TW200936301A - Image-measuring device and method for image measurement of precision end-mills - Google Patents

Image-measuring device and method for image measurement of precision end-mills Download PDF

Info

Publication number
TW200936301A
TW200936301A TW97106101A TW97106101A TW200936301A TW 200936301 A TW200936301 A TW 200936301A TW 97106101 A TW97106101 A TW 97106101A TW 97106101 A TW97106101 A TW 97106101A TW 200936301 A TW200936301 A TW 200936301A
Authority
TW
Taiwan
Prior art keywords
image
axial track
axial
end mill
tool
Prior art date
Application number
TW97106101A
Other languages
Chinese (zh)
Other versions
TWI320351B (en
Inventor
Jui-Chang Lin
Yung-Cheng Wang
Chieh-Cheng Chang
Hsiang-Yu Ho
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW97106101A priority Critical patent/TWI320351B/en
Publication of TW200936301A publication Critical patent/TW200936301A/en
Application granted granted Critical
Publication of TWI320351B publication Critical patent/TWI320351B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention is the image-measuring device and method for image measurement of precision end-mills. The cutter tool image measurement system for precision mills, consists of a control device, a multi-axial positioning stage, a device and an image sensor. The collet device and the image sensor are mounted on the multi-axial and movable. A measurable mill is fixed on the collet device, The image sensor is controlled by the control device for acquirement of the image from the measured mill. After the cutter image gained from the image sensor, a cutter image is performed by a software. Then, various measurement parameters of the measurable mill can be acquired.

Description

200936301 九、發明說明: 【♦明所屬之技術領域】 本發明係為一種刀a! 衫像置測褽置及方法,立 於-種利用影像拍攝擷-疋關 像而取得該刀具的各項外觀失數二判相擷取之影 只外規參數的量測裝置及方法。 【先前技術】 精密刀具是機械製造工 ❹的性能與品質的優劣對…“要的技術工具,刀具 有直接而二削加工的精度、效率和品質都 有直接而嚴重的影響,— 把刀具的好壞,其幾何形狀設計 ,、尺寸精度’都有很重要的 幻心響良好的刀刀形狀可以改 皮切屑流向使切屑順菩螺始 負者螺紅槽流出、容易散熱、減少切削 阻力、防止切相傷加工表面,有助提升刀具壽命與性能。 為了更為瞭解設計完成之刀具的精確外觀而能於刀呈 後加工研磨等製程獲得精確的控制,Η咖等人遂於2〇〇2 ❹ 支C C D來獲得鑽頭側面的輪廓,並用來預測描 述鑽頭幾何外觀的5個參數,藉此來檢測重新研磨的鑽頭。 (Hazra ^ Inspection of Reground Drill P〇int Geometry Using Silhouette Image > J · Mater· Process· Tech· > Vo卜 127 ’ 2002)。 ^而,前述的Hazra所提出的方法由於所採用的演算 法僅適用於取得鑽頭的外觀參數,卻無法應用於其他種類 的刀具,例如銑刀。而且,前述Hazra於取得刀具影像後, 亚無影像杈正的方法,讓Hazra提出的方法於計算過程經 5 200936301 並未獲得修正,導 常因為人為因素所導致的刀 致最後的運算結果誤差過大而無法:用差 【發明内容】 為了解決前述量測刀具的方法並 77 Iβ Χ不適用於量測銑刀的 刀具外形麥數,以及於運算過程 卜丹備衫像校正的功能, 導致最終運算結果誤差過大的問題,本 +赞明係利用影像擷 ❹ 取技術以及幾何模型建立等技術,先 y ^ ^ 1无取侍銑刀刀具的影像 後再進行系、列的影像處理後而形成二元黑白影像,並 使用該二it黑白影像進行影像角度校正及運算銑刀刀具的 外形參數,以期達到精確取得精密銑刀的外形參數之目 的。 本發明提供一種精密端銑刀之刀具影像量測裝置及方 法,其中: 該精密端銑刀之刀具影像量測裝置包含: 一控制裝置,其為具有影像運算處理能力且具有人機 控制介面的裝置; 一多軸向移動平台; 一夾制裝置,其包含: 一伺服馬達,其與該控制裝置電性連接,並接受該 控制裝置之控制而轉動其一轉動軸,且其可水平滑移設於 該多軸向移動平台表面;以及 一夾頭,其固定設於該伺服馬達的轉動軸,且其夾 制一待測端銑刀刀具;以及 200936301 -影像操取裝置,其與該控制裝置電性連接, 直滑移設於該多軸向移動平台表面,且其接受該控制置 ::制對該待測端銳刀刀具之方向進行影像掏取,並= 取結果傳送至該控制裝置; 、。貝 其中,該控制裝置依掳白兮旦〈推& 〃 直依據自d亥衫像擷取裝置所擷取之 像计异該待測端銳刀刀具之尺寸參數。 〜 該精密端銑刀之刀具影像量測方法包含: ❹ 取得待測端銑刀的影像,以—數位攝影裝置拍攝―待 /、%銳刀之長度方向之彩色影像; ”執行灰階化轉換,對該彩色影像進行灰階化處理,使 μ衫色影像形成一灰階影像; 執行二元化轉換,對該灰階影像進行二元化影傻絲 換,使該灰階影像形成一里白傻 … 專 的外_像;纟,·、、白㈣,以取得該待測端銑刀 進行2校正,對該黑白影像中之待測端銳刀之外廓影像 及又座標轉換而與一預設座標系統之一軸向平行;以 影像:::測端銳刀尺寸參數,量測該待測端銳刀之外廓 —彳工以及螺距,亚依據半徑及螺距運算螺旋角。 該夹制错本發明可透過該影像操取裝置而取得夾制於 換…裝置的待測端銑刀刀具之影像,並進行該灰階化轉 摩,κ匕轉換之後,強化並取得該待測端銑刀刀具的外 之外=且透過適當的影像校正’將取得的待測端銑刀刀具 邪影像執行角度轉換後’得以精確計算該待測端銑刀 7 200936301 刀具的外觀尺+ n 精確戶不 、,解決目前無法精確量測銑刀刀具參數及 月X不足的問題。 【實施方式】 請參考宽 、 旦 圖’其為本發明之精密端銑刀之刀具影像 、,、置之較佳貫施例,其包含一控制裝置(1 〇)、一多軸 二移動平台(2〇)、-影像擷取裝置(30)以及一夾制裝置 (40)。 © Λ 允該抆制骏置(1 0)為具有影像處理運算能力且具有人機 —面的邊置,例如一個人電腦或為一控制器,其可執 行一精密端銑刀刀具影像量測方法,本較佳實施例之控制 裝置(1 0)係為—個人電腦,其包含相互電性連接之一主機、 顯不益以及一輸入介面,其中,該主機設有與其他電控 設備(例如CCD、CM〇S、伺服馬達…等)連接之電氣訊號 輸出入介面。 _ 该多軸向移動平台(2〇)其為一三軸移動平台,其包含 一第一轴向軌道(22)、一第二軸向執道(24)以及一第三軸 向軌道(26),其中,該第一、第二以及第三軸向軌道(22、 24、26)分別互成垂直。本較佳實施例之多軸向移動平台(2〇) 之該第二軸向軌道(24)之軸向與該第一軸向軌道(22)之軸 向垂直’且其固定跨設於該第一軸向轨道(24)之局部表面 並與該第一軸向軌道(22)維持一間距,該第三軸向軌道(26) 局部可滑動套設於該第二軸向軌道(24),其軸向與該第一 軸向軌道(22)以及該第二軸向軌道(24)均呈垂直。 200936301 該影像擷取裝置(30)與該控制骏置(1 0)電性 可滑動套設於該第三軸向軌道(26),其接受該控制 置(1 0)電性連接,其200936301 IX. Description of the invention: [♦ Technical field to which the invention belongs] The present invention relates to a knife a! shirt image setting device and method, and obtains the various tools of the tool by using the image to capture the 撷-疋 image The measurement device and method for the external parameter are only affected by the appearance loss. [Prior Art] Precision tools are the advantages and disadvantages of the performance and quality of mechanical manufacturing. "The technical tools that the tool has direct and two-cutting precision, efficiency and quality have direct and serious effects. Good or bad, its geometric design, dimensional accuracy 'has a very important illusion. Good shape of the knife can change the direction of the chip to make the chip flow out of the screw red groove, easy to dissipate heat, reduce cutting resistance, Preventing the cutting of the surface from the cut surface helps to improve the tool life and performance. In order to better understand the precise appearance of the designed tool, it can obtain precise control in the process of the knife after the processing and grinding, etc. 2 ❹ CCD is used to obtain the profile of the side of the drill bit and used to predict the five parameters describing the geometric appearance of the drill bit to detect the regrind drill bit. (Hazra ^ Inspection of Reground Drill P〇int Geometry Using Silhouette Image > J · Mater·Process·Tech· > Vob 127 '2002). ^, the method proposed by Hazra mentioned above is only applicable to the algorithm used. The appearance parameters of the drill bit cannot be applied to other types of tools, such as milling cutters. Moreover, after Hazra acquired the tool image, the method of sub-image correction was used, and the method proposed by Hazra was not calculated in the calculation process by 5 200936301. Obtained the correction, the result of the knife caused by the human factor is too large to be too large to be used: the difference [invention] In order to solve the above method of measuring the tool and 77 Iβ Χ is not suitable for measuring the tool shape of the milling cutter The number of worms, as well as the function of correction in the calculation process, leads to the problem of excessive error in the final calculation result. This + praise system uses image acquisition technology and geometric model establishment techniques, first y ^ ^ 1 After the image of the cutter tool is processed, the image processing of the system and the column is performed to form a binary black and white image, and the image is corrected using the two black and white images to calculate the shape parameters of the milling cutter tool, so as to accurately obtain the precision milling cutter. The purpose of the shape parameter is as follows. The present invention provides a tool image measuring device and method for a precision end mill, wherein: The tool image measuring device of the close-end milling cutter comprises: a control device, which is a device having image processing processing capability and having a human-machine control interface; a multi-axial moving platform; a clamping device comprising: a servo motor And electrically connected to the control device, and controlled by the control device to rotate a rotating shaft thereof, and horizontally slidably disposed on the surface of the multi-axial moving platform; and a chuck fixedly disposed on the servo a rotating shaft of the motor, and clamping an end milling cutter tool to be tested; and 200936301 - an image capturing device electrically connected to the control device, directly sliding on the surface of the multi-axial moving platform, and accepting the Control setting:: the image is captured by the direction of the sharp knife of the end to be tested, and the result is transmitted to the control device; Among them, the control device relies on the image of the sharp-edged tool to be tested according to the image taken by the d-shirt image pick-up device. ~ The tool image measurement method of the precision end mill includes: 取得 Obtaining the image of the end mill to be tested, and taking the color image of the length direction of the waiting/and sharp knife with a digital camera; “Performing the grayscale conversion Gray-scale processing the color image to form a gray-scale image of the μ-shirt image; performing a binary conversion, and performing a binary-shadowing change on the gray-scale image to form the gray-scale image into one White silly... Special external _ image; 纟, ·,, white (four), to obtain the 2 end of the end mill to be tested, the black and white image of the sharp end of the sharp knife image and coordinate conversion One of the preset coordinate systems is axially parallel; the image::: measuring end sharp knife size parameter is used to measure the sharp edge of the end to be tested - the completion and the pitch, and the helix angle is calculated according to the radius and the pitch. The invention can obtain the image of the milling cutter tool to be tested which is clamped on the changing device through the image capturing device, and perform the gray-scale turning, after the κ匕 conversion, strengthen and obtain the test. The outer cutter of the end mill cutter = and through the appropriate Like the correction 'will be obtained after the end of the milling cutter tool image conversion angle to be measured' is able to accurately calculate the end milling cutter 7 200936301 The appearance of the tool + n accurate household, not solve the current accurate measurement of milling cutter The problem of the parameter and the month X is insufficient. [Embodiment] Please refer to the wide and small figure, which is a preferred embodiment of the tool image of the precision end mill of the present invention, which includes a control device (1 〇 ), a multi-axis two-moving platform (2〇), an image capturing device (30), and a clamping device (40). © Λ 抆 抆 骏 骏 1 (1 0) has image processing computing power and has The ergonomic-side edge, such as a personal computer or a controller, can perform a precision end milling cutter tool image measuring method. The control device (10) of the preferred embodiment is a personal computer. The utility model comprises a host electrically connected to each other, a display interface, and an input interface, wherein the host has an electrical signal input and output interface connected to other electronic control devices (such as CCD, CM〇S, servo motor, etc.). The multi-axial mobile platform (2〇 a three-axis moving platform comprising a first axial track (22), a second axial track (24) and a third axial track (26), wherein the first and second And the third axial track (22, 24, 26) are perpendicular to each other. The axial direction of the second axial track (24) of the multi-axial moving platform (2〇) of the preferred embodiment is the same as the first The axial track (22) is axially perpendicular 'and fixedly spanned over a partial surface of the first axial track (24) and maintains a distance from the first axial track (22), the third axial track (26) partially slidably sleeved on the second axial track (24), the axial direction of which is perpendicular to the first axial track (22) and the second axial track (24). The device (30) and the control device (10) are electrically slidably sleeved on the third axial track (26), and the control device (10) is electrically connected.

