201226585 六、發明說明: 【發明所屬之技術領域】 [⑽1] 本發明涉及一種殼體及其製造方法。 【先前技射Ϊ】 [0002] 真空鍍膜技術(PVD)係一種非常環保的成膜技術。以真 空鍍膜的方式所形成的膜層具有高硬度、高耐磨性、良 好的化學穩定性、與基體結合牢固以及亮麗的金屬外觀 等優點,因此真空鍍膜在鎂、鎂合金及不銹鋼等金屬基 材表面裝飾性處理領域的應用越來越廣。 [0003] 然而,由於鎂或鎂合金的標準電極電位很低,且PVD裝飾 性塗層本身不可避免的會存在微小的孔隙,如針孔、裂 紋,並且鎂及鎂合金基體會發生微電池腐蝕作用,形成 很大的膜-基電位差,加快了微電池的腐蝕速率,因此, 直接於鎮或鎮合金基體表面鑛覆諸如TiN層、TiN層、201226585 VI. Description of the Invention: [Technical Field to Be Invented] [(10) 1] The present invention relates to a casing and a method of manufacturing the same. [Previous technology] [0002] Vacuum coating technology (PVD) is a very environmentally friendly film forming technology. The film formed by vacuum coating has the advantages of high hardness, high wear resistance, good chemical stability, strong bonding with the substrate and a beautiful metallic appearance. Therefore, the vacuum coating is applied to metal bases such as magnesium, magnesium alloy and stainless steel. The application of decorative surface treatment is becoming more and more extensive. [0003] However, since the standard electrode potential of magnesium or magnesium alloy is very low, and the PVD decorative coating itself inevitably has minute pores, such as pinholes, cracks, and micro-cell corrosion of magnesium and magnesium alloy substrates. The effect is to form a large membrane-base potential difference, which accelerates the corrosion rate of the microbattery. Therefore, it directly coats the surface of the town or town alloy substrate such as TiN layer, TiN layer,
CrN層等具有色彩的PVD裝飾性塗層,不能有效防止所述 鎂或鎂合金基體發生電化學腐蝕,同時該PVD裝飾性塗層 本身也會發生異色、脫落等現象。 【發明内容】 [0004] 有鑒於此,提供一種具有良好的耐腐蝕性及裝飾性外觀 的殼體。 [0005] 另外,還提供一種上述殼體的製備方法。 [0006] —種殼體,包括鎂或鎂合金基體,在該鎂或鎂合金基體 表面形成防腐蝕層,並於防腐蝕層表面形成色彩層,所 述防腐蝕層包括依次形成於鎂或鎂合金基體表面的鎂層 099144680 表單編號A0101 第4頁/共14頁 0992077191-0 201226585 [0007] [0008] [0009] [0010] 〇 toon] [0012] Ο 和氮氧化鎂層。 種殼體的製備方法,包括以下步驟: 提供鎂或鎂合金基體; 在該鎂或鎂合金基體上磁控濺射防腐蝕層,所述防腐蝕 層包括依次形成於鎂或鎂合金基體表面的鎂層和氮氧化 鎂層; 在該防腐姓層上磁控濺射色彩層。 所述殼體的製備方法,籍由磁控濺射法依次於鎂或鎂合 金基體上形成防腐蝕層及具有裝飾悻的色彩層,所述防 腐蝕層包括依次形成於鎂或鎂合金基體表面的鎂層和氮 氧化鎂層’所述氮氡化鎂層中含有Mg_0相及Ν的固溶相, Ν的固溶作用使晶格產生較大的畸變,使得所述氮氧化鎂 層的膜層晶粒細小,易於生成非晶結構,使膜層更緻密 ’提高了殼體的耐腐蝕性。 所述防腐蝕層中位於基體與氮氧化鎂層之間的鎂層,還 能起到一個過渡緩衝層的作用,調節基體與氮氧化鎂之 間的晶格畸變應力。使得殼體耐腐蝕性提高的同時,還 可避免所述色彩層發生異色、脫落等失效現象 ,從而使 該殼體經長時間使用後仍具有較好的裝飾性外觀。 【實施方式】 [0013] 099144680 請參閱圖1,本發明一較佳實施例的殼體10包括鋁/鎂金 屬基體11、依次形成於該鋁/鎂金屬基體u上的防腐蝕層 13及色彩層15。該殼體1〇可以為扎電子產品的殼體,也 可為工業、建築用件及汽車等交通工具的零部件等。 表單編號A0101 第5頁/共U胃 0992077191-0 201226585 [0014] [0015] [0016] [0017] [0018] [0019] 099144680 所述鋁/鎂金屬基體1 1的材質為鋁' 鋁合金、鎂或鎂合金 0 所述防腐蝕層13包括鋁銅膜131和氮化鋁梯度膜133,所 述鋁銅膜131形成於鋁/鎂金屬基體11的表面,所述氮化 鋁梯度膜133形成於鋁銅膜131的表面。所述鋁銅膜131 的厚度為1.0〜3.0 μπι;所述氮化鋁梯度膜133的厚度為 0.5〜1.0"m。所述氮化鋁梯度膜中ν的原子百分含量由 靠近鋁/鎂金屬基體至遠離鋁/鎂金屬基體的方向呈梯度 增加。 所述色彩層15為氮鈦膜層,其厚度為丨.0〜3 〇//m。可以 理解,所述色彩層15還可以為氮鉻膜層或其他具有裝飾 性的膜層。 所述防腐蝕層13及色彩層15均可籍由磁控濺射法沉積形 成。 本發明一較佳實施例的製造所述殼體丨〇的方法主要包括 如下步驟: 提供銘/鎂金屬基體u,並祕/鎮金屬基體次進行 研磨及電_光。電解拋光後,再依:欠用絲子水和無 水乙醇對該銘/鎂金屬基體n表面進行擦拭。再將擦拭後 的紹/鎂金屬基體11放入盛褒有丙_溶液的超聲波清洗器 中進仃震動清洗’以除去銘/錢金屬基體n表面的雜質和 油污等。清洗完畢後吹幹備用。 對經上述處理後的銘/鎂金屬基體n的表面進行氬氣電漿 清,’進-步去除結/鎮金屬基體12表面的油污以改善 表單編號A0]0] 第6頁/共14頁 0992077191-0 [0020] 201226585 鋁/鎂金屬基體11表面與後續塗層的結合力。 [0021] Ο 〇 [0022] 將基體11固定於一磁控濺射鍍膜機中的鍍膜室中2〇,將 基材11烘乾後置入鍍膜機中進行PVD鍍膜。結合參閱圖2 ,提供一鍍膜機100,鍍膜機100包括一鍍膜室20及用以 對所述鍍膜室20抽真空的一真空泵30。該鍍膜室20内設 有轉架(未圖示)及擋板(未圖示)、二第一乾材22及 二第二耙材23。轉架帶動基材11沿圓形軌跡21運行,且 基材11在沿軌跡21運行時亦自轉;擋板用以在清洗靶材 時隔離濺射的粒子濺射至基材U,其籍由電動控制自動 打開或關閉。二第一乾材22與二第二靶材23關於軌跡21 的中心對稱設置’且二第一靶材22相對地設置在軌跡21 的内外側’二第二靶材23相對地設董在軌跡21的内外側 。每一第一乾材22及每一第二靶材23的兩端均設有氣源 通道24 ’鑛膜時,氣體經由該氣源通道24進入所述鍍膜 至2〇。當基材11穿過二第一靶材22之間時,將鍍上第一 靶材22表面濺射出的粒子,當基材丨丨穿過二第二靶材23 之間時’將錄上第二乾材23表面激射出的粒子。 該電水研洗的具體操作及工藝參數可為:對該鍍膜室進 仃抽真空處理至本底真空度為丨.,以 250 500sccm (標準狀態毫升/分鐘)的流量向鍍膜室中 通入純度為99. 999%的氩氣,於銘/鎂金屬基體u上施加 -300 —800V的偏壓’對鋁/鎂金屬基體丨1表面進行電漿 清洗,清洗時間為3~l〇min。 [0023] 099144680 在對鎮或鎂合金基體u進行電漿清洗後在雜或錢合 金基體U上形成防腐料13。首S形成所述防腐钱層13 表單編號A0101 第7百 Λ/共 14 頁 0992077191-0 201226585 中的鎂層131。形成該鎂層131的具體操作及工藝參數如 下·以氬氣為工作氣體,調節氬氣流量為1〇〇〜200sccm ,佔空比為50%~80%,於鎂或鎂合金基體η上施加一 50 — 1 00V的偏壓,並加熱鍍膜室至8〇~12〇。(3 (即濺射溫 度為80~120°C );選擇鎂為靶材,設置其功率為5〜8kw ,沉積鎂層131。沉積該鎂層131的時間為20~40min。 [0024] 形成鎂層131後,在該鎂層131上形成氮氧化鎮層133, 以氬氣為工作氣體’设置氬氣流量為l〇〇~3〇〇sccm,以 鼠氣及氧氣為反應氣體’设置.氮氣..流量為3〇〜i〇〇sccm, 氧氣的流量為50〜lOOsccm,設置佔空比為50%~80%,對 基體11施加-50〜-100V的偏壓,選擇鎂為乾材,設置其 功率為5〜8kw,沉積氮氧化鎂層133,沉積該氮氧化鎂層 133的時間為40-90min。A color PVD decorative coating such as a CrN layer cannot effectively prevent electrochemical corrosion of the magnesium or magnesium alloy substrate, and the PVD decorative coating itself may also be colored, peeled off, and the like. SUMMARY OF THE INVENTION [0004] In view of the above, a housing having good corrosion resistance and decorative appearance is provided. In addition, a method of preparing the above casing is also provided. a casing comprising a magnesium or magnesium alloy substrate, forming an anti-corrosion layer on the surface of the magnesium or magnesium alloy substrate, and forming a color layer on the surface of the anti-corrosion layer, the anti-corrosion layer including sequentially forming magnesium or magnesium Magnesium layer on the surface of the alloy substrate 099144680 Form No. A0101 Page 4 of 14 Page 0992077191-0 201226585 [0007] [0009] [0010] 〇toon] [0012] Ο and magnesium oxynitride layer. A method for preparing a shell, comprising the steps of: providing a magnesium or magnesium alloy substrate; magnetron sputtering an anti-corrosion layer on the magnesium or magnesium alloy substrate, wherein the anti-corrosion layer comprises sequentially forming a surface of the magnesium or magnesium alloy substrate a magnesium layer and a magnesium oxynitride layer; a magnetron sputtering color layer on the anticorrosive layer. The method for preparing the shell comprises: sequentially forming an anti-corrosion layer and a color layer having a decorative enamel on the magnesium or magnesium alloy substrate by a magnetron sputtering method, wherein the anti-corrosion layer comprises sequentially forming a surface of the magnesium or magnesium alloy substrate The magnesium layer and the magnesium oxynitride layer contain the Mg_0 phase and the solid solution phase of the lanthanum, and the solid solution of the lanthanum causes the lattice to be largely distorted, so that the film of the magnesium oxynitride layer The layer grains are fine, and it is easy to form an amorphous structure, which makes the film layer denser', which improves the corrosion resistance of the shell. The magnesium layer between the substrate and the magnesium oxynitride layer in the anti-corrosion layer can also function as a transition buffer layer to adjust the lattice distortion stress between the substrate and the magnesium oxynitride. When the corrosion resistance of the casing is improved, the color layer may be prevented from being colored, peeled off, etc., so that the casing has a good decorative appearance after being used for a long time. [0013] Referring to FIG. 1, a housing 10 according to a preferred embodiment of the present invention includes an aluminum/magnesium metal substrate 11, an anti-corrosion layer 13 and a color sequentially formed on the aluminum/magnesium metal substrate u. Layer 15. The casing 1〇 may be a casing for an electronic product, or may be a component of a vehicle such as an industrial, a building, or an automobile. Form No. A0101 Page 5 / Total U stomach 0992077191-0 201226585 [0014] [0019] [0019] [0019] 099144680 The aluminum/magnesium metal substrate 1 1 is made of aluminum 'aluminum alloy, Magnesium or Magnesium Alloy 0 The anti-corrosion layer 13 includes an aluminum-copper film 131 and an aluminum nitride gradient film 133 formed on the surface of the aluminum/magnesium metal substrate 11, and the aluminum nitride gradient film 133 is formed. On the surface of the aluminum copper film 131. The aluminum-copper film 131 has a thickness of 1.0 to 3.0 μm; and the aluminum nitride gradient film 133 has a thickness of 0.5 to 1.0 " m. The atomic percentage of ν in the aluminum nitride gradient film increases in a gradient from the aluminum/magnesium metal substrate to the direction away from the aluminum/magnesium metal substrate. The color layer 15 is a titanium nitride film layer having a thickness of 丨.0 to 3 〇//m. It can be understood that the color layer 15 can also be a nitrochrome film layer or other decorative film layer. The anti-corrosion layer 13 and the color layer 15 can be formed by magnetron sputtering deposition. The method for manufacturing the casing 主要 according to a preferred embodiment of the present invention mainly comprises the steps of: providing an ingot/magnesium metal matrix u, and a micro/sand metal matrix for grinding and electro-optic. After electropolishing, the surface of the m/magnesium metal substrate n is wiped by the use of silk water and anhydrous ethanol. Then, the wiped/magnesium metal substrate 11 is placed in an ultrasonic cleaner containing a solution of propylene solution to remove the impurities and oil stains on the surface of the metal substrate n. After cleaning, blow dry and set aside. The surface of the ingot/magnesium metal substrate n subjected to the above treatment is subjected to argon plasma cleaning, and the oil stain on the surface of the junction/town metal substrate 12 is removed to improve the form number A0]0] Page 6 of 14 0992077191-0 [0020] 201226585 The adhesion of the surface of the aluminum/magnesium metal substrate 11 to the subsequent coating. [0021] The substrate 11 is fixed in a coating chamber in a magnetron sputtering coating machine, and the substrate 11 is dried and placed in a coating machine for PVD coating. Referring to Figure 2, a coater 100 is provided. The coater 100 includes a coating chamber 20 and a vacuum pump 30 for evacuating the coating chamber 20. The coating chamber 20 is provided with a turret (not shown), a baffle (not shown), two first dry materials 22, and two second girders 23. The turret drives the substrate 11 to run along the circular trajectory 21, and the substrate 11 also rotates when running along the trajectory 21; the baffle is used to isolate the sputtered particles from being sputtered onto the substrate U when cleaning the target. The electric control is automatically turned on or off. The first dry material 22 and the second second target 23 are symmetrically disposed about the center of the track 21 and the two first targets 22 are oppositely disposed on the inner and outer sides of the track 21. The second target 23 is oppositely disposed on the track. The inner and outer sides of 21. When both ends of each of the first dry material 22 and each of the second targets 23 are provided with a gas source passage 24' mineral film, gas enters the coating film through the gas source passage 24 to 2 turns. When the substrate 11 passes between the two first targets 22, the particles sputtered on the surface of the first target 22 will be plated when the substrate is passed between the two second targets 23 Particles evoked on the surface of the second dry material 23. The specific operation and process parameters of the electro-water polishing can be: vacuuming the coating chamber to a background vacuum of 丨., and flowing into the coating chamber at a flow rate of 250 500 sccm (standard state ML/min). The argon gas having a purity of 99.999% was subjected to plasma cleaning on the surface of the aluminum/magnesium metal substrate 施加1 by applying a bias voltage of -300 to 800 V on the inscription/magnesium metal substrate u, and the cleaning time was 3 to 10 min. [0023] 099144680 An anticorrosive material 13 is formed on the miscellaneous or gold alloy matrix U after plasma cleaning of the town or the magnesium alloy matrix u. The first S forms the magnesium layer 131 in the anti-corrosion layer 13 Form No. A0101, No. 7/1, 14 pages 0992077191-0 201226585. The specific operation and process parameters for forming the magnesium layer 131 are as follows: argon gas is used as the working gas, the argon gas flow rate is adjusted to 1 〇〇 200 200 cm, the duty ratio is 50% to 80%, and the magnesium or magnesium alloy substrate η is applied. A 50 to 1 00V bias and heat the coating chamber to 8〇~12〇. (3 (ie, sputtering temperature is 80~120 °C); magnesium is selected as the target, the power is set to 5~8kw, and the magnesium layer 131 is deposited. The time for depositing the magnesium layer 131 is 20-40 min. [0024] After the magnesium layer 131, a nitrogen oxide town layer 133 is formed on the magnesium layer 131, and argon gas is used as a working gas to set an argon gas flow rate of l〇〇~3〇〇sccm, and the mouse gas and oxygen are used as reaction gases. Nitrogen: the flow rate is 3〇~i〇〇sccm, the flow rate of oxygen is 50~100cmcm, the duty ratio is set to 50%~80%, the bias voltage of -50~-100V is applied to the base 11, and the magnesium is selected as the dry material. The power is set to 5 to 8 kW, the magnesium oxynitride layer 133 is deposited, and the magnesium oxynitride layer 133 is deposited for 40-90 minutes.
[0025] 在氮氧化鎂層133上形成色彩層15,該色彩層15為Ti7N 膜層或Cr-N膜層。形成所述Ti-N膜層或Cr-N膜層的具體 ... :'. 操作及工藝參數如下:關閉所述聲起的電源,開啟已置 於所述鍍膜機内的一鈦乾或鉻把的電源,設置其功率為 5〜10kw,保持上述氬氣的流量不變,停止通入氡氣,並 調節氮氣的流量為2 0 ~ 2 0 0 seem,沉積色彩層15。沉積該 色彩層15的時間為20~40min。 [0026] 本發明較佳實施方式的殼體10的製備方法,籍由磁控濺 射法依次於鎂或鎂合金基體11上形成防腐蝕層丨3及色彩 層15。該防腐蝕層13包括鎂層131和氮氧化鎂層133,所 述亂氧化鎖層133中含有鎮-0相及N的固溶相,N的固溶作 用使晶格產生較大的畸變,使得所述氮氧化鎂層133的膜 099144680 表單編號A0101 第8頁/共14頁 0992077191-0 201226585 層晶粒細小,易於生成非晶結構,使膜層更緻密,提高 了殼體10的耐腐蝕性。 [0027] ❹ [0028] [0029] [0030] ❹ [0031] [0032] [0033] [0034] [0035] [0036] 099144680 並且,當殼體10處於腐蝕性介質中時,由於所述防腐蝕 層13的鎂層131及氮氧化鎂層133與鎂或鎂合金基體11之 間的電位差小,減緩了殼體10發生微電池腐蝕的速率, 進一步提高了殼體10的耐腐蝕性。其中,該鎂層131還能 起到一個過渡緩衝層的作用,調節基體11與氮氧化鎂層 133之間的晶格畸變應力。使得殼體10耐腐蝕性提高的同 時,還可避免所述色彩層15發生異色、脫落等失效現象 ,從而使該殼體10經長時間使用後仍具有較好的裝飾性 外觀。 【圖式簡單說明】 圖1為本發明較佳實施方式殼體的剖視示意圖。 圖2係圖1殼體的製作過程中所用鍍膜機結構示意圖。 【主要元件符號說明】 殼體:10 鎂或鎂合金基體:11 防腐蝕層:13 鎂層:131 氮氧化鎂層:133 色彩層:15 鍍膜機:100 表單編號A0101 第9頁/共14頁 0992077191-0 201226585 [0037] 鍍膜室:20 [0038] 真空泵:30 [0039] 軌跡:21 [0040] 第一靶材:22 [0041] 第二靶材:23 [0042] 氣源通道:24 099144680 表單編號A0101 第10頁/共14頁 0992077191-0[0025] A color layer 15 is formed on the magnesium oxynitride layer 133, and the color layer 15 is a Ti7N film layer or a Cr-N film layer. The specific structure of the Ti-N film layer or the Cr-N film layer is formed: :. Operation and process parameters are as follows: the sound source is turned off, and a titanium dry or chromium which has been placed in the coater is turned on. Put the power supply, set its power to 5~10kw, keep the flow rate of the above argon gas unchanged, stop the introduction of helium gas, and adjust the flow rate of nitrogen gas to 2 0 ~ 2 0 0 seem, deposit color layer 15. The time for depositing the color layer 15 is 20 to 40 minutes. In the method of manufacturing the casing 10 of the preferred embodiment of the present invention, the anticorrosive layer 3 and the color layer 15 are sequentially formed on the magnesium or magnesium alloy substrate 11 by a magnetron sputtering method. The anti-corrosion layer 13 includes a magnesium layer 131 and a magnesium oxynitride layer 133. The chaotic oxide lock layer 133 contains a solid solution phase of a town-0 phase and N, and the solid solution of N causes a large distortion of the crystal lattice. The film of the magnesium oxynitride layer 133 is 099144680 Form No. A0101 Page 8 / 14 pages 0992077191-0 201226585 The layer is fine, easy to form an amorphous structure, the film layer is denser, and the corrosion resistance of the casing 10 is improved. Sex. [0027] [0029] [0030] [0030] [0032] [0033] [0034] [0036] [0036] 099144680 Also, when the housing 10 is in a corrosive medium, due to the prevention The potential difference between the magnesium layer 131 of the etching layer 13 and the magnesium oxynitride layer 133 and the magnesium or magnesium alloy substrate 11 is small, which slows down the rate of microbatter corrosion of the casing 10, and further improves the corrosion resistance of the casing 10. Among them, the magnesium layer 131 can also function as a transition buffer layer to adjust the lattice distortion stress between the substrate 11 and the magnesium oxynitride layer 133. When the corrosion resistance of the casing 10 is improved, the color layer 15 can be prevented from being in a state of discoloration or falling off, so that the casing 10 has a good decorative appearance after being used for a long time. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view of a housing in accordance with a preferred embodiment of the present invention. FIG. 2 is a schematic structural view of a coating machine used in the manufacturing process of the housing of FIG. 1. FIG. [Main component symbol description] Housing: 10 Magnesium or magnesium alloy substrate: 11 Anti-corrosion layer: 13 Magnesium layer: 131 Magnesium oxynitride layer: 133 Color layer: 15 Coating machine: 100 Form No. A0101 Page 9 of 14 0992077191-0 201226585 [0037] Coating chamber: 20 [0038] Vacuum pump: 30 [0039] Track: 21 [0040] First target: 22 [0041] Second target: 23 [0042] Air source channel: 24 099144680 Form No. A0101 Page 10 / Total 14 Page 0992077191-0