TW201226844A - Automated optical inspection system for the runout tolerance of circular saw blades - Google Patents

Automated optical inspection system for the runout tolerance of circular saw blades Download PDF

Info

Publication number
TW201226844A
TW201226844A TW99144624A TW99144624A TW201226844A TW 201226844 A TW201226844 A TW 201226844A TW 99144624 A TW99144624 A TW 99144624A TW 99144624 A TW99144624 A TW 99144624A TW 201226844 A TW201226844 A TW 201226844A
Authority
TW
Taiwan
Prior art keywords
image
deflection
blade
optical
computer device
Prior art date
Application number
TW99144624A
Other languages
Chinese (zh)
Other versions
TWI413755B (en
Inventor
Wen-Tung Chang
Chih-Hsien Su
Dong-Xie Guo
Geo-Ry Tang
Fang-Jung Shiou
Original Assignee
Univ Nat Taiwan Science Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech filed Critical Univ Nat Taiwan Science Tech
Priority to TW99144624A priority Critical patent/TWI413755B/en
Publication of TW201226844A publication Critical patent/TW201226844A/en
Application granted granted Critical
Publication of TWI413755B publication Critical patent/TWI413755B/en

Links

Abstract

An automated optical inspection system for the runout tolerance of circular saw blades comprises a rotating device, a first optical inspection module, a second optical inspection module and a computing device. The rotating device is used for rotating a circular saw blade. The circular saw blade comprises multiple teeth. Each tooth includes a tooth side and a tooth back. The first optical inspection module is used for capturing a tooth-side image. The second optical inspection module is used for capturing a tooth-back image. The computing device is used for enabling the rotating device for rotating the circular saw blade and enabling the first and second optical inspection modules for capturing the tooth-side image and the tooth-back image of each tooth. The computing device performs a radial-position-calculating procedure to obtain an amount of radial runout, and performs an axial-position-calculating procedure to obtain an amount of axial runout.

Description

201226844 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種檢測系統,特別是一種適用於圓鋸片之偏 轉公差檢測的非接觸式自動化光學檢測系統。 【先前技術】 隨著工業產品的精密化,切削刀具的精密度已經是愈來愈重 要的課題。圓鎇片(Circular saw blades)是進行材料切割時不可 或缺的重要刀具,其可廣泛地運用於各種加工產業。圓鋸片的徑 向偏轉量(Amount of radial runout)與軸向偏轉量(Amount of axjai runout)過大時,會導致圓鋸片每一刀刀的切削量與磨耗程度不均 勻,使得圓鋸片的切削品質和耐用度不佳。·圓鋸片製造廠在進行 產品的品管工作時,必須針對圓鑛片成品的徑向偏轉公差(Radial outtolerance)與軸向偏轉公差(Axiaimn〇uttQ丨 測’=確保圓錯片產品可以達到理想的切削品質和耐用度。欢 ,k向偏轉量之定義為:圓則旋轉時,每之頂端(刀 ==位置之_最大相_值;徑向位_刀 象徑向相對於某-基準所測得的位置。徑向 至±二片尺寸大小的不同,通常訂在咖聰(毫米) 至边06 mm的範圍内。 軸向偏轉公差之定義為:圓 =邊界的轴向位置之間的最大刀刀在同一側 界沿圓則之麵相對於某—魅衫值軸向位㈣為刀刃邊 依照圓雜片尺寸大小的不同,通1_^則得的位置。轴向偏轉公差 mm 通吊自丁在士〇.〇3咖至±_ 201226844 圍内。 …傳摘圓則偏轉公差檢測方式為使用量錶(臟細咖〇r) 等=具在進仃檢測時’係將量錶的探頭沿徑向或轴向接觸刀刃 後旋聽>}’ 1錶指示的相對變化量即可換算出嶋片的徑向 偏轉里或轴向偏轉1,進而評估徑向偏轉量或軸向偏轉量是否在 所訂y差减内。然而,此—方法不僅缺乏效率,也常因接觸 、、」^is·成量錶探頭的表面磨損,以產生檢測時的誤差。 【發明内容】 、,鑒於以上的問題’本發縣提出―種瞻片之偏轉公差自動 1 匕光學檢測系統’用以檢測圓鑛片的徑向偏差公差與軸向偏差公 。因鑛片包括多個刀刀’每—刀刀具有刀側與刀背。 止風圓鑛!!之偏轉公差自動化光學檢猶統包括轉動機構、第一 顺組、第二光學檢測模组、平移構件與計算機裝置。轉 =構用以旋編丨。帛―输親_娜刀刃之刀側 第二光學檢測模組,係用以擷取每—刀刃的刀背, * m ^像。計算機裝置係致動轉動機構喊圓則旋轉, 像光學檢測模組在圓則旋轉時麻每—刀刃的刀側影 -徑置域刀像輪—触位輯算財,以得到 光學=模==動化光:檢測_可包括第二 時揭取每”、動第一先學檢測模組在圓鑛片旋轉 執行-轴向像。叶算機裝置係對於每—個刀背影像 °计异程序,以得到一軸向偏轉量。 201226844 自動化光學檢測系 以往利用接觸式量 藉由本發明所提出之圓鋸片之偏轉公差 統,係可利用非接觸式的光學檢測方式以解决 鎮檢測時所產生的缺點。 【實施方式】 以下在實施方式帽進-料細咖本翻之詳細特徵以及 優點,其内容足以使任何熟習相關技藝者了解本發明之技術内容 並據以實施’且根據本說明書所揭露之内容、 式’任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。 請參照『第u圖』、『第1B圖』與『第lc圖』,『第认圖』 與『第1B圖』係為本發明所提出的圓鋸片之偏轉公差自動化光學 檢測系統的侧視圖’『第1C圖』係為本發明所提出的_片之偏 轉公差自動化光學檢齡統的俯視圖。圓則之偏轉公差自動化 光學檢測纟祕肋檢職魅(^咖Qf _ut),偏轉量包括 技向偏轉量與軸向偏轉量。 圓鋸片之偏轉公差自動化光學檢測系統包括基座1〇、轉動機 構20、平移構件3〇、支撐架4〇、第一光學檢測模組5〇與第二光 學檢測模組60。 轉動機構20設置於基座10。轉動機構2〇係用以承載且固定 圓鋸片70,並且提供一旋轉動力予圓鋸片7〇。 平移構件30設置於基座10,且支撐架4〇、第一光學檢測模 組50與第二光學檢測模組6〇的部分元件設置於平移構件%。平 矛夕構件30係用以相對於基座1〇於χ軸的方向上進行平移,以使 此圓鋸片之偏轉公差自動化光學檢測系統可檢測不同尺寸大小的 201226844 圓鋸片70。 支撐架40固定於平移構件30上,支撐架40可為但不限於— 龍門式的支架。 第一光學檢測模組50固定於支撐架40上。第一光學檢測模 組50用以檢測徑向偏轉量。 第二光學檢測模組60的部分元件固定於支撐架40上。第二 . 光學檢測模組60用以檢測軸向偏轉量。 圓鑛片之偏轉公差自動化光學檢測系統各個部分的細部結構 鲁係兹說明如下。 請參照『第2A圖』,『第2A圖』係為轉動機構20之立體結 構圖。轉動機構20包括主軸座21、運動機構22以及主軸夾具23。 主轴座21設置於運動機構22與主軸夾具23之間。 請參照『第2B圖』,『第2B圖』係為轉動機構2〇之剖面結 構圖。主軸座21包括二個側向支撐塊211、212、減速機轉接塊 213以及主軸基座214。二個侧向支撐塊2n、212的一侧連接於 #該基座10,該二個側向支撐塊η卜⑽的另一側連接於主轴基座 214 ’主轴基座214係具有-圓孔,減速機轉接塊213係-具有圓 孔並固接於主轴基座214之下方且置於二個側向支魏扣、212 之間。 運動機構22包括步進馬達221、減速機222以及聯轴器奶 步進馬達221之轉軸與減速機 之輸出端與聯軸器223相連接 速機轉接塊213之下方。聯轴 222之輸入端相連接,減速機222 。減速機222之一端面係固接於減 器223係置於減速機轉接塊213的 201226844 圓孔中。 主軸夾具23包括主軸231、軸承232、軸承233、軸承鎖緊 螺帽234、主軸頭螺絲235與襯套236。主軸231係透過軸承232 與軸承233裝設於主軸基座214之中,軸承鎖緊螺帽234套鎖於 主軸231上鄰近軸承232處並用以產生預壓(prel〇ading)於軸承 232與軸承233之間以消除間隙(Clearance ),軸承加與軸承2幻 可為但不’轉觸肢雜承以背對背(Baek_to_baek)方式 排列。主軸231之一端與聯軸器223相連接,使步進馬達221可 π動主軸231轉動。主軸231之另一端具有一圓鑛片承載部23ia, 檢測圓則70時,_片7()係可放置於圓則承載部23u之上, 並且由主軸頭螺絲235與襯套236來固定圓鑛片7〇。主軸231的 軸向與Z軸的方向平行。 請參照『第3圖』,『第3圖』係為平移構件3〇之立體結構圖。 平移構件30包括主結構體3卜導螺桿%、滑動平台%以及手輪 34。主結麵31連翻跋基座1(W魏平纟%偷主結構體 31之上方4螺桿32與該滑動平台33之間係以螺旋運動對相結 合’藉由手輪34 _帶動導螺桿32,可使滑鮮台33相對於主 結構體31在X軸的方向上產生平移運動。 *月夢照『第4圖』,『第4圖』係為支禮架4G之立體結構圖 支樓架4〇包括底座4卜左側板42、右側板43以及上支撐板44 ( 底座仙定於滑動平台33。底座41的―表面具有二個凹槽,左 側板42贴她43齡概置於底座41的凹^上支撐板〜 則固設於左側板42與右側板43之一側面。 201226844 月多…、第5圖』,『第5圖』係為第一光學檢測模組5〇之立 體,,,°構圖。第—光學檢測模組50包括第-影像感測元件5卜第 一鏡頭52、第—轉接塊53、雙轴微調滑台組件54、苐-背光照 明裝置55以及第一背光照明裝置支揮組件%。第一影像感測元201226844 VI. Description of the Invention: [Technical Field] The present invention relates to a detection system, and more particularly to a non-contact automated optical inspection system suitable for the detection of deflection tolerance of a circular saw blade. [Prior Art] With the precision of industrial products, the precision of cutting tools has become an increasingly important issue. Circular saw blades are indispensable tools for material cutting and can be used in a wide variety of processing industries. When the Amount of radial runout and the Amount of axjai runout of the circular saw blade are too large, the cutting amount and wear degree of each circular saw blade will be uneven, which makes the circular saw blade Poor cutting quality and durability. ·The circular saw blade manufacturer must carry out the product's quality control work, the radial deflection tolerance (Radial outtolerance) and the axial deflection tolerance (Axiaimn〇uttQ丨 test'= ensure round disc products can be achieved Ideal cutting quality and durability. Huan, k-direction deflection is defined as: when the circle is rotated, each tip (knife == position _ maximum phase _ value; radial position _ knife image radial relative to some - The measured position of the reference. Radial to ± two-piece size, usually in the range of Congcon (mm) to 06 mm. The axial deflection tolerance is defined as: circle = the axial position of the boundary The maximum knife between the same side of the circle along the circle is relative to the edge of the armor (4). The position of the blade edge is 1_^ according to the size of the round blade. The axial deflection tolerance is mm.吊吊自丁在士〇.〇3咖到±_ 201226844 围.... The rounding tolerance detection method is the use of the scale (dirty fine 〇r), etc. The probe of the watch contacts the blade in the radial or axial direction and then listens to the relative change indicated by the table. It is possible to convert the radial deflection or the axial deflection 1 of the cymbal to evaluate whether the radial deflection amount or the axial deflection amount is within the predetermined y-difference. However, this method is not only inefficient but also often due to contact, The surface of the probe is worn to produce an error in the detection. [Summary of the Invention] In view of the above problems, the present invention proposes that the deflection tolerance of the X-ray film is automatically 1 匕 optical detection system. In order to detect the radial deviation tolerance and the axial deviation of the ore piece, the ore piece includes a plurality of knives. Each knives has a knives side and a knife back. The wind deflection ore!! The deflection tolerance automatic optical inspection system includes Rotating mechanism, first aligning group, second optical detecting module, translating member and computer device. Turn=constructed to rotate 丨.帛 输 输 输 _ 娜 娜 娜 knife blade second optical detection module, is used Picking the back of each blade, * m ^ image. The computer device is actuated by rotating the mechanism to rotate the circle, like the optical detection module rotates in the circle when the blade is cut - the knife edge of the blade - the radius of the blade - The touch position is calculated to obtain the optical = modulo == Huaguang: Detection _ can include the second time to remove each, the first first learning module is rotated in the round ore--axial image. The computer device is for each knife-back image ° different program, In order to obtain an axial deflection amount, 201226844 Automated optical inspection system has previously utilized the contact amount. The deflection tolerance of the circular saw blade proposed by the present invention can utilize the non-contact optical detection method to solve the problem generated during the town inspection. Disadvantages. [Embodiment] The following detailed features and advantages of the embodiments of the present invention are sufficient to enable anyone skilled in the art to understand the technical contents of the present invention and to implement 'and according to the present specification' The subject matter and advantages of the present invention can be readily understood by those skilled in the art. Please refer to "U-Picture", "Picture 1B" and "Cth Figure", "Picture" and "Picture 1B" are the side of the automatic optical detection system for the deflection tolerance of the circular saw blade proposed by the present invention. The view '1C' is a top view of the automatic optical ageing system of the deflection tolerance of the sheet proposed by the present invention. The deflection tolerance of the circle is automated. The optical detection is based on the fascination of the ribs (^ coffee Qf _ut), and the deflection amount includes the amount of deflection of the technique and the amount of axial deflection. The deflection tolerance automatic optical inspection system of the circular saw blade includes a base 1 , a rotating mechanism 20 , a translating member 3 , a support frame 4 , a first optical detecting module 5 , and a second optical detecting module 60 . The rotating mechanism 20 is disposed on the base 10. The rotating mechanism 2 is used to carry and fix the circular saw blade 70, and provides a rotational power to the circular saw blade 7A. The translating member 30 is disposed on the base 10, and a part of the components of the support frame 4, the first optical detecting module 50 and the second optical detecting module 6 is disposed on the translating member %. The flat spear assembly 30 is configured to translate relative to the base 1 in the direction of the yoke so that the deflection tolerance of the circular saw blade automated optical inspection system can detect different sizes of the 201226844 circular saw blade 70. The support frame 40 is fixed to the translating member 30, which may be, but not limited to, a gantry type bracket. The first optical detecting module 50 is fixed to the support frame 40. The first optical detecting module 50 is for detecting the amount of radial deflection. Some components of the second optical detecting module 60 are fixed to the support frame 40. Second, the optical detecting module 60 is configured to detect the amount of axial deflection. The deflection tolerance of the ore piece The detailed structure of each part of the automated optical inspection system is described below. Please refer to "2A" and "2A" as a three-dimensional structure diagram of the rotating mechanism 20. The rotation mechanism 20 includes a spindle holder 21, a motion mechanism 22, and a spindle clamp 23. The spindle holder 21 is disposed between the motion mechanism 22 and the spindle clamp 23. Please refer to "2B" and "2B" as the cross-sectional structure of the rotating mechanism 2〇. The spindle holder 21 includes two lateral support blocks 211, 212, a reducer transfer block 213, and a spindle base 214. One side of the two lateral support blocks 2n, 212 is connected to the base 10, and the other side of the two lateral support blocks n10 is connected to the spindle base 214. The spindle base 214 has a round hole. The reducer adapter block 213 has a round hole and is fixed under the spindle base 214 and disposed between the two lateral support pins 212. The moving mechanism 22 includes a stepping motor 221, a speed reducer 222, and a shaft of the coupling milk stepping motor 221 and an output end of the speed reducer connected to the coupling 223 below the speed changer block 213. The input end of the coupling 222 is connected to the reducer 222. One end face of the reducer 222 is fixed to the reducer 223 and placed in the 201226844 circular hole of the reducer adapter block 213. The spindle clamp 23 includes a main shaft 231, a bearing 232, a bearing 233, a bearing lock nut 234, a spindle head screw 235, and a bushing 236. The main shaft 231 is mounted in the main shaft base 214 through the bearing 232 and the bearing 233. The bearing lock nut 234 is sleeved on the main shaft 231 adjacent to the bearing 232 and used to generate preloading on the bearing 232 and the bearing. Between 233 to eliminate the clearance (Clearance), the bearing plus the bearing 2 can be illusory but not 'turning the limbs to the back to back (Baek_to_baek) way. One end of the main shaft 231 is coupled to the coupling 223, so that the stepping motor 221 can rotate the main shaft 231. The other end of the main shaft 231 has a round ore piece bearing portion 23ia. When the detecting circle is 70, the _ piece 7() can be placed on the circular bearing portion 23u, and the spindle head screw 235 and the bushing 236 are used to fix the round ore. Slice 7〇. The axial direction of the main shaft 231 is parallel to the direction of the Z-axis. Please refer to "Fig. 3", and "Fig. 3" is a three-dimensional structure diagram of the translating member 3〇. The translating member 30 includes a main structural body 3, a guide screw %, a sliding platform %, and a hand wheel 34. The main junction 31 is connected to the turret base 1 (the upper part of the screw 32 and the slide platform 33 are coupled with the spiral movement pair), and the lead screw 34 is driven by the hand wheel 34. The sliding table 33 can be translated in the direction of the X-axis with respect to the main structure body 31. * Moonlight "4th picture", "4th picture" is a three-dimensional structure picture frame of the banquet frame 4G 4〇 includes a base 4, a left side plate 42, a right side plate 43, and an upper support plate 44 (the base is fixed on the sliding platform 33. The surface of the base 41 has two grooves, and the left side plate 42 is attached to the base 41 at the age of 43 The recessed upper support plate 〜 is fixed to one side of the left side plate 42 and the right side plate 43. 201226844 more months, 5th picture, "5th picture" is the first optical detection module 5 〇 three-dimensional, The first optical lens module 50 includes a first image sensing element 5, a first lens 52, a first transfer block 53, a dual axis fine adjustment slide assembly 54, a 苐-backlight illumination device 55, and a first The backlight illumination device supports the component %. The first image sensing element

件51係與第一鏡頭52之成像端相連接。第一影像感測元件μ可 為電縣合元件攝影機(Charge-coupled device camera,CCD • G_a)以互賊金屬減層半㈣攝雜(CQmpl_taiy metal_〇Xlde-semic〇ndUct〇r camera ’ CM〇s camera),並且可具有一 個通用序列匯流排(Universal响—,測)的連接介面。第 一影^感測树51的—側連接至第―轉接塊53,且第一轉接塊 53固定於錄微調滑台組件M。雙軸微鱗台組件μ設置於上 =板44,藉由雙轴微調滑台組件%的調整,第一影像感測元 1與第-鏡頭52可相對於上支樓板44在γ轴與ζ轴的方向 移動光照明裝置55設置於第-背光照明裝置支撐电件 % ’第—背光照明裝置支撐組件%則分別設置於左側板犯與右 側板43。 、 弟—鏡頭52的光轴與圓則7Q的旋轉轴(主轴23ι的轴向) 潘Γ且第—背光照明裝置55係對應設置於第—鏡頭52的可拍 靶圍’以提供光賴明。在進行晴』%的 =微調滑台組件54,以使_片7。位於第一鏡 躡乾圍内。 2參照『第6圖』’『第6圖』係為第二光學檢測模組6〇之立 圖。第二光學檢測模乡且6〇包括第二影像感測元件6卜第 201226844 —、第二轉接板63、三轴微調滑台紐件64、第-背朵 月裝置65以及第二背光照明裝置切 帛-枝照 件幻係與第二鏡頭62之成像端相 像第-峨树元 為於電聽合元件攝影機或是互 = 思像感剩元件可 並且可具有-個通用序列匯麵的連接影機, 64。三轴微贿台組件㈣定於底座41。:軸一件 係相對於底純’可在X秘、Y轴與Z轴的一方^運组件64 裝置65係設置於第二背光照明裝置支樓组件66 ,第 -=照明装置支·件66則連接於主轴座2】之_侧。’第 垂直:=广舆_70的旋轉M主軸攻的轴向) 攝Γ11 ^/光照明裝置65係對應設置於第二鏡頭62的可拍 整在進行_片7〇的檢測時,可藉由調 組件64,以使_片7〇位於第二鏡 月,…、第7圖』,『第7圖』係為校正 ==収規_精咖81與校正直尺82。校正= 8、1的圓 '尺^心直尺邊^的延伸線,實質上會通過精密圓盤 指、。在進行制前,可先進行校絲序。進行校正程 係先將校正用尺規80放置於主轴231的圓鋸片承載部抓之上, 然後崎主__ 235以_之。經峨機卿帶動校正用 尺規80疑轉至適當位置’並以第一光學檢測模組%擷取校正直 尺82之直尺邊仏的影像’並根據直尺邊❿於此影像中的邊緣 201226844 3==:基準軸82b。此基準軸82b係做為檢測徑向偏轉 . 軸,且較佳的是此基準軸82b與影像(晝素的排 列方向)之縱向(垂直方向)相平行。 多’、、第8圖』’『第$圖』係為本發明之系統整合圖。本 毛月之片之偏轉公差自動絲學檢_統係另包括—計算機 裝置9〇及附屬於轉動機構20的運動控制模組95。計算機袭置 ' ,10 •异射置90係與運動控制模組95、第-光學檢測模組50以及第 一光學檢測 6G電性連接。運動控制模組95係與轉動機構2〇 電性Ϊ接。计异機裝置9〇包括人機介面91、中央處理器模組92、 己隐單元93帛朝序列匯流排介面_與第二通用序列匯流 排二面942。计异機裳置9〇可透過運動控制模組95 +的運動控 制單元951以及馬達驅動單元952來驅動轉動機構2〇中的步進馬 達221旋轉,步進馬達221經由減速機222以及聯軸器223帶動 主軸231轉動,以使固定於主轴231上方之_片7〇轉動。第一 修光學檢測模組50的第一影像感測元件5}與第二光學檢職且的 的第二影像感測元件61分別連接至計算機裝置9〇的第—通 列匯抓排”面941與第二通用序列匯流排介面942,以將影像 料傳送至計算機裝置90。計算機裝置9〇中可儲存人機介面%,、 此人機介面91可用來提供使用者輸入操作指令與顯示結果。中央 處理器模組92用以執行徑向位置計算程序與轴向位置計、 序。記憶單元93用以儲存徑向位置計算程序與軸向位置計: 序。徑向位置計算程序與轴向位置計算程序詳細之流程與原= 201226844 說明如下。 請先參照『第9圖』,『第9圖』係為 /fffil 77 77 71 it 乃的外觀示意圖。备 -個刀刀71包括一刀側72與一刀背%。 〜口母 請參照『第IOA圖』,『第ι0Α圖係 取刀側影像的示意圖。第一光學檢測模組5:=:= 此刀側影像中會呈現圓鋸片7〇的實體 ”象口 影部分,背制為像素之灰随較高的空白部雜低的陰 在進行檢測時,計算機裝置9〇會 77 Γ:轉’並致動第,檢測模'㈣在= 母-個刀㈣賴影像。絲置9G係對於每— 行徑向位置計算程序,以得到徑向偏轉量。 b像執 徑向位置將程序可細分為初步定位子程序、邊緣偵測( detection)子程序與精確定位子程序。 & 請參照『第_』,『第圖』係為初步定位子程序中的 不意圖。細步定位子程序中,計算機裝㈣可先綱第一 檢測模組50所練的影像是否為空白影像。當不是空自影像時, 計异機裝置90可控制轉動機構2〇以使圓鑛片%進行順時針轉 動’並且_第-光學檢測模組5G逐次擷取刀側影像,直到榻取 的影像為空白影像為止。之後,計算機裝置9〇再控制轉動機構 2〇以使圓則70進行逆時針轉動,並且_第—光學檢測㈣ 5〇逐次擷取影像,朗刀姆彡像的灰階值產生變化,並且灰 階值的變化出現在賴取影像的中央區域時,也就是刀刃位於刀 側影像的中央區域時’即完成初蚊位子程序。 201226844 此外’計算機裝置90可根據所擷取的影像中之灰階值的統計 值進行判斷。舉例而纟,計算機裝置90係計算影像中之灰階值的 平均值,當平均值大於一臨界值時,即判斷刀刃位於刀側影像的 中央區域。 請參照『第10C圖』與『第10D圖』,『第1〇c圖』與『第 10D圖』係為邊緣偵測子程序的示意圖。在邊緣偵測子程序中, "十开機裝置90對於第一光學檢測模組5〇擷取的影像,判斷兩個 相鄰的,素之間的灰階值是否產生明顯的變化,以侧刀刃的輪 廓了十算機裝置9〇可對於刀側影像中每一行的像素執行邊緣_ 子程序,以得出多個邊緣點座標。計算機裝置90再從這些邊緣點 中’取付-最高點Pl、一次高點p2以及周圍的數個相鄰點&, 並且再根據點的鋪,湘-鱗擬合方法(c職脑§ method) ’求出—擬合曲線L,並再根據擬合曲線l,計算出刀刀 =擬合端點P麵。其中,擬合端點之座標為擬合曲線L中的 最高點,係代表刀刀在·影像中的—頂端位置,也就是刀刀之 頂端(刀尖)的所在位置。上述邊緣偵測子程序所得到之擬合端 點p職的影像定位解析度可達次像素(Sub細D。 立圖月二帛1〇E圖』,『第聰圖』係為精確定位子程序的示 思圖。在精較解程序巾,計算機錢9() ==細片70的一預設半徑(可為二 ®則%的微则度。基準轴82b係為校正程序中, 利用权正用尺規80所校正而得到的。微調角度可用m 理進行計算,微調角度其二-= 13 201226844 基準軸咖的垂直距離,Γ為圓鑛片%的預設半徑。計算機裝置 90可再根據微調角度0,控制轉 、 角位置。 轉動機構以調整隨70的一 序,一直到垂直距離Δχ小於—門=貞測子程序與精確定位子程 π檻值時,喊表則之料(=為止。當垂直距敝小於一 的齡因此,計算機裝置m::立置與基準軸娜相當 頂端於刀側断物徑^r顯合端點、’計算刀刀之 接著’計算機裝置90可押制艟包地j 一個77 77 :㈣動機構2〇旋轉圓鑛片70至下 位置計算程序。在對於每-個刀刃皆執行 90再在這些徑向位置中尋找—最高位置盘一最低置 最高位置絲触置之_轉,㈣得_置量並且计鼻 請參照『請圖』與『第11B圖,『:偏轉里 光學檢測模組擷取刀背影像的示意圖,『』第為第二 C圖。第二光學檢測模組6G係為背r因 像中會呈現圓鑛片70的實體為像 如冢目此刀月衫 景則為像素之灰階值較高的空白部分。此白广低„部分,背 排列方向)之縱向c垂直方向)與主轴的刀背影像(晝素的 計算機裝置9〇致動第二光學檢測模电6〇 ^目平行。 擷取每-個刀刃的刀背影像,並且計算機=片7續轉時 背影像執行轴向位置計算程序,以得到麵偏 刀 麵位置計算程序係可與徑向位置計算程序同時執行。當徑 201226844 向位置計算程序完成精確定位 對於刀背影像執行雜伽仔料『Hi料程序係可 圖』中所示之程朴以求得刀刀在刀背 圖』與『第】奶 點與下邊界輪廓邊緣點,並計算_二,邊界輪廓邊緣 邊界擬合端點的座標。惟,在3 點的座標與-下 置9〇乃從刀背影像的下邊界輪靡邊緣子冲异機裳 點以及周圍的數個相鄰點,並㈣寸祕點、—次低 续掘入士、土 1 再根據這些點的座標,利用-曲 一最•上邊====,線中的 別為=刀_:的上邊界軸向位置與下邊界 =0 吁管二二:對於母—個刀刃皆執行完軸向位置計算程序後, 置二二機/二卩Γ得㈣個上邊界㈣位置與下邊界轴向位 曰^些上邊界軸向位置中尋找-最高位置與- =邊最高位置與最低位置之間的差異,即可得到 同理’計算機_在這些下邊界軸向位置 之,、—最低位置’並且計算最高位置與最低位置 間的差異,即可得到下邊界軸向偏轉量。 為驗證本發明所提出的圓鑛片之偏轉公差自動化光學檢測系 ,先以下为別利用上述實施例所開發的雛型機 物實驗。第-個樣本為外謂麵、厚度25麵、刀刃= 〇的祕片7G。第二個樣本為外彳! 麵、厚度2_5麵、刀刃 數為20的圓鑛片70。此實驗係對於同一個樣本重複進行十次檢 測。 15 201226844 『表一』所列為第一個樣本之徑向偏轉量的檢測結果,其中 徑向偏轉量的平均值為26.22 μιη (微米),重現性為±1.22 μιη ;重 現性的定義為正/負三倍的標準差。『表二』所列為第一個樣本之 軸向偏轉量的檢測結果,其中上邊界軸向偏轉量的平均值為52.83 μιη,重現性為:tl.85 μιη,下邊界軸向偏轉量的平均值為40.73 μιη, 重現性為±1.11 μιη。 表一 徑向偏轉量(μηι) 測試1 26.16 測試2 26.25 測試3 25.53 測試4 26.26 測試5 26.31 測試6 25.79 測試7 27.09 測試8 26.05 測試9 26.36 測試10 26.36 平均值 26.22 標準差 0.41 重現性 士 1.22 表二 上邊界軸向偏轉量(μιη) 下邊界軸向偏轉量(μιη) 測試1 52.34 40.47 測試2 53.15 40.84 測試3 52.79 40.82 測試4 53.25 40.75 測試5 52.40 40.76 測試6 52.48 40.07 測試7 52.48 40.92 測試8 52.44 41.47 測試9 54.34 40.84 測試10 52.63 40.40 平均值 52.83 40.73 標準差 0.62 0.37 重現性 ±1.85 ±1.11 16 201226844 『表三』所列為第二個樣本之徑向偏轉量的檢測結果,其中 徑向偏轉量的平均值為41.74 μιη,重現性為±0.89 μπι。『表四』所 列為第二個樣本之轴向偏轉量的檢測結果5其中上邊界轴向偏轉 量的平均值為108.84 μιη,重現性為±1.95 μιη,下邊界軸向偏轉量 的平均值為133.27 μιη,重現性為±1.77 μιη。由此可知,本系統的 檢測重現性可達±2 μιη以内。 表三 徑向偏轉量(μιη) 測試1 41.24 測試2 41.88 測試3 42.03 測試4 41.92 測試5 41.61 測試6 41.86 測試7 41.57 測試8 41.34 測試9 42.17 測試10 41.81 平均值 41.74 標準差 0.30 重現性 ±0.89 表四 上邊界軸向偏轉量(μιη) 下邊界軸向偏轉量(μτη) 測試1 108.01 132.77 測試2 108.72 133.65 測試3 108.89 133.09 測試4 109.24 133.30 測試5 108.86 133.78 測試6 107.94 132.34 測試7 109.08 133.11 測試8 108.80 133.79 測試9 110.25 134.22 測試10 108.57 132.64 平均值 108.84 133.27 標準差 0.65 0.59 重現性 ±1.95 士 1.77 17 201226844 綜合以上所述,本發明所提出之圓則之轉 學檢測纽,射细非接戦的絲_方如驗2 接觸式量錶檢猶所產生的親。姐,自動㈣步進馬達’ ==,的檢測’因而大幅增加檢測的效率。此外,此圓 雜片之偏轉么差自動絲學檢·'祕可來_抑尺寸大小 的圓鑛片’故可具有高度的使用上的彈性。 發明雖^本發_前述之實施觸露如上,財並_以限定本 itrr本發明之精神和範圍内’所為之更動無飾,均 所附二=保護範圍。關於本發明所界定之保護範圍請參考 所附之申請專利範圍。 田亏 【圖式簡單說明】 吗』丹乐⑴圓』係為本發明所提出¥ △差自動化光學檢測系統的立體結構示意圖; 差自動化光學檢測祕的俯視圖; 『第μ圖』係為本發明之轉動機構之立體結構圖; 『第2Β圖』係為本發明之轉動機構之剖面結構圖; 第3圖』係為本發明之平移構件之立體結構圖; :第4圖』係為本發明之切架之立體結構圖; 『=圖』係為本發明之第—光學檢賴組之讀結構圖; 『=6圖』係為本翻之第二光學_模組之立體結構圖; 『第7圖』係為本翻之校尺規之立體結構圖; 第8圖』係為本發明之系統整合圖; 201226844 9圖』係為本發明之刀77的外觀示意圖; 1〇A®』係為本發明之第—光學檢聰組娜刀側影像 『第10B 『第炚 的示意圖; 圖』係為本發明之初步定位子程序中的示意圖; 圖』與『第10D圖』係為太欢口口 马本發明之邊緣偵測子程序 _』你馮奉發明之精確The member 51 is coupled to the imaging end of the first lens 52. The first image sensing element μ can be a Charge-coupled device camera (CCD • G_a) to reduce the half (four) of the thief metal (CQmpl_taiy metal_〇Xlde-semic〇ndUct〇r camera ' CM 〇s camera), and can have a universal serial bus (Universal ring-and-test) connection interface. The first side of the sensing tree 51 is connected to the first transition block 53, and the first transition block 53 is fixed to the fine adjustment slide assembly M. The two-axis microscale assembly μ is disposed on the upper=plate 44, and the first image sensing element 1 and the first lens 52 are γ-axis and 相对 relative to the upper support floor 44 by the adjustment of the two-axis fine adjustment sliding table assembly %. The direction of the axis of the moving light illuminating device 55 is provided on the first-backlighting device supporting the electric component %'-the backlighting device supporting component% is disposed on the left side plate and the right side plate 43, respectively. , the optical axis of the lens 52 and the rotation axis of the circle 7Q (the axial direction of the main axis 23 i), and the backlight illumination device 55 corresponds to the targetable range of the first lens 52 to provide light . In the sunny state% = fine-tuning the slide assembly 54 to make the _ sheet 7. Located in the first mirror. 2 Refer to "Fig. 6" "Fig. 6" for the second optical detection module 6〇. The second optical detecting module and the second image sensing component 6 include the 201226844-, the second adapter plate 63, the three-axis fine-tuning slide member 64, the first-back month device 65, and the second backlight The device cut-and-shoot phantom is similar to the image end of the second lens 62. The 峨-element is for the audio-visual component camera or the mutual-image sensor and can have a universal sequence. Connect the camera, 64. The three-axis micro bribe assembly (four) is fixed to the base 41. : The one piece of the shaft is opposite to the bottom pure 'can be used in the X secret, the Y axis and the Z axis. The device 65 is disposed on the second backlight unit branch assembly 66, and the -= illuminating device member 66 Then connected to the _ side of the spindle holder 2]. 'The vertical: = the rotation of the M-spindle _70's axis.) The illuminating device 65 is corresponding to the alignable film set in the second lens 62. The component 64 is adjusted so that the _ slice 7 is located in the second mirror month, ..., the seventh figure, and the "figure 7" is the correction == regulation _ fine coffee 81 and the correction ruler 82. Correction = 8, 1 circle The extension line of the ruler's ruler edge ^ will pass through the precision disc. Before the system is completed, the calibration order can be performed first. Performing the calibration procedure First, the calibration ruler 80 is placed on the circular saw blade carrying portion of the spindle 231, and then the sorghum __ 235 is _. After the machine is used, the calibration ruler 80 is suspected to be transferred to the appropriate position 'and the first optical detection module % is used to capture the image of the ruler edge of the correction ruler 82' and is placed in the image according to the ruler edge. Edge 201226844 3==: Reference axis 82b. This reference axis 82b is used to detect the radial deflection axis, and it is preferable that the reference axis 82b is parallel to the longitudinal direction (vertical direction) of the image (the arrangement direction of the pixels). The multi-, "8th" and "the first" are the system integration diagrams of the present invention. The deflection tolerance automatic wire inspection of the sheet of the month of the month includes a computer device 9A and a motion control module 95 attached to the rotation mechanism 20. The computer set '10' is an electrical connection between the motion control module 95, the first optical detection module 50, and the first optical detection 6G. The motion control module 95 is electrically coupled to the rotating mechanism 2 . The metering device 9A includes a human machine interface 91, a central processing unit module 92, a hidden unit 93, a serial bus interface _ and a second general sequence bus 942. The movement control unit 951 and the motor drive unit 952 of the motion control module 95+ drive the stepping motor 221 in the rotation mechanism 2〇 to rotate, and the stepping motor 221 passes through the reduction gear 222 and the coupling shaft. The 223 drives the spindle 231 to rotate to rotate the yoke 7 固定 fixed above the spindle 231. The first image sensing element 5} of the first optical inspection module 50 and the second image sensing component 61 of the second optical inspection unit are respectively connected to the first-to-the-segment channel of the computer device 9 The 941 and the second universal sequence bus interface 942 are used to transmit the image material to the computer device 90. The computer device 9 can store the human interface %, and the human interface 91 can be used to provide the user input operation instructions and display results. The central processing unit 92 is configured to execute a radial position calculation program and an axial position calculation program. The memory unit 93 is used to store the radial position calculation program and the axial position gauge: sequence. Radial position calculation program and axial direction The detailed flow of the position calculation program and the original = 201226844 are explained below. Please refer to the "Fig. 9" and "Fig. 9" for the appearance of /fffil 77 77 71 it. The preparation - a knife 71 includes a knife side 72 With the back of the knife, please refer to the "IOA diagram", "The diagram of the ι0Α diagram is the image of the knife side. The first optical detection module 5: =:= This blade side image will show a circular saw blade 7 〇 entity" like the mouth part, back Hetero low gray shade of a pixel portion with high blank detection is performed, the computer device will 9〇 77 Γ: revolutions 'and the first actuator, the detection module' = parent (iv) - (iv) depends on a knife image. The wire 9G system is used for each radial position calculation program to obtain the amount of radial deflection. b Like the radial position, the program can be subdivided into a preliminary positioning subroutine, an edge detection (detection) subroutine and a precise positioning subroutine. & Please refer to "第_", "第图" is the intention of the preliminary positioning subroutine. In the fine step positioning subroutine, the computer is equipped with (4) whether the image trained by the first detecting module 50 is a blank image. When it is not empty, the counting device 90 can control the rotating mechanism 2〇 to rotate the ore piece by clockwise' and the first optical detecting module 5G successively captures the knife side image until the image taken by the couch is Until the blank image. After that, the computer device 9〇 controls the rotating mechanism 2〇 to rotate the circle 70 counterclockwise, and _first-optical detection (4) 5〇 successively captures the image, the grayscale value of the Langmumu image changes, and the gray The change in the order value occurs when the central region of the image is taken, that is, when the blade is located in the central region of the knife side image, the initial mosquito position subroutine is completed. 201226844 In addition, the computer device 90 can determine based on the statistical value of the grayscale value in the captured image. For example, the computer device 90 calculates the average value of the grayscale values in the image. When the average value is greater than a threshold value, it is determined that the blade edge is located in the central region of the knife side image. Please refer to "10C" and "10D", "1c" and "10D" as schematic diagrams of the edge detection subroutine. In the edge detection subroutine, the "ten booting device 90 determines whether the grayscale values between two adjacent elements are significantly changed for the image captured by the first optical detecting module 5, The outline of the side cutting edge is 9 〇. The edge_routine can be executed for the pixels of each line in the knife side image to obtain a plurality of edge point coordinates. The computer device 90 then 'takes payment from the edge points - the highest point P1, the first high point p2, and the surrounding several adjacent points & and then according to the point of the shop, the Xiang-scale fitting method (c job brain § method ) 'Right—fit curve L, and then calculate the tool = fit end point P plane according to the fitting curve l. The coordinate of the fitting end point is the highest point in the fitting curve L, which represents the position of the top end of the knife in the image, that is, the position of the top end of the knife (the cutting edge). The image positioning resolution obtained by the edge detection subroutine obtained by the edge detection subroutine can reach the sub-pixel (Sub fine D. The vertical picture is 2 帛 1 〇 E picture), and the "Xicong picture" is a precise locator. The schematic diagram of the program. In the refined solution towel, the computer money 9 () == a predetermined radius of the thin film 70 (can be a second degree of micro-degree. The reference axis 82b is used in the calibration procedure, The right is corrected by the ruler 80. The fine adjustment angle can be calculated by m, and the fine adjustment angle is the second -= 13 201226844 The vertical distance of the reference axis coffee, Γ is the preset radius of the round ore %. The computer device 90 can Then according to the fine adjustment angle 0, the rotation and angular position are controlled. The rotation mechanism adjusts the sequence with 70 until the vertical distance Δχ is smaller than the door=贞 subroutine and the precise positioning sub-process π槛 value, (= So far. When the vertical distance 敝 is less than one year, the computer device m:: the vertical position and the reference axis Na are at the top end of the knife side breaking diameter ^r coincident end point, 'calculating the knife next' computer device 90 Can be shackled to a j 77 a 77 77: (four) moving mechanism 2 〇 rotating round ore 70 to the lower position Set the calculation program. Perform 90 for each - edge and then find in these radial positions - the highest position of the disk, the lowest position of the highest position, the touch of the wire, the (four) _ set and count the nose, please refer to 』 and "11B, ": the schematic diagram of the optical detection module in the deflection captures the image of the back," is the second C. The second optical detection module 6G is a round ore in the back The entity of 70 is a blank part with a higher gray-scale value of the pixel such as the eye of the knife. The white and the lower part of the „part, the direction of the rear direction of the vertical c vertical direction” and the image of the back of the spindle (昼The computer device 9 〇 actuates the second optical detection mode to be parallel to each other. The back image of each blade is captured, and the back image is subjected to an axial position calculation program when the computer 7 continues to rotate. The eccentric surface position calculation program can be executed simultaneously with the radial position calculation program. When the path 201226844 completes the precise positioning to the position calculation program, the procedural image shown in the “Hi program program map” is executed for the back image. Get the knife in the back of the knife 『第】The point of the milk point and the edge of the lower boundary contour, and calculate the coordinates of the end point of the edge boundary of the boundary contour. However, the coordinate at the 3 point and the lower edge are 9 〇 from the lower boundary rim of the back image. The edge of the edge is different from the machine point and several neighboring points around it, and (4) inch secret points, the second low-continuation digs, soil 1 and then according to the coordinates of these points, use - 曲一最•上边 ==== , in the line is = knife _: the upper boundary axial position and the lower boundary = 0 call tube 22: for the mother - a blade are executed after the axial position calculation program, set the second machine / two (4) The upper boundary (four) position and the lower boundary axial position 曰 ^ some upper boundary axial position in the search - the highest position and - = the difference between the highest position and the lowest position of the edge, you can get the same 'computer _ under these The axial position of the boundary, the lowest position, and the difference between the highest position and the lowest position are calculated, and the amount of axial deflection of the lower boundary is obtained. In order to verify the automatic optical inspection system for the deflection tolerance of the ore piece proposed by the present invention, the following is an experimental study of the prototype machine developed by the above embodiment. The first sample is a secret film 7G with a foreign face, a thickness of 25 faces, and a blade = 〇. The second sample is a nephew! A round ore 70 having a surface, a thickness of 2_5, and a blade number of 20. This experiment was repeated 10 times for the same sample. 15 201226844 “Table 1” lists the results of the radial deflection of the first sample, where the average radial deflection is 26.22 μηη (micron) and the reproducibility is ±1.22 μηη; the definition of reproducibility It is a standard deviation of three times positive/negative. "Table 2" lists the results of the axial deflection of the first sample. The average value of the axial deflection of the upper boundary is 52.83 μιη, the reproducibility is tl.85 μιη, and the axial deflection of the lower boundary. The average value is 40.73 μιη and the reproducibility is ±1.11 μιη. Table 1 Radial Deflection (μηι) Test 1 26.16 Test 2 26.25 Test 3 25.53 Test 4 26.26 Test 5 26.31 Test 6 25.79 Test 7 27.09 Test 8 26.05 Test 9 26.36 Test 10 26.36 Average 26.22 Standard Deviation 0.41 Reproducible Sex 1.22 Table 2 Upper boundary axial deflection (μιη) Lower boundary axial deflection (μιη) Test 1 52.34 40.47 Test 2 53.15 40.84 Test 3 52.79 40.82 Test 4 53.25 40.75 Test 5 52.40 40.76 Test 6 52.48 40.07 Test 7 52.48 40.92 Test 8 52.44 41.47 Test 9 54.34 40.84 Test 10 52.63 40.40 Average 52.83 40.73 Standard deviation 0.62 0.37 Reproducibility ±1.85 ±1.11 16 201226844 "Table 3" lists the results of the radial deflection of the second sample, of which radial The average amount of deflection is 41.74 μιη, and the reproducibility is ±0.89 μπι. "Table 4" lists the results of the axial deflection of the second sample. 5 The average value of the axial deflection of the upper boundary is 108.84 μηη, the reproducibility is ±1.95 μηη, and the average of the axial deflection of the lower boundary. The value is 133.27 μιη and the reproducibility is ±1.77 μιη. It can be seen that the detection reproducibility of the system can be within ±2 μηη. Table 3 Radial Deflection (μιη) Test 1 41.24 Test 2 41.88 Test 3 42.03 Test 4 41.92 Test 5 41.61 Test 6 41.86 Test 7 41.57 Test 8 41.34 Test 9 42.17 Test 10 41.81 Average 41.74 Standard Deviation 0.30 Reproducibility ±0.89 Table 4 Upper boundary axial deflection (μιη) Lower boundary axial deflection (μτη) Test 1 108.01 132.77 Test 2 108.72 133.65 Test 3 108.89 133.09 Test 4 109.24 133.30 Test 5 108.86 133.78 Test 6 107.94 132.34 Test 7 109.08 133.11 Test 8 108.80 133.79 Test 9 110.25 134.22 Test 10 108.57 132.64 Average 108.84 133.27 Standard deviation 0.65 0.59 Reproducibility ± 1.95 ± 1.77 17 201226844 In summary, the round transfer test of the present invention, the fine non-contact wire _ Fang Ruzhen 2 contact type gauge to check the pro for the birth of Ju. Sister, automatic (four) stepper motor '==, detection' thus greatly increases the efficiency of detection. In addition, the deflection of the circular piece is automatically determined by the wire inspection method, so that it can have a high degree of flexibility in use. Although the invention has been described above, it has been modified to limit the scope of the present invention to the extent that it is modified. Please refer to the attached patent application scope for the scope of protection defined by the present invention. Tian Fu [Simple description of the picture] "Danle (1) circle" is a three-dimensional structure diagram of the automatic optical detection system of ¥ △ difference proposed by the invention; a top view of the difference of automated optical detection; "μμ" is the invention The three-dimensional structure diagram of the rotating mechanism; the "second drawing" is a sectional structural view of the rotating mechanism of the present invention; the third drawing is the three-dimensional structural drawing of the translational member of the present invention; The three-dimensional structure diagram of the cutting frame; 『=图』 is the first reading structure of the optical inspection group of the invention; "=6 picture" is the three-dimensional structure of the second optical_module; Figure 7 is a three-dimensional structure diagram of the ruler; Figure 8 is a system integration diagram of the present invention; 201226844 9 is a schematic view of the appearance of the blade 77 of the present invention; For the first part of the present invention, the image of the optical Detector group Na fang side "10B "The schematic diagram of the 炚 ;; diagram" is a schematic diagram of the preliminary positioning subroutine of the present invention; the diagram and the "10D diagram" are too happy Mouth Maben's edge detection subroutine _』你冯奉发Precise

『第11Α_弋位子程序的示意圖; UA圖』係為本發明之第二朵風 ^ 的示意圖;以及 予彳取剛模纟且擷取刀背 第11β圖』係為本發明之刀背 【主要轉符號說明】 心像的示意圖。 10 基座 20 轉動機構 21 主車由座 211、212 側向支撐塊 213 減速機轉接塊 214 主幸由基座 22 運動機構 221 步進馬達 222 減速機 223 聯軸器 23 主軸失具 231 主轴 19 201226844 231a 圓鋸片承載部 232 軸承 233 轴承 234 軸承鎖緊螺帽 235 主軸頭螺絲 236 襯套 30 平移構件 31 主結構體 32 導螺桿 33 滑動平台 34 手輪' 40 支撐架 41 底座 42 左側板 43 右側板 44 上支擇板 50 第一光學檢測模組 51 第一影像感測元件 52 第一鏡頭 53 第一轉接塊 54 雙軸微調滑台組件 55 第一背光照明裝置 56 第一背光照明裝置支撐組件 -s 20 201226844 60 第二光學檢測模組 61 第二影像感測元件 62 第二鏡頭 63 第二轉接塊 64 三軸微調滑台組件 65 第二背光照明裝置 66 第二背光照明裝置支撐組件 70 圓鋸片 • 71 刀刃 72 刀側 74 刀背 80 校正用尺規 81 精密圓盤 82 校正直尺 82a 直尺邊 φ 82b 基準軸 90 計算機裝置 91 人機介面 ~ 92 中央處理器模組 93 記憶單元 941 第一通用序列匯流排介面 942 第二通用序列匯流排介面 95 運動控制模組 21 201226844 951 運動控制單元 952 馬達驅動單元 L 擬合曲線 Pi 最向點 P2 次南點 P3、P4 相鄰點 Pmax 擬合端點 r 預設半徑 △X 垂直距離 Θ 微調角度 s 22"The 11th Α 弋 示意图 示意图 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图 示意图Symbol Description] Schematic diagram of the heart image. 10 Base 20 Rotating mechanism 21 Main car seat 211, 212 Lateral support block 213 Reducer transfer block 214 Main fortunately by base 22 Movement mechanism 221 Stepper motor 222 Reducer 223 Coupling 23 Spindle misalignment 231 Spindle 19 201226844 231a Circular saw blade carrier 232 Bearing 233 Bearing 234 Bearing lock nut 235 Spindle head screw 236 Bushing 30 Translation member 31 Main structure body 32 Lead screw 33 Slide platform 34 Handwheel ' 40 Support frame 41 Base 42 Left side plate 43 Right side plate 44 Upper selection plate 50 First optical detection module 51 First image sensing element 52 First lens 53 First transition block 54 Dual axis fine adjustment slide assembly 55 First backlight illumination device 56 First backlight illumination Device support assembly-s 20 201226844 60 second optical detection module 61 second image sensing element 62 second lens 63 second transfer block 64 three-axis fine adjustment slide assembly 65 second backlight illumination device 66 second backlight illumination device Support assembly 70 Circular saw blade • 71 Blade 72 Knife side 74 Knife back 80 Calibration ruler 81 Precision disc 82 Correction ruler 82a Ruler edge 82b Reference axis 90 Computer device 91 Human machine interface ~ 92 Central processing unit module 93 Memory unit 941 First universal sequence bus interface 942 Second universal sequence bus interface 95 Motion control module 21 201226844 951 Motion control unit 952 Motor drive Element L Fit curve Pi Most point P2 Time South point P3, P4 Adjacent point Pmax Fitting end point r Preset radius △ X Vertical distance Θ Fine-tuning angle s 22

Claims (1)

201226844 七、申請專利範圍: 1. 一種_片之偏轉公差自動化光學檢測系統,用以檢測一圓鑛 片的一偏轉量,該偏轉量包括-徑向偏轉量與—轴向偏轉量, 該圓鑛片包括多個刀刃,每一該刀刃具有一刀側與一刀背,該 偏轉公差自動化光學檢測系統包括: 一基座; 轉動機構,設置於該基座,係用以旋轉該圓鋸片; —平移構件’設置於該基座,對於該基座於-軸 向進行平移; -第-光學檢測模組,設置於該平移構件,係用以榻取每 一該刀刃的該刀側,以得到一刀側影像; -第二光學檢測模組,個以擷取每—該刀㈣該刀背, 以得到一刀背影像;以及 - a十异機裝置,致動雜動機構以使_則旋轉,並致 動該第學檢測模組與該第二光學檢測模組在該圓鑛片旋 轉時擷取每-該刀刃的該刀侧影像與該刀背影像,該計算機農 . 置依據該些刀侧影像執行—徑向位置計算程序與—軸向位置 计异程序,該杈向位置計算程序包括·· 一初步定位子程序,係以該計算機裝置控制該轉動機 構’使S亥圓鑛片進行轉動,並且利用該第一光學檢測模組 逐次擷取該刀側影像,直到判斷該刀刃位於該刀側影像的 一中央區域為止; 一邊緣偵測子程序,係以該計算機裝置偵測該刀側影 23 201226844 像中每-行的多個像素,以得出多個邊緣點,並根據該些 邊,點的座標得出一擬合曲線,再根據該擬合曲線中的一 最高點得丨-擬合端點,概合端點為該刀刃在該刀側影 像中的一頂端位置;以及 -精確定位子程序,係_計算機裝置根據該擬合端 點至:基準軸的一垂直距離Δχ與該圓錯片的一預設半獲 r,計算-微調角度θϋ】(Δχ/Γ),且該計算機裝置根據該 微調角度Θ,控制該轉動機構,以調整該圓錯片的一角位 置; 其中’該計算機裝置重複執行該姐_子程序與該精確 定位子程序,直_刀側影像中_擬合端點至職準軸㈣ 垂直距離M小於一門難為止,以得到該刀刃之該擬合端點在 該刀側影像帽應的-徑向錄,計算機裝置對每一該刀 刀皆執行該徑向位輯算程序,每—該㈣之該擬合端 點對應的驗向位置,断算機裝置再根據徑向位置以得 到該徑向偏轉量’並且該計算機裝置執行該㈣位置計算程 序’該計算難置係對於該刀背影像巾每—行衫個像素U 該邊緣偵測子程序,以得好個輕點,並根據該些邊緣點的 座標得出-上邊界擬合曲線與—下邊_合曲線,該計算 置再根據該上邊界擬合曲線中的—最高點得出—上邊界擬二 端點’以及根據該下邊界擬合曲線中的—最低點得出―;二 擬合端點’該上邊界擬合端點與該下邊界擬合端點分別為劾 刀在該刀背影像中的-上邊界麵位置與—下邊界如位 24 201226844 =且該异機裝置對每—該刀刃皆執行雜向 曾 序,以得到每一該刀刀的該上邊界轴向位置與該下邊界程 置,_算齡置再根據該些上邊界軸向位置與該些下邊= 向位置得到該軸向偏轉量。 1 2.如請求们所述之圓刻之偏轉公差自動化201226844 VII. Patent application scope: 1. An automatic optical detection system for deflection tolerance of a piece, for detecting a deflection amount of a circular ore piece, the deflection amount includes - radial deflection amount and - axial deflection amount, the round ore The blade includes a plurality of cutting edges, each of the cutting edges having a blade side and a blade back. The deflection tolerance automated optical detecting system comprises: a base; a rotating mechanism disposed on the base for rotating the circular saw blade; The member is disposed on the base, and the base is axially translated. The first optical detection module is disposed on the translation member for taking the knife side of each blade to obtain a knife. Side image; - a second optical detection module for picking each of the blades (four) the blade back to obtain a back image; and - a ten different device, actuating the noise mechanism to cause the _ to rotate, and The second detection module and the second optical detection module capture the image of the knife side and the image of the back of the blade when the round ore is rotated, and the computer is executed according to the knife side images. - radial position meter a program and an axial position counting program, the heading position calculating program comprising: a preliminary positioning subroutine, wherein the computer device controls the rotating mechanism to rotate the Shai ore piece and utilize the first optical The detecting module successively captures the knife side image until it is determined that the cutting edge is located in a central area of the knife side image; an edge detecting subroutine detects the knife side shadow by the computer device 23 201226844 a plurality of pixels to obtain a plurality of edge points, and according to the edges, the coordinates of the points obtain a fitting curve, and then according to a highest point in the fitting curve, the 拟合-fitting end point is integrated. The end point is a top end position of the blade in the knife side image; and - a precise positioning subroutine, the computer device according to the fitting end point to: a vertical distance Δχ of the reference axis and a pre-fix of the circular strip Setting a half-r, calculating-trimming the angle θϋ] (Δχ/Γ), and the computer device controls the rotating mechanism according to the fine adjustment angle , to adjust an angular position of the circular wrong piece; wherein the computer device Performing the sister _ subroutine and the precise positioning subroutine, in the straight _ knife side image, the _ fitting end point to the job quasi axis (4), the vertical distance M is less than a hard door, to obtain the fitting end point of the blade The razor side image cap should be - radial recording, the computer device performs the radial position calculation procedure for each of the knives, and each (4) of the fitting end points corresponding to the inspection position, the computer device According to the radial position, the radial deflection amount is obtained, and the computer device executes the (four) position calculation program. The calculation is difficult for the edge detection sub-program for the knife-back image towel U. a light point, and according to the coordinates of the edge points, the upper boundary fitting curve and the lower edge _ combining curve are obtained, and the calculation is further obtained according to the highest point in the upper boundary fitting curve - the upper boundary is two The endpoint 'and the lowest point in the lower boundary fitting curve is derived; the second fitting endpoint 'the upper boundary fitting end point and the lower boundary fitting end point are respectively the boring tool in the back image - upper boundary position and - lower boundary as position 24 201226844 = The heterogeneous device performs a misalignment sequence on each of the cutting edges to obtain the upper boundary axial position and the lower boundary path of each of the cutting blades, and the erroneous positioning is based on the upper boundary axial positions. The amount of axial deflection is obtained with the lower side = position. 1 2. Automated deflection tolerances as described by the requesters 中該平移構件包括—主結構體、—導螺桿、—滑動平=^及其 手輪’該主結構體連接於該基座,該滑動平台位於該主 之上方’該導螺桿與該滑動平台之間係以一螺旋運動相對結 合’藉由該手輪旋轉帶動該導螺桿,以使該滑動平台相對於該 主結構體魅平移独,对—光學檢職組_第二光學^ 測模組係分別設置於該滑動平台。 .子 3·如請求項i所述之_片之偏轉公差自動化光學檢測系统,盆 中該轉動機構包括-運動機構與一主軸,該運動機構包括 進馬達、-減速機以及-聯軸器,該步進馬達之一轉轴與該減 速機之-輸人端相連接,該減速機之輸出端與該聯軸器相連 接,該主轴之-端與該聯軸器相連接,該計算機裝置係透過一 運動控制模組來控制該步進馬達,該步進馬達係帶動該主轴轉 動,該主軸之另-端具有-圓録片承載部,該圓鑛片承載部用 以承載該圓鋸片。 4.如請求項3所述之圓錯片之偏轉公差自動化光學檢測系統,另 包括-校正用尺規,該校正用尺規包括—精密圓盤以及一校正 直尺,該精密圓盤係設置於該轉動機構之該主軸上的該圓鋸片 承載部,該第一光學檢測模組係根據該校正用尺規之一直尺邊 25 201226844 的影像取得該基準幸由。 5.如凊求項1所述之圓鑛片之偏轉公I自動化光學檢測系統,其 中該第-光學檢測模組包括一第一影像感測元件、_第一綱 與第-背光照明裝置,該第—影像感測元件係電性連接至該 冲异機裝置’該第—鏡頭的—光軸與該圓則的—旋轉轴平 ζ δ第Θ光‘㈣裝置係對應S置於該第—鏡頭的可拍攝範 6' 第二影像感測元件係電性連接至轉 ;::::::::-^ 7. 如請求則所述之圓鋸片之偏轉公差自動化光學檢則系統其 算程序完—; 26The translating member includes a main structural body, a lead screw, a sliding flat=^ and a hand wheel thereof. The main structural body is connected to the base, and the sliding platform is located above the main body. The lead screw and the sliding platform The driving screw is driven by the rotation of the hand wheel, so that the sliding platform is tilted relative to the main structure, and the optical inspection group _ second optical measurement module They are respectively arranged on the sliding platform. Sub-3. The deflection tolerance automatic optical detection system of the sheet according to claim i, wherein the rotating mechanism comprises a motion mechanism and a spindle, the motion mechanism including an input motor, a reducer and a coupling. One of the stepping motor shafts is connected to the input end of the speed reducer, the output end of the speed reducer is connected to the coupling, and the end of the main shaft is connected to the coupling, the computer device The stepping motor is controlled by a motion control module, and the stepping motor drives the spindle to rotate. The other end of the spindle has a circular recording bearing unit for carrying the circular saw sheet. 4. The deflection tolerance automatic optical inspection system of claim 4, further comprising a calibration ruler comprising: a precision disc and a correction ruler, the precision disc system setting The circular saw blade carrying portion on the main shaft of the rotating mechanism, the first optical detecting module obtains the reference according to the image of the straight edge 25 of the calibration ruler 201226844. 5. The automatic optical inspection system for a deflection of a circular ore piece according to claim 1, wherein the first optical detection module comprises a first image sensing element, a first and a first backlight illumination device, The first image sensing component is electrically connected to the scanner device. The optical axis of the first lens and the circular axis of the lens are ζ δ Θ light '(4) device corresponding S is placed in the first - The lens of the lens can be photographed 6' The second image sensing element is electrically connected to the turn;::::::::-^ 7. The deflection tolerance automatic optical inspection system of the circular saw blade as requested The calculation process is completed -; 26
TW99144624A 2010-12-17 2010-12-17 Automated optical inspection system for the runout tolerance of circular saw blades TWI413755B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99144624A TWI413755B (en) 2010-12-17 2010-12-17 Automated optical inspection system for the runout tolerance of circular saw blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99144624A TWI413755B (en) 2010-12-17 2010-12-17 Automated optical inspection system for the runout tolerance of circular saw blades

Publications (2)

Publication Number Publication Date
TW201226844A true TW201226844A (en) 2012-07-01
TWI413755B TWI413755B (en) 2013-11-01

Family

ID=46932998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99144624A TWI413755B (en) 2010-12-17 2010-12-17 Automated optical inspection system for the runout tolerance of circular saw blades

Country Status (1)

Country Link
TW (1) TWI413755B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478123A (en) * 2017-07-28 2017-12-15 上海理工大学 Electric tool cutting spring can integration test experimental bench
CN108296568A (en) * 2018-02-03 2018-07-20 宫电高周波设备(上海)有限公司 Cutting blade and its manufacturing method
TWI675545B (en) * 2019-03-15 2019-10-21 和碩聯合科技股份有限公司 Calibration method and calibration device of angular position sensor
CN112197699A (en) * 2020-09-27 2021-01-08 配天机器人技术有限公司 Method, system and device for measuring radial runout of machine tool spindle
CN115592563A (en) * 2022-11-29 2023-01-13 江苏华频电子科技有限公司(Cn) Detection conveying device for angle grinder saw blade and working method thereof
CN117781906A (en) * 2024-02-27 2024-03-29 深圳市鑫国钰精密工具有限公司 Double-lens cutter image measuring instrument and measuring method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683368B2 (en) * 2003-10-08 2011-05-18 日立工機株式会社 Tabletop circular saw
TWM320478U (en) * 2007-03-23 2007-10-11 Shi-Huei Yu Blade angle shift displayer device for circular saw
TWI374252B (en) * 2008-04-16 2012-10-11 Univ Nat Formosa Image measurement device and method for dimensional parameters of saw
TWM343572U (en) * 2008-06-23 2008-11-01 xi-hui Yu Device for displaying saw blade deflection angle for the rotary sawing machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478123A (en) * 2017-07-28 2017-12-15 上海理工大学 Electric tool cutting spring can integration test experimental bench
CN107478123B (en) * 2017-07-28 2019-07-23 上海理工大学 Electric tool cutting spring can integration test experimental bench
CN108296568A (en) * 2018-02-03 2018-07-20 宫电高周波设备(上海)有限公司 Cutting blade and its manufacturing method
TWI675545B (en) * 2019-03-15 2019-10-21 和碩聯合科技股份有限公司 Calibration method and calibration device of angular position sensor
CN112197699A (en) * 2020-09-27 2021-01-08 配天机器人技术有限公司 Method, system and device for measuring radial runout of machine tool spindle
CN115592563A (en) * 2022-11-29 2023-01-13 江苏华频电子科技有限公司(Cn) Detection conveying device for angle grinder saw blade and working method thereof
CN117781906A (en) * 2024-02-27 2024-03-29 深圳市鑫国钰精密工具有限公司 Double-lens cutter image measuring instrument and measuring method thereof

Also Published As

Publication number Publication date
TWI413755B (en) 2013-11-01

Similar Documents

Publication Publication Date Title
TW201226844A (en) Automated optical inspection system for the runout tolerance of circular saw blades
US8520066B2 (en) Automated optical inspection system for the runout tolerance of circular saw blades
CN103180096B (en) The assay method of tool dimension and determinator
US8396186B2 (en) Dental x-ray photographing device
TW201102212A (en) Cutting-edge position detecting method and cutting-edge position detecting apparatus
US20090268199A1 (en) Lens shape measuring apparatus and the method thereof, manufacturing method of spectacle lens, and manufacturing method of spectacles
US20090196527A1 (en) Calibration method of image planar coordinate system for high-precision image measurement system
EP2191935A3 (en) Eyeglass lens processing apparatus for processing periphery of eyeglass lens and eyeglass lens processing method
CN110645911A (en) Device and method for obtaining complete outer surface 3D contour through rotary scanning
CN204088274U (en) The wafer core grain automatic alignment apparatus of probe station
CN101750027B (en) Three-dimensional feature detection device
JP2001105293A (en) Spherical shape measuring device and glass lens working device having the same, and calibration method for spherical shape measuring device
CN110842683A (en) Welding seam grinding device and system based on machine vision
CN102419157A (en) Micro-depth-dimension automatic image measuring system
CN110657750B (en) Detection system and method for passivation of cutting edge of cutter
CN211014059U (en) Objective table for passivation detection of cutting edge of cutter
CN212059941U (en) 3D online visual inspection device of rail defect
JP6402734B2 (en) Dicing device, blade diagnostic device, blade diagnostic method and program
CN105783748A (en) Method of detecting diameter dimension tolerances of two end surfaces of miniature tapered roller
TWI331064B (en)
CN212567278U (en) Thermos cup size measurement device based on vision
TW201024005A (en) Turning tool calibration method with a non-contact measurement apparatus mounted on the machine and the processing machine
TW200936301A (en) Image-measuring device and method for image measurement of precision end-mills
JP2019098484A (en) Axial alignment device, device for lens processing, spectacle lens processing system, and spectacle lens processing method
JP2004268508A (en) Method for cutting single crystal ingot by wire saw

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees