j/cm左右’更佳為0·2 J/cm2〜6 J/cm2左右,尤佳為0.2 J/cm2〜3 J/cm2 左右。 右隔著遮罩935對層91〇照射活性放射線930,則在 知、射區,925中聚合起始劑被活性化。藉此,於照射區域 925百中單體聚合。若單體聚合,賴射區域925中的單體 的里減4 ’因此與此對應未照射區域_中的單體擴散移 動至照射區域925。如上所述,聚合物915與單體是以相 ^產生折料差財柄當轉,因此隨著單咖擴散移 而在照射區域925與未照射區域94〇之間產生折射率差。 圖13是用以對在照射區域奶與未照射區域_之間 2折射率差的情況進行說明的圖,是表示當取層910的 j^位置為橫軸,且取橫截面的折射率為縱軸時的折 射率分布的圖。 ^實卿射,由於使用折料小於聚合物化者作 故Γ著單體的擴散移動’未照射區域_的折 ,率’並且照射區域925的折射率降低(參照圖13 而形成的單體的濃度梯度引起單;毛:對應 =940整體的單體並非一齊朝向域因= 向外側的單體移動以對= —果為如圖13⑷所示’夾著照射區域925與未照 75 201227021 =區域940的邊界而於未照射區域94〇側形成高折射率部 於照射區域925側形成低折射率部L。該些高 。部Η以及低折射率部[分默伴隨如上所述的單體擴气 f動而形成’因此必然是以平滑的曲線構成。具體而^ 例如向上凸起的大致U字狀,低折:率 。P L形成例如向下凸起的大致u字狀。 此外,如上所述的單體聚合而成的聚合物的折 ”聚合前的單體的折射率大致相同(折射率差為卜⑽⑴ 左右)’因此照射區域奶中,隨著單體的聚合進 單體巧量以及來自單體的物質的量,折射率不斷降低。因 此’藉由適當調整相對於聚合物的單體的量或者聚合起始 劑的量等,可控制折射率分布w的形狀。 另-方面,|照射區域940中,聚合起始劑未被活性 化,因此單體未聚合。 &amp; 另外,照射區域925中,隨著單體的聚合進行,單體 的擴散移動的容易性緩緩降低。藉此,照射區域925中, 越接近未照射區域940,自然而然單體的濃度越提高,折 射率的降低量越變大。其結果為,形成於照射區域925的 低折射率部L的分布形狀容易變得左右不對稱,未照射區 域940侧的梯度變得更急峻。藉此,形成本發明的光導波 管所具有的折射率分布W。 另外,聚合物915較佳為如上所述具有脫離性基。該 脫離性基隨著活性放射線930的照射而脫離,使聚合物915 的折射率降低。因此,若對照射區域925照射活性放射線 76 201227021 40018pif ’脫離性基自聚 照射前降低(參 930’則於上述單體的擴散移動開始的同 合物915上脫離,照射區域925的 照圖13(b))。 年自 因此低是在照射區域925整體-律地產生, 因此上“騎料Η與健射率部 大。其結果為,獲得圖13⑻所簡羊差被更擴 冰岡nr、占 所不的折射率分布W。此 外’圖13 (a)中的折射率的變化、及圖 率的變化大致同時產生。由於此 差進-步擴大。 由於此種折射率變化,該折射率 此外 稭田調正活性放射線930 _照射量,可控制所 ϊίΐ折2差以及折射率分布的形狀,例如,藉由增加 二二,大折射率差。另外,亦可於活性放射線930 ==910乾燥,亦可藉由調整此時的乾燥的程度 來,制折射率分布的形狀。例如,藉由增大乾燥的程度, 可抑制單體的擴散移動量。 繼而,對層910實施加熱處理。該加熱處理中,經光 照射的照射區域925中的單體進-步聚合。另一方面,該 加熱步驟巾,未騎區域94〇的單體揮發。藉此,未照射 ,域_中,單驗—步減少,折射率提高,成為接近聚 合物915的折射率。 該加熱處理中的加熱溫度並無特別限定,較佳為3〇t 〜180°c左右,更佳為4(TC〜16〇ΐ左右。 另外,加熱時間較佳為以照射區域925的單體的聚合 反應大致完畢的方式設定,具體而言,較佳為〇〗小時〜°2 77 201227021 40018pif 小時左右’更佳為0.1小時〜1小時左右。 此外,該加熱處理只要視需要進行即可,可省略。 以如上所述的原理,獲得具有折射率分布W的芯層 13 (參照圖10)。 折射率分布W中存在低折射率部L所轉化的極小值 Ws卜Ws2、Ws3、Ws4 (參照圖4 (b)),該些極小值位於 芯部14與側面披覆部15的界面。 此外,折射率分布w與芯層13中的來自單體的結構 體農度具㈣定的相關關。因此,藉由測定該來自單體 的結構體的濃度’可間接特定出料波管1所具有的折射 率分布W。 結構體的濃度的測定例如可使用傅立葉轉換紅外光譜 儀(Fourier Transform-Infrared Spectroscopy,FT-IR)、飛 行夺間一人離子質谱儀(Time of Flight-Secondary Ion Mass spectrometry,T0F_SIMS)的線分析、面分析等來進行。 二另外,由於上述光導波管1的出射光的強度分布P與 °亥折射率分布W具有固定的相關係,故而亦可藉由利用 該相關關係來間接指定折射率分布w。 另外,例如可利用以下方法來直接測定:(1)使用干 ,’、、員祕鏡(雙光束干涉顯微鏡(duaibeam interference microscope))來觀測依存於折射率的干涉條紋,根據該干 涉條紋來算出折射率分布的方法;及(2)折射近場法 (Refracted Near Field method ’ RNF)。其中,折射近場法 可私用例如日本專师開平5·332·號公報巾記載的測 78 201227021 wuiopif 2件。另-方面,干涉顯微鏡由於可簡便地進行折射率 分布的測定,故而較佳使用。 以下,對使用干涉顯微鏡的折射率分布的測定次序的 -例進行說明。首先’在剖面方向(寬度方向)將 管切片,獲得光導波管片段。例如,以光導波管的長度成 為200 μιη〜300帅的方式切片。繼而,製作在以2 玻片包圍的空間中以折射率為L536的油填充的腔室。狄 於腔室内的空間中夾入光導波訂段而製作測定樣= '、及未放入有光導波管片段的空白樣品部。繼而 干涉顯微鏡’將分為2個的光分別對測定樣品部及 品部照射後’將穿透光合併,藉此獲得干涉條紋照片。由 =^步條紋是賴光以段的折料分布(她分布) 可獲得光得的干涉條紋照片進行圖像解析, 了獲传7b導波g的寬度方向的折料分布%。此外, ^折射率分布料,藉續多軒涉條紋 = 只要藉由使干涉顯微鏡⑽稜鏡移動,而使光= =同,使干涉條紋的間隔或可形成干涉條紋的部位 2 〇如2,5 μηι的間隔來設定解析點即可。 辦的^吏用具有高於聚合物915的折射率者作為單 地的‘射率f述相反,隨著單體的擴散移動,移動目的 ’因此只要與此對應來設定照射區域925 以及未”、、射區域940即可。 79 201227021 40018pif 另外,於使用如雷射光般指向性高的光作為活性放射 線930的情況,亦可省略遮罩935的使用。 [3]繼而’於芯層13的兩面積層披覆層Η、I】。藉此, 獲得光導波管1。 a 其中,首先在支持基板952上形成彼覆層11(12)(灸 照圖11)。 ^ 彼覆層11 (12)的形成方法可為以下方法令的任一種 方法:塗佈包含披覆材料的清漆(披覆層形成用組成物) 而使其硬化(固化)的方法、塗佈具有硬化性的單體組成 物而使其硬化(固化)的方法等。 繼而’自支持基板951上剝離芯層π,將芯層13以 形成有彼覆;I 11的支持基板952、及形成有披覆層12的 支持基板952夾持(參照圖12 (a))。 而且,如圖12 (a)中的箭頭所示,自形成有披覆層 12的支持基板952的上表面侧加壓,將彼覆層π、12與 芯層13壓接。 〃 藉此,披覆層11、12與芯層13接合、一體化(參昭 圖 12 (b))。 、 繼而,自披覆層11、12上分別剝離、去除支持基板 952。藉此,獲得光導波管1。 其後,視需要於光導波管丨的下表面積層支持膜2, 且於上表面積層覆蓋膜3。 此外’芯層13亦可並非成膜於支持基板951上,而是 成膜於彼覆層11上。進而,坡覆層12亦可並非貼合於芯 201227021 4UU18pif 層13上,&amp; θ 另夕 疋於芯層13上塗佈材料而形成。 ’上述中,已就對芯層13照射活性放射線930 11^2心部14以及侧面披覆部15後,將芯層13與彼覆層 二,的情況進行說明 ,但亦可在照射活性放射線930 之則、心層13與披覆層11、12積層,然後照射活性放射 線 930。 ,、外’芯層13可隔著披覆層而積層多層。於此情況 下亦由於若在照射活性放射線930之前進行積層後進行 照射活性放射線930’則可對多個;^、層13總括地形成芯部 14以及侧面披覆部is,故而可實現製造製程的簡化。進而 於此情況,多個芯層13之間的芯部14的位置偏差基本上 不會產生。因此,與在各芯層13上分別形成芯部14以及 側面彼覆部15之後進行積層的情況相比,獲得尺寸精度極 高的光導波官1。此種光導波管丨在與受發光元件等的光 耦合時,光耦合效率特別高。 (第2製造方法) 繼而,對予造本發明的光導波管的第j實施形態的第 1方法(第2乂造方法)進行說明。 對同樣的事項省略其說 以下造方法進行說明,但以與上述第1製 造方法的不同點為中心進行說明, 明 第^製:了芯層形成用組成物9〇0的組成 不同以外,與第1製造方法相同。 光導波&amp; 1的第2製造方法為:⑴於支持基板951 81 201227021 40018pif 上塗佈芯層形成用組成物900而形成液狀被膜後,將該支 持基板951置於位準表上而使液狀被膜平坦化,並且使溶 泰發(脫溶劑)。藉此,獲得層91〇。[2]繼而,對層91〇 的一部分照射活性放射線後,對層91〇實施加熱處理,藉 此產生折射率差,獲得形成有芯部14與側面披覆部15 ^ 芯層13。[3]繼而’於芯層13的兩面積層彼覆層u 獲得光導波管1。 以下,對各步驟依次進行說明。 [1]首先’準備芯層形成用組成物900。 第2製造方法中使用的芯層形成用組成物9〇〇含有 媒前驅物以及助觸媒來代替聚合起始劑。 觸媒前驅物是可使單體的反應(聚合反應、交聯反旒 等)開始的物質,是由於藉由光的照射而活性化的助觸= 的作用,活性化溫度變化的物質。由於該活性化溫度的絝 化,而在光的照射區域925與未照射區域940之間,使^ 體的反應開始的溫度產生差異,其結果為,可僅於照= 域925中使單體反應。 遇 觸媒則驅物(主觸媒:pr〇Catalyst )只要是伴隨活性 射線的照射而活性化溫度變化(上升或者降低)者,則可 使用任意的化合物,但特佳為伴隨活性放射線的照射而活 性化溫度降低者。藉此,可藉由比較低溫的加熱處理而形 成芯層13 (光導波管1),施加其他層所不需要的熱,可 止光導波管1的特性(光傳送性能)降低。 此種觸媒前驅物適宜使用包含下述式(Ia)及式(此) 82 201227021 40018pif 所表示的化合物的至少—者(為主)的觸媒前驅物。 [化 37] • · (la) (E (R) 3) 2 p d (q) 2 [(E (R) 3) .Pd (Q) (Lb) b] p [WCA] [式1a、Ib中,分別為,E(R)3表示第15族的中性電子 施予體配位子’E表示選自元素週期表的第15族令的元 素’ R表不包含氫原子(或者其同位素的1個)或者烴基 的部位’ Q表示選自羧酸酯、硫代羧酸酯以及而硫代羧酸 酯中的陰離子配位子;另外,式Ib中,LB表示路易斯鹼 (Lewis base ),WCA表示弱配位陰離子(weakly coordinating anion) ’ a表示1〜3的整數,b表示0〜2的 整數,a與b的合計為1〜3,p及r表示取得纪陽離子與 弱配位陰離子的電荷的平衡的數。] 依據式la的典型觸媒前驅物可列舉:In the case where a monomer having a ring-shaped shunt is used as a monomer, a cationic polymerization initiator (photoacid generator) as described below is used. For example, diphenyl-trifluoromethyl acid salt, tris(4_t-butylphenyl) tri-sodium citrate, etc., for heterophenyl diazonium six gas tank acid '&quot; salt, etc. Diazo rust salts, ammonium salts, scale salts, diphenylsulfonium trifluoromethanesulfonate, (diisopropylphenyl)phosphonium-tetrakis(pentafluorophenyl)borate and the like, bismuth salts Azide diazide, bis(phenylsulfonyl) diazomethane, etc. '1-phenyl-1-(4-methylphenyl) quinone oxybenzoic acid Sulfonic acid esters such as methane, N-hydroxynaphthylimine-trifluoromethanesulfonate, disulfones such as diphenyldiazine, and tris(2,4,6-trichloromethyl)- A compound such as a triazine or a triazine such as 2-(3.4-methylenedioxyphenyl)-4,6-bis(trichloromethyl)-s-triazine is used as a photoacid generator. Further, the photoacid generators may be used singly or in combination of plural kinds. 71 201227021 The content of the polymerization initiator is preferably from 0.01 part by weight to 0.3 parts by weight, more preferably from 0.02 part by weight to 0.2 part by weight, based on 100 parts by weight of the polymer. Thereby, there is an effect of improving reactivity. Further, in the case where the reactivity of the monomer is remarkably high, the addition of the polymerization initiator can be omitted. Further, the additive 920 may contain a sensitizer or the like in addition to a monomer or a polymerization initiator. Wherein the 'sensitizer' has a function of increasing the sensitivity of the polymerization initiator to light, reducing the time or energy required for activation (reaction or decomposition) of the polymerization initiator, or changing the wavelength of light to be suitable for polymerization. The function of the wavelength of activation of the initiator. The sensitizer 适当 is appropriately selected depending on the sensitivity of the initiator or the peak wavelength of the absorption of the sensitizer, and is not particularly limited, and examples thereof include, for example, 9,10-dibutoxy fluorene (CAS number). Classes such as xanthones, anthraquin〇nes, phenanthrenes, Chrysenes, and benz pyrenes (No. 76275-14-4) ), flu〇ranthenes, rubrenes, pyrenes, indanthrene (), thioxanthen-9-ones Alternatively, the condominants may be used alone or as a mixture. &quot; Specific examples of the sensitizer include, for example, 2_isopropyl_9H_thioxan-9, a 4-isopropyl-5HH9-one, a fine base made of a gas ice propoxy group, and a phenylene. Phenothiazine or a mixture thereof. The content of the sensitizer is preferably 9 72 201227021 W Λ jt 0.01% by weight or more, more preferably 5% by weight or more, even more preferably 5% by weight or more. Further, the upper limit is preferably 5% by weight or less. In addition, the additive 920 may further comprise: a catalyst precursor, a blue medium, an anti-A chemical agent, an ultraviolet light absorption (IV) a light stabilizer, a Wei coupling agent, a coating surface modifier, a thermal polymerization inhibitor, and a leveling agent. , surfactant, colorant, storage stabilizer, plasticizer, lubricant, filler, inorganic particles, anti-aging agent, wettability improver, antistatic agent, and the like. The layer 910 comprising the polymer 915 and the additive 920 as described above has a predetermined refractive index by the action of the additive 92 均 uniformly dispersed in the polymer 915. ~ [2] Next, a mask (shield) 935 having an opening (window) 9351 is prepared, and the layer 910 is irradiated with active radiation 930 via the mask 935 (refer to Fig. 9). Hereinafter, a case where a person having a refractive index lower than that of the polymer 915 is used as a single body will be described as an example. That is, in the example shown here, the irradiation region 925 of the actinic radiation 930 mainly becomes the side cladding portion 15. Therefore, in the example shown here, an opening (window) 9351 corresponding to the pattern of the side surface portion 15 to be formed is mainly formed on the mask 935. The opening 9351 forms a penetration portion through which the irradiated active radiation 930 penetrates. Further, the pattern of the core portion 14 or the side surface portion 15 is determined based on the refractive index distribution W formed by the irradiation of the active radiation 930, and therefore the pattern of the opening 9351 does not completely coincide with the pattern of the side surface portion 15. There are cases where the above two patterns are slightly deviated. 73 201227021 The 40018pif mask 935 may be a pre-formed (additionally formed) mask (e.g., a plate-shaped mask)' or a mask formed on the layer 9iG by, for example, a vapor phase film formation method. Preferred examples of the soil as the mask 935 include a photomask made of a quartz glass PET substrate, a template mask, and a metal thin film formed by a vapor phase deposition method (evaporation, sputtering, etc.). Some of these masks are particularly useful for use, masks or stencils. The system is not only capable of forming a fine pattern with high precision, but also being easy to handle, and improving productivity. In addition, in Fig. 9, the opening of the masking milk (the window is the active radiation of the surface #, the irradiation area of the line 930 925 _ In the case where the cover is partially removed, the use of the quartz glass or the PET substrate or the like may be used as the shield of the actinic radiation 93G in which the masking material of the metal material is provided. The portion other than the middle portion of the mask serves as the window (the active radiation 93 used in the penetrating portion is a chemical reaction (change) in the polymerization, and the detachable group contained in the polymer 915 can be detached. For example, in addition to identifiable, ultraviolet light, red laser light, electron beam or xenon ray may be used. The active radiation radiant trees are selected according to the surface of the polymerization initiator or the detachable group (four). The case where the lie is contained is appropriately selected according to the sensitization type (four), and is not limited to, and has an active radiation having a peak wavelength in the range of wavelengths of 200 nm to 45 〇 nm. The initiator is activated and the detachable group is relatively easily detached. 201227021 40018pif 2 In addition, the irradiation dose of the active radiation 93 较佳 is preferably about /J/cm 2 to 9 j/cm or more preferably 0·2 J/cm 2 . ~6 J/cm2 or so, particularly preferably about 0.2 J/cm2 to 3 J/cm2. The right side of the layer 91〇 is irradiated with the active radiation 930 through the mask 935, and the polymerization initiator is in the sensible region, 925. By activation, the monomer is polymerized in the irradiation region 925. If the monomer is polymerized, the monomer in the radiation region 925 is decremented by 4', so that the monomer in the unirradiated region _ diffuses and moves to the irradiation. The region 925. As described above, the polymer 915 and the monomer are rotated by the phase difference, so that a refractive index difference is generated between the irradiation region 925 and the non-irradiation region 94〇 as the single coffee diffuses. Fig. 13 is a view for explaining a case where the refractive index difference between the irradiated region milk and the non-irradiated region_ is 2, and the position of the layer 910 is taken as the horizontal axis, and the refractive index of the cross section is taken. The graph of the refractive index distribution when it is the vertical axis. ^The real shot, because the use of the binder is less than the polymerizer, The diffusion shifts the 'folding rate of the unirradiated area _, and the refractive index of the illuminating area 925 decreases (the concentration gradient of the monomer formed with reference to FIG. 13 causes a single; hair: corresponding = 940 overall monomer is not aligned toward the domain = moving to the outer monomer to the opposite side = - as shown in Fig. 13 (4), the high refractive index portion is formed on the side of the unirradiated region 94 on the side of the non-irradiated region 94 at the boundary between the irradiated region 925 and the uncovered 75 201227021 = region 940 The low refractive index portion L is formed on the 925 side. The high portion and the low refractive index portion [formed by the monomer expansion as described above] are formed in a smooth curve. Specifically, for example, a substantially U-shaped convex upward, low fold: rate. P L is formed in a substantially U-shape, for example, convex downward. Further, the polymer obtained by polymerizing the monomer as described above has a refractive index of substantially the same as the monomer before polymerization (the refractive index difference is about (10) (1) or so). Therefore, in the irradiation region, the polymerization proceeds with the monomer. The monomer amount and the amount of the substance derived from the monomer are continuously lowered. Therefore, the shape of the refractive index distribution w can be controlled by appropriately adjusting the amount of the monomer relative to the polymer or the amount of the polymerization initiator. On the other hand, in the irradiation region 940, the polymerization initiator is not activated, so the monomer is not polymerized. In addition, in the irradiation region 925, as the polymerization of the monomer proceeds, the diffusion of the monomer is easy. Thereby, the closer to the unirradiated region 940 in the irradiation region 925, the higher the concentration of the monomer naturally increases, and the smaller the refractive index decreases. As a result, the low refractive index formed in the irradiation region 925 is obtained. The distribution shape of the portion L tends to be asymmetrical to the left and right, and the gradient on the side of the non-irradiated region 940 becomes more severe. Thereby, the refractive index distribution W of the optical waveguide of the present invention is formed. Further, the polymer 915 is preferably used. The detachment group has a detachment group as described above, and the detachment group is desorbed by the irradiation of the active radiation 930, thereby lowering the refractive index of the polymer 915. Therefore, if the irradiation region 925 is irradiated with the active radiation 76 201227021 40018 pif 'dissociative radical self-polymerization The irradiation is lowered before the irradiation (the reference 930' is detached from the compound 915 at which the diffusion movement of the monomer starts, and the irradiation region 925 is shown in Fig. 13(b)). Since the year is low, the irradiation region 925 is generated integrally. Therefore, the "riding the car and the rate of the shots." As a result, the refractive index distribution W which is obtained by expanding the ice sheet nr is obtained as shown in Fig. 13 (8). Further, the change in the refractive index and the change in the map in Fig. 13 (a) occur substantially simultaneously. As this difference progresses further. Due to such a change in refractive index, the refractive index additionally modulates the amount of active radiation 930 _ irradiation, and can control the shape of the difference and the shape of the refractive index distribution, for example, by increasing the two-two, large refractive index difference. Alternatively, the active radiation 930 == 910 may be dried, or the shape of the refractive index distribution may be adjusted by adjusting the degree of drying at this time. For example, by increasing the degree of drying, the amount of diffusion of the monomer can be suppressed. Then, the layer 910 is subjected to a heat treatment. In this heat treatment, the monomer in the irradiated region 925 irradiated with light is further polymerized. On the other hand, in the heating step, the monomer in the unridized area 94 is volatilized. Thereby, the non-irradiation, the domain_in, the single-step-down is reduced, and the refractive index is increased to become close to the refractive index of the polymer 915. The heating temperature in the heat treatment is not particularly limited, but is preferably about 3 〇 t to 180 ° C, more preferably about 4 (TC to 16 Torr. Further, the heating time is preferably a monomer in the irradiation region 925. The polymerization reaction is set in a substantially complete manner, and specifically, it is preferably 〇 小时 〜 〜 2 2 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The core layer 13 having the refractive index distribution W (refer to FIG. 10) is obtained by the principle as described above. The refractive index distribution W has a minimum value Ws, Ws2, Ws3, Ws4 converted by the low refractive index portion L ( Referring to Fig. 4 (b)), the minimum values are located at the interface of the core portion 14 and the side cladding portion 15. Further, the refractive index distribution w is related to the structural agronomic tool (4) from the monomer in the core layer 13. Therefore, the refractive index distribution W of the discharge waveguide 1 can be indirectly specified by measuring the concentration of the structure from the monomer. The concentration of the structure can be measured, for example, by using a Fourier transform infrared spectrometer (Fourier Transform- Infrared Spectroscopy, FT-I R), line analysis, surface analysis, etc. of Time of Flight-Secondary Ion Mass spectrometry (T0F_SIMS). In addition, due to the intensity distribution P of the light emitted from the optical waveguide 1 Since the refractive index distribution W has a fixed phase relationship, the refractive index distribution w can be indirectly specified by utilizing the correlation. In addition, for example, the following method can be used for direct measurement: (1) using dry, ',, member a mirror (duaibeam interference microscope) for observing interference fringes depending on the refractive index, a method for calculating a refractive index distribution based on the interference fringes; and (2) a refractive near field method (RNF) Among them, the refracting near-field method can be used for privately, for example, the measurement of 78 201227021 wuiopif described in Japanese Patent Application No. 5,332, and the interference microscope can easily measure the refractive index distribution. It is preferably used. Hereinafter, an example of the measurement order of the refractive index distribution using an interference microscope will be described. First, 'in the cross-sectional direction (width direction) The tube is sliced to obtain an optical waveguide segment, for example, sliced in such a manner that the length of the optical waveguide becomes 200 μm to 300. Then, it is filled with oil having a refractive index of L536 in a space surrounded by 2 slides. The chamber is filled with a light guide segment in the space inside the chamber to prepare a measurement sample = ', and a blank sample portion to which the optical waveguide segment is not placed. Then, the interference microscope ‘the light is divided into two, respectively, after irradiating the measurement sample portion and the product portion, and the transmitted light is combined to obtain an interference fringe photograph. The =^ step stripe is the image of the interference fringe of the light obtained by the light distribution of the segment (her distribution), and the image distribution of the 7b guided wave g in the width direction is obtained. In addition, the refractive index distribution material, by continuation of the multiple stripes = as long as the interference microscope (10) 稜鏡 moves, so that the light = = the same, so that the interval of the interference fringes or the portion 2 where the interference fringes can be formed, such as 2, Set the resolution point by the interval of 5 μη. The use of a refractive index higher than the refractive index of the polymer 915 as a single ground is the opposite of the 'radial rate', and as the monomer moves, the purpose of the movement is 'as long as it corresponds to the setting of the illumination region 925 and not" In addition, when the light having high directivity such as laser light is used as the active radiation 930, the use of the mask 935 may be omitted. [3] Then in the core layer 13 The two-layer layer is coated with a layer I, I]. Thereby, the optical waveguide tube 1 is obtained. a wherein, first, a cover layer 11 (12) is formed on the support substrate 952 (moth moxibustion Fig. 11). ^ The cover layer 11 (12) The method of forming the method may be any one of the following methods: a method of applying a varnish (a composition for forming a coating layer) containing a coating material to harden (curing), and coating a monomer having a hardenability. a method of hardening (curing) the material, etc. Then, the core layer π is peeled off from the support substrate 951, and the core layer 13 is formed to cover each other; the support substrate 952 of I 11 and the support layer 12 are formed. The substrate 952 is clamped (refer to Fig. 12 (a)). Moreover, as shown in Fig. 12 (a) As indicated by the arrow, the upper surface side of the support substrate 952 on which the cladding layer 12 is formed is pressed, and the cladding layers π and 12 are pressed against the core layer 13. 借此 Thereby, the cladding layers 11, 12 and the core layer are bonded. 13 bonding and integration (see Fig. 12 (b)). Then, the support substrate 952 is peeled off and removed from the cladding layers 11 and 12, respectively, thereby obtaining the optical waveguide 1. Thereafter, as needed, the light guide The lower surface area layer of the waveguide tube supports the film 2, and the upper surface layer covers the film 3. Further, the 'core layer 13 may not be formed on the support substrate 951, but may be formed on the cover layer 11. Further, the slope The coating layer 12 may not be attached to the core 201227021 4UU18pif layer 13, and &amp; θ is formed by coating a material on the core layer 13. In the above, the core layer 13 has been irradiated with active radiation 930 11^2 After the core portion 14 and the side cladding portion 15 are formed, the core layer 13 and the cladding layer 2 are described. However, when the active radiation 930 is irradiated, the core layer 13 and the cladding layers 11 and 12 may be laminated, and then The active radiation 930 is irradiated, and the outer core layer 13 can be laminated with a plurality of layers via the coating layer. In this case, By irradiating the active radiation 930' before the irradiation of the active radiation 930, the active radiation 930' can be irradiated, and the core portion 14 and the side cladding portion is can be collectively formed in a plurality of layers, so that the manufacturing process can be simplified. The positional deviation of the core portion 14 between the plurality of core layers 13 is substantially not generated. Therefore, the size is obtained as compared with the case where the core portion 14 and the side surface portion 15 are respectively formed on the respective core layers 13 and then laminated. The optical waveguide having an extremely high precision 1. This optical waveguide has a particularly high optical coupling efficiency when coupled with light such as a light-emitting element. (Second manufacturing method) Next, a first method (second manufacturing method) of the jth embodiment of the optical waveguide of the present invention will be described. In the same manner, the following description will be omitted. The description will be focused on the differences from the above-described first manufacturing method, and the composition of the core layer forming composition 9〇0 is different. The first manufacturing method is the same. In the second manufacturing method of the optical waveguide &amp; 1 (1), the liquid crystal film is formed by coating the core layer forming composition 900 on the support substrate 951 81 201227021 40018 pif, and then the support substrate 951 is placed on the level gauge to make the support substrate 951 The liquid film is flattened and the solution is dissolved (desolvent). Thereby, the layer 91 is obtained. [2] Then, a part of the layer 91A is irradiated with active radiation, and then the layer 91 is subjected to heat treatment, whereby a refractive index difference is generated, and the core portion 14 and the side cladding portion 15 are formed. [3] Then, the optical waveguide 1 is obtained by coating the two layers of the core layer 13 with the layer u. Hereinafter, each step will be described in order. [1] First, the core layer forming composition 900 is prepared. The core layer-forming composition 9 for use in the second production method contains a media precursor and a co-catalyst instead of the polymerization initiator. The catalyst precursor is a substance which starts the reaction of the monomer (polymerization reaction, cross-linking, etc.), and is a substance which changes in activation temperature due to the action of the activation of the light by the irradiation of light. Due to the deuteration of the activation temperature, a difference in the temperature at which the reaction starts is caused between the light irradiation region 925 and the non-irradiation region 940, and as a result, the monomer can be made only in the photo field 925. reaction. In the case of a catalyst, the main catalyst: pr〇Catalyst, any compound may be used as long as it is a change in activation temperature (increased or lowered) by irradiation with an active ray, but it is particularly preferably accompanied by irradiation with active radiation. The activation temperature is lowered. Thereby, the core layer 13 (optical waveguide 1) can be formed by relatively low-temperature heat treatment, and heat unnecessary for the other layers can be applied, and the characteristics (light transmission performance) of the optical waveguide 1 can be lowered. As the catalyst precursor, at least one (mainly) catalyst precursor containing a compound represented by the following formula (Ia) and formula (here) 82 201227021 40018 pif is suitably used. • (la) (E (R) 3) 2 pd (q) 2 [(E (R) 3) .Pd (Q) (Lb) b] p [WCA] [Formula 1a, Ib , respectively, E(R)3 indicates that the neutral electron donor ligand of the 15th group 'E indicates an element selected from the 15th order of the periodic table of the 'R table does not contain a hydrogen atom (or its isotope) 1) or a hydrocarbon moiety 'Q' represents an anionic ligand selected from the group consisting of a carboxylate, a thiocarboxylate, and a thiocarboxylate; in addition, in Formula Ib, LB represents a Lewis base, WCA means weakly coordinating anion 'a denotes an integer of 1 to 3, b denotes an integer of 0 to 2, a total of a and b is 1 to 3, and p and r represent an anion cation and a weakly coordinating anion. The number of charge balances. The typical catalyst precursors according to formula la can be enumerated:

Pd(OAc)2(P(i-Pr)3)2 、 Pd(OAc)2(P(Cy)3)2 、Pd(OAc)2(P(i-Pr)3)2, Pd(OAc)2(P(Cy)3)2,

Pd(02CCMe3)2(P(Cy)3)2 、 Pd(OAc)2(P(Cp)3)2 、Pd(02CCMe3)2(P(Cy)3)2, Pd(OAc)2(P(Cp)3)2,

Pd(02CCF3)2(P(Cy)3)2、Pd(02CC6H5)3(P(Cy)3)2,但並不限 定於該些觸媒前驅物。此處,Cp表示環戊基(CyCl〇pentyl) 基,Cy表示環己基。 另外,式Ib所表示的觸媒前驅物較佳為p及r分別選 自1及2的整數中的化合物。 此種依據式Ib的典型觸媒前驅物可列舉 Pd(OAc)2(P(Cy)3)2。此處’ Cy表不環己基,Ac表示乙酿 83 201227021 40018pif 基。 該些觸媒前驅物可使單體效率良好地進行反應(於降 冰片烯系單體的情況,藉由加成聚合反應而效率良好地進 行聚合反應或交聯反應等)。 另外,於活性化溫度降低的狀態(活性潛在狀態)下, 觸媒前驅物較佳為其活性化溫度比本來的活性化溫度低 10°C〜80°c左右(較佳為10°c〜50°c左右)者。藉此,可 確實地產生芯部14與側面披覆部15之間的折射率差。 該觸媒前驅物較佳為包含Pd(OAc)2(P(i-Pr)3)2以及 Pd(OAc)2(P(Cy)3)2中的至少一者(為主)。 助觸媒是藉由活性放射線的照射而活性化,可使上述 觸媒前驅物(主觸媒)的活性化溫度(使單體產生反應的 溫度)變化的物質。 5亥助觸媒(cocatalyst)只要是藉由活性放射線的照 射’其分子結構變化(反應或者分解)而活性化的化合物, 則可使用任意者,適宜使用包含藉由特定波長的活性放射 線的照射而分解,產生質子或其他陽離子等陽離子、及可 取代為觸媒前驅物的脫離性基的弱配位陰離子(WCA)的 化合物(光起始劑)(為主)的助觸媒。 弱配位陰離子例如可列舉··四(五氟苯基)硼酸根離子 (FABA·)、六氟銻酸根離子(SbF6·)等。 作為該助觸媒(光酸產生劑或者光驗產生劑),例如除 了下述式所表不的四(五氟苯基)硼酸鹽或六氟銻酸鹽以 外可列舉.四(五氟苯基)鎵酸鹽、鋁酸鹽類、銻酸鹽類、 84 201227021 40018pif 其他蝴酸鹽類、嫁酸鹽類、碳棚烧(carborane)類、鹵碳 棚烧(halocarborane)類等。 [化 38]Pd(02CCF3)2(P(Cy)3)2, Pd(02CC6H5)3(P(Cy)3)2, but not limited to the catalyst precursors. Here, Cp represents a cycloCl〇pentyl group, and Cy represents a cyclohexyl group. Further, the catalyst precursor represented by the formula Ib is preferably a compound in which p and r are each selected from the integers of 1 and 2. A typical catalyst precursor according to formula Ib can be exemplified by Pd(OAc)2(P(Cy)3)2. Here, ' Cy is not cyclohexyl, and Ac is B. 83 201227021 40018pif. These catalyst precursors allow the monomer to be efficiently reacted (in the case of a norbornene-based monomer, a polymerization reaction or a crosslinking reaction is efficiently carried out by an addition polymerization reaction). Further, in a state where the activation temperature is lowered (active potential state), the catalyst precursor preferably has an activation temperature lower by about 10 ° C to 80 ° C than the original activation temperature (preferably 10 ° c 〜 About 50 °c). Thereby, the refractive index difference between the core portion 14 and the side cladding portion 15 can be surely produced. The catalyst precursor preferably contains at least one of Pd(OAc)2(P(i-Pr)3)2 and Pd(OAc)2(P(Cy)3)2 (mainly). The promoter is activated by irradiation with actinic radiation, and the activation temperature (the temperature at which the monomer reacts) of the above-mentioned catalyst precursor (main catalyst) can be changed. In the case of a compound which is activated by irradiation of actinic radiation, which is a change in molecular structure (reaction or decomposition), any one may be used, and irradiation with active radiation having a specific wavelength may be suitably used. The catalyst is decomposed to generate a cation such as a proton or another cation, and a compound (photoinitiator) (mainly) which can be substituted with a weakly coordinated anion (WCA) of a debonding group of a catalyst precursor. Examples of the weakly coordinating anion include tetrakis(pentafluorophenyl)borate ion (FABA·) and hexafluoroantimonate ion (SbF6·). Examples of the cocatalyst (photoacid generator or photoinitiator) include, for example, tetrakis(pentafluorophenyl)borate or hexafluoroantimonate represented by the following formula: tetrakis(pentafluorobenzene) Base) gallate, aluminate, silicate, 84 201227021 40018pif other folic acid salts, grafted acid salts, carborane, halocarborane, etc. [化38]

FABA&quot;FABA&quot;

h3c—0·H3c—0·

SbFe~ 此種助觸媒的市售品例如可列舉:可從新澤西州克蘭 伯里(Cranbury)的 RhodiaUSA 公司獲取的「RHODORSIL (註冊商標,以下同樣)PHOTOINITIATOR 2074 (CAS 編號為第178233-72-2號)」、可從日本東京的東洋油墨製 造股份有限公司獲取的「TAG-372R((二曱基(2-(2-萘基)-2-侧氧乙基)锍四(五氟苯基)硼酸鹽·· CAS編號為第 193957-54-9號))、可從日本東京的Midori Kagaku股份有 85 201227021 限公司獲取的「Mn-103(CAS編號為第87709-41-9號)」、 可從日本東京的東洋油墨製造股份有限公司獲取的 「TAG-371 (CAS編號為第193957-53-8號)」、可從日本 東京的東洋合成工業股份有限公司獲取的「TTBPS -TPFPB (三(4-第三丁基苯基)銃四(五五氟苯基)硼酸鹽)」、可從曰 本東京的Midori Kagaku工業股份有限公司獲取的 「NAI-105 (CAS 編號為第 85342-62-7 號)」等。 此外,於使用 RHODORSIL PHOTOINITIATOR 2074 作為助觸媒的情況,後述活性放射線(光化射線)適宜使 用紫外線(UV光),紫外線的照射機構適宜使用水銀燈(高 壓水銀燈)。藉此,可對層910供給小於300 nm的充分能 量的紫外線(活性放射線),可使RHODORSIL PHOTOINITIATOR 2074效率良好地分解而產生上述陽離 子以及WCA。 [2] [2-1]繼而’以與第1製造方法相同的方式,隔著遮 罩935對層910照射活性放射線930。 照射區域925中,助觸媒藉由活性放射線930的作用 而反應(結合)或者分解,使陽離子(質子或者其他陽離 子)、及弱配位陰離子(WCA)游離(產生)。 而且,該些陽離子或弱配位陰離子使照射區域925内 所存在的觸媒前驅物的分子結構產生變化(分解),使其變 化為活性潛在狀態(潛在性活性狀態)。 此處,所s胃活性潛在狀態(或者潛在性活性狀態)的 86 201227021 40018pif 觸媒如驅物’是彳日雖與本來的活性化溫度相比,活性化溫 度降低,但右無溫度上升,#,於室溫程度下,則處於在 照射區域925内無法產生單體反應的狀態的觸媒前驅物。 #因此,於活性放射線93G照射後,例如若於_4〇。(:左右 保管層91G,亦不會產生單體的反應,可維持其狀態。因 此’準備多個活性放射線93〇照射後的層91〇,對該些層 ,括地實施後述的加熱處理,藉此可獲得芯層13,便利性 南0 另外’除了如上所述的觸媒前驅物的分子結構的變化 以外:與第1製造方法同樣,脫離性基自聚合物915上脫 離藉此’於層910的照射區域925與未照射區域940之 間產生折射率差。 [j-2]繼而,對層91〇實施加熱處理(第1加熱處理)。 、藉此’於照射區域925内,活性潛在狀態的觸媒前驅 物活性化(成為活性狀態),產生單體的反應(聚合反 交聯反應)。 而且,若單體的反應進行,則照射區域925内的 、/辰度緩,降低。藉此,於照龍域925與未照射區域_ 之間’單财度產生差異’為了消_差異,單體自未照 射區域9 4 (H廣散移動而|中於照射區域925。 其結果為’於層910上形成與第1製造方法同樣的折 射率分布。 戎加熱處理中的加熱溫度並無特別限定,較佳為 〜80°C左右,更佳為40它〜6〇它左右。 87 201227021 4UUl«pif 另外,加熱時間較佳為以照射區域925内的單體的反 應大致完畢的方式設定L言,較佳為G.1小時〜2 小時左右,更佳為〇·1小時〜1小時左右。 繼而,對層91〇實施第2加熱處理。 ,由此’藉由使殘存於未照射區域940以及/或者照射區 域925的觸媒前驅物直接或者隨著助觸媒的活性化而活性 化(成為雜狀態),從而使赫於各區域 925、940 的單 體進行反應。 如,,藉由使殘存於各區域925、94〇的單體進行及 應’ 實現所得芯部14以及側面彼覆部15的穩定化。 '該第2加熱處理中的加熱溫度只要是可使觸媒前驅物 或者助觸媒活性化的溫度即可,並無特別限定,較佳為 70C〜100C左右,更佳為8〇。〇〜9〇。〇左右。 另外,加熱時間較佳為0.5小時〜2小時左右,更程 為0.5小時〜1小時左右。 繼而,對層910實施第3加熱處理。 藉此,可實現所得芯層13中產生的内部應力的減少、 或芯部14以及側面披覆部15的進一步穩定化。 °亥第3加熱處理中的加熱溫度較佳為設定為比第2加 熱處理中的加熱溫度高壯,㈣而言,較佳為贼 〜180°C左右,更佳為12(Γ(:〜16〇£5(:&amp;々。 另外,加熱時間較佳為0.5小時〜2小時左右,更佳 為0.5小時〜丨小時左右。 更4 經過以上步驟,獲得芯層13。 88 201227021 40018pif 此外,例如於在實施第2加熱處理或第3加熱處理之 前的狀態下,在芯部14與側面坡覆部15之,得充分的 折射率差的纽等,可省略第2加熱處理以後^第3加 熱處理。 [3]、、Μ而’以與第1製造方法相同的方式,在怎層 的兩面積層披覆層11、12。藉此,獲得光導波管i。 (第3製造方法) / =而’對製造本發明的光導波管的第2實施形態的方 法(第3製造方法)進行說明。 / J Γ分別是用以對圖5所示的光導波管1的製造方法 衣這方去)進行說明的圖。此外,以下說明中,將 圖14中的上側稱為「上」,將下側稱為「下」。 乂下對第3製造方法進行說明,但以與上述第丄製 造方法的不同點為中^進行朗,對同樣的事項省 明。 第製^_方法中,除了包含聚合物Μ5、添力口劑920 等的層携的形成方法不同以外,與第1製造方法同樣。 ,ί的第3製造方法為:⑴於支持基板州 上,寻種料波管形成用組成物90卜902 (第1組成物 以及第2組成物)擠出成形為層狀而獲得層910。[2]繼 而’ f層91㈣—部分照射活性放射線後,對層910實施 加^理’藉此產生折射率差,獲得形成有芯部14盘側面 彼覆部15的芯層13,並且獲得光導波管卜 以下,對各步驟依次進行說明。 89 201227021 wuiopif [1]首1,準備光導波管形成用組成物9〇1、9〇2。 光導波管形成用組成物901、902分別包含聚合物 915、及添加劑920 (本實施形態中,至少包含單體),但 其組成不同。 _ 2種組成物中,光導波管形成用組成物9〇1是用以主 要形成怎層13的材料’是與上述芯層形成用組成物_ 相同的材料。 另一方面,光導波管形成用組成物9〇2是用以主要形 成彼覆層11、121、122的材料,包含折射率低於光導波管 形成用組成物901的材料。 光導波管形成用組成物901與光導波管形成用組成物 902的折射率差可藉由設定各自所含的聚合物915的組 成、單體的組成、聚合物915與單體的存在比率等來適當 調整。 田 例如,於單體的折射率低於聚合物915的情況,組成 物中的單體的含有率是光導波管形成用組成物9〇2變得高 於光導波管形成用組成物901。另一方面,於單體的折射 率南於聚合物915的情況,組成物中的單體的含有率是光 導波管形成用組成物901變得高於光導波管形成用組成物 902。換言之,根據聚合物915或單體的各折射率,來適當 選擇各光導波管形成用組成物901、902中的聚合物915 以及添加劑920的組成。 另外,光導波管形成用組成物901以及光導波管形成 用組成物902中,較佳為以單體的含有率成為相互大致相 201227021 等的方式來設定組成m述方式設定,列 =成用組成物9G1與光導波管形成用組成物902之門^ 體的含有率的差異變小,故而由此引起的單體 =抑制。單體的擴散移動如上所述在折射二 J用,但亦存在無法避免向不期望的方向移動的情況。另 ,利用後述㈣色擠域形法,可形成層91G的厚产 =的折射率分布,因此至少於厚度方向上單體的擴散^動 制亦無妨,但較佳為厚度方向的未觀的單體的擴 散移動传到抑制。藉由抑制未麵的單體的舰移動 終可確實地製造具有目標雜的折射率分布Τ的光導波管 此外,於使單體的含有率大致相等的情況,只要在光 導波管形成用組成物901與光導波管形成用組成物9〇2之 間,使聚合物915或者單體的條件不同即可。具體而言, 除了在光導波管形成用組成物9G1與光導波管形成用組成 物902中使所使用的聚合物915的組成不同以外即便為 相同的組成,亦只要使分子量或聚合度不同即可。藉由使 用相同組成的組成物,相互的相容性提高,因此組^物彼 此變得容易混合。藉此,可提高折射率分布Τ的連續性。 另外,於使用不同組成的聚合物的情況,聚合物915 的基本組成雖相同,但亦可改變脫離性基(反應介質)的 有無。例如較佳為,光導波管形成用組成物901所含有的 聚合物915包含脫離性基,另一方面,光導波管形成用組 成物902所含有的聚合物915不包含脫離性基。藉此,僅 201227021 於芯層13中產生脫離性基的脫離,在層内形成折射率差, 並且在披覆層u、12卜122中不產生脫離性基的脫離,因 此在層内折射率·並不變化,可使披覆層11、12卜122的折 射率比較均勻。此外,於此情況,光導波管形成用組成物 901與,導波管形成用組成物9〇2的兩者中可省略添加劑 920 (單體、聚合起始劑等)的添加。 另一方面,於至少光導波管形成用組成物9〇1中的上 述添加劑920包含單體的情況,各光導波管形成用組成物 901、902所含有的聚合物915可未必包含脫離性基。 另外’光導波管形成用組成物901與光導波^形成用 組成物902之間,所包含的單體可為相同的組成,亦可為 不同的組成。此外,藉由使用拥組成的組成物,相互的 單體的擴散移動確實地產生,因此可使上述折射率分布τ 更明確化。其結果為,獲得特性優異的光導波管i广 另外,亦可使光導波管形成用組成物901包含單體, 另-方面’光導波管形成驗成物搬不包含單體。於 $況’各披覆層U、12中’並不產生層内的單體的擴散移 動’因此可使各披覆層⑴心⑵的層内的折射率均勾。 另外’亦可使所使用的單體的組成,即折射率 若如上所述’則在光導波管形成用組成物9〇1 ^ 形成用組成物902中使單體的含有率大致相等,且一= 制單體的擴鮮動,-邊可於兩者之間形成折射率差。 另外’可使光導波管形成用組成物9〇1中的添加劑· 包含聚合起始劑,另-方面,光導波管形成用組成物902 92 201227021 -tuuiopif 中的添加劑920不包含聚合起始劑。於此情況,僅於芯層 13中,在層内單體的聚合反應得到促進,坡覆層11、、 122中單體的t合反應並未得到促進。因此,披覆層I】、 12卜122中折射率的變化得到抑制,可使層内的折射率比 較均勻。 其中,關於聚合起始劑的添加,並不限定於上述情況, 亦可為光導波管形成用組成物9〇1與光導波管形成用細 物902的兩者均包含聚合起始劑。於此情況,亦由於在披 覆層11、12卜122中較佳為儘可能抑制單體的聚合反應, 故而只要使光導波管形成用組成物9〇1與光導波管形成用 組成物902中所含的聚合起始劑的種類或添加量不同即 可。具體而言,例如,只要使用對活性放射線93〇的波長 而言反應性高的聚合起始劑作為光導波管形成用組成物 901中所含的聚合起始劑,且使用對活性放射線93〇的波 長而言反應性低的聚合起始劑作為光導波管形成用組 902中所含的聚合起始劑即可。另外,於使用相同種類的 t合起始劑的情況,只要與光導波管形成用組成物9〇1相 比’減少對光導波管形成用組成物902的添加量即可。 進而,亦可使用光酸產生劑作為光導波管形成用組成 物901中所含的聚合起始劑,且使用熱酸產生劑作為光導 波管形成用組成物902中所含的聚合起始劑。藉此,伴隨 活性放射線930的A?、射而主要僅於芯層13的層内促進單體 的聚合反應,來形成折射率分布W,另一方面,披覆層u、 121、122中單體的聚合反應並未得到促進。形成折射率分 93 201227021 40018pif 布W後,藉由對層910加熱’則此次坡覆層η、12ι、122 中單體的聚合反應得到促進。其結果為,層91〇中,厚度 方向的折射率分布T被固定。 熱酸產生劑例如可列舉:如三苯基銃三氟曱磺酸、三 本基疏九氟丁續酸之類的錄鹽型化合物,如二笨基錤三氟 曱磺酸、二苯基錤九氟丁磺酸之類的錤鹽型化合物,如五 本基鐫二氟曱磧酸、五苯基鱗九氟丁續酸之類的鱗鹽型化 合物等。 繼而,於支持基板951上,利用多色擠出成形法將光 導波管形成用組成物901、902成形為層狀。 多色擠出成形法中,藉由在擠出5層光導波管形成用 組成物901的同時,於該些各層之間分別擠出光導波管形 成用組成物902,而總括地形成積層9層而成的多色成形 體914。具體而言,多色成形體914中,由於光導波管形 成用組成物 901、902、901、902、901、902、901、902、 901自下方起以該順序分別擠出為層狀,故而在組成物彼 此的邊界,光導波管形成用組成物9〇1與光導波管形成用 組成物902略微混濁。因此,在組成物彼此的邊界附近中, 光導波管形成用組成物901的一部分與光導波管形成用組 成物902的一部分混合,沿著厚度方向而形成混合比率連 續變化的區域。其結果為,多色成形體914成為在光導波 管形成用組成物901所擠出的位置,折射率高,且在光導 波管形成用組成物902所擠出的位置,折射率低,且在該 些位置之間折射率連續變化的層。 94 201227021 • y-f\y Λ. 、= :^由使各射崎⑽光管形制組成物 肺I:!不同,可自由地調整層910中的厚度方向的 折射率分布T的形狀。 而二^吏。所得多色成形體914中的溶劑蒸發(脫溶 背1),獲付層910 (參照圖14 (b))。 =的層910成為自下方起以如下順序積層有披覆層 、心曰m、披覆層m、芯層132、彼覆層122的積層 體,於厚度方向上具有折射率分布τ。 所得的層9U) +,聚合物(基質)915實質上是均等 且隨機地存在’添加劑㈣是實質上鱗聪機地分散於 聚合物915中。藉此,層91〇中實質上均等且隨 有添加劑920。 狀 層910的平均厚度是根據應形成的光導波管ι的厚度 來適當設定,並無特別限定,較佳為1〇 μιη〜5〇〇左右^ 更佳為20 μηι〜300 μηι左右。 但’用以獲得此種層910的多色成形體914是使用如 下所述的模塗佈機(多色擠出成形裝置)_來製造。此 外,為了避免’得複雜’以下說明中,_以擠出成形 的層數變少的方式簡化的圖來說明。 圖15是表示獲得多色成形體914的模塗佈機的立體 圖’圖16是將模塗佈機的—部分放大而表示的縱剖面圖。 模塗佈機800如圖15所示,具有包括上模唇部以卜 及設置於其下方的下模唇部812的模頭81〇。 上模唇部81!以及下模唇部812分別以長條的塊狀體 95 201227021 40018pif 構f ’並且相互重合。於相接面形成有空洞的歧管㈣。 歧管82G的寬歧明靠模頭⑽社綱敎的方式連 續地擴張。另一方面’歧管820的厚度是以越靠近模頭81〇 的右側越變小的方式連續地縮小。而且,於歧管820的右 端,空洞的寬度成為最大且厚度成為最,】、,形成狹縫821。 該模頭810可將自歧f 82〇的左側供給的光導波管形 成用組成物9(Π、902 -邊自狹缝821成形於右側一邊擠 出。即,根據狹縫821的形狀來決定多色成形體914的寬 度以及厚度。 於模頭810的左側設置有混合單元83〇。混合單元83〇 疋將用以分別供給光導波管形成用組成物9〇卜9〇2至模頭 810的2纽的配管組合而構成,具有將光導波管形成用 組,物901供給至模頭81〇的第i供給管831、及將光導 波管形成用組成物902供給至模頭81〇的第2供給管832。 另外,由第1供給管831以及第2供給管832所供給 的光導波管形成用組成物9〇1、9〇2在擔負與模頭810的連 接的連接部835中合流,供給至模頭81〇的歧管82〇中。 此外’第2供給管832在中途分支為上下2個,分別連接 於連接部835的上層部以及下層部。另一方面,第丨供給 管831連接於連接部835的中層部。即’連接部幻5中, 將包含光導波管形成用組成物9〇1的丨層流動以包含光導 波管形成用組成物902的上下2層流動夾入的方式合流。 即,模塗佈機800可形成自下方起積層光導波管形成用組 成物902、901、902的3層而成的多色成形體914。 96 201227021 9极^外’混合單元請具有設置於第1供給管如與第 給管832的合流地點的多個銷836。該些銷836 = = 配置成其轴與第1供給管831以及第^供^ g 832的延伸方向大致正交。另外,圖16中該些銷伽 於連接部835的上層部與中層部之間、以及下層部與中芦 ,之間分別設置有3根。此外,銷836的根數並無特別^ 定,較佳為設為2根以上,更佳為設為3根〜1()根左右。 另外,銷836只要可使光導波管形成用組成物9〇1、9〇2 間產生紊流’ W亦可由其他的結構物(例如,網眼、沖孔 金屬(punching metal)等)來代替。 於模頭810的右側設置有搬送經多色擠出成形的多色 成形體914的搬送部84〇。搬送部84〇具有輥841、及沿著 輥841而移動的搬送膜842。搬送膜842是藉由輥841的 旋轉而自圖15的下方起向右侧搬送,但此時,於輥841 上積層多色成形體914。藉此,可保持多色成形體914的 形狀,並且向右側搬送。 繼而’對模塗佈機800的動作進行說明。 若向混合單元830中同時供給光導波管形成用組成物 9(U、902 ’則於連接部835中形成3層的層流。當於連接 部835中光導波管形成用纟且成物901、902合流時,由於設 置於合流部的多個銷836的作用,而使光導波管形成用組 成物9(Π、902的流動產生混亂。該混亂使層流間的邊界不 明了,於邊界形成光導波管形成用組成物901與光導波管 形成用組成物902混合存在的區域。 97 201227021 40018pif 以上述方式形成的層流在模頭81〇的歧管82〇中,在 寬度方向上擴張,並且在厚度方向上壓縮。其結果為,形 成如上所述的多色成形體914。然後,藉由使用此種多色 成形體914,最終獲得具有上述厚度方向的折射率分布τ 的光導波管1。 此外,多色成形體914形成於搬送膜842上,亦可將 該搬送膜842直接作為上述支持基板951來利用。SbFe~ Commercial products of such a catalyst may, for example, be "RHODORSIL (registered trademark, the same below) PHOTOINITIATOR 2074 available from RhodiaUSA Co., Cranbury, New Jersey (CAS No. 178233-72) "No. 2)", "TAG-372R ((di(2-(2-naphthyl)-2-yloxyethyl)) ruthenium (pentafluoride) available from Toyo Ink Manufacturing Co., Ltd., Tokyo, Japan "Phenyl) borate · CAS number is 193957-54-9)), "M-103" (CAS No. 87709-41-9) available from Midori Kagaku Co., Ltd., Tokyo, Japan, 85 201227021 "TAG-371 (CAS No. 193957-53-8)" available from Toyo Ink Manufacturing Co., Ltd., Tokyo, Japan, "TTBPS - available from Toyo Seiki Co., Ltd., Tokyo, Japan. TPFPB (tris(4-t-butylphenyl)phosphonium tetrakis(pentafluorophenyl)borate), available from Midori Kagaku Industrial Co., Ltd., Tokyo, Japan, "NAI-105 (CAS number is 85342-62-7) and so on. In the case where RHODORSIL PHOTOINITIATOR 2074 is used as the auxiliary catalyst, ultraviolet rays (UV light) are preferably used for the active radiation (actinic rays), and mercury lamps (high-pressure mercury lamps) are preferably used for the ultraviolet irradiation. Thereby, a sufficient amount of ultraviolet rays (active radiation) of less than 300 nm can be supplied to the layer 910, and the RHODORSIL PHOTOINITIATOR 2074 can be efficiently decomposed to generate the above-described cation and WCA. [2] [2-1] Then, in the same manner as in the first manufacturing method, the layer 910 is irradiated with the active radiation 930 via the mask 935. In the irradiation region 925, the cocatalyst reacts (bonds) or decomposes by the action of the active radiation 930, and cations (protons or other cations) and weakly complex anions (WCA) are released (produced). Moreover, the cationic or weakly coordinating anions change (decompose) the molecular structure of the catalyst precursor present in the irradiated region 925, causing it to change to an active latent state (latent active state). Here, the 2020 s gastric activity potential state (or potential active state) of the 86 201227021 40018pif catalyst such as the flooding agent is the same as the original activation temperature, the activation temperature is lowered, but the temperature does not rise right, #, at a room temperature level, is a catalyst precursor in a state in which no monomer reaction occurs in the irradiation region 925. # Therefore, after irradiation with the active radiation 93G, for example, if it is _4 〇. (: The left and right storage layer 91G does not cause a reaction of the monomer, and the state can be maintained. Therefore, the layer 91 〇 after the irradiation of the plurality of active radiation 93 准备 is prepared, and the heat treatment described later is performed on the layers. Thereby, the core layer 13 can be obtained, and the convenience is further. In addition to the change in the molecular structure of the catalyst precursor as described above, the release group is detached from the polymer 915 as in the first production method. A refractive index difference is generated between the irradiation region 925 of the layer 910 and the non-irradiation region 940. [j-2] Then, the layer 91 is subjected to heat treatment (first heat treatment), thereby being active in the irradiation region 925. The catalyst precursor in a latent state is activated (in an active state) to generate a monomer reaction (polymerization reverse crosslinking reaction). Further, if the reaction of the monomer proceeds, the temperature in the irradiation region 925 is slow and lowered. By this, there is a difference in 'single wealth' between the illuminating area 925 and the unirradiated area _ in order to eliminate the difference, the monomer is from the unirradiated area 9 4 (H widely moves | in the irradiation area 925. The result is 'formed on layer 910 and the first manufacturer The same refractive index distribution as in the heating process is not particularly limited, but is preferably about 80 ° C, more preferably about 40 to 6 〇. 87 201227021 4UUl «pif In addition, the heating time is better The L is set so that the reaction of the monomer in the irradiation region 925 is substantially completed, preferably G. 1 hour to 2 hours, more preferably 1 hour to 1 hour. In the second heat treatment, the catalyst precursor remaining in the unirradiated region 940 and/or the irradiation region 925 is activated (in a mixed state) directly or in response to activation of the promoter. The monomer in each of the regions 925 and 940 is reacted, for example, by stabilizing the obtained core portion 14 and the side surface portion 15 by the monomer remaining in each of the regions 925 and 94. The heating temperature in the second heat treatment is not particularly limited as long as it can activate the catalyst precursor or the cocatalyst, and is preferably about 70 C to 100 C, more preferably 8 Torr. 〇.〇左右. In addition, the heating time is preferably 0.5 The time is about 2 hours, and the range is about 0.5 hour to about 1 hour. Then, the third heat treatment is performed on the layer 910. Thereby, the reduction of the internal stress generated in the obtained core layer 13 or the core portion 14 and the side surface can be achieved. Further, the coating portion 15 is further stabilized. The heating temperature in the third heating treatment is preferably set to be higher than the heating temperature in the second heating treatment, and (4) is preferably about 178 ° C. More preferably, it is 12 (Γ(:~16〇£5(:&amp;々. In addition, the heating time is preferably 0.5 hours to 2 hours, more preferably 0.5 hours to about 丨 hours. More 4 after the above steps, Core layer 13. 88 201227021 40018pif In addition, in the state before the second heat treatment or the third heat treatment, for example, a sufficient refractive index difference is obtained in the core portion 14 and the side slope portion 15, and the second heating can be omitted. After the treatment, the third heat treatment. [3], Μ, and in the same manner as in the first manufacturing method, the layers 11 and 12 are coated on the two-layer layer of the layer. Thereby, the optical waveguide i is obtained. (Third Manufacturing Method) / = The method of the second embodiment (the third manufacturing method) for producing the optical waveguide of the present invention will be described. / J Γ is a diagram for explaining the manufacturing method of the optical waveguide 1 shown in Fig. 5, respectively. In the following description, the upper side in Fig. 14 is referred to as "upper" and the lower side is referred to as "lower". The third manufacturing method will be described below, but the difference from the above-described third manufacturing method is the same, and the same matters are omitted. The first method is the same as the first production method except that the method of forming the layer carrier including the polymer crucible 5, the addition force agent 920, and the like is different. The third manufacturing method is: (1) In the state of the supporting substrate, the seed wave forming composition 90 902 (the first composition and the second composition) is extrusion-molded into a layer to obtain a layer 910. [2] Then, after the 'f layer 91 (four)-partially irradiates the active radiation, the layer 910 is subjected to addition' to thereby generate a refractive index difference, and the core layer 13 on which the side surface 15 of the core portion 14 is formed is obtained, and a light guide is obtained. Hereinafter, each step will be described in detail. 89 201227021 wuiopif [1] First, prepare the components for forming the optical waveguide tube 9〇1, 9〇2. Each of the optical waveguide forming compositions 901 and 902 includes a polymer 915 and an additive 920 (in the present embodiment, at least a monomer), but the composition thereof is different. In the two compositions, the optical waveguide forming composition 9〇1 is a material for forming the layer 13 mainly, and is the same material as the core layer forming composition _. On the other hand, the optical waveguide forming composition 9〇2 is a material for mainly forming the respective cladding layers 11, 121 and 122, and includes a material having a refractive index lower than that of the optical waveguide forming composition 901. The refractive index difference between the optical waveguide forming composition 901 and the optical waveguide forming composition 902 can be set by setting the composition of the polymer 915, the composition of the monomer, the ratio of the presence of the polymer 915 and the monomer, and the like. To make appropriate adjustments. For example, when the refractive index of the monomer is lower than that of the polymer 915, the content of the monomer in the composition is higher than that of the optical waveguide forming composition 901 because the composition for forming the optical waveguide tube 9〇2. On the other hand, in the case where the refractive index of the monomer is souther than the polymer 915, the content of the monomer in the composition is higher than that of the optical waveguide forming composition 902. In other words, the composition of the polymer 915 and the additive 920 in each of the optical waveguide forming compositions 901 and 902 is appropriately selected depending on the respective refractive indices of the polymer 915 or the monomer. In the optical waveguide forming composition 901 and the optical waveguide forming composition 902, it is preferable to set the composition in such a manner that the content ratio of the monomers is substantially the same as 201227021. The difference in the content ratio of the composition of the composition 9G1 and the optical waveguide forming composition 902 is small, and thus the monomer=suppression caused thereby. The diffusion movement of the monomer is used for the refraction as described above, but there are cases where it is unavoidable to move in an undesired direction. Further, the refractive index distribution of the thickness 91 of the layer 91G can be formed by the (4) color extrusion domain method described later. Therefore, it is preferable that the diffusion of the monomer is at least in the thickness direction, but it is preferable that the thickness direction is not observed. The diffusion of the monomer moves to suppression. The optical waveguide having the target refractive index distribution Τ can be reliably produced by suppressing the ship movement of the uncoated monomer. Further, when the content ratio of the monomers is substantially equal, the composition for forming the optical waveguide is required. Between the object 901 and the optical waveguide forming composition 9〇2, the conditions of the polymer 915 or the monomer may be different. Specifically, the composition of the optical waveguide forming composition 9G1 and the optical waveguide forming composition 902 is the same as the composition of the polymer 915 to be used, and the molecular weight or degree of polymerization is different. can. By using the composition of the same composition, the mutual compatibility is improved, so that the components become easy to mix with each other. Thereby, the continuity of the refractive index distribution Τ can be improved. Further, in the case of using polymers having different compositions, the basic composition of the polymer 915 is the same, but the presence or absence of the leaving group (reaction medium) can also be changed. For example, the polymer 915 contained in the optical waveguide forming composition 901 preferably contains a detachable group, and the polymer 915 contained in the optical waveguide forming composition 902 does not contain a detachable group. Thereby, only 201227021 produces a detachment of the detachment group in the core layer 13, a refractive index difference is formed in the layer, and detachment of the detachment group is not generated in the cladding layers u, 12, 122, and thus the refractive index in the layer · Does not change, the refractive index of the cladding layers 11, 12 122 can be made relatively uniform. Further, in this case, the addition of the additive 920 (monomer, polymerization initiator, etc.) may be omitted in both of the optical waveguide forming composition 901 and the waveguide forming composition 9〇2. On the other hand, in the case where at least the additive 920 in the optical waveguide forming composition 9〇1 contains a monomer, the polymer 915 contained in each of the optical waveguide forming compositions 901 and 902 may not necessarily contain a debonding group. . Further, the monomers included in the optical waveguide forming composition 901 and the optical waveguide forming composition 902 may have the same composition or different compositions. Further, by using the composition of the composition, the diffusion movement of the mutual monomers is surely generated, so that the refractive index distribution τ can be made more clarified. As a result, it is possible to obtain an optical waveguide i having excellent characteristics. Further, the optical waveguide forming composition 901 may contain a monomer, and the optical waveguide forming composition may not contain a monomer. In the case of the 'coating layers U, 12', the diffusion of the monomers in the layer does not occur. Therefore, the refractive index in the layers of the core (2) of each of the cladding layers (1) can be made uniform. In addition, the composition of the monomer to be used, that is, the refractive index is as described above, is such that the content of the monomer is substantially equal in the composition for forming the light-wave-wave tube forming composition 9〇1 ^, and One = the expansion of the monomer, the - edge can form a refractive index difference between the two. Further, 'the additive in the composition for forming the optical waveguide tube 9〇1·containing the polymerization initiator, and the other aspect, the composition for forming the optical waveguide tube 902 92 201227021 - the additive 920 in the tuuiopif does not contain the polymerization initiator . In this case, only in the core layer 13, the polymerization reaction of the monomers in the layer is promoted, and the t-coupling reaction of the monomers in the slope coating layers 11, 122 is not promoted. Therefore, the change in the refractive index in the cladding layers I] and 12 122 is suppressed, and the refractive index in the layer can be made uniform. In addition, the addition of the polymerization initiator is not limited to the above, and the polymerization initiator may be contained in both the optical waveguide forming composition 9〇1 and the optical waveguide forming fine 902. In this case, it is preferable that the polymerization reaction of the monomer is suppressed as much as possible in the cladding layers 11 and 12, so that the optical waveguide forming composition 9〇1 and the optical waveguide forming composition 902 are provided. The type or amount of the polymerization initiator contained in the polymerization initiator may be different. Specifically, for example, a polymerization initiator having high reactivity with respect to the wavelength of the active radiation 93 作为 is used as the polymerization initiator contained in the optical waveguide forming composition 901, and the active radiation 93 is used. The polymerization initiator having a low reactivity at the wavelength may be a polymerization initiator contained in the optical waveguide forming group 902. In addition, when the same type of t-initiator is used, the amount of addition to the optical waveguide forming composition 902 may be reduced as compared with the optical waveguide forming composition 9〇1. Further, a photoacid generator can be used as the polymerization initiator contained in the optical waveguide forming composition 901, and a thermal acid generator can be used as the polymerization initiator contained in the optical waveguide forming composition 902. . Thereby, the polymerization reaction of the monomer is promoted mainly in the layer of the core layer 13 along with the A? and the emission of the active radiation 930, and the refractive index distribution W is formed. On the other hand, the coating layers u, 121, 122 are single. The polymerization of the body is not promoted. The refractive index is formed 93 201227021 40018pif After the cloth W, the polymerization of the monomer in the slope coatings η, 12ι, 122 is promoted by heating the layer 910. As a result, in the layer 91, the refractive index distribution T in the thickness direction is fixed. The thermal acid generator may, for example, be a salt-type compound such as triphenylsulfonium trifluorosulfonate or trisylsulfonate, such as diphenylphosphonium trisulfonate or diphenyl. A sulfonium salt type compound such as quinone fluorobutanesulfonic acid, such as a scaly salt type compound such as pentaerythritol difluorodecanoic acid or pentaphenyl scale hexafluorobutyl sulfonate. Then, on the support substrate 951, the optical waveguide forming compositions 901 and 902 are formed into a layer shape by a multicolor extrusion molding method. In the multi-color extrusion molding method, the optical waveguide forming composition 902 is extruded between the respective layers while the five-layer optical waveguide forming composition 901 is extruded, and the laminated layer 9 is collectively formed. A multi-color molded body 914 made of a layer. Specifically, in the multicolor molded body 914, the optical waveguide forming compositions 901, 902, 901, 902, 901, 902, 901, 902, and 901 are respectively extruded into a layer shape in this order from the bottom, and thus At the boundary between the compositions, the optical waveguide forming composition 9〇1 and the optical waveguide forming composition 902 are slightly turbid. Therefore, in the vicinity of the boundary between the compositions, a part of the optical waveguide forming composition 901 is mixed with a part of the optical waveguide forming composition 902, and a region in which the mixing ratio continuously changes is formed along the thickness direction. As a result, the polychromatic molded body 914 has a high refractive index at a position where the optical waveguide forming composition 901 is extruded, and has a low refractive index at a position where the optical waveguide forming composition 902 is extruded. A layer of refractive index that varies continuously between the locations. 94 201227021 • y-f\y Λ. , = : ^ The shape of the refractive index distribution T in the thickness direction of the layer 910 can be freely adjusted by making each of the Sasaki (10) light pipe-shaped compositions different from the lungs I:!. And two ^吏. The solvent in the obtained multicolor molded body 914 was evaporated (dissolved back 1), and the layer 910 was obtained (see Fig. 14 (b)). The layer 910 of the layer 910 is a laminate having a cladding layer, a core layer m, a cladding layer m, a core layer 132, and a cladding layer 122 in the following order, and has a refractive index distribution τ in the thickness direction. The resulting layer 9U) +, the polymer (matrix) 915 is substantially homogeneous and randomly present. The additive (4) is substantially dispersed in the polymer 915. Thereby, layer 91 is substantially uniform and is accompanied by additive 920. The average thickness of the layer 910 is appropriately set depending on the thickness of the optical waveguide ι to be formed, and is not particularly limited, and is preferably about 1 μm to about 5 μm, more preferably about 20 μηη to 300 μηι. However, the multicolor molded body 914 for obtaining such a layer 910 is manufactured by using a die coater (multicolor extrusion molding apparatus) as described below. Further, in order to avoid the 'complexity', the following description will be simplified in a simplified manner in which the number of layers to be extruded is reduced. Fig. 15 is a perspective view showing a die coater for obtaining a multicolor molded body 914. Fig. 16 is a longitudinal cross-sectional view showing a portion of the die coater in an enlarged manner. As shown in Fig. 15, the die coater 800 has a die 81A including an upper die lip and a lower die lip 812 disposed therebelow. The upper die lip 81! and the lower die lip 812 are respectively formed in a long block-like body 95 201227021 40018pif and overlap each other. A manifold (4) having a cavity is formed in the interface. The width of the manifold 82G is continuously expanded by the mode of the die (10). On the other hand, the thickness of the manifold 820 is continuously reduced in such a manner as to become smaller toward the right side of the die 81 。. Further, at the right end of the manifold 820, the width of the cavity is maximized and the thickness is the largest, and the slit 821 is formed. The die 810 can extrude the optical waveguide forming composition 9 supplied from the left side of the difference f 82 Π (the Π and 902 - are extruded from the slit 821 to the right side, that is, depending on the shape of the slit 821. The width and thickness of the multi-color molded body 914. A mixing unit 83 is disposed on the left side of the die 810. The mixing unit 83 is used to supply the optical waveguide forming composition 9 to the die 810, respectively. The illuminating tube forming group, the ith supply pipe 831 for supplying the object 901 to the die 81 、, and the optical waveguide forming component 902 to the die 81 〇 are provided. The second supply tube 832. The optical waveguide forming components 9〇1 and 9〇2 supplied from the first supply tube 831 and the second supply tube 832 are in the connection portion 835 that is connected to the die 810. The second supply pipe 832 is branched into the upper and lower portions of the connection portion 835, and is connected to the upper portion and the lower portion of the connection portion 835. The tube 831 is connected to the middle portion of the connecting portion 835. That is, the connecting portion will be included in the light guide 5 The ruthenium layer flow of the composition for forming the waveguide 12 〇1 is merged so as to sandwich the upper and lower layers of the optical waveguide forming composition 902. That is, the die coater 800 can form a laminated optical waveguide from below. A multi-color molded body 914 is formed by forming three layers of the compositions 902, 901, and 902. 96 201227021 The 9-pole external [mixing unit] has a plurality of mixing units provided at the junction of the first supply pipe and the first pipe 832. Pins 836. The pins 836 = = are arranged such that their axes are substantially orthogonal to the direction in which the first supply tube 831 and the second supply tube 832 extend. Further, in Fig. 16, the pins are gamuted to the upper portion of the connection portion 835 and There are three between the middle portions and between the lower portions and the middle reeds. The number of the pins 836 is not particularly limited, and is preferably two or more, and more preferably three. In addition, the pin 836 may be such that a turbulent flow between the optical waveguide forming compositions 9〇1 and 9〇2 may be generated by other structures (for example, mesh, punching metal (punching) Instead of being attached to the right side of the die 810, a multicolor molded body 914 which is conveyed by multicolor extrusion molding is provided. The conveyance unit 84A has a roller 841 and a conveyance film 842 that moves along the roller 841. The conveyance film 842 is conveyed from the lower side of FIG. 15 to the right side by the rotation of the roller 841, but at this time, The multi-color molded body 914 is laminated on the roll 841. Thereby, the shape of the multi-color molded body 914 can be maintained and conveyed to the right side. Next, the operation of the die coater 800 will be described. The optical waveguide forming composition 9 (U, 902') is formed into a laminar flow of three layers in the connecting portion 835. When the optical waveguide is formed in the connection portion 835 and the products 901 and 902 are joined together, the light waveguide forming composition 9 (the flow of the Π, 902) is caused by the action of the plurality of pins 836 provided in the merging portion. This disorder causes the boundary between the laminar flows to be unclear, and a region where the optical waveguide forming composition 901 and the optical waveguide forming composition 902 are mixed at the boundary is formed. 97 201227021 40018pif The laminar flow formed in the above manner is The manifold 82 of the die 81 is expanded in the width direction and compressed in the thickness direction. As a result, the multicolor molded body 914 as described above is formed. Then, by using such a multicolor molded body In 914, the optical waveguide 1 having the refractive index distribution τ in the thickness direction is finally obtained. Further, the multi-color molded body 914 is formed on the transport film 842, and the transport film 842 may be directly used as the support substrate 951.

另外,圖15所示的模塗佈機8〇〇可形成包含i層芯層 13的層910 ’於設置多層芯層13的情況,只要根據其來變 更混合單元830的結構即可。具體而言,只要根據芯層13 的層數來使第1供給管831分支,進而以夾著自各第i供 給官831中擠出的光導波管形成用組成物9〇1的各層的方 式增加第2供給管832的分支數即可。若如上所述,則可 製造上述光敎管㈣2實麵態。 IJT 圖17疋表示混合單元830的其他構成例的剖面圖。此 外,圖17中,為了避免變得複雜,而以線來示意性地表示 第1供給管831以及第2供給管832的管軸,將向各供給 管831、832中注入各組成物的起點以φ記號來表示。另外 分別為,將光導波管形成用組成物901的流動以實線的箭 頭表示,將光導波管形成用組成物9〇2的流動以虛線的箭 頭表示,且將光導波管形成用組成物9〇1與光導波管形成 用組成物902的混合物的流動以點鏈線的箭頭表示。 圖17所示的第1供給管831是自起點83u分支為3 個’其中,中央的分支管8311筆直地向模頭81〇方向延‘伸。 98 201227021 40018pif 另一方,’於中央的分支管8311的上方,自起點831a 分支的分支官8312傾斜地延伸,且於中央的分支管8311 的下方,自起點831a分支的分支管8313傾斜地延伸。 於自中央的为支管8311稍稱向上方遠離的位置,設置 有第2供給管832的第!起點_,自該第i起點咖 起为支的分支官8321向上方延伸,另外,所分支的分支管 8322向下方延伸。 其中’向下方延伸的分支f 8322在合流點:1處合流 於中央的分支管8311中。 ^另外,向上方延伸的分支管8321是構成為與上述分支 f 8312在混合點Ml處合流。於混合點M1的前方,分支 管8321與分支管8312彙集於集合管8331中該集合管 8331在位於較分支管8322更靠模頭81〇側(前端侧)的 合流點J2處合流於中央的分支管μ 11中。 另-方面,於自中央的分支管8311稍稍向下方遠離的 位置,设置有第2供給管832的第2起點832b,自該第2 起點832b起分支的分支管8323向上方延伸,另外,所分 支的分支管8324向下方延伸。 其中’向上方延伸的分支管8323在合流點處合流 於中央的分支管8311中。 另外,向下方延伸的分支管8324構成為與上述分支管 8313在混合點M2處合流。於混合點M2的前方分支管 8323與分支管8324彙集於集合管8332中,該集合管833^ 在位於較分支官8323更靠模頭81〇側(前端側)的合流點 99 201227021 40018pif J2處合流於中央的分支管8311中。 另外,於各混合點Ml、M2以及各合流點J1、J2處 設置有上述銷836 (未圖示)。此外,於各混合點M1、M2 處,以光導波管形成用組成物901與光導波管形成用組成 物902完全混合的方式設定銷836的配置以及根數。另一 方面,於各合流點jl、J2處,以光導波管形成用組成物 901與上述混合物部分地混合的方式設定銷836的配置以 及根數。 此處’於第1供給管831的起點831a注入光導波管形 成用組成物901,另一方面,於第2供給管832的第】起 點832a以及第2起點832b注入光導波管形成用組成物 902。 光導波管形成用組成物901經由中央的分支管8311 而構成多色成形體914的中央的層。 另一方面,光導波管形成用組成物9〇2是經由分支管 8322與分支管8323而以夾著中央的層的方式合流。 進而’光導波管形成用組成物901與光導波管形成用 組成物902的混合物是經由第2供給管832而以夾著包含 上述光導波管形成用組成物902的層的方式合流。 以上述方式形成多色成形體914。 藉由使用此種混合單元830,例如於光導波管形成用 組成物901的折射率大於光導波管形成用組成物902的折 射率的情況,可形成能製造上述光導波管的第2實施形態 的多色成形體914。 100 201227021 40018pif 另外’藉由適當設定來自第丨供給管83 形成用組成物顚的供給條件,例如第^ ft t第i供給管叫目對於第2供給管832、:合流角度、 =位時_供給量、供給壓力、減、溫度等,以 二气2二f 832的光導波管形成用組成物卿的供給條 $ ’例如弟2供給官832的内徑、第2供給管㈣相對於 1供給官831的合流角度、每單位時間的供給量、供給 壓力、黏度'溫度等,可變更多色成形體914中的各植成 物的佔有率。祕,祕可自由變更光較管1的折射率 分布T的形狀。 此外,上述多色擠出成形法以及模塗佈機是製造多色 成形體914的方法以及裝置的一例,只要是可產生層間的 組成物的混濁的多色成形方法以及多色成形裝置,則亦可 使用例如射出成形法(裝置)等各種方法(裝置)。 [2]以下,以與第1製造方法相同的方式照射活性放 射線930。藉此,於芯層π中形成折射率分布w。而且, 獲得在寬度方向上具有折射率分布w且在厚度方向上具 有折射率分布T的光導波管1。 〃 此外,由多色成形體914所獲得的層910包含芯層 131、132。因此,若對該層910照射活性放射線930,則 可以1次照射來對多個芯層131、132總括地形成芯部14 以及側面彼覆部15。因此,可以較少的步驟製造具有多個 心層131、132的光導波管1。另外,於此情況,在多個芯 層131、132之間基本上不會產生芯部14的位置偏差。因 101 201227021 n得尺寸精度極高的光導 時一率=在 如上所述的本發明的光導 質光=:,子機心發==品 電言/、遊戲機、路由器行動 t均必需:例如-等運算裝置與= 中記:體 (Random AeCess MemGry ’ RAM )等記憶裝置之間 送大容量的資料。因此,藉由此種電子機器具備本發 光導波管,電氣配線所特有的雜訊、信號劣化等不良 得以消除,可期待其性能的飛躍性提高。 月/ 進而,於光導波管部分,與電氣配線相比,發執量大 幅削減。因此’可削減冷卻所需的電力,可削減電子機 整體的電力消耗。 ° 另外,本發明的光導波管的傳送損耗以及脈衝信號的 遲純小,即便多通道化以及高密度化亦難以產生干擾。因 此’即便為高密度且小面積’亦獲得可靠性高的光導波管, 藉由搭載該光導波管而實現電子機器的可靠性提高以及小 型化。 间 ’、 以上,已對本發明的光導波管以及電子機器進行說 102 201227021 40018pif 明,但本發明並不限定於此,例如亦可於光導波管上附加 任意的構成物。 另外,製造本發明的光導波管的方法並不限定於上述 方法,例如,亦可使用以下方法:藉由活性放射線的照射 而切斷分子鍵,使折射率變化的方法(光褪色法);使形成 芯層的組成物中含有具有可光異構化或者光二聚化的不飽 和鍵的光交聯性聚合物’對其照射活性放射線而使分子結 構變化,並且使折射率變化的方法(光異構化法、光二聚 化法)等。 該些方法中,可根據活性放射線的照射量來調整折射 率的變化量’因此藉由根據作為目標的折射率分布W的形 狀’使對層的各部照射的活性放射線的照射量不同,可形 成具有折射率分布W的芯層。 [實例] 以下’對本發明的實例進行說明。 1.光導波管的製造 (實例1) U)具有脫離性基的降冰片烯系樹脂的合成 於水分及氧濃度均控制在1 ppm以下且以乾燥氮氣充 滿的手套工作箱中,量取己基降冰片烯(HxNB)7.2 g(40.1 mmol)、二苯基曱基降冰片烯曱氧基石夕烧u p g (40.1 mmol)於5〇〇 mL小玻璃瓶中,添加脫水曱苯6〇 g及乙酸 乙醋11 g,包上矽製的密封劑來塞緊上部。 繼而’於100 mL小玻璃瓶中量取下述化學式(A)所 103 201227021 40018pif 表不的Ni觸媒1.56g (3.2mmo丨)及脫水τ苯1〇mL,放 入授拌子並塞緊,將觸絲勝使其完全溶解。 以注射器正確量取該下述化學式(Α)所表示的Ni觸 媒溶液1 mL,定量注人至上述溶财2種降冰片烯的小玻 j瓶中’於室溫下_丨小時,結果確制明顯的黏度上 升。於此時刻取下塞子,添加四氫咬喃(thf) 6〇 g進行 攪拌,獲得反應溶液。 向100虹燒杯中添加乙酸酐9.5 g、過氧化氫水18 g (濃度30%)、離子交換水% g進行攪拌,當場製備過乙 酸水溶液。繼而賴水溶㈣量添祕上述反應溶液中, 攪拌12小時,進行犯的還原處理。 繼而,將處理完畢的反應溶液轉移至分液漏斗中,去 除下部的水層後’添加異丙醇的3〇%水騎則此,激烈 擾捽。靜置岐全騎二層分轉去除水層。將該水洗製 程重複合計3次後,將油層滴下至大量過剩的丙綱中,使 所生成的聚合物再賴,#由過“赠时雜,於設 定為60C的真空乾燥機中進行12小時加熱乾燥,藉此獲 得聚合物扪。藉由凝膠滲透層析法㈤Μ——Further, the die coater 8A shown in Fig. 15 can form the layer 910' including the i-layer core layer 13 in the case where the multilayer core layer 13 is provided, and the structure of the mixing unit 830 can be changed according to the same. Specifically, the first supply pipe 831 is branched according to the number of layers of the core layer 13, and the layers of the optical waveguide forming composition 9〇1 extruded from the respective i-th supply members 831 are interposed. The number of branches of the second supply pipe 832 may be sufficient. As described above, the above-mentioned diaphragm (4) 2 real surface state can be manufactured. IJT FIG. 17A is a cross-sectional view showing another configuration example of the mixing unit 830. In addition, in FIG. 17, in order to avoid complexity, the tube axis of the first supply pipe 831 and the second supply pipe 832 is schematically indicated by a line, and the starting point of each component is injected into each of the supply pipes 831 and 832. Expressed by the φ mark. In addition, the flow of the optical waveguide forming composition 901 is indicated by a solid arrow, and the flow of the optical waveguide forming composition 9〇2 is indicated by a broken line arrow, and the optical waveguide forming composition is used. The flow of the mixture of 9〇1 and the optical waveguide forming composition 902 is indicated by an arrow of a dotted line. The first supply pipe 831 shown in Fig. 17 is branched into three from the starting point 83u, and the central branch pipe 8311 extends straight toward the die 81. 98 201227021 40018pif On the other hand, above the central branch pipe 8311, the branch official 8312 branched from the starting point 831a extends obliquely, and below the central branch pipe 8311, the branch pipe 8313 branched from the starting point 831a extends obliquely. The second supply pipe 832 is provided at a position slightly away from the center for the branch pipe 8311 to be upward. The starting point _, the branching member 8321 which is branched from the i-th starting point extends upward, and the branched branch pipe 8322 extends downward. The branch f 8322, which extends downward, merges into the central branch pipe 8311 at the junction point:1. Further, the branch pipe 8321 extending upward is configured to merge with the branch f 8312 at the mixing point M1. In the front of the mixing point M1, the branch pipe 8321 and the branch pipe 8312 are collected in the collecting pipe 8331. The collecting pipe 8331 merges with the center at the joining point J2 located on the side (front end side) of the die 81 from the branch pipe 8322. Branch tube μ 11 in. On the other hand, the second starting point 832b of the second supply pipe 832 is provided at a position slightly away from the center branch pipe 8311, and the branch pipe 8323 branched from the second starting point 832b extends upward. The branch pipe 8324 of the branch extends downward. The branch pipe 8323, which extends upward, merges into the central branch pipe 8311 at the junction. Further, the branch pipe 8324 extending downward is configured to merge with the branch pipe 8313 at the mixing point M2. The front branch pipe 8323 and the branch pipe 8324 at the mixing point M2 are collected in the collecting pipe 8332, and the collecting pipe 833 is located at the joining point 99 (201227021 40018pif J2) on the side of the die 81 (front end side) of the branching member 8323. Confluence in the central branch pipe 8311. Further, the pin 836 (not shown) is provided at each of the mixing points M1 and M2 and the merging points J1 and J2. In addition, at the respective mixing points M1 and M2, the arrangement and the number of pins 836 are set such that the optical waveguide forming composition 901 and the optical waveguide forming component 902 are completely mixed. On the other hand, at each of the junctions j1 and J2, the arrangement and the number of pins 836 are set such that the optical waveguide forming composition 901 is partially mixed with the mixture. Here, the optical waveguide forming composition 901 is injected into the starting point 831a of the first supply pipe 831, and the optical waveguide forming composition is injected into the first starting point 832a and the second starting point 832b of the second supply pipe 832. 902. The optical waveguide forming composition 901 constitutes a layer in the center of the multicolor molded body 914 via the center branch pipe 8311. On the other hand, the optical waveguide forming composition 9〇2 is joined to the branch pipe 8323 via the branch pipe 8322 so as to sandwich the center layer. Furthermore, the mixture of the optical waveguide forming composition 901 and the optical waveguide forming composition 902 is joined by the second supply tube 832 so as to sandwich the layer including the optical waveguide forming composition 902. The multicolor molded body 914 is formed in the above manner. By using such a mixing unit 830, for example, when the refractive index of the optical waveguide forming composition 901 is larger than the refractive index of the optical waveguide forming composition 902, the second embodiment capable of manufacturing the optical waveguide can be formed. Multicolor shaped body 914. 100 201227021 40018pif In addition, by appropriately setting the supply condition of the composition for forming the second supply pipe 83, for example, the second supply pipe is called the second supply pipe 832, the merge angle, and the = position. The supply amount, the supply pressure, the reduction, the temperature, and the like, the supply line of the composition for forming the optical waveguide of the second gas 2nd f 832, for example, the inner diameter of the supply unit 832, and the second supply tube (four) relative to the The merging angle of the supply member 831, the supply amount per unit time, the supply pressure, the viscosity 'temperature, and the like, the occupancy ratio of each plant in the more color molded body 914 can be changed. The secret can change the shape of the refractive index distribution T of the tube 1 freely. Further, the above-described multicolor extrusion molding method and die coater are examples of a method and an apparatus for producing a multicolor molded body 914, and as long as it is a multicolor forming method and a multicolor forming apparatus capable of causing turbidity of a composition between layers, Various methods (devices) such as an injection molding method (apparatus) can also be used. [2] Hereinafter, the active radiation 930 is irradiated in the same manner as in the first production method. Thereby, the refractive index distribution w is formed in the core layer π. Further, an optical waveguide 1 having a refractive index distribution w in the width direction and a refractive index distribution T in the thickness direction is obtained. Further, the layer 910 obtained by the multi-color molded body 914 includes core layers 131, 132. Therefore, when the layer 910 is irradiated with the actinic radiation 930, the core portion 14 and the side surface portion 15 can be collectively formed on the plurality of core layers 131 and 132 by one irradiation. Therefore, the optical waveguide 1 having a plurality of core layers 131, 132 can be manufactured in fewer steps. Further, in this case, the positional deviation of the core portion 14 is substantially not generated between the plurality of core layers 131, 132. Since 101 201227021 n has a very high dimensional accuracy, the light guide rate = the light guiding light of the present invention as described above =:, the machine heart == product language /, the game machine, the router action t are required: for example - A large-capacity data is transmitted between the arithmetic unit and the memory device such as the memory (Random AeCess MemGry 'RAM). Therefore, such an electronic device includes the light-emitting waveguide, and noise, signal degradation, and the like which are peculiar to the electric wiring are eliminated, and the performance can be expected to be greatly improved. Month / Further, in the light guide tube portion, the amount of execution is greatly reduced compared with the electric wiring. Therefore, the power required for cooling can be reduced, and the power consumption of the entire electronic machine can be reduced. In addition, the transmission loss of the optical waveguide of the present invention and the delayed purity of the pulse signal are small, and it is difficult to cause interference even in the case of multi-channelization and high density. Therefore, a highly reliable optical waveguide is obtained even in a high-density and small-area area, and the reliability and miniaturization of the electronic device can be achieved by mounting the optical waveguide. In the above, the optical waveguide and the electronic device of the present invention have been described. 102 201227021 40018pif, the present invention is not limited thereto, and for example, an arbitrary structure may be added to the optical waveguide. Further, the method for producing the optical waveguide of the present invention is not limited to the above method, and for example, a method of cutting a molecular bond by irradiation of actinic radiation to change a refractive index (photobleaching method) may be used; A method in which a composition for forming a core layer contains a photocrosslinkable polymer having an unsaturated bond capable of photoisomerization or photodimerization, which irradiates active radiation to change a molecular structure, and changes a refractive index ( Photoisomerization method, photodimerization method, and the like. In these methods, the amount of change in the refractive index can be adjusted according to the amount of irradiation of the active radiation. Therefore, the amount of irradiation of the active radiation irradiated to each portion of the layer can be different depending on the shape of the target refractive index distribution W. A core layer having a refractive index distribution W. [Examples] Hereinafter, examples of the invention will be described. 1. Manufacture of optical waveguide (Example 1) U) Synthesis of norbornene-based resin having a debonding group. In a glove box filled with moisture and oxygen concentration of 1 ppm or less and filled with dry nitrogen, the amount of hexyl was measured. 7.2 g (40.1 mmol) of norbornene (HxNB), diphenyl fluorenyl norbornene oxime sulphide upg (40.1 mmol) in a 5 〇〇mL vial, dehydrated hydrazine 6 〇g and acetic acid 11 g of ethyl vinegar, wrapped with a sealing agent to seal the upper part. Then, in a 100 mL vial, weighed 1.56 g (3.2 mmo 丨) of Ni catalyst and 0.1 〇 mL of dehydrated τ benzene represented by the following formula (A) 103 201227021 40018 pif, put it into the stirrer and stuff it tightly. , will touch the silk to make it completely dissolved. 1 mL of the Ni catalyst solution represented by the following chemical formula (Α) was accurately taken in a syringe, and quantitatively injected into the small glass bottle of the above two kinds of norbornene, 'at room temperature _ 丨 hours, the result Make sure the apparent viscosity rises. At this time, the stopper was removed, and tetrahydrogenated (thf) 6 〇 g was added and stirred to obtain a reaction solution. To the 100 rainbow beaker, 9.5 g of acetic anhydride, 18 g of hydrogen peroxide water (concentration: 30%), and ion-exchanged water % g were added and stirred, and an aqueous acetic acid solution was prepared on the spot. Then, it was added to the above reaction solution by the amount of water (4), and the mixture was stirred for 12 hours to carry out a reduction treatment. Then, the treated reaction solution was transferred to a separatory funnel, and after removing the lower aqueous layer, the addition of 3% of water to the isopropanol ride was severely disturbed. After standing, the whole ride is divided into two layers to remove the water layer. After the water washing process was recombined three times, the oil layer was dropped into a large amount of excess C-class, and the resulting polymer was again allowed to be re-applied, and the product was subjected to a vacuum dryer set to 60 C for 12 hours. Heating and drying, thereby obtaining polymer enthalpy. By gel permeation chromatography (5) Μ

Chr_tography,GPC)浙’聚合物&amp;的分子量分布為 MW=10萬、Mn = 4萬。另外,藉由核磁共振(NUclear Magnetic Resonance ’ NMR)的鑑定,聚合物#ι中的各結 構單元的莫耳比為:己基降冰片_構單元為% 二苯基甲基降冰片烯曱氧基魏結構單元為%福%。 [化 39] 104 201227021 40018pifChr_tography, GPC) Zhejiang polymer &amp; molecular weight distribution is MW = 100,000, Mn = 40,000. In addition, by the identification of nuclear magnetic resonance (NMR), the molar ratio of each structural unit in the polymer #1 is: hexyl norbornyl _ structural unit is % diphenylmethyl norbornene oxime The Wei structural unit is %%. [化39] 104 201227021 40018pif

Ph PhPh Ph

HxUP/%/ /°6ρδ λΝΪHxUP/%/ /°6ρδ λΝΪ

Ph v5 (A) [化 40]Ph v5 (A) [Chem. 40]

(2)芯層形成用組成物的製造 稱量10 g經純化的上述聚合物#1於100 mL的玻璃容 器中’向其中添加1,3,5-三曱笨(mesitylene) 40 g、抗氧 化劑 Irganox 1076 (CibaGeigy 公司製造)0.01 g、環己基 氧雜環丁烧單體(式(20)所示的單體,東亞合成製造的 CHOX,CAS#483303-25-9,分子量為 186,沸點為 125°C/1.33 kPa) 2 g、聚合起始劑(光酸產生劑)Rh〇d〇rsil(2) Manufacture of core layer forming composition: 10 g of the purified polymer #1 was added to a 100 mL glass container to add 1,3,5-mesitylene 40 g, and the like. Oxidizing agent Irganox 1076 (manufactured by Ciba Geigy Co., Ltd.) 0.01 g, cyclohexyloxyxanthene monomer (monomer of formula (20), CHOX manufactured by East Asia Synthetic, CAS#483303-25-9, molecular weight 186, boiling point 125 ° C / 1.33 kPa) 2 g, polymerization initiator (photoacid generator) Rh〇d〇rsil

Photoinitiator 2074 (Rhodia 公司製造,CAS#178233-72-2) (2.5E-2 g,乙酸乙酯0·1 mL中)’使其均勻溶解後,利用 0.2 μιη的PTFE過濾器進行過濾,獲得清潔的芯層形成用 105 201227021. -TV/Vl 組成物。 (3)光導波管的製造 (下侧彼覆層的製作) 士匕於矽晶圓上,利用刮刀片來均勻塗佈感光性降冰片烯 才对月曰組成物(promerus公司製造的Ava如1 2⑻⑽清漆)後, 杈入至55 c的乾燥機中10分鐘。完全去除溶劑後,對所 塗佈的整個面照射紫外線8〇mJ,於乾燥機中以12(rc加熱 1小時,使塗膜硬化,形成下側披覆層。所形成的下側披 覆層的厚度為20 μιη,為無色透明。 (芯層的製作) 、於上述下側披覆層上,利用刮刀片來均句塗佈芯層形 成用組成物後,投入至55。〇的乾燥機中1〇分鐘。完全去 除溶劑後,壓接光罩而以1300 mJ/cm2來選擇性照射紫外 線。去除遮罩,於乾燥機中以15〇t進行丨5小時的加熱。 加熱後,確認顯現出非常鮮明的導波管圖案。另外,確認 形成芯部以及侧面彼覆部。此外’所形成的光導波管並^ 形成有8根芯部。另外,使芯部的寬度為5〇 μηι,側面披 覆部的寬度為80μιη,芯層的厚度為5〇μπι。 (上侧披覆層的製作) 將於聚_ (PES)膜上預先以乾燥厚度成為2〇师 的方式積層有Avatrel 2000Ρ的乾膜貼合於上述芯層上投 入至設定為140°C的真空層壓機中而進行熱壓接。其後, 全面照射紫外線100mJ,於乾燥機中以12(rc加熱/小時, 使Avatrel 2000P硬化,形成上側彼覆層,獲得光導波管。 106 201227021 40018pif 的的 =管上切出長度為一的-份。 方向所的芯層的橫截面,沿著其厚度 極大值,分^具有多個極小值以及Photoinitiator 2074 (manufactured by Rhodia, CAS#178233-72-2) (2.5E-2 g, ethyl acetate 0·1 mL)' After being uniformly dissolved, it was filtered using a 0.2 μηη PTFE filter to obtain a clean The core layer is formed by 105 201227021. -TV/Vl composition. (3) Manufacture of optical waveguides (production of the lower side cladding layer) On the enamel wafer, the gravitational blade is used to uniformly apply the photosensitive norbornene to the moon 曰 composition (Ava as manufactured by Promerus). After 1 2(8)(10) varnish), pour into the 55 c dryer for 10 minutes. After completely removing the solvent, the entire surface to be coated was irradiated with ultraviolet rays of 8 μm, and heated in a dryer at 12 (rc for 1 hour to harden the coating film to form a lower coating layer. The formed lower cladding layer was formed. The thickness is 20 μm, and it is colorless and transparent. (Production of the core layer) The composition for forming a core layer is uniformly applied to the lower cladding layer by a doctor blade, and then placed in 55. After 1 minute of complete removal, the solvent was completely removed, and the mask was crimped to selectively irradiate ultraviolet rays at 1300 mJ/cm2. The mask was removed and heated in a dryer at 15 Torr for 5 hours. A very clear waveguide pattern is formed, and it is confirmed that the core portion and the side surface portion are formed. Further, the formed optical waveguide tube is formed with eight core portions. Further, the width of the core portion is 5 〇 μηι. The width of the side cladding portion is 80 μm, and the thickness of the core layer is 5 μm. (Preparation of the upper cladding layer) Avatrel 2000 is laminated on the poly- (PES) film in advance in a dry thickness of 2 〇. The dry film is applied to the above core layer and set to 140°. The thermocompression bonding was carried out in a vacuum laminator of C. Thereafter, ultraviolet light was irradiated to 100 mJ in total, and Avatrel 2000P was hardened in a dryer at 12 (rc heating/hour to form an upper side cladding layer to obtain an optical waveguide tube. 201227021 40018pif = pipe cut length - one. The cross section of the core layer in the direction, along its thickness maximum value, has a number of minimum values and

另一方面,對光導波管的 &gt;VL 過其芯部的寬度的中心讀 ’ ’°者在上下方向通 厚度方向的折射率分布了 /’利用干涉顯微鏡來取得 所謂的階變折射率(SI)型^果為’折射率分布T成為 (實例2) *實照射量提高至1500 ―2以外,以 與實例1相關方式獲得料 (實例3) 除了將紫外線的照射|捭古 將聚合_的各結構單元t,2G(K)邊m,並且使用 結構單元為40 mol% :莫耳比變更為己基降冰片烯 構單元為60 _%而‘作==冰片烯曱氧基魏結 同的方式獲得光導波管作私合物以外,以與實例1相 (實例4) 除了將紫外線的照射量 將聚合物#1的各結構單以/5UUm細並且使用 結構單元為45 ^財_更為己基降冰片烯 構單元為55 而成降冰片烯曱氧基魏結 又考作為聚合物以外,以與實例【相 107 20122702 l.f -rv/v/i υ|^1Ι 同的方式獲得光導波管。 (實例5) 除了使用將聚合物#1的各結構單元的莫耳比變 己基降冰片烯結構單元為3〇 m〇i〇/0、二苯基甲基降冰二 曱氧基矽烷結構單元為70 m〇l%而成者作為聚合物以外&gt;, 以與實例1相同的方式獲得光導波管。 (實例6) 除了將紫外線的照射量減少至3〇〇 mJ/cm2,並且使 將聚合物#1的各結構單元的莫耳比變更為己基降冰片烯 結,單元為4G mol%、二苯基f基降冰片烯甲氧基残結 構單兀為60 mol%而成者作為聚合物以外,以與實例! 同的方式獲得光導波管。 (實例7) 除了將紫外線的照射量減少至5〇〇mJ/cm2,並且使用 將聚J物#1的各結構單元的莫耳比變更為己基降冰片稀 3單^為3〇咖1%、二苯基曱基降冰片烯甲氧基石夕院結 構早7C為7G mol%而成者作為聚合物以外,以與實例 同的方式獲得光導波管。 (實例8) χ除了將紫外線的照射量減少至IGGmlW,並且使月 t 2各M構單元的莫耳比變更為己基降冰片办 二抑早2 咖收、二笨基曱基降冰片烯甲氧基石夕烧衾 二^mGl/°而成者作為聚合物以外,以與實例1才1 同的方式獲得光導波管。 108 201227021 -τυν/χ (實例9) 除了將紫外線的照射量提高至15 00 mJ/cm2,並且使用 將聚$物#1的各結構單元的莫耳比變更為己基降冰片稀 結,單το為10 mol%、二苯基甲基降冰片烯曱氧基頻結 構單元為90 mol%而成者作為聚合物以外,以與實例i相 同的方式獲得光導波管。 (實例10) 除了將各外線的照射量提高至3〇〇〇 mJ/cm2,並且使用 將聚合物#1的各結構單元的莫耳比變更為己基降冰片烯 結構單元為5 mol%、二苯基曱基降冰片烯甲氧基矽烷結構 單元為95 mol%而成者作為聚合物以外,以與實例丨相同 的方式獲得光導波管。 ' (實例11) 除了使用藉由以下所示的方法來製造的組成物作為芯 層形成用組成物以外,以與實例丨相同的方式獲得光導波 管。 稱量l〇g經純化的上述聚合物#1於100mL&amp;玻璃容 器中’向其中添加均二甲苯40 g、抗氧化劑jrgan〇x IQ% (CibaGeigy公司製造)0·01 g、2官能氧雜環丁烷單體(式 (15)所示的單體’東亞合成製造,d〇x, CAS#18934-00-4,分子量為 214 ’ 沸點為 ii9〇C/0.67kPa) 2 g、光酸產生劑 Rhodorsil Photo initiator 2074 (Rhodia 公 司製造,CAS#178233-72-2) (2.5E-2 g,乙酸乙酯 oj mL 中),使其均勻溶解後,利用0.2 μιη的PTFE過濾、器進行 109 201227021 40018pif 過濾,獲得清潔的芯層形成用組成物。 (實例12) 除了使用藉由以下所示的方法來製造的組成物作為芯 層形成用組成物以外,以與實例1相同的方式獲得光導波 管。 稱量10 g經純化的上述聚合物#1於100 mL的玻璃容 器中’向其中添加1,3,5-三曱苯40 g、抗氧化劑;[rganox ίο% (CibaGeigy公司製造)0.01 g、脂環式環氧單體(式(37) 所示的單體’ Daicel化學製造,Celloxide 2021P, CAS#2386-87-0 ’ 分子量為 252 ’ 沸點為 i88°C/4 hPa) 2 g、 光酸產生劑 Rhodorsil Photoinitiator 2〇74 (Rhodia 公司製 造 ’ CAS#178233-72-2) (2.5E-2 g ’ 乙酸乙酯 〇·ι mL 中), 使其均勻溶解後,利用0.2 μιη的PTFE過濾器進行過遽, 獲得清潔的芯層形成用組成物。 (實例13) 除了使用藉由以下所示的方法來製造的組成物作為芯 層形成用組成物以外,以與實例1相同的方式獲得光導波 管。 稱量l〇g經純化的上述聚合物#1於1〇()11^的玻璃容 器中’向其中添加1,3,5-二曱本40 g、抗氧化劑jrgan〇x 1〇76 (CibaGeigy公司製造)0_01g、環己基氧雜環丁烷單體(式 (20)所示的單體,東亞合成製造的CH〇x) i g、脂環式 %氣單體(Daicel化學製造,Celloxide 2021P) 1 g、光酸 產生劑 Rhodorsil Photoinitiator 2074 (Rhodia 公司製造, 110 201227021 CAS#178233-72-2) (2.5E-2 g,乙酸乙酯 〇] mL 中),使其 均勻溶解後,利用0.2 μιη的PTFE過濾器進行過據,’獲^ 清潔的芯層形成用組成物。 ^ ^ (實例14) 除了使用藉由以下所示的方法來合成者作為聚合物以 外’以與實例1相同的方式獲得光導波管。 首先,除了代替二苯基甲基降冰片烯甲氧基石夕烧12 9 g(40.1 mmol)而使用苯基二甲基降冰片烯甲氧基矽烷4 g(40.1 mmol)以外,以與實例i相同的方式合1聚二物·。 將所付t合物的結構單元示於下述式()。藉由GPC、、則 定,該聚合物的分子量為Mw=ll萬、Mn==5萬。另外 藉由NMR的鑑定,各結構單元的莫耳比為:己基降冰片 稀結構單元為5G mGl%,苯基二甲基降冰片歸 結構單元為50 mol%。 土 ^ [化 40]On the other hand, when the > VL of the optical waveguide is read by the center of the width of the core, the refractive index distribution in the thickness direction in the vertical direction is obtained by using an interference microscope to obtain a so-called step-change refractive index ( SI) type ^ is 'refractive index distribution T becomes (example 2) * The actual irradiation amount is increased to 1500 ― 2, and the material is obtained in the manner related to the example 1 (example 3) except that the ultraviolet ray is irradiated | Each structural unit t, 2G (K) side m, and the structural unit is 40 mol%: the molar ratio is changed to hexyl norbornene structural unit is 60 _% and 'made == borneol oxime oxy Wei knot The way to obtain the optical waveguide as a self-contained compound, in addition to the case of Example 1 (Example 4), except that the irradiation amount of the ultraviolet ray was used to make each structure of the polymer #1 thin by 5 UUm and use the structural unit to be 45 财 _ The photo-wave is obtained in the same manner as the example [phase 107 20122702 lf -rv/v/i υ|^1Ι], except that the hexyl norbornene structural unit is 55 and the norbornene-oxyl-Wei-knot is used as the polymer. tube. (Example 5) In addition to the use of the structural unit of the polymer #1, the molar ratio of the hexyl norbornene structural unit was 3 〇 m〇i 〇 / 0, diphenylmethyl norborn dioxetane structural unit An optical waveguide tube was obtained in the same manner as in Example 1 except that 70 m〇l% was used as the polymer. (Example 6) In addition to reducing the irradiation amount of ultraviolet rays to 3 〇〇mJ/cm 2 and changing the molar ratio of each structural unit of the polymer #1 to a hexyl norbornene knot, the unit was 4 G mol%, diphenyl The base f-norbornene methoxy residue structure is 60 mol% as a polymer, as in the case of the polymer! The optical waveguide is obtained in the same way. (Example 7) In addition to reducing the irradiation amount of ultraviolet rays to 5 〇〇mJ/cm 2 , and changing the molar ratio of each structural unit of the poly-J material #1 to hexyl norbornene thin 3 single ^ 3 coffee 1% The diphenyl fluorenyl norbornene methoxy oxime structure was 7 G mol% in the early 7C. The optical waveguide tube was obtained in the same manner as the example. (Example 8) In addition to reducing the amount of ultraviolet radiation to IGGmlW, and changing the molar ratio of each M unit of month t 2 to hexyl norbornene 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 An oxygen waveguide tube was obtained in the same manner as in Example 1 except that the compound was used as a polymer. 108 201227021 -τυν/χ (Example 9) In addition to increasing the irradiation dose of ultraviolet rays to 15 00 mJ/cm2, and changing the molar ratio of each structural unit of the poly-material #1 to hexyl norbornene thinning, single το An optical waveguide tube was obtained in the same manner as in Example i except that 10 mol% of the diphenylmethylnorborneneoxy group was 90 mol%. (Example 10) The irradiation amount of each external line was increased to 3 〇〇〇mJ/cm 2 , and the molar ratio of each structural unit of the polymer #1 was changed to 5 mol% of the hexyl norbornene structural unit. An optical waveguide tube was obtained in the same manner as in Example except that the structural unit of phenylmercaptonorbornene methoxy decane was 95 mol%. (Example 11) An optical waveguide tube was obtained in the same manner as in Example 除了 except that the composition produced by the method shown below was used as a composition for forming a core layer. Weighing 100 g of the above-mentioned purified polymer #1 in a 100 mL &amp; glass container, 'toluene 40 g, antioxidant jrgan〇 x IQ% (manufactured by Ciba Geigy Co., Ltd.) 0·01 g, bifunctional oxygen Cyclobutane monomer (monomer shown by formula (15), manufactured by East Asia Synthetic, d〇x, CAS#18934-00-4, molecular weight 214 'boiling point ii9〇C/0.67kPa) 2 g, photoacid The reagent Rhodorsil Photo initiator 2074 (manufactured by Rhodia Co., Ltd., CAS #178233-72-2) (2.5E-2 g, ethyl acetate in oj mL) was uniformly dissolved, and then subjected to a 0.2 μm PTFE filter. 201227021 40018pif Filtration to obtain a clean core layer forming composition. (Example 12) An optical waveguide tube was obtained in the same manner as in Example 1 except that the composition produced by the method shown below was used as a composition for forming a core layer. Weigh 10 g of the purified polymer #1 in a 100 mL glass container to which '1,3,5-triphenylbenzene 40 g, an antioxidant; [rganox ίο% (manufactured by Ciba Geigy) 0.01 g, Alicyclic epoxy monomer (monomer shown by formula (37)' manufactured by Daicel Chemical, Celloxide 2021P, CAS#2386-87-0 'Molecular weight 252 'Boiling point i88 ° C / 4 hPa) 2 g, light Acid generator Rhodorsil Photoinitiator 2〇74 ("CAS#178233-72-2" manufactured by Rhodia) (2.5E-2 g 'ethyl acetate 〇·ι mL), which is uniformly dissolved and filtered with 0.2 μηη PTFE The device was subjected to ruthenium to obtain a clean core layer forming composition. (Example 13) An optical waveguide tube was obtained in the same manner as in Example 1 except that the composition produced by the method shown below was used as the composition for forming a core layer. Weigh 1〇g of the purified polymer #1 in a glass container of 1〇() 11^', add 1,3,5-diguanidine 40 g, antioxidant jrgan〇x 1〇76 (CibaGeigy) Manufactured by the company) 0_01g, cyclohexyl oxetane monomer (monomer represented by formula (20), CH〇x manufactured by East Asia Synthetic) ig, alicyclic % gas monomer (manufactured by Daicel Chemical, Celloxide 2021P) 1 g, photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, 110 201227021 CAS#178233-72-2) (2.5E-2 g, ethyl acetate 〇] mL), after it is uniformly dissolved, use 0.2 μm The PTFE filter was subjected to the process of 'cleaning the core layer forming composition. ^ ^ (Example 14) An optical waveguide tube was obtained in the same manner as in Example 1 except that the synthesizer was used as a polymer by the method shown below. First, except that instead of diphenylmethylnorbornene methoxy sulphide 12 9 g (40.1 mmol), phenyldimethylnorbornene methoxy decane 4 g (40.1 mmol) was used, in addition to Example i In the same way, combine 1 and 2. The structural unit of the t compound to be added is shown in the following formula (). By GPC, the molecular weight of the polymer is Mw = 11 million and Mn = 50,000. In addition, the molar ratio of each structural unit was determined by NMR: hexyl norbornene thin structural unit was 5G mGl%, and phenyl dimethyl norbornene was 50 mol% structural unit. Earth ^ [40]

(實例15) 111 (103) 201227021 40018pif 除了將下侧披覆層以及芯層的紫外線照射前的乾燥條 件麦更為6G〇lG分鐘’並且使用藉由以下所示的方法來 製造的組成物作為芯層形成用組成物以外,以與實例i相 同的方式獲得光導波管。 、 稱量ίο g經純化的上述聚合物#1於1〇〇 mL的玻璃容 器中’向其中添加1,3,5-三甲苯4〇g、抗氧化劑^^⑽⑽1〇76 (CibaGdgy公司製造)〇.〇lg、環己基氧雜環丁烷單體(式 (20)所不的單體,東亞合成製造的CH〇x) 2 g、光酸產 生劑 Rhodorsil Photoinitiator 2074 (Rhodia 公司製造, CAS#178233-72-2) (2.72E-2 g,乙酸乙酉旨 〇] mL 中、),使 其均勻溶解後,湘〇·2 μιη # PTFE過渡器進行過滤,獲 得清潔的芯層形成用組成物。 (實例16) —除了將紫外線的照射量減少至500 mj/cm2以外,以與 實例15相同的方式獲得光導波管。 (比較例1 ) 除了設為如下所述以外,以與實例1相同的方式獲得 光導波管。 首先,形成下側披覆層後,於其上塗佈自聚合物#1中 省略環己基氧雜環丁烧單體而成的芯層形成用組成物,進 行曝光、加熱而獲得芯層。 其後,形成上侧彼覆層,藉此獲得光導波管。 此外,所得的光導波管中,芯部的折射率大致固定’ 側面披覆部的折射率亦大致固定。即,所得光導波管的芯 112 201227021 40018pif 的階變折射率型 層的折射率分布诹成為咐 (比較例2) 月 除了在曝光時, 連續變化的光罩來進 式獲得光導波管。 為了使曝光量連續變化而使用穿透率 行曝光以外,以與比較例】相同的方 固定:Γ二,令’側面被覆部的折射率大致 續降低。即,所得射^自f央部起朝向周邊而連 謂的梯度折射率(^以芯層⑽射率分布W成為所 ::亡3細及各比較例中所得的光導波管, 條件不於表卜且將芯層的折射率分㈣的參數示 113 201227021 JU8100 寸 【1&lt;】 折射率分布 厚度方向 SI型 &lt;— &lt;— &lt;— &lt;—- i— &lt;— &lt;— &lt;— i— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— SI型 SI型 寬度方向 W型 i— i— &lt;— &lt;— &lt; &lt;— &lt;— &lt;— &lt;— &lt; &lt;— &lt;— &lt;— &lt;— SI型 GI型 曝光量 (mJ/cm2) 1300 1500 2000 500 1300 300 500 ο 1500 3000 1300 &lt;— &lt;— &lt;— 1300 500 1300 梯度曝光 彼覆層 組成 Avatrel &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— Avatrel i? 酸產生劑 (phr) Rhodorsil 0.25 &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— i— &lt;— Rhodorsil 0.272 &lt;— Rhodorsil 0.25 &lt;— 單體 (phr) CHOX 20 i— &lt;— &lt;— &lt;— &lt;~· &lt;— &lt;— &lt;— &lt;— DOX 20 Celloxide2021 20 :CHOX 10+2021 10 CHOX 20 CHOX 20 &lt;— 聚合物中的重複單元 monoPh (莫耳份) ο ο ο o o ο ο ο ο ο ο ο ο ο 〇 〇 〇 diPh (莫耳份) s in ^Ti o S ο ο 冢 yn 〇\ 〇 Hx (莫耳份) ο ο ο ^Τ) 實例1 實例2 實例3 丨實例4 |實例5 丨實例6 1實例7 1實例8 1 實例9 1實例ίο 1 1實例11 | 1實例12 1 實例13 |實例14 1 實例15 |實例16 I |比較例1| 比較例2 。域^^^&amp;-装31:«^砩B-M 砩ί4^^£0§ε 砩碱®-装 w^-IJI^B-^i4ulir^llfep -发^:^^砩^羿^^!!※ 201227021 J-aooIOO 寸 鬥(N&lt;】 寬度方向的折射率分布w的參數 I 0.42a I 1 0.31a | I 0.50a I I 0.64a I 1 0.33a | l〇.32a I | 0.43a I 0.20a I 0.09a I 1 0.05a 1 0.44a 0.34a 0.26a 0.25a 0.62a 0.55a StD 折射率分布W為梯度折射率型 a [μπι] 3 o o vo 5 9 a; Ι7Ϊ 5 5 ΓΛ 0 Wm2- Wsl 0.008 0.012 0.016 j | 0.009 I 1 0.018 | 0.008 1 | o.oio | ! 0.007 I 1 0.024 0.031 0.009 0.013 0.015 0.013 0.014 0.010 (Wml-Wsl)/( Wm2-Wsl)x 100 25.0 33.3 18.8 i 22.2 22.2 12.5 30.0 42.9 12.5 卜 ON 卜 13.3 15.4 21.4 40.0 (WA-Wsl)/( Wm2-Wsl) xlOO 12.5 16.7 寸 〇\ F-H CSJ &lt;5 15.0 21.4 vd 00 v〇 00 rn 卜 ν〇 卜 10.7 20.0 平均折 射率WA 1.5500 1.5460 1.5465 1.5540 ! | 1.5620 I | 1.5525 I | 1.5665 I ! 1.5415 ;1.5785 1.5755 1.5465 1.5485 1.5480 1.5450 1.5415 1.5450 Wm5 1.551 | 1.548 | 1.548 I | 1.555 I 1.564 | 1.553 | | 1.568 I ! 1.543 | 1.580 1.577 1.547 1.549 1.549 1.546 1.543 1.547 Ws4 1.549 1.544 i | 1.545 I | 1.553 I | 1.560 | | 1.552 | | 1.565 | | 1.540 | 1.577J 1 1.574 1 1.546 1.548 1.547 1.544 1.540 1.543 Wm4 1.557 1.556 1.561 | 1.562 | I 1.578 | 1.560 1 | 1.575 I | 1.547 I 1 1.601 1 j 1.605 1 1.555 1.561 1.562 1.557 1.554 1.553 Ws3 1.549 1.544 | 1.545 | 1.553 I | 1.560 1 | 1.552 1 | 1.565 | | 1.540 | 1 1.577 1 1.574 1.546 1.548 1.547 1.544 1.540 1.543 Wm3 1.551 1.548 1.548 ; | 1.555 i | 1.564 | | 1.553 1 | 1.568 | | 1.543 | 1 1.580 1 1.577 1 1.547 1.549 1.549 1.546 1.543 1.547 Ws2 1.549 1.544 1.545 | 1.553 | | 1.560 | | 1.552 I | 1.565 | | 1.540 I 1.577 1.574 I 1.546 1.548 1.547 1.544 1.540 1.543 Wm2 1.557 1.556 1.561 1.562 | 1.578 I | 1.560 | | 1.575 | | 1.547 I 1.601 I 1.605 1.555 1.561 1.562 1.557 1.554 1.553 Wsl 1.549 1.544 1.545 | 1.553 i | 1.560 I | 1.552 I | 1.565 | | 1.540 I 1.577 I 1.574 I I 1.546 1.548 1.547 1.544 1.540 1.543 Wml ,1.551 1.548 1.548 1.555 1.564 | | 1.553 1 | 1.568 | 1.543 I 1 1.580 .1.577 1.547 1.549 1.549 1.546 1.543 1.547 實例1 實例2 實例3 實例4 丨實例5 | |實例6 | 實例7 丨實例8 1 1實例9 I 丨實例10 | 實例11 實例12 1實例13 1 實例14 1實例15 1 實例16 比較例1 比較例2 201227021 40018pif (實例Π)(Example 15) 111 (103) 201227021 40018pif In addition to the drying conditions of the lower cladding layer and the core layer before ultraviolet irradiation, the composition is made of 6G〇1 G minutes' and the composition manufactured by the method shown below is used as An optical waveguide tube was obtained in the same manner as in Example i except for the composition for forming a core layer. Weighing ίο g The purified polymer #1 was added to a 1 〇〇mL glass container to add 1,3,5-trimethylbenzene 4 〇g, antioxidant ^(10)(10)1〇76 (manufactured by CibaGdgy Co., Ltd.) 〇.〇lg, cyclohexyl oxetane monomer (monomer not in formula (20), CH〇x manufactured by East Asia Synthetic) 2 g, photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS#) 178233-72-2) (2.72E-2 g, acetic acid ethyl acetate mL mL), after it is uniformly dissolved, the 〇 〇 2 μιη # PTFE transition device is filtered to obtain a clean core layer forming composition. . (Example 16) - An optical waveguide tube was obtained in the same manner as in Example 15 except that the irradiation amount of ultraviolet rays was reduced to 500 mj/cm2. (Comparative Example 1) An optical waveguide was obtained in the same manner as in Example 1 except that it was as described below. First, after the lower cladding layer is formed, a composition for forming a core layer obtained by omitting a cyclohexyloxyxanthene monomer from the polymer #1 is applied thereon, and exposure and heating are carried out to obtain a core layer. Thereafter, an upper side cladding layer is formed, whereby an optical waveguide tube is obtained. Further, in the obtained optical waveguide, the refractive index of the core portion is substantially fixed'. The refractive index of the side cladding portion is also substantially constant. Namely, the refractive index distribution 诹 of the step-index type layer of the core 112 201227021 40018pif of the obtained optical waveguide became 咐 (Comparative Example 2). In addition to the reticle which continuously changed during exposure, the optical waveguide was obtained. In order to continuously change the exposure amount and use the transmittance to perform the exposure, it is fixed in the same manner as in the comparative example: Γ2, so that the refractive index of the side covering portion is substantially lowered. In other words, the obtained gradient from the central portion to the periphery is a gradient index (the core layer (10) luminosity distribution W is the same as that of the optical waveguide obtained in each comparative example. The parameter of the refractive index of the core layer (IV) is shown as 113 201227021 JU8100 inch [1&lt;] refractive index distribution thickness direction SI type &lt; - &lt; - &lt; - &lt; - - i - &lt; - &lt;&lt;- i- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- SI type SI type width direction W type i-i- &lt;- &lt;- &lt;&lt;-&lt;-&lt;;-&lt;-&lt;&lt;-&lt;-&lt;-&lt;- SI type GI type exposure (mJ/cm2) 1300 1500 2000 500 1300 300 500 ο 1500 3000 1300 &lt;- &lt;- &lt;- 1300 500 1300 Gradient exposure consists of Avatrel &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;;—&lt;- Avatrel i? Acid generator (phr) Rhodorsil 0.25 &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- — &lt;— Rhodorsil 0.272 &lt;— Rhodorsil 0 .25 &lt;- monomer (phr) CHOX 20 i- &lt;- &lt;- &lt;- &lt;~· &lt;- &lt;- &lt;- &lt;- DOX 20 Celloxide2021 20 :CHOX 10+2021 10 CHOX 20 CHOX 20 &lt;- Repeating unit monoPh in the polymer ο ο ο oo ο ο ο ο ο ο ο ο ο 〇〇〇 P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P 〇\ 〇Hx (Mount) ο ο ο ^Τ) Instance 1 Instance 2 Instance 3 丨 Instance 4 | Example 5 丨 Instance 6 1 Instance 7 1 Instance 8 1 Instance 9 1 Instance ί 1 1 1 Instance 11 | 1 Instance 12 1 Example 13 | Example 14 1 Example 15 | Example 16 I | Comparative Example 1 | Comparative Example 2. Domain ^^^&-Pack 31: «^砩BM 砩ί4^^£0§ε 砩 ® ® ---w^-IJI^B-^i4ulir^llfep - Hair ^:^^砩^羿^^! !※ 201227021 J-aooIOO Inch (N&lt;) Parameter I of the refractive index distribution w in the width direction 0.42a I 1 0.31a | I 0.50a II 0.64a I 1 0.33a | l〇.32a I | 0.43a I 0.20 a I 0.09a I 1 0.05a 1 0.44a 0.34a 0.26a 0.25a 0.62a 0.55a StD refractive index distribution W is a gradient refractive index type a [μπι] 3 oo vo 5 9 a; Ι7Ϊ 5 5 ΓΛ 0 Wm2- Wsl 0.008 0.012 0.016 j | 0.009 I 1 0.018 | 0.008 1 | o.oio | ! 0.007 I 1 0.024 0.031 0.009 0.013 0.015 0.013 0.014 0.010 (Wml-Wsl)/( Wm2-Wsl)x 100 25.0 33.3 18.8 i 22.2 22.2 12.5 30.0 42.9 12.5 Bu ON Bu 13.3 15.4 21.4 40.0 (WA-Wsl) / ( Wm2-Wsl) xlOO 12.5 16.7 inch 〇 \ FH CSJ &lt; 5 15.0 21.4 vd 00 v〇00 rn Bu 〇 1 10.7 20.0 Average refractive index WA 1.5500 1.5460 1.5465 1.5540 ! | 1.5620 I | 1.5525 I | 1.5665 I ! 1.5415 ; 1.5785 1.5755 1.5465 1.5485 1.5480 1.5450 1.5415 1.5450 Wm5 1.551 | 1.548 | 1.548 I | 1.555 I 1.564 | 1.553 | | 1.568 I ! 1.543 | 1.580 1.577 1.547 1.549 1.549 1.546 1.543 1.547 Ws4 1.549 1.544 i | 1.545 I | 1.553 I | 1.560 | | 1.552 | | 1.565 | | 1.540 | 1.577J 1 1.574 1 1.546 1.548 1.547 1.544 1.540 1.543 Wm4 1.557 1.556 1.561 | 1.562 | I 1.578 | 1.560 1 | 1.575 I | 1.547 I 1 1.601 1 j 1.605 1 1.555 1.561 1.562 1.557 1.554 1.553 Ws3 1.549 1.544 | 1.545 | 1.553 I | 1.560 1 | 1.552 1 | 1.565 | | 1.540 | 1 1.577 1 1.574 1.546 1.548 1.547 1.544 1.540 1.543 Wm3 1.551 1.548 1.548 ; | 1.555 i | 1.564 | | 1.553 1 | 1.568 | | 1.543 | 1 1.580 1 1.577 1 1.547 1.549 1.549 1.546 1.543 1.547 Ws2 1.549 1.544 1.545 | 1.553 | | 1.560 | | 1.552 I | 1.565 | | 1.540 I 1.577 1.574 I 1.546 1.548 1.547 1.544 1.540 1.543 Wm2 1.557 1.556 1.561 1.562 | 1.578 I | 1.560 | | 1.575 | | 1.547 I 1.601 I 1.605 1.555 1.561 1.562 1.557 1.554 1.553 Wsl 1.549 1.544 1.545 | 1.553 i | 1.560 I | 1.552 I | 1.565 | I 1.577 I 1.574 II 1.546 1.548 1.547 1.544 1.540 1.543 Wml , 1.551 1.548 1.548 1.555 1.564 | | 1.553 1 | 1.568 | 1.543 I 1 1.580 .1.577 1.547 1. 549 1.549 1.546 1.543 1.547 Example 1 Instance 2 Instance 3 Instance 4 丨 Instance 5 | | Instance 6 | Instance 7 丨 Instance 8 1 1 Instance 9 I 丨 Instance 10 | Instance 11 Instance 12 1 Instance 13 1 Instance 14 1 Instance 15 1 Instance 16 Comparative Example 1 Comparative Example 2 201227021 40018pif (example Π)

(1) 光導波管形成用組成物(第1組成物)的製造 稱量10 g實例1中經純化的上述聚合物#1於100 mL 的玻璃容器中,向其中添加1,3,5-三甲苯4〇 g、抗氧化劑 Irganox 1076 (Ciba Geigy 公司製造)〇.〇1 g、環己基氧雜 環丁烷單體(式(20)所示的單體,東亞合成製造的cHOX, CAS#483303-25-9 ’ 分子量為 186,沸點為 125。〇/1.33 kPa) 2 g、聚合起始劑(光酸產生劑)Rhodorsil Photoinitiator 2074 (Rhodia 公司製造 ’ CAS#178233-72-2) (2.5E-2 g,乙酸 乙酯0.1 mL中),使其均勻溶解後’利用〇 2 μιη的pTFE 過濾器進行過濾,獲得清潔的光導波管形成用組成物。 (2) 光導波管形成用組成物(第2組成物)的製造 〇〇除了使用將實例1中經純化的上述聚合物#1的各結構 單7L的莫耳比分別變更為己基降冰片烯結構單元8〇 m〇1/〇、一苯基甲基降冰片烯曱氧基矽烷結構單元20 mol% 而成者’來代替上述聚合物#1 m卜,以與第丨組成物相同 的方式獲得光導波管形成用組成物。 (3) 光導波管的製造 首先,變更圖16所示的混合單元的結構,準備增加第 1供給管以及第2供給㈣各分支_混合單元。 然後’利用該模塗佈機,使用所製造的光導波管形成 於聚_ (PES)膜上進行多色擠出成形。藉 知以第1組成物為第1層、第3層、第5層、第7 曰以及第9層’且以第2組成物為第2層、第4層、第6 116 201227021 40018pif 層以及第。8層的多色成形體。將上述多色成形體投入至 55⑽乾燥機中1G分鐘,完全去除溶劑,獲得具有如圖7 所示的折射率分布T的光導波管形成用臈。繼而,於光導 波g开y成用膜上壓接光罩而以2〇〇〇 mj/Cm2選擇性地照射 紫外線。去除遮罩,於乾燥機中以15〇t:進行丨5小時的加 熱。加熱後,顯現出鮮明的導波管圖案,確認形成有芯部 及側面披覆部。其後,自所得的光導波管上切出長度為10 cm的一份。此外,所形成的光導波管包含2層芯層,各芯 層分別並列形成有8根芯部。另外,使芯部的寬度為% μηι,侧面坡覆部的寬度為8〇 μπι,光導波管的厚度為 μπι 〇 (折射率分布的評價) 然後,對所得光導波管的芯層的橫截面,沿著其厚度 ^向的中心線’利用干涉顯微鏡來取得寬度方向的折射率 分布W。其結果為’折射率分布w具有多個極小值以及 極大值,且折射率連續變化。 另一方面,對光導波管的橫截面,沿著在上下方向通 ,其芯部的t度的中心的巾心線,彻干涉顯微鏡來取得 厚度方向的折射率分布T。其結果為,折射率分布τ血折 射率分布W同樣’具有多個極小值以及極大值,且折^率 連續變化。 (實例18) 除了將氣外線的照射量提高至2500 mJ/cm2以外,以 與實例17相同的方式獲得光導波管。 117 201227021 4UUI«pif (實例19) 除了將紫外線的照射量提高至2〇〇〇 mJ/cm2,並且使用 將聚,物#1的各結構單元的莫耳比變更為己基降冰片婦 結構單το為40 m〇l%、二苯基曱基降冰片烯曱氧基矽烷社 構單元為6G mol%而成者作為聚合物以外,以與實例。相。 同的方式獲得光導波管。 (實例20) 除了將紫外線的照射量減少至j 〇〇〇 mJ/cm2,並且 將聚合物#1的各結構單元的莫耳比變更為己基降冰片稀(1) Production of optical waveguide forming composition (first composition) 10 g of the above-prepared polymer #1 in Example 1 was placed in a 100 mL glass container, and 1,3,5- was added thereto. 3 〇g of trimethylbenzene, antioxidant Irganox 1076 (manufactured by Ciba Geigy Co., Ltd.) 〇.1 g, cyclohexyl oxetane monomer (monomer represented by formula (20), cHOX manufactured by East Asia Synthetic, CAS# 483303-25-9 'Molecular weight 186, boiling point 125. 〇 / 1.33 kPa) 2 g, polymerization initiator (photoacid generator) Rhodorsil Photoinitiator 2074 (Manufactured by Rhodia Company 'CAS#178233-72-2) (2.5 E-2 g, ethyl acetate (0.1 mL) was uniformly dissolved, and then filtered using a pTFE filter of 〇2 μηη to obtain a clean optical waveguide forming composition. (2) Production of Optical Wave Tube Forming Composition (Second Composition) The molar ratio of each structure 7L of the above polymer #1 purified in Example 1 was changed to hexyl norbornene. The structural unit 8〇m〇1/〇, a monophenylmethylnorbornene decyloxydecane structural unit 20 mol% of the composition 'to replace the above polymer #1 m Bu, in the same manner as the 丨 composition A composition for forming a light guide tube was obtained. (3) Production of optical waveguide First, the configuration of the mixing unit shown in Fig. 16 was changed, and it was prepared to increase the first supply pipe and the second supply (four) branch-mixing means. Then, using the die coater, a light-wave tube manufactured was used to form a poly- (PES) film for multi-color extrusion molding. It is understood that the first composition is the first layer, the third layer, the fifth layer, the seventh layer, and the ninth layer, and the second composition is the second layer, the fourth layer, and the sixth 116 201227021 40018 pif layer and First. 8-layer multicolor molded body. The multicolor molded body was placed in a 55 (10) dryer for 1 G minutes, and the solvent was completely removed to obtain a ruthenium for forming an optical waveguide having a refractive index distribution T as shown in Fig. 7 . Then, the photo-shield was opened on the film, and the mask was pressure-bonded to selectively irradiate ultraviolet rays at 2 〇〇〇 mj/cm2. The mask was removed and heated in a dryer at 15 Torr for 5 hours. After heating, a clear waveguide pattern was observed, and it was confirmed that the core portion and the side cladding portion were formed. Thereafter, a length of 10 cm was cut out from the obtained optical waveguide. Further, the formed optical waveguide tube comprises two core layers, and each of the core layers is formed with eight core portions in parallel. Further, the width of the core portion is % μηι, the width of the side slope portion is 8 〇μπι, and the thickness of the optical waveguide tube is μπι 〇 (evaluation of the refractive index distribution). Then, the cross section of the core layer of the obtained optical waveguide tube The refractive index distribution W in the width direction is obtained by an interference microscope along the center line ' of the thickness direction thereof. As a result, the refractive index distribution w has a plurality of minimum values and maximum values, and the refractive index continuously changes. On the other hand, the cross section of the optical waveguide is obtained by interfering with the microscope to obtain the refractive index distribution T in the thickness direction along the center line of the center of the t-degree of the core portion in the vertical direction. As a result, the refractive index distribution τ blood refractive index distribution W has a plurality of minimum values and maximum values, and the folding rate continuously changes. (Example 18) An optical waveguide tube was obtained in the same manner as in Example 17, except that the irradiation amount of the external air line was increased to 2,500 mJ/cm2. 117 201227021 4UUI«pif (Example 19) In addition to increasing the irradiation dose of ultraviolet rays to 2 〇〇〇 mJ/cm 2 , and changing the molar ratio of each structural unit of the poly #1 to the hexyl icing structure το The composition is 40 m〇l%, and the diphenylfluorenyl norbornene decyloxydecane copolymer unit is 6 G mol%. phase. The optical waveguide is obtained in the same way. (Example 20) In addition to reducing the irradiation amount of ultraviolet rays to j 〇〇〇 mJ/cm 2 , and changing the molar ratio of each structural unit of polymer #1 to hexyl norbornene thin

=單=45 mol%、二苯基甲基降冰片烯甲氧基石夕烧結 構早兀為55 mGl%㈣者作為聚合物外,以與 的方式獲得光導波管。 U (實例21) 除了使用將聚合_的各結構單元的莫耳比變更為 己基降冰片烯結構單元為3G md%、二苯基ρ Μ 構單元為7〇 _而成者作為聚合物以外, 以與實例Π相同的方式獲得光導波管。 (實例22 ) ㈣將紫外線的照射量減少至議m2 ’並且使用 將聚δ物#1的各結構單元 結構單元為4〇m〇1%、一笨二=,更為己基降冰片稀 磁错-友π —本基甲基降冰片烯甲氧基矽烷妹 構早兀為60mol/〇而成者作為 同的方式獲得光導波管。°物以外,以與貫例17相 (實例23 ) 118 201227021 40018pif 除了將紫外線的照射量減少至1〇〇〇mJ/cm2,並且使用 ^聚^物#1的各結構單元的莫耳比變更為己基降冰片稀 結,單元為30 mol%、二苯基曱基降冰片烯曱氧基矽烷結 構單元為70 mol%而成者作為聚合物以外,以與實例口相 同的方式獲得光導波管。 (實例24) 除了將紫外線的照射量減少至3〇〇mJ/cm2,並且使用 將聚合物#1的各結構單^的莫耳比變更為己基降冰片稀 =單福60—%、二苯基甲基降冰㈣曱氧基魏結 構早7L為4G mol%而成者作為聚合物以外,以與 同的方式獲得光導波管。 冲 (實例25) 除了將紫外線的照射量提高至2 5 〇 〇 m T/ c m 2,並且 物I1的各結構單元的莫耳比變更為己基降冰片稀 二早^為K) m〇1%、二笨基曱基降冰片稀甲氧基魏結 構早兀為90 mol%而成者作為聚合 同的方式獲得光導波管。 (實例26) 除了將紫外線的照射量提高至侧mJ/cm2,並且使用 结構單元的莫耳比變更為己基降冰ί: :構=為5祕、二苯基甲基降冰片烯甲氧基魏結構= single = 45 mol%, diphenylmethylnorbornene methoxy sinter calendering early enthalpy is 55 mGl% (four) as a polymer, in a manner to obtain an optical waveguide. U (Example 21) Except that the molar ratio of each structural unit of the polymerization_ was changed to 3 G md% of the hexyl norbornene structural unit and 7 〇 of the diphenyl ρ Μ structural unit was used as the polymer. The optical waveguide was obtained in the same manner as the example. (Example 22) (4) Reduce the irradiation dose of ultraviolet rays to the m2' and use the structural unit of each structural unit of the polyδ#1 as 4〇m〇1%, a dull==, more hexyl norbornene The photo-wave tube was obtained in the same manner as the π-n-methyl-norbornene methoxy decane. In addition to the substance, in the case of the case of Example 17 (Example 23) 118 201227021 40018pif In addition to reducing the amount of ultraviolet light irradiation to 1 〇〇〇 mJ/cm 2 , and using the molar ratio of each structural unit of the polymer #1 The light guide tube is obtained in the same manner as the sample port except that the unit is 30 mol%, the unit is 30 mol%, and the structural unit of diphenylfluorenyl norbornene decyloxydecane is 70 mol%. . (Example 24) In addition to reducing the irradiation amount of ultraviolet rays to 3 〇〇 mJ/cm 2 , and changing the molar ratio of each structure of the polymer #1 to hexyl norbornene thin = monofu 60-%, diphenyl The methyl group-freezing (4) oxime-wei structure is 7G in the early 7L, and the optical waveguide is obtained in the same manner as the polymer. Rushing (Example 25) In addition to increasing the irradiation dose of ultraviolet rays to 25 〇〇m T/cm 2 , and changing the molar ratio of each structural unit of the substance I1 to hexyl norbornene, the second is ^ K) m 〇 1% The light-waveguide tube is obtained by the same method as the polymerization of the di-kilo-based fluorenyl-formed methoxy-propionic structure. (Example 26) In addition to increasing the irradiation amount of ultraviolet rays to the side mJ/cm2, and changing the molar ratio of the structural unit to hexyl-free ί: : ==5, diphenylmethylnorbornene methoxy Wei structure

而成者作為聚合物以外,以與實例17相同 的方式獲得光導波管。 U (實例27) 119 201227021 40018pif 、,了使用U由以下所示的方法來製造的組成物作為光 導波官形成用組成物(第1組成物)以外,以與實例17 相同的方式獲得光導波管。 。稱里10 g經純化的上述聚合物#1於100 mL的玻璃容 :〇中向八中添力口 1,3,5_二曱苯4〇 g、抗氧化劑irgan〇x 1〇76 (CibaGeigy公司製造)〇〇1 g、2官能氧雜環丁烷單體(式 (15)所示的單體’東亞合成製造,D〇x, CAS#18934-00-4,分子量為 214,沸點為 ^9^/0.67 kPa) 2 g、光酸產生劑 Rhodorsil Photoinitiator 2074 (Rhodia 公 司製造 ’ CAS#178233-72-2) (2.5E-2 g,乙酸乙醋(H mL 中),使其均勻溶解後,利用〇·2 μηι的PTFE過濾器進行 過濾,獲得清潔的光導波管形成用組成物。 (實例28) 除了使用藉由以下所示的方法來製造的組成物作為光 導波管形成用組成物(第1組成物)以外’以與實例17 相同的方式獲得光導波管。 稱量10 g經純化的上述聚合物#1於1〇〇 mL的玻璃容 器中’向其中添加1,3,5-二曱苯40 g、抗氧化劑irganox 1〇76 (Ciba Geigy公司製造)0.01 g、脂環式環氧單體(式(37) 所示的單體’ Daicel化學製造,Celloxide 2021P, CAS#2386-87-0,分子量為 252,沸點為 188°C/4 hPa) 2 g、 光酸產生劑 Rhodorsil Photoinitiator 2074 (Rhodia 公司製 造,0八8#178233-72-2)(2.5丑-2§,乙酸乙酯〇.1111]:中), 使其均勻溶解後,利用〇·2 μιη的PTFE過濾器進行過濾, 120 201227021 40018pif 獲得清潔的光導波管形成用組成物。 (實例29) 除了使用藉由以下所示的方法來製造的組成物作為光 導波管形成用組成物(第1組成物)以外,以與實例17 相同的方式獲得光導波管。 稱量10 g經純化的上述聚合物#1於100 mL的玻璃容 器中’向其中添加1,3,5-三甲苯40g、抗氧化劑Irgan〇x 1〇76 (Ciba Geigy公司製造)〇.〇 1 g、環己基氧雜環丁烷單體(式 20所示的單體’東亞合成製造的CHOX) 1 g、脂環式環 氧單體(Daicel化學製造’ Celloxide 2021P) 1 g、光酸產 生劑 Rhodorsil Photoinitiator 2074 ( Rhodia 公司製造, CAS#178233-72-2) (2.5E-2g,乙酸乙酯(u mL 中),使其 均勻溶解後,利用0.2 μιη的FTFE過濾器進行過濾,獲得 清潔的光導波管形成用組成物。 (實例30) 除了使用藉由以下所示的方法來合成者作為聚合物以 外,以與實例17相同的方式獲得光導波管。 首先,除了代替二苯基曱基降冰片烯曱氧基矽烷129 g(40.1 mmol)而使用苯基二曱基降冰片烯曱氧基矽烷1〇4 g(40.1 mmol)以外,以與實例【相同的方式合成聚合物。 將卢斤得聚合物的結構單元示於下述式(1〇3)所示。藉由 GPC測定,該聚合物的分子量為11萬、Mn=5萬。 另外,藉由NMR的鑑定,各結構單元的莫耳比為:己基 降冰片烯結構單元為50 m〇l〇/0,苯基二曱基降冰片稀甲&amp; 121 201227021 40018pif 基石夕燒結構單元為5〇 mol%。 [化 42]An optical waveguide tube was obtained in the same manner as in Example 17 except that the polymer was used as a polymer. U (Example 27) 119 201227021 40018pif, a composition produced by the method described below is used as a composition for forming a light guide wave formation (first composition), and an optical waveguide is obtained in the same manner as in Example 17. tube. . Weigh 10 g of the above-mentioned polymer #1 in a glass container of 100 mL: 〇中中8,3,5-diphenylbenzene 4〇g, antioxidant irgan〇x 1〇76 (CibaGeigy Manufactured by the company) 〇〇1 g, bifunctional oxetane monomer (monomer represented by formula (15)' manufactured by East Asia, D〇x, CAS#18934-00-4, molecular weight 214, boiling point ^9^/0.67 kPa) 2 g, photoacid generator Rhodorsil Photoinitiator 2074 (Manufactured by Rhodia Company 'CAS#178233-72-2) (2.5E-2 g, ethyl acetate (in H mL) to dissolve evenly Thereafter, the mixture was filtered with a PTFE filter of 〇·2 μηι to obtain a composition for forming a clean optical waveguide. (Example 28) A composition produced by the method described below was used as a composition for forming an optical waveguide. The optical waveguide tube was obtained in the same manner as in Example 17 except that the material (the first composition) was weighed. 10 g of the purified polymer #1 was weighed in a 1 〇〇mL glass container, and 1,3 was added thereto. 5-diphenylbenzene 40 g, antioxidant irganox 1〇76 (manufactured by Ciba Geigy Co., Ltd.) 0.01 g, alicyclic epoxy monomer (monomer represented by formula (37) Made by Daicel Chemical, Celloxide 2021P, CAS#2386-87-0, molecular weight 252, boiling point 188 °C / 4 hPa) 2 g, photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, 0 8 8 #178233-72 -2) (2.5 ug-2 §, ethyl acetate 〇.1111): medium), after it is uniformly dissolved, it is filtered by a PTFE filter of 〇·2 μιη, 120 201227021 40018pif for the formation of a clean optical waveguide (Example 29) An optical waveguide tube was obtained in the same manner as in Example 17 except that the composition produced by the method described below was used as the optical waveguide forming composition (first composition). 10 g of the purified polymer #1 was added to a 100 mL glass container to add 1,3,5-trimethylbenzene 40 g, and an antioxidant Irgan〇x 1〇76 (manufactured by Ciba Geigy Co., Ltd.). g, cyclohexyl oxetane monomer (CHOX represented by Formula 20, CHOX manufactured by Toagosei Co., Ltd.) 1 g, alicyclic epoxy monomer (Daicel Chemical Co., Ltd. 'Celloxide 2021P) 1 g, photoacid production Rhodorsil Photoinitiator 2074 (Manufactured by Rhodia, CAS#178233-7 2-2) (2.5E-2g, ethyl acetate (in u mL) was uniformly dissolved, and then filtered through a 0.2 μm FTFE filter to obtain a clean optical waveguide forming composition. (Example 30) An optical waveguide tube was obtained in the same manner as in Example 17, except that the synthesizer was used as a polymer by the method shown below. First, in addition to the diphenyl fluorenyl norbornene decyloxy decane 129 g (40.1 mmol) using phenyldifluorenylnorbornene decyloxy decane 1 〇 4 g (40.1 mmol), The polymer was synthesized in the same manner. The structural unit of the ruthenium polymer is shown by the following formula (1〇3). The polymer had a molecular weight of 110,000 and Mn = 50,000 as measured by GPC. In addition, by the identification of NMR, the molar ratio of each structural unit is: hexyl norbornene structural unit is 50 m〇l〇/0, phenyl dimercapto norbornazole rare iron &amp; 121 201227021 40018pif basestone smoldering structure The unit is 5 〇 mol%. [化42]

(103) (實例31) —除了代替光導波管形成用組成物 (第2組成物)而使 3 έ以下所示的方法來合成的光導波管形成用組成物 ^ 且成物)以外’以與實例Π相同的方式獲得光導波 θ(1)^雜環丁烷系樹脂的合成 I取%己基氧雜環丁料體(上述式(2G)所示的j 盔,東亞合成製造的C:HOX,CAS#483303-25-9,分子i 法 18:’ 4點為 125°c/l.33kPa) 50g 於 300 mL 可分離5 燒瓶t,加人如·三甲苯,並塞緊。 繼而’於水分及氧濃度均控制在 1 ppm以下且以乾文 U充滿的手套工作箱中,於ι〇〇就小玻 述化學式(D)所矣-L , 取 匕 ^所表不的觸媒0.40 g (0.5 mmol)及乙酸; ^曰2〇 mL ’放入搜拌子並塞緊,將觸媒充分《:拌使其完, 122 201227021 溶解。 、、容液12 5 mL,下述化學式⑼所表示的觸媒 燒瓶中,機‘拌=:解以環丁_的 上升,獲得反聽液。+以、,果確綱顯的黏度 [化 43](103) (Example 31) - In addition to the composition for forming an optical waveguide (the second composition), the composition for forming an optical waveguide tube synthesized by the method of 3 έ or less) The optical waveguide θ(1)^heterocyclobutane-based resin was synthesized in the same manner as the example I. The % hexyl oxetane body (j helmet shown by the above formula (2G), manufactured by East Asia Synthetic C: HOX, CAS#483303-25-9, Molecular i Method 18: '4 points is 125 ° c / l. 33 kPa) 50 g In 300 mL, 5 flasks can be separated, add human such as trimethylbenzene, and plug tightly. Then, in the glove box where the moisture and oxygen concentrations are both controlled below 1 ppm and filled with the dry text U, the 玻 L L L 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 化学 L L L Medium 0.40 g (0.5 mmol) and acetic acid; ^曰2〇mL 'put into the mix and plug tightly, the catalyst is fully ": mix and finish, 122 201227021 dissolved. In a catalyst flask represented by the following chemical formula (9), in a catalyst flask represented by the following chemical formula (9), the machine was mixed: the solution was raised to obtain an anti-listening liquid. +Yes, the viscosity of the fruit is obvious [Chem. 43]

(D) 添加上述反應溶液及離子交換樹脂(Organo公司製 造’ EG-290-HG) 50 g ’攪拌3〇分鐘,進行過濾、,藉此去 除觸媒’獲得聚合物溶液。 ⑺光導波管形成用組成物(第3組成物)的製造 繼而,除了添加所得的聚合物溶液3 g以外’以與第 1組成物相同的方式獲得光導波管形成用組成物(第3組 成物)。 (實例32) 除了將%外線的照射量減少至1 〇〇〇 mJ/cm2以外,以 與實例31相同的方式獲得光導波管。 (參考例1) 123 201227021 40018pif 除了在實例17所使用的混合單元中變更其設定以 外,以與實例17相同的方式獲得光導波管。 此外,所得的光導波管中,厚度方向的折射率分布T 成為所謂的梯度折射率型。 (參考例2) 除了在實例Π所使用的混合單元中省略混合銷以 外,以與實例17相同的方式獲得光導波管。 此外,所得的光導波管中,厚度方向的折射率分布T 成為所謂的階變折射率型。 關於以上的各實例以及各參考例中所得的光導波管, 將製造條件示於表3,將芯層的折射率分布T的參數示於 表4。 124 201227021 J'aooloo 寸 【£&lt;】(D) The reaction solution and the ion exchange resin (manufactured by Organo Co., Ltd., EG-290-HG) were added to 50 g of the mixture for 3 minutes, and the mixture was filtered to remove the catalyst to obtain a polymer solution. (7) Production of a light-wave-wave tube-forming composition (third composition) A composition for forming an optical waveguide tube was obtained in the same manner as the first composition except that 3 g of the obtained polymer solution was added (third composition) ()). (Example 32) An optical waveguide tube was obtained in the same manner as in Example 31 except that the irradiation amount of the % external line was reduced to 1 〇〇〇 mJ/cm 2 . (Reference Example 1) 123 201227021 40018pif An optical waveguide was obtained in the same manner as in Example 17, except that its setting was changed in the mixing unit used in Example 17. Further, in the obtained optical waveguide, the refractive index distribution T in the thickness direction is a so-called gradient refractive index type. (Reference Example 2) An optical waveguide was obtained in the same manner as in Example 17, except that the mixing pin was omitted in the mixing unit used in the example. Further, in the obtained optical waveguide, the refractive index distribution T in the thickness direction is a so-called step-change refractive index type. With respect to the above examples and the optical waveguide obtained in each of the reference examples, the manufacturing conditions are shown in Table 3, and the parameters of the refractive index distribution T of the core layer are shown in Table 4. 124 201227021 J'aooloo inch [£&lt;]

折射率分布 厚度方向 W型 &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— GI型 SI型 寬度方向 W型 &lt;— i— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;&gt;— W型 &lt;— 曝光量 (mJ/cm2 ) 2000 2500 2000 1000 2000 700 1000 300 2500 4000 2000 &lt;— &lt;— &lt;— 2000 1000 2000 &lt;— 第2、3組 成物 第2組成物 &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;*- &lt;— &lt;— &lt;— &lt;— &lt;— 第3組成物 &lt;— 第2組成物 &lt;— 第1組成物 酸產生劑 (phr) Rhodorsil 0.25 &lt;— &lt;— i— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— Rhodorsil 0.25 &lt;— 單體 (phr) CHOX 20 i &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— &lt;— DOX 20 Celloxide2021 20 CHOX 10+2021 10 CHOX 20 CHOX 20 &lt;— CHOX 20 &lt;— £味 monoPh (莫耳份) ο 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 ο 〇 llftlll ηβη s 备 diPh (莫耳份) S 〇 δ 〇 〇 〇 Hy (莫耳份) 〇 JO 〇 S 〇 實例Π 實例18 丨實例19 實例20 丨實例21 I 丨實例22 | 實例23 丨實例24 | 丨實例25 I |實例26 | |實例27 I 1實例28 I 實例29 |實例30 1 1實例31 I 實例32 I參考例1| |參考例2 I 。怜令硃甚絮《皙一一sft«s#^K§l&gt;¥«&lt;N躲,!H、«,迴¥锶 1 躲,!H、«,iHY!!ecs姝 3^&lt;33羿呶「剧爹」«+怜Φ跻苍絮※ 。^^砩忒&amp;-装=1:关鱼砩盼4砩械羿^£|&lt;^^硝^&amp;-«:¥«鱼硪»-砩埏-^羿咖£^-教|^关金^(0羿^^^ 201227021The refractive index distribution thickness direction W type &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt;;- GI type SI type width direction W type &lt; - i - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt; - &lt;&gt;- W type&lt;- Exposure amount (mJ/cm2) 2000 2500 2000 1000 2000 700 1000 300 2500 4000 2000 &lt;- &lt;- &lt;- 2000 1000 2000 &lt;- 2nd and 3rd composition 2nd composition物&lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;*- &lt;- &lt;- &lt;- &lt;- &lt;- 3rd composition&lt;- 2nd composition &lt;;- 1st composition acid generator (phr) Rhodorsil 0.25 &lt;- &lt;- i- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;;- Rhodorsil 0.25 &lt;- Monomer (phr) CHOX 20 i &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- &lt;- DOX 20 Celloxide2021 20 CHOX 10+2021 10 CHOX 20 CHOX 20 &lt;- CHOX 20 &lt;- £ flavor monoPh (mole) ο 〇〇〇〇 〇〇〇〇〇〇〇〇〇ο 〇llftlll ηβη s prepared diPh (mole) S 〇δ 〇〇〇Hy (mole) 〇JO 〇S 〇exampleΠ Example 18 丨Example 19 Example 20 丨Example 21 I 丨 Example 22 | Example 23 丨 Example 24 | 丨 Example 25 I | Example 26 | | Example 27 I 1 Example 28 I Example 29 | Example 30 1 1 Example 31 I Example 32 I Reference Example 1 | | Reference Example 2 I. Pity makes Zhu Weixu "皙一一sft«s#^K§l&gt;¥«&lt;N hide,! H, «, back ¥锶 1 hide,! H, «, iHY!! ecs姝 3^&lt;33羿呶 "Theatrical" «+ pity 跻 跻 跻 ※ ※. ^^砩忒&amp;-装=1: 关鱼砩望4砩械羿^£|&lt;^^硝^&amp;-«:¥«鱼硪»-砩埏-^羿咖£^-教| ^关金^(0羿^^^ 201227021

Juooloo 寸 鬥寸1 厚度方向的折射率分布T的參數 0.69a 0.42a 1 0.48a 1 0.24a 0.29a 0.30a I 0.32a I 1.02a | | 0.09a I | 0.03a I | 0.40a I | 0.33a 1 | 0.25a I 1 0.45a | | 0.62a I | 0.55a 1 齋 折射率分布τ為階變折射率型 a [μιη] 00 (N (N 〇\ (N 5 CN (N in o o P; m o Tm2-Tsl | 0.017 0.014 0.021 1 0.024 0.040 0.020 0.033 : 0.011 | 0.061 1 | 0.060 I | 0.018 1 | 0.024 I | 0.025 I | 0.020 I [0.018 1 | 0.017 1 (Tml-Tsl)/(T m2-Tsl)x!00 : 64.7 35.7 23.8 1 41.7 30.0 25.0 21.2 54.5 ΓΟ 11.7 72.2 25.0 ! 20.0 , 60.0 38.9 64.7 (TA-Tsl)/(Tm 2-Tsl)xl00 32.4 17.9 ON 20.8 15.0 12.5 | 10.6 27.3 VO 00 12.5 10.0 i 30.0 19.4 32.4 平均折 射率ΤΑ | 1.5455 ; 1.5445 j 1.5425 1 1_ _ 1.5430 1.5440 11-5425」 1.5455 1.5390 1.5440 1.5485 1.5435 1.5400 1.5395 1.5430 1.5395 1.5415 Tm5 1 1.551 1.547 I [1.545 I | 1.548 I | 1.550 I | 1.545 I | 1.549 I | 1.542 I | 1.548 | | 1.552 | | 1.550 | | 1.543 | | 1.542 | | 1.549 | | 1.543 | | 1.547 | Η 怜 Ts4 1.540 1.542 j 1.540 1.538 1.538 1.540 | | 1.542 i | 1.536 | | 1.540 | 1-^5 | | 1.537 I 1.537 1.537 ,1.537 ! 1.536 | 1.536 Tm4 | 1.557 I | 1.556 | | 1.561 I | 1.562 I | 1.578 I | 1.560 | | 1.575 | | 1.547 | | 1.601 | | 1.605 I | 1.555 | ! 1.561 | 1.562 ,1.557 | | 1.554 | | 1.553 | | 1.540 1 | 1.542 | 丨 1.540 | 1.538 : 1.538 : 1.540 | 1.542 I | 1.536 | | 1.540 I | 1.545 I | 1.537 | 1.537 | | 1.537 | ;1.537 | | 1.536 | | 1.536 1 1 Tm3 | 1.551 1 丨 1.547 | 1.545 | 1.548 : WO | 1.545 I | 1.549 I | 1.542 | | 1.548 I | 1.552 I | 1.550 I | 1.543 I | 1.542 I | 1.549 | 1-543 1 1_547 1 (N | 1.540 I | 1.542 I | 1.540 | 1.538 ; 1.538 : | 1.540 I | 1.542 I | 1.536 | | 1.540 I I· | [1.537 | | 1.537 | | 1.537 I | 1.537 | [1.536 I | 1.536 1 Tm2 | 1.557 | | 1.556 | 1.561 | 1.562 1.578 | 1.560 | | 1.575 | | 1.547 | | 1.601 | | 1.605 I | 1.555 | | 1.561 | ! 1.562 | | 1.557 | | 1.554 I 1_553 | | 1.540 | | 1.542 | | 1.540 | 1.538 | 1.538 | 1.540 | | 1.542 | | 1.536 | | 1.540 I | 1.545 I | 1.537 | | 1.537 1 | 1.537 I U-5371 Li!」 1.536] Tml | 1.551 1 | 1.547 | | 1.545 | | 1.548 | | 1.550 i | 1.545 I | 1.549 | | 1.542 | | 1.548 | | 1.552 | | 1.550 I | 1.543 | | 1.542 | | 1.549 1 | 1.543 I 11.547 I 1實例π |實例18 1 |實例19Π 實例20 I實例21 1 |實例22 |實例23 |實例24 | |實例25 | 實例26 |實例27 | 1實例28 | |實例29 1 I實例30 1 I實例31 1 |實例32 | I參考例1| |參考例2 1 9- 201227021 40018pif 2.評價(實例1〜實例16以及比較例1、比較例2) 2.1光導波管的出射光的強度分布 對所得光導波管的出射側端面,測定當對8個芯部中 的1個射入光時的出射光的強度分布。 此外,出射光的強度分布的測定是利用圖3所示的方 法進行。 而且,將所取得的出射光的強度分布示於圖18。此 外’圖18中,將實例1、比較例1以及比較例2中所得的 光導波管中測定的出射光的強度分布示為代表。此外,當 取得出射光的強度分布時,藉由對圖18的中央的芯部14 (CH1)射入光,來觀測此時的出射光。 如圖18所明示,確認實例丨中所得的光導波管中,寬 度方向的串擾得到充分抑制。另外確認到,實例丨中所得 的光導波管中,與射入光的芯部14 (CH1)的寬度方向相 鄰的芯部14 (CH2)中的出射光的強度,小於鄰接於該芯 部14且位於與上述射入光的芯部14 (CH1)相反側的侧 面彼覆部15 (CL2)中的出射光的強度,且於CH2中存在 出射光的強度的極小值。因此瞭解到,實例丨中所得的光 導波管中,可防止通道間的干擾。 另外確認到,實例1中所得的光導波管中,出射光的 一部分集中於侧面披覆部15,於CL2中存在出射光的強度 的極大值。此外,通常,連接於光導波管的受光元件是以 與各芯部14 Μ侧端面對向的方錢接,並不連接於側 面彼覆部15。因此,即便光集中於側面披覆部15,亦不會 127 201227021 opif 成為串擾。 另外,將出射光的強度分布中,圖18的中央的芯部 14 ( CH1 )、在第1層内與該芯部14 ( CH1)相鄰的芯部 14 (CH2)、位於該些芯部之間的侧面彼覆部15 (CL1)、 及位於CH2的與CH1相反側的側面彼覆部15 (CL2)中 的極大值以及極小值的有無示於表5。 進而’關於出射光的強度分布,分別測定CL2中的極 大值與CH2中的極小值的強度差、以及CL2中的極大值 相對於CH1中的極大值的強度比,並示於表5。 128 201227021 J-aooIOO 寸 G&lt;】 評價結果 gl/g2 0.083 I 0.1H I 0.184 0.321 I 0.234 I 0.259 1 丨0.348丨 1 0.417 I 0.365 0.045 0.208 0.114 0.324 0.213 0.250 0.341 1 1 璁 ffi ΐ; « 2, Κ λ( rj U CN CN 1 1 ON 1 I ο t 1 00 η 1 1 !〇 1 VO 1 m 1 卜 〇\ (N 1 1 (CL2的極大值)-(CH2的極 小值) TdBl CN cn 卜 〇 σ\ F-H 00 〇 寸 ι«-Η 1 1 脈衝 寬度 &lt;] 〇 ◎ 〇 &lt;] 〇 &lt;1 〇 &lt;! 〇 &lt;3 Ο 〇 ◎ 〇 1 &lt;! 傳送損耗 [dB/cm] 0.07 0.05 0.04 0.06 | 0.02 1 1 0.08 1 | 0.05 I 0.09 0.06 0.08 0.04 0.09 0.08 0.04 0.03 0.05 0.21 0.12 厚度方向的出射光的強度分布 側面ίϊ 覆部 CL2 極大值 極大值 極大值 極大值 I極大值i 1極大值I |極大值| 極大值| 極大值| 極大值| 極大值 極大值 極大值 極大值 極大值 極大值 極小值 極小值 芯部 CH2 極小值 極小值 極小值 極小值 極小值i l極小值 |極小值| 極小值| 極小值 極小值 極小值 極小值 極小值 極小值 極小值 極小值 極大值 極大值 側面披 覆部 CL1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 芯部 CH1 極大值 極大值 極大值 極大值 l極大值 1極大值| |極大值| 極大值| 極大值| 極大值 極大值 極大值 極大值 極大值 極大值 極大值 極大值 極大值 實例1 實例2 實例3 實例4 實例5 |實例6 實例7 I實例8 I 丨實例9 | 實例10 實例11 |實例12 | 實例13 實例14 實例15 實例16 比較例1 比較例2 6- 201227021 40018pif 如表5所明示’確認其他的實例中所得的光導波管中 亦獲得與實例1同樣的出射光的強度分布。即瞭解到,各 實例中所得的光導波管中,均為出射光的強度分布在CH1 以及CL2中採取極大值,且於CH2中採取極小值。因此, 各實例中所得的光導波管中,均為串擾得到抑制,且防止 通道間的干擾。 另一方面確認到,比較例1、比較例2中所得的光導 波管中,如圖18所示,在與射入光的芯部14 (CH1)相 鄰的芯部14(CH2)上坐落有出射光的強度分布的極大值。 即,該些光導波管中產生串擾。 2.2光導波管的折射率分布 對所得光導波管的芯層的橫截面,沿著其厚度方向的 中心線,利用干涉顯微鏡來測定折射率分布。此外,所得 的折射率分布由於對每個芯部重複同樣的折射率分布圖 案,故而自所得的折射率分布中切出一部分,將其作為折 射率分布W。折射率分布w的形狀是如圖4所示的交替 排列有4個極小值及5個極大值的形狀。 而且,根據所得的折射率分布w來求出各極小值 Ws卜Ws2、Ws3、Ws4以及各極大值WnU、編2、而3、Juooloo Inch 1 The parameter of the refractive index distribution T in the thickness direction is 0.69a 0.42a 1 0.48a 1 0.24a 0.29a 0.30a I 0.32a I 1.02a | | 0.09a I | 0.03a I | 0.40a I | 0.33a 1 | 0.25a I 1 0.45a | | 0.62a I | 0.55a 1 The refractive index distribution τ is the step-varying refractive index type a [μιη] 00 (N (N 〇\ (N 5 CN (N in oo P; mo Tm2-Tsl | 0.017 0.014 0.021 1 0.024 0.040 0.020 0.033 : 0.011 | 0.061 1 | 0.060 I | 0.018 1 | 0.024 I | 0.025 I | 0.020 I [0.018 1 | 0.017 1 (Tml-Tsl)/(T m2-Tsl) x!00 : 64.7 35.7 23.8 1 41.7 30.0 25.0 21.2 54.5 ΓΟ 11.7 72.2 25.0 ! 20.0 , 60.0 38.9 64.7 (TA-Tsl)/(Tm 2-Tsl)xl00 32.4 17.9 ON 20.8 15.0 12.5 | 10.6 27.3 VO 00 12.5 10.0 i 30.0 19.4 32.4 Average refractive index ΤΑ | 1.5455 ; 1.5445 j 1.5425 1 1_ _ 1.5430 1.5440 11-5425" 1.5455 1.5390 1.5440 1.5485 1.5435 1.5400 1.5395 1.5430 1.5395 1.5415 Tm5 1 1.551 1.547 I [1.545 I | 1.548 I | 1.550 I | 1.545 I | 1.549 I | 1.542 I | 1.548 | | 1.552 | | 1.550 | | 1.543 | | 1.542 | | 1.549 | | 1.543 | | 1.547 | Η Pity Ts4 1.540 1.542 j 1.5 40 1.538 1.538 1.540 | | 1.542 i | 1.536 | | 1.540 | 1-^5 | | 1.537 I 1.537 1.537 , 1.537 ! 1.536 | 1.536 Tm4 | 1.557 I | 1.556 | | 1.561 I | 1.562 I | 1.578 I | 1.560 | 1.575 | | 1.601 | | 1.605 I | 1.555 | ! 1.561 | 1.562 , 1.257 | | 1.554 | | 1.553 | | 1.540 1 | 1.542 | 丨1.540 | 1.538 : 1.538 : 1.540 | 1.542 I | 1.536 | | 1.540 I 1.545 I | 1.537 | 1.537 | | 1.537 | ;1.537 | | 1.536 | | 1.536 1 1 Tm3 | 1.551 1 丨1.547 | 1.545 | 1.548 : WO | 1.545 I | 1.549 I | 1.542 | | 1.548 I | 1.552 I | I | 1.543 I | 1.542 I | 1.549 | 1-543 1 1_547 1 (N | 1.540 I | 1.542 I | 1.540 | 1.538 ; 1.538 : | 1.540 I | 1.542 I | 1.536 | | 1.540 II· | [1.537 | | 1.537 | | 1.537 I | 1.537 | [1.536 I | 1.536 1 Tm2 | 1.557 | | 1.556 | 1.561 | 1.562 1.578 | 1.560 | | 1.575 | | 1.547 | | 1.601 | | 1.605 I | 1.555 | | 1.561 | ! 1.562 | | 1.557 | | 1.554 I 1_553 | | 1.540 | | 1.542 | | 1.540 | 1.538 | 1.538 | 1.540 | | 1.542 | | 1.536 | | 1.540 I | 1.545 I | 1.537 | | 1.537 1 | 1.537 I U-5371 Li!” 1.536] Tml | 1.551 1 | 1.547 | | 1.545 | | 1.548 | | 1.550 i | 1.545 I | 1.549 | | 1.542 | | 1.548 | | 1.552 | | 1.550 I | 1.543 | 1.542 | | 1.549 1 | 1.543 I 11.547 I 1 instance π | Example 18 1 | Example 19 实例 Example 20 I Example 21 1 | Example 22 | Example 23 | Example 24 | | Example 25 | Example 26 | Example 27 | Example 29 1 I Example 30 1 I Example 31 1 | Example 32 | I Reference Example 1 | | Reference Example 2 1 9-201227021 40018 pif 2. Evaluation (Example 1 to Example 16 and Comparative Example 1, Comparative Example 2) 2.1 Light Guide The intensity distribution of the light emitted from the waveguide is measured on the exit side end surface of the obtained optical waveguide, and the intensity distribution of the emitted light when one of the eight cores is incident on the light is measured. Further, the measurement of the intensity distribution of the emitted light was carried out by the method shown in Fig. 3. Further, the intensity distribution of the emitted light obtained is shown in FIG. Further, in Fig. 18, the intensity distributions of the emitted light measured in the optical waveguide obtained in Example 1, Comparative Example 1, and Comparative Example 2 are shown as representative. Further, when the intensity distribution of the emitted light is obtained, light is incident on the core portion 14 (CH1) at the center of Fig. 18, and the emitted light at this time is observed. As is apparent from Fig. 18, in the optical waveguide obtained in the example, the crosstalk in the width direction was sufficiently suppressed. Further, it has been confirmed that, in the optical waveguide obtained in the example, the intensity of the outgoing light in the core portion 14 (CH2) adjacent to the width direction of the core portion 14 (CH1) into which the light is incident is smaller than that adjacent to the core portion. 14 is located at the intensity of the outgoing light in the side surface portion 15 (CL2) on the side opposite to the core portion 14 (CH1) on which the light is incident, and has a minimum value of the intensity of the emitted light in CH2. Therefore, it is understood that the interference between the channels can be prevented in the optical waveguide obtained in the example. Further, it was confirmed that in the optical waveguide obtained in Example 1, a part of the emitted light was concentrated on the side cladding portion 15, and the maximum intensity of the emitted light was present in CL2. Further, in general, the light-receiving element connected to the optical waveguide is connected to the side surface of each of the core portions 14 and is not connected to the side surface portion 15. Therefore, even if the light is concentrated on the side cladding portion 15, the 127 201227021 opif becomes a crosstalk. Further, in the intensity distribution of the emitted light, the core portion 14 (CH1) at the center of Fig. 18 and the core portion 14 (CH2) adjacent to the core portion 14 (CH1) in the first layer are located at the core portions. Table 5 shows the maximum value and the minimum value of the side surface covering portion 15 (CL1) and the side surface covering portion 15 (CL2) on the side opposite to CH1 of CH2. Further, regarding the intensity distribution of the emitted light, the intensity difference between the extreme value in CL2 and the minimum value in CH2 and the intensity ratio in the maximum value in CL2 with respect to the maximum value in CH1 were measured and shown in Table 5. 128 201227021 J-aooIOO inch G&lt;] Evaluation result gl/g2 0.083 I 0.1HI 0.184 0.321 I 0.234 I 0.259 1 丨0.348丨1 0.417 I 0.365 0.045 0.208 0.114 0.324 0.213 0.250 0.341 1 1 璁ffi ΐ; « 2, Κ λ ( rj U CN CN 1 1 ON 1 I ο t 1 00 η 1 1 !〇1 VO 1 m 1 〇 〇 \ (N 1 1 (maximum value of CL2) - (minimum value of CH2) TdBl CN cn 〇 〇 σ \ FH 00 〇 inch ι«-Η 1 1 Pulse width &lt;] 〇◎ 〇&lt;] 〇&lt;1 〇&lt;! 〇&lt;3 Ο 〇◎ 〇1 &lt;! Transmission loss [dB/cm] 0.07 0.05 0.04 0.06 | 0.02 1 1 0.08 1 | 0.05 I 0.09 0.06 0.08 0.04 0.09 0.08 0.04 0.03 0.05 0.21 0.12 Intensity distribution of the outgoing light in the thickness direction Side ϊ 覆 CL2 Maximum value Maximum value Maximum value Maximum value I Maximum value i 1 Value I | Maximal Value | Maximal Value | Maximal Value | Maximal Value | Maximal Maxima Maximal Maxima Maxima Maxima Minimal Core CH2 Minimum Small Minimum Small Minimum Small Minimum Il Minimum Value | Minimum Value | Minimum value | Minimum value Minimum value Minimum value Minimum value Minimum value Minimum value Small value minimum value maximum value maximum value side cladding portion CL1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 core CH1 maximum value maximum value maximum value l maximum value 1 maximum value | Maxima | Maxima | Maxima | Maxima Maxima Maxima Maxima Maxima Maxima Maxima Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 | Example 6 Instance 7 I Instance 8 I 丨 Example 9 | Example 10 Example 11 | Example 12 | Example 13 Example 14 Example 15 Example 16 Comparative Example 1 Comparative Example 2 6-201227021 40018pif As shown in Table 5, it was confirmed that the optical waveguide obtained in the other examples was also obtained in the same manner as in Example 1. It is understood that the intensity distribution of the outgoing light in the optical waveguide obtained in each example takes a maximum value in CH1 and CL2, and takes a minimum value in CH2. Therefore, in the optical waveguide obtained in each example, crosstalk is suppressed and interference between channels is prevented. On the other hand, it was confirmed that the optical waveguide obtained in Comparative Example 1 and Comparative Example 2 was placed on the core portion 14 (CH2) adjacent to the core portion 14 (CH1) into which light was incident as shown in FIG. There is a maximum value of the intensity distribution of the emitted light. That is, crosstalk occurs in the optical waveguides. 2.2 Refractive index distribution of the optical waveguide The refractive index distribution was measured by an interference microscope on the cross section of the core layer of the obtained optical waveguide along the center line in the thickness direction thereof. Further, since the obtained refractive index distribution repeats the same refractive index distribution pattern for each core portion, a part of the obtained refractive index distribution is cut out as a refractive index distribution W. The shape of the refractive index distribution w is a shape in which four minimum values and five maximum values are alternately arranged as shown in Fig. 4 . Further, each of the minimum values Wsb, Ws3, Ws4, and each of the maximum values WnU, 2, and 3 are obtained from the obtained refractive index distribution w.

Wm4、Wm5 ’並且求出披覆部的平均折射率WA。 另外,折射率分布W巾,分別測定形成於芯部的極大 值Wm2、Wm4附近的折射率具有平均折射率WA以上的 值的部分的寬度a[_,以及各極小值_、漏、哪、 Ws4附近的折射率具有小於平均折射率徽的值的部分的 130 201227021 « V/ Vf A. V/|&gt;αΧ 寬度b〇m] 分別===:的連_管的折射率分布 續Wm4, Wm5' and the average refractive index WA of the cladding portion is obtained. In addition, the refractive index distribution W towel measures the width a[_ of the portion of the refractive index near the maximum value Wm2 and Wm4 of the core having an average refractive index WA or more, and each of the minimum values _, leaks, and A portion of the refractive index near Ws4 having a value smaller than the value of the average refractive index emblem 2012 201221 21 « V / Vf A. V / | &gt; α Χ width b 〇 m] respectively ===: refractive index distribution of the tube

W 心:階所得的光導波管的折射率分布 率分布W如 另外,比較例2中所得的光導波管的折 上所述為梯度折射率型。 2.3光導波管的傳送損耗 將由請nmVCSEL(面發光雷射)發出的光經由% 的光纖而導入至所得的光導波管,以雇啊的光纖 進订受光而測定光的強度。此外,測定時採用逆轉法。取 ,導波管的長度方向為橫軸,且取插入損耗為縱軸,將測 定值製圖’結果測定值排列在直線上。因此,根據該直線 的斜率算出傳送損耗。 2.4脈衝信號的波形的保持性 對所得的光導波管’由雷射脈衝光源射入脈衝寬度為 1 ns的脈衝信號,測定出射光的脈衝寬度。 然後’對所測定的出射光的脈衝寬度,算出當將比較 例1中所得的光導波管(階變折射率型光導波管)的測定 值設為1時的相對值,對其依據以下的評價基準來評價。 〈脈衝寬度的評價基準〉 ◎:脈衝寬度的相對值小於0.5。 〇 :脈衝寬度的相對值為0.5以上且小於0.8。 △:脈衝寬度的相對值為0.8以上且小於1。 131 201227021 40018pif x·脈衝寬度的相對值為1以上。 及2.4的評價結果示於表5。 的遲鈍分別得到抑制。 1寻迭彳貝耗以及脈衝信號 3·坪價(實例17〜實例32以及泉老彳 3·1光導波管的出射光的強度^考例^參考例2) 對所得光導波管的出射側端 的1個射入光時的出射光的強度分布収虽對16根芯部中 中,:圖=光的強度定是在2層芯層的各自 】用圖3所不的方法來進行。此外, m I藉由對第1層芯層的中央的芯部14 (cm) 射光’觀測此時的出射光而進行。 將出射光的強度分布中,射入光的芯部14 H1)、在厚度方向與該怒部M (CHi)相鄰的芯部μ (CH2)、位於該些芯部之間的披覆層121 (CL1)、及位於 CH2的與CH1相反側的披覆層122 (CL2)中的極大值以 及極小值的有無示於表6。 進而,關於出射光的強度分布,分別測定CL2中的極 大值與CH2中的極小值的強度差、以及CL2中的極大值 相對於CH1中的極大值的強度比,並示於表6。 132 201227021 J-aooIOO 寸 鬥9&lt;】 評價結果 g3/g4 0.125 0.139 0.158 0.290 0.224 0.302 0.358 0.154 0.247 | 0.221 I 0.310 0.256 0.372 0.267 0.180 0.179 1 1 ffi 埏璉 +N V 璁X s U CS 1 Γν| CN CN 1 00 1 1 1 (Ν &lt; § 1 1 ON (N 1 1 m rn CN ΓΟ 1 1 (CL2的極大值)-(CH2 的極小值) 岡 m ν〇 〇\ σ\ 寸 00 卜 0\ 〇 CN 卜 1 1 脈衝 寬度 &lt; ◎ ◎ &lt; 〇 〇 〇 &lt;1 &lt;] &lt;] 〇 〇 ◎ ◎ 〇 &lt; &lt; 傳送損耗 [dB/cm] 0.06 0.03 0.02 0.05 0.03 0.06 0.05 0.08 0.07 ! 0.09 0.06 0.04 0.05 0.03 0.03 0.04 0.12 0.23 厚度方向的出射光的強度分布 側面披 覆部 CL2 極大值 極大值 極大值 極大值 極大值 極大值 |極大值| |極大值| 極大值 1極大值 極大值 極大值 極大值 極大值 極大值 極大值 極小值 極小值 芯部 CH2 極小值 極小值 極小值 極小值丨 |極小值1 極小值 |極小值1 極小值| 極小值 極小值 極小值 極小值 極小值 極小值 極小值 極小值 極大值 極大值 側面 彼覆 ^ CL1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 芯部 CH1 4&lt; 極大值 極大值 極大值| 極大值 1極大值 |極大值1 ί極大 極大值1 極大值 極大值 極大值 極大值 極大值 極大值 極大值 極大值 極大值 實例17 實例18 實例19 實例20 實例21 丨實例22 |實例23 1 丨實例24 I |實例25 I |實例26 I |實例27 I L實例28 I |實例29 I |實例30 I |實例31 1 |實例32 I |參考例1| |參考例2 | 201227021 ^uui»pif 如表6所明示’瞭解到,各實例中所得的光導波管中 的出射光的強度分布均為在CH1以及CL2中採取極大 值’且在CH2中採取極小值。因此’各實例中所得的光導 波管中,均為串擾得到抑制,且防止通道間的干擾。 另一方面確認到,參考例1、參考例2中所得的光導 波管中,在與射入光芯部14 (CH1)的厚度方向相鄰的芯 部14 (CH2)中坐落有出射光的強度分布的極大值。即, 該些光導波管中產生串擾。 3.2光導波管的折射率分布 對所得光導波管的芯層的橫截面,沿著其厚度方向的 中心線,湘干涉驗鏡來測請射率分布。此外,所得 的折射率分布由於對每個芯部重複同樣的折射率分布圖 案’故而自所得的折射率分布中切出-部分,將其作為折 射率分布T。折射率分布T的形狀是如圖7所示的交替排 列有4個極小值及5個極大值的形狀。 然後,根據所得的折射率分布τ來求出各極小值Ts卜 Ts2、Ts3、Ts4 以及各極大值 Tml、μ、Μ、w、μ, 並且求出披覆層中的平均折射率ΤΑ。 战 Γ 卞^ 1甲,分別測定形成於芯部的4 、Tm4附近的折射率具有平均折射# Μ以上《 的心刀的寬度a[_ ’以及各極小值Ts卜TS2、Ts3、 ,近,折射率具有小於平均折射率ta的值 〇[μιη] ° 其結果為,各實财所得喊導波管的折射率分布Τ 134 201227021 40018pif 刀別在其整體中折射率的變化連續。 τ如上另所mm崎的料絲的折射率分布 上所::階參變=所得的光導波管的折射率分布-3.3光導波管的傳送損耗 將由850 nmVCSEL (面發光雷射)發出的光經由5〇 導入至所得的光導波管,以200 _的光纖 $ =而測定光的強度。此外,測定時採用逆轉法。取 ϋ s的長度方向騎軸,且取插人損耗為縱轴,將測 二;圖’結果測定值排列在直線上。因此,根據該直線 的斜率算出傳送損耗。 3.4脈衝信號的波形的保持性 對所得的光導波管,由雷射脈衝光源射入脈衝寬度為 1 ns的脈衝信號,測定出射光的脈衝寬度。 然後,對所測定的出射光的脈衝寬度,算出當將參考 例^中所得的光導波管(階變折射率型光導波管)的測定 值叹為1時的相對值,對其依據以下的評價基準來評價。 〈脈衝寬度的評價基準〉 ◎:脈衝寬度的相對值小於〇 5。 〇 ·脈衝寬度的相對值為0 5以上且小於〇 8。 △.脈衝寬度的相對值為〇 8以上且小於1。 x :脈衝寬度的相對值為丨以上。 將以上3.3以及3.4的評價結果示於表6。 135 201227021 *tuuiopif 久会1表6所明7F ’確認、各實例中所得的光導波管中,與 考例中所得的光導波管相比,僂逆損耗以及脈衝作號 的遲純分別得,卜 傳送祕⑽脈衝U虎 此外,關於將實例1的條件以如下所述的方式進行變 更而製造的光導波管,未獲得私的特性。 •下側披覆層的製作中的紫外線的照射量:100mJ •芯層的製作中的紫外線的照射量:遍mJ/cm2 •下側披覆層以及㈣的紫照射前的乾燥條件: 45〇15分鐘 心層中的聚合起始劑的添加量:】36e 2 g 4.其他的實例 4·1光導波管的製造 (實例A) (1)披覆溶液的製造 將20 g的Daicel化學工業(股)製造的Cdl〇xide 2〇81、0.6 g 的(股)ADEKA 公司製造的 Adeka 〇pt〇mer sp no、80 g的甲基異丁基酮攪拌混合,以〇 2 μιη孔徑的 pTFE過滤器進行過濾’獲得清潔且無色透明的彼覆溶 Ε1 〇 (2)感光性樹脂組成物的製造 將20 g的新日鐵化學(股)製造的YP_5〇s、5 g的W core: The refractive index distribution rate distribution W of the optical waveguide obtained in the same order is, for example, the gradient of the optical waveguide obtained in Comparative Example 2 as a gradient refractive index type. 2.3 Transmission loss of the optical waveguide The light emitted by the nmVCSEL (surface-emitting laser) is introduced into the obtained optical waveguide via the % optical fiber, and the intensity of the light is measured by the optical fiber that is hired. In addition, the reverse method was used for the measurement. Take, the length direction of the waveguide is the horizontal axis, and the insertion loss is taken as the vertical axis, and the measured value of the measured value is arranged on a straight line. Therefore, the transmission loss is calculated from the slope of the straight line. 2.4 Waveform Retention of Pulse Signal The obtained optical waveguide was injected into a pulse signal having a pulse width of 1 ns by a laser pulse source, and the pulse width of the emitted light was measured. Then, the relative value when the measured value of the optical waveguide (the step-refractive-index optical waveguide) obtained in Comparative Example 1 is set to 1 is calculated for the pulse width of the measured outgoing light, and is calculated based on the following. Evaluation criteria to evaluate. <Evaluation Criteria for Pulse Width> ◎: The relative value of the pulse width is less than 0.5. 〇 : The relative value of the pulse width is 0.5 or more and less than 0.8. △: The relative value of the pulse width is 0.8 or more and less than 1. 131 201227021 40018pif x The relative value of the pulse width is 1 or more. The evaluation results of 2.4 and 2.4 are shown in Table 5. The retardation is suppressed separately. 1 寻 彳 彳 以及 以及 以及 脉冲 脉冲 脉冲 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( The intensity distribution of the emitted light when one of the ends is incident on the light is performed on the six cores, and the intensity of the light is set in the two core layers, which is performed by the method shown in FIG. Further, m I is performed by observing the emitted light at this time by irradiating the core portion 14 (cm) of the center of the first layer core layer. In the intensity distribution of the emitted light, the core portion 14H1) that enters the light, the core portion (CH2) adjacent to the anger portion M (CHi) in the thickness direction, and the coating layer between the core portions The maximum value and the minimum value of 121 (CL1) and the coating layer 122 (CL2) on the opposite side to CH1 of CH2 are shown in Table 6. Further, regarding the intensity distribution of the emitted light, the intensity difference between the extreme value in CL2 and the minimum value in CH2 and the intensity ratio in the maximum value in CL2 with respect to the maximum value in CH1 were measured and shown in Table 6. 132 201227021 J-aooIOO Inch 9&lt;] Evaluation result g3/g4 0.125 0.139 0.158 0.290 0.224 0.302 0.358 0.154 0.247 | 0.221 I 0.310 0.256 0.372 0.267 0.180 0.179 1 1 ffi 埏琏+NV 璁X s U CS 1 Γν| CN CN 1 00 1 1 1 (Ν &lt; § 1 1 ON (N 1 1 m rn CN ΓΟ 1 1 (maximum value of CL2) - (minimum value of CH2) 冈m ν〇〇\ σ\ inch 00 卜 0\ 〇 CN 卜1 1 Pulse width &lt; ◎ ◎ &lt; 〇〇〇 &lt;1 &lt;] &lt;] 〇〇 ◎ ◎ 〇 &lt;&lt; Transmission loss [dB/cm] 0.06 0.03 0.02 0.05 0.03 0.06 0.05 0.08 0.07 ! 0.09 0.06 0.04 0.05 0.03 0.03 0.04 0.12 0.23 Intensity distribution of outgoing light in the thickness direction Side cladding CL2 Maximum value Maxima maximum Maxima maxima | Maxima | | Maxima | Maxima maxima maxima Maximum value maximum value Maximum value Maximum value Minimum value Minimum value Core CH2 Minimum value Minimum value Minimum value Minimum value 丨|minimum value 1 minimum value|minimum value 1 minimum value|minimum value minimum value minimum value minimum value minimum value minimum value minimum value Minimum value The maximum value side is covered by ^ CL1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Core CH1 4&lt; maxima maxima | maxima 1 max | max 1 ί max max 1 Maxima Maxima Maxima Maxima Maxima Maxima Maxima Example 17 Example 18 Example 19 Example 20 Example 21 丨 Example 22 | Example 23 1 丨 Example 24 I | Example 25 I | Example 26 I | 27 IL Instance 28 I | Example 29 I | Example 30 I | Example 31 1 | Example 32 I | Reference Example 1 | | Reference Example 2 | 201227021 ^uui»pif As shown in Table 6, 'Understanding, the results obtained in each example The intensity distribution of the outgoing light in the optical waveguide is taken to be the maximum value in CH1 and CL2 and takes a minimum value in CH2. Therefore, in the optical waveguide obtained in each of the examples, crosstalk is suppressed and interference between channels is prevented. On the other hand, in the optical waveguide tube obtained in Reference Example 1 and Reference Example 2, light is emitted from the core portion 14 (CH2) adjacent to the thickness direction of the incident optical core portion 14 (CH1). The maximum value of the intensity distribution. That is, crosstalk occurs in the optical waveguides. 3.2 Refractive index distribution of the optical waveguide The cross section of the core layer of the obtained optical waveguide, along the center line of its thickness direction, is measured by the interference mirror. Further, the obtained refractive index distribution is cut out from the obtained refractive index distribution by repeating the same refractive index profile for each core, and this is taken as the refractive index distribution T. The shape of the refractive index distribution T is a shape in which four minimum values and five maximum values are alternately arranged as shown in Fig. 7 . Then, based on the obtained refractive index distribution τ, each of the minimum values Ts, Ts2, Ts3, and Ts4 and the respective maximum values Tml, μ, Μ, w, and μ are obtained, and the average refractive index ΤΑ in the coating layer is obtained. Γ 1 ^ 1 A, respectively, measured in the core of the 4, Tm4 near the refractive index has an average refraction # Μ above the width of the heart knife a [_ ' and each minimum value Ts TS2, Ts3,, near, The refractive index has a value smaller than the average refractive index ta [μιη] °. As a result, the refractive index distribution of the waveguide is 各 134 201227021 40018pif The change in the refractive index of the entire cutter is continuous. τ is the refractive index distribution of the other wire as follows:: step change = refractive index distribution of the obtained optical waveguide - 3.3 transmission loss of the optical waveguide will be light emitted by 850 nm VCSEL (surface-emitting laser) The intensity of the light was measured by introducing the optical waveguide into the obtained optical waveguide via 5 〇. In addition, the reverse method was used for the measurement. Take the axis of the ϋ s in the longitudinal direction, and take the insertion loss as the vertical axis, and measure the second; the measured value of the figure is arranged on a straight line. Therefore, the transmission loss is calculated from the slope of the straight line. 3.4 Waveform Retention of Pulse Signal For the obtained optical waveguide, a pulse signal having a pulse width of 1 ns was incident from a laser pulse source, and the pulse width of the emitted light was measured. Then, the relative value when the measured value of the optical waveguide (the step-refractive-index type optical waveguide) obtained in the reference example is set to 1 is calculated for the pulse width of the measured outgoing light, and the following is calculated based on the following Evaluation criteria to evaluate. <Evaluation Criteria for Pulse Width> ◎: The relative value of the pulse width is smaller than 〇 5. 〇 • The relative value of the pulse width is 0 5 or more and less than 〇 8. △. The relative value of the pulse width is 〇 8 or more and less than 1. x : The relative value of the pulse width is 丨 or more. The evaluation results of the above 3.3 and 3.4 are shown in Table 6. 135 201227021 *tuuiopif Jiuhui 1 Table 6 shows 7F 'confirmed, in the optical waveguide obtained in each example, compared with the optical waveguide obtained in the test case, the hiccup loss and the pulse purity are respectively obtained. In addition, the optical waveguide manufactured by changing the conditions of the example 1 in the following manner did not obtain a private characteristic. • Irradiation amount of ultraviolet rays in the production of the lower cladding layer: 100 mJ • Irradiation amount of ultraviolet rays in the production of the core layer: per mJ/cm2 • Lower cladding layer and (4) Drying conditions before violet irradiation: 45〇 Addition amount of polymerization initiator in the core layer for 15 minutes:] 36e 2 g 4. Other examples 4.1 Manufacturing of optical waveguide (Example A) (1) Manufacture of coating solution 20 g of Daicel chemical industry Cdl〇xide 2〇81 manufactured by (share), 0.6 g of Adeka 〇pt〇mer sp no manufactured by ADEKA Co., and 80 g of methyl isobutyl ketone were stirred and mixed, and pTFE with a pore size of 〇2 μηη The filter is filtered to obtain a clean, colorless and transparent coating. 1 〇 (2) Production of photosensitive resin composition 20 g of YP_5〇s, 5 g manufactured by Nippon Steel Chemical Co., Ltd.

Daicel化學工業(股)製造的cen〇xide 2021P、及0.2 g 的(股)ADEKA製造的Adeka Optomer SP-170投入至甲 基異丁基酮80 g中,攪拌溶解,以0.2 μιη孔徑的PTFE過 136 201227021 渡器進行過遽’獲得清潔且無色透明的感光性樹脂組成物 F1 〇 (3) 下披覆層的製作 於厚度為25 μηι的聚醯亞胺膜上’利用刮刀片來均勻 塗佈上述彼覆溶液Ε1後,投入至50它的乾燥機中1〇分 鐘。完全去除溶劑後,利用uv曝光機對全面照射紫外線 以成為5GG nJ/em2’使其硬化而形成無色刺的下彼覆 層。所得披覆層的厚度為10 μηι。 (4) 芯層的形成、芯區域以及披覆區域的圖案化 於上述下披覆層上,利用刮刀片來均勻塗佈上述感光 性樹脂組成物F1後,投人至5(η:的錢機巾iq分鐘。完 =除溶劑後,壓接全面赠有線為5G叫、空間為%哗 圖案的光罩,使用平行曝光機,以照射量成為500 mJ/cm白勺方式照射紫外線。其後,去除遮罩投入至⑼ ^箱中^分鐘’然後取出,則確認顯現出鮮明的導波管 圖案。所彳于芯層的厚度為50μηι。 (5) 上披覆層的形成 於上述4層上,使用上述 相_=成上披覆層。所得上披覆層^ 〇)聚合物的合成 丙烯堯瓶中投入甲基丙烯酸甲醋20.〇 g、甲基 後以甲基異丁基酮450㈣拌混合 乳置換而獲得早體溶液。另-方面,將偶氮雙異 137 201227021 40018pif 丁腈0.25 g作為聚合起始劑而溶解於甲基異丁基酮⑺ 中,以氛氣置換而獲得起始劑溶液。其後,將:述單體j 液-邊勝-邊加熱至8(TC,使用注射器將上述起ς 液添加於單體溶液巾。4接地於_下加熱齡卜後 加以冷卻,獲得聚合物溶液。 瓦 繼而,準備5 L的異丙醇於燒杯中,—邊 ㈣機勝,-邊滴下上述聚合物溶液。滴下完畢^亦繼 續欖拌3G分鐘,其後取出所沈_聚合物,真 機於減壓下以60°C乾燥8小時,獲得聚入物αι、二 u)彼覆溶液的製造 σ 將20g的互應化學工業(股)製造的水性丙婦酸賴 月^谷液RD-180、20 g的異丙醇、以及〇 4 g的日清紡化學 (股)製造的Carb〇dilite V-02_L2 _混合以〇 2㈣孔 =的PTFE過慮器進行過濾',獲得清潔且無色透明的彼覆 溶液B1。 (3 )感光性樹脂組成物的製造 = ⑴的方法獲得的聚合物Μ、。的甲 =丙烯酸環己醋、及〇.2 g的BASF日本(股)製造的 65^投入至甲基異丁基酮8〇 g中,檀掉溶解以〇 2 _孔 過魅進行過濾、,獲得清潔且無色透明的感光 性樹脂組成物C1。 (4)下披覆層的製作 冷佑25 μιη的聚醯亞胺膜上,利用刮刀片來均勾 塗佈上述披覆溶液B1後,投入至80t的乾燥機中1〇分 138 201227021 opif 鐘。完全去除溶劑後,進而投入至150〇c的烘箱中10分鐘, 使其硬化而形成無色透明的下彼覆層。所得披覆層的厚度 為 10 μιη。 (5) 怎層的形成、芯區域以及披覆區域的圖案化 於上述下披覆層上,利用刮刀片來均勻塗佈上述感光 性樹脂組成物C1後,投人至5Gt的乾燥機巾10分鐘。完 王去除溶劑後,壓接全面描繪有線為、空間為5〇 的直1圖案的光罩,使料行曝光機,以照射量成為500 mJ^cm,方式照射紫外線。其後,去除遮罩,投入至15〇乞 的鼠乾燥機巾3G分鐘’然後取出,财認顯現出鮮明的導 波管圖案。所得芯層的厚度為50 μιη。 (6) 上披覆層的形成 於上述心層上,使用上述披覆溶液Β卜以與下彼覆 相同的條件形成上披㈣。所得上披㈣的厚度為η (實例C) ,入先,獲得除了鋪?絲烯料㈣使用甲基丙 人己基)乙sl以外,以與實例β的⑴相同的方 5成的聚合物Α2。 以下’除了代替聚合物Α1而使用半入 盥普^ Α 叩忧用聚合物Α2以外, 與貫例Β相同的方式獲得光導波管。 4·2評價 (光導波管的傳送損耗) 直徑=;二=^ 耳別C所得的光導波管 139 201227021 4UU18pif 讀本f直禮的光纖受光而測定光的強度。而且4ί 將插入損耗製圖為 右取導波肖長為橫轴,且 斜率,可算出各光導波管二二值排列’根據其 另外,實例Α〜每f播祕均為〇·05犯/伽。 為與1·的實例相同,、^ ”將折料分布的參數變更 果。 ° X传/、2·及3·相同傾向的評價結 (脈衝信號的波形的保持性) 對於實例A〜實例Γ 士化 [產業上之可利用性] 依據本發明,可抑物目 獲4可進行高品質域信料靠性高的= 有產二的電子機器。因此,本發明具 【圖式簡單說明】 分切Γ是^發明的光導波管的第1實施形態(-部 、以及穿透而表不)的立體圖。 入弁all田對圖1所不的光導波管的芯部的1個射 夺的出射光的強度分布的一例的圖。 140 201227021 40018pif 用以對啦光導波管的出射側端面中的出射光 的強度分布的方法進行說明的圖。 耵尤 (a)及《 4⑴是示意性表示當對圖丨所示的 -X線剖面圖’於橫轴上取芯層的厚度的中心線上的位 置’且於縱軸上取折射率時的折射率分布w的一例的圖。 圖5是表不本發明的光導波管的第2實施形 分切口、以及穿透而表示)的立體圖。 。丨 圖6是麵當_5㈣的料料的 入先時的㈣光的贿分布的圖。 個射 γγ 及圖7 (b)是示意性表示#對圖5所示的 产”於橫軸上取折射率且於縱軸上取芯部的寬 度的中心線上的位置時的折射率分布T的一例的圖。寬 第用,1所示的光導波管的 行說=以對圖1所示的光導波管的第1製造方法進 行說^圖是㈣對圖1所示的光導波管的第!製造方法進 行說=圖是用以對圖1所示的先導波管的第!製造方法進 圖12(a)及圖12(b)是 的第1製造枝進行說_/輯圖丨.的光導波管 區域: 141 201227021 HUUIOpif 層的橫截㈣位置為橫軸且取職面的折射㈣ 折射率分布的圖。 圖14(a)及圖14(b)是用以對圖5所示的光導波管 的製造方法(第3製造方法)進行說明的圖。 圖丨5是表示獲得多色成形體的模塗佈機的立體圖。 圖丨6是將圖15所示的模塗佈機的一部分放大而表示 的縱剖面圖。 圖丨7是表示混合單元的其他構成例的剖面圖。 圖18是表示實例卜比較例1以及比較例2中所得的 光導波管的出射側端面中的出射光的強度分布的圖。 【主要元件符號說明】 1 :光導波管 la :入射侧端面 lb :出射側端面 2 :支持膜 3 :覆蓋膜 1卜12、121、122 :彼覆層 13、131、132 :芯層 14 芯部 15 側面彼覆部 21 入射側光纖 22 出射側光纖 141、142、143、144 :芯部 151、152、153、154、155、156 :側面披覆部 142 201227021 OjJlf 800 :模塗佈機(多色擠出成形裝置) 810 :模頭 811 :上模唇部 812 :下模唇部 820 :歧管 821 :狹縫 830 :混合單元 831 :第1供給管 831a :起點 832 :第2供給管 832a :第1起點 832b :第2起點 835 :連接部 836 :銷 840 :搬送部 841 :輥 842 :搬送膜 900 :芯層形成用組成物 901、902 :光導波管形成用組成物 910 :層 914 :多色成形體 915 :聚合物 920 :添加劑 925 :照射區域 143 201227021 4UUI8pif 930 :活性放射線 935 :遮罩(遮蔽) 940 :未照射區域 951、952 :支持基板 8311、8312、8313 :分支管 8321、8322、8323、8324 :分支管 8331、8332 :集合管 9351 :開口(窗) C卜C2 :中心線 CH1 :第1芯部 CH2 :第2芯部 CL1 :第1彼覆部 CL2 :第2彼覆部 Η:高折射率部Cen〇xide 2021P manufactured by Daicel Chemical Industry Co., Ltd., and Adeka Optomer SP-170 manufactured by 0.2 g of ADEKA were put into 80 g of methyl isobutyl ketone, stirred and dissolved, and PTFE was passed through a pore size of 0.2 μm. 136 201227021 The reactor was subjected to 遽 'A clean and colorless transparent photosensitive resin composition F1 〇 (3) The undercoat layer was formed on a polyimide film with a thickness of 25 μm. After the above solution Ε1, it was put into 50 of its dryer for 1 minute. After the solvent was completely removed, the entire surface was irradiated with ultraviolet rays to be 5 GG nJ/em2' by a uv exposure machine to form a lower layer of the colorless thorn. The resulting coating layer had a thickness of 10 μm. (4) The formation of the core layer, the pattern of the core region and the cladding region are patterned on the lower cladding layer, and the photosensitive resin composition F1 is uniformly applied by a doctor blade, and then the amount is 5 (n: money) Towels iq minutes. Finish = After removing the solvent, the crimping is fully provided with a mask of 5G, the space is %哗 pattern, and the parallel exposure machine is used to irradiate the ultraviolet rays with the irradiation amount of 500 mJ/cm. After removing the mask and putting it into (9)^box ^min' and then taking out, it is confirmed that a clear waveguide pattern is formed. The thickness of the core layer is 50 μm. (5) The upper cladding layer is formed on the above four layers. In the above, the above phase _= is used as the upper coating layer. The obtained acrylonitrile bottle of the upper coating layer is added with methacrylic acid methyl ketone 20. 〇g, methyl group and then methyl isobutyl ketone. 450 (four) mixed with milk to obtain an early body solution. On the other hand, 0.25 g of azobisiso 137 201227021 40018 pif butyronitrile was dissolved as a polymerization initiator in methyl isobutyl ketone (7), and the initiator solution was obtained by replacement with an atmosphere. Thereafter, the monomer j liquid-side win-side is heated to 8 (TC, and the above creping solution is added to the monomer solution towel using a syringe. 4 is grounded at _lower heating age and then cooled to obtain a polymer. After the solution, prepare 5 L of isopropanol in the beaker, and the side (4) machine wins, and the above polymer solution is dripped. After the dripping is completed, the mixture is further mixed for 3 G minutes, and then the precipitated polymer is removed. The machine was dried at 60 ° C for 8 hours under reduced pressure to obtain the production of the aggregates α 1 and 2 u). The aqueous solution of 20 g of the aqueous chemical system of the conjugated chemical industry (shares) -180, 20 g of isopropyl alcohol, and 〇4 g of Nisshin Spun Chemical Co., Ltd. Carb〇dilite V-02_L2 _ mixed with 〇2 (four) hole = PTFE filter for filtration', to obtain a clean and colorless transparent Cover solution B1. (3) Production of photosensitive resin composition = Polymer obtained by the method of (1). A = Cyclohexyl Acrylic Acid, and g 2 g of BASF Japan (stock) 65 ^ was put into methyl isobutyl ketone 8 〇 g, sandalwood dissolved and dissolved by 〇 2 _ hole over the charm, A photosensitive resin composition C1 which is clean and colorless and transparent is obtained. (4) Preparation of the underlying coating layer on the 25 μιη polyimine film, the coating solution B1 was applied by a doctor blade, and then placed in a dryer of 80 t for 1 minute 138 201227021 opif clock . After the solvent was completely removed, it was further poured into an oven of 150 〇c for 10 minutes to be hardened to form a colorless and transparent lower cladding layer. The resulting coating layer had a thickness of 10 μm. (5) The formation of the layer, the core region, and the cladding region are patterned on the lower cladding layer, and the photosensitive resin composition C1 is uniformly applied by a doctor blade, and then applied to a 5 Gt drying towel 10 minute. After removing the solvent from the king, the photo-shield with a straight line pattern of 5 inches in space was drawn by crimping, and the exposure machine was irradiated with ultraviolet rays by an exposure amount of 500 mJ^cm. Thereafter, the mask was removed and placed in a 15 鼠 mouse drying towel for 3 minutes, and then taken out, and a clear waveguide pattern was observed. The resulting core layer had a thickness of 50 μm. (6) The upper coating layer is formed on the above-mentioned core layer, and the above-mentioned coating solution is used to form the upper layer (4) under the same conditions as the lower coating layer. The resulting upper blister (four) thickness is η (example C), first, obtained in addition to paving? As the silk material (4), a polymer Α2 of the same formula as (1) of the example β was used except for methyl propylhexyl)ethyl sl. The optical waveguide was obtained in the same manner as in Example Β except that the polymer Α1 was used instead of the polymer Α1. 4·2 evaluation (transmission loss of optical waveguide) Diameter =; 2 = ^ Optical waveguide obtained from ear C 139 201227021 4UU18pif The optical fiber of the book is light-receiving and the intensity of light is measured. Moreover, 4ί will insert the loss map into the right-handed guide wave and the long axis as the horizontal axis, and the slope can calculate the two-value arrangement of each light-guide tube. According to the other, the example Α~ every f-secret is 〇·05 guilt/gale . In the same way as the example of 1·, ^" changes the parameters of the distribution of the distribution. ° X transmission /, 2 · and 3 · Evaluation of the same tendency (retention of the waveform of the pulse signal) For the example A ~ example士化 [Industrial Applicability] According to the present invention, it is possible to obtain an electronic device capable of high-quality domain material reliability and high production. Therefore, the present invention has a simple description of the drawing. The cut-off Γ is a perspective view of the first embodiment of the optical waveguide according to the invention (--part, and penetration and not shown). Into the whole field, one shot of the core of the optical waveguide of FIG. A diagram showing an example of the intensity distribution of the emitted light. 140 201227021 40018pif A method for explaining the intensity distribution of the emitted light in the exit side end surface of the optical waveguide. The chisels (a) and 4 (1) are schematic. FIG. 5 is a view showing an example of the refractive index distribution w when the refractive index distribution is taken on the vertical axis on the -X line sectional view 'the position on the center line of the thickness of the core layer on the horizontal axis. It is shown that the second embodiment of the optical waveguide of the present invention is not shown and penetrated. Fig. 6 is a diagram showing the bribe distribution of (4) light when the material of _5 (4) is first. The shot γγ and Fig. 7 (b) are schematic representations of the production shown in Fig. 5. An example of the refractive index distribution T when the refractive index is taken on the horizontal axis and the position on the center line of the width of the core portion is taken on the vertical axis. The width of the light guide tube shown in Fig. 1 is the first manufacturing method of the optical waveguide shown in Fig. 1. (4) For the optical waveguide shown in Fig. 1! The manufacturing method is said to be = the figure is used for the first wave of the pilot wave shown in Figure 1! The manufacturing method is shown in Fig. 12(a) and Fig. 12(b). The first manufacturing branch is said to be the optical waveguide region: 141 201227021 The cross-section of the HUUIOpif layer (four) is the horizontal axis and the face is taken. Refraction (IV) A map of the refractive index profile. Figs. 14(a) and 14(b) are views for explaining a method of manufacturing an optical waveguide (third manufacturing method) shown in Fig. 5. Fig. 5 is a perspective view showing a die coater for obtaining a multicolor molded body. Fig. 6 is a longitudinal cross-sectional view showing a part of the die coater shown in Fig. 15 in an enlarged manner. Fig. 7 is a cross-sectional view showing another configuration example of the mixing unit. Fig. 18 is a view showing the intensity distribution of the outgoing light in the exit side end surface of the optical waveguide obtained in Comparative Example 1 and Comparative Example 2. [Explanation of main component symbols] 1 : Optical waveguide la: incident side end face lb: exit side end face 2: support film 3: cover film 1 12, 121, 122: cover layer 13, 131, 132: core layer 14 core Part 15 side cover portion 21 incident side optical fiber 22 exit side optical fibers 141, 142, 143, 144: core portions 151, 152, 153, 154, 155, 156: side cladding portion 142 201227021 OjJlf 800 : die coater ( Multicolor Extrusion Forming Apparatus) 810: Die 811: Upper Die Lip 812: Lower Die Lip 820: Manifold 821: Slit 830: Mixing Unit 831: First Supply Pipe 831a: Starting Point 832: Second Supply Pipe 832a: first starting point 832b: second starting point 835: connecting portion 836: pin 840: conveying unit 841: roller 842: conveying film 900: core layer forming composition 901, 902: optical waveguide forming component 910: layer 914: Multicolor molded body 915: Polymer 920: Additive 925: Irradiation area 143 201227021 4UUI8pif 930: Active radiation 935: Mask (shield) 940: Unirradiated areas 951, 952: Supporting substrates 8311, 8312, 8313: Branch pipe 8321, 8322, 8323, 8324: branch pipes 8331, 8332: manifolds 9351: openings (windows) C C2: center line CH1: CH2 first core portion: CLl second core portions: a first portion overlying each other CL2 is: [eta] a second portion overlying each other: high refractive index portion

Jl、J2 :合流點 L:低折射率部 Μ卜M2 :混合點 PI、Ρ2 :出射光的強度分布Jl, J2: Confluence point L: Low refractive index portion Mb: Mixing point PI, Ρ2: Intensity distribution of emitted light

Pml、Pm2 :極大值Pml, Pm2: maxima

Psl :極小值 T:折射率分布 TA :披覆層中的平均折射率 TA :平均折射率Psl : minimum value T: refractive index distribution TA : average refractive index in the coating layer TA : average refractive index

Tm、Tml ' Tm2、Tm3、Tm4、Tm5 :極大值 144 201227021 ^tuwioplfTm, Tml ' Tm2, Tm3, Tm4, Tm5 : maxima 144 201227021 ^tuwioplf

Tsl、Ts2、Ts3、Ts4 :極小值 W:折射率分布 WA :彼覆部的平均折射率Tsl, Ts2, Ts3, Ts4: minimum value W: refractive index distribution WA: average refractive index of the cladding

Wml、Wm2、Wm3、Wm4、Wm5 :極大值Wml, Wm2, Wm3, Wm4, Wm5: maxima

Wsl、Ws2、Ws3、Ws4 :極小值 145Wsl, Ws2, Ws3, Ws4: minimum value 145

Claims (1)

201227021 X 七、申請專利範圍: 1. -種光導波f,包括:並列的多個 該各芯部的至少兩側面的披覆部; ⑽接於 上述光導波管的特徵在於: ;以當將上述多個芯部中所需的1個作為芯部cm,將 與§亥芯部CH1相鄰者作為芯部CH2,且 將上述多個彼覆部中位於上述芯部咖與上述 CH2之間的上紐覆部作為彼覆部⑴,且將位於上 部CH2▲的與上述披覆部cu相反側者作為披覆部⑴時, 對該光導波管的1的上述芯部CH1射人絲號,於 另-端的上述披覆部CL2中職_的上述光信號漏出的 漏出光的強錢得大於上述芯部CH2巾所觀酬的上述 漏出光的強度的方式構成。 2:如申請專利範圍第i項所述之光導波管,其中關於 在該光導波管的另-端的端面巾所觀酬的出射光,相對 於位於上述端面的位置的強度分布在上述彼覆部CL2具有 極大值’且在上述芯部CH2具有小於該極大值的極小值。 3·如申請專利範圍第2項所述之光導波管,其中上述 披覆部CL2中的上述極大值與上述芯部cH2中的上述極 小值的強度差為3 dB〜20 dB。 4·如申請專利範圍第2項或第3項所述之光導波管, 其中相對於上述C Η1中所觀測到的上述光信號的強度,上 述披覆部CL2中的上述極大值為_6〇 dB〜_2〇 dB。 5.如申凊專利範圍第2項至第4項中任一項所述之光 146 201227021 4UUI8pif 導波管’其中當將上述披覆部CL2中的上述極大值與上述 芯部CH2中的上述極小值的強度差設為gl,且將上述芯 部CH1中所觀測到的上述光信號的強度與上述芯部ch2 中的上述極小值的強度差設為g2時,gl/g2滿足0.05〜0.5 的關係。 6·如申請專利範圍第2項至第5項中任一項所述之光 導波管’其中上述出射光的強度分布是相對於上述端面的 位置,強度連續變化。 7.如申請專利範圍第1項至第ό項中任一項所述之光 導波ί,其中上述各芯部的寬度分別為2〇gm〜2〇〇pm。 8· —種光導波管,包括: 第1披覆層; *芯層,設置於上述第丨披覆層上,且於層内依序形成 有第1芯部cm、第1披覆部cu、第2芯部CH2、以及 第2披覆部CL2 ;以及 第2披覆層,設置於上述芯層上; 上述光導波管的特徵在於: ,以當射人至該光導波管的一端的上述第】芯部㈤的 光作為出射光而自另一端射出時, 在遍及上述第1芯部CH1、上述第】披覆部⑴、上 述第2芯㉝⑽、以及上述第2披覆部CL2的區域中獲得 的上述出射·強度分布中,上述第2芯部CH2中的上述 出射光的強度變得小於上述第2披覆部CL2中的上述出射 光的強度的方式構成。 147 201227021^ 9. 一種電子機器,其特徵在於:包括如申請專利範圍 第1項至第8項中任一項所述之光導波管。 148201227021 X VII. Patent application scope: 1. - A kind of optical waveguide f, comprising: a plurality of covering portions of at least two sides of each of the core portions juxtaposed; (10) connecting to the optical waveguide tube is characterized by: One of the plurality of core portions is required to be a core portion cm, and a member adjacent to the core portion CH1 is referred to as a core portion CH2, and the plurality of other portions are located between the core portion and the CH2 When the upper cover portion is the cover portion (1) and the portion of the upper portion CH2 ▲ opposite to the above-mentioned cover portion cu is used as the cover portion (1), the core portion CH1 of the optical waveguide 1 is shot. The strong light leaking from the light signal of the above-mentioned cover portion CL2 at the other end is configured to be larger than the intensity of the leaked light observed by the core portion CH2. 2: The optical waveguide according to claim i, wherein the intensity of the emitted light with respect to the position of the end face at the other end of the optical waveguide is in the above-mentioned other The portion CL2 has a maximum value 'and has a minimum value smaller than the maximum value in the core portion CH2. 3. The optical waveguide according to claim 2, wherein the intensity difference between the maximum value in the covering portion CL2 and the minimum value in the core portion cH2 is 3 dB to 20 dB. 4. The optical waveguide according to claim 2, wherein the maximum value in the covering portion CL2 is _6 with respect to the intensity of the optical signal observed in the above C Η1. 〇dB~_2〇dB. 5. The light 146 201227021 4UUI8pif waveguide tube of any one of claims 2 to 4, wherein the above-mentioned maximum value in the above-mentioned covering portion CL2 is the same as that in the above-described core portion CH2 When the intensity difference of the minimum value is gl, and the intensity difference between the intensity of the optical signal observed in the core portion CH1 and the minimum value in the core portion ch2 is set to g2, gl/g2 satisfies 0.05 to 0.5. Relationship. The optical waveguide tube according to any one of the items 2 to 5 wherein the intensity distribution of the emitted light is a position with respect to the end surface, and the intensity continuously changes. 7. The optical waveguide according to any one of claims 1 to 3, wherein each of the core portions has a width of 2 〇 gm 〜 2 〇〇 pm. A light guide tube comprising: a first cladding layer; a core layer disposed on the second cladding layer, wherein the first core portion cm and the first cladding portion cu are sequentially formed in the layer The second core portion CH2 and the second cladding portion CL2 and the second cladding layer are disposed on the core layer. The optical waveguide is characterized in that it is incident on one end of the optical waveguide. When the light of the first core portion (f) is emitted as the outgoing light from the other end, the light passes through the first core portion CH1, the first covering portion (1), the second core 33 (10), and the second covering portion CL2. In the above-described emission and intensity distribution obtained in the region, the intensity of the emitted light in the second core portion CH2 is smaller than the intensity of the emitted light in the second cladding portion CL2. 147 201227021^ An electronic machine comprising the optical waveguide according to any one of claims 1 to 8. 148
TW100134167A 2010-09-22 2011-09-22 Optical waveguide and electronic machine TWI502232B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010212574 2010-09-22

Publications (2)

Publication Number Publication Date
TW201227021A true TW201227021A (en) 2012-07-01
TWI502232B TWI502232B (en) 2015-10-01

Family

ID=45873878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100134167A TWI502232B (en) 2010-09-22 2011-09-22 Optical waveguide and electronic machine

Country Status (3)

Country Link
JP (1) JPWO2012039392A1 (en)
TW (1) TWI502232B (en)
WO (1) WO2012039392A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705271B (en) * 2016-03-17 2020-09-21 日商日東電工股份有限公司 Optical waveguide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652507B2 (en) * 1998-12-25 2011-03-16 古河電気工業株式会社 Optical waveguide circuit and manufacturing method thereof
JP2005128513A (en) * 2003-09-29 2005-05-19 Sumitomo Bakelite Co Ltd Manufacturing method of optical waveguide, and optical waveguide
JP4696682B2 (en) * 2005-05-20 2011-06-08 住友ベークライト株式会社 Optical waveguide and optical waveguide structure
WO2009078399A1 (en) * 2007-12-17 2009-06-25 Hitachi Chemical Company, Ltd. Optical waveguide for visible light
KR101592612B1 (en) * 2008-01-24 2016-02-05 히타치가세이가부시끼가이샤 Resin composition for production of clad layer, resin film for production of clad layer utilizing the resin composition, and optical waveguide and optical module each utilizing the resin composition or the resin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705271B (en) * 2016-03-17 2020-09-21 日商日東電工股份有限公司 Optical waveguide

Also Published As

Publication number Publication date
TWI502232B (en) 2015-10-01
JPWO2012039392A1 (en) 2014-02-03
WO2012039392A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
TWI490573B (en) Optical waveguide and electronic device
TW201222038A (en) Optical waveguide and electronic machine
JP5034671B2 (en) Optical waveguide manufacturing method and optical waveguide
JP4760126B2 (en) Optical waveguide structure
TW201011359A (en) Optical waveguide, optical interconnection, opto-electric hybrid board, and electronic device
TW201035684A (en) Photosensitive resin composite, optical waveguide film, film for forming optical waveguide optical wiring, optical/electrical hybrid board, electronic device, method of manufacturing optical waveguide film
WO2008059577A1 (en) Light guide and light guide structure
JP2009145867A (en) Optical waveguide, optical waveguide module, and optical element mounting substrate
JP2006330119A (en) Optical waveguide structure
TW201222034A (en) An optical waveguide structure and an electronic device
JP4760129B2 (en) Optical waveguide structure
TWI403768B (en) Optical waveguide and optical waveguide structure
TW201227021A (en) Optical waveguide and electronic machine
TW201009408A (en) Optical waveguide, optical waveguide module, and optical element mounting substrate
TWI514019B (en) Optical waveguide and electronic device
JP2011133913A (en) Method of manufacturing optical waveguide
JP2011180605A (en) Method of manufacturing optical waveguide structure
JP2010140055A (en) Optical waveguide structure
JP4696683B2 (en) Manufacturing method of optical waveguide
TW201227022A (en) Optical waveguide and electronic machine
JP6065589B2 (en) Optical waveguide forming film and manufacturing method thereof, optical waveguide and manufacturing method thereof, electronic apparatus
WO2011125799A1 (en) Optical waveguide structure and electronic apparatus
JP2006323320A (en) Optical waveguide structure
TW201200919A (en) Optical device and method of manufacturing optical device
JP2009025829A (en) Optical waveguide structure