朝向該第一軸向軌道(2 2)。 之控制而進行景U金姻你并时4iS〜^丄„ ...Facing the first axial track (22). Controlling and doing the scenery, you will be 4iS~^丄„ ...

夾頭(46)以及一白光背光板(48)。 該台車(42)可滑動套設於該第一軸向軌道(22)。 該祠服馬達(44)固定於該台車(42)之表面,其與該控 制裝置(10)電性連接,並接受該控制裝置(1〇)之控制而轉 動其一轉動軸,其中,該伺服馬達(44)之轉動軸之軸向與 該第一軸向軌道(22)形成平行。 該夾頭(46)可夾制刀具’其固定設於該伺服馬達(44) 之轉動軸’其可隨該轉動軸轉動而改變與該伺服馬達(44) 之轉角。 該白光背光板(48)為可發出白色面光源且形成平板狀 的背光板,其固定設於該台車(42)表面於該夾頭(46)自由 端的對應位置。 使用時’先將一待測端銑刀刀具(50)夾制於該夾頭(46) 上,之後,使該控制裝置(1 0)執行該精密端銑刀刀具影像 量測方法,該控制裝置(1 〇)開始控制該影像擷取裝置(30) 以及該伺服馬達(44),擷取該待測端銑刀刀具(50)的各側 9 200936301 外觀影像,而該白光背光板(48)則提供白光背景 制裝置(1〇)的待測端銑刀刀具(50)於擷取結果更顯清:空 4控制裝置⑽則將該擷取結果先進行影像處理以 =後,經分析計算而獲得該待測端銑刀刀具(5〇)的; 疋角又、外偟尺寸以及刀刃曲線座標參數,提供刀且 機修正端銳刀研磨參數之依據。 八'、 晴夢考第二圖’該精密端銑刀刀具影 ❹=取得待測端銳刀的影像(71)、執行灰階二 寸參數(75)以及量測待測端銑刀刀刀曲線(76)。 二:待測端銳刀的影像(71)步驟中,係為該控制裝 置(10)由该影像操取裝置(30)取得其 刀 (5〇)的各角度之影像。 ”而銑刀刀具 執行灰階化轉換(72)步驟中,由於哕与德 所操取的影像可能為彩色影像,而彩色二置(3。) 該待測端銑刀刀具(5。)之各種尺寸及角色;=分析計算 角度關係非但並盔幫 助,反而可能影響處理效率以及精 … 將哕里彡#拖祝又因此,本步驟係 :色 =_置(3〇)之擷取影像先進行灰階化處理,將 /色〜像轉換為僅具有灰階之影像。 執行二元化轉換(73)步驟 成之灰階影像再度經過:元化處理'^驟(72)執行後形 之二元化影像。其中…元化:而形成僅具有黑或白 信P # 化轉換的方式可以為一單一閥 係為將灰階影像要轉為二元(黑白)數位影像, ”“象中设疋灰階值閥值),依照每個像素的灰階 10 200936301 值大小(大於或小於々),將 階值>,,纟-* 像素轉換為黑色或白色,當灰 255),而若灰階值…表矛2像素轉換為白色(灰階值為 〇) r 頦色偏黑,則像素轉換為黑色(灰 廓fMt ^ 、處理的待測端銑刀刀具(50)外 鄭知像’則如弟三圖所示。复 】& "中,本較佳實施例之該閥值 是係以〇tsu所提出的演算法獲得。 影像校正(7 4)步驟中,士狄#从 、 由於s亥待測端銑刀刀具(50)係 e ❹ 以人為方式夾制於該夾頭(46、 ()上,由於人為的挾持上所造 成該待測端銑刀刀具(50)之舳、、办—/ V〗 < 軸’“與έ玄伺服馬達(44)之轉動 軸之軸心產生偏心現象, 而此現象會造成該待測端銑刀刀 具在影像量測、計算上的誤差,因此在計算該待測端銑刀 刀具(50)之尺寸參數與刀刃曲線座標參數之前,於本步驟 進仃衫像之角度扠正,以調整影像中之待測端銑刀刀具 角度,以增進影像置測的準確性。其中,校正影像中之該 待測端銑刀刀具(50)可如下列公式以及第四圖、第五圖所 〇A collet (46) and a white backlight (48). The trolley (42) is slidably sleeved on the first axial track (22). The service motor (44) is fixed to the surface of the trolley (42), electrically connected to the control device (10), and controlled by the control device (1〇) to rotate a rotating shaft thereof, wherein The axial direction of the rotating shaft of the servo motor (44) is parallel to the first axial track (22). The chuck (46) can clamp a tool 'which is fixed to the rotating shaft of the servo motor (44) which can change the angle of rotation with the servo motor (44) as the rotating shaft rotates. The white backlight (48) is a backlight that can emit a white surface light source and is formed into a flat plate, and is fixedly disposed on a surface of the carriage (42) at a corresponding position of the free end of the chuck (46). When in use, a first end milling cutter tool (50) is first clamped on the collet (46), and then the control device (10) executes the precision end milling cutter tool image measuring method, the control The device (1 〇) starts to control the image capturing device (30) and the servo motor (44), and captures the appearance image of each side 9 200936301 of the end mill cutter tool (50), and the white light backlight panel (48) The white end background device (1〇) of the end mill cutter tool (50) is more clearly visible in the extraction result: the empty 4 control device (10) then the image is processed first to = after analysis Calculate and obtain the end mill cutter tool (5〇); the corner angle, the outer diameter and the blade curve coordinate parameters, and provide the basis for the knife and machine correction sharp knife grinding parameters. Eight', Qingmeng test second picture 'The precision end milling cutter tool shadow = obtain the image of the sharp knife to be tested (71), perform the gray scale two inch parameter (75) and measure the end milling cutter Curve (76). 2: In the image (71) step of the sharp end knife to be tested, the control device (10) obtains an image of each angle of the knife (5〇) by the image capturing device (30). In the step of performing the grayscale conversion (72) of the milling cutter tool, the image taken by the German and German may be a color image, and the color two is set (3.) The end milling cutter tool (5.) Various sizes and roles; = Analysis and calculation of the angle relationship not only with the help of the helmet, but may affect the processing efficiency and fine... Will you 哕 彡 拖 拖 拖 又 又 又 又 又 又 又 又 又 又 又 又 又 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本Grayscale processing is performed to convert the /color~ image into an image with only grayscale. Performing the binary conversion (73) step into grayscale image again: meta-processing "^step (72) execution of the shape Binary image. Among them: meta-form: and form only black or white letter P # conversion can be a single valve system to convert gray-scale images into binary (black and white) digital images, "" Set the grayscale value threshold), according to the grayscale 10 200936301 value of each pixel (greater than or less than 々), convert the order value >,, 纟-* pixels to black or white, when gray 255), and if Gray scale value... table spear 2 pixels converted to white (gray scale value 〇) r 颏 color black, then pixel conversion The black (gray profile fMt ^, the processed end mill cutter tool (50) outside the Zheng Zhixiang' is shown in the third figure. In the complex &", the threshold value of the preferred embodiment is Obtained by the algorithm proposed by 〇tsu. In the image correction (7 4) step, Shi Di # 、, because shai end mill cutter tool (50) is e ❹ artificially clamped to the chuck (46) , (), due to the artificial restraint caused by the end mill cutter tool (50), the operation of - / V " < axis '" and the axis of the axis of rotation of the servo motor (44) An eccentricity phenomenon occurs, and this phenomenon causes an error in the image measurement and calculation of the end mill cutter tool to be tested. Therefore, before calculating the size parameter and the blade curve coordinate parameter of the end mill cutter tool (50), In this step, the angle of the jersey image is adjusted to adjust the angle of the milling cutter tool to be tested in the image, so as to improve the accuracy of the image reading, wherein the milling cutter tool (50) in the corrected image can be used. As shown in the following formula and the fourth and fifth figures

Zx = dx’. cos Θ + (dy-y). sin 0 Ay = -Ax'· sin Θ + (Ay'-y) · cos Θ y ~ Oy'-Oy 其中,第四圖之〇、A座標分別表示並未產生偏心現 象的待測端銑刀刀具(50)之根部以及刀頭之座標,而〇,以 及A’則代表已經產生偏心現象的待測端銳刀刀具(5〇)之根 部及刀頭座標,因此,第四圖以及第五圖之: <9為影像中之為待測端銑刀刀具(50)與一預設座標系 、统之XZ平面之夾角。 11 200936301 β 2為影像中之為待測端銑刀刀具(50)與該預設座標系 統之ΧΥ平面之夾角。 y :影像中之為待測端銑刀刀具(50)之根部偏移量。 虽β~ 2數值越大,代表影像中之待測端銑刀刀具(5〇) 之分別朝± Ζ以及± γ偏心程度越嚴重。而偏心程度則將 造成量測影像中之該待測端銑刀刀具(5〇)之尺寸與實際數 值有所偏I ’如第五圖所示,Θ將導致量測該待測端銳刀 ❹ ❹ (50)之直彳二產生误差,而0 2則導致量測該待測端銑刀 刀具(50)之長度產生誤差。而經過上述公式計算之後,可 以將偏離Α,、〇,分別轉換為該預設座標系統之α、〇座標, 讓後續步驟即將量測該待測端銑刀刀具(5〇)之各種尺:參 數能更為接近實際值。 量測待測端銑刀尺寸參數(75)步驟 ::為該量測影像中之待測端跳刀刀具州之二 (螺旋角)a = tan·丨生空1 360z =中’ 為該伺服馬達(44)之轉動轴旋轉角卢。 量測待測端銳刀刀刀曲線(76)步驟二 驟(75)量刺夕„ , 知、依據前述步 J里測之蜍距(Ζ)、銑刀半徑值(〇以及 以獲得A、B兩點於該預設座標系” 《 ) ’玎 A = (Ax, Ay, Αζ),其中: ”刀別為.Zx = dx'. cos Θ + (dy-y). sin 0 Ay = -Ax'· sin Θ + (Ay'-y) · cos Θ y ~ Oy'-Oy where, the fourth figure, the A coordinate The roots of the end mill cutters (50) and the coordinates of the cutter heads that do not produce eccentricity are respectively indicated, and 〇, and A' represent the roots of the sharp cutters (5〇) of the end to be tested that have generated eccentricity. And the cutter head coordinates, therefore, the fourth figure and the fifth figure: <9 is the angle between the end mill cutter tool (50) and the XZ plane of a preset coordinate system and the system in the image. 11 200936301 β 2 is the angle between the end mill cutter tool (50) and the plane of the preset coordinate system in the image. y : The root offset of the end mill cutter tool (50) in the image. Although the value of β~ 2 is larger, the degree of eccentricity of ± Ζ and ± γ of the end mill cutter (5〇) in the representative image is more serious. The degree of eccentricity will cause the size of the end mill cutter tool (5〇) in the measurement image to be offset from the actual value I'. As shown in the fifth figure, the Θ will result in measuring the sharp knife to be tested.彳 ❹ (50) produces an error, and 0 2 causes an error in measuring the length of the end mill cutter (50) to be tested. After the above formula is calculated, the deviations Α, 〇, can be converted into the α and 〇 coordinates of the preset coordinate system, so that the subsequent steps are to measure the various sizes of the end milling cutter tool (5〇): The parameters can be closer to the actual value. Measuring the size parameter of the end mill to be tested (75) Step: For the measurement end of the measurement image, the state of the tool is jumped to the second state (helix angle) a = tan·丨生空1 360z =中' is the servo The rotation axis of the motor (44) is rotated by a horn. Measuring the curve of the sharp knife to be tested (76) Step 2 (75) Measure the thorns, know, according to the above-mentioned step J measured the distance (Ζ), the cutter radius value (〇 and get A, B is two points in the preset coordinate system "" ) '玎A = (Ax, Ay, Αζ), where: "The knife is not.

Ax = -r · sin( 0 ^ ,Ax = -r · sin( 0 ^ ,

Ay = r · cos( 0 J, 12 200936301 Αζ = 0 ; B = (Bx, By,巳z),其中:Ay = r · cos( 0 J, 12 200936301 Αζ = 0 ; B = (Bx, By, 巳z), where:

Bx = 0,Bx = 0,

By = r, 巳z=-Z 。 依據持續改變的<9 1持續描繪,即可獲得如第六圖所 示的刀刃曲線而顯示於該控制裝置(1 0)之人機介面。 進一步地,在步驟(74)計算該0、0 2時,得對各影像 ® 圖之該Θ、0 2執行一線性化以及一平均化之計算,其係 分別為對該0、Θ 2進行一算數平均數之計算以及一最小 平方合之計算,使最終獲得之0、0 2之誤差降低。 【圖式簡單說明】 第一圖為本發明較佳實施例之立體圖。 第二圖為本發明較佳實施例之流程圖。By = r, 巳z=-Z. According to the continuously changing <9 1 continuous drawing, the blade curve as shown in Fig. 6 can be obtained and displayed on the human machine interface of the control device (10). Further, when the 0 and 0 2 are calculated in step (74), a linearization and an averaging calculation are performed on the Θ, 0 2 of each image of the image, respectively, which are performed on the 0 and Θ 2, respectively. The calculation of an arithmetic mean and the calculation of a least squares result in a lower error in the final 0, 0 2 . BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a perspective view of a preferred embodiment of the present invention. The second figure is a flow chart of a preferred embodiment of the present invention.

第三圖為本發明較佳實施例之一待測端銑刀刀具參數 示意圖。 第四圖為本發明較佳實施例之該待測端銑刀刀具之一 偏心狀態座標示意圖。 第五圖為本發明較佳實施例之一預設座標系統與偏心 狀態及量測誤差示意圖。 第六圖為本發明較佳實施例之一待測端銑刀刀具刀刃 曲線示意圖。 13 200936301 【主要元件符號說明】 (10)控制裝置 (20)多軸向移動平台 (22)第一軸向軌道 (24)第二軸向軌道 (26)第三軸向軌道 (30)影像擷取裝置 (32)數位攝影機 (34)鏡頭 (40)夾制裝置 (42)台車 (44)伺服馬達 (46)夾頭 (4 8)白光背光板 (50)待測端銑刀刀具 (Z)螺距 ⑴銑刀半徑值 (α )螺旋角 14The third figure is a schematic diagram of the tool parameters of the end mill to be tested according to a preferred embodiment of the present invention. The fourth figure is a schematic diagram of an eccentric state coordinate of the end mill cutter to be tested according to a preferred embodiment of the present invention. The fifth figure is a schematic diagram of a preset coordinate system and an eccentricity state and a measurement error according to a preferred embodiment of the present invention. Figure 6 is a schematic view showing the curve of the edge cutter of the end mill cutter to be tested according to a preferred embodiment of the present invention. 13 200936301 [Description of main component symbols] (10) Control device (20) Multi-axis moving platform (22) First axial track (24) Second axial track (26) Third axial track (30) Image撷Pickup device (32) digital camera (34) lens (40) clamping device (42) trolley (44) servo motor (46) chuck (4 8) white backlight (50) end mill cutter (Z) Pitch (1) milling cutter radius value (α) helix angle 14

Claims (1)

200936301 十、申請專利範圍: 控 1 ·—種精密端銑刀之刀具影像 一控制襄置,其為具有影像運 制介面的裝置; 量測裴置 算處理 其包含: 能力且具有人機 一多軸向移動平台; 一夾制裝置,其包含: 置電性連接,並接受該 ’且其可水平滑移設於 ❹ 一伺服馬達,其與該控制裝 才工制衣置之控制而轉動其一轉動車由 該多軸向移動平台表面;以及 制一待測端銑刀刀具;以及 -影像操取裝置,其與該控制 直滑移設於該多轴向移動平台表面連接,其可 之控制對該待測端銳刀刀具之方向進行=該控制裝 取結果傳送至該控制裝置; 〜象擷取,並將: 料ί:待Γ制裝置依據自該影像擷取裳置所操取。 像4异4相㈣刀刀具之尺寸參數。 ㈣2曰:二申請專利範圍帛1項所述之精密端銳刀之” 衫像置測裝置,其中, 該多輛向移動平台包含: 一第一軸向執道; 第二轴向軌道, 局部表面,其局部與該第 向與該第一軸向軌道之軸 其固定跨設於該第一軸向軌道之 —軸向軌道維持一間距,且其軸 向成垂直;以及 15 200936301 一第三軸向轨道’其局部可滑動套設於該第二軸向 軌道’其軸向與該第一軸向轨道以及該第二軸向軌道之軸 向均呈垂直; 該影像擷取裝置可滑動套設於該第三軸向軌道,且其 一影像擷取端朝該第一軸向軌道;以及 該夾制裝置可滑動套設於第 Ο 3 .如申請專利範圍第2項所述之精密端銑刀之刀具 影像量測裝置,其中,該夾制裝置包含: 一台車,其可滑動套設於該第一軸向軌道;以及 一白光背光板,其為可發出白色面光源且呈平板狀, 其固定設於該台車局部表面; 其中,該伺服馬達固定設於該台車表面,且其轉動軸 以及該夾頭則置於該白光背光板之對應位置。 4.如申請專利範圍第1或2哎3馆张、— jc A d項所述之精密端銑刀 之刀具影像量測裝置,該影像擷取 ❹ LV K . 1豕”取裝置包含一數位攝影機 以及套設於該數位攝影機之一鏡頭。 16 200936301 2校正,對該黑白影像中之待測端銑 進仃角度座標轉換而與一 廓〜像 及 頂°又座榇糸統之一軸向平行;以 與像端銑刀尺寸參數,量測該待測端銑刀之外廓 〜像之+㈣及螺距,並依據半徑及螺距運算螺旋角。 媸/ -包含-量測待測端銑刀刀刃曲線步驟,Α ❹ 據+徑、螺距以及螺旋角描繪該待測端銑刀之-刀;; 曲線。 J ^ θ申%專利範圍第5或6項所述之精密端銑刀之刀 ν像里測方法’其中’該影像校正步驟係先測得該待測 端銑刀之外廓影像與該預設座標系統之一 ΧΥ彳面以及二 平面之夾角後,在依據測得的夾角進行座標轉換。 旦8.如申請專利範圍帛7工頁所述之精密端銑刀之刀具影 像量測方法,其中,取得該失角後,先對爽角執行—線性 ❹化以及平均化之計算,而後再依據計算結果進行座標轉 換。 9.如申請專利範圍第8項所述之精密端銑刀之刀星岑 像里測方法,該線性化運算為一算數平均數之計算。 1 0.如申請專利範圍第8項所述之精密端銑刀之刀具影 像里測方法,該平均化之計算為一最小平方合之計算。 十一、圖式: 如次頁。 17200936301 X. Patent application scope: Control 1 · A kind of precision end milling cutter tool image control device, which is a device with image processing interface; measurement and calculation processing includes: capability and more man-machine An axially moving platform; a clamping device comprising: electrically connected, and receiving the 'and horizontally slidable on a servo motor, which rotates with the control of the control device Rotating the vehicle to move the surface of the platform by the multi-axis; and forming an end mill cutter to be tested; and - an image manipulation device connected to the surface of the multi-axis moving platform, the controllable pair The direction of the sharp knife to be tested is carried out = the result of the control loading is transmitted to the control device; the image is captured and the material is: ί: the device to be clamped is operated according to the image taken from the image. Size parameters like 4 different 4-phase (four) knife tools. (4) 2 曰: The application of the stylus-like device of the precision end sharp knife described in the scope of patent application ,1, wherein the plurality of moving platforms include: a first axial way; a second axial track, a part a surface, the portion of which is fixed to the axis of the first axial track and fixed to the axial track of the first axial track, and the axial direction thereof is perpendicular; and 15 200936301 a third The axial track is partially slidably sleeved on the second axial track' axially perpendicular to the axial direction of the first axial track and the second axial track; the image capturing device is slidable Provided in the third axial track, and an image capturing end thereof faces the first axial track; and the clamping device is slidably sleeved on the third side. The precision end is as described in claim 2 a tool image measuring device for a milling cutter, wherein the clamping device comprises: a vehicle slidably sleeved on the first axial track; and a white light backlight plate that emits a white surface light source and has a flat shape , which is fixedly disposed on a partial surface of the trolley; Wherein, the servo motor is fixedly disposed on the surface of the trolley, and the rotating shaft and the collet are placed at corresponding positions of the white backlight. 4. If the application scope is 1 or 2, 3, 3, jc A d The tool image measuring device of the precision end milling cutter described in the item, the image capturing device LV K. The first device comprises a digital camera and a lens set on the digital camera. 16 200936301 2 Correction, the side end of the black and white image is milled into the 仃 angle coordinate conversion and parallel with one of the profile ~ image and the top part of the axis; with the image size of the end mill, the amount Measure the contour of the end mill to be tested, the +(4) and the pitch, and calculate the helix angle according to the radius and pitch.媸 / - Including - measuring the end of the milling cutter edge curve step, 描绘 描绘 According to the + diameter, pitch and helix angle, the knife of the end mill to be tested is drawn; J ^ θ % % % % % % % % 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密 精密After one of the coordinate systems and the angle between the two planes, the coordinates are converted according to the measured angle. Dan 8. For the tool image measurement method of the precision end mill described in the patent application 帛 7 work page, after obtaining the lost angle, first perform the calculation of the cool angle and the linearization and averaging, and then Coordinate conversion based on the calculation result. 9. The method of measuring the edge of a precision end mill as described in claim 8 of the patent application, the linearization operation is the calculation of an arithmetic mean. 1 0. The method of measuring the image of the tool of the precision end mill according to item 8 of the patent application, the calculation of the averaging is a calculation of the least squares. XI. Schema: As the next page. 17
TW97106101A 2008-02-21 2008-02-21 Image-measuring device and method for image measurement of precision end-mills TWI320351B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97106101A TWI320351B (en) 2008-02-21 2008-02-21 Image-measuring device and method for image measurement of precision end-mills

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97106101A TWI320351B (en) 2008-02-21 2008-02-21 Image-measuring device and method for image measurement of precision end-mills

Publications (2)

Publication Number Publication Date
TW200936301A true TW200936301A (en) 2009-09-01
TWI320351B TWI320351B (en) 2010-02-11

Family

ID=44866793

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97106101A TWI320351B (en) 2008-02-21 2008-02-21 Image-measuring device and method for image measurement of precision end-mills

Country Status (1)

Country Link
TW (1) TWI320351B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852008A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Manual adjusting platform of cutter optical measuring system
CN103852007A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Automatic two-dimensional tool measuring assisting device
CN103852028A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Manual two-dimensional cutter measurement auxiliary device
CN103852026A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Automatic measuring tool loading platform

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852008A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Manual adjusting platform of cutter optical measuring system
CN103852007A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Automatic two-dimensional tool measuring assisting device
CN103852028A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Manual two-dimensional cutter measurement auxiliary device
CN103852026A (en) * 2012-11-30 2014-06-11 昆山允可精密工业技术有限公司 Automatic measuring tool loading platform

Also Published As

Publication number Publication date
TWI320351B (en) 2010-02-11

Similar Documents

Publication Publication Date Title
WO2018201591A1 (en) Rapid measurement method for 3d curved glass
CN106017325B (en) Improved non-contact optical measurement method for complex surface and irregular object volume
WO2017045304A1 (en) Method for computing imaging spots using ccd photosensitive device
CN110220481B (en) Handheld visual detection equipment and pose detection method thereof
WO2017113146A1 (en) Speckle imaging device
CN105436532B (en) The presetting cutter method of numerically controlled lathe automatic tool setting device
TWI493153B (en) Non-contact measurement device and method for object space information and the method thereof for computing the path from capturing the image
TW200940242A (en) Measurement system for inspecting slope angle and flat end dimension of carvers
CN109623822B (en) Robot hand-eye calibration method
CN108188835B (en) Machine vision-based numerical control machine tool spindle thermal elongation testing device and testing method
CN109489581B (en) Large-pitch conical external thread detection device and method
TW200936301A (en) Image-measuring device and method for image measurement of precision end-mills
JP2010234451A (en) Workpiece machining method and machining center
JP2008087080A (en) Method and device for positioning tool
JP7353757B2 (en) Methods for measuring artifacts
JP4705792B2 (en) Inter-axis angle correction method
CN110640303B (en) High-precision vision positioning system and positioning calibration method thereof
TWI413755B (en) Automated optical inspection system for the runout tolerance of circular saw blades
CN110657750B (en) Detection system and method for passivation of cutting edge of cutter
TWI374251B (en) An image-measuring apparatus for dimensional parameters of drill and method to performing the same
TWI493638B (en) Electrical parameter adjusting device and adjusting method
CN112361982B (en) Method and system for extracting three-dimensional data of large-breadth workpiece
JP2012213814A (en) Automatic drill tip processing machine
JP5273563B2 (en) Tool position measuring method and apparatus
TW201024005A (en) Turning tool calibration method with a non-contact measurement apparatus mounted on the machine and the processing machine

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